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April L Barnard 

GENETIC DETERMINANTS OF COXSACKIEVIRUS B3 PATHOGENESIS 

Enteric viruses are among the most common infectious human viruses worldwide, 

causing an estimated 10-15 million infections per year in the United States. Among 

enteric viruses, Coxsackievirus is commonly isolated and can lead to the development of 

meningitis, encephalitis, pancreatitis, and hepatitis. Furthermore, Coxsackievirus B3 is 

the primary cause of viral myocarditis and can lead to pleurodynia, with nearly 40,000 

symptomatic cases reported in the United States each year. The enteroviral ssRNA 

genome contains a 5’ untranslated region (5’UTR) which consists of two structural 

components, the cloverleaf and the internal ribosome entry site (IRES), both shown to be 

integral to viral success. Additionally, the viral genome encodes four structural VP 

proteins as well as 11 non-structural proteins. Polymorphisms found within the CVB3 

population have been linked to viral virulence. Here, we compare two CVB3 Nancy 

variants to elucidate the downstream effects observed in response to mutations found in 

the CVB3 genome. Implementing our novel oral inoculation model, we aimed to 

determine the impact mutations found in the 5’UTR and VP regions exert on viral 

pathogenesis. We also aimed to delineate the in vitro effects of the observed mutations. 

We investigated the role mutations found in the structural regions played in virus host 

cell attachment, in vitro cell viability, and replication. Our work has further confirmed the 

relevance and impact of mutations found in the VP region of the CVB3 genome. 

Christopher M Robinson PhD, Chair 
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CHAPTER ONE 

1. Introduction 

1.1 Picornavirus Background 

Enteric viruses or those human viruses primarily transmitted via fecal–oral route 

either from person-to-person contact or by ingestion of contaminated food or water, 

continue to be a significant cause of morbidity and mortality worldwide [1, 2]. 

Enteroviruses, a prevalent subset of enteric viruses, belong to the Picornaviridae family. 

The Picornaviridae family comprises a group of small single stranded RNA viruses such 

as poliovirus (PV), coxsackievirus (CV), and enterovirus-71 (EV-71) that display a wide 

variety of tissue tropism and cause significant disease. Also within the Picornaviridae 

family is human rhinovirus, the causative agent of the common cold, a relatively mild 

disease that nevertheless costs the US economy nearly $40 billion each year [3]. In 

additional to financial burden, some Picornaviridae family members are capable of 

inflicting deadly disease, such as the seasonal epidemics of enterovirus 71 that affect 

Asian and Pacific regions. 

Whereas global efforts to eradicate poliovirus have proven successful, still other 

dangerous and costly picornaviruses continue to circulate widely. For example, in recent 

years massive outbreaks of Enterovirus D68 (EV-D68) have become common in the US, 

Europe and Asia and human parechovirus 3 (PeV-A3) outbreaks have been observed in 

Australia [4-6]. Importantly, Enterovirus A71 (EV-A71) outbreaks have occurred in Asia 

and resulted in high illness and death rates among children [7]. These outbreaks of 

various picornaviruses are associated with severe disease and demonstrate the real threat 

non-polio picornaviruses continue to pose to human health [8] 
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Human picornaviruses are primarily transmitted via the fecal-oral route or via 

respiratory transmission. Initial viral infection is thought to originate in the respiratory 

tract and/or the gastro-intestinal tract, followed by spreading via the blood to infect 

various target organs such as skin, heart, or brain [9]. Apart from rhinoviruses (RVs), 

human picornaviruses display broad tissue tropism. Whereas significant progress has 

been made in identifying several cellular receptors [10-12], many of the mechanisms 

regarding viral entry events remain largely unknown. 

The positive sense single stranded RNA genome of picornaviruses is a relatively 

small 7.5 to 10 kb [13] resulting in just four structural proteins and seven non-structural 

proteins [10, 14, 15]. In 1985, thanks to innovations in x-ray crystallography, Rossman, 

M., et al. solved the atomic resolution structure of human rhinovirus 14, making the 

picornavirus genome the first animal virus 3D structure to be illuminated [16, 17]. 

Among the discovered novel viral structures in the picornavirus genome were predicted 

locations for receptor binding as well as several antigenic sites [14, 17]. Subsequent 

research focused on solving the structures of other viruses belonging to the 

Picornaviridae family revealed highly conserved areas of the genome, thereby allowing 

the assumption that the antigenic sites established for rhinovirus would also be found in 

other picornaviruses such as Coxsackievirus [14, 18-20]. Due to their high level of adept 

adaptability, promiscuous nature of transmission, and overall prevalence, however, 

picornaviruses have proven difficult to treat and eradicate. Still, the conservation of 

certain viral proteins provides hope for broad-spectrum antivirals [10, 21, 22]. Though 

there have been numerous attempts to develop compounds designed to target different 

points in the viral lifecycle, currently, no such antivirals exist [10, 21, 22]. 
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1.2 Coxsackievirus History and Significance  

Coxsackievirus gets its name from the Hudson river town of Coxsackie, New 

York, where in 1947, a suspected polio epidemic turned out to have a different viral 

genesis. After isolating virus from fecal specimens of two young boys suffering flaccid 

paralysis, Gilbert Dalldorf and Grace Sickles reported a novel virus capable of causing 

polio-like flaccid paralysis [23, 24]. Over the next year, Coxsackievirus A (CVA) was 

identified as producing a generalized and widespread myositis mainly affecting the 

striated muscles. Subsequently, Edward Curnen, Ernest Shaw and Joseph Melnick 

discovered yet another antigenically dissimilar novel virus and termed this virus 

Coxsackievirus B (CVB) [25]. Whereas CVA was thought to mainly affect striated 

muscle, CVB not only induced a focal and limited myositis in striated muscles, but also 

produced degeneration of brain, pancreas, heart, muscle and embryonic fat pads under the 

skin in baby mice [24-26]. Between its discovery in 1947 and today, 23 CVA and six 

CVB serotypes have been identified. Among the CVB3 Nancy strain, several strain 

variants have been characterized based on polymorphisms found within the CVB3 

population (Table 1).  



4 

 

Table 1: CVB3 Nancy strain variants. Characterization of 11 fully sequenced CVB3 Nancy strain 

variants. Receptor preference indicates viral ability to use CAR and/or DAF to enter host cell.  

 

1.3 Coxsackievirus Prevalence 

Among the most ubiquitous enteric viruses isolated, Coxsackievirus (CV) is 

capable of inflicting significant disease, especially in young children and infants [1, 27, 

28]. In fact, CV is the most frequently isolated virus among the estimated 10-15 million 

enteric viral infections per year in the United States [2] [27]. Due to the fecal-oral nature 

of transmission, most humans are infected with CV by the age of 5 suffering only mild, 

flu-like symptoms. Although the majority of CV infections are self-limiting and resolve 

without issue, CV is capable of infecting a range of tissues including the heart, pancreas 

and central nervous system [15] implicating it in a vast swath of diseases such as 

hemorrhagic conjunctivitis, hand, foot, and mouth disease, as well as viral myocarditis 

[29-31]. Research suggests CVs may play a role in severe systemic inflammatory 

diseases such meningoencephalitis, pancreatitis, and myocarditis [15, 32]. Additionally, 
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the consequences of CV infection during pregnancy can range from fetal myocarditis to 

neurodevelopmental delays in the newborn infant [33, 34]. Importantly, infants infected 

with CV have been shown to be extremely susceptible to myocarditis, meningitis and 

encephalitis with a subsequent mortality rate as high as 10% [35]. Coxsackievirus B3 

(CVB3) is the most commonly isolated virus implicated in inflammation of the 

myocardium, known as viral myocarditis [29-31]. Viral myocarditis can develop into 

dilated cardiomyopathy and ultimately may result in the need for a heart transplant.  

1.4 Coxsackievirus Structure and Lifecycle 

Coxsackieviruses belong to the Enterovirus genus within the Picornaviridae 

family. Known enteroviruses that tend to infect internal organs comprise three 

polioviruses, 23 Coxsackieviruses group A, and six Coxsackieviruses group B. Among 

the six serotypes of CVB, only three, CVB1, 3 and 5, are notably cardiotropic or able to 

infect heart tissue [24, 36]. The roughly 30 nm in diameter icosahedral capsid of CV is 

composed of four structural proteins VP1, VP2, VP3 and VP4. The outer layer of the 

capsid is comprised of VP1, VP2 and VP3, whereas VP4 is an internal protein. Inside the 

capsid, the positive sense single stranded RNA ((+)ssRNA) viral genome is 

approximately 7.5 kb. The ssRNA is naturally infectious due to its positive-sense, 

resembling host messenger RNA (mRNA). The ssRNA comprises an open reading frame 

(ORF), flanked on both sides by 3′ and 5′ termini untranslated regions (UTRs). 

Importantly, the ORF contains genes encoding 11 proteins, four structural VP proteins 

and seven various non-structural proteins [37, 38]. In addition to the four structural 

capsid proteins, the genome encodes for two viral proteases (2A, and 3C), an RNA-

dependent-RNA-polymerase (3D), two proteins involved in RNA synthesis (2B and 2C), 
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a primer for initiation of RNA synthesis (3AB) and a small polypeptide VPg (viral 

protein linked to the genome) (Figure 1). The covalently bound VPg found in the 5’ UTR 

is essential to viral translation and replaces the 7-methylguanosine triphosphate cap 

structure employed by eukaryotic mRNA to initiate protein translation at the ribosome 

[24, 38, 39].   

 

Figure 1: Schematic representation depicting the Enterovirus genome. There are two untranslated 

regions that flank a single large polyprotein coding region. The polyprotein product is divided into three 

sections: P1, P2, and P3. The P1 region contains capsid proteins while the P2 and P3 regions contain the 

nonstructural proteins and VPg (protein 3B). Following enzymatic cleavage, the polyprotein renders eleven 

mature final protein products.  

 

CV entry into host cells is most commonly dependent on virus interaction with 

the host-cell receptors Coxsackievirus-adenovirus receptor (CAR), and in many polarized 

cell types, interactions with co-receptor decay-accelerating factor (DAF) [40, 41]. Other 

receptors, such as heparan sulfate, may also play a role in viral attachment to the host 

cells [24, 42]. Situated within the tight junctions between polarized intestinal epithelial 

cells, CVs main receptor, CAR, is largely inaccessible to the virus. To reach CAR in the 

gut CV will bind to DAF, triggering a series of events that lead to viral entry. Briefly, 

upon binding, DAF initiates Ab1 kinase activation resulting in the clustering of DAF 

molecules and the induction of actin rearrangement. Actin rearrangement in the host cell 

facilitates the movement of CV between host cells and into the tight junctions where is 

can interact with CAR [10, 24]. Upon entry into host cells, endosomal pH changes induce 

viral uncoating, liberating the (+)ssRNA viral genome to be translated and transcribed. 
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Initially, the CV genome is translated as a large polypeptide that is eventually cleaved 

into the individual structural and nonstructural proteins in the cytoplasm by the virus-

encoded proteases 2A, 3C, and 3CD [10, 43, 44]. Genome replication by the RNA-

dependent RNA polymerase 3D polymerase starts with the synthesis of a (-) strand copy 

of the incoming viral genome to generate a double-stranded RNA replication 

intermediate. The new strand thereby serves as a template for the production of new (+) 

strands, which will continue to serve as a template for further translation and replication 

or be encapsulated into new virions (Figure 2). The structural capsid proteins, VP0, VP1 

and VP3 assemble into protomers and pentamers and together with the (+)ssRNA form 

the provirion. Finally, RNA induced processing of the VP0 protein into VP2 and VP4 

yield mature virions completing the life cycle and release of viral progeny for further 

infection of neighboring cells [24].  

Once inside the host cells, CV rapidly shuts down cellular RNA and protein 

synthesis. Moreover, previous studies have revealed that the 5′ and 3′ UTRs play a major 

role in regulation of viral RNA synthesis. The unusually long 5′ UTR contains several 

stem-loop structures, particularly the highly conserved stem-loop I, that play a critical 

role in enterovirus genomic RNA synthesis [45, 46]. Deletion mutations made to these 

stem-loop regions in CVB3 RNA allowed viral translation, but not RNA synthesis [47]. 

Finally, several laboratories have confirmed a role for the ERK1/2 pathway, whose 

phosphorylation is required for CVB3 infection [48-50]. A member of the mitogen-

activated protein kinases (MAPKs), ERK1/2 plays an important role in regulating 

biological events such as cell proliferation, differentiation and stress responses [51]. 
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Importantly, studies have revealed that the early activation of ERK1/2 may result from 

the engagement of CVB3 with its main receptor CAR, co-receptor DAF or both [48, 50]. 

 

Figure 2: Schematic representation depicting the Coxsackievirus lifecycle. Cell entry: Interaction with 

its main receptor, CAR, triggers CV endocytosis into the host cell. In the case of polarized gut epithelial 

cells, CV may interact with the co-receptor DAF and be shuttled to CAR which is located between tight 

junctions. Synthesis: The CV (+)ssRNA is liberated from the capsid in the host cell cytoplasm where it will 

begin transcription and translation. Egress: The viral capsid is assembled and CV  (+)ssRNA is packaged 

within the capsid and viral progeny is released for further infection of neighboring cells. 

 

1.5 Further Research  

Despite progress, critical characteristics of the enterovirus infection within the 

human gastrointestinal system remain obscure. Importantly, both viral and host factors 

affecting incidence, severity and pathogenic mechanisms of CV infection remain elusive 

[52]. Although elucidation of host factors influencing the disease process has progressed, 

there are still many remaining unanswered questions regarding the influence of viral 

genetics on host cell entry, viral replication, viral translation, and pathogenesis. In 
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addition, a structure-based mechanism describing how these interactions mediate virus 

multiplication and virulence remains unknown [53]. Finally, the molecular mechanisms 

involved in the tissue tropism of CVs as well as their ability to persist in the host remain 

unclear despite the potential unknown lasting consequences of CV infection [15]. 

Due to the inability to proofread and edit genomic errors incurred during viral 

replication, the CV genome suffers a relatively high error rate (10−4 substitutions per 

nucleotide per cell infection (s/n/c)). CV phenotypes that arise as a result of mutations are 

categorized by the ability of a particular strain of virus, experimentally propagated in 

various cell lines, to rapidly diverge and develop preference for either one or both CV 

receptors [8, 49]. Continued research regarding mutations found within the CV genome 

and the role of these genetic determinants play in CV pathogenesis is still urgently 

required.  
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CHAPTER TWO 

2. Polymorphisms within the Coxsackievirus B3 population 

2.1 Picornavirus mutations 

A relatively stable non-enveloped virus, CVB3 is transmitted via the fecal-oral 

route and can withstand the acidic environment of the stomach. A general lack of 

knowledge regarding the genesis of infection, however, makes it difficult to accurately 

map the precise viral pathogenesis. Nonetheless, previous research suggest CVB3 

infection originates in the GI and proceeds to periphery organ systems via viremia. 

Similar to other enteroviruses, the CVB3 genome can be organized into the following 

four major regions: a 742 nucleotide 5’ untranslated region (5’ UTR), a single open 

reading frame encoding a 2185 amino acid polypeptide, a 98 nucleotide 3’ UTR with a 

highly polyadenylated end region (polyA tail) [54, 55]. Additionally, virulence 

determinants have been identified in the enterovirus genome regions encoding structural 

and non-structural proteins including within the capsid proteins VP1–VP4 coding as well 

as in the non-structural protein coding regions [53, 56] (Figure 1).  

To understand the impact of CVB3 infection, research has primarily focused on 

the study of viral genomics, virulence factors and their direct injurious effects on host 

tissue architecture, organ function, and immune response [49]. Due to their small size, 

many microbial genomes, including those of CVs have previously been sequenced [57], 

directing CVB3 research toward “post-genomic” phases of investigation for the previous 

two decades [49]. Despite the expansive tenure of research, many questions regarding 

CVB3 pathogenesis remain unanswered. Therefore, the study of CV mutations and their 
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downstream effects prove invaluable in the elucidation of mechanisms impacting CVB3 

infection, the production of novel therapies, as well as potential vaccines.   

2.2 Genetic mutations found in the 5’ UTR region of the Enterovirus genome 

  As with most enteroviruses, the 5’UTR of CVB3 forms a highly ordered 

secondary structure that plays an integral role in controlling viral transcription and 

translation. Due to its critical role in all stages of the viral infection cycle, the structure 

and role of the picornavirus 5’ UTR has been extensively studied. The EV 5’ UTR is 

divided into seven domains that are further subdivided into two functionally distinct 

regions. The CVB3 RNA genome, like other EV’s, contains an internal ribosome entry 

site (IRES) in the 5′ UTR region. Crucial to CVB3 translation initiation, IRESs are RNA 

elements that mediate end-independent ribosomal recruitment to internal locations within 

mRNA (Figure 3). Structurally related viral IRESs use distinct mechanisms based on 

non-canonical interactions with eukaryotic initiation factors (eIFs) and/or the eukaryotic 

40S ribosomal subunit. Enhanced by eIF4A, IRES types 1 and 2 initiate translation via 

specific binding to the central p50 domain of eIF4G. The eIF4G–eIF4A complex recruits 

43S complexes to the type 1 and type 2 IRES absent involvement from eIF4E. The type 3 

IRES initiation, on the other hand, involves interaction with eIF3 and 40S subunit 

components of 43S ribosomal complexes. Consequently, the type 3 IRES directly 

attaches 43S complexes to the initiation codon independent of eIF4F, eIF4B, eIF1 and 

eIF1A.  

Finally, because the 40S subunit’s P-site is occupied by an IRES domain that 

mimics codon-anticodon base-pairing, the type 4 IRES can bind directly to 40S subunits 

thereby facilitating initiation without eIFs or tRNAMet  [72]. Furthermore, the IRES 
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elements belong to one of two groups, which differ in sequence, secondary structure, and 

the location of the translational initiation codon [58]. The first functional region consists 

of a highly conserved 5’ terminal cloverleaf encompassing domain I as well as an 

adjacent pyrimidine rich single stranded sequence. This region is required for positive 

and negative strand synthesis during viral genome replication [53, 59, 60], whereas the 

other functional region is composed of domains II–VII that make up the IRES. In 1988, 

Pelletier and Sonnenberg found that due to the lack of a 7-methyl guanosine cap structure 

found in eukaryotic mRNA, the IRES of CVB3 RNA instead interacts with the host cell 

ribosomes directly to initiate translation of the viral genome [61] determining CVB3 to 

have a type 1 IRES (Figure 3). The IRES, regardless of type, is responsible for initiating 

cap-independent translation in picornaviruses [53, 61]. Importantly, in addition to coding 

regions, virulence determinants have been identified within the 5’ UTR of CVB3 

genome. The generally accepted mechanism for 5’ UTR-dependent virulence attenuation 

is an introduced mutation or accumulation of mutations that disrupt the critical RNA 

secondary and tertiary structures in that region. Such structural alterations confer 

inefficiencies in viral processes such as genome replication and cap-independent 

translation [53, 62, 63].  
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Figure 3: Schematic representation depicting the Coxsackievirus 5’ UTR. Top: General outline of the 

type I IRES adapted from Dunn, J. et al., (2002) Bottom: 5’ UTR of the CVB3 genome: Secondary 

structure model of domains II-VI labeled. GNRA, SL-II and SL-V as well as type I IRES are present in the 

5’ UTR of the CVB3 genome. Mutation C610T(U) found in the 5’ UTR of the CVB3/IC genome shown. 

Nucleotide sequence shown is that of CVB3/28 and adapted from Bailey & Tapprich (2007). 

 

 Seeking to characterize the 5’ UTR in vivo, research conducted by Zhewei Liu et 

al. identified the most crucial region of the IRES as a 46-nt pyrimidine-rich segment 

spanning from nts 546 to 592 between stem-loops G and H and additionally identified a 

second crucial region in the proximate 5’ end of the 5’ UTR [64]. Lui and others found 

that deletion of this segment could abolish viral infectivity but not protein translation. 

Furthermore, Lui and his team were the first to suggest that the 5’ UTR of picornaviruses 

harbor cis and trans-acting sequence elements vital for viral translation and infectivity. 
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Resulting in decreased translation [65], a point mutation found at nt 472 correlates with 

attenuated poliovirus type 3 neurovirulence in vivo, clearly linking viral translation 

efficiency with viral virulence [64, 66]. Additionally, a point mutation found at nt 234 of 

CVB3 RNA has been associated with reduced viral cardio-virulence [67], although it was 

unclear at the time whether the mutation resulted in the down regulation of viral protein 

translation [64].  

 Resulting research throughout the years has sought to further describe the 5’ UTR 

of CVB3 and identify viral phenotypes associated with mutations in that region. As 

previously stated, during viral infection the 5’ UTR takes part in a series of events that 

ensure efficient viral gene expression and replication with translation and replication 

controlled by different 5’ UTR RNA domains (Figure 3). Whereas domain I, 

encompassing a highly conserved cloverleaf structure, directs the replication of both 

positive and negative strands [59, 68], domains II-VII work together to form the critical 

IRES that controls translation [68].  

As myocarditis poses a significant health threat to many worldwide, determining 

areas of the CVB3 cardio-virulence becomes vital. Research conducted by Dunn et al. 

confirmed the single nucleotide in the CVB3 5’UTR at position 234 within domain III as 

the determinate of cardio-virulence [53, 67]. Notably, the region connecting domain I and 

domain II combined with domain II at positions 88-181 in the CVB3 5’UTR has been 

commonly referred to as stem loop II (SLII)  [69], a region found in other EVs and 

identified as a virulence determinant [70, 71]. Exchanging the naturally occurring 

avirulent CVB3/CO SLII region with the virulent CVB3/AS strain, Dunn et al. showed 

that cardio-virulence in a murine model follows SLII of CVB3/AS and further that 
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cardio-virulence could be conferred to infectious CVB3 clones following SLII mutation 

(Figure 3) [71].  

As technology continually progressed, further insights into the SLII region have 

been illuminated. In 2000, Lee et al. employed theoretical RNA folding algorithms and 

sequence comparison analysis to characterize and predict an altered secondary structure 

found in the SLII region of the non-cardio-virulent CVB3/GA in comparison to cardio-

virulent CVB3 strains [53, 63]. These theoretical approaches proved useful in repeatedly 

predicting secondary structure differences in virulent and avirulent 5’ UTR regions with 

CVB3 where the primary sequences were not conserved, including those in the CVB3 

SLII [63, 70, 71] and at the time further strengthened the proposed model that structural 

alterations in SLII underlie changes in CVB3 virulence phenotypes [53].  

Later, Prusa et al. compared the 5’UTR structure of the avirulent CVB3/GA strain  

with the virulent CVB3/28 strain using chemical probing analysis [53]. Although Prusa et 

al. confirmed a SLII structural difference between CVB3/28 and CBB3/GA, the probing 

analysis did not match the structural alteration predicted by energy minimization. In 

contrast to Lee et al., Prusa et al. exchanged the SLII region (nt 104–184)  between 

CVB3/GA and CVB3/28 and repeated chemical probing analysis of the full length 

5’UTR with the chimeric constructs [53]. When the full length naturally folded 5’UTR of 

CVB3/GA and CVB3/28 were compared, substantial structural alteration in the SLII 

region could be observed. In the end, Prusa et al. found CVB3/28 SLII exhibited pairing 

between positions 128–132 with 162–166 forming a lower stem, a structure absent in 

CVB3/GA [53]. Significantly, the chemical probing analysis demonstrated that the 

secondary structure of SLII followed the parent molecule rather than depending on the 
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5’UTR structures outside of the SLII region suggesting that the 5’UTR structural 

domains fold independently (Figure 3). These results coupled with others confirm that the 

CVB3 SLII is both structurally and functionally independent as a cardio-virulence 

determinant [53, 58]. 

 Other areas within the 5’ UTR of CVB3 have shown to play an essential role in 

viral virulence. For instance, Bhattacharyya et al., investigated the influence of the 

conserved hexa-nucleotide stretch (nt 104–180) located in the apical loop within stem-

loop C (SL C) on CVB3 IRES function. The results clearly demonstrated that a deletion 

or substitution mutation within the apical loop resulted in a nearly 50% decrease in IRES 

activity. Interestingly, the study found that the mutant IRES RNA failed to interact with 

certain trans-acting factors within the 5’ UTR [62]. The research also found that 

expression of the CVB3 2A protease significantly enhanced IRES activity of the wild 

type CVB3 but exerted little effect on mutant IRESs in the study. This finding led 

researchers to conclude that the particular mutant RNAs found in the 5’ UTR were unable 

to interact with some trans-acting factors critical for enhanced IRES function. Despite the 

substitution mutation, however, the local structure of the IRES RNA was not significantly 

altered implying the SL C/c apical loop structure is highly conserved and therefore likely 

plays a critical role in CVB3 IRES function [62]. 

Further investigations into stem-loop structures located in the CVB3 5’ UTR have 

proven fruitful. The stem-loop V (SL-V) of the CVB3 IRES contains a large lateral bulge 

loop encompassing two conserved GNRA motifs [72]. Conferring exceptional stability to 

RNA structure, the tetraloop motif is a four-base hairpin loop motif found in RNA 

secondary structure that functions to cap double helices. The GNRA tetraloop has a 
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guanine-adenine base-pair where the guanine is 5' to the helix and the adenine is 3' to the 

helix (Figure 3). As structural elements, GNRA motifs are believed to be involved in 

reorganization of RNA structure through long-range RNA-RNA interactions [73]. 

Additionally, research has shown that the 3’ terminal adenine residue of the GNRA loop 

in encephalomyocarditis virus is critical for function [74] and mutational analysis 

revealed that virus IRES activity for hand, foot, and mouth disease depends on the 

integrity of the GNRA loop [74].  

Ben M’hadheb-Gharbi et al. went on to further characterize the importance of the 

GNRA loop in the CVB3 5’ UTR. Analyzing the effects of point mutations within the 

GNRA motifs of the CVB3 IRES, Ben M’hadheb-Gharbi et al., characterized in vitro 

virus production and translation efficiency and further tested in vivo virulence of two 

CVB3 mutants. The study found that both mutant RNAs displayed decreased translation 

initiation efficiency when translated in rabbit reticulocyte lysates. Additionally, yields of 

infectious virus particles in HeLa cells decreased in the mutant RNA when compared 

with the wild type. In vivo, both mutant viruses were avirulent and caused neither 

inflammation nor necrosis in hearts suggesting translation initiation is highly influenced 

by GNRA motifs within the SL-V of the IRES of CVB3 [75]. 

2.3 Sabin-like PV mutations in the CVB3 genome 

The scientist best known for his development of the first oral polio vaccine, 

Albert Sabin identified attenuated strains of each Poliovirus (PV) serotype which were 

unable to productively infect and destroy neuronal cells [76]. While several mutations 

distinguish the virulent and attenuated PV strains, many playing a direct role in 

neurovirulence, the vaccine strain of each PV serotype employs an attenuating mutation 
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found in the PV 5’ UTR. Interestingly, these attenuating mutations are identified at a 

position very near to each other within SL-V of the IRES (nucleotides 472, 480, and 481 

respectively for PV Sabin 3, 1, and 2) [77]. Eventually, experimental evidence led to the 

conclusion that the major mutation sufficient to induce the principal characteristics of 

attenuation was indeed the mutation in the PV 5’ UTR [78, 79]. Due to the genetic 

similarities shared between PV and CVB3, Ben M’hadheb-Gharbi et al. hypothesized that 

Sabin-like mutations generated in the 5’ UTR of CVB3 may produce similar results and 

therefore lead to an effective vaccine for CVB3. 

Following the insertion of three Sabin-like attenuating mutations into CVB3-

Nancy IRES region equivalent, Ben M’hadheb-Gharbi and his team found that only the 

Sabin3-like mutation led to serious perturbations in translation efficiency, virus titer 

and/or secondary structure [80]. Whereas the Sabin3 mutation in PV1 results in partial 

destabilization of the secondary RNA structure of domain V within the IRES [78] 

causing a reduced recognition of this region by protein factors necessary for PV 

translation initiation, biochemical probing of the secondary structure of the entire domain 

V of the IRES of Sabin-like mutants revealed no distinct profiles in comparison with the 

wild-type counterpart [80].  

To test whether a single change in the sabin3-like CVB3 mutant could 

recapitulate the attenuating effect seen in in the vaccine PV1(M) strain, Ben M’hadheb-

Gharbi et al. subsequently supplemented one mutation (U475 → C) in the CVB3 mutant 

carrying the Sabin3-like mutation. The study revealed that when introduced together into 

the CVB3 genome the U475→C plus Sabin3-like mutations resulted in a greater decrease 

in viral titer and translation efficiency when compared with the effect of the CVB3 
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Sabin3-like mutation alone. Additionally, the modified mutations produced viruses with 

increased growth kinetics defects when compared to that of Sabin3-like mutant viruses 

and importantly, both IRES mutants demonstrated little or no disease in hearts of orally 

infected mice [77]. Taken together, these results suggest that specific protein-viral RNA 

interactions are disrupted thereby preventing efficient viral translation. 

Finally, Ben M’hadheb-Gharbi et al. used a proteomic approach to identify eIF4G 

(p220), eIF3b (p116) and eIF4B as potential RNA-binding proteins interacting with 

domain V. These studies confirmed that the this single-nucleotide (U475→C) exchange 

impaired the interaction pattern and the binding affinity of the standard translation 

initiation factors within the IRES domain V in the mutant strain. In all, Ben M’hadheb-

Gharbi et al. revealed that Sabin3-like mutations introduced into the CVB3 5’ UTR 

contributed to the attenuation of the cardio-virulence, a reduced translation efficiency, an 

impaired ribosomal initiation complex 48S and 80S assembly and observed a reduced 

RNA protein binding pattern within the full IRES sequence impaired binding of the 

translation initiation factors eIF3, eIF4G and eIF4B to the IRES domain V mutant RNA 

[81, 82]. These studies provide further evidence for the crucial role of RNA structure for 

the IRES activity and reinforce the idea of a distribution of function between the different 

IRES structural domains. 

2.4 The role of the CVB3 VP region in virus-host-cell interaction 

The open reading frame within the CVB3 genome is divided into three regions 

referred to as P1, P2, and P3. Encoded within the P1 region, comprising the roughly 29 

nm icosahedral viral capsid are the four capsid proteins, VP1-VP4 (Figure 1) [83]. One 

molecule each of VP1, VP2, VP3 and VP4 makes a protomer, five protomers compose a 
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pentamer and 12 pentamers complete the viral capsid, in total the capsid is composed of 

60 protomers (Figure 4). The outer layer of the capsid is composed of VP1, VP2 and VP3 

whereas VP4 is an internal protein [24]. The enterovirus capsid plays an invaluable role 

in virus-host cell attachment and entry. Critically, the capsid forms distinct topological 

features as each five-fold icosahedral symmetry axis is surrounded by a depression 

termed the canyon, where a known receptor binding site is located. Likely a lipid moiety, 

the capsid also contains a hydrophobic pocket called the “pocket factor” which lies 

directly beneath the floor of the canyon. Finally, at the southern rim of the canyon, there 

is an elevated hypervariable region called the “puff” region that is a known antigenic site 

[17, 84]. 

To gain entry to the host cell, the canyon region within the viral capsid binds to 

CAR. Virus-host cell receptor interaction results in the loss of the pocket factor which in 

turn triggers the virus to transition to the altered particle, or A-particle. Due to the loss of 

VP4, the subsequent CVB3 A-particle is rendered avirulent and the exposure of the N 

termini of VP1 results in the inability for the particle to bind to the receptor, however, it 

has yet to liberate the viral (+)ssRNA genome [85]. Several virulence determinants have 

been identified in the enterovirus genome in regions encoding the structural capsid 

proteins VP1–VP4 [53]. 
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Figure 4: Capsid structure of CVB3 Nancy. (A) The coxsackievirus virion structure showing detailed 

capsid protein structure as determined using x-ray crystallography. A 5 fold axis of symmetry with its 

surrounding canyon displayed in the center of the image. (B) CVB3/ATCC capsid pentamer. CVB3 capsid 

proteins labeled VP1-green; VP2-blue; VP3-orange. The image was generated using PyMOL (2.3.4) and 

publicly available data provided by Muckelbauer, JK and Rossmann, MG obtained from rscb.org protein 

databank. 

 

2.5 Capsid VP region and viral virulence  

Among enterovirus’ there is also strong evidence that the structural genes affect 

both tissue tropism and virulence. For example, mutations in both the VP1 and the VP4 

structural genes have been shown to modulate the virulence of CVB4 for pancreatic 

tissue while poliovirus attenuation is associated with mutations in VP1, VP3, and VP4 as 

well as the 5’ UTR [86]. Additionally, Caggana, M., P. Chan, and A. Ramsingh, 

identified several amino acid substitutions within the VP1, VP2, and VP4 capsid proteins 

of virulent CVB4 correlating the major determinants of virulence to a single amino acid 

Thr-129 in VP1 [87].  
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Describing a viral mutant derived from a cardio-virulent strain of CVB3, Zhang et 

al., sought to delineate the mechanisms conferring attenuated virulence and a large plaque 

phenotype. Following sequencing of the VP3 and VP1 regions of the attenuated CVB3 

mutants, three nucleotide changes were identified in the VP1 coding region. The 

mutations included a silent single base change at nucleotide position 2467 (C to U) and a 

double-base change at position 2690-1 (AA to GT). The latter lead to a change from 

lysine to serine at amino acid position 80. Zhang and his team, concluded that the VP1 

mutation serine-80 in was in fact a determinant of the large plaque phenotype but was not 

responsible for virulence attenuation [88]. 

 With the goal of extrapolating the determinant of CVB3 cardio-virulence, 

Knowlton et al. compared the full genome sequences of a cardiotropic variant of 

CVB3/H3 and an antibody escape mutant H310A1 capable of attenuating the cardio-

virulent potential of the virus in mice despite ongoing viral replication in the heart. 

Comparison of the two variants revealed a single non-conserved mutation (A to G) in the 

P1 polyprotein region at nucleotide 1442 resulting in an asparagine-to-aspartate mutation 

in amino acid 165 of VP2 corresponding to the puff region in that area. Importantly, it 

was shown that the presence of asparagine at amino acid 165 of VP2 was associated with 

the cardio-virulent phenotype, whereas an aspartate at the same site markedly reduced 

cardio-virulence potential. Additionally, BALB/c mice infected with a CVB3 mutant 

containing the VP2 asp165 mutation displayed high levels of TNF-a secreted by 

monocytes. These data suggest that a point mutation in the puff region of VP2 may alter 

the ability of CVB3 to induce myocarditis in BALB/c mice and stimulate the production 

of TNF-a secretion from infected BALB/c monocytes [89]. 
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Further characterizing the role of VP1 in viral pathogenesis, Schmidtke, M., et al. 

conducted in vitro studies to examined the phenotypic results caused by six unique amino 

acid substitutions in the VP1 capsid protein found between the CVB3 strains Nancy P 

(CVB3/P) and the derivative variant PD (CVB3/PD). While CVB3/P can establish a 

persistent carrier-state infection absent visible cytopathic effect in primary human 

fibroblasts (HuFi H), CVB3/PD, a CVB3 variant that uses heparan sulfate as a receptor to 

infect CAR-negative cells, induced complete lysis of the cell monolayer. After comparing 

CVB3/P and CVB3/PD genomes with published CVB3 sequences, mutational analysis 

revealed that amino acid residues K78, A80, A91, and I92 in VP1 were necessary to 

induce lytic infections in HuFi H cells. Schmidtke, M., et al. further demonstrated that 

CVB3/P preferentially bound CAR, while the CVB3/PD exhibited a weak interaction 

with CAR but a strong binding affinity for DAF [90, 42]. The in vitro data suggest that 

specific mutated amino acid residues in VP1 are involved in receptor recognition/binding. 

Further, the study suggests lytic replication of CVB3/PD in various non-permissive 

rodent cell lines indicates VP1 may exert influence on viral ability to bind to cell surface 

molecules other than CAR and DAF (Table 1) [90]. 

To delineate determinants of viral virulence for the heart and pancreas, Stadnick 

et al., identified ten CVB3 antibody escape mutants. The generation of these mutants was 

then used to determine the integral nucleotide substitutions involved in immune evasion. 

Stadnick et al., sequenced the P1 region of each escape mutant and isolated mutations 

associated with the lack of neutralization, finding eight of the ten escape mutants 

harbored a lysine-to arginine mutation in the puff region of VP2. The other two mutants, 

meanwhile, exhibited a glutamate-to-glycine substitution in the knob region of VP3.  
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Upon further sequencing and analysis, two viral mutants representing a lysine-to 

arginine mutation and glutamate-to-glycine substitution, EM1 and EM10 respectively, 

displayed additional mutations. Among them, EM1 displayed two mutations in the region 

coding for the viral 3D polymerase, while EM10 exhibited a mutation in the previously 

mentioned stem-loop II of the 5’ UTR. Stadnick, et al., proceeded to delineate, via in vivo 

models using A/J mice, the comparative pathogenesis of the mutants relative to that of 

the parental myocarditic strain, CVB3/RK. The results of the in vivo experiments showed 

that both escape mutants were less cardiotropic than CVB3/RK, with EM1 and EM10 

exhibiting a 40-fold and 100- to 1,000-fold reduction, respectively, in viral titers in the 

heart compared to CVB3/RK.  To confirm the findings, the VP2, VP3, and the 5’NTR 

mutations were independently introduced into a CVB3/RK infectious clone. The resulting 

phenotypes following mutation substantiated the reduced cardio-virulence caused by 

mutations introduced in the VP2 and VP3 regions suggesting that additional mutations in 

the VP2 and VP3 structural proteins contribute to cardio-virulence attenuation in mice.  

2.6 Capsid proteins influence in virus-host-cell binding  

As previously mentioned, most known Coxsackievirus isolates utilize CAR as 

their main receptor to facilitate host-cell entry (Figure 2).  In polarized gut-epithelial cells 

CAR is located within the tight junctions, making the receptor nearly inaccessible to 

CVB3 [91]. Nevertheless, the accepted origin of infection is within the gut-epithelia, 

raising the question of how CVB gains access to CAR in the first place. Several studies 

have confirmed that many CVB serotypes including CVB1, 3, and 5, as well as several 

other enteroviruses, bind to DAF (CD55, a glycosylphosphatidylinositol (GPI)-anchored 
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complement regulatory protein), thereby facilitating the shuttling of the virion to CAR in 

the tight junctions [92-94].   

Naturally, the first- DAF-binding CVB isolate (CVB3/RD) was obtained 

following repeated passaging of the parental CVB3-Nancy in human rhabdomyosarcoma 

(RD) cells. Whereas RD cells express ample amounts of DAF, they have very little 

available CAR. Thus, to determine the molecular basis for the specific interaction of 

CVB3/RD with DAF, Pan et al., produced cDNA clones for both CVB3/RD and 

CVB3/Nancy and created mutations at each of the sites where the RD and Nancy 

sequences diverged. Experiments showed a single amino acid change in VP3- E234Q 

resulted in an increased capacity of CVB3/Nancy to bind DAF in RD cells [92]. Next, 

Pan et al., examined the RD adaptation in the cardio-virulent CVB3/H3. Whereas the H3 

variant that does not measurably bind DAF, it already possesses VP3-234Q. The authors 

identified a resulting H3 DAF-binding isolate, revealing a second mutation in VP2 (VP2-

N138D).  Subsequent experiments found mutation of either residue in CVB3/RD resulted 

in a loss of avidity for DAF, indicating that both VP3-E234Q and VP2-N138D are 

important for virus interaction with DAF. Interestingly, upon cryo-electron microscopy, 

both VP3-234Q and VP2-138D were found at the contact site between the virus and DAF 

[92], further suggesting that mutations in the structural proteins may result in phenotypes 

with altered binding capacity.  

2.7 Capsid proteins impact on viral stability 

Not only has it been observed that mutations in the VP region result in altered 

virulence and cell-binding affinity, but mutations found in VP1 and VP3 have been 

further implicated in viral stability. As evidence of this phenomenon, CVB3/RD exhibits 
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increased stability when compared to the virulent CVB3/28 [95]. Due to its primary 

propagation being restricted to CAR-rich HeLa cells in a laboratory setting where it is not 

required to survive for very long at 37 °C in the absence of readily infected host cells, it 

has been proposed that CVB3/28 stability may have arisen from lack of selection 

pressure. In that vein, when Carson et al. subjected CVB3/28 to selection pressure and 

analyzed those variants from the CVB3/28 population selected for increased stability at 

37 °C, the capsid proteins of the stable variant differed from the parental CVB3/28 by 

two mutations in VP1 and one mutation in VP3. A single capsid mutation in the VP1 

residue Q80K (glutamate to lysine) was observed in the more stable CVB3/28. Located 

near the apex of the fivefold prominence, VP1 residue 80 is proximal to VP1 residues 78 

glutamate, 85 lysine, 86 arginine and 230 lysine, therefore the mutations effects on 

stability may be explained by the exchange of a negatively charged glutamate with the 

ability to participate in ionic interaction with the three nearby positively charged side 

chains, with the positively charged lysine. A lysine at VP1 residue 80 may contribute to a 

positive charge cluster resulting in increased capsid interaction with anionic secondary 

ligands [85]. The observed VP3 A180T mutation (alanine to threonine) was found to lie 

in the canyon that surrounds the fivefold axis of symmetry. In the event that alanine is 

exchanged with threonine, it is hypothesized that the expected hydrophobic interaction 

with the residue 146 proline in VP1 of the adjacent protomer would have the potential to 

contribute an additional hydrogen bond to the adjacent VP1 backbone thereby 

strengthening inter-protomer binding, affecting receptor binding and capsid expansion. 

Additional information gleaned from further experiments performed by Carson et 

al. suggest that mutations found in VP1-92 could determine whether the virus exhibited 
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low stability (CVB3/28) or high stability (CVB3/28N). Amino acid 92 is located in the 

hydrophobic pocket of VP1 where the stabilizing lipid, called the pocket factor, and 

stabilizing antiviral compounds are bound [17, 96, 97]. In separate studies, leucine at 

VP1-92 was associated with CVB3 resistance to pleconaril, an antiviral drug that inhibits 

picornavirus replication by binding to a specific hydrophobic pocket within the viral 

capsid and preventing viral attachment or uncoating of the genome [98]. Due to the 

importance of the pocket in the conformational capsid breathing, Carson et al., 

established a key determinant of virus stability at the VP1 residue 92 [85].  

Finally, Wang and Pfeiffer identified a single amino acid change in VP3 N63Y 

that, following in vivo passage, resulted in a viral mutant that produced a large-plaque 

phenotype. Following oral inoculation of CVB3/Nancy, feces collected from mice and 

subject to plaque assay exhibited plaques >100 times as large as inoculum viruses upon 

Hela cell using an agar overlay. When an agarose overlay was substituted for agar, 

however, both the wild-type CVB3 and N63Y mutant CVB3 resulted in similar plaque 

sizes. Wang and Pfeiffer further determined that sulfated glycans in agar inhibited plaque 

formation by wildtype CVB3 but not by N63Y mutant CVB3 and that the N63Y mutation 

resulted in a reduced ability to bind heparin, a sulfated glycan. Significantly, while the 

VP3 mutation exhibited a growth defect and reduced attachment in cultured cells, it 

displayed enhanced replication and pathogenesis in mice. Furthermore, the studies 

demonstrated that infection with N63Y mutant CVB3 induced more severe hepatic 

damage than infection with wild-type CVB3 adding evidence to the notion that, due to 

the lack of selection pressures, culture-adapted laboratory virus strains may have reduced 

fitness in vivo [99]. 
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2.8 Non-structural mutations found in the CVB3 genome 

As noted above, several studies have reported nucleotide sequence differences in 

within the CVB3/Nancy 5’ UTR corresponding with varying degrees of disease severity 

as such research has primarily focused on mutations occurring within the 5’ UTR as well 

as those found in VP coding regions. Mutations observed in the encoded P2 and P3 non-

structural regions, however, are scarce. Indeed, mutations found in the P2/P3 region 

generally do not confer alterations in pathogenicity or virulence.  

One study conducted by Massilamany et al., identified three novel nucleotide 

substitutions that differed from the parental CVB3/Nancy strain including a single nt 

change from C5088U resulting in P1449L in non-structural protein 3A. The two other 

observed mutations were a silent mutation at position C97U in the 5’ UTR as well as at 

position A4327G in non-structural protein 2C. Interestingly, in vivo experiments 

conducted in the different mouse strains showed that the disease-inducing ability of the 

infectious clone-derived virus was restricted to pancreatitis alone, and the incidence and 

severity of myocarditis were significantly reduced. Following reversal of the observed nt 

mutations Massilamany et al., found the resultant viral titers comparable to CVB3/Nancy. 

The virions derived from the third clone, however, induced myocarditis comparable to 

that of the wild type virus while the pancreatitis-inducing ability remained unaltered. As 

evidence by the selective attenuation of cardio-virulence but stable pancreatitis observed 

in the C97U and C5088U mutants, this study suggests that the occurrence of mutations 

within the non-structural coding regions of the CVB3/Nancy genome can differentially 

contribute to viral virulence by organ type. The availability of such tools may permit us 
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to determine the molecular mechanisms of differential organ specific disease phenotypes 

in future studies [100]. 

In summary, while mutations in the 5’ UTR have been conclusively linked to 

cardio-virulence, several studies support the claim that mutations in the structural 

proteins may also play a significant role. Whereas mutations found within the 5’UTR of 

various CVB3 strains logically play a substantial role in determining strain virulence, 

structural proteins have been observed as major determinants of tissue tropism as well as 

viral stability. In addition to these well-established determinants, it is possible that 

nonstructural genes also play key roles in the ability of a virus to propagate in different 

cell types [86, 100]. 

2.9 CVB3 models of disease 

Due to its prevalence, pathogenesis, and vast genetic variability, CV stands as an 

incredibly relevant enteric virus model. Accordingly, a range of CV viral genotypes and 

CV strains that infect mice have been identified in studies observing enteric virus 

pathogenesis. In addition to pathogenesis studies, various CV variants are used to 

faithfully induce important disease state phenotypes such as DCM and myocarditis within 

the different mouse strains (C57BL/6, B10.D2, BALB/c, DBA/2, A/J or C3H/HeJ). In 

addition to models of CVB3-induced myocarditis, non-obese diabetic (NOD) mice 

develop spontaneous autoimmune diabetes similar to human T1D have proven 

instrumental in research concerning the susceptibility, diabetogenesis, tropism and 

mechanisms of pancreatic [] Î²-cell destruction in the context of CVB infection [101]. 

While  A/J or C3H/HeJ animals display high susceptibility to CVB3-induced myocarditis 

[24, 102], least vulnerable to CVB3 infection are C57BL/6 mice.  
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Whereas WT C57BL/6 mice display susceptibility to intraperitoneal (IP) injection 

of CVB3, oral inoculation of these mice prove difficult. To facilitate in vivo studies of 

CVB3 mice deficient in the interferon a/b receptor (IFNAR-/- mice) can be useful. 

Following CVB3 oral inoculation, IFNAR-/- mice exhibit increased viral titers as well as 

increased mortality [36]. It is critical to note that while organ systems in various mouse 

models have been shown to be susceptible to CVB infection, many rely upon 

intraperitoneal injection to observe pathophysiology.  
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CHAPTER THREE 

3. Materials and Methods 

3.1 Mouse experiments  

Animal work was performed in accordance with Indiana University School of 

Medicine IACUC-approved protocols. All procedures and practices were in compliance 

with the Animal Welfare Act regulations, the Institution’s NIH Assurance Statement and 

any other regulations or policies that apply. Mice were handled according to the Guide 

for the Care and Use of Laboratory Animals endorsed by the National Institutes of 

Health. All mouse studies were performed at IU School of Medicine using protocols 

approved by the local Institutional Animal Care and Use Committee in a manner 

designed to minimize pain, and any animals that exhibited severe disease were 

euthanized immediately with carbon monoxide.  

Wild type C57BL/6 PVR and C57BL/6 PVR IFNAR−/− mice were obtained from 

Julie Pfeiffer (University of Texas Southwestern, Dallas, Texas). For oral inoculations, 

10- to 12-week-old mice were perorally inoculated with 5 × 107 PFU of CVB3-Nancy. 

Disease was monitored until day 14 post-inoculation for survival experiments. In the 

event of severe disease onset mice were euthanized. For shedding and replication 

experiments, feces was collected at varying timepoints and processed for plaque assay or 

RNA extraction. For tissue titers, heart, liver, kidney, spleen, small intestine and large 

intestine were aseptically removed. 

3.2 Cells and viruses 

HeLa cells were propagated in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 10% calf serum, 1% penicillin-streptomycin, 1% amphotericin and 
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maintained at 37°C, 5% CO2. Human colorectal carcinoma cells were obtained from 

ATCC (ATCC® CCL-247) and maintained in McCoy's 5A (modified) Medium 

supplemented with 10% calf serum, 1% penicillin-streptomycin, 1% amphotericin at 

37°C, 5% CO2. Human Coxsackievirus B3 Nancy strain was obtained from ATCC 

(ATCC® VR-1034AS/HO), and the CVB3-Nancy infectious clones were obtained from 

Julie Pfeiffer (University of Texas Southwestern, Dallas, Texas). Stocks of CVB3 were 

prepared in HeLa cells by co-transfection of the infectious clone plasmid and a plasmid 

expressing T7 RNA polymerase.  

3.3 Sequence analysis and phylogenetic tree construction 

For sequencing of CVB3 variants, permissive HeLa cells were infected with the 

respective virus and used for RNA preparation according to the method of Chomczynski 

and Sacchi (1987). A 5-mg sample of the total RNA was reverse-transcribed. The 

resulting cDNA was PCR-amplified with the Superscript II (ThermoFisherTM ) and DNA 

fragments were sequenced, employing a set of 13 DNA primer pairs (not shown). The 

GenBank accession numbers are: AY673831 (CVB3 GA), AY752944 (CVB3 28), 

AY752945 (CVB3 0), AF231763 (CVB3 31-1-93), AF231764 (CVB3 P), AF231765 

(CVB3 PD), M88483 (CVB3 20), KC481610 (AH30), JN048469 (CVB3 RD), KJ025083 

(CVB3 MKP), JX843810 (CVB3 A103/KM/09), M16572 (CVB3-Nancy), and (CVB3 

H3 Woodruff variant).  

Whole genome sequences of 12 known CVB3-Nancy strains were downloaded 

from the National Center for Biotechnology Information (NCBI). Nucleotide and amino 

acid sequences analysis and sequence identity comparison with other CVB3 serotypes 

from GenBank were completed by NCBI BLAST and MEGA-X software (citation 
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needed). The phylogenetic tree was constructed using polyprotein amino acid sequences 

aligned with MUSCLE [103, 104]. The evolutionary history was inferred by using the 

Maximum Likelihood method and JTT (Jones-Taylor-Thornton) matrix-based model, the 

tree with the highest log likelihood is shown. RNA secondary structure was predicted by 

the MFOLD program (http://mfold.rna.albany.edu/). The structure was modified from a 

previously determined crystal structure (Protein Data Bank code 1cov) [105].  

3.4 Plaque assay 

HeLa cells were plated in six well plates and incubated at 37°C with 5% 

CO2 overnight, at which time they reached ∼70-90% confluency. Feces from infected 

mice were resuspended in 1-5 volumes of phosphate buffered saline (PBS) and freeze-

thawed 3 times in liquid nitrogen. The suspension was separated by centrifugation at 

20,000 rpm for 5 minutes, supernatants were extracted with 10% chloroform to eliminate 

bacteria, and samples were subjected to centrifugation for 3 minutes. Infectious 

supernatant was removed and serially diluted in warm DMEM. For organ tissue, the 

weight of each frozen organ sample was determined, then the tissue was homogenized in 

PBS, subjected to centrifugation, supernatant was removed and virus chloroform 

extracted. The resulting supernatant was used for 10-fold serial dilutions prepared in no 

serum DMEM. Media was aspirated from the 6 well plates, and 200 μl of each serial 

dilution was added to individual wells. Plates were incubated at 37°C for 30 minutes. 

Following incubation, virus was removed and replaced with a 1% agar overlay in 1x 

DMEM. At ∼48-72 hours post-infection agar plugs were removed. The monolayers were 

stained with 1% crystal violet in 20% ethanol, rinsed with DI water, and plaques were 

http://mfold.rna.albany.edu/
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counted. The titer (pfu/g of organ) was calculated based on the weight of each tissue 

sample. 

3.5 One-step growth cycle  

One-step growth analysis was performed on HeLa and HCT-116 cell monolayers 

in 12-well plates at 37°C. Cells were infected with wild-type CVB3-Nancy obtained from 

ATCC or the CVB3-Nancy infectious clone at a MOI of 10 for 30 minutes at 37°C. 

Following incubation, cells were washed three times with PBS, and DMEM 

supplemented with 10% newborn calf serum, 1% p/s, and 1% amphotericin was replaced 

and the cells were left to incubate at 37°C. Supernatants and cells were harvested together 

at 0, 2, 4, 6, 8, and 16 hours post-infection (h.p.i). The number of PFU/mL present at 

each time point was determined by plaque assay.  

3.6 Measurement of cytopathic effect (CPE)  

Quantification of CPE in HeLa and HCT-116 cell monolayers was conducted 

using Trypan blue dye to discern between viable and non-viable cells. HeLa and HCT-

116 cell were seeded 24 hours prior to the experiment and grown to ~90%-100% 

confluency. Cell were infected with CVB3-Nancy ATCC strain or CVB3-Nancy IC strain 

and allowed to incubate for 30 minutes at 37°C. Supernatant was removed and replaced 

with DMEM supplemented with 10% newborn calf serum, 1% p/s, and 1% amphotericin 

and left to incubate for 2-3 days. Following infection, cells and serum were collected 

together and a 1:1 dilution of the cell suspension was prepared in Trypan Blue dye of an 

acid azo exclusion medium by using a 0.4% Trypan Blue solution. The ratio of non-

viable cells (stained blue) and viable cells (unstained) was determined by hemocytometer. 

Cells were counted under the microscope in four 1 x 1 mm squares of one chamber and 
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the average number of cells per square determined. Uninfected wells were used as a 

control. 

3.7 MTT reduction assay  

HeLa and HCT-116 cell viability was further determined via MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium cell viability assay 

(ATCC® 30-1010K). Following CVB3-Nancy infection at MOI 10 as previously 

described, cells were incubated for 24 hours or until CPE was observed. Each well 

received 10 mL MTT reagent and incubated at 37°C for 2-4 hours until purple precipitate 

was visible. Detergent reagent was then added to cells and the cells were left to incubate 

in the dark at room temperature for 2 hours. Following incubation, absorbance was read 

at 570 nm. Several wells were left blank for reference and uninfected wells were used as 

a control. 

3.8 Quantitative real time reverse transcription PCR (qRT-PCR) 

Total cellular RNA was extracted from CVB3-Nancy infected HeLa cell 

monolayers or collected mouse tissues were harvested following a 2-3 day incubation 

using TRIZOL reagent (Invitrogen, Carlsbad, California, United States) according to the 

manufacturer's instructions. To measure the relative levels of viral RNA, qRT-PCR 

targeting CVB3 VP1, and the housekeeping gene -Actin was performed according to 

PowerUp™ SYBR™ Green Master Mix (ThermoFisher Scienitific, A25742) 

manufacturer guidelines. The primer pairs used for viral RNA measurement are as 

follows: CVB3 VP1 (forward, 5′ AGGAATTCATGGAAGACGCGATAAC 3′; reverse, 

5’TGTCTAGATGCTTTGCCTAGTAGTG 3′ ) and human  -Actin (forward primer, 5’ 
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GCACCACACCTTCTACAATG 3’; reverse primer 5’ TGCTTGCTGATCCACATCTG 

3’).  The CVB3 VP1 gene level was first normalized to  -Actin mRNA, and then to cell 

numbers. 

3.9 Immunohistochemical staining 

Protein was extracted from virus-infected or tissue infected cells using ice-cold 

Radioimmunoprecipitation assay buffer (RIPA) and protein concentration was 

determined via Bradford. Equal amounts of protein were analyzed by SDS-PAGE, using 

standard 12% SDS-PAGE gel. Proteins were transferred to 0.2 μm nitrocellulose 

membranes and blocked with 3% BSA in Tris-buffered saline with Tween 20 (TBST) 

buffer. Immunohistochemical staining was performed using the primary antibody of 

monoclonal anti-CVB3 capsid protein VP1 (1:1,200, Cox mAB 31A2, Mediagnost, 

Germany). Immunoblots were imaged and analyzed on a LI-COR imager.  

3.1.1 Tissue titers 

Following oral inoculation of 5x107 PFU/mL CVB3-Nancy, mice were 

euthanized 24, 48, or 72 hpi with CO2 gas. Immediately following euthanasia the heart, 

liver, kidney, spleen, as well as serum and intestine were aseptically removed from mice. 

Each organ was divided into two approximately equal portions, one of which was placed 

into a cryotube and snap-frozen with dry ice, the other portion of each organ was fixed in 

10% normal buffered formalin and processed for histological analyses. Three-micron 

paraffin sections were prepared and stained with Hematoxylin and Eosin Stain. Tissues 

snap frozen tissue samples were thawed and homogenized in phosphate-buffered saline 

using 0.9- to 2.0-mm stainless steel beads in a Bullet Blender (Next Advance). Cellular 

debris was removed by centrifugation at 12,000 × g for 10 min at 4°C, bacteria was 
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removed via chloroform extraction and CVB3 was quantified by plaque assay on HeLa 

cells. 

3.1.2 Histology and analysis  

Organs were fixed in 10% neutral buffered formalin, sectioned, and stained with 

hematoxylin and eosin to assess inflammation. For determining the extent of tissue 

injury, stained sections were graded blindly for inflammation and necrosis by a licensed 

doctor of veterinary medicine (DVM), MS, Diplomate ACVP, Anatomic Pathologist II 

using a scale of 0 to 4 in which 0 represented no tissue injury and 4 representing 

widespread and confluent inflammation. 

3.1.3 Statistical Analysis  

All results are expressed as mean ± standard error. Statistical analysis was 

conducted using one-way ANOVA or an unpaired Student’s t test as indicated. A value 

of p <0.05 was considered statistically significant. All results presented are representative 

of at least three independent experiments. 
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CHAPTER FOUR 

4. Results 

4.1 Sequence analysis 

To understand the molecular underpinnings of phenotypic differences observed 

between two CVB3-Nancy variants, we sequenced the whole genome of both 

CVB3/ATCC and CVB3/IC using RT-PCR method. Complete genome sequence analysis 

and comparison of the CVB3/ATCC strain and CVB3/IC strain uncovered 11 single point 

mutation, six of which resulted in non-synonymous mutations. Other mutations found in 

the P1 region, two amino acid changes in VP3 [asparagine to aspartic acid at residue 63 

and tyrosine to phenylalanine at residue 178] and VP2 [lysine to glutamine at residue166] 

may also be implicated in phenotypic differences observed between CVB3/ATCC and 

CVB3/IC (Figure 5).  
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Following the sequencing of CVB3/ATCC and CVB3/IC, MEGA-X64 was used 

to create a maximum likely phylogenetic tree. CVB3 Nancy variants with published full-

length genome sequences, 11 in all, were downloaded from NCBI for phylogenetic 

analysis (Figure 6). Phylogenetic analysis of the full length genome sequence of CVB3 

Nancy variants with CVB3/ATCC and CVB3/IC show a close evolutionary relationship 

to CVB3/20. Because mutations found in the VP1 and VP3 region of the genome 

demonstrated the greatest relevance to viral fitness, these sequences were separately 

Figure 5: Polymorphisms found in the CVB3/IC capsid structure. (A) The coxsackievirus virion 

structure showing mutations found in CVB3/IC. (B)  CVB3/IC pentamer showing amino acid 

polymorphisms. (C)  VP1 mutation E80K and VP3 mutations N63D and Y178F. Capsid proteins labeled 

VP1-green; VP2-blue; VP3-orange mutations shown in red. The image was generated using PyMOL 

(2.3.4) and publicly available data provided by Muckelbauer, JK and Rossmann, MG obtained from 

rscb.org protein databank. 
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compared to the corresponding sequences in CVB3/ATCC and CVB3/IC (Figure 6). 

Analysis of the VP regions revealed a closer evolutionary relationship between 

CVB3/ATCC and CVB3/MPK whereas CVB3/IC was found to be closely related to 

CVB3/P and CVB3/0 (Table 1). 
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4.2 CVB3/ATCC exhibits enhanced replication in cell culture  

To characterize in vitro phenotypes associated with the two CVB3-Nancy 

variants, we compared the growth kinetics of CVB3/ATCC and CVB3/IC in HeLa cells. 

Following in vitro infection of HeLa cells at MOI of 10, samples of virally infected HeLa 

cells were scrapped into complete media at 0, 2, 4, 6, 8, and 16 hpi. Samples were subject 

to freeze/thaw 3x and then centrifuged to separate virus from cell debris. Viral replication 

over time was assessed via standard plaque assay. We found that CVB3/ATCC growth at 

4, 8, and 16 hpi was enhanced when compared to CVB3/IC in HeLa cells. To mimic the 

gastrointestinal environment, we next compared viral growth in the colorectal cell line 

HCT-116. Simliar to HeLa cells, CVB3/ATCC exhibited increased growth compared to 

CVB3/IC at 16 hpi (Figure 7). Overall, our data suggest CVB3/ATCC replicates more 

Figure 6: Phylogenetic analysis of CVB3 Nancy variants. (A) Phylogenetic relationships based on 

aligned fully sequenced CVB3 Nancy amino acid sequences. Trees were constructed separately for VP1 

(B), VP3 (C) using the neighbor-joining algorithm implemented in MEGA-X 64 (Kumar et al. 2001). 
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efficiently in cell culture and we hypothesized that the replication differences may be the 

result of altered cell attachment or receptor binding. 

 

4.3 Large-plaque phenotype of CVB3 

Mutations mapped to the capsid protein region VP1 have previously been 

associated with an altered plaque phenotype [99]. We investigated whether mutations 

observed between our CVB3-Nancy variants conferred a modified plaque morphology. 

To examine plaque morphology following in vivo infection, virus was extracted from 

feces collected from orally inoculated CVB3/ATCC or CVB3/IC infected IFNAR-/- mice 

at 24, 48, and 72 hpi and quantified via plaque assay.  The resulting plaques observed 

following crystal violet staining revealed a much larger plaque size in CVB3/ATCC 

infected HeLa cells (Figure 8). On average, plaques generated from CVB3/ATCC 

infected feces were three times larger in area (mm) than the CVB3/IC counterpart every 

time point. To determine whether the large plaque phenotype was present prior to the oral 

inoculation of mice, we performed plaque assays with our CVB3/ATCC and CVB3/IC 

Figure 7: CVB3/ATCC displays enhanced in vitro replication. (A) HeLa and (B) HCT-116 cell 

monolayers maintained in complete media were inoculated with MOI of 10 of CVB3/ATCC or CVB3/IC 

virus. Infected cells were scraped from wells and collected at 0, 2, 4, 6, 8, and 16 hpi and subject to plaque 

assay (p<0.05). 
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inoculum. Consistent with our in vivo data, the CVB3/ATCC inoculum plaque assay 

resulted in enhanced plaque size compared to CVB3/IC. Not only did the large plaque 

phenotype persist when the oral inoculation amount was lowered to 2x107, the plaque 

assays performed following viral extraction of infected tissues also showed the 

CVB3/ATCC variant resulting in larger plaques than CVB3/IC.  

 

 

4.4 CVB3/ATCC exhibits enhanced cell attachment in HeLa cells 

Our cell culture data indicated a difference in replication efficiency between the 

CVB3-Nancy variants CVB3/ATCC and CVB3/IC. Previously, CVB3 variants have 

displayed an altered binding phenotype as a result of mutations mapped to the capsid 

protein coding regions[86, 90, 99]. To investigate attachment efficiency in our CVB3 

variants, HeLa cells were infected with either CVB3/ATCC or CVB3/IC at a MOI of 10 

and incubated for 30 minutes at 4°C to allow virus to bind to but not enter cells. 

Following repeated washing with ice cold PBS, RNA was extracted and subject to real-

time PCR targeting the VP1 capsid gene.  We found that HeLa cells infected with 

Figure 8: CVB3/ATCC displays a large plaque phenotype. (A) HeLa cell monolayers were inoculated 

with CVB3/ATCC or CVB3/IC virus extracted from feces collected       72 hpi and covered with an agar 

overlay for 48 hours. Following removal of agar plugs, cells were stained with 2% crystal violet solution. 

(B) Plaque diameter was quantified using ImageJ software (p<0.0001). 
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CVB3/ATCC had increased viral genome copies associated with the cell compared with 

cells infected with CVB3/IC (Figure 9). These data suggest that CVB3/ATCC may 

confer enhanced cell attachment in HeLa cells.  

 

 

 

 

 

 

 

 

 

 

 

Next, we performed immunohistochemical analysis to assess viral entry and 

translation. Following a 30-minute incubation at 37º C with CVB3/ATCC or CVB3/IC, 

HeLa cells were collected at 0, 2, 4, and 5 hpi and subject to western blot analysis. HeLa 

cells infected with CVB3/ATCC exhibited increased VP1 expression indicating increased 

viral translation (Figure 10).  

 

Figure 9: CVB3/ATCC exhibits increased in vitro cell attachment. HeLa or 

CHO cell monolayers were infected with an MOI of 10 of either CVB3/ATCC 

or CVB3/IC. Cell attachment was quantified via RT-PCR targeting viral VP1 

(p<0.05)  
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Figure 10: CVB3/ATCC exhibits increased viral translation. HeLa cells were incubation at 37º C for 30 

minutes with CVB3/ATCC or CVB3/IC. HeLa cells were collected at 0, 2, 4, and 5 hpi and subject to 

western blot analysis. (A) VP1 expression in HeLa cell following CVB3 infection. (B) Quantification of 

VP1 expression at 4 and 5 hpi. 

 

4.5 CVB3/ATCC infection results in increased CPE in cell culture 

Our data indicate mutations in the CVB3/IC genome confer reduced viral fitness 

in cell culture. When compared to CVB3/IC, CVB3/ATCC exhibited enhanced growth 

and cell attachment therefore we next monitored CPE in HeLa and HCT-116 cells 

infected with either strain at a MOI of 10. As expected, both cell lines showed increased 

CPE when infected with CVB3/ATCC (Figure 11). Additionally, both Trypan blue and 

MTT assays revealed earlier onset of CPE in CVB3/ATCC infected cells with visible 

CPE at 16 hpi. These results further suggest the differences in genome sequence confer 

increased fitness in CVB3/ATCC.   
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Figure 11: Trypan blue in vitro cell viability. HeLa or CHO cell monolayers were infected with an MOI 

of 10 of either CVB3/ATCC or CVB3/IC. Cell viability was assessed with Trypan blue at 48 hpi as CPE 

became apparent in HeLa cells.  

 

4.6 CVB3/ATCC displays enhanced viral shedding and pathogenesis 

We have established altered in vitro phenotypes resulting from differences in 

genome sequence between two CVB3-Nancy variants. To investigate whether these 

phenotypic differences translated to in vivo changes we sought to monitor viral shedding 

of CVB3 in the gastrointestinal tract. We orally inoculated immunodeficient C57BL/6 

IFNAR knockout (IFNAR-/-) mice with 2x107 PFU CVB3/ATCC or CVB3/IC. Fecal 

samples from infected mice were collected at 24, 48, and 72 hpi, and virus titers were 

determined by a plaque assay in HeLa cells. Feces collected at each time point were 

found to contain significantly higher viral titers in mice orally inoculated with 

CVB3/ATCC (Figure 12).  
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To investigate the virulence of CVB3/ATCC strain versus CVB3/IC, we 

monitored the survival of mice following infection via oral inoculation of 2x107 PFU. We 

found that survival following oral inoculation of CVB3/ATCC fell below 25%, whereas 

mice inoculated with CVB3/IC strain succumbed to infection at a much lower rate. 

Furthermore, IFNAR-/- mice infected CVB3/ATCC succumbed to infection sooner, on 

average succumbing to infection four days post infection whereas CVB3/IC infected 

mice began dying a full day later, on average. In summary, CVB3/ATCC exhibited 

enhanced viral fecal shedding, increased dissemination efficiency and was more 

pathogenic than CVB3/IC in IFNAR-/- mice (Figure 12). 

4.7 CVB3/ATCC displays enhanced dissemination and increased hepatic damage  

To discern cause of death in CVB3-infected IFNAR-/- mice and extrapolate the 

basis of increased pathogenicity observed in CVB3/ATCC infected mice, we examined 

various organ pathology. Upon euthanasia the heart, liver, kidneys, spleen, intestine and 

blood from IFNAR-/- mice orally inoculated with 2x107 PFU CVB3/ATCC or CVB3/IC 

Figure 12: CVB3/ATCC results in enhanced viral shedding and decreased survival. IFNAR−/− mice 

orally inoculated with 2×107 PFU of CVB3/ATCC or CVB3/IC (A) Viral shedding assessed after 

collecting fecal samples at 0, 24, 48, and 72 hpi (n = 23 p < 0.05). (B) Survival measured following oral 

inoculation, critically ill mice were euthanized (n=7 p < 0.05). All data are means ± standard errors of the 

means (Mann-Whitney test).  
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were aseptically removed and flash frozen in liquid nitrogen or preserved in 10% neutral 

buffered formalin. Plaque assay revealed substantially higher viral titers in all organs 

removed from CVB3/ATCC mice when compared to CVB3/IC and control mice. Next, 

we examined viral titers in various tissues from orally inoculated IFNAR-/- mice at 72 

hpi. Immediately following euthanasia 72 hpi, the heart, liver, kidney, spleen, intestine 

and serum were aseptically removed from each mouse. Tissues were homogenized and 

viral RNA extracted with TRIzol reagent. We found CVB3/ATCC titers were 

significantly higher than CVB3/IC titers in all IFNAR-/- mouse tissues examined. In 

contrast, preliminary experiments reveal lower viral titers in CVB3/IC infected mouse 

tissues, indicating increased dissemination to organ tissues distant from the gut in 

IFNAR-/- mice inoculated with CVB3/ATCC (data not shown).  

In particular, the livers extracted from CVB3/ATCC infected mice revealed 

significantly higher viral titers than CVB3/IC infected mice. Previous work conducted by 

Wessely et al. as well as Pfeiffer et al. demonstrated that CVB3-infected IFNAR-/- mice 

develop liver pathology[89, 99]. To further examine the extent the livers were damaged, 

we measured the levels of alanine aminotransferase (ALT), a marker of liver damage, in 

serum. ALT levels remained low in control and CVB3/IC infected mice at 72 hpi. In 

contrast, ALT levels were significantly elevated at 72 hpi in mice infected with 

CVB3/ATCC (Figure 13).  
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Figure 13: Serum ALT levels following CVB3 infection. ALT levels measured in serum collected at 72 

hpi from IFNAR−/− mice orally inoculated with 2×107 PFU of CVB3/ATCC or CVB3/IC.  

 

To investigate direct liver damage caused by CVB3 infection, we performed 

histological analysis of liver tissue harvested from mice at 72 hpi and found that mice 

infected with both the ATCC strain and IC strain displayed liver damage as measured by 

histology when compared with uninfected mice. Histological examination revealed 

visible hepatic cell necrosis and inflammation (Figure 14). As previously reported by 

Wessely and Pfeiffer, our data suggest that CVB3-infected IFNAR-/- mice develop liver 

damage and furthermore, CVB3/ATCC conferred enhanced liver damage [99, 106].  
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Figure 14: Histopathology of liver damage caused by CVB3 variants. Mice were inoculated with 2x107 

PFU CVB3/IC or CVB3/ATCC at 8-10 weeks of age. Livers were removed and harvested at 72 hpi and 

immediately preserved in 10% NBF. (A) Tissue samples were stained with H&E and given a pathology 

score (B) Evaluation of hepatic pathology by pathological scoring. 100x magnification. 
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CHAPTER FIVE 

5. Discussion 

Coxsackievirus B3 (CVB3) is an enteric virus that has been implicated in 

widespread human disease. Although CVB3 infection often presents with mild symptoms 

in humans, it has the potential to cause substantial sequelae in a small portion of the 

population. Previously, it has been shown that mutations found in certain areas of the 

CVB3 genome confer varying levels of pathogenicity and virulence[49, 53, 77, 82, 85, 

87, 89, 92, 93, 95, 96, 100, 107, 108]. These observed disparities in viral fitness can been 

attributed to single polymorphisms mapped to the viral genome, however, research is still 

needed to understand the mechanism by which these discrepancies confer enhanced viral 

fitness.  

Due to the lack of proofreading ability and genomic editing during RNA 

replication, the viral genome of RNA viruses is considerably error prone. Consequently, 

RNA viruses such as CVB3 accumulate mutations during each replicative cycle. The 

majority of the errors in the viral genome prove inconsequential, however, mutations 

found in certain areas of the genome such as structural coding sequences can exert a 

profound effect on viral fitness. Despite possible drawbacks arising from a high mutation 

rate, the highly diverse populations that result in few replication cycles are considered the 

basis for their rapid adaptation to new environments [109-111]. Advantageous mutations 

may result in new variants capable of escaping immune responses, resisting antiviral 

approaches, altering tissue tropism or crossing species barriers [111].  

In this study we examined the attenuating effects of mutations found in the P1 

region of CVB3/IC.  While conducting in vivo experiments with CVB3-Nancy obtained 
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from two different sources, marked differences in viral virulence were observed. Using 

our novel oral inoculation method, C57BL/6 PVR and C57BL/6 PVR IFNAR−/− mice 

were inoculated with 2×107 PFU of CVB3-Nancy obtained from the American Type 

Culture Collection (ATCC) or from an infectious clone. Following infection, mice 

inoculated with CVB3/IC displayed attenuated pathogenesis. Several labs prior research 

have observed in vivo effects such as increased cardio-virulence [107] and increased 

hepatic damage [99] arising from genetic mutations found in the viral genome [67, 86, 

106].  

 

To study the molecular basis of the observed variations in pathogenesis, the 

complete viral genome of CVB3/ATCC and CVB3/IC were sequenced. The results reveal 

a high amino acid homology among the CVB3 strains found in (Table 1). In comparing 

the genome of CVB3/IC to that of the published amino acid sequence for the wild type 

CVB3-Nancy M (M16572) and CVB3/ATCC genome, we identified several amino acid 

substitutions in the P1 structural coding region of the CVB3/IC genome (Table 2). 

Further, when compared to several CVB3 variants, sequence alignment revealed a 

Table 2: Amino acid polymorphisms distinguishing CVB3 Nancy variants. Comparing CVB3/ATCC 

and CVB3/IC with 11 fully sequenced CVB3 Nancy variants. Bold amino acid indicated mutations not 

seen in WT. 
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number of mutations in the CVB3/IC genome located in areas of the capsid shown to be 

integral in viral cell attachment. Mutations identified at VP1 residues E80K, I92L, and 

V180I, Vp2 residues I108V, N138D, and T151S, as well as VP3 residues N63D, Y178F, 

and E234Q were investigated further based on location within the capsid and implications 

on virus-receptor binding (Table 3).  

Using the MISSENSE computer software program, mutations were virtually 

introduced into the CVB3 genome at these locations, with VP1 I92L being the only 

mutation conferring structural capsid damage (Table 3). Carson et al., found that a single 

substitution of valine VP1 residue 92 was individually capable of stabilizing the virus the 

normally unstable CVB3/28 laboratory propagated virus. Further, Carson et al. found 

leucine at VP1 residue 92 in only 4% of CVB3 sequences screened, most of which 

relating to CVB3/Nancy [85]. Furthermore, residue 92 lies in the hydrophobic pocket of 

VP1 where the stabilizing lipid, the pocket factor, and stabilizing antiviral compounds are 

bound [96, 98, 105]. Leucine at VP1 residue 92 has been shown to associate with CVB3 

resistance to pleconaril [98]. When isoleucine is substituted with leucine VP1 residue 92 

in the CVB3 capsid protein structure obtained from the RCSB Protein Data Bank (PDB) 

the resulting structure conflicts with the leucine sidechain and the critical pocket factor. 

Considering, as Reisdorph et al. concluded, the importance of the pocket-binding 

molecules and of the pocket in the conformational capsid breathing, VP1 residue 92 

would appear to be a key determinant of virus stability [112]. As leucine at VP1 residue 

92 has been identified predominantly in CVB3 laboratory strains (related to Nancy), as 

well as strains selected for resistance to antiviral drugs [113, 114] it is possible that a less 

stable virus is favored when selection works against more stable virus populations. Taken 
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together it should not be surprising that the CVB3/IC mutant possesses the rare leucine 

mutation at VP1 residue 92 as the strain has been continually passaged in HeLa cells. 

Finally, Carson et al., found that the less stable CVB3/28 uncoated more rapidly 

suggesting that laboratory propagation of these viruses in receptor rich cell cultures can 

select for the less stable variants in the quasi-species because they can uncoat more 

rapidly and commandeer the replication resources of the host cells [85, 96].  

 

 

Table 3: Theoretical structural effects of CVB3 mutations. Comparison of single polymorphisms 

between CVB3/ATCC and CVB3/IC. Using the virtual mutagenesis software MISSENSE, individual 

mutations found in CVB3/IC were introduced into the CVB3 Nancy genome and possible effects outlined. 

 

In addition to the substitution of isoleucine with leucine at VP1 residue 92, we 

observed additional VP1 substitutions, including E80K and V180I. In contrast, Carson et 

al., found that the single capsid mutation from glutamate to lysine at VP1 residue 80 was 

present in the more stable CVB3/28 strain. Whereas glutamate at VP1 residue 80 
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dominates CVB3 sequences, lysine dominates this position in CVB5 and CVB6, 

suggesting that the residue in this position may be favored by pairing with other 

differences between serotypes [85, 90, 96, 98]. It is likely that glutamate may participate 

in ionic interaction with the three nearby positively charged side chains, while lysine will 

contribute to a positive charge cluster that may increase the capsid interaction with 

anionic secondary ligands. Although the VP1 mutation I92L observed in CVB3/IC may 

be implicated in a less stable virus, the mutation E80K has been associated with the more 

stable virus. This disagreement may arise from individual selection pressures, duration of 

adaption to cell culture, or the weight of the mutational effects. CVB3/IC replication in 

HeLa cells as well as in vivo are significantly attenuated thereby implying a less stable 

virion.  

 The most interesting mutations observed in CVB3/IC are those located in the VP2 

and VP3 regions. These mutations include N138D found in VP2 and the VP3 mutations 

N63D and E234Q. Notably, N138D lies in the EF loop a large and highly variable 

surface loop of VP2 proteins of all enteroviruses, referred to as the puff region. The puff 

region is known to be a major neutralization site in both polioviruses and rhinoviruses 

and is also variable between intertypic and intratypic variants of group B 

coxsackieviruses [86].  Additionally, studies conducted on clinical isolates of CVB3 

revealed several mutations in the puff region were implicated in the development of 

myocarditis as opposed to non-myocarditis strains [89]. Previously, Pan et al., examined 

the effects of the VP2-138D mutation and found it to be important for CVB3 interaction 

with DAF. In fact, Pan et al.,  found that both mutations found in our CVB3/IC mutant, 

VP3-234Q and VP2-138D, were required for virus attachment to DAF [92, 115]. These 
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results may help to explain disparities observed between CVB3/IC and CVB3/ATCC in 

CAR-rich HeLa cells where CAR is readily accessible versus HCT-116 cells. Wild type 

CVB3-Nancy replicates in HeLa cells more efficiently than CVB3/IC, however, in HCT-

116 cells CVB3/IC may exhibit enhanced replication efficiency most likely due to the 

availability of DAF among the cell types. Indeed, Borderia et al. demonstrated adaptation 

occurring in response to a differential expression of the virus receptors in the new cellular 

environment. Borderia et al. found in HeLa cells, where both CAR and DAF are highly 

and ubiquitously expressed on the surface, adaptive mutations in the VP regions mapped 

to both CAR and DAF footprints, although it was unclear whether the CAR-specific 

mutations observed in HeLa cells increased interactions with CAR, or conversely, 

decreased interactions to facilitate the appearance of other mutations related to the DAF 

footprint [111, 116].  

Recently, Wang and Pfeiffer described the CVB3-Nancy VP3 N63Y mutation, 

finding that the single mutation conferred a large plaque phenotype, enhanced hepatic 

damage, as well as diminished growth in cell culture. Additionally, Bordería et al. 

demonstrated viral passage in A549 human lung cells resulted in polymorphisms at 

position 63 of VP3, including N63Y, N63D, and N63H [111]. Notably, VP3 residues 58-

69 form the knob which is the major surface protrusion of VP3 [105]. Taken together, 

these results indicate the highly conserved N63 may play a sizable role in the altered 

phenotype we have observed in our CVB3/IC mutant. Furthermore, whereas the N63Y 

mutation described by Wang and Pfeiffer resulted in a large plaque phenotype, the N63D 

mutant results in a small plaque phenotype. In cell culture, the N63Y mutation resulted in 



57 

a growth defect in a variety of cell lines and N63Y also exhibited a significant reduction 

in cell attachment.   

In agreement with Wang and Pfeiffer we found the N63D mutant to display 

decreased cell attachment. In vivo studies performed by Wang and Pfeiffer, however, 

found enhanced liver pathology in mice infected with N63Y mutant CVB3, as well as 

increased replication and pathogenesis when compared with wild type CVB3. In contrast, 

the N63D mutant results in a significant attenuation in viral replication and pathogenesis 

in both immunocompetent and IFNAR-/- mice. These results suggest the single mutation 

found at VP3 N63 can exert significant effects on viral cell attachment and replication in 

vitro as well as in vivo pathogenesis in mice.  

In addition to the main Coxsackie-adenovirus receptor, CVB3 exhibits the ability 

to bind heparin sulfate or other glycosaminoglycans GAGs thereby enhancing cell 

attachment [117]. Interestingly, GAGs most commonly interact with viral particles via 

positively charged amino acids such as lysine or arginine [99]. Whereas the N63Y mutant 

CVB3 results in a change from a positively charged asparagine to an uncharged tyrosine 

thereby disrupting potential GAG binding the mutation we have observed N63D results 

in a change in charge to the negatively charged aspartic acid. It is likely therefore, that the 

opposite charge resulting from the N63D mutation may lead to a diminished ability of the 

virus to bind to HS or GAG resulting in decreased cell attachment both in vivo and in 

vitro.  

The aggregation of observed mutations identified in our CVB3/IC mutant seem to 

encompass conflicting phenotypes. Whereas the VP1 mutation E80K has been associated 

with increased viral stability, I92L is implicated in viral instability. Mutations observed in 
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the VP2 and VP3 regions, however, are associated with increased DAF binding. The 

particular combination of mutations found in CVB3/IC, resulting in attenuated viral 

replication and pathogenesis both in vitro and in vivo. The results indicate the significant 

contribution of several minority variants to the overall fitness of the virus population over 

time.  

In conclusion, our data indicate that mutations found within the CVB3 genome, 

especially those found in the 5’ UTR as well as the VP regions, exert considerable 

influence on viral fitness. As our experiments and those performed in other labs 

demonstrate, single amino acid substitutions found at VP1 E80K and VP3 N63D play a 

role in viral stability, virus-host-cell-receptor interaction, and in vivo pathogenesis. 

Further research should focus on confirming these findings and identifying molecular 

mechanisms via viral mutagenesis. Identifying the molecular mechanism involved in how 

these mutations contribute to the pathogenesis of disease in humans will lead to better 

strategies for refining prognosis, treatment, and vaccination development. 
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AAAS) 

• Trained graduate students, medical fellow, and technicians in qPCR, cytokine 

arrays, and mutagenesis.  

• Trained and supervised technicians and students in proper mouse gavage 

techniques. 

 

Indiana University, Indianapolis, IN                                                May 2016-June 2017 

Tune Lab focused on the molecular mechanisms underlying the association of obesity, 

coronary flow, and cardiovascular dysfunction. 

Graduate student, Department of Cellular and Integrative Physiology 

• Investigated the effects of Leptin, GLP, and RANKL in coronary artery 

calcification. 

• Performed both survival and terminal coronary artery bypass procedures on 

Ossabaw swine as well as domestic porcine model. 

• Pharmacologically investigated the effects of RANKL and OPG on coronary 

arteries using tissue bath/perfusion system. 

 

 

 



 

Ivy Tech Community College, Indianapolis, IN                               Aug 2016-Sept 2020 

Facilitated instruction for Microbiology BIOL 201 courses. 

Adjunct Instructor, Biotechnology Department 

• Teach both the lab and lecture portions of BIOL 201, a notoriously challenging 

nursing program pre-requisite course.  

• Designs and implements lectures encompassing microbiology concepts ranging 

from DNA replication to monoclonal antibody production. 

• Facilitates hands-on guidance with scientific experiments including PCR, ELISA, 

and bacterial transformations. 

 

Education    

Indiana University McKinney School of Law, Indianapolis, IN                            2020-                          

JD Law Professional 

• Intellectual Property Law 

Indiana University earned at  

Indiana University-Purdue University Indianapolis                                                2020                                  

MS in Microbiology and Immunology 

• Genetic Determinants of Coxsackievirus B3 Pathogenesis 

Indiana University, New Albany, IN                                                 2015 

BS, Department of Biology, cum laude 

AA, Department of Chemistry, cum laude 

 

 



 

Skills & Techniques    

• Molecular biology: recombinant DNA techniques, western blotting, RT-qPCR, 

viral transduction, liposome mediated transfection, electroporation  

• Surgical: independently perform survival as well as terminal coronary bypass 

procedures in swine, mouse ovariectomy and castrations, and perfusions. Perform 

or assist in multi-organ harvest in human, swine, and mouse. Extremely proficient 

in coronary artery dissection from Ossabaw and domestic swine heart 

• Cellular biology: Isolation and culture of cardiomyocytes and intestinal cell 

lines, in situ hybridization (RNA scope), nano luciferase bioluminescence, flow 

cytometry, DNA, RNA, protein extraction and purification 

• Microscopy: light microscopy, fluorescent/laser confocal microscopy 

• Virology: Amplification and purification of picornavirus and lentivirus for in vivo 

and in vitro work, plaque assay, one-step growth curves, and mutagenesis.  

• Coronary artery biology: Lentivirus injection, whole animal perfusion, length-

tension isometric ring bath. 

• Histology: Immunocytochemistry, H&E staining, Von Kossa, Wright-Geimsa, 

Ki-67, cryosection.  

• Computer skills: Microsoft Office, Photoshop, Prism, statistical analysis and 

modeling using R studio, Python. 

Memberships    

• American Association for the Advancement of Science                                   2019                

• American Society for Virology                                                                          2018                                                                             

• Indiana Physiological Society                                                                            2016                                                                                



 

• American Physiological Society                                                                        2016                                                                             

• Indiana Academy of Sciences                                                                            2014                                                                           

Leadership    

President Biomedical Graduate Student Advocacy Association                       2019                            

President Department of Microbiology and Immunology Grad Rep                2018                         

President IUSM Chapter 314 Action                                                                2017                                                         

Presentations 

• American Society for Virology (speaker)                                                      2019                      

The role of sex hormones on intestinal Coxsackievirus B3 replication 

• Midwest Microbial Pathogen Conference (poster)                              2018                   

The role of biological sex in Coxsackievirus B3 infection and pathogenesis 

• Experimental Biology (poster)                                           2017                                     

Role of Receptor Activator of Nuclear Factor kB Ligand (RANKL) in Coronary 

Smooth Muscle Contraction and Medial Calcification 

• Indiana Physiological Society Conference (poster)                  2016                   

SERCA inhibition attenuates medial thickening in an organ culture model of 

coronary artery disease 

• Indiana Academy of Sciences Conference (poster)                              2015                            

Decellularization and re-endothelialization of mouse hearts using induced 

pluripotent stem-cell derived cardiovascular progenitor cells 

 

 

 



 

Publications    

• Alexander M. Kiel, Adam G. Goodwill, Jillian N. Noblet, April L. Barnard, 

Daniel J. Sassoon, Johnathan D. Tune. Regulation of myocardial oxygen 

delivery in response to graded reductions in hematocrit: role of K+ channels. 

Basic Res Cardiol (2017) 112:65  

• Leni Moldovan, April Barnard, Chang-Hyun Gil, Y. Lin, Maria B. Grant, 

Mervin C. Yoder, Nutan Prasain, Nicanor I. Moldovan. iPSC-Derived Vascular 

Cell Spheroids as Building Blocks for Scaffold-Free Biofabrication. 

Biotechnology Journal. (2017): DOI: 10.1002/biot.201700444 

• Huang J, Donneyong M, Trivedi J, Barnard AL, Chaney J, Dotson A, Raymer 

S, Cheng A, Hong, Liu and Slaughter MS. Preoperative Aspirin Use and its 

Effect on Adverse Events in Patients Undergoing Cardiac Surgery. Annals of 

Thoracic Surgery. 99(6), 2015 

 

 


