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Macroscopic conductivity of agueous electrolyte
solutions scales with ultrafast microscopic ion
motions
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Despite the widespread use of aqueous electrolytes as conductors, the molecular mechanism
of ionic conductivity at moderate to high electrolyte concentrations remains largely unre-
solved. Using a combination of dielectric spectroscopy and molecular dynamics simulations,
we show that the absorption of electrolytes at ~0.3 THz sensitively reports on the local
environment of ions. The magnitude of these high-frequency ionic motions scales linearly
with conductivity for a wide range of ions and concentrations. This scaling is rationalized
within a harmonic oscillator model based on the potential of mean force extracted from
simulations. Our results thus suggest that long-ranged ionic transport is intimately related to
the local energy landscape and to the friction for short-ranged ion dynamics: a high mac-
roscopic electrolyte conductivity is thereby shown to be related to large-amplitude motions at
a molecular scale.
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ARTICLE

he electrical conductivity of an electrolyte solution is

arguably its most critical property, as it limits the elec-

trolyte performance in, e.g. batteries!, fuel cells?, or
supercapacitors®. Yet, the molecular-level understanding of fac-
tors improving or suppressing charge mobility is still at its
infancy*. Consequently, macroscopic measures, such as the pro-
duct of electrolyte viscosity and single ion conductance (i.e. the
so-called Walden product), are common—yet controversial—
measures for the electrolyte performance®. Even for relatively
simple electrolyte solutions, like aqueous salt solutions at mod-
erate concentrations, which are both technologically®” and bio-
logically® relevant, it has been challenging to understand long-
ranged charge transport on a molecular scale. Our lack of
understanding of the microscopic, molecular-level mechanisms
determining macroscopic conductivity of electrolyte solutions
precludes a rational design of, and search for, new electrolytes.

The challenge in understanding ionic conductance can be
traced back to marked structuring® and correlated motions®10 in
electrolytes. An ion cannot diffuse independently without dis-
placement of the surrounding ions!!. The same restriction applies
to ionic solvation shell dynamics:!® An ion has to strip at least
part of its solvation shell to be transported, and exchange of
solvent molecules in ionic solvation shells is obviously involved in
ion conduction!2. Thus, molecular-scale motion on a picosecond
scale impacts macroscopic charge transport on long timescales
(>nanoseconds)!3. These slow collective dynamics have been
theoretically linked to the molecular-level fast (picosecond scale)
dynamics for dilute salt solutions!4. For technologically relevant
concentrated electrolytes!, the fast dynamics of both the ions!>~17
and their solvation shells!®!18-20, have been elucidated using
spectroscopic techniques. Yet, the relevance of such fast mole-
cular motion to macroscopic transport has remained elusiveZl.

Both, the dynamics of water in the solvation shell of ions and the
motion of ions itself, go along with a change of the macroscopic
dipole moment of the sample and can thus be probed using spec-
troscopy experiments!®22-2%, Here microwave and Terahertz spec-
troscopies have been extensively used. At field frequencies ranging
from 100 MHz to ~100 GHz, hydration of ions has been intensively
studied by detecting the dynamics of water and also the rotational
dynamics of long-lived ionic aggregates (i.e. ion-pairs) have been
elucidated in detail>4-26, At frequencies ranging from ~2 THz up to
20 THz, at which hydrogen-bonding vibrations, librations, and also
ion dynamics contribute, the cooperativity and spatial extent of ion
hydration, as well as ion-pairing, have been investigated in great
detail2327:28 At intermediate frequencies (100 GHz-2 THz)
computational studies predict the very weak contribution of ionic
currents to peak?2. Experimentally, this intermediate frequency range
is, however, challenging to study and experiments on electrolytes are
scarce?®. As such, the potential of using this spectral information to
understand ion dynamics has so far not been exploited?22°.

Here, by combining GHz to THz dielectric relaxation spec-
troscopy (DS)?? and molecular dynamics (MD) simulation, we
find that the contribution of ions to these spectra, which peaks at
~0.3 THz, arises from the microscopic “cage” motion of ions in
their potential energy minimum. This cage is imposed by
(counter)ions and water molecules in their immediate sur-
rounding. Surprisingly, the amplitude of this fast cage motion
shows universal scaling with the macroscopic conductivity,
independent of the nature of the ions. Using a harmonic potential
model, we illustrate that the amplitude of motion in this “cage” is
related to the ionic conductivity.

Results
Experimental polarization dynamics of aqueous KI solutions.
We probe the response of the electrolytes to an externally applied

electrical field with frequency v, using broadband DS at fre-
quencies spanning from a few hundred of MHz to ~1.5 THz. DS
probes the electrical polarization of a sample in an external field
and is thus sensitive to any dynamics that go along with the
displacement of charges from their equilibrium positions. Such
displacement reflects either the rotation of molecules with an
electrical dipole moment or the translation of ions. Typically, the
response is expressed as the complex dielectric permittivity,
where the response out of phase with respect to the external field
is the dielectric loss and representative of absorption of the
electric field. The frequency-dependent permittivity is a measure
for the polarization in phase with the external field (for details on
the experimental determination of permittivity spectra see
“Methods” section). For neat water at ambient temperature, DS
spectra (Fig. 1a) are dominated by the collective re-orientational
motion of the dipolar water molecules at ~20 GHz3!, as evident
from the dispersion in the dielectric permittivity and a peak in the
dielectric loss. The effect of various electrolytes on the re-
orientational motion of water has previsously been studied both
experimentally?$26-32 and computationally?2-33-34 in great detail.
Adjacent to the dominant relaxation at ~20 GHz, at least one low
amplitude mode is present at 0.3-1 THz in neat water (light red
shaded area in Fig. 1a)?®3>36. The molecular origin of this 0.3
THz dynamics is still under debate3” and has been ascribed to the
relaxation of weakly hydrogen-bonded water molecules?®, to
small angular motions of water molecules due to rapid fluctua-
tions3’, or to the dynamics of the low-density liquid phase of
water38,

With increasing concentration of salt (here KI, ckp), we find the
spectral contributions at ~20 GHz to be reduced. This reduced
polarization has been reported for various salts and has been
attributed to the reduced correlation between the rotational
motion of water molecules in ionic hydration shells?2343? and
also—to a lesser extent—to kinetic depolarization3340-42, Con-
versely, the spectral contributions to the 0.3-1 THz response
increase with increasing cg;. The inset of Fig. la shows an
increasing dispersion in the dielectric permittivity and a slight
increase in the dielectric loss, as ck; increases: With increasing salt
concentration, molecular or ionic motion at these frequencies
goes along with an enhanced displacement of charges. To
quantify the changes to the spectra, we model the experimental
spectra: to describe the main relaxation at ~20 GHz, we use a
Cole-Cole mode, in line with previous studies?2. To capture the
faster dynamics at ~0.3 THz, we use a Debye-type mode3? (see
“Methods” section for details). We note that both, motion of ions
and motion of water molecules, contribute to the spectra at these
frequencies?2. As such, we use the Debye mode as a means to
quantify the contribution of all fast dynamics. The variation of
the parameters of the Debye mode with concentration thus
reflects the salt-induced changes to these dynamics. Using this
approach, we find the relaxation amplitudes for the fast dynamics
(relaxation time 200-500 fs) to be very sensitive to the presence of
the salt (Fig. 1b): Starting from an initial value of ~2 (neat water)
the amplitude increases linearly with increasing concentration of
KI, in line with what has been found for solutions of NaCl?° and
several alkali-halide salts at >2 THz28,

Dissecting ions’ contributions using MD simulations. To pin-
point the origin of the response at 0.3-1 THz, we perform force-
field MD simulations (for details, see “Methods” section, Sup-
plementary Figs. 1-9, and Supplementary Notes 1 and 2). The
dielectric response can be readily obtained from the time-
correlation function of the macroscopic dipole moment (the
electrical dipole moment due to both water molecules and ions).
By computing the time-correlation function due to only water
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Fig. 1 Polarization dynamics of solutions of KI from experimental and simulated dielectric spectra. a Experimental dielectric permittivity (filled symbols)
and dielectric loss spectra (open symbols) of aqueous solutions of Kl. Lines show fits using the relaxation model (see “Methods” section). The shaded areas
show the contribution of the main water mode at 20 GHz (light blue) and the fast mode at ~0.3 THz (light red) to the loss spectrum of the 2.5 mol L~

solution of KI. The 20 GHz mode decreases in amplitude with increasing ionic concentration. In contrast, a zoom-in into the 0.1-1.5 THz spectral range (see
inset) reveals increasing spectral amplitudes with increasing KI concentration. Note that for visual clarity, the Ohmic loss (last term of Eq. (1)) has been
subtracted. b The amplitude of the fast mode as obtained from fits to the experimental spectra as a function of salt concentration exhibits an increase with
salt concentration. The solid line shows a linear fit. Error bars correspond to the standard deviation within six independent measurements. ¢ Dielectric loss of
aqueous solutions of Kl at concentrations of 0, 0.5, and 1 mol L= as obtained from MD simulations (for details see Methods section). Dotted lines show the
contribution of only water, solid lines the contribution of only the ions, and the dashed lines refer to the (negative) contribution from the correlation between

jonic and water motion (see also Supplementary Fig. 9).

molecules, one can isolate the contribution of water to the spectra
(Iww in Fig. 1c). The dominant dielectric loss for water peaks at
20 GHz. The lower peak amplitude in the simulations as com-
pared to the experiments arises from the used TIP4P/2005 water
force-field, which is a shortcoming of this force-field*3. Never-
theless, the TIP4P/2005 model is known to reproduce both
structure and (fast) dynamics*4, which are relevant to the present
work, very well: the experimentally observed peak shoulder at 0.3
THz is also apparent in the simulated loss spectra.

Upon increasing ckj, the polarization dynamics at 20 GHz is
reduced, again consistent with the experimental data. In contrast,
water’s contribution at 0.3 THz is hardly affected by the presence
of KI. Hence, the simulations suggest that the experimentally
observed salt-induced response at ~0.3 THz does not originate
from salt-induced changes to the water dynamics, as opposed to
previous interpretations of experimental data;2? rather, the ions’
contribution (I;; in Fig. 1c), which is polarization due to the
displacement of both anions and cations out of their equilibrium
position, increases with increasing salt concentrations. The
correlation between the dynamics of water and the ions (Iy; in
Fig. 1c) has a negative sign and ‘counters’ the ionic polarization,
similar to what has been found at higher frequencies by Marx and
coworkers!0, Nevertheless, the net-polarization due to the
presence of salts (I + Iwy) is positive at 21 THz (for a more
detailed discussion on Iy, see Supplementary Note 2 and
Supplementary Fig. 9). Hence, based on the simulation results,
the jon-induced changes to the polarization dynamics at THz
frequencies can be primarily ascribed to the (hindered transla-
tional) motion of ions.

Harmonic oscillator to model fast ion motions. To rationalize
the molecular level origins of the observed ion dynamics, we
constructed a harmonic potential model. First, we compute the
cation-anion radial distribution function (RDF), g(r), for KI. g(r)
shows a distinct peak at 3.3-3.8 A (Fig. 2b), which corresponds to

the first ‘shell’ of counterions around a given ion. Through the
Boltzmann relation F(r) = —kgT In(g(r)), we obtain the potential of
mean force F(r) for anion-cation pairs (Fig. 2c), where kg and T are
the Boltzmann constant and temperature, respectively*>. F(r) thus
contains excluded volume effects of both water and ions as well as
attractive intermolecular interactions. Approximating the potential
to be harmonic (for details see “Methods” section), we obtain a
force constant of k= 8.5 kgs~2 for 0.5 mol L~! KI. Together with
the reduced mass 4 = 30 g mol~! for KI, the frequency of these ion
motions is predicted to be w/27m = (k/)}/2/2r =2 THz (see also
Supplementary Note 3). By further assuming the damping coeffi-
cient of the ionic motion to be given by the macroscopic hydro-
dynamic drag coefficient y=10"12kgmol~!s~! for dilute KI
solutions?®, the thus obtained damped harmonic oscillator repro-
duces the spectral shape and amplitude of the ionic dynamics in the
frequency domain very well (purple line in Fig. 2a). The predicted
maximum of the spectral response of the harmonic oscillator model
is shifted by a factor of ~4 to higher frequencies as compared to
the simulated I; response (Fig. 2a), which is attributable to the
anharmonicity of the potential and the presence of ions beyond the
first coordination shell, neglected in our harmonic approximation
(Fig. 2c, see also Supplementary Note 4 and Supplementary
Fig. 10). Also an underestimation of the reduced mass, as hydration
of ions and/or electrostatic interaction with other ions may effec-
tively result in a higher reduced mass, could contribute to this
difference.

Note that while the harmonic oscillator model does not capture
all details of the simulated Iy spectra, it serves to illustrate the
underlying molecular-level dynamics. Within this model, the
peak maximum (or similar, the peak integral) of the oscillator
inversely scales with damping, as higher friction attenuates the
ions’ motion and thus reduces the ionic polarization according to
eno” (Wo) ~ cqt/wyY (see Supplementary Eq. (13)). The oscillator
amplitude also scales with the inverse fluctuation frequency, wo,
since steeper (shallower) potentials and/or heavier (lighter) ions
narrow (widen) the spatial extent of thermally accessible
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Fig. 2 Effect of the ionic distribution on the ionic dielectric response from charge-scaled MD simulations. a lonic contribution /;; to the dielectric loss as
obtained from MD simulation of 0.5 mol L=1 Kl (solid black lines). To explore the effect of the ionic distribution, we also show the contribution based on the
distributions obtained for K| with increased (1.15 and 1.30) and decreased (0.7 and 0.85) ionic charge (see legend in panel b). Note that charge scaling was
used to alter the distribution of ions. To isolate the effect of the distribution, we calculate I, assuming ions with unity charges. The purple curve in panel a
shows the harmonic oscillator model for unity charged ions. b The altered ionic charge results in marked differences in the cation-anion RDF g(r):

Increasing ionic charge results in sharper (more structured) peaks. ¢ The cation-anion potential energy surface inferred from the RDFs. With decreasing
charge density, the ions reside in shallower potentials. The purple line shows the harmonic approximation for the unity charged ions, which gives the purple

spectrum shown in panel a.

excursions of the ions out from their equilibrium. We conclude
that the Iy spectral contribution sensitively reports on the ionic
distribution and dissipative ion effects (as quantified by the
friction coefficient) in solution.

Effect of nature of the ions on fast motion. The sensitivity of the
ions’ response to the ionic distribution can be directly demon-
strated using MD simulations. To this end, we reduce (or
increase) the charge of the ions. Altered ionic charges lead to
altered interaction with water, leading to a modification of the
friction experienced by the ion and a marked change in the width
of the first ionic coordination peak in the RDFs (Fig. 2b). As such,
the potential of mean force of the ions becomes more shallow
(steep), and based on the oscillator model, the magnitude of the
fluctuations is expected to be accordingly enhanced (reduced).
Quantitatively, we find the height of the simulated Ij; peaks
(Fig. 2a) to vary by +50% (—25%), upon decreasing (increasing)
the charge by 30%, while the diffusivities of the ions vary by
+30% (—30%) (see Supplementary Table 1). In light of the
oscillator model described above, the higher sensitivity of Ij; to
the ionic charge, as compared to the diffusivity, shows that both
the altered friction and the altered ionic distribution give rise to
the changes in Ij; upon charge scaling. Thus, the ionic con-
tributions to the spectra sensitively report on the interaction and
distribution of ions in electrolytes.

To demonstrate the sensitivity of the ~0.3 THz absorption to
the ionic species experimentally, we measure the DS spectra for
different ions at various concentrations (for spectra and fits see
Supplementary Figs. 11-17). As the nature of the ions and their
concentration markedly affects their pair distribution, their
dynamics are expected to be ion-specific, and the magnitude of
the ionic polarization will depend on both concentration of
electrolyte and the nature of the salts (e.g., ionic radii, van der
Waals repulsion, “soft or hard” nature of the ions, etc.). In
contrast to the simulations, which can disentangle the spectral
contribution of jons from the contribution of water, we
experimentally monitor all fast dynamics due to water and ions
by studying the amplitude of the fitted Debye mode. As the
motions of both water and ions contribute to the spectral

intensity at ~0.3 THz (Fig. 1c), only the variation of the intensity
with salt concentration allows for drawing conclusions on ion-
induced dynamics, while the absolute values of S, (and also Tg,)
also contain information on the dynamics of water. As can be
seen in Fig. 3a, the values for Sg, vary widely for different mono-
and bivalent salts. However, salt concentration does not
exclusively determine the magnitude of Sgg when comparing
all studied salts (as would follow from asymptotic electrolyte
theories that treat ions as point-like charges): The data in Fig. 3a
are scattered, and we find a Pearson’s correlation coefficient r =
0.64 for Sfast (Csalt)-

Conversely, the oscillator model suggests that the amplitude of
the ionic contributions scales with the inverse damping and the
ions concentration. Thus, given that the macroscopic friction for
long-range transport and the friction for the short-scale THz
motion are correlated, the spectral contributions of the ions to the
fast dynamics are expected to scale with the macroscopic
conductivity (see “Methods” section), rather than with concen-
tration (see also Supplementary Note 5 and Supplementary
Fig. 18). Moreover, the curvature of the potential for the ions,
which also affects the spectral contributions, may also be related
to the energetic barrier to escape the potential minimum (for our
simulations on solutions of KI the height of the maximum at
Ar=1 A in Fig. 2c is related to the curvature at the minimum, see
Supplementary Note 6 and Supplementary Fig. 19). This suggests,
that the ionic dynamics at ~0.3 THz are related to the energy
barrier for the ion to ‘escape’ the solvation cage: The shallower the
cage potential, the easier the ion can escape its solvation cage.
Translating the ion out of the solvation cage is again the ionic
conductivity.

To experimentally testify the relation between local ion
dynamics and macroscopic conductivity, we plot in Fig. 3c the
experimentally obtained amplitude of the fast dynamics Sg as
obtained from fitting the relaxation model to the experimental
spectra vs. the electrolyte conductivity x. Remarkably, in contrast
to the moderate correlation of Sg with cg the values of Sg,
show a very strong correlation with the electrolyte conductivity
(Pearson’s correlation coefficient »=0.82, Fig. 3c) for a wide
range of monovalent and bivalent salts (CsCl, KCI, NaCl, LiCl,
GdmCl, KI, KSCN, Na,SO,, MgSO,, MgCl,): Starting from a
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Fig. 3 Effect of the ion type on the spectroscopically observed fast dynamics. a Amplitude, St.;, of the fast mode as a function of salt concentration, cqat.
The variation of S, With csa largely varies with the salt type. The solid line shows a linear fit to all data, with a Pearson'’s correlation coefficient of r = 0.64.
b Relaxation time of the fast Debye mode as a function of salt concentration. ¢ Ss.; as a function of electrolyte conductivity, k. The solid lines show a linear
fit to all data, with a Pearson’s correlations coefficient of r = 0.82, demonstrating the scaling of St.¢; with conductivity. Error bars in all panels correspond to

the standard deviation within six independent measurements.

value of ~2 for the fast dynamics at ~0Sm~! (neat water), the
amplitude increases to ~3.5 for electrolytes with a d.c.
conductivity of ~25Sm~1. We note that even for the strong
acid HCI the correlation holds at low concentrations, while it
breaks down at higher concentrations (see Supplementary Fig. 20),
which can be related to the very different charge transport
mechanism for the proton (Grothuss-type transport with charge
transport being decoupled from mass transport?”). The experi-
mentally determined Debye relaxation times (~inverse center
frequency) of the fast relaxation lie in the range 100-700 fs
(Fig. 3b).

Spatial correlation of ions’ motion. Together, the experimental
and simulation results show that short-ranged motions of ions
and long-ranged diffusive transport of ions are correlated (for
quantitative comparison with the harmonic oscillator model, see
Supplementary Note 7 and Supplementary Fig. 21), even at
relatively high salt concentrations. This correlation stems in part
from similar trends in friction. For concentrated electrolytes,
friction governing conductivity contains not only hydrodynamic
(Stokes friction) contributions, but also ionic friction (ion cloud
relaxation and electrophoretic drag, see also Supplementary
Fig. 14a)!l. Thus, ionic motions are highly correlated, and one
question that remains is the degree of collectivity of the ionic
motion at ~0.3 THz discussed here. The simple harmonic oscil-
lator model based on the RDF takes only ion pairs into account.
The dynamics in the first coordination shell are not independent
of the motion of ions in the other coordination shells, an effect
that is not contained in the RDF. To determine the degree of
collectivity of the ionic dynamics, we performed MD simulations
with water molecules beyond the first, second, and third hydra-
tion shell fixed in their coordinates. These simulations for a 0.5
mol L~! KI solution (Fig. 4) indicate that the ionic dynamics
approach the bulk dynamics only if molecules within the third
coordination shell are mobile. This means that the observed ion
dynamics at THz frequencies for the 0.5molL~! KI solution
(Fig. 4) are governed by the correlated motions of ions and water,
with the correlation extending up to three coordination shells
(~0.9 nm). This correlation length is comparable to the ~0.4 nm
Debye length for a 0.5molL~! salt solution. Hence, despite
classical mean-field theories like Debye-Hiickel being unable to
predict the observed ion dynamics as they cannot explicitly

account for the interaction between ions and water, the Debye
screening length still provides a satisfactorily accurate estimate for
the spatial extent of ionic correlations.

Discussion

In summary, we show that the fast (~0.3 THz) dynamics in the
dielectric relaxation spectra of electrolytes reflects the dynamics of
ions in their solvation cages. These dynamics are ion-specific, but
the magnitude of the motion scales universally with conductivity.
This means that the microscopic motion of the jons in a given
solvation cage and the macroscopic transport of the ions are
intimately connected. This correlation can be understood by
noting that microscopic and macroscopic frictions are related and
that the potential energy landscape of the ions in the cage
determines the ions’ thermally accessible excursions, which are
also related to the ion escaping its cage to allow for ion transport.
This includes the frequently inferred concept of ion-pairing?348:
electroneutral ion-pairs do not contribute to conductivity, and the
ions reside in very steep potentials that restrict the amplitude of
the ionic motions. Although a simple harmonic oscillator model
for the ions’ motion captures large parts of the observed polar-
ization dynamics, correlated motion involving coordination shells
beyond the classical Debye length has to be included to fully
capture the observed polarization dynamics. Despite the Debye
length being a reasonable estimate for the spatial extent, the ionic
dynamics, in fact, probe ionic distributions that go beyond a
classical Debye-Hiickel charge distribution, as Debye-Hiickel
does not take the molecular nature of the solvent (cage potentials)
into account. As such, the dynamics of ions at 0.1-1 THz are a
sensitive experimental measure for the ion distribution in con-
centrated electrolyte solutions that goes beyond mean-field the-
ories and provide a means to test more advanced electrolyte
theories that can explicitly account for molecular solvents. The
scaling reported here provides a rationale for understanding, and
possibly engineering, the macroscopic conductivity in electrolytes,
e.g., ionic liquids or battery electrolytes.

Methods

Samples. CsCl, NaCl, MgCl-6H,0, KCI, KI, KSCN, LiCl, GdmCl, Na,80,, and
HCI were purchased from Sigma Aldrich, and MgSO, was purchased from Carl
Roth. Aqueous salt solutions of KI (0.5, 1.0, 1.5, 2.0, and 2.5 mol L~1), CsCl (0.5,
0.8, 1.1, 1.4, and 1.7 mol L~1), KSCN, LiCl, GdmCl (0.5, 1.5, and 2.5 mol L~1),
NaCl, MgCl, (0.5, 1, and 2 mol L~1), Na,SO, (0.5 and 1 mol L~1), MgSO, (0.8,
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Fig. 4 Spatial extent of fast ionic motions from MD simulations. a lonic contributions (/;}) to the dielectric loss spectra as obtained from molecular
dynamics simulations of 0.5 mol L=1 KI. To explore the spatial extent of the correlation of the ionic motion, we fix the coordinates of water molecules
beyond the first (purple line), second (blue line), and third (red line) hydration shell. The spectra computed with mobile molecules up to the third hydration
shell of the ions (red line) resembles the spectral contribution for unconstrained motion (solid black line). b MD snapshot illustrating the constrained
simulations. Coordinates of water molecules within the shaded spheres are mobile, while other molecules are fixed in their coordinates. The mobile water

molecules are shown as ball-and-stick models.

1.6 and 2.2 mol L~1), KCI (0.5 and 1.5mol L~!) and HCI (0.3, 0.4, 0.5, 1, and
2 mol L) were prepared by weighing the salts into volumetric flasks (for
hygroscopic salts in a glove box) and subsequently filled with Milli-Q water.

Dielectric relaxation spectroscopy. Complex permittivity spectra, é(v) = ¢ (v)—
ie” (1), were recorded at 0.96 <v/GHz <125 using a frequency domain reflect-
ometer based on an Anritsu Vector Star MS4647A4049, Terahertz frequencies
(0.3<v/THz<1.5) were covered with a Terahertz time domain spectrometer®®
with the samples contained in a fused silica cuvette with a path length of 100 um>°.
All experiments were performed at 296 +2 K.

In line with literature reports?®31:35:40:51 e fit a relaxation model based on a
Cole-Cole equation and a Debye mode to the spectra:

SWaler Sfast

= + .
1+ (27 ) 700 1+ 2mivTgg

3
to 2mive, )

&(v)
water
The first (Cole-Cole) term of Eq. (1) represents the main relaxation at ~20 GHz
with relaxation time, Tyyter» the relaxation strength, Syaeer» and acc the Cole-Cole
parameter®2. The second (Debye) term models the fast mode at ~0.3 THz with
relaxation time, g, and relaxation strength, Sgg. The limiting permittivity e..
subsumes all polarization components at higher frequencies. The last term of Eq.
(1) accounts for Ohmic loss contributions due to the electrolyte conductivity, with
& the permittivity of free space. We assume the conductivity, «, to be real and
independent of frequency. Thus, any frequency-dependent conductivity will be
modeled by the Cole—Cole and the Debye term. Equation (1) was used to model the
spectra for solutions of HCI, KCI, KI, LiCl, CsCl, NaCl, MgCl,, and GdmClL.
Obtained parameters are shown in Fig. 3 and Supplementary Figs. 13 and 14. For
solutions of KSCN, Na,SO,, and MgSOy, an additional Debye term was used to
describe rotational motions centered below 2 GHz of the non-centrosymmetric
SCN—40, NaSO,~ ion-pairs®3, and MgSO, ion-pairs>%, respectively (for details see
Supplementary Note 8 and Supplementary Figs. 15-17). Spectra were fit reducing
the deviations of both ¢(v) and ¢”(v) on a logarithmic scale (for fits using linear
deviations see Supplementary Note 9 and Supplementary Figs. 22 and 23).

Molecular dynamics simulations. The MD simulations were performed using the
CP2k package®. We used the TIP4P/2005 model*3 for water. The potentials for K™
and I~ ions are taken from ref. . The long-range part of the electrostatic inter-
actions was computed using the particle mesh Ewald scheme. The 0 mol L~! sys-
tem contained 1600 water molecules. The 0.5 and 1.0 mol L~! KI solutions
consisted of 14 and 29 KI ion pairs together with 1572 and 1542 water molecules,
respectively. The neat water, 0.5 mol L~! KI, and 1.0 mol L~! KI systems were
contained in cubic periodic cells with lengths of 36.343, 36.266, and 36.246 A,
respectively. To vary ionic distributions, we scaled ions’ charges from +0.7e to
+1.3e. All other parameters were kept identical to the 0.5 mol L~! KI system. All

systems were equilibrated for 180 ps in the canonical (NVT) ensemble using the
CSVR thermostat set to 300 K°7. After equilibration, 40 initial conditions were
sampled from the canonical simulations at time intervals of 200 ps to initialize 2 ns
long microcanonical (NVE) simulations. We also performed microcanonical
simulations with fixed molecules (fixed-NVE) at 0.5 mol L~! KI. The initial con-
figurations of the fixed-NVE simulations were identical to the NVE simulations,
whereas the position of ions and water molecules beyond the cut-off radii (rg. and
ri-) were constrained in the Cartesian space. The cut-off radii were determined
from the first, second, and third minimum of the ion-oxygen RDFs (r., r{- A =
(3.6, 4.1), (5.8, 6.4), and (8.0, 9.0), respectively (see Supplementary Fig. 2). A time
step of 2 fs was used for all simulations and trajectories were saved every 0.2 ps.
Radial distribution functions are shown in Supplementary Figs. 1 and 2 and dif-
fusion coefficients obtained from these simulations are given in Supplementary
Figs. 3-5 and Supplementary Table 1. The dielectric spectra were calculated
through Fourier transformation of the system polarization (for details see Sup-
plementary Note 2, Supplementary Figs. 7-9).

Harmonic oscillator model. We approximate the contributions of the ions to the
dielectric response by a harmonic oscillator:

zcsall qZ (2)

o) =y — )

where ¢, is the salt concentration, q the ions charge, w = 27v the angular fre-
quency, and y the reduced mass. The force constant, k, was obtained from fitting a
harmonic potential (F(Ar) = 1/2kAr?) to the potential of mean force (Fig. 2c). The
drag coefficient y (=kgT/D) was approximated based on the experimental diffu-
sivity D= 0.4 A2 ps~146, Expressing y in terms of the conductivity y = c.uq?/%,
yields the maximum in the dielectric loss at w, = 77! & \/k/u to scale with
conductivity:

10" (1) ~ X (3)

€
For further details, see Supplementary Note 3.

Data availability

Data supporting the findings of this study are available within the article and its
Supplementary Information, or from the corresponding authors upon reasonable
request.
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