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Abstract

The reliability of transferring species distribution models (SDMs) to new ranges and future cli-
mates has been widely debated. Biological invasions offer the unique opportunity to evaluate
model transferability, as distribution data between species’ native and introduced ranges are geo-
graphically independent of each other. Here, we performed the first global quantitative synthesis
of the spatial transferability of SDMs for 235 invasive species and assessed the association of
model transferability with the focal invader, model choice and parameterisation. We found that
SDMs had limited spatial transferability overall. However, model transferability was higher for
terrestrial endotherms, species introduced from or to the Southern Hemisphere, and species intro-
duced more recently. Model transferability was also positively associated with the number of pres-
ences for model calibration and evaluation, respectively, but negatively with the number of
predictors. These findings highlight the importance of considering the characteristics of the focal
invader, environment and modelling in the application and assessment of SDMs.
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INTRODUCTION

Species distribution models (SDMs) have become an essential
tool for ecological and evolutionary studies over the last three
decades (Guisan and Thuiller, 2005; Ara�ujo et al., 2019).
Many researchers have applied SDMs to address historical
and phylogeographical questions, to investigate drivers of spe-
cies distributions, to estimate dynamics of climate niches or to
quantify probabilities of disease outbreaks (Guisan et al.,
2014; Feng et al., 2019). Given anthropogenic activities and
environmental changes of unparalleled magnitude, the role
of SDMs in the conservation of biodiversity is paramount
(Ara�ujo and Rahbek 2006; Thuiller et al., 2019). In particular,
thousands of studies have employed SDMs to forecast species
responses to climate changes, to search for new populations
of rare species and to predict the impacts of land use on spe-
cies distributions (e.g. Ara�ujo and Rahbek 2006; Murray
et al., 2011; Mor�an-Ord�o~nez et al., 2017; Feng et al., 2019).
Predictions of species distributions are important for decision
making and environmental planning (Wiens et al., 2009;
Ara�ujo et al., 2019); however, the reliability of model predic-
tions has been widely debated, leading to increasing

uncertainties in applying SDMs in conservation biogeography
(reviewed in Sequeira et al., 2018).
Confidence in transferred models depends on their pre-

dictability in new geographical ranges or time periods (i.e.
their transferability; Yates et al., 2018). Models can gener-
ate accurate predictions within the domain of model calibra-
tion (i.e. interpolation), whereas predictive ability might
quickly decrease if models are transferred beyond this
domain (i.e. extrapolation; Roberts et al., 2017). Recent
years have seen mounting efforts to better understand the
patterns and determinants of model transferability, but
remarkable disputes exist among studies (e.g. Heikkinen
et al., 2012; Mor�an-Ord�o~nez et al., 2017; Petitpierre et al.,
2017). This ongoing debate and conflicting conclusions
undermine the confidence in model predictions and pose
pressing hurdles on the improvement of model transferabil-
ity. Recently, 50 experts outlined 12 outstanding challenges
related to model transferability which, if addressed, will
increase the reliability of SDMs and facilitate their applica-
tions (Yates et al., 2018).
True transferability can only be evaluated with data that

are spatiotemporally independent of the data used for
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calibrating a model, because the dependency between data
used for calibration and evaluation notoriously leads to
underestimating prediction errors (Jeschke and Strayer, 2008;
Kharouba et al., 2013; Roberts et al., 2017). Biological inva-
sions represent unique large-scale biogeographical experiments
for evaluating model transferability (Jeschke and Strayer,
2008; Petitpierre et al., 2017). Large numbers of invasive spe-
cies (i.e. non-native species that have established and spread
in their new ranges; Blackburn et al., 2011) have been intro-
duced beyond their native ranges, resulting in geographically
independent datasets. The pathways and impacts of invasive
species have been widely studied (e.g. Saul et al., 2017; Vil�a
and Hulme, 2017). They are beyond the scope of this study
and thus will not be detailed or referenced further. However,
they yielded numerous occurrence data in the introduced
ranges, and the distributions of invasive species have been sys-
tematically investigated across different environmental condi-
tions. SDMs have been widely used to predict the
geographical patterns of invasion risks (e.g. Bellard et al.,
2013; Hill et al., 2017), in some cases also to evaluate models
transferred between species’ native and introduced ranges (e.g.
Fitzpatrick et al., 2007; Petitpierre et al., 2012).
Model transferability is intrinsically determined by the fitted

relationships between environmental predictors and species
distributions, which have demonstrated remarkable taxonomic
differences (Guisan and Thuiller, 2005). Correspondingly, elu-
cidating variations in model transferability among groups of
organisms was identified as the first challenge in Yates et al.
(2018). Good model transferability has been found in some
invasive birds (e.g. Strubbe et al., 2015), insects (e.g. Hill
et al., 2017), plants (e.g. Petitpierre et al., 2012) and reptiles
(e.g. Tingley et al., 2016), but poor transferability was
reported for some invasive crustaceans (e.g. Larson et al.,
2010), marine fishes (e.g. Parravicini et al., 2015) and molluscs
(e.g. Gallardo et al., 2013). These pervasive discrepancies
among taxa are puzzling and further increase uncertainties in
the predictions of transferred models (Yates et al., 2018). To
date, however, only few studies have compared model trans-
ferability across taxonomic groups, and these only included a
limited number of taxa (Heikkinen et al., 2012; Mor�an-
Ord�o~nez et al., 2017).
An additional challenge is to understand how model choice

and parameterisation affect transferability (Yates et al., 2018).
Identifying the approach with the best predictability has been
frequently investigated because different approaches vary in
their estimation of species–environment relationships (Qiao
et al., 2015; Norberg et al., 2019). Ensemble forecasting (Ensem-
ble) is considered as one of the most promising approaches, as it
avoids overreliance on one specific model by averaging predic-
tions from multiple models (Ara�ujo and New, 2007). The maxi-
mum entropy method (Maxent; Phillips et al., 2006) is currently
a very popular technique for developing SDMs because it only
uses presence data and has a convenient interface (Qiao et al.,
2015). The type of environmental and distribution data used for
calibrating and evaluating models also plays an important role
in model transferability (Guisan and Thuiller, 2005). Over-
parameterising models with excessive predictors can fit complex
relationships in the training domain, but very likely yields unre-
liable predictions in new domains with varying relationships

(Petitpierre et al., 2017; Roberts et al., 2017). Another factor
affecting model transferability is the number of presences used
in model calibration, as models calibrated with few data points
cannot buffer the influence of outliers (Guisan and Thuiller,
2005). Moreover, there is still no commonly agreed upon metric
for evaluating model performance (Challenge 12 in Yates et al.,
2018; see also Sequeira et al., 2018), which further exacerbates
the difficulties of finding a consensus across studies (Breiner
et al., 2015; Qiao et al., 2015).
Quantifying and comparing the extent of geographical

extrapolation (i.e. beyond the area where training data were
collected; Sequeira et al., 2018) versus environmental extrapo-
lation (i.e. beyond the range of predictors for model training
and/or beyond the known distribution–predictor relationship;
Sequeira et al., 2018) is another challenging task (Yates et al.,
2018; Qiao et al., 2019). It is intuitive to assume that models
have higher transferability for proximate areas (Roberts et al.,
2017), which has been empirically confirmed for some species
(e.g. Murray et al., 2011). However, a global review did not
find a clear relationship between model transferability and
geographic proximity (Yates et al., 2018). Contrasting conclu-
sions also exist for the consequences of environmental extrap-
olation. Although both simulations (e.g. Qiao et al., 2019)
and empirical studies (e.g. Mor�an-Ord�o~nez et al., 2017)
reported better transferability for areas with similar climate,
other studies reported negligible effects of climatic analogy on
model transferability (e.g. Petitpierre et al., 2012).
Here, we performed the first global quantitative synthesis of

studies that reported the spatial transferability of SDMs for
invasive species. Specifically, we focus on two overarching
questions: (1) What is the spatial transferability of SDMs in
general, and how does it vary across groups of organisms? (2)
Is model transferability associated with the focal invader(s)
and the model development? To do this, we first standardised
evaluation values of different metrics to estimate model trans-
ferability and then applied Bayesian hierarchical models to
assess the associations of model transferability with 12 factors
related to the focal invader(s) and the model development.

MATERIALS AND METHODS

Study compilation

To systematically compile studies that evaluated the spatial
transferability of SDMs for invasive species, we applied a
four-stage literature search following the PRISMA guidelines
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses; Moher et al., 2009; Fig. S1 in Supporting Informa-
tion; the searches were conducted in January 2019). First, we
searched the literature in Clarivate Analytics’ Web of Science
database (WoS) with the following terms: “(introduce* OR
inva* OR non-native OR nonnative OR exotic OR naturaliz*
OR nonindigenous OR non-indigenous) AND (transferability
OR (niche AND climat*))”. We included “niche” and “cli-
mat*” in the search query because evaluating model transfer-
ability is one of two main approaches to assess the dynamics
of a species’ climate niche (Guisan et al., 2014). Second, we
screened the titles and abstracts of the publications returned
by the search, and we only kept studies that quantitatively
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assessed the predictive ability of SDMs. Third, we screened
the reference sections of these publications to find further rele-
vant publications. In total, the titles and abstracts of 1906
publications were screened for identifying potentially relevant
studies. Fourth, we consulted the full texts of 256 potentially
relevant studies and selected those studies that assessed geo-
graphically transferred SDMs. We excluded studies that only
predicted the distribution of invasive species without quantita-
tively assessing model transferability. The final dataset con-
sists of 65 studies encompassing 235 unique invasive species; it
is provided as Table S1.

Data compilation

For each study, we first categorised each model according to
the geographical range where presence data were collected for
model training: native-range, introduced-range or global (i.e.
both native and introduced ranges) models. Values of different
metrics for evaluating the performance of models to predict
native, introduced and global occurrences (i.e. presences and/
or absences) were then compiled. We conducted the extensive
collection of available information for factors related to focal
invader and model parameterisation (Table 1). Species were
classified into four groups of organisms: Plants, Terrestrial
endotherms (birds and mammals), Terrestrial ectotherms (rep-
tiles, insects and amphibians) and Aquatic species (crustaceans,
corals, algae, molluscs and fishes). The native and introduced
continents for each species followed the authors’ definition,
and continents were considered as the same if a species was
introduced within one continent. The number of species’ native
or introduced continent(s) was classified into (1) only one con-
tinent and (2) more than one continent, because model trans-
ferability is strongly influenced by the number of

biogeographical regions (Mor�an-Ord�o~nez et al., 2017). For
species with only one native or introduced continent, the conti-
nent was coded as the Northern Hemisphere (Asia, Europe
and North America) or the Southern Hemisphere (Africa,
Australia and South America) to account for the much higher
uniqueness of species from the Southern Hemisphere (Holt
et al., 2013). The earliest year of recorded introduction in the
introduced continent(s) was collected from each study and sup-
plemented with data from the Global Alien Species First
Records Database (Seebens et al., 2018; accessed in March
2019). Introduction intentionality of each species followed the
classification in Saul et al. (2017): (1) Either intentional or
unintentional, and (2) Both intentional and unintentional.
Data on parameters associated with the modelling were col-
lected for factors that were available in all studies, including
the spatial resolution of both predictor and presence data, the
number of predictors, and the number of presences in the
native (native presences) and introduced ranges (introduced
presences). The developed models were classified as (1) Ensem-
ble, (2) only Maxent (Maxent) and (3) other techniques (e.g.
Random forests, Generalised linear models and Artificial neu-
ral networks; see Table S1 for 13 other techniques). Ensemble
and Maxent were categorised as separate groups because they
are fundamentally different from other techniques/approaches
(see above) and have been widely used (e.g. Yackulic et al.,
2013; Feng et al., 2019; see also Results). Given the various
ways of conducting background sampling (e.g. VanDerWal
et al., 2009; Feng et al., 2019), we only set a binary variable to
represent whether pseudo-absence data were selected from con-
strained background areas. The analogy of environments
between calibration and evaluation domains is also identified
as an important factor for model transferability (Strubbe
et al., 2015; Petitpierre et al., 2017), and we followed the

Table 1 Description and summary data for factors related to focal invader and model development. For the seven categorical factors, the number of models

is summarised for each group. For the five consecutive factors, the range, mean and coefficient of variation (CV) of values are summarised

Factors Descriptions and summary data

Categorical Group of organisms Species were classified into Plants (N = 163), Terrestrial endotherms (N = 150), Terrestrial ectotherms

(N = 76) and Aquatic species (N = 52).

Native range The range from which a species was introduced, which we first classified into More than one continent

(N = 70) and Only one continent. Only one continent was further divided into the Northern

(N = 282) or Southern Hemisphere (N = 89).

Introduced range The range to which a species was introduced, following the classification of the native range (More

than one continent, N = 47; Northern Hemisphere, N = 307; Southern Hemisphere, N = 87).

Introduction intentionality The intentionality of species introductions was classified into Either intentional or unintentional

(N = 359), and Both intentional and unintentional (N = 82).

Model group Techniques used for developing models were classified into Ensemble forecasting (N = 151), only

Maxent (N = 123) and other techniques (N = 167).

Constrained absence A binary variable to represent whether pseudo-absence data were selected from constrained

background areas: Constrained (N = 242) and Unconstrained (N = 199).

Analogous environment A binary variable to represent whether SDMs were only transferred within analogous environments

between ranges: Analogous (N = 229) and Non-analogous (N = 212).

Consecutive Year of introduction The earliest year in which an invasive species was reported to have been introduced to the introduced

range (Range: 500–2009; Mean: 1855.21; CV: 0.1).

Resolution (o) The spatial resolution of both predictor and presence data (Range: 0.000278–0.83; Mean: 0.37; CV:

0.64).

Number of predictors The number of predictors used for developing models (Range: 2–30; Mean: 8.58; CV: 0.39).

Number of native presences The number of presences compiled in the native range (Range 11–24599; Mean: 1401.61; CV: 1.71).

Number of introduced presences The number of presences compiled in the introduced range (Range: 5–6079; Mean: 414.5; CV: 1.94).
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authors’ conclusion on whether models were only transferred
within analogous environments (i.e. conditions present in both
native and introduced ranges; Petitpierre et al., 2012). We
requested the data of evaluation values and factors from the
authors if the data were not available in the publications. Of
the ten authors contacted, six responded and shared their data.
The studies of those four not responding authors were
excluded from our analyses.
A major hurdle for synthesising findings of model transfer-

ability across studies is the substantial heterogeneity in metrics
used for evaluating model performance (Table S1 and S2).
Here, we standardised evaluation values of all metrics to the
same scale from 0 to 10 as follows: s = (o-w)/(b-w) 9 10,
where s is the standardised value, o is the original value, and
w and b are the values representing the worst and best model
performance of the metric, respectively (Table S2). The pro-
portional standardisation makes evaluation values of different
metrics comparable: 0 represents the worst performance,
whereas 10 represents the best performance. Taking the area
under the ROC curve (AUC; Fielding and Bell, 1997) and
Boyce Index (Boyce; Boyce et al., 2002) as examples,
AUC = 0.8 and Boyce = 0.6 would be both standardised to
s = 8 because AUC ranges from 0 to 1 and Boyce from �1 to
1. We excluded studies with an evaluation index that could
not be standardised from 0 to 10 (e.g. Transferability index
by Duque-Lazo et al., 2016). To avoid pseudo-replication of
model evaluation, we averaged the standardised values of dif-
ferent metrics for each single model prediction. This is
because evaluation values of different metrics have been
reported to be highly correlated (e.g. Breiner et al., 2015; Nor-
berg et al., 2019), and differences in evaluation values between
two metrics were < 1 for most model predictions (50.7%) in
our study (Fig. S2).

Defining accuracy and transferability

We explicitly defined model transferability as the perfor-
mance of the native-range model that was extrapolated to
correctly predict occurrences in the introduced range. Indeed,
models were more frequently calibrated in the native range
and transferred to introduced ranges (441 models from 63
studies) than vice versa (72 models from 21 studies). Model
accuracy was defined as the performance of the native-range
model that was interpolated to correctly predict occurrences
in the native range (Sequeira et al., 2018; Ara�ujo et al.,
2019).

Estimation of accuracy and transferability

The overall accuracy and transferability across all species and
for each group of organisms were estimated by Bayesian infer-
ence techniques using the ‘BEST‘ package (Kruschke and
Meredith, 2018) in R software (v 3.5.0.) (R Development Core
Team 2018). Bayesian methods provide a robust estimation of
parameters and the degree of uncertainty by controlling biases
caused by small sample sizes and potential outliers (Lemoine,
2019). We adopted weakly informative priors by setting the
average of input values as mean and 2 as standard deviation

(s.d.) (Lemoine, 2019). We ran four chains of 5000 iterations
with the first 2000 iterations as the burn-in and kept 12 000
posterior values. The Highest Density Interval (HDI) of
retained posterior values was used for describing credible
intervals of estimates. The semi-quantitative scheme suggested
by Thuiller et al. (2005) was used in a slightly modified way
for ranking accuracy and transferability: Excellent (9–10),
Good (8–9), Fair (7–8), Poor (6–7), Fail (5–6) and Worse than
random (< 5).

Relationship between accuracy and transferability

The relationship between accuracy and transferability for all
species and for each group of organisms was fitted by a Baye-
sian multilevel model using the ‘brms‘ package (B€urkner,
2017). We set the study as the random variable to account for
the heterogeneity of focal invader and model development
among studies. Weakly informative priors were adopted for
slope (mean = 0; s.d. = 2) and intercept (mean = 0; s.d. = 10).
Good convergence of chains was confirmed by values of Rhat
(the potential scale-reduction factor) below 1.01 for all models
(B€urkner, 2017).

Bayesian hierarchical analysis

We assessed the associations of model transferability and accu-
racy with 12 covariates related to focal invader and model
development for all species and for each group of organisms
by Bayesian hierarchical models using the ‘brms‘ package
(B€urkner, 2017). Bayesian hierarchical models allow us to
specifically assess the effect of one covariate after controlling
for influences of other covariates. To facilitate the comparison
in effect sizes of covariates, we standardised each continuous
covariate with the mean of 0 and the standard deviation of 2.
Finally, we compared the performance of global, native-range
and introduced-range models by Bayesian hierarchical models,
respectively, to correctly predict native and introduced occur-
rences. For each of the six model pairs, we set model perfor-
mance as the response variable and the compared models as
the categorical variable. We included 12 covariates to control
for their influence on model performance. The comparisons
were also conducted between accuracy and transferability, and
between reciprocal predictions (i.e. native-range model used to
predict introduced occurrences, and introduced-range model to
predict native occurrences; Fitzpatrick et al., 2007). For each
Bayesian hierarchical model, we adopted weakly informative
priors for all variables (mean = 0; s.d. = 2) and for the global
intercept (mean = 0; s.d. = 10). Estimates of the mean and
credible interval of each covariate were based on 12 000 poste-
rior values generated from four chains of 5000 iterations with
the first 2 000 iterations as the burn-in. The study was set as
the random variable to control for heterogeneous covariates
among studies. The goodness of fit was evaluated by Bayesian
R2 values that represent the variance of the predicted values
divided by the sum of the variance of predicted values and the
expected variance of the errors (Gelman et al., 2019). Good
convergence was verified by values of Rhat below 1.01 for all
models (B€urkner, 2017).
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RESULTS

Study composition

Studies that evaluated model transferability mainly focused on
terrestrial invasive species (83.6%), with only nine studies for
aquatic species (Fig. S3). Large differences between terrestrial
and aquatic systems were also found in the numbers of mod-
els (88.2% and 11.8%, respectively), with the greatest number
of studies (37.3%) and models (37.0%) for plants (Table 1;
Fig. S3). Additionally, most studies (73.8%) evaluated model
transferability for only one species, and no study focused on
microorganisms (Table S1). Differences in popularity of tech-
niques/approaches were also substantial: almost half of studies
(49.2%) applied only Maxent to develop SDMs, although the
number of models was rather close among Ensemble, Maxent
and other techniques (Table 1; Fig. S3).

Model transferability among continents

The evaluation of model transferability showed great varia-
tions among continents. Most models were developed for

species that were introduced from a continent of the Northern
Hemisphere (63.3%) and for species introduced to a continent
with high level of economic development (Australia, Europe
and North America; 82.3%) (Fig. 1). Higher transferability
was found for species that were native in more than one con-
tinent and introduced to North America (7.95 � 1.55; here-
after, mean transferability � 95% confidence intervals), and
for species introduced to Australia (7.87 � 0.33). By contrast,
model transferability was lower for species in Europe that
were introduced from Asia (4.87 � 0.78) and from North
America (5.59 � 0.85).

Estimation of accuracy and transferability

The overall model accuracy (9.39; mean effect size represented
by the mean of Bayesian posterior values) was much higher
than model transferability (6.64) (Fig. 2), suggesting that
models performed excellently for interpolating, but poorly
when being extrapolated to new areas. A higher accuracy than
transferability was found in all groups of organisms, although
there were interesting variations among groups: model
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accuracy was excellent for terrestrial endotherms (9.9), plants
(9.37) and terrestrial ectotherms (9.33), but only fair for aqua-
tic species (7.89). The highest transferability was found for
terrestrial endotherms (7.33) and the lowest for aquatic species
(4.79). We did not detect particular changes in accuracy or
transferability over the past 14 years, with models consistently
exhibiting excellent accuracy but only poor or even failed
transferability (Fig. S4).
There were considerable differences in the performances of

global, native-range and introduced-range models to predict
native and introduced occurrences (Fig. S5). In both native
and introduced ranges, models trained there clearly outper-
formed models transferred from the other range, highlighting
the risks associated with model extrapolation. By contrast,
predictive performances were very close for models recipro-
cally transferred between native and introduced ranges. The
comparison between accuracy and transferability confirmed
the decreased performance of native-range models to predict
introduced occurrences. Notably, performances of global
models in native and introduced ranges were almost equiva-
lent to those of the native-range and introduced-range models
respectively.

Relationship between accuracy and transferability

Overall, there was a positive correlation between model accu-
racy and transferability across all species [b = 0.34 (0.05–
0.63); mean of posterior distribution and 95% credible inter-
val] (Fig. 3), indicating that models with better performance
for interpolation were more likely to correctly predict species
distributions in new ranges. This positive correlation between
accuracy and transferability was also found in plants
[b = 0.69 (0.09–1.26)], while the other three groups showed no
clear relationship (credible interval overlapped with zero).

Influence of factors

Model transferability was closely associated with all charac-
ters of focal invaders considered here (Fig. 4; Fig. S6). Varia-
tions in transferability among groups of organisms were in
agreement with patterns separately estimated for each group,
with the highest transferability for terrestrial endotherms.
Transferability was also higher if models were developed for
species that were introduced from/to the Southern Hemi-
sphere or introduced to more than one continent, whereas it
was lower for species with more than one native continent.
Moreover, higher transferability was found for species that
were introduced more recently or introduced via both inten-
tional and unintentional pathways.
Model group and parameterisation also affected transfer-

ability, although differences in effects of relevant factors were
rather small (Fig. 4; Fig. S6). We found no evidence of
improved transferability for Ensemble and Maxent when com-
pared with other techniques. The number of predictors was
negatively related to model transferability, suggesting the dete-
riorating effects of increased model complexity. By contrast,
there were positive correlations of transferability with the
number of native and introduced presences, respectively.
Additionally, we found no clear influence of environmental
analogy on model transferability.
Associations of model transferability with covariates were

different among four groups of organisms (Fig. 4; Fig. S7-
S10). The magnitude of association was much stronger for
plants and weaker for aquatic species, and even contrasting
patterns were found between groups. For example, the associ-
ation of the year of introduction with transferability was neg-
ative for terrestrial ectotherms, but positive for plants and
terrestrial endotherms. Selecting pseudo-absences from the
constrained background impaired model transferability for
plants, but improved transferability for terrestrial ectotherms.
In addition, model transferability clearly decreased for terres-
trial ectotherms at finer resolutions.
None of the covariates related to the focal invader was

associated with model accuracy (Fig. S11), revealing the negli-
gible role of species characters on model interpolation.
Instead, model accuracy was positively correlated with resolu-
tion and the number of native presences, suggesting a higher
accuracy of models developed at a finer resolution and with
more presences. We also found a slightly negative influence of
Maxent for terrestrial ectotherms. For plant species, a lower
accuracy was found for models that were calibrated with more
predictors or fewer native presences.
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Estimates of model performance
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Figure 2 Estimated model accuracy and transferability for all species

(Overall) and for each group of organisms (Terrestrial endotherms,

Plants, Terrestrial ectotherms and Aquatic species). Means of 12 000

Bayesian posterior values are shown from four chains with 80% Highest

Density Interval (HDI; coloured lines) and 95% HDI (thin lines). Model

accuracy and transferability were classified into: Excellent (9–10), Good

(8–9), Fair (7–8), Poor (6–7), Fail (5–6) and Worse than random (< 5).
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DISCUSSION

The example of invasive species with geographically indepen-
dent distributions in their native and introduced ranges
revealed a generally limited spatial transferability of SDMs to
new areas. Most previous studies assessed the performance of
transferred models solely based on the evaluation of model
accuracy by means of cross-validation, i.e. the evaluation
dataset is a subset of the same data used for model calibration
(Roberts et al., 2017). However, our results suggest that evalu-
ating models according to model accuracy will be overly opti-
mistic because calibration and evaluation data are not really
independent (Roberts et al., 2017). If covariates in calibration
and evaluation data are structured in the same way, the pre-
dictive ability is evaluated for model interpolation rather than
extrapolation, leading to the selection of highly parameterised
models (Dormann et al., 2008; Petitpierre et al., 2017). The
underestimation of prediction error by cross-validation could
also explain the excellent performance of global models in
both native and introduced ranges because training and evalu-
ating sets of global models are inevitably parts of the global
distribution data.
Remarkable variations in model transferability among

groups of organisms indicate the importance of considering
the taxonomic group and type of environment when develop-
ing models. The higher transferability for terrestrial
endotherms is consistent with previous findings (e.g. Heikki-
nen et al., 2012; Mor�an-Ord�o~nez et al., 2017). Compared to
other taxa, distributions of endotherms are more constrained

by broad-scale climatic factors, which are the only modelling
predictors in most studies (Dormann et al., 2008; Heikkinen
et al., 2012). Instead, smaller organisms tend to have higher
plasticity and shorter generation times, leading to faster adap-
tation to new climatic conditions; and a changed climate–dis-
tribution relationship results in reduced model transferability
(Soininen et al., 2013; Soininen and Luoto, 2014). For aquatic
species, the low model transferability might be directly associ-
ated with less comprehensive distribution data because species
are more difficult to be directly observed and recorded under
water. Small sample sizes and unknown data quality (e.g.
because of unreported bias) can increase uncertainty of pre-
dictions and consequently hamper model transferability (Dor-
mann et al., 2008; Yackulic et al., 2013). Moreover, SDMs for
species native to more than one continent show much lower
transferability, indicating a certain difficulty to predict the dis-
tribution of widespread species (Qiao et al., 2015; Mor�an-
Ord�o~nez et al., 2017). Models developed for species with large
geographic range suffer higher uncertainty resulting from
more heterogeneous calibration data, a lower prevalence of
presences, limited or biased sampling coverage (e.g. Dormann
et al., 2008; Mor�an-Ord�o~nez et al., 2017). An effective strat-
egy to improve model predictability is developing species-
specific models or models for functional groups (Guisan and
Thuiller, 2005).
Close associations of model transferability with the year

and pathway of introduction emphasise the need for integrat-
ing these factors into model development and assessment (Bel-
lard et al., 2013; Donaldson et al., 2014). Higher

4 5 6 7 8 9 10

0
2

4
6

8
10 β = 0.34

(0.05 − 0.63)

Overall

4 5 6 7 8 9 10

0
2

4
6

8
10 β = 0.68

(0.09 − 1.26)

Plants

4 5 6 7 8 9 10

0
2

4
6

8
10 β = −1.22

(–3.06 − 0.51)

Terrestrial endotherms

4 5 6 7 8 9 10

0
2

4
6

8
10  = 0.55

( 0.06 − 1.19)

Terrestrial ectotherms

4 5 6 7 8 9 10

0
2

4
6

8
10  = 0.28

( 0.27 − 0.83)

Aquatic species

M
od

el
 tr

an
sf

er
ab

ili
ty

Model accuracy

Figure 3 Relationships between model accuracy and transferability. The relationship was separately fitted for all species (Overall) and for each group of

organisms by Bayesian multilevel model with study as the random variable. The mean (b) and 95% credible interval of 12 000 posterior values estimated

from four chains are shown in each panel. Red and blue dotted lines indicate the mean of accuracy and transferability, respectively, that were averaged

across original values of corresponding models.

© 2020 The Authors. Ecology Letters published by John Wiley & Sons Ltd.

1688 C. Liu et al. Reviews and Syntheses



transferability for species with shorter residence time chal-
lenges the conclusions of empirical studies that distributions
of invasive species could be more accurately predicted by
models developed in later stages of invasion (e.g. V�aclav�ık
and Meentemeyer, 2012), because species introduced more
recently are still spreading and have not yet reached equilib-
rium distributions (Tingley et al., 2016). However, species with
longer residence time are also more likely to spread to areas
with environmental conditions very different from their native
ranges. If models are extrapolated beyond the environmental
conditions of the training domain, model transferability can
be severely impaired (Petitpierre et al., 2012; Qiao et al.,
2019). The higher transferability for species that were intro-
duced both intentionally and unintentionally reflects the role
of propagule pressure (i.e. the number of individuals intro-
duced; Blackburn et al., 2011) on predicting distributions of
invasive species. Species introduced via more pathways have a
higher chance to overcome biogeographic barriers and arrive
in sites with suitable environmental conditions (Donaldson
et al., 2014; Saul et al., 2017), contributing to the improve-
ment in model transferability.
Our study addresses the important influence of model

choice and parameterisation on model transferability (Guisan
and Thuiller, 2005; Wisz et al., 2008). The lower transferabil-
ity of models developed with a higher number of predictors
confirms the deteriorating effects of over-parameterisation on
model extrapolation (Petitpierre et al., 2017). Highly

parameterised models can fit well to complex interactions
within the training domain, but the confidence in predictions
might largely decrease when models are extrapolated to other
domains with different data structures (Roberts et al., 2017;
Qiao et al., 2019). Reducing model complexity by only includ-
ing the most influential predictors on species distributions is
therefore an appropriate way to improve model transferability
(Norberg et al., 2019). The number of presences used for cali-
brating and evaluating models is also crucial because sufficient
sample sizes allow models to more accurately capture species–
environment relationships over species’ ranges and reinforce
model transferability across regions. Surprisingly, we found a
slightly lower transferability of models developed with Max-
ent, which has been regarded as the gold standard for SDMs
(Qiao et al., 2015). Lower transferability for Maxent can be
partly attributed to its “clamping” strategy for extrapolating:
by default, Maxent first fixes a relative suitability value at the
extreme (maximum or minimum) of training dataset, and then
assigns the value to all more extreme points beyond the train-
ing dataset (Feng et al., 2019), without considering species
response curves to changing environments.
Despite offering new insights into understanding model

transferability, our study has several limitations. One key
assumption underlying model transfer is that species retain a
stable relationship with environments in space and time
(“Niche conservatism”; Petitpierre et al., 2012). Several studies
included here have reported higher model transferability for
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invasive species with a more stable niche between native and
introduced ranges (e.g. Petitpierre et al., 2012; Strubbe et al.,
2015). However, the assumption of niche conservatism has
been frequently violated in invasive species that change the
realised niche during invasions (Guisan et al., 2014). Niche
changes in invasive species can be attributed to genetic adap-
tations to environmental conditions in the introduced range
or the mixing of native populations with different genetic struc-
tures (Fitzpatrick et al., 2007; Hill et al., 2017). More impor-
tantly, the species’ realised niche in the new range is strongly
shaped by biotic interactions and dispersal limitations (Pear-
man et al., 2008; Hill et al., 2017). In addition, source popula-
tions of invasive species probably only represent a small part of
the fundamental niche if divergent phylogenetic lineages exist in
species’ native range (Jeschke and Strayer, 2008; Tingley et al.,
2016). Changes in the realised niche misspecify the estimated
species–environment relationship and in turn impede the fore-
casting of species distributions. While niche change is consid-
ered to be an important factor in model development and
evaluation (Pearman et al., 2008), no study has synthesised its
effect on model transferability yet. Another source of uncer-
tainty is the dissimilarity of environmental conditions between
regions. If models are transferred between regions with dissimi-
lar environments, the loss of confidence in model predictions
can be tremendous (Roberts et al., 2017; Qiao et al., 2019). At
last, model transferability is driven by other determinants, such
as the prevalence of species (e.g. Guisan and Thuiller, 2005) or
the number and extent of background data in some modelling
approaches (e.g. VanDerWal et al., 2009; Barbet-Massin et al.,
2012). However, corresponding data are not available in most
SDM studies (Feng et al., 2019), precluding our ability to assess
the roles of those factors. We suggest future studies to report
necessary modelling information for facilitating a better under-
standing on the mechanisms underlying model transferability
(Sequeira et al., 2018; Feng et al., 2019).
Biological invasions have caused massive alterations of bio-

diversity patterns in the Anthropocene (Blackburn et al.,
2011; Vil�a and Hulme, 2017). Forecasting the potential distri-
bution of invasive species remains a core goal in conservation
biology (Jeschke and Strayer, 2008). SDMs continue to repre-
sent one of the most promising tools (Bellard et al., 2013; Hill
et al., 2017); however, our study underlines the challenges of
applying SDMs to predict species distributions in new ranges
and highlights the need for considering the characteristics of
the species, environment and modelling approach. According
to our findings, an appropriate way to improve model trans-
ferability could be developing models with increased number
of presences or to decrease the number of predictors. Given
that a ‘silver bullet’ model with the best performance under
all circumstances is impossible to develop (Qiao et al., 2015;
Yates et al., 2018), scientists and stakeholders should balance
realism, accuracy and generality when predicting invasion
risks at large spatial scale.
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