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ABSTRACT: 

With an increasing interest in indoor location based services, vision-based indoor localization techniques have attracted many 

attentions from both academia and industry. Inspired by the development of simultaneous localization and mapping technique 

(SLAM), we present a visual SLAM-based approach to achieve a 6 degrees of freedom (DoF) pose in indoor environment. Firstly, 

the indoor scene is explored by a keyframe-based global mapping technique, which generates a database from a sequence of images 

covering the entire scene. After the exploration, a feature vocabulary tree is trained for accelerating feature matching in the image 

retrieval phase, and the spatial structures obtained from the keyframes are stored. Instead of querying by a single image, a short 

sequence of images in the query site are used to extract both features and their relative poses, which is a local visual SLAM 

procedure. The relative poses of query images provide a pose graph-based geometric constraint which is used to assess the validity of 

image retrieval results. The final positioning result is obtained by selecting the pose of the first correct corresponding image.  

 

 

1. INTRODUCTION 

Indoor localization systems have a wide range of applications, 

such as automated industry, health care, augmented reality, and 

robot-based disaster relief. Since GPS signals are usually 

unavailable inside buildings, many different techniques have 

emerged to make up for the lack of positioning system in indoor 

environment (Möller et al., 2012; Farid et al., 2013; Sánchez-

Rodríguez et al., 2017). Most Vision-based localization (VBL) 

techniques do not require complex facilities or devices in 

buildings, so they are more affordable for some scenes and 

shows great potential to be deployed in reality.  

 

For a typical VBL system, there is a remote server maintaining a 

photo database, where each photo is bound with a location tag 

and other possible auxiliary information. Implementing VBL 

systems for indoor scenes faces some severe difficulties. First of 

all, there is universally no global coordinate frame. This means 

for every building one needs to specify a unique frame to 

present its spatial character to end-users. A good approach 

should design an efficient method to guide map makers to 

record the entire environment. Secondly, the image retrieval 

process needs to detect invalid correspondences between query 

images and database images. This task is challenged by different 

imaging devices and changing imaging conditions. Current 

VBL systems mainly focus on various aspects of feature 

matching and position calculation. However, it would still be 

required to come up with a robust method for solving the 

general problem of localisation in such environments.  

 

It is common that when a person enters an unfamiliar scene, 

he/she looks around to determine his/her position. A visual 

system that uses only one image for localization is error-prone. 

The indoor environment is complicated due to the repeated 

occurrence of similar patterns, occlusions and varying lighting 

conditions, which lead to confusion in image retrieval. 

Consequently, our idea is that the original query data from the 

end-user is not a single image but a short sequence of images. 

We assume more image correspondences can provide additional 

geometric constraints to validate and strengthen the image 

retrieval results.  

 

In specific, inspired by the development of visual simultaneous 

localization and mapping techniques (SLAM), we propose a 

visual SLAM-based multi-image retrieval strategy, which 

recovers the geometric relationships between query images to 

improve the robustness of the VBL system. The accuracy of 

vision based methods highly depends on the quality of feature 

correspondences. In our method, the query information includes 

not only 2D features but also raw relative poses of the sequence 

of images.  

 

We use a bag-of-visual-words (BoVW) model to find initial 

candidate corresponding images that are likely to have similar 

appearance to query images (Nister and Stewenius 2006). The 

six parameters of exterior orientation are determined by spatial 

resection. Our approach is closely related to the re-localization 

step used in some traditional SLAM methods (Eade and 

Drummond, 2008; Kendall et al., 2015; Mur-Artal and Tardós, 

2017). However, the approach differs in two aspects:  

 

(1) Instead of using one image to retrieve corresponding images 

in the database, we use a sequence of images to retrieve images 

at the querying stage and the related poses of these images are 

recovered by a local SLAM method. The related poses are local 

poses which integrate a pose graph-based geometry constraint 

further used to detect and handle inaccurate image retrieval 

results.  

 

(2) We assume the interior orientation parameters of the camera 

used to generate the query images to be un-calibrated. The focus 

length is estimated from the image EXIF file and the principal 

point is assumed to be at the centre of the frame, so the global 

poses of query images, calculated by spatial resection based on 

correspondences between map points and image points, are 

some coarse estimations. After image retrieval, a set of pose 

graphs of candidate global poses in a global coordinate frame 

can be built. We design a pose graph-based alignment function, 
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which calculates the transformation parameters between global 

poses and local poses by least squares fitting. After minimizing 

the alignment error, the impact of interior parameters is 

weakened. Basically, because querying images only span a short 

distance in the global scene, the alignment accuracy is enough 

for end users.  

  

2. RELATED WORK 

With the emergence of location-based services, several 

techniques have been proposed to provide indoor locations. One 

of them is the fingerprinting localization technique, which 

means to use the signals, such as Wi-Fi or Bluetooth, to 

measure the distances from some known base stations and 

calculate the query position using trilateration (Farid et al., 

2013; He and Chen, 2016). Fingerprinting technologies suffer 

from signal attenuation during diffusion, so sometimes the 

accuracy is a big problem. The localization error can be several 

meters.  

 

VBL systems have drawn intensive attention in recent years. 

The first type of VBL systems (indirect methods) use an 

appearance-based localization strategy, which merely provide 

coarse poses by inheriting location tags from the corresponding 

images in the database. The database contains images, e.g. street 

view panoramas, images of buildings or landmarks. These 

methods are mainly applicable to localization tasks at city scale, 

e.g. for landmark identification and tourism guidance. 

Robertson and Cipolla (2004) built a database of views of 

building facades. The pose of a query image is determined by 

the corresponding facade images using a wide-baseline 

matching algorithm. Zamir and Shah (2010) constructed a SIFT 

descriptor (Lowe, 2004) based tree for the database images. In 

order to retrieve corresponding images of query image, they use 

a GPS-tag-based pruning method to remove less reliable 

descriptors and use a voting strategy to determine how reliable 

the localization of a particular image is. 

 

Another type of VBL systems (direct methods) is based on fine 

pose localization, which uses 3D structure information to 

retrieve images and estimate the poses. In these cases, the 

spatial information of scenes are recorded through structure 

from motion (SfM) techniques, and each image in the database 

is associated with a 3D coordinate and orientation information 

(Xiao et al., 2008; Irschara et al., 2009; Lim et al., 2012; Li et 

al., 2012). Then, the localization result is calculated by querying 

database images and corresponding 3D points to determine the 

exterior orientation of the query image by spatial resection.  

 

Both for indirect and direct methods, a critical task is to retrieve 

the corresponding images from the database. The first type of 

techniques is based on point features, such as the Hessian-affine 

detector (Lindeberg, 1998) combined with SIFT (Lowe, 2004) 

or SURF (Bay et al., 2008) descriptors. Some recent visual 

search systems are based on a BoVW model. BoVW approaches 

generally extract feature descriptors from an image, quantise the 

descriptors to a vocabulary of visual words, and use the 

histogram of observed words as an image descriptor (Nister and 

Stewenius, 2006; Yang et al., 2007; Galvez-López and Tardós, 

2012; Radenovic et al., 2016). The advantage of BoVW is that 

it is unaffected by positions and orientations of objects in an 

image. BoVW-based search can quickly return the possible 

locations of the query image, avoiding searching through tens of 

millions of local feature descriptors. 

 

 

3. METHODOLOGY 

3.1 Overview 

The proposed indoor VBL approach manages to address the 

following three problems: (1) how to record the spatial 

information with sufficient accuracy and limited storage; (2) 

how to find the image correspondences between the query 

images and the database images under different conditions with 

respect to resolution and illumination; and (3) how to calculate 

poses of query images and handle outliers. The workflow of the 

approach consists of a keyframe-based global mapping phase 

and a visual SLAM-based local positioning phase. An 

illustration of the approach is shown in Fig. 1.  

 

 
Figure 1. Workflow of our indoor localization approach. 

 

3.2 Global mapping 

In order to prepare the database, a manual operation is carried 

out first to map the interior of the building using a camera. The 

indoor scene is explored by a keyframe-based global mapping 

technique. Input data are a sequence of images provided by the 

operator who traverses the entire building. The 3D map 

representation is built based on a SfM mapping module. We use 

the ORB (oriented FAST and rotated BRIEF) feature as the 

feature tracking strategy (Michael et al., 2010; Rublee et al., 

2011), which extracts FAST corners in 4 image resolution 

levels of each frame, and describe the corners by BRIEF 

descriptors. It is powerful to establish 2D-3D matches between 

image features and map points. 

 

The selection of keyframes is a self-adaptive process, which 

culls the redundant images and at the same time ensures that the 

adjacent keyframes have enough overlapping regions and each 

keyframe contains sufficient feature correspondences. This 

corresponds to a self-adaptive recording process which stores 

the keyframes based on a dynamic selection strategy instead of 

using a fixed internal distance. There are three criteria for 

selecting keyframes: (1) the frame shares at least 40 points with 

other images; (2) the current frame shares less than 80% of its 

features with previous key frames; and (3) the frame interval 

between the current frame and previous keyframes is larger than 

a threshold, which we set equal to frame frequency. Compared 

with the manual selection of images in some typical SfM 

workflows, this dynamic strategy has an advantage of 

automatically generating a dataset that is less constrained by the 

experience of the person taking the images. Another advantage 

is that keyframe-based databases have compact image 

representations, which decreases the memory requirements and 
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increases the search efficiency compared to databases 

containing an unfiltered set of images.  

 

The initial scale of map is determined by the first two keyframes 

which consist a normalized baseline and generate an initial map 

by stereo matching and triangulation. The map is incrementally 

built by selecting new keyframes and calculating new map 

points. Finally, a global bundle adjustment is used to refine the 

structure of the map. In order to obtain the absolute map 

positions corresponding to the physical world, a coordinate 

transformation might be conducted using transformation 

parameters estimated by interactive aligning some predefined 

control points in the world coordinate system and the map 

points.  

 

After the exploration, each keyframe in the database is 

associated with its exterior orientation parameters and some 

map points corresponding to the features in the frame. Each 

map point is associated with the ORB descriptors found in the 

images for feature matching. A feature vocabulary tree is trained 

using the feature vectors of all frames. The nodes in the 

vocabulary tree are visual feature words, which can speed up 

the following image retrieval process. In return, we cast ORB 

features of keyframes into a BoVW based on the vocabulary 

tree. In sum, the spatial structures, i.e. 3D map points, of the 

scene and the poses of keyframes are stored in the database.  

 

3.3 Local Positioning  

In the querying phase, instead of querying by a single image, a 

short sequence of images of the site is used to extract both 

features and the relative image poses, which is a local SfM 

procedure.  

 

Following a workflow similar to the Parallel Tracking and 

Mapping (PTAM) (Klein and Murray, 2007) and ORB-SLAM 

(Mur-Artal and Tardós, 2017) methods, we initialize the local 

3D model by a stereo matching method which takes two 

viewpoints different enough to guarantee a certain baseline and 

similar enough to share enough feature correspondences. In our 

implementation of feature matching, we use ORB (Rublee et al., 

2011) for detection and matching. We use a simple constant 

velocity motion model combined with feature tracking method 

to predict the camera poses. After that, every subsequent 

tracking image I  is associated with a local relative pose L

IP . 

 

In the query phase, we predict orientation parameters for every 

frame. We cast the features of every query frame into a BoVW 

based on the vocabulary generated in the mapping phase. Based 

on the BoVW, for every query image we find corresponding 

candidate keyframes in the image database via searching 

through the vocabulary tree. For instance, given an image 

sequence containing k frames  1 2, ,..., kI I I , we conduct image 

retrieval for every frame, which outputs the following ranking 

correspondence list: 

 

 

 

1 1 1

1 1 2

1

( ) , ,...,

...

( ) ,...,

m

k k

k n

Query I J J J

Query I J J





, 

 

where k

nJ is the image at the nth rank returned for the kth query 

frame
kI . The order in the returning set is based on the BoVW 

histogram matching scores.  

 

This search is a 1-to-n problem where n may be 0, 1 or more 

than 1. If 0n  , the search has successfully found at least one 

candidate image for the query frame in the database. Then, we 

match ORB features between each query image and its 

candidate correspondences in the database. As the features of 

the database keyframes are linked to map points, after matching 

we obtain some correspondences between map points and 

feature points of the query images. If there are more than 15 

correspondences between ORB features and map points, we 

continue to calculate the exterior orientation of a query image 

by RANSAC, using the direct method of (Gao et al., 2003) in 

each iteration. The focus length is estimated from the image 

EXIF file, and the principal point is assumed to be at the centre 

of the frame. Subsequently, we refine the pose by least squares 

estimation using all inliers. The localization method returns an 

ordered list of candidate poses for each successful query image; 

we present these candidate global poses as  

 

      
1 21,1 1,2 1, 2,1 2, ,1 ,, ,..., , ,..., ,..., ,...,

m

G G G G G G G

k k m m kP P P P P P P ,     (1) 

 

where 
, m

G

m kP means the km
th global pose of query image mI . 

 

The local relative poses of images with candidate poses are used 

to generate a local pose graph, whose nodes are defined at the 

coordinates of the frames and the weight of edge is related to 

the Euclidean distance. These images take a similar role as 

keyframes, but they are selected according to the image retrieval 

results and not by applying rules related to extracted features or 

intersection geometry. As there is only a short sequence of 

query images, we assume the related poses can correctly reflect 

the geometric relationship of frames. We use 
1 2, ,...,L L L

mP P P  to 

denote the local poses.  

 

 
Figure 2. An illustration of local pose graph and global 

candidate poses after image retrieval process. After local SLAM, 

“local relative poses” are recovered, and then we retrieve 

images from database to get corresponding keyframes. The local 

poses of successful query images integrate “local pose graph”. 

At the same time, we calculate the “candidate global poses” 
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based on the connection between features in keyframes and map 

points.  

 

For the successful query images with correspondences we have 

two sets of poses, i.e. the local relative poses obtained from 

SfM and global poses obtained via spatial resection. An 

illustration of the successful query images (blue boxes) and 

their corresponding image retrieval results (green boxes) is 

shown in Fig. 2. L

mP  and 
,{ }

m

G

m kP  denote the local poses and 

candidate global poses respectively. 
1 2- -...-L L L

mP P P  represent a 

local pose graph. This information is used to eliminate wrong 

correspondences and, consequently, wrong global poses based 

on a geometric criterion.  

 

3.4 Removal of outliers based on geometrical constraints 

Using BoVW for image retrieval can result in some false 

correspondences (green boxes with forks shown in Fig. 2), 

which may lead to incorrect global candidate poses. We will use 

the information about the local poses to derive geometric 

constraints to eliminate these outliers. 

 

The local and global poses of a frame are defined in the local 

and global coordinate systems, respectively. Therefore, we 

estimate the seven parameters of a spatial similarity 

transformation (three shifts, three rotations and a scale) 

using the projection centres of the keyframes as identical 

points in a least squares estimation: 
 

 , ,min ( )G LG L LG

i j i j i

i j

P R P t   ,           (2) 

 

where   is the scale factor between the local and the global 

coordinate systems; LGR and LG
t  are the rotation and 

translation parameters between two set of frame positions. 

 , 0,1i j   is an indicator term used to determine whether the 

global pose is valid in the function. The unknowns in this 

estimation procedure are , tLG and the three angles 

parameterizing RLG.  

 

A crucial task is to determine the value of 
,i j , i.e. to find out 

which global poses are outliers. We design a distance ratio 

code (DRC) that records a set of distance ratios between poses. 

Firstly, the local pose graph provides a reference DRC. If the 

pose graph consists of 
1 2, ,...,L L L

mP P P , its DRC is 

1,2 2,3 1,(=1), ,...,L L L

m mr r r 
   , where each value r is the ratio of the 

relative distances of a pose to the first two positions:  

 

,

2 1

L L

p qL

p q L L

P P
r

P P





.                                    (3) 

 

As every query frame may have multiple candidate poses, there 

exists a corresponding set of DRCs. The first process to detect 

errors in the global localization is based on a global pose 

distance constraint. We assume that our query images are 

captured within a small range not exceeding 2 meters. Hence, if 

the Euclidean distance between two neighbouring global 

candidate poses G

pP  and G

qP  is larger than 2 meters, we think 

this edge length between G

pP  and G

qP   is exceed the scope of 

the query images. So, their relative distance ratio is omitted, i.e. 

, =0i j . Secondly, we calculate the correlation coefficient 

between the reference DRC and global DRCs. Only if the 

correlation score is higher than a threshold, 
,i j  of the global 

pose is set to 1. By solving (2), we can transform the local poses 

of successful query images to the global mapping coordinate 

frame and get the absolute poses for successful query images.  

 

Thus, by constraining the pose distribution using the 

information about local poses, we can detect and remove 

outliers in the global poses, making the strategy robust to 

erroneous image retrieval results. Because our interior 

parameters of query images are roughly estimated, the accuracy 

of positioning results is lower than decimetre level. Errors in the 

range of some decimetres in the local SfM procedure can be 

tolerated because the correct result of image retrieval is the key 

to the localization task. After detecting and eliminating wrong 

image retrieval results, we use all the retrieved and query 

images that are left to get the correct feature correspondences 

and corresponding map points. Using these correspondences, 

we estimate the exact camera location and orientation 

information for query images by bundle adjustment.   

 

 

4. EXPERIMENTS 

4.1 Mapping 

To test the proposed indoor VBL system, we scanned two  

corridors of a building using a Gropro sport camera with a fixed 

frame size of 1920×1440 pixels. The camera was calibrated. 

After the global mapping process, all keyframes and 3D map 

points are stored in memory as the database. In this experiment, 

the coordinate framework of a map is defined to coincide with 

the image coordinate system of the first keyframe, so we did not 

use ground control points to transform the coordinates. We only 

adjust the map scale. The physical scale of the scenes was 

derived by measuring the widths of the corridors, and the map 

was scaled accordingly. 

 

Table 1 gives the statistics for these two scenes. These two 

videos contain more than 2000 frames each and have a frame 

rate of 24 frame/sec. Two scenes span approximately 25 m and 

23 m respectively and there are many keyframes and map points 

evenly distributed. A visualization of the database is shown in 

Fig. 3. In each scene, the reconstructed database, including map 

points (black points) and poses of keyframes (blue 

wireframes), are shown at the bottom, and two arbitrary 

keyframes are displayed at the top for intuitive visualization. In 

the keyframes in Fig. 3, the yellow dots indicate the image 

features been used to calculte the map points. SfM techniques 

provide a relative pose of a sequence of data, then the VBL 

system tackles the problem of retrieving the absolute pose of a 

query data according to the known representation of scenes. 

 

 Video 

frames 

Rate 

(FPS) 

No. of  

Keyframe 

Map 

points 

Span 

distance 

Scene 1 2952 24 101 3967 25 m 

Scene 2 2496 24 69 3271 23 m 

 

Table 1. Statistics of the test scenes.  
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(a) Scene 1.  

 
(b) Scene 2. 

 

Figure 3.  Global mapping results for the two test scenes 

(bottom) with sample images from the sequences (top). 

 

4.2 Positioning 

Using the proposed localization framework, we tried to 

determine the location of query images in each scene. The query 

images are obtained by a camera of a smartphone with a frame 

size of 1920× 1080 pixels. The internal parameters of the 

camera are estimated from image EXIF file. Taking advantage 

of efficiency of the BoVW feature matching strategy, for query 

image sequences we found their corresponding keyframes in the 

database. The localization results corresponding to Fig. 4 is 

shown in Fig. 4, where the red wireframe indicates the position 

of the querying site in the whole scene. The region of Fig. 3 

corresponds to the green dotted wireframe region in Fig. 3. 

 

We can convert the local relative poses into absolute poses by 

determining the scale between two kinds of distances between 

adjacent frames. The poses recovered from local SLAM provide 

a geometric constraint, because when there are enough 

successful query frames (at least 3), the outliers in global poses 

can be detected as described in Section 3.3. In practice, the first 

verified global image pose in the query site is chosen as the 

output result. 

 

 
(a) Positioning result in scene 1. 

 
(b) Positioning result in scene 2. 

 

Figure 4. Examples of positioning results.  

 

     
(a) Relative local poses of query images (left) and a sample 

image (right). 

 
(b) Candidate keyframes (green) for one of query images. 

 
(c) Images of the keyframes shown (b). 

 

Figure 5. The effect of relative poses on detecting invalid image 

retrieval result. 

 

In Fig. 5, we shown an illustration of the method that relative 

local poses can detect invalid extracted candidate keyframes. In 

Fig. 5 (a), the red frame represents a current query image, and 

the green images are a few successful query images. The green 

dots in the right image denote the feature points detected in a 

query image. Fig. 5 (b) depicts an example of extracted 

candidate keyframes (green frames) from the database 

corresponding to one of query images. Fig. 5 (c) shows the 

images corresponding to these keyframes in Fig. 5 (b). The red 

arrows in (b) and (c) point out a false candidate keyframe which 

is extracted because it share a small part of scene with the query 

image. Using the method described in Sec. 3.4 to deal with the 

poses in (a) and (b), we can detect the invalid keyframe and 

yield correct positioning result.  

 

4.3 Limitation 

Image based localization has a common drawback: the 

confusion caused by similar decorations inside a building. A 

lack of features or a highly occluded environment can also 

reduce the success rate of the approach. Besides, the usage of 

BoVW still requires further testing for large changes in scale 

and viewpoint. In the future, a compensation solution could be 

to use Wi-Fi based finger printing techniques to reduce the 

search range.  

 

 

5. CONCLUSION 

We propose a vision-based localization system in an indoor 

environment by exploiting a SfM algorithm. The proposed 

method takes advantage of a visual vocabulary, under BoVW 

framework to exploit connections between physical locations 

and feature clusters. As the query phase only needs a small part 

of the scene, we assume the local pose graph provides a reliable 

shape, so the image retrieval results can explicitly handle the 
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structure of global poses. The method is a very suitable option 

for low cost camera-based indoor positioning and navigation. 

Experimental results show that this method has a high potential 

for applications.   
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