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Figure 1: Six example stimuli from our experiment (actual trials showed one pair of maps at a time, separated by a larger horizontal
spacing of 150 pixels). The scalar fields (200×200 pixels each) represent synthetic terrain, with color encoding elevation. For each
pair of maps (on the same row and under a particular colormap), which image (left or right) shows steeper terrain on average?
Steepness is defined by how quickly the elevation changes between adjacent map points. The answers are in §3.1.

ABSTRACT

Color mapping is a commonly used technique for visualizing scalar
fields. While there exists advice for choosing effective colormaps,
it is unclear if current guidelines apply equally across task types.
We study the perception of gradients and evaluate the effectiveness
of three colormaps at depicting gradient magnitudes. In a crowd-
sourced experiment, we determine the just-noticeable differences
(JNDs) at which participants can reliably compare and judge varia-
tions in gradient between two scalar fields. We find that participants
exhibited lower JNDs with a diverging (cool-warm) or a spectral
(rainbow) scheme, as compared with a monotonic-luminance col-
ormap (viridis). The results support a hypothesis that apparent
discontinuities in the color ramp may help viewers discern subtle
structural differences in gradient. We discuss these findings and
highlight future research directions for colormap evaluation.

Index Terms: Human-centered computing—Visualization— Em-
pirical studies in visualization

1 INTRODUCTION

Color mapping is a foundational technique for visualizing how an
attribute changes across geography. Continuous colormaps, in par-
ticular, map data intervals to color gradations, thereby revealing
subtle spatial variations in the data. Such maps are widely used in
science and engineering to analyze sensor or simulation data (e.g.,
air turbulence caused by jet engines). However, they also used by
lay citizens, for instance, to keep watch on local weather conditions
especially during emergencies. A challenge for map designers is to
choose color schemes that are both aesthetically pleasing and accu-
rate. Good colormaps must accurately convey features and summary
statistics in the data through apparent color variations.

There is a rich body of guidelines for choosing color se-
quences [31, 33, 40]. Recently, a number of empirical studies have
also been reported in the literature, providing assessment of user per-
formance under an assortment of colormaps and analytic tasks. For
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example, Ware et al. tested the resolving power of various color se-
quences in a task involving the discrimination of small features [38],
while others studied how colormap performance is affected by spatial
frequency [13, 26]. Although studies have produced evidence con-
sistent with guidelines [8, 19], surprising results have also emerged
in some experiments, where the effectiveness of colormaps was
strongly dependent on the task [26]. Overall, studies hint at gaps
in our understanding, and suggest that existing guidelines may not
always dictate the best colormap design strategy for a given task.

In this work, we empirically study a task that has not been suf-
ficiently characterized: the perception of gradients in scalar fields.
We evaluate colormap effectiveness in helping people compare and
judge spatial variations. Specifically, we design a model task to de-
termine the just-noticeable differences (JND) at which participants
can reliably contrast the gradients in two scalar fields. Concurrently,
we test a hypothesis that apparent color bands in the image (e.g.,
hue boundaries in spectral and diverging schemes) may, counter-
intuitively, facilitate this task. Comparing three colormaps (diverging
cool-warm, rainbow, and viridis), we find that viridis (monotonic
luminance) exhibits higher JND levels, indicating lower sensitivity.
The results suggest that color discretization may aid the perception of
net gradients, along with possibly other distributional characteristics.
We discuss the findings and outline future research directions.

2 RELATED WORK

There exist guidelines for choosing quantitative color sequences [33,
40]. Although the vocabulary can be ambiguous [6], guidelines
generally agree in spirit on three principles: 1) perceptual uniformity:
even distances between adjacent colors; 2) order: a viewer should
be able to intuitively order colors from the scale; 3) continuity:
the colormap should produce a smooth image devoid of artificial
boundaries. Given these principles, most researchers advocate for
colors with monotonically increasing luminance, while discouraging
the use of ‘spectral’ schemes (e.g., rainbow) [30]. The tendency for
rainbows to create boundaries between hues (sometimes referred to
as a ‘hue banding’ effect) is believed to mislead viewers [23, 33]. In
this work, we explore an alternative hypothesis: that apparent color
bands may help in tasks that involve reasoning about gradients.

It is worthy to note that ‘hue banding’ is not limited to spectral
schemes, as several other colormaps also induce discontinuities. For
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instance, in cool-warm (a perceptual, diverging scheme), one ob-
serves a relatively pronounced boundary in the middle of the scale.
This edge seemingly discretizes the scale into distinct blue, grey, and
red regions, though to a lesser extent than rainbow (see Figure 1). It
is possible, however, to minimize discretization. Viridis, for instance,
is defined as a series of equidistant spline interpolations [36] in the
CAM02-UCS space [20]. By making ‘soft’ curves in a perceptual
color space, viridis mostly avoids inducing color boundaries. The
result is a generally smooth ramp that arguably satisfies the continu-
ity principle. Liu and Heer found that viewers can accurately judge
color distances in viridis [19], suggesting minimal separation.

2.1 Tasks and Empirical Evaluations
Pseudocolor maps support a range of graphical tasks, from quantity
estimation (e.g., reading temperatures at specific locations) to the
comprehension of forms and patterns [37]. These maps are also
used for comparative analysis, where a viewer might compare two
datasets, or different parts of the same dataset [14]. The former is
a frequently recurring task in computational science. For example,
climate scientists often compare scalar fields representing projected
climate conditions under different scenarios or model parameters [9].
In looking at these simulations, one could be interested in small-scale
features, but often, when drawing comparison, one is concerned with
finding structural differences between the maps [21]. And while
the discriminability of small features and the accuracy of point
estimates has been studied [37, 38], less attention has been devoted
to how people extract and compare summary features in multiple
scalar fields. In one experiment, Dasgputa et al. tested climate
scientists’ accuracy in comparing the mean value of two maps. They
found participants to be generally more accurate with Brewer’s blue
scheme (monotonic luminance [11]), compared to a standard or
Kindlemann’s rainbow [8]. However, they reported higher accuracy
for rainbow maps in a different task. In a study with doctors, Borkin
et al. found diverging colormaps to be more accurate than rainbow
when diagnosing heart disease from arterial scans [4].

The task used in this work also involves comparing the structure
of two scalar fields. Specifically, we measure participants’ accuracy
in judging the overall gradient in two images. We employ a two-
alternative forced choice (2AFC) design in which participants make
a single choice between two options. The 2AFC procedure offers
a psychologically grounded method for assessing sensitivity [3],
compared to eliciting numerical or Likert estimates [8]. Notably,
2AFC has been applied in a number of visualization studies [12, 39].
Our task is similar to the gradient perception experiment reported
by Reda et al. [26]. This study extends that work by testing an
explanatory hypothesis, and by modeling the thresholds (JNDs) at
which individuals become sensitive to gradient variations. Note that
our notion of JND refers to just-noticeable differences in gradient
when comparing two scalar fields—not to be confused with JND as
applied to color distance. As this task may be affected by spatial
frequency [2, 29], we study the latter as a second independent factor.

3 EXPERIMENT

We conducted a crowdsourced experiment to investigate how col-
ormap choice impacts people’s ability to perceive and compare gra-
dients in 2D scalar fields. The gradient, as the first order derivative,
is defined over a neighborhood of points. We therefore test partic-
ipants’ sensitivity to the net average gradient magnitude within a
field. Our task thus represents an ensemble or summary task [7, 34].

The average gradient is an important summary characteristic to
communicate in scalar field visualizations. It enables people to com-
pare and identify structural differences between multiple datasets.
Moreover, the same measure can cue the viewer to regions showing
faster spatial changes within a single field. Such regions could be
interpreted as having higher levels of ‘activity’, and consequently be
deemed interesting for further detailed inspection. For example, in

simulating the noise created by jet engines, physicists are often inter-
ested in regions of high turbulence within the jet plume [15], which
can be spotted by looking for areas with higher average gradient.
Likewise, subtle fluctuations in the cosmic microwave background,
which are similarly marked by larger gradients, may indicate im-
prints from the early universe [17]. Therefore, the degree to which
colormaps accurately depict net gradients in scalar fields (or sub-
regions thereof), and the threshold at which people can perceive
subtle gradient variations, carry significant practical importance.
From a theoretical point of view, we expect this task to benefit from
discontinuities in the color ramp (see §3.6 for elaboration).

3.1 Stimuli and Task
We employ synthetically generated scalar fields to precisely control
stimuli characteristics. Fields were procedurally generated using a
Simplex noise algorithm [18] with random seeds. We used a blend
of multiple noise octaves to produce realistic datasets. The resulting
fields were re-normalized to span the extents of the color ramp. All
generated fields measured 200×200 pixels, subtending 4° of visual
angle when viewed from a distance of 30 inches at 96 DPI. Our
stimulus maps are thus larger than a single ‘feature’ yet compact
enough for a perceptual judgment task. In generating each stimulus,
we vary the Simplex parameters using a stochastic optimization, until
yielding the desired gradient levels. This enables us to generate map
pairs with almost identical characteristics (e.g., similar distribution
of scalar values) while precisely varying gradients as needed.

Participants were told that the maps represented terrain, with ele-
vation depicted in color. In each trial, participants were presented
with two randomly generated scalar fields displayed side-by-side
(150 pixels apart) and encoded using the same colormap. A color
scale was displayed to the right. Participants were asked to click on
the map that represented “steeper terrain on average”, with steep-
ness indicated by “faster change in elevation between adjacent map
points.” This task wording was inspired by Padilla et al. [24]. Partic-
ipants made a two-alternative forced choice (2AFC) judgment (i.e.,
‘left’ or ‘right’ map) based on the perceived average steepness. Upon
selection, participants received a new pair of maps for a new trial.

Figure 1 shows six example stimuli.1 The ground truth, net
gradient is calculated by convolving a 3×3 Sobel filter. The sum of
gradients from all pixels was averaged, yielding an average gradient
magnitude for each field. This ground truth measurement was used
to determine whether a participant had judged correctly.

3.2 Study Design
We investigate two independent variables: Colormap and Spatial
Frequency. We tested three colormaps representing different design
strategies and varying levels of hue discretization:

• Rainbow: we used the ‘Jet’ variant, a previously default colormap
in Matlab. Rainbow is often perceived as highly discretized [5].

• Cool-warm: a diverging blue-red scheme designed for scientific
visualizations [22]. It exhibits some discretization.

• Viridis: a smooth, perceptually uniform map over blue, green, and
yellow hues [36]. It is thought to exhibit minimal discretization.

Spatial frequency reflects the level of variation within a degree
of visual angle. We control spatial frequency by adjusting the base
average gradient in the stimulus fields. We test two spatial frequency
levels (see Figure 2): low (base avg. gradient: 25.5%) and high
(40.0%). Hereafter, we express gradient magnitudes in percentage
points indicating the change in scalar value over a one-pixel step.
This value reflects the output of the 3×3 Sobel filter times hundred.

We employ a full-factorial (3×2) within-subject design: all partic-
ipants were tested with three colormaps at the two spatial frequency

1The correct answers for the stimuli in Figure 1: top row (starting with
the leftmost pair): left map, right, left; bottom row: left, right, right.



Figure 2: Examples of low (left) and high spatial frequency stimuli.

levels. The experiment was blocked by colormap. For each col-
ormap, participants completed 2 sets corresponding to low and high
spatial frequency, prior to moving to the next colormap. Each set
consisted of 40 judgment trials. At the beginning of a set, the gra-
dient difference between the two fields was initialized to 3%, and
subsequently adapted throughout the set according to a staircase
procedure (more on this in §3.3.1). Participants completed 6 sets (3
colormaps × 2 spatial frequency levels), for a total of 240 (6×40)
trials. The order of colormap and spatial frequency presentation
was fully counterbalanced across participants. In addition to the
actual trials, we included 18 engagement checks that were randomly
distributed. The checks comprised easy judgment (13% gradient
difference—roughly 4× easier than the starting difficulty).

3.3 Procedure
Participants were first screened for color vision deficiency using 14
Ishihara panels. After a brief tutorial, they completed 45 practice
trials through which they were exposed to the three colormaps at
increasing levels of spatial frequency. During practice, they were
provided with feedback on whether they had judged correctly. After
training, participants completed the 240 actual trials. At the end of
the experiment, we asked participants to provide a brief description
of the strategy they followed in the task, including any “visual
features or characteristics” they used to decide between the two
maps. Lastly, participants completed a demographic survey.

3.3.1 Staircase Procedure
The difference in average gradient between the two maps was
adapted by a 1-up, 3-down staircase procedure: if the participant
answers a trial correctly, the difference in gradient for the next stim-
ulus is decreased by one step. On the other hand, if the participant
makes an incorrect judgment, the difference is increased by three
steps. We define one step as 0.285% gradient (selected after a pilot).
The procedure thus dynamically adjusts task difficulty based on a
participant’s performance (increasing gradient difference makes the
judgment easier). Ultimately, the procedure converges to the individ-
ual’s JND: the difference at which the participant can discriminate
correctly 75% of the time (halfway between chance and perfect reli-
ability). For a visual reference, the top row in Figure 1 shows map
pairs where the gradient difference is 2× the average JND observed
(i.e., easy judgments), whereas the bottom row is at the mean JND.

3.4 Participants
We recruited 105 participants (60 males, 45 females) from Ama-
zon Mechanical Turk. Participants had a mean age of 37.2 years
(STD: 11.1). They were compensated with $3 upon completing the
experiment. We excluded participants who failed the color vision
test, or those who had low accuracy (<70%) in the engagement
checks (50% accuracy is chance). New participants were recruited
in replacement of those excluded, until we reached our sample size.

3.5 Analysis
We fit the responses of each participant to a psychometric function
(PF) [12,16]. The PF in our study models the probability of correctly
choosing the steeper of two scalar fields based on the difference in
their ground-truth, average gradient magnitude. We use a Gaussian
cumulative distribution function as our PF. The model enables us to

estimate two parameters: 1) the JND, which represents the differ-
ence in average gradient between the maps at which a participant can
make correct judgment 75% of the time, and 2) the spread (equiv-
alent to the standard deviation of the Gaussian), which estimates
the degree to which the judgment is susceptible to noise. For each
individual participant, we fit 6 PFs, one for every combination of
colormap and spatial frequency level. We then assess how the JND
and spread are impacted by colormap and spatial frequency.

The PF provides an interpretable model for our task: A colormap
with lower JND allows participants to discriminate smaller differ-
ences in gradient. Similarly, a small spread implies that, once the
JND is met, the judgment is most likely to be accurate. Conversely a
larger spread implies a flatter response curve with more ambiguous
judgments. The intuition behind the PF is illustrated in Figure 3.

P 
(c

or
re

ct
) 1

0.5

0.75

JND B JND R Spread B Spread R

Figure 3: We model the probability of comparing two maps correctly
(Y axis) as a psychometric function of the gradient difference between
them (X axis). The red curve on the left shows a hypothetical colormap
with higher JND, requiring larger difference for discrimination. The
curves on the right have similar JNDs but red has wider spread.

3.6 Hypotheses
We developed two primary hypotheses2:

H1—We hypothesize the discontinuities in the color ramp will en-
hance the perception of gradients in scalar fields. We conjecture that
viewers take advantage of the emergent, discrete color features (e.g.,
red and blue bands in rainbow or cool-warm), and estimate their
apparent size and frequency as proxies for gradient. Heuristically,
smaller-sized and more-frequent color patches can be indicative of
larger net gradients. It is known that people can extract such esti-
mates from a scene in parallel [1, 32, 34]. Since both cool-warm and
rainbow have a tendency to create discrete features in the image,
we expect them to result in higher sensitivity to gradients and, thus,
exhibit lower JNDs compared to viridis.

H2—We expect the above heuristic to become less effective at high
spatial frequency. This is because the latter will make any discrete
features progressively smaller, making it harder to obtain reliable
distributional estimates.

3.7 Results3

Participants completed the experiment in 23.2 minutes on average.
In total, they provided 25,200 gradient judgments. Their average
accuracy was 74.3%, indicating that the staircase procedure was ef-
fective at converging to the 75% JND thresholds we sought. Average
accuracy in the engagement checks (easy judgments) was 96.9%.

3.7.1 Just-noticeable differences (JND)
Figure 4 shows the individual JNDs—the gradient difference lev-
els at which subjects achieve 75% accuracy (lower JND is better).
Means are illustrated in Figure 5. We employ a linear mixed-effect
model to estimate the impact of colormap and spatial frequency on
the JND. The model also incorporates a random intercept to account
for variations among individual participants. We find a significant
main effect of colormap (F(2,520) = 14.771, p < 0.001). Pairwise

2We preregistered our experimental design and hypotheses prior to data
collection: https://osf.io/ng9qw

3The experiment data and materials are at: https://osf.io/ew638/
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Figure 4: Fitted JND thresholds (lower is better sensitivity). Each
colored dot represents the JND of one subject, showing the gradient
threshold at which the subject can discriminate between two scalar
fields. Diamonds depict group means (±95% confidence intervals).

tests with Tukey’s adjustment show significant differences between
cool-warm and viridis (p < 0.001) and between rainbow and viridis
(p< 0.001). No significant difference was noted between cool-warm
and rainbow. It appears that cool-warm (JND gradient: 2.86%, CI:
2.62–3.09%) and rainbow (JND: 3.05%, CI: 2.82–3.28%) afford
higher sensitivity to gradients as compared to viridis (JND: 3.61%,
CI: 3.31–3.91%). The estimated effect size (Cohen’s d) is 0.376 for
cool-warm over viridis and 0.264 for rainbow over viridis.

We found a significant main effect of spatial frequency
(F(1,520) = 49.272, p < 0.001). The JNDs at high spatial fre-
quency were 29.7% greater compared with low the frequency con-
dition. We found no interaction between colormap and spatial fre-
quency; the latter reduces sensitivity equally in all tested colormaps.

3.7.2 Spread
The spread reflects the effect of uncertainty when comparing two
maps, and is measured in the same unit as the JND (gradient
magnitude). A linear mixed-effect model shows no significant
main effects of colormap (F(2,520) = 0.111) or spatial frequency
(F(1,520) = 0.055). No interaction was noted (F(2,520) = 1.389).
Subjects experienced similar ambiguity when judging gradients with
any of the three colormaps (Mean spread=1.23%, CI: 1.08–1.37%).

4 DISCUSSION

The JND levels for rainbow and cool-warm were quite similar. This
suggests that the two colormaps perform similarly in tasks involving
the comparison of scalar datasets, and where gradient magnitude is a
main object of comparison. Participants exhibited lower JNDs with
cool-warm and rainbow as compared with viridis, indicating that the
latter requires larger gradient differences for effective discrimination.
The observed effect size (0.264–0.376) is small to moderate. The
results are inline with our prediction and provide evidence in sup-
port of H1. Namely, that discontinuities in color ramps may aid the
perception of 2D gradients. This is because, although discrete color
bands are essentially artifacts [5], viewers may rely on such features
as proxies for gradient. For instance, a viewer could estimate the
apparent size of the blue and red patches in Figure 1, or how fre-
quently they seem to occur in the image. People can quickly and
accurately make such distributional estimates [1, 32, 34]. Estimates
about the size and frequency of peaks and valleys, in particular,
can be reliable proxies for spatial variance. Such features are made
salient in rainbow and cool-warm thanks to hue discretization. This
kind of segmentation may also enhance ensemble perception [10].
By contrast, to the extent that viridis is perceived uniformly, viewers
may find it difficult to apply the above heuristic.
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Figure 5: Mean JNDs by colormap and spatial frequency (±95%
confidence intervals). Arcs indicate significant post hoc differences.

Unsurprisingly, discriminating gradients is more difficult at high
spatial frequency as evidenced by the larger JNDs. This is consistent
with Weber’s law, which may govern the perception of statistical
properties in visualizations [27,28]. That said, our second hypothesis
(H2) failed to materialize; we observe that cool-warm and rainbow
continue to outperform viridis even at high spatial frequency. It may
be that viewers can still infer distributional characteristics about
fields, even as the discrete color features become smaller.

Overall, the experiment suggests that hue-based discretization
may not always be a bad thing. Color bands may aid some tasks
where the goal is to compare structural differences, including net
gradients. Such tasks arise frequently in scientific visualization.
Weather forecasters, for instance, typically start by making quantita-
tive estimates (e.g., of air pressure) at landmark locations, and look
for variations in those values to form an initial mental model [35].
Earlier studies show spectral schemes to be effective in quantity
estimation [26, 37]. This study contributes evidence that spectral
and diverging sequences may help people in reasoning about certain
spatial characteristics, more so than monotonic-luminance ramps.
Although our study does not rule out an alternative explanation,
the results advance the hypothesis (H1). This, in turn, could par-
tially explain why spectral schemes remain a popular choice among
practitioners [25]. It is important to note, however, that rainbow
colormaps can be problematic in other tasks [4, 5], and can exclude
people with color vision deficiency. Therefore, they should still not
be recommended as standalone visualizations.

Our findings suggest a new avenue for evaluating colormaps, by
testing their ability to convey distributional and structural charac-
teristics in scalar data. Such tasks, we argue, are important for
many users, but are not sufficiently addressed in formal studies. The
model task introduced here could be adopted to measure the JND
thresholds for other spatial statistics, such as autocorrelation and
amplitude skewness. Results can then be used to derive task-specific
color encoding guidelines.

5 CONCLUSION

We studied the perception of gradients in color-coded scalar fields.
In a crowdsourced experiment, we sought to determine the just-
noticeable differences when comparing 2D scalar data. We find
that participants can discriminate smaller gradient variations when
looking at a diverging or a spectral scheme, as compared with a
monotonic-luminance colormap. The results support a hypothesis
that discontinuities in color ramps may help in certain spatial tasks.
Our findings suggest a new avenue for colormap evaluation, with a
focus on assessing sensitivity to distributional characteristics.
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