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Figure 1: A 3-variate dataset shown using a scatterplot matrix, parallel coordinates plot, and our proposed Dynamic Glyphs approach
(center). We visualize multivariate datasets using flipbook-style animation, where each frame represents one data point. Glyph
features depict attribute values (here encoded in the height of ‘beads’). Enactment of the animation produces motion in glyph
parts, creating perceptual impressions of causality. These causal percepts aids the observer in seeing the underlying multivariate

interactions, more so than with static alternatives.

ABSTRACT

We investigate how to co-opt the perception of causality to aid the
analysis of multivariate data. We propose Dynamic Glyphs (DyGs),
an animated extension to traditional glyphs. DyGs encode data rela-
tions through seemingly physical interactions between glyph parts.
We hypothesize that this representation gives rise to impressions of
causality, enabling observers to reason intuitively about complex,
multivariate dynamics. In a crowdsourced experiment, participants’
accuracy with DyGs exceeded or was comparable to non-animated
alternatives. Moreover, participants showed a propensity to infer
higher-dimensional relations with DyGs. Our findings suggest that
visual causality can be an effective ‘channel’ for communicating
complex data relations that are otherwise difficult to think about. We
discuss the implications and highlight future research opportunities.

1 INTRODUCTION

Visualization maps data attributes to perceptible features that can
be processed by our visual system. Designers select from a variety
of properties, such as the position of points, the length of bars, or
the motion speed of objects. These (and other) elementary marks
and channels are often considered the foundational building blocks
for visualization [25,41]. Our vision, however, is not limited to
analyzing basic geometric features or their surface properties. In fact,
our visual system also works to subconsciously infer higher-level
relationships, which are rarely leveraged in visualization design.
One relationship that captures our attention is causality. In its
simplest form, visual causality presents as two objects interacting
physically, with one object affecting a change in the other. For
example, a rolling billiard ball accelerates towards a second, ini-
tially stationary ball. Upon collision, the moving balls imparts its
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kinetic energy onto the second, causing it to move. This sort of
visual sequence, known as a “launching event”, has been studied
extensively by psychologists [23]. Unsurprisingly, observers of
launching events can quickly recognize the underlying causal rela-
tionship (i.e., the still ball had moved in reaction to the moving ball).
However, what makes this kind of visual phenomenon interesting
for visualization: the fact that the impression of causality results
from perceptual, unconscious processes [36,37]. Put simply, our
visual system appears to combine the various spatio-temporal fea-
tures that comprise a launching (or a similar) event. It then makes
the underlying causality available as a unit perceptual feature.

Causality perception is thought to originate in obligatory pro-
cesses that are independent from knowledge or experience [8,12,34].
Remarkably, infants as young as 7 months old [20, 21, 26] and
Chimpanzees [22, 28] seem predisposed to recognizing and react-
ing to visual causalities. Causal events thus represent a class of
elementary visual features that our brains have evolved to process
preattentively—perhaps in ways that are not unlike conventional
channels such as color, size, and shape [24]. In short, perceptual the-
ory suggests that causality can be a modular and intuitive cue [37],
but this ‘channel’ remains largely untapped in data visualization.

In this paper, we ask the question: can we appropriate people’s
perception of causality to highlight relations in data that might
otherwise be difficult to comprehend? In particular, we consider the
analysis of multivariate data (i.e., datasets that involve relationships
between three or more variables), which are notoriously difficult to
analyze with existing techniques [45]. Visualizing such relations
as physical causalities could help make them more intuitive. The
challenge, however, is to come up with an evocative design that
adheres to the ‘laws’ of causality perception while being malleable
to representing arbitrary datasets.

We propose Dynamic Glyphs (DyGs), an animated extension to
traditional multivariate glyphs that is loosely modeled after parallel
coordinates (see Fig. 1-center). This extension allows the glyph to
morph as it displays different data points in a flipbook-style anima-
tion. We propose a series of optimizations to maximizing the glyph’s
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spatio-temporal contiguity. We hypothesize that these optimizations,
together with other visual cues, give rise to a perceptual experience
of causality. This in turn should make it easier for observers to
see and describe complex data relationships in terms of physical
interactions between glyph parts. In a crowdsourced study, we com-
pare DyGs against two non-animated (but interactive) visualizations:
scatterplot matrices (SPLOM) and parallel coordinates plots (PCP).
We find that participants’ accuracy with DyGs exceeds or is compa-
rable to non-animated alternatives. Moreover, participants showed a
propensity to infer higher-dimensional data relations with DyGs, as
compared with SPLOM and PCP. Our findings suggest a new avenue
for incorporating causally cued motion into data visualizations, so as
to enhance the saliency and communicability of complex patterns.

2 BACKGROUND & RELATED WORK

Multivariate datasets routinely arise in a range of domains, from
business and commerce to science and engineering. The chief chal-
lenge in these datasets is to discover how the attributes interact and
affect each other [45]. Such analysis can be challenging; the analyst
need not only look for bivariate trends, but also has to consider the
potential for interactions between three or more factors.

Arguably, the most familiar way to visualize multivariate data is to
use scatterplots [30]. Scatterplots can be highly effective, especially
if the intent is to look for bivariate correlations [13,32]. However,
they are practically limited to displaying 2-3 variables at a time. To
cover all data dimensions, one would need to look at a scatterplot
matrix (SPLOM) [5]. SPLOMs allow one to easily see all possible
bivariate relationships. However, in doing so, they relatively impede
the perception of larger relations spanning multiple variables. As an
example, consider the SPLOM depicted in Fig. 1-left. The observer
here can easily view the quadratic relationships in the X,Y and ¥,Z
plots. He/she should also have no problem observing the inverse
correlation between X and Z. However, the observer might miss a
less salient but important feature here: that the infliction points in the
two quadratic relations coincide with Z reaching its mid-level height
(highlighted in red). Put differently, it is as if X and Y correlate
positively as long as Z is above a certain value. Falling beyond this
threshold, Z is associated with a decoupling of the linear relationship
between X and Y, with the latter then becoming more correlated
with Z.

The above trivariate interpretation might be interesting for the an-
alyst to ponder. Such relation can only be understood in its entirety;
perceiving the three scatterplots individually is not enough for one
to realize how the variables interact in unison. We argue that this
a problem for existing visualizations, including SPLOM:s, parallel
coordinates [16], and traditional glyphs [4]. Even with brushing-
and-linking [3], it can be challenging for analysts to observe and
think about multivariate trends in disjoint views. Consider, instead,
the visualization at the center of Fig. 1, which represents the same
data but employs a flipbook-style animation (only 5 of the 60 frames
shown in the figure). Here, X,Y,Z are encoded in the vertical posi-
tions of three ‘beads’. The progression of the animation illustrates
how X and Y rise together, all the while Z is falling (top 3 frames).
The animation then shows how the positive correlation between X
and Y begins to break down when Z reaches a threshold (bottom 2
frames). At that point, Y stops rising and begins to fall instead, as if
it is being dragged down by Z.

2.1 Animation in Data Visualization

Motion has been used sparingly in multivariate visual analysis. Its
use has been primarily restricted to animated transitions [14]. For
instance, ScatterDice allows smooth transition between projections
by interpolating on one axis at time [10]. Yi et al. describe a ‘dust
& magnets’ metaphor, which allows an analyst to construct custom
2D projections by placing magnets (corresponding to attributes) and
observing how the point cloud reacts [46]. However, the use of
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Figure 2: A composite of a Dynamic Glyph animation (top) and its
equivalent parallel coordinates plot. The glyph shows a multivariate
point using one bead for each attribute. Beads move vertically to
indicate higher or lower attribute values. Springs connect the beads
and react to their motion by stretching and tightening.

motion in InfoVis has come with some controversy. Robertson et
al. tested animated scatterplots (in the style of GapMinder [35]) but
found them less accurate than static plots and small-multiples [33].
Similarly, Tversky et al. suggest that any benefits of animation can
be realized by supplanting dynamic graphics with a series of static
views [40]. On the other hand, recent work have demonstrated effec-
tive uses for animation. For instance, animated graphs of dynamic
networks tested more accurate than small-multiples [1]. Ondov et al.
also found animation to be more effective for outlier detection [29].
Animation can induce a frequency-based framing of uncertainty [15],
which seems advantageous over static representations [18].

Researchers have used motion to highlight causal relationships [2,
11,17,42]. A key assumption in these works is that causalities are
known a priori, with visualizations intended to present a summary
thereof. Our approach is to let the viewer perceptually deduce visual
causality from a ‘playback’ of data frames, without necessarily
implying causality in the epistemological sense [31]. Our technique
is therefore broadly applicable to multivariate data, and not restricted
to communicating known causalities—a much narrower context.

3 DyNAMIC GLYPHS

We aim to design animated devices that can leverage people’s innate
causality perception. We call these representations Dynamic Glyphs
(DyGs), as they are inspired by the classical glyph notion. A glyph
consists of several marks each mapped to a separate data attribute.
The visual properties of the marks (e.g., the position of circles or
the length of bars) are determined by data values. Howver, unlike
traditional glyph designs where different data points are encoded
with separate visual objects, DyGs employ a single glyph that is
animated over a sequence of frames. Each frame depicts a single
multidimensional data point. Collectively, the animation depicts
an entire dataset, illustrating interactions between attributes via the
motion of glyph parts. For this animation to be effective, however, it
must be optimized.

3.1 Optimizing for Causality Perception

The first challenge is to design a glyph that, when animated, can
potentially evoke a sense of physical interactions between its con-
stituent parts. That is, the marks should be seen as exerting forces
on each other. We adopt the glyph in Fig. 2 as an initial prototype.
The glyph is composed of a series circular beads, one for every data
attribute to be encoded. The value for an attribute is encoded in
the vertical position of the bead. Beads move along parallel verti-
cal axes as the glyph transitions between different data points. A
correlation between attributes thus can be seen as beads moving in
unison. To convey a potential for physical interactions, adjacent
beads are connected with coil springs. The springs do not exert
influence on the position of the beads, as the latter is driven entirely
by the data. Rather, springs follow the movement of beads, and
stretch and tighten in reaction. While completely reactionary, the
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Figure 3: Optimization of Dynamic Glyphs animation. We determine
a frame sequence (illustrated with curves in the bivariate projections)
by minimizing Euclidean distance between consecutive frames. Cor-
relating attributes (e.g., A, C, D) are also mapped to adjacent beads.

o

springs serve to communicate a notion of implied forces between
the attributes. One caveat with this design is that the nature of forces
implied (i.e., pulling via spring tension) differ from the kind of col-
lision forces seen in causality studies [23,36]. However, evidence
suggests that causal percepts can also be triggered when the motion
suggests pushing and pulling [44], even with no direct contact [43].

The second challenge is to make the animation seem physically
plausible. This is essential, as causal perception requires spatio-
temporal contiguity in the motion [6,23]. We address this by first
optimizing the order of attributes within the glyph to maximize
bivariate correlation between neighboring beads. That is, highly
correlated attributes are mapped to adjacent beads whereas those
showing no association are placed further apart. This strategy should
increase spatial contiguity. Temporal contiguity, on the other hand,
can be optimized by ‘playing’ similar frames consecutively (recall
that each frame in the animation corresponds to one data point). We
thus compute a sequence that minimizes the intra-frame Euclidean
distance, and where every data point appears exactly once. Fig. 3
illustrates the intuition behind this optimization.

These two optimizations should not impact data semantics, as the
order of columns or rows within a multivariate dataset do not carry
any meaning. To further increase motion coherence, we apply a
moving average so that the shape of the glyph at a particular frame is
dependent to some degree on its three prior and subsequent frames.

4 EXPERIMENT

We conducted a crowdsourced experiment to test whether DyGs can
help people find and report multivariate relations. We also com-
pare DyGs against two traditional alternatives: scatterplot matrices
(SPLOM) and parallel coordinates (PCP). The experiment utilized
the following protocol: participants were shown a stimulus multivari-
ate dataset using one of the three visualizations. For each stimulus,
we asked the participant to describe apparent data relations in nat-
ural language [27]. This open-ended response is meant to capture
participants’ spontaneous interpretations of data with minimal bias.

4.1 Stimuli

We opted for synthetic stimuli in order to generate datasets with
known ground truths. This was done by first sketching bivariate
trends in 2D scatterplots and randomly adding points around the
sketch. The sketched relations could then be generalized to three or

more dimensions by drawing in multiple plots corresponding to dif-

ferent attribute pairs. This process enabled us to embed meaningful

ground-truths in the stimulus set, while balancing three factors:

* Dimensionality: we generated stimuli with 3, 4, or 5 variables.

* Degrees of Freedom (DoF): we sought to vary the degree to which
the dimensions correlate in the stimuli. We quantified the DoF by
running a PCA analysis on the stimuli. Larger DoF reflects more
variance among the dimensions, and hence higher data complexity.

¢ Data features: We sought to vary the features within the stimuli
by embedding linear correlations, polynomial relations, clusters
within bivariate projections, and random bivariate distributions.

We generated 12 datasets as stimuli for the experiment. Fig. 3
shows one of the 5-dimensional stimuli tested. Each dataset con-
sisted of 60 multidimensional points. Attribute values were normal-
ized unitless real numbers. We refrained from giving the attributes
semantically resonant names to avoid biasing participants [9]. In-
stead, attributes were labeled with single letters (A through E) so
that participants can refer to them unambiguously. Consult the
supplemental materials for details!.

4.2 Visualizations

Participants saw one of three visualizations (Fig. 1):

* Dynamic Glyphs: The glyph transitioned between data points in
a loopy animation. In keeping with the illustrative nature of DyGs,
no axes, quantities, or units were shown—only relative motion
of the beads and springs can be inferred (Fig. 2). The duration
of the animation was 1700 milliseconds (yielding 34 data frames
per second). The interface included a pause/replay button and an
interactive progress slider, allowing participants to jump frames.

* SPLOM: The display showed the lower half of the scatterplot
matrix. Participant could also brush data points in one scatterplot
and see them highlighted in other plots.

e PCP: Parallel coordinates can be seen as orthogonal to DyGs;
attribute values are encoded with vertical positions on parallel
axes. However, PCP avoids animation by depicting all data points
at once via semi-translucent, brushable polylines.

4.3 Participants & Procedures

We recruited 123 participants from Amazon Mechanical Turk (42 fe-
males, 80 males, 1 unspecified) with a mean age of 33.74 (SD=11.32
years). Participants were randomly assigned to one of the three visu-
alization types, with 41 subjects in each condition. All participants
viewed the same 12 synthetic datasets (§4.1). Stimuli were ordered
based on the dimensionality of the dataset (low to high). After a
brief tutorial, participants viewed the stimulus datasets one at a time.
For each dataset, participants were asked to respond to the following
prompt (inspired by [36]): Your task is to describe what is happening
in these charts and what the attributes are doing. We are interested
in your intuitive impressions. Do you have an impression that some
attributes are somehow interacting with other attributes? Please
refer to attributes specifically by their symbol. Participants typed
their open-ended response in a text box. Subjects were compensated
with a $2 payment upon completing the study.

4.4 Analysis and Coding

We segmented participants’ responses [39] to delineate observations
relating to distinct data features. Each segment was then tagged
with one or more codes characterizing the data feature implied (see
the supplemental materials for examples). We extracted two quan-
titative metrics from each segment. First, the accuracy of implied
data features was determined by comparing responses against the
ground truth. Accordingly, segments were graded as 1 (correct) or
0. Segments that could be interpreted as partially correct, or those
that needed a more nuanced description (e.g., when characterizing

IThe supplemental materials are available at: https://osf.io/qv6d2/
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Figure 4: Average accuracy (top chart) and number of uniquely refer-
enced attributes (bottom) in participants’ responses (+95% Cls).

a nonlinear relationship as a simple correlation) were graded as
%. Segments that could not be graded due to lack of specificity
were excluded from the analysis. We extracted a second metric that
reflected the number of unique attributes referenced in each seg-
ment (hereafter var count). This number captures the complexity of
the inferred patterns and the degree to which they involve multiple
variates. For instance, in the segment “A and C go down and then
increase as B increases”, the rater counted 3 unique attributes.

Two raters redundantly coded 137 responses (9.5% of total). Inter-
rater agreement was computed using Fisher’s Intraclass Correlation
Coefficient (ICC) [19]. The observed ICC was 0.711 and 0.82 for
accuracy and var count, respectively, indicating good agreement [7].

4.5 Accuracy

Fig. 4-top illustrates the mean response accuracy. Results did not
meet the normality assumption, so we employ a non-parametric
Kruskal-Wallis test. The test indicates a significant main effect of
visualization type (x%(2) = 19.596, p < 0.001). A Mann-Whitney U
test with Bonferroni correction shows significant difference between
DyGs and SPLOM (p < 0.001), and between SPLOM and PCP
(p < 0.001). No difference was found between DyGs and PCP.
The results suggest a comparable accuracy for Dynamic Glyphs
(85.4%) and parallel coordinates (82.7%), both of which seemed
more accurate than scatterplots (77.5%).

4.6 Response Complexity

Fig. 4-bottom illustrates the average number of attributes referenced
by participants in their responses. A Kruskal-Wallis test reveals
a significant main effect of visualization type on the number of
attributes referenced (y2(2) = 43.332, p < 0.001). Post-hoc Mann-
Whitney tests show significant difference between DyGs and PCP
(p < 0.001), and between DyGs and SPLOM (p < 0.001). Dynamic
Glyphs led to more complex multivariate inferences (involving 3
attributes on average) compared to parallel coordinates (2.58) and
scatterplots (2.69), with the latter two being comparable.

5 DIsScusSION

Results show Dynamic Glyphs (DyGs) to be more accurate than
scatterplot matrices (SPLOM). This seems surprising at first, given
that scatterplots are known to be effective at showing bivariate trends
[13,32]. However, unlike individual scatterplots, a SPLOM can be
challenging to interpret, especially when looking for relationships be-
tween multiple variable. For example, generalizing bivariate trends
to three (or more) dimensions requires careful inspection of several
plots while brushing-and-linking. These steps can be cognitively
demanding and may be beyond the skills of the typical analyst. By
comparison, DyGs illustrate relations as visually causal interactions.
This representation is arguably more intuitive, and may activate

innate perceptual and cognitive mechanisms. The lower SPLOM
accuracy may also be due to participants’ occasional sloppiness
when interpreting scatterplots. We frequently saw responses that
characterize an inverse correlation (e.g., between X and Z in Fig. 1)
as “two [variables] decreasing”—an obviously incorrect inference.
These participants appear to confuse scatterplots with line charts.

The experiment shows that PCP and DyGs have comparable ac-
curacy. This may be explainable considering the similarity between
the two visualizations; both DyGs and PCP encode values as vertical
positions on parallel axes. Overall, it seems Dynamic Glyphs can be
at least as accurate as traditional multivariate visualizations.

The results, however, show a larger effect on the complexity
of inferences. Participants seemed more likely to report higher-
dimensional patterns with DyGs, as measured by the number of
attributes. This could be due to DyGs activating causal perception
processes, thereby making these patterns more salient. One particu-
lar advantage of causal impressions over other channels is that they
are intuitively ‘transitive’. To illustrate this, consider a DyG that is
composed of three connected beads: A, B, and C. If one observes A
to impart its ‘energy’ onto B, with B moving in reaction and in turn
affecting movement in C, then it can be concluded—perhaps at a
perceptual level—that the triplet are related. It is relatively easy with
DyGs to see when multiple attributes ‘transmit’ energy over a chain,
which may in turn help in recognizing higher-order patterns. By
contrast, the bivariate inferences people tend to draw from SPLOM
and PCP constitute isolated chunks, requiring significant mental and
interaction effort (e.g., brushing) to integrate.

Another advantage for DyGs is that they afford narrative-centric
accounts of multivariate data. For instance, earlier in the paper
we characterized relations in Fig. 1 using a short narrative: X and
Y rising together, followed by a shift in the relationship when Z
reaches a threshold. Likewise, we noticed that many participants
had responded with similar accounts. Descriptions of DyGs often
contained story elements, with subjects characterizing attributes as
actors with agency. However minimal, such narratives could make it
easier for people to reason and talk about complex data dynamics.

Although we see qualitative evidence that DyGs promote causal
impressions (as intended with the design), this study alone cannot
attribute the effects observed to causality perception per se [36]. It
may be that the physical metaphor in DyGs, or the ability to frame
multivariate relations in terms of simple narratives, were the primary
drivers behind participants’ improved comprehension. Future studies
could attempt to tease out the individual or compound effects of
these factors. It is also important to note that priming people to
think causally may not always be desirable, despite the potential
affordances this sort of reasoning brings. In particular, there is a risk
of analysts confusing simple correlation with causality after viewing
DyGs. Such risk could be alleviated by reminding analysts that
causality—in the knowledge-based sense—should not immediately
ascertained, despite what the metaphor might imply. Lastly, as with
other dynamic representations, DyGs could cause people to miss
or neglect certain relations due to inattentional blindness [38], a
possibility that should be studied.

6 CONCLUSION

Impressions of causality are products of early vision processes. We
sought to leverage these mechanisms in multivariate data analysis.
To that end, we designed a new kind of animated representation
called Dynamic Glyphs (DyGs), and found them to be as accurate as
traditional visualizations. Furthermore, untrained observers seemed
more likely to report complex, higher-dimensional relationships with
DyGs than with other techniques. Our findings suggest that visual
causality may be an effective ‘channel’ in multivariate visualization.
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