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Foreword
The authors are part of the ARC research project “Minimising Longevity and Investment Risk
while Optimising Future Pension Plans”. The goal is to develop new pension product designs that
keep the customers’ needs at the forefront. As a first step, this report was written to familiarize
the project team with the existing knowledge on decumulation strategies.

The key question that we sought to answer is: “What structures in the pension arena have
been proposed for investment risk-sharing?”. The structures cover participating policies (or with-
profits contracts), defined benefit pension plans and collective defined contribution plans as well
as theoretical structures which have proposed in the literature.

Contents
1 Executive summary 3

2 Introduction 4

3 Participating policies 5
3.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Financial market models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Contracts with a minimum guarantee . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3.1 (Investment) return-based distribution . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Reserve-based distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 An inter-generational contract with a minimum guarantee . . . . . . . . . . 12
3.3.4 Different frameworks for defining bankruptcy . . . . . . . . . . . . . . . . . 13

3.4 Contracts without a minimum guarantee . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Funded, collective pension plans 23
4.1 Defined benefit (DB) plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Collective defined contribution (CDC) plans . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Analyses of inter-generational risk-sharing in private pension plans . . . . . . . . . 24

5 Theoretical risk-sharing frameworks 27
5.1 Financial fairness and Pareto-efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 One-period model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Multi-period model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 34

2



1 Executive summary
Investment risk-sharing is a means of sharing money among a collection of people, companies
and institutions. It can happen at a point in time or over a period of time. Here the focus
is on investment risk-sharing in the context of saving and spending money for retirement. The
motivation for risk-sharing is to improve the welfare of the participants.

There is relatively little in the literature on different risk-sharing mechanisms. Much of it focuses
on the analysis of collective schemes where the risk-sharing is enabled by a shared fund. Funded
pension schemes, where the shared fund is the entire fund, and participating policies, where the
shared fund is a buffer account separate to individual customer accounts, fall under this category.

Participating policies are investment products which share investment returns among policyhold-
ers. Many of them incorporate a minimum guaranteed return. They may include inter-generational
risk-sharing between policyholders via a buffer account. Policyholders have individual accounts
and, in the case of inter-temporal risk-sharing, may have a claim on a shared account called a
buffer. However, many policies – as described in the literature – do not and it is the insurance
company who is responsible for the buffer.

Collective defined contribution schemes allow for inter-generational risk-sharing. Defined benefit
pension plans may include a small element of it. There are no individual account values or buffer
account in funded pension schemes. Instead, the entire fund represents the totality of the members’
claims on the fund. Collective defined contribution schemes are shown to be welfare-improving in
several papers, compared to the members investing individually.

Several authors have solved for risk-sharing mechanism that share money among the participants
in a financially-fair and Pareto-efficient way. The motivations and set-ups of the authors can be
different, and they don’t all translate easily into the retirement context. The mechanisms are
currently too abstract to be considered as useful in a practical setting. The rules for allocating
money are calculated from algorithms, which make them difficult to communicate. They rely on
assigning a utility function to each agent in the risk-sharing system, which immediately makes
them quite abstract.
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2 Introduction
Investment risk-sharing is a means of sharing money among a collection of people, companies and
institutions. It can happen at a point in time or over a period of time. Here the focus is on
investment risk-sharing in the context of saving and spending money for retirement.

There are many structures for investment risk-sharing which are observed in practice. For exam-
ple, there are products sold by insurance companies, called with-profits or participating policies.
There are funded private pension schemes which are generally only open to employees of certain
companies or industries. These pension schemes and products may share investment values indi-
rectly over time among a group of people. However, they don’t all utilize investment risk-sharing.
For many, the insurance company or the sponsoring employers alone assume the risk of meeting
any guarantees. These structures are presented in Sections 3 and 4.

Where there is investment risk-sharing, a common feature is the existence of a buffer. For new
entrants to a pension scheme, or new customers, the value of the buffer is a distorted reflection
of the previously experienced investment history. If returns have been good, the buffer should be
large. If returns have been poor, the buffer should be small and perhaps even negative. The buffer
allows participants to access historical returns, for the time before they were participants, as well
as for the time during which they are participants.

The buffer is used to smooth the investment values of, or the income paid out to, the participants.
If current investment returns are poor, money may be withdrawn from the buffer and distributed
among the current participants. If current returns are high, some of the return may be deposited
in the buffer rather than being allocated to the current participants.

Inter-generational fairness is often mentioned in the context of risk-sharing schemes. It is often
not considered explicitly when setting up a scheme. The rules for allocating values among members
do not necessarily involve any consideration of inter-generational fairness.

One way of defining fairness is to have a contract which is financially fair at the outset, in that
the expected discounted value of benefits received equals the discounted value of contributions
paid by the individual at the start of a contract or pension plan membership. On top of this,
fairness could also mean that the risk faced by the individual of receiving less than their expected
or promised benefits is equal across all generations.

However, despite investment risk-sharing being relatively common, few methods of sharing re-
turns incorporate explicitly a notion of inter-generational fairness. The closest are the Pareto-
efficient and financially fair methods outlined in Section 5. However, it is difficult to see how the
methods could be communicated and applied easily in practice.

Lots of economics papers have focused on studying whether risk-sharing is welfare-improving to
society. For example, Beetsma et al. (2012) studied the feasibility and welfare consequences of a
funded pension scheme, which has inter-generational risk-sharing, when participation is voluntary.
Gollier (2008) also consider funded pension schemes which involved inter-generational risk-sharing.
Both papers concluded that risk-sharing is indeed welfare-enhancing.
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3 Participating policies
Participating policies, also called with-profits policies, are the focus of this section. They are
primarily a long-term investment contract, as opposed to an insurance contract. The policyholder
pays either a single premium at the initiation of the contract, or they pay regular premiums.
The premiums are invested by the insurance company. From the policyholder’s perspective, the
premiums accumulate as a function of the underlying investment returns. Participating policies
are a common product in many countries.

There are two common features which are often seen in these contracts. One is a minimum guar-
anteed interest rate at which the policyholder’s premium accumulates. The second is a smoothing
of the returns granted on the premiums, which is enabled by a buffer.

The focus here is on the underlying mechanisms which allocate the invested monies among
policyholders. After introducing some basic terminology, participating policies which have been
studied in the literature are described. Most of these policies are based on real-life contracts.
A notable exception is the contract proposed by Goecke (2013). Although the policyholder can
usually surrender the policy before its maturity date in exchange for a payment from the insurance
company, this option has been ignored in the presentation. Similarly, any insurance benefits paid
upon death or ill-health have also been excluded.

Not all of these contracts feature inter-generational risk-sharing. In spite of this, their structure
is presented because they may help in proposing new risk-sharing structures which have similar,
attractive features.

Few papers analyze specifically either the inter-generational risk-sharing aspect of participating
policies. Most papers consider the relationship between a single policyholder and the company.
How much should the company charge the policyholder for the policy so that it is fair, i.e. the
expected benefits received by the policyholder are equal to the premiums paid? How much of the
buffer account and the investment returns should be received by the policyholder and how much
by the company?

3.1 Terminology

Customer account with value P

The customer account represents the minimum value paid to the policyholder at the maturity date
of the contract. The policyholder may receive exactly the value of the customer account, or they
may get an additional amount paid to them. The customer account is found on the liabilities side
of a balance sheet of an insurance company. Early surrender is ignored in this report.

The customer may receive a larger value than the customer account value, upon the maturity
of their policy. The value of what the customer receives at the maturity time T is denoted L(T ).

Buffer with value B

The primary purpose of the buffer – also called the smoothing account, bonus account or collective
reserve – is to smooth investment returns for customers. It does not belong to a single customer but
it belongs to the customers collectively and usually also the company. When investment returns
are poor, money is transferred from the buffer to the individual customer accounts. The opposite
may occur when investment returns are good: money is transferred from the individual customer
accounts to the buffer. Hence the buffer helps to reduce the fluctuations of the financial market
returns on the customer accounts.
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The buffer is the account that may enable risk-sharing between the customer and the company,
and between the different generations of policyholders. Or it may the responsibility of the company
alone to make good any deficit in the buffer and there is no risk-sharing whatsoever.

Company account with value C

The company account or shareholders’ account, as its name suggests, is the account of the share-
holders’ or owners’ of the insurance company that is providing the insurance contract. It is found
on the liability side of the insurance company balance sheet.

Not all of the contracts studied in the literature include a company account. However, whenever
the insurance company provides guarantees and has a claim on the buffer, it should be understood
that the buffer account incorporates the company account. Similarly, some of the contracts do not
include a buffer but do have a company account.

Reference portfolio with value A

Investment return values used for crediting returns to the different accounts are calculated based
on the reference portfolio. The portfolio may represent the actual portfolio holdings backing the
policy or it may not.

Unless stated otherwise, the initial value A(0) = P (0).

3.2 Financial market models

The most common continuous-time model applied in the literature, the Black-Scholes model, mod-
els the price S0 of a risk-free bond as

S0(t) = S0(0)ert (1)

and the price S1 of a risky stock as

S1(t) = S1(0)e(µ−σ2/2)t+σW (t), (2)

at time t ≥ 0, in which the constant r is the risk-free rate of interest, the constant µ is the mean
rate of return on the risky stock, the constant σ > 0 is the volatility of return on the risky stock
and W is a standard Brownian motion. It is usually assumed that µ > r. The initial prices S0(0)
and S1(0) are strictly positive constants.

The Black-Scholes model can easily be extended to include more assets and it is usually a
straightforward extension of a derived result to allow for more assets. It is also possible to allow
the parameters r, µ and σ to become deterministic functions or non-trivial stochastic processes.

Due to its structure and properties, the Black-Scholes model is one of the simplest models
under which closed-form solutions can be found. Closed-form solutions are very useful. The
sensitivity of the solution to the various parameters can generally be much better understood, and
understood more quickly, when dealing with a closed-form solution. Moreover, the solution in a
more complicated model has often the same broad structure.

Contrast this to trying to understand a solution that is the numerical output of a very com-
plicated econometric model, without having the guidance of a solution derived in a simple model
like the Black-Scholes model. There is no help as to what are the important parameters for the
solution. Doing sensitivity testing becomes a difficult task.

The Black-Scholes model is often criticized for not capturing well enough some observed features
of actual stock-market returns. For example, the probability of extreme returns under the Black-
Scholes model is too low, compared to the observed chance of very high or very low returns. It
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assumes a constant volatility of returns and that returns are independent in non-overlapping time
periods, which are not observed in practice.

Unless stated otherwise, the Black-Scholes model has been used as the financial market model
in the papers described.

3.3 Contracts with a minimum guarantee

Here participating policies which include a minimum guarantee are described. Effectively, this
means that the policyholder’s premiums are guaranteed to accumulate at a minimum interest rate
by the insurer.

To describe the contracts, the following three accounts are used for the descriptions: a reference
portfolio with value A, the customer account with value P and the buffer with value B. There may
also be a company account with value C included, or it may be implicitly part of the value of the
buffer. The reference portfolio may be simply a reference index or it may represent the underlying
assets. The policyholder’s contract begins at time 0 and ends at integer time T > 0. Mortality
and surrender are ignored here.

The customer account value P increases at the random policy interest rate rP . The evolution of
rP depends on which contract is being considered. Note that the value of the customer account at
the maturity time T is not necessarily what is paid to the policyholder. To emphasize this point,
denote by L(T ) the value of what is paid to the policyholder at the maturity time T .

The buffer is determined residually as

B(n) = A(n)− P (n)− C(n), for n = 1, 2, . . . , T − 1,

and, to allow for L(T ) > P (T ), set B(T ) = A(T )− L(T )− C(T ).

3.3.1 (Investment) return-based distribution

Return-based contracts allocate a return rP to the customer account that is calculated using the
annual return of the reference portfolio and a minimum guaranteed interest rate rg. The general
idea is that a percentage of the investment return on the reference portfolio is granted on the
customer account, subject to a minimum return equal to rg.

Haberman et al. (2003) and Bacinello (2001)

Haberman et al. (2003) consider three smoothing mechanisms in use in the UK.

• Arithmetic average of the last M time period returns, for a constant integer M ≥ 1. For a
fixed distribution ratio α ≥ 0, the policy interest rate at time n is calculated over the last
m = min{n,M} time periods as

rP (n) = max
{
rg, α

(
1
m

[
A(n)

A(n− 1) + · · ·+ A(n−m+ 1)
A(n−m)

]
− 1
)}

for n = 1, 2, . . . , T . The customer account value at integer time n ≥ 1 is

P (n) = P0

n∏
k=1

(1 + rP (k)) .

Bacinello (2001) studies a similar Italian contract which has M := 1.
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• Geometric average of the last M time period returns, for a constant integer M ≥ 1. For a
fixed distribution ratio α ≥ 0, the policy interest rate at time n is calculated over the last
m = min{n,M} time periods as

rP (n) = max
{
rg, α

((
A(n)

A(n−m)

)1/m
− 1
)}

for n = 1, 2, . . . , T . The customer account value at integer time n is

P (n) = P0

n∏
k=1

(1 + rP (k)) .

• Smoothed asset share. For a fixed distribution ratio α ≥ 0, the policy interest rate at time n
is

rP (n) = max
{
rg, α

(
A(n)

A(n− 1) − 1
)}

,

for n = 1, 2, . . . , T . Here we are obliged to define the unsmoothed asset share (AS), which
accumulates as

(AS)n = (AS)n−1 (1 + rP (n)) .

The customer account value at integer time n ≥ 1 is

P (n) = β(AS)n + (1− β)P (n− 1),

for a constant weighting factor β ∈ (0, 1).

For the three contracts considered by Haberman et al. (2003), the terminal payout to the policy-
holder is

L(T ) = P (T ) + γmax {A(T )− P (T ), 0}

for a participation constant γ ∈ (0, 1). If we could set γ = 1 then the policyholder would receive
max {A(T ), P (T )} at the maturity date. In that case, the customer account value acts as a
minimum payout. However, as γ < 1, the policyholder obtains less than the excess value of
the reference portfolio over the customer account value. To whom does the residual value go? In
Haberman et al. (2003), it is the company. The company has guaranteed the minimum annual
return rg on the policy interest rate, and so it is the company who benefits from any asset out-
performance over the customer account value.

Haberman et al. (2003) set the company’s account value to

C(T ) = A(T )− L(T ),

which implies that B(T ) = 0. Haberman et al. (2003) do not describe an explicit buffer. This
suggests that there is no inter-generational risk-sharing and it is the company who bears any
investment risk resulting from the guarantees and smoothing mechanism, through the company
account.

The fair value of the contract is the single premium equal to the expected value of the discounted
terminal payout P (T ) + γmax {A(T )− P (T ), 0}, calculated under a risk-neutral measure. Haber-
man et al. (2003) study the parameter sensitivity of the fair value and other aspects of the three
types of the contracts.
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Miltersen and Persson (2003)

Miltersen and Persson (2003) analyze a policy which can model a Norwegian product launched in
1998. Their analysis indicates that the Norwegian product is over-priced and they suggest that
may be the reason the product was not a success. There are similar Danish and Dutch contracts.
There is no risk-sharing in this contract as it is described. Instead, the company bears the risk
of the investment return being insufficient to pay the minimum interest rate guaranteed on the
policyholder’s premium.

For the analyzed policy, define the annual investment return process R(n) := A(n)/A(n−1)−1.
This may not be the actual investment return achieved by the underlying assets. The customer
account value is calculated at integer time n is

P (n) = P (n− 1) (1 + rg + αmax {R(n)− rg, 0})× P (n− 1),

with A0 = P0, the initial premium paid by the policyholder. If the investment return in year n
satisfies R(n) > rg, there is an excess monetary return (R(n)−rg)P (n−1). A specified fraction α of
the excess return is credited to the customer account. Otherwise, if the return satisfies R(n) ≤ rg,
there is no excess and the customer account is credited by the amount rgP (n− 1) only.

At the maturity time of the contract, the customer gets P (T ) and the value of the buffer account
if the latter is positive, i.e.

L(T ) = P (T ) + max{B(T ), 0}.

The company’s account value increases as

C(n) = C(n− 1) + βmax {R(n)− rg, 0} × P (n− 1),

with C(0) = 0. If there is an excess monetary return (R(n) − rg)P (n − 1), then the company
account is given a fraction β of this amount. Otherwise, if R(n) ≤ rg, there is no excess return
and nothing is credited to or deducted from the company account.

The bonus account is defined residually as B(n) = A(n)−P (n)−C(n). In particular, B(0) = 0.
It is possible for the buffer account to have a negative value. For this policy, the company is
responsible for the buffer. The company must cover any deficit in the buffer account at the
maturity date of the contract.

Miltersen and Persson (2003) calculate possible values for the triples (rg, α, β) which mean that
a single premium is the fair price, under a Black-Scholes model like the one described in Section
3.2.

3.3.2 Reserve-based distribution

For reserve-based contracts, returns are distributed to policyholders based on the security of the
reserve, as represented by the buffer ratio. The buffer ratio is the size of the buffer B divided by
the customer account value P . There may be a target buffer ratio which must be exceeded before
returns are paid to a customer account.

The general idea is that a percentage of the buffer ratio above the target buffer ratio is granted
on the customer account, subject to a minimum return equal to rg.

Grosen and Jörgensen (2000)

Grosen and Jörgensen (2000) analyze a reserve-based participating policy. For a target buffer ratio
γ ≥ 0, the policy interest rate at integer time n is calculated as

rp (n) = max
{
rg, α

(
B (n− 1)
P (n− 1) − γ

)}
,
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Figure 1: Taken from Grosen and Jörgensen (2000, Figure 2). The policy interest rate rp (n) is
plotted against n, for n = 1, . . . , 20 for one simulated future. On the same chart, the
underlying investment return A(n)/A(n − 1) − 1 is shown. The minimum guaranteed
interest rate rg = 0.045. The target buffer ratio is γ = 0.1 and the initial value of the
buffer is 10% of the initial value of the policyholder’s account. The parameter α = 0.3.
For the Black-Scholes model of the financial market, the risk-free interest rate r = 0.08,
and the volatility of the risky stock price is 0.15.

for n = 1, 2, . . . , T . They suggest that a realistic range for the target buffer ratio is γ ∈ [0.1, 0.15]
and for the parameter α ∈ [0.2, 0.3]. Figure 1 shows a possible development of the policy interest
rate compared to the investment return. As a comparison, Figure 2 shows the same items from
1983 to 1998 for one of Denmark’s life insurance company.

The customer account value at time n is

P (n) = P0

n∏
k=1

(1 + rP (k)) .

In this contract, the maturity payment to the policyholder is L(T ) = P (T ). The buffer value
is determined as B(n) = A(n) − P (n). Grosen and Jörgensen (2000) do not model an inter-
generational aspect of their reserve-based participating policy. Instead, they focus on an individual
policy.

Hansen and Miltersen (2002)

Hansen and Miltersen (2002) apply a similar smoothing method to Grosen and Jörgensen (2000),
and also use the Danish market as the backdrop. The main difference is that Hansen and Miltersen
(2002) allow for fees to cover the minimum return guarantee. They consider two different ways of
collecting the fees: a percentage of the customer’s savings or as a share of the buffer which is above
the target buffer. In their model, the terminal payout to the customer is the sum of the customer
account and the maximum of zero and the bonus account. Once again, a single cohort is studied.
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Figure 2: Taken from Grosen and Jörgensen (2000, Figure 3). The chart shows the actual policy
interest rates given by the largest Danish life insurance company, Danica, in the period
1983–1998. Also plotted is the tax-adjusted historical market return on a typical insti-
tutional portfolio, which is invested 30% in the Danish stock market portfolio and 70%
in an index of liquid, Danish mortgage-backed bonds.

Hansen and Miltersen (2002)

Hansen and Miltersen (2002) consider two customers, with the older customer having a higher
minimum return guarantee than the younger customer. They find that, when the two policies
share a bonus account, there is a re-distribution of wealth from the younger customer to the older
customer. They suggest that separate bonus accounts would eliminate the re-distribution.

Kling et al. (2007)

Kling et al. (2007) model a German participating policy, which is somewhat similar to Grosen
and Jörgensen (2000). Again, the size of buffer ratio determines the bonus granted. However,
it is calculated as B(n)/P (n) at time n, rather than based on the previous time period’s values,
B(n−1)/P (n−1). As long as the buffer ratio stays within a specified range, the customer account
is credited with a fixed interest rate above the minimum guaranteed interest rate. If the buffer
ratio falls below the range, then the credited interest rate is reduced using a specified formula. If
it rises above the range, the credited interest rate is increased using a slightly different formula.

The focus of Kling et al. (2007) is on the risk to the insurer. There is no company account in
the model, but the insurance company is in default if B(n) < 0 at any time n. A single cohort is
studied and there is no linkage with subsequent cohorts.

Analysis of some participating policies with a minimum guarantee

The default put option is defined as the expected risk-neutral discounted value of P (T ) − A(T ).
Zemp (2011) calculates it for five contracts: Bacinello (2001), Grosen and Jörgensen (2000), Hansen
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and Miltersen (2002), Kling et al. (2007) and the arithmetic average contract of Haberman et al.
(2003). The default put option is a measure of risk for the insurance company. She finds that
the contract analyzed by Bacinello (2001) is the most sensitive to changes in the underlying asset
volatility σ and the initial reserve B(0). The least sensitive to changes in the underlying asset
volatility are the contracts of Hansen and Miltersen (2002) and Kling et al. (2007), and the least
sensitive to changes in the initial reserve is the one studied by Grosen and Jörgensen (2000).

3.3.3 An inter-generational contract with a minimum guarantee

Døskeland and Nordahl (2008) investigate the financial impact of inter-generational risk-sharing
on overlapping generations of policyholders. It is one of the few papers in the actuarial or financial
literature to do so. The risk-sharing is done via a shared buffer, which is empty when the first
generation joins. A cohort receives a fixed fraction of the buffer when their contract matures. The
contract is motivated by the one studied by Miltersen and Persson (2003).

Their main result is that later cohorts have a higher expected risk-adjusted return than earlier
cohorts. The later generations benefit from a high difference between the risk-free interest rate
and the minimum interest rate, high allocations to the bonus reserves and a conservative asset
allocation. The opposite is true for earlier generations.

The liability side of the balance sheet is the sum of the company account (C), the buffer (B)
and the customer account (P ). The company maintains the proportion of total liabilities in the
company account (the equity) at a constant (1− α) at the end of each year, by either paying out
dividends or injecting capital into the company account.

The hth generation of policyholders joins at integer time h and leaves at integer time h + T .
The hth generation has a customer account value denoted by P (h). For n /∈ {h, h+ 1, . . . , h+ T},
P (h)(n) = 0 since either the hth generation has not bought a policy yet or their policy has matured.
The sum of the in-force policies is given by P . The customer account value of the hth generation
at integer time n ∈ {h, h+ 1, . . . , h+ T} develops from the previous time period’s account values
as follows.

P (h)(n) =



0,

for A(n) ≤
h−1∑
j=1

P j(n− 1) · (1 + rg)

A(n)−
h−1∑
j=1

P (j)(n− 1) · (1 + rg),

for 0 < A(n)−
h−1∑
j=1

P (j)(n− 1) · (1 + rg) ≤ P (h)(n− 1) · (1 + rg)

P (h)(n− 1) · (1 + rg),

for
h∑
j=1

P (j)(n− 1) · (1 + rg) < A(n) ≤ (P (n− 1) + C(n− 1)) (1 + rg) +B(n− 1)

P (h)(n− 1) · (1 + rg)

+P (h)(n− 1)
P (n− 1) αδ(1− b) [A(n)− (P (n− 1) + C(n− 1))(1 + rg)−B(n− 1)] ,

for A(n) > (P (n− 1) + C(n− 1))(1 + rg) +B(n− 1).

The insurance company wishes to allocate a fixed annual rate rg first to in-force customer
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accounts, next to the company account and finally, if there are sufficient assets, to give an additional
return on those two accounts. The earlier generations have priority.

For each generation h, there are four possible scenarios during the time that generation h’s
policies are in-force. Here, “increased” means “increased at the fixed annual rate rg”. The asset
value is: (1) not enough to cover generation h’s customer account value, having been exhausted by
covering the increased value of earlier generations’ customer account values; (2) enough to cover
some but not all of generation h’s increased customer account values; (3) enough to cover all of
generation h’s increased customer account values but no more; (4) enough to cover generation
h’s increased customer account value and add additional money into the customer account. The
last case occurs because the asset value covers all in-force generation’s increased customer account
values, the increased company account account and last period’s buffer account.

In the scenario of case (4) above, a fixed proportion b of the excess assets are allocated to the
buffer account. The remaining proportion is divided among the company account and the customer
accounts. The company account gets αδ, to compensate the shareholders for the risk of injecting
capital into the company account.

Note that the company would be declared bankrupt if the assets were not enough to cover the
fixed rate increase on the customer account values. Døskeland and Nordahl (2008) assume that
the company would then be re-capitalized, with the liabilities equal to the asset value just prior to
re-capitalization.

At the maturity time h+ T of generation h’s contract, the payment to that generation is

L(h)(h+ T ) = P (h)(h+ T ) + pB(h+ T ) P (h)(h+ T )∑h
j=max{h−T,1} P

(j)(h+ T )
.

Thus, in addition to their individual customer account, the generation gets a proportion p×P (h)(h+
T )/

∑h
j=max{h−T,1} P

(j)(h+ T ) of the buffer on their policy’s maturity date.
In the contract, earlier generations receive the full value of their customer account, including the

increase at the fixed rate rg, before later generations. The benefit security of the longest in-force
policyholders is prioritized over the others. Despite this, the results of Døskeland and Nordahl
(2008) show that the more recent generations have a higher risk-adjusted return than the older
generations. This suggests that a bankruptcy event is unlikely to occur.

3.3.4 Different frameworks for defining bankruptcy

Orozco-Garcia and Schmeiser (ress) study inter-generational subsidies in participating policies.
They do this in two frameworks: an accounting framework and a run-off framework. There are
different definitions of bankruptcy in the two frameworks. All policyholders have the same contract
duration but they join at different times. The aim of Orozco-Garcia and Schmeiser (ress) is to see
if it is possible to have both fair premiums and the same level of default risk for every cohort of
policyholders. The single premium paid by a policyholder is considered to be fair if the difference
between the present value of what the policyholder could receive from their contract (allowing for
default events) and what they actually pay as their single premium is zero. The contract studied
is an extension of Grosen and Jörgensen (2002) (described in Section 3.3.2), extended from an
individual to a multi-cohort setting.

Broadly, in the accounting framework there is a bankruptcy event if the present value of liabilities
exceeds that of the assets. This captures bankruptcy for most insurance company. The run-off
framework would not declare bankruptcy in such a situation, but would continue paying out benefits
as long as the asset value was large enough to pay the benefits. It is closer to how public pension
systems work. However, the company is not allowed to issue new policies during a run-off event.
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Figure 3: Taken from Døskeland and Nordahl (2008, Figure 3). The plot shows the risk-adjusted
return, namely the continuously-compounded annual return on each generation’s initial
premium, ln

(
L(h)(h+ T )/P (h)(h)

)
/T , over 80 generations who each purchase a 20-year

policy. The risk-free interest rate is 4%, the mean return on the risky stock is 8% and
its volatility is 16%. The fixed annual rate rg = 0.02. The investment strategy is to
invest 20% of asset value in the risky stock and the remainder in a bond whose price
accumulates at the risk-free interest rate. For the other parameters, α = 0.9, b = 0.3,
p = 0.36 and δ = 0.9711 is chosen so that the contract is fairly priced. The values of the
full calibration are shown in Døskeland and Nordahl (2008, Table 4).
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If a default event occurs, each policyholder receives a share of the assets which is proportional
to their customer account value, with the amount capped at their customer account value. The
loss experienced by a policyholder upon a default event occurring is then the difference between
their customer account value and that capped proportional share of the assets. The default risk
of a policyholder is the value of a “default put option”, equal to the expected discounted value of
the possible losses.

Orozco-Garcia and Schmeiser (ress) show that the run-off framework is advantageous for the
longer-in-force policyholders as they continue to be paid their benefits at the expense of the benefit
security of the shorter-in-force policyholders. The accounting framework penalizes all in-force
policyholders at an earlier stage. Orozco-Garcia and Schmeiser (ress) are able to determine risk
management strategies so that all contracts operating under the accounting framework face the
same amount of default risk. This is not possible under the run-off framework as the shorter-in-
force policyholders always have a higher default risk than the longer-in-force policyholders. On the
downside for the accounting framework approach, the amount of default risk may be high and fair
pricing may not be possible.

3.4 Contracts without a minimum guarantee

Here two contracts without a minimum guarantee are described. The contract proposed by Goecke
(2013) is a novel one and not based on an real-world contract. The second is the accumulation
phase of a Danish contract that is scrutinized by Guillén et al. (2006). Although the Danish
contract has no inter-generational risk-sharing and neither does it need to pose any financial risk
to the company, it is included because it looks superficially like it may do: there is a buffer defined
as part of the contract. However, there is no need for a buffer since a replicating strategy exists to
pay each policy’s maturity value.

Goecke (2013)

Goecke (2013) introduces a return-smoothing mechanism without any guarantees. There are only
three accounts: the customer account and the buffer on the liability side, and the reference portfolio
on the asset side. In this contract, the reference portfolio value represents the true value of the
underlying assets. He specifies rules to decide two things: how much to invest in equities and how
much to declare as a return to the customers. He illustrates his rules in a simple setting and in
continuous time.

The broad idea is to set a long-term, strategic exposure to equity risk. The proportion of assets
that is invested in equities is in line with the strategic exposure, but adjusted to allow for the size
of the collective reserve relative to the customer account value. The return declared to customers is
the expected return on the investments, but similarly adjusted for the relative size of the collective
reserve.

Goecke (2013) applies the same Black-Scholes model that is detailed in Section 3.2. There is a
single investment strategy for the entire fund. Goecke (2013) studies a closed scheme; the customer
account value changes only because of declared returns.

Suppose the pension fund invests a fraction β(t) in the risky stock at time t, for all t ≥ 0.
Defining the volatility of return on assets

σ(t) := β(t)σ,
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the usual market price of risk h = µ−r
σ and the mean return on the asset portfolio

µ(t) := r + hσ(t)− 1
2σ

2(t),

the asset value at time t obtained by following the strategy implied by β can be expressed as

A(t) = A(0) exp
(∫ t

0
µ(s)ds+

∫ t

0
σ(s)dW (s)

)
.

The return on the customer accounts is denoted by η(t) at time t. The total value V of the
customer accounts is

V (t) = V (0) exp
(∫ t

0
η(s)ds

)
at time t. Thus the return η declared to the customers is a continuously-compounded rate. It is a
deterministic function, so that it changes with time.

The reserve ratio, which is a measure of the relative difference of the buffer to the customer
account value, is

ρ(t) := ln
(
A(t)
V (t)

)
.

A target reserve ratio ρtarget, a constant value, is fixed. The rules of the scheme adjust the
investment strategy and the declared return on the customer accounts to try to get the reserve
ratio to the target reserve ratio. The dynamics of the reserve ratio are

dρ(t) = (µ(t)− η(t)) dt+ σ(t)dW (t).

Thus the instantaneous expected growth rate of the reserve ratio is the difference between the
expected return on the assets (albeit adjusted for risk) and the return declared on the customer
accounts. The volatility of the reserve ratio is the same volatility as that of the asset return.

Sufficient notation and definitions have now been introduced to define the operational rules
of the scheme in Goecke (2013). A long-term, strategic volatility of return on assets σ̂ > 0 is
set. It represents the desired, long-term exposure to investment risk. A risk exposure adjustment
parameter, a constant value a, is fixed. It adjusts the strategic volatility of return to allow for the
deviation of the actual reserve ratio from the target reserve ratio. The investment strategy rule is
defined by setting the volatility of return on assets to

σ(t) = σ̂ + a (ρ(t)− ρtarget) .

The volatility of return on assets is called the risk exposure. From the above equation, the pro-
portion of the reference portfolio value to invest in the risky stock at time t is

β(t) = σ̂ + a (ρ(t)− ρtarget)
σ

.

The size of the risk exposure adjustment parameter a affects the proportion invested in the risky
stock. The higher the value of a, the greater the investment risk taken and hence the more that is
invested in the risky stock.

For the return on the customer accounts, a declaration adjustment parameter, a constant value
θ ≥ 0, is fixed. It can be interpreted as how quickly the reserve ratio “surpluses” or “deficits” are
rectified. The value of θ adjusts the strategic volatility of return to allow for the deviation of the
actual reserve ratio from the target reserve ratio.

The return on the customer accounts is determined as

η(t) = µ(t) + θ (ρ(t)− ρtarget) .
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In words, the customer accounts are continuously credited by the mean return on the assets with
an adjustment for how different the actual reserve ratio is to the target reserve ratio. The speed
of the adjustment is governed by the parameter θ. The higher the value of θ, the more volatile are
the adjustments. For two different strategies, Figure 4 illustrates the values of the risk exposure,
σ(t) against the return on the customer accounts, η(t), for five different possibles values of the
reserve gap, ρ̂(t) := ρ(t)− ρtarget. A strategy corresponds to a triple (σ̂, a, θ).

Goecke (2013) finds that, compared to a constant-mix benchmark strategy, his proposed mech-
anism gives a higher expected return on the customer accounts for a fixed standard deviation of
return, upon setting the risk exposure adjustment parameter a = 0 (Figures 5 and 6). A constant-
mix investment strategy is one that is continuously rebalanced back to a constant proportion of
assets in the risky stock. As the time horizon increases, the expected return on the customer
accounts falls towards the constant-mix benchmark expected return, for a fixed standard devia-
tion. Similarly, as the adjustment coefficient b increases, the expected return falls towards the
constant-mix benchmark expected return.

Setting the parameter a to a range of strictly positive values, he finds a similar result; his
proposed mechanism gives a higher expected return on the customer accounts for a fixed standard
deviation of return (Figure 7). As he notes, the distribution of the return on the customer accounts
is no longer normal when a 6= 0.

Guillén et al. (2006)

Guillén et al. (2006) analyze the accumulation phase of a product sold in the Danish market. It
looks similar to the return-based distribution contracts of Section 3.3.1. The customer account is
first increased at a fixed interest rate rp (which can vary in time, but here it is assumed to be
constant for simplicity). Then a proportion α ∈ [0, 1] of the value of an investment index in excess
of the increased customer account is added to the customer account. As before, P (n) denotes the
customer account value and A(n) denotes the value of a specified reference portfolio at time n,
with initial condition A(0) = P (0) a.s. The reference portfolio value may be different to the value
of the underlying investments.

The customer account at time n is

P (n) = (1 + rp)P (n− 1) + α [A(n)− (1 + rp)P (n− 1)] ,

assuming that a single premium P (0) has been paid at time 0 by the customer. The customer is
paid L(T ) = P (T ) at the maturity time T . No surrender is allowed before this time. Indeed, the
value P (n) does not represent the market value at time n of the customer’s terminal payout.

Considering the evolution of the customer account above, the value of the last term on the
right-hand side, α [A(n)− (1 + rp)P (n− 1)], can be negative, so the fixed interest rate rp is not
a guaranteed return on the customer account. If the value is negative, this does not necessarily
represent a bankruptcy situation (unlike the contract of Døskeland and Nordahl 2008). The un-
derlying asset value at time n is not necessarily equal to A(n); the company can invest to get a
different return than the one implied by {A(n)}n∈{0,1,...,T}. Indeed, Guillén et al. (2006) show
that there exists a replicating investment strategy which exactly replicates the customer’s terminal
payout L(T ). The value of the replicating strategy is not given by A(n) at time n.

Although a buffer B(n) = A(n) − P (n) at time n is defined, it is redundant since a replicating
strategy exists for each policyholder. While the contract looks superficially to be a risk-sharing
contract, it is not a risk-sharing contract due to the existence of a replicating strategy.
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Figure 4: Taken from Goecke (2013, Figure 2). The figure illustrates the bonus declaration, η(t),
and desired volatility of return, σ(t), for two different strategies. For both strategies,
r := 0.03, h = 0.25 and the long-term strategic risk exposure σ̂ := 0.05. The reserve gap
ρ̂(t) = ρ(t) − ρtarget. Strategy 1 is a pure liability management strategy, since a := 0.
Therefore σ(t) = σ̂ = 0.05. It does not adjust the strategic risk exposure as the reserve
gap varies. Only the return η(t) on the customer accounts changes with ρ̂(t). For Strategy
1, η(t) = 0.04125 + 0.4ρ̂(t), for the chosen parameter θ := 0.4. The vertical line for
Strategy 1 is a plot of the return on the customer accounts η = 0.04125+0.4ρ̂ against the
risk exposure σ = 0.05, for values ρ̂ ∈ {−0.1,−0.05, 0,+0.05,+0.1}. Strategy 2 has the
same, long-term strategic risk exposure, σ̂ = 0.05. The parameters a := 0.5 and θ := 0.2.
The “day-to-day” risk exposure varies with the reserve gap: σ(t) = 0.05 + 0.5ρ̂(t). The
return on the customer accounts is less sensitive to changes in the reserve gap than
Strategy 1. For Strategy 2, η(t) = 0.03 + 0.25σ(t) − 0.5σ2(t) + 0.2ρ̂(t). The line for
Strategy 2 is a plot of the return on the customer accounts η = 0.03+0.25σ−0.5σ2 +0.2ρ̂
against the risk exposure σ = 0.05 + 0.5ρ̂, for values ρ̂ ∈ {−0.1,−0.05, 0,+0.05,+0.1}.
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Figure 5: Taken from Goecke (2013, Figure 6A). For all strategies, the risk-free interest rate r :=
0.03, the market price of risk h = 0.25 and the time horizon is 10 years. For the
risk-sharing strategies which are represented by the non-solid lines, the parameters are
a := 0, the value of θ is as marked beside each line and the initial reserve gap is zero, i.e.
ρ(0) = ρtarget. The value of σ̂ is a variable. A constant-mix strategy, with a constant
percentage invested in the risky stock, is represented by the solid line. For the 10-year
annualized return on the customer accounts, η̄(10) := 1/10

∫ 10
0 η(t)dt, the non-solid lines

show how its expected value E(η̄(10)) = 0.03 + 0.25σ̂ − 0.5σ̂2 varies against a function
of its standard deviation, for four different values of θ. Although its standard deviation
is SD(η̄(10)) := σ̂/

√
10 ·

√
1− (1− e−10θ)(3− e−10θ)/(20θ), the horizontal axis shows√

10SD(η̄(10)) in order to eliminate the time dependence. The investment strategy
underlying the ‘const-mix-portfolio’ solid line has a standard deviation of return equal
to σ̂/

√
10. The solid line shows how the annualized return on the underlying strategy,

0.03 + 0.25σ̂ − 0.5σ̂2, varies with the choice of σ̂ (again, in order to eliminate the time
dependence so that there is no need to choose a value for T for the constant-mix strategy).
Note that the expected returns on the customer account (the four risk-sharing strategies)
and the constant-mix investment strategy (solid line) are the same. It is the standard
deviations which are different. The risk-sharing strategies have a lower volatility for
each expected return value. For example, the line with squares representing θ = 0.1
is E(η̄(10)) plotted against (approximately) 0.41σ̂ whereas the constant-mix solid line
shows E(η̄(10)) plotted against σ̂.
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Figure 6: Taken from Goecke (2013, Figure 6B). For all strategies, the risk-free interest rate
r := 0.03 and the market price of risk h = 0.25. For the risk-sharing strategies which are
represented by the non-solid lines, the parameters are a := 0, the value of θ = 0.4, the
initial reserve gap is zero, i.e. ρ(0) = ρtarget and the time horizon is marked beside each
line. The value of σ̂ is a variable. A constant-mix strategy, with a constant percentage
invested in the risky stock, is represented by the solid line. Its time horizon is irrelevant
as, in this model, the annualized return and the square root of the time horizon multiplied
by the standard deviation of return do not depend on the time horizon. For the T -year
annualized return on the customer accounts, η̄(T ) := 1/T

∫ T
0 η(t)dt, the non-solid lines

show how its expected value E(η̄(T )) = 0.03 + 0.25σ̂ − 0.5σ̂2 varies against a function
of its standard deviation, for four different values of T . Although its standard deviation
is SD(η̄(T )) := σ̂/

√
T ·
√

1− (1− e−0.4T )(3− e−0.4T )/(0.8T ), the horizontal axis shows√
TSD(η̄(T )) in order to eliminate the time dependence. The investment strategy un-

derlying the ‘const-mix-portfolio’ solid line has a standard deviation of return equal to
σ̂/
√
T . The solid line shows how the annualized T -year return on the underlying strategy,

0.03+0.25σ̂−0.5σ̂2, varies with the choice of σ̂ (again, in order to eliminate the time de-
pendence so that there is no need to choose a value for T for the constant-mix strategy).
Note that the expected returns on the customer account (the four risk-sharing strategies)
and the constant-mix investment strategy (solid line) are the same. It is the standard
deviations which are different. The risk-sharing strategies have a lower volatility for each
expected return value. For example, the line with squares representing T = 3 is E(η̄(T ))
plotted against (approximately) 0.46σ̂ whereas the constant-mix solid line shows E(η̄(T ))
plotted against σ̂. For the longest time horizon, T = 30 years, the risk-return profile of
the risk-sharing strategy is very similar to the constant-mix profile. As the time horizon
shortens, the risk-sharing strategies show a lower volatility for a given value of expected
return.
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Figure 7: Taken from Goecke (2013, Figure 7). For all strategies, the risk-free interest rate r :=
0.03 and the market price of risk h = 0.25. For the risk-sharing strategies which are
represented by the non-solid lines, the parameters are θ = 0.4, the initial reserve gap
is zero, i.e. ρ(0) = ρtarget, the time horizon T = 5 years and the value of a is marked
beside each line. The value of σ̂ is a variable. A constant-mix strategy, with a constant
percentage invested in the risky stock, is represented by the solid line. Its time horizon
is irrelevant as, in this model, the annualized return and the square root of the time
horizon multiplied by the standard deviation of return do not depend on the time horizon.
For the 5-year annualized return on the customer accounts, η̄(5) := 1/5

∫ 5
0 η(t)dt, the

non-solid lines show how its expected value E(η̄(5)) = 0.03 + 0.25σ̂ − 0.5σ̂2f(a), where
f(a) can be deduced from Goecke (2013, Equation (18)), varies against a function of
its standard deviation, for four different values of a. Although its standard deviation
is SD(η̄(5)) := σ̂/

√
5 · g(a), where g(a) can be derived from Goecke (2013, Equation

(19)), the horizontal axis shows
√

5SD(η̄(5)) in order to eliminate the time dependence.
The investment strategy underlying the ‘const-mix-portfolio’ solid line has a standard
deviation of return equal to σ̂/

√
T . The solid line shows how the annualized T -year

return on the underlying strategy, 0.03 + 0.25σ̂ − 0.5σ̂2, varies with the choice of σ̂
(again, in order to eliminate the time dependence so that there is no need to choose a
value for T for the constant-mix strategy). For the non-zero choices of a, the distribution
of η̄(5) is not normal. The risk-sharing strategies have a lower volatility for each expected
return value compared to the constant-mix strategy.
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Figure 8: Taken from Goecke (2013, Figure 8). For all strategies, the risk-free interest rate r := 0.03
and the market price of risk h = 0.25. For the risk-sharing strategy which is represented
by the smoother, blue line labelled “V (t)”, the parameters are a := 0, θ = 0.4, the initial
reserve gap is zero, i.e. ρ(0) = ρtarget, the time horizon T = 30 years and σ̂ = 0.2. A
constant-mix strategy, with a constant percentage invested in the risky stock so that the
volatility of return is the same as the risk-sharing strategy’s σ̂ = 0.2, is represented by
the black line labelled “CM(t)”. The lines show one particular future state of the world
over the 30 year time horizon. Although the risk-return profile of these strategies is very
similar (as evidenced in Figure 6), the daily customer account values (V (t) line) fluctuate
less than the daily asset values of the constant-mix strategy (CM(t) line).
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4 Funded, collective pension plans

4.1 Defined benefit (DB) plans

Defined benefit (DB) plans are designed to pay a pension income and/or a lump-sum to its members
when they retire. They are usually offered to individuals through their workplace. Their employer
sponsors the pension plan, which is overseen by trustees. While both the active (i.e. non-retired
and haven’t left the scheme) members and the employer contribute to the scheme, the employer
usually makes larger contributions per member. The interplay of a defined benefit pension plan
with a statutory or industry-wide fund which may secure part or all of the benefits of insolvent
pension funds (for example, the UK’s Pension Protection Fund) is not considered here.

The surplus or deficit is calculated as the difference between the value of the assets and the value
of the liabilities. Periodically, the plan is valued and the contributions are adjusted to allow for
any change in the cost of accruing benefits and the plan’s funding level. If there is a deficit then
the employer is ultimately responsible for rectifying it. If the employer is unable to make good a
deficit then the scheme will fail and the benefits accrued by the members may be reduced.

In the typical DB plan, the employer and the active members pay contributions towards both the
cost of the accruing benefits and to rectify any deficit in the plan. Neither pensioners nor deferred
pensioners – members who no longer work for the employer and who have not yet retired – are
liable for further contributions. Individual members are typically asked to contribute the same
percentage of their salary, regardless of their age. Usually, the actual cost of accruing benefits is
lower for younger members than for older members. From the younger individual’s point-of-view,
they are subsidizing the older member’s benefit if they are asked to contribute the same percentage
of their salary. Nevertheless, since the employer usually pays the bulk of the contributions of each
member, this is rarely a point of controversy for defined benefit members. The fact that only
contributions can be adjusted to rectify deficits means that the employer and perhaps also the
active members bear most1 of the downside risk of scheme deficits.

Benefits are paid out to retired members. There may also be benefits paid to the partners and
dependants of deceased members. A typical benefit is a lifetime income to the retirees. The annual
income paid is generally based on a formula, such as the number of years of service multiplied by
2% multiplied by the salary of the member before retirement. It is common for the income to be
increased each year by the increase in price inflation. Another typical benefit is a lump-sum benefit
paid to each member upon their retirement, which may be in addition to or instead of a lifetime
income.

In DB plans, the nominal income paid to retirees is not adjusted if there is a funding deficit or
surplus. However, if pension increases are discretionary then they may be withheld if, for example,
the scheme is in deficit. Whether pensions increases are mandatory or discretionary will depend
on the plan rules and the jurisdiction.

If the active members’ contributions are adjusted to allow for surpluses or deficits then there
is inter-generational risk-sharing in the DB plan. Otherwise, the sponsoring employer is entirely
responsible for funding risks. There is no explicit buffer account as there is with participating
policies. Instead, the entire fund is equivalent to the totality of the customer accounts and the
buffer account of participating policies. The ratio of the value of the assets to the value of the
liabilities – the funding ratio or funding level – may be taken as a measure of risk. There may be
a target of keeping the funding ratio above some level to maintain the security of accrued benefits

1Since it is possible that the employer is unable to support the plan, there always remains a
benefit risk to the deferred pensioners and pensioners.
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and provide a cushion for future accruing benefits.

4.2 Collective defined contribution (CDC) plans

Collective defined contribution (CDC) plans can be thought of as DB plans without the guarantees.
They promise but do not guarantee a benefit. If there is a deficit, then it is not the legal respon-
sibility of the sponsoring employer to eliminate the deficit (although the employer could choose to
make additional contributions). Instead, the benefits can be reduced to try to restore the funding
ratio to a desired level. For example, pensions increases may not be granted. In extreme cases,
the nominal level of benefits may be cut, including benefits already in payment.

The rules for granting pension increases or cutting nominal pensions may be defined via the
funding ratio, via fixed rules. Pension increases may be granted on a sliding scale, from zero
pension increases up to full indexation, depending on the funding ratio. Cutting nominal pension
amounts may also depend on the funding ratio. If the funding ratio subsequently increases to a
high enough level, nominal pensions are restored to their original value and additional pension
increases may be granted to compensate for previously lost indexation. It may be that the rules
are based on two funding ratios: one calculated using a liability value based on paying only the
nominal pensions without any pension increases and a second calculated using a liability value
based on paying only the nominal pensions with discretionary pension increases granted.

The inter-generational risk-sharing aspect of CDC plans comes from the possibility of both
contributions and benefits being adjusted in response to funding risk. Bennett and Van Meerten
(2018) provide a description of the legal and regulatory differences between UK DB plans, their
Dutch equivalent and the Dutch CDC plans which have been in existence since 2004.

4.3 Analyses of inter-generational risk-sharing in private pension plans

Much of the academic literature shows that risk-sharing in funded pension plans has positive welfare
implications for the members. Most papers use a welfare approach to measure the attractiveness
of different pension plans, using a constant relative risk aversion (CRRA) utility function.

Gollier (2008) finds that collective risk-sharing increases the expected return for each cohort
and does not reduce the standard deviation of return. He analyzes the lump-sum benefits paid to
members of a pension scheme. It is assumed that members contribute annually for 40 years to the
scheme and at the end of the 40 years, they receive a lump-sum payment. Each retiring member
is replaced by a new one, so that there are always 40 cohorts actively contributing in the scheme.
He considers two collective schemes, in which everyone contributes the same amount each year.

In the first collective risk-sharing scheme, Gollier (2008) maximizes the expected utility of the
entire membership by optimally choosing how much to invest annually in a risky stock and how
much to pay out to each retiring cohort. Compared to not being in a collective scheme but simply
following the optimal investment strategy for an individual’s utility function, there is an increase
in the certainty-equivalent annual return for each cohort of around 0.8%.

In the second collective risk-sharing scheme of Gollier (2008), a minimum return of zero is
required for each cohort. His motivation for the constraint is to make the risk-sharing scheme
attractive to all generations. Compared to not being in a collective scheme, there is an increase in
the certainty-equivalent annual return for each cohort of around 0.5%. This is slightly lower than
the first collective scheme due to the solvency requirements of the minimum yield, which constrains
the investment strategy.

Cui et al. (2011) find similar results: inter-generational risk-sharing through collective, funded
pension plans is welfare-enhancing compared to investing without risk-sharing. Importantly, they
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find that the anticipated expected welfare gain of a new cohort is not funded by existing or future
cohorts. A collective plan that allows both contributions and benefits to be adjusted in response
to the funding level produces more welfare gains than one which can adjust only contributions or
only benefits.

Cui et al. (2011) point out that the welfare-enhancing aspect of collective pension plans must
be considered, and not jsut the market values. In their words (Cui et al., 2011, page 3),

The market valuation of [inter-generational risk-sharing] shows that the risk-sharing
arrangement is a fair deal when the fund is initially 100% funded. In other words,
the market value of funding surplus equals the market value of the deficits in the
generational account of the entry cohort. However, the schemes with [inter-generational
risk-sharing] are potentially welfare enhancing, and thus a positive-sum game in welfare
terms. An agent joining an underfunded collective scheme is not necessarily worse off
in welfare terms. It is possible for well-structured pension schemes to absorb funding
deficits up to 10-20% by a combination of higher contributions and benefit cuts over a
number of years and still enhance the welfare for participants.

In the collective schemes analyzed by Cui et al. (2011), new members pay contributions which
are expected to fund each member’s pension in isolation. This avoids the plan becoming a Ponzi
scheme. Members contribute for 40 years and receive a benefit for 15 years. Mortality and early
withdrawals are ignored, as is the distinction between the sponsoring employer and the active
members. They analyze:

• A standard DB scheme in which only the contributions are adjusted in response to funding
risks. Thus only the the sponsoring employer and the active members bear the investment
risk.

• A CDC scheme in which only the benefits-in-payment are adjusted in response to funding
risks. Thus only the retirees bear the investment risk.

• A CDC scheme in which both the benefits in payment and the contributions are adjusted
in response to funding risks. Thus the sponsoring employer, the active members and the
retirees bear the investment risk.

• An individual defined contribution (DC) scheme. The active members and the retirees bear
their own investment risk.

For the DB and CDC schemes, the adjustments to the contributions and benefits-in-payment are
given by mathematical rules. The parameterization of the rules and the optimal investment and
benefit-in-payment strategy are determined for the first cohort, based on maximizing their expected
discounted utility of lifetime consumption. The optimal strategies and parameterizations are kept
for the subsequent cohorts, modulo any adjustments made in line with the rules. The individual
DC scheme members follow the optimal investment and consumption strategy that maximizes their
own expected discounted utility of consumption.

Cui et al. (2011, Table 1) find that the CDC scheme in which both the benefits in payment
and the contributions can be adjusted is the most welfare-enhancing under a range of investor
and market models. Welfare is measured by the certainty equivalent consumption. Either the
individual DC or the standard DB scheme are the next best, depending on the precise model used.
The CDC scheme in which only the benefits-in-payment can be adjusted is the worst performing
scheme.
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Astrup Jensen and Nielsen (2016) consider how worse off is an investor if they invest collectively
compared to investing on their own. They consider the double impact of being forced to follow
a suboptimal investment strategy – namely, the collective’s investment strategy rather than their
own, individually optimal investment strategy – and different terminal return-sharing mechanisms.

Specifically, they suppose that the members of a collective receive a share of the investment pro-
ceeds that is proportional to their initial contribution. This may be sub-optimal for the individual
since they have different aversion to risk, as measured by different parameterizations of constant
relative risk aversion utility functions.

Although their paper does not directly consider risk-sharing mechanisms, their results are worthy
of consideration. Potentially, some members of a collective risk-sharing scheme could be better
off investing individually. For example, suppose a risk-averse member does not contribute much
initially relative to the majority of risk-seeking investors. Further assuming that the collective
investment strategy is heavily weighted towards the optimal investment strategy of the risk-seekers,
then the risk-averse investor may be – for a utility perspective – far from their optimal, individual
strategy.

For a CDC plan with conditional indexation, similar to some Dutch CDC plans, Kleinow and
Schumacher (2017) show that financial fairness is possible for each new cohort. They allow for a
sponsoring employer as one of the plan’s stakeholders. When the nominal funding ratio is low, i.e.
the ratio of the assets to the value of the nominal benefits (excluding pension increases), the fair
contributions paid by the new cohort are less than when the nominal funding ratio is high. This
is because indexation is less likely when the nominal funding ratio is low. However, even when the
contributions from new cohorts are lower, the existing cohorts still benefit from risk-sharing.

Hoevenaars and Ponds (2008) value inter-generational wealth transfers as option prices in various
DB and CDC pension plans. Their focus is on the impact of strategic or structural changes in the
schemes. For example switching to a more risky investment strategy results in a loss of value for
older members and a gain for younger members. A switch between a pension scheme targeting
flexible contributions and fixed benefits to a scheme aiming for fixed contributions and flexible
benefits. The latter switch involves a transfer of value from the older members of the scheme
to the younger members. Chen et al. (2017) ask when members would leave a CDC scheme, if
participation if voluntary. They use option pricing techniques to answer their question. They
find that young members are more likely to stay in the scheme than older members; the value of
the former’s ‘exit option’ is high due to the long time over which it may be exercised. However,
assuming that each member has the same contribution rate regardless of their age, the value of each
year’s pension accrual is much higher for older members than younger ones. This is an incentive
for older members to stay in the scheme.

Donnelly (2017) adjusts the mechanism of Goecke (2013) to a pension plan setting, where mem-
bers can leave and join, and benefits are paid out from the plan’s assets. It is assumed that
contribution rates are fixed.

She finds that the pension scheme – which is a type of CDC plan – reduces the volatility of
benefits paid out to members, compared to a benchmark Defined Contribution plan. However,
members must be prepared to accept reductions in their benefits as a consequence of the lack of a
sponsor; the asset-to-liability funding ratio is improved by benefit reductions and changes to the
investment strategy rather than by additional contributions.
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5 Theoretical risk-sharing frameworks
Inter-temporal risk-sharing is used to compensate for markets being incomplete. The incomplete-
ness referred to in this context arises from the inability of individuals to be exposed to returns
and risks outside of their own lifespan. By inter-temporal risk-sharing through a buffer or similar
mechanism, a new generation of customers purchasing a contract are exposed to risks that occurred
before they bought their contract. This addresses part of the incompleteness but not all of it; old
generations whose contract has matured or who have died are not exposed to risks and returns
which occur after their exit.

5.1 Financial fairness and Pareto-efficiency

A number of recent papers have targeted the question of operating a risk-sharing scheme in a
financially fair and Pareto-efficient way. In these papers, a risk-sharing scheme is defined through
a combination of a collective investment decision and a rule for the allocation of investment returns
to the participants of the scheme.

Financial fairness means that the expected value of what an individual gets back from a contract
should be equal to what they put in. Pareto-efficiency looks at the utility of all the scheme’s mem-
bers together. A group of contracts are Pareto-efficient if no individual’s utility can be improved
without reducing the utility of another individual in the scheme. One of the earliest papers to
apply these two conditions in a one-period setting is Gale and Sobel (1979)2.

The authors on this topic must devote a lot of effort to show that a solution exists and, if possible,
that the solution is unique. Rarely are they able to find an explicit solution for a particular example.
Sometimes they can only characterize a solution and sometimes they can find an iterative algorithm
to calculate the solution.

The conclusions of these papers differ when it comes to the solution of their stated problem. This
is because the problems are different. Some consider only one time-period. Others are multi-period
set-ups, allowing agents to contribute to and receive payments from the risk-sharing scheme. At
what times do agents contribute to the scheme? When do agents receive payments out from the
scheme? Are investment returns allowed for in the framework? The answers to these questions are
different in the models considered in the literature.

5.1.1 One-period model

Here the risk-sharing schemes of Pazdera et al. (2016) and Xia (2004) are presented. Both of them
are defined in a one-period model. Thereofre, there is no need for a buffer: money is paid in at
time 0 and it is all paid out at time 1.

Pazdera et al. (2016)

Pazdera et al. (2016) consider a group of n agents who wish to divide up the proceeds of a
collective investment. The value of the collective investment at the end of the period are modelled
by a random variable X. The rules for the division are decided in advance by applying financial
fairness and Pareto-efficiency.

The collective investment and the allocation rule are together considered a risk-sharing scheme.
A risk-sharing scheme defines a contingent claim payable to the ith agent as a function yi : (0,∞)→

2An earlier, now declassified, version by Gale can currently be found online at http://www.dtic.
mil/dtic/tr/fulltext/u2/a047596.pdf.

27

http://www.dtic.mil/dtic/tr/fulltext/u2/a047596.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a047596.pdf


(0,∞) of the end-period investment payoff, for each agent i = 1, . . . , n. In other words, agent 1
receives y1(X) at time 1, agent 2 receives y2(X) at time 1, and so on. To ensure that no more
and no less than the investment proceeds are allocated to the agents, the functions must satisfy∑n
i=1 yi(x) = x for all x > 0. Similarly, the collective investment proceeds must be positive, i.e.

X ≥ 0 .
The agents contribute money to the scheme at the starting time, with the ith agent contributing

a constant amount wi > 0. Although agents assign the same probabilities to random events, they
can have different utility functions.

To define financial fairness, suppose that the expected value of the collective investment X
under a risk-neutral measure Q equals the sum of the initial contributions, i.e. EQ(X) =

∑n
i=1 wi.

Pazdera et al. (2016, Definition 2.1) define an allocation rule (y1, . . . , yn) to be financially fair if
the expected value of what each agent receives from the collective investment proceeds equals the
agent’s initial contribution, i.e. EQ(yi(X)) = wi for i = 1, . . . , n.

To define Pareto-efficiency, some notation is required. For a fixed integer M ≥ 1 and two vectors
a = (a1, a2, . . . , aM ) and b = (b1, b2, . . . , bM ), write a 	 b if am ≥ bm for every m ∈ {1, . . . ,M}
and there exists at least one m ∈ {1, . . . ,M} such that am > bm.

A collective risk X and an allocation rule yyy = (y1, . . . , yn) are together Pareto-efficient if there
does not exist another collective investment proceeds X̃ and allocation rule ỹ̃ỹy = (ỹ1, . . . , ỹn) such
that (

EP
(
u1
(
ỹ1(X̃)

))
, . . . ,EP

(
un
(
ỹn(X̃)

)))
	 (EP (u1 (y1(X))) , . . . ,EP (un (yn(X)))) .

Pazdera et al. (2016, Theorem 3.4) are able to establish the existence and uniqueness of a Pareto
efficient, financially fair risk-sharing scheme, as represented by the pair consisting of a collective
risk X and an allocation rule yyy = (y1, . . . , yn). Importantly, they provide an iterative algorithm to
compute the risk-sharing scheme. Their examples are relatively abstract.

Xia (2004)

Xia (2004) considers a similar setting to Pazdera et al. (2016). A group of n agents wish to pool
their money together to make a collective investment. The payoff of the investment is then divided
among the agents. There are traded assets available for investment in the market.

Agent i has initial wealth wi > 0 and a utility function Ui. Agent i wishes to maximize the
expected utility of terminal wealth by choosing a suitable investment strategy. Assuming that the
optimal strategy exists, then the expected utility of terminal wealth is represented by ui(wi).

Now suppose that Agent i joins instead the risk-sharing group, for some i ∈ {1, . . . , n}. They
pay initially wi and receive a random payoff ξi ≥ 0 a.s. at the terminal time. In other words, the
agent does not follow their own, individually optimal investment strategy. For Agent i to be at
least as well off with risk-sharing,

E (Ui (ξi)) ≥ ui(wi).

For the group of n agents to benefit from risk-sharing, the above inequality should be strict for at
least one agent. In other words, a Pareto-efficient solution is sought. Xia (2004) characterizes the
solution. However, as no explicit solutions are calculated as examples, it is difficult to see how to
apply the characterization to a practically-orientated situation.

5.1.2 Multi-period model

Bao et al. (2017)

Bao et al. (2017) propose a framework for risk-sharing within a multi-period model. There are a
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finite number of agents in the discrete-time model, and the risk-sharing finishes at a finite time.
All cashflows occur at fixed times. The set-up is quite different to that of Pazdera et al. (2016).

The agents wish to share their risks, which are cashflows paid to the agents. The risks are
modelled by random variables which represent cashflows received by the system at the fixed times.
There is a buffer which is used to spread the risks over the time horizon, through the payment of
contingent claim to the agents at fixed times. Furthermore, returns are earned on the buffer. The
total value of the buffer and the agents’ cashflows received (the risks) is the money to be shared
among the agents and the buffer.

The total contingent claims paid to the agents at each integer time and the value of the buffer
at the terminal time are the decision variables. The random variable Bn represents the size of the
buffer at the nth time point and the random variable Pn is the total contingent claim paid out at
the nth time point as a consequence of the risk-sharing, for n = 1, . . . , N .

It is not required that the financial market is complete. Instead the agents simply have to agree
on a real-world probability measure P and a risk-neutral measure Q.

Exogenous elements of the system are investment returns on the buffer and the risks brought
into the system by the agents. The random variable Xn represents the risk from the (n − 1)th
to the nth time point (money paid into the system), and the random variable Rn is the random
accumulation factor of the buffer from the (n− 1)th to the nth time point, for n = 1, . . . , N . The
pair (Xn, Rn) is independent of the pair (Xm, Rm), for n ≥ m, but the random variables Xn and
Rn can be dependent with known joint distribution, for n = 1, . . . , N . The information available
at the nth time point is the filtration Fn = σ{(X1, R1), . . . , (Xn, Rn)}, for n = 1, . . . , N .

For the system to be in balance, it must hold that at the nth time point that the buffer size
equals the (n− 1)th buffer size increased by the accumulation factor Rn plus the risk Xn paid into
the system less the total contingent claim Pn paid out to the agents, i.e.

Bn + Pn = Xn +Bn−1Rn, for n = 1, 2, . . . , N.

A risk-sharing rule is a random vector (P1, P2, . . . , Pn, Bn) that satisfies the above constraint and
some technical conditions.

To impose the Pareto-efficiency condition, a utility function un is used to evaluate the worth
of the contingent claim Pn paid at the nth time point, for each n. A potentially different utility
function up evaluates the worth of the final buffer size Bn.

According to Bao et al. (2017, Definition 3.1), a risk-sharing rule (P1, P2, . . . , Pn, Bn) is called
Pareto-efficient if there does not exist another risk-sharing rule (P̃1, P̃2, . . . , P̃N , B̃N ) such that(

EP
(
u1
(
P̃1
))
,EP

(
u2
(
P̃2
))
, . . . ,EP

(
uN
(
P̃N
))
,EP

(
up
(
B̃N
)))

	 (EP (u1 (P1)) ,EP (u2 (P2)) , . . . ,EP (uN (Pn)) ,EP (up (Bn))) .

Furthermore, Bao et al. (2017, Theorem 3.2) show that for a Pareto-efficient risk-sharing rule,
there exists positive constants θ1, . . . , θN , θp such that the rule maximizes the function

EP

(
N∑
n=1

θnun (Pn) + θpup (Bn)
)

over all possible risk-sharing rules. For any vector of positive constants θθθ = (θ1, . . . , θN , θp),
they determine an explicit expression for the Pareto-efficient risk-sharing rule that corresponds to
θθθ. There are infinitely many Pareto-efficient risk-sharing rules for {(Xn, Rn)}Nn=1. However, by
requiring financial fairness, the set can be reduced to a single risk-sharing rule.

Under financial fairness, the expected value of the payments to the agents at the nth time point
is equal to a constant, with a different constant for each time point. For example, the constant
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could equal the expected value of the agents’ risk at the same time point or it could be set using
some other method. Similarly, the expected value of the buffer at the last time point is equal to a
constant. Bao et al. (2017, Section 4) define a value profile as a vector of constants, representing
the expected value of the agents’ risk at each time point. The expected values are calculated under
the risk-neutral measure Q. The numerical value of each component may be restricted due to
technical conditions on the utility functions.

Given a value profile ννν = (ν1, ν2, . . . , νN , νp), a risk-sharing rule (P1, P2, . . . , Pn, Bn) is financially
fair if

νn = EQ (Pn) , for n = 1, 2, . . . , N , and νp = EQ (Bn) ,

where expectations are under the risk-neutral measure Q. No discounting is applied.
Bao et al. (2017, Theorem 5.1) prove that, given a value profile, there exists a Pareto-efficient,

financially fair risk-sharing rule which is unique. Furthermore, they have devised an iterative
algorithm to calculate the risk-sharing rule to within a desired error bound. As the authors
explain, the system decides at each time point on how much to pay out (Pn at the nth time point)
and how much to keep until the next time point (i.e. how much to place in the buffer at time n).

To illustrate the result of Bao et al. (2017), one of their numerical examples is outlined next.
Suppose within a three-period model that there are three agents. Agent n enters at time n−1 and
leaves at time n, for n = 1, 2, 3. At time n, Agent n pays the value of Xn into the system. The
random variable Xn has the distribution

P [Xn = 0.8] = 0.4, P [Xn = 1.2] = 0.6

Q [Xn = 0.8] = 0.5, Q [Xn = 1.2] = 0.5

and receives the contingent claim Pn from the system. Note that EQ(Xn) = 1 and recall that the
specified risk-neutral measure Q is simply any risk-neutral measure that is agreed upon by the
agents. The initial buffer size B0 = 1 and the investment returns are zero, so that Rn = 1 for
n = 1, 2, 3. Thus the budget constraint that must be satisfied by a risk-sharing rule is

Bn = Bn−1 +Xn − Pn for n = 1, 2, 3.

The financial fairness constraints are

EQ(Pn) = EQ(Xn) = 1 and EQ(Bn) = B0.

Thus each agent should expect to get back what they put into the system. Similarly, the expected
terminal buffer should equal its initial value, so that – in terms of the expectation – the buffer
is unchanged by the risk-sharing cashflows. Without requiring Pareto efficiency, it is clear that
setting Xn := Pn for n = 1, 2, 3 would satisfy the financial fairness constraints.

Imposing Pareto-efficiency, in addition to financial fairness, results in the system development
as shown in Figure 9. Each path in the tree represents a possible future state of the world, within
the chosen multi-period model. The utility functions are un(x) := − 1

2x
−2 for n = 1, 2, 3 (and

presumably also up(x) := − 1
2x
−2, although the buffer’s utility function does not appear to be

defined in Bao et al. 2017, Section 7.1).
Statistics on the mean and standard deviation of the contingent claim payments Pn made to

each agent is shown in Table 1. These are compared to the same statistics of the risks Xn which
each agent would receive if they weren’t in the risk-sharing system. The statistics are calculated
under the real-world measure P.

Under the risk-sharing system, the first two agents have the expected payments which are lower
that what they would get without the system. The variability of the payment size is also lowered
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B0 = 1

X1 = 0.8
P1 = 0.9493
B1 = 0.8507

X2 = 0.8
P2 = 0.8801
B2 = 0.7706

X3 = 0.8
P3 = 0.7844
B3 = 0.7862

X3 = 1.2
P3 = 0.9844
B3 = 0.9862

X2 = 1.2
P2 = 1.0181
B2 = 1.0326

X3 = 0.8
P3 = 0.9167
B3 = 0.9159

X3 = 1.2
P3 = 1.1167
B3 = 1.1159

X1 = 1.2
P1 = 1.0507
B1 = 1.1493

X2 = 0.8
P2 = 0.9818
B2 = 0.9675

X3 = 0.8
P3 = 0.8832
B3 = 0.8843

X3 = 1.2
P3 = 1.0832
B3 = 1.0843

X2 = 1.2
P2 = 1.1197
B2 = 1.2296

X3 = 0.8
P3 = 1.0157
B3 = 1.0139

X3 = 1.2
P3 = 1.2157
B3 = 1.2139

Figure 9: The Open-Ended Buffer example in Bao et al. (2017, Section 7.1). The values of Xn are
the payments into the system from the agents, the values Pn are the payments out of
the system to the agents and the values Bn represent the size of the buffer, which stays
in the system. Investment returns are zero and the agents have a power utility function.
The Pareto efficient, financially fair risk-sharing rule is (P1, P2, P3, B3). The values of B3

are close to, but not exactly the same as, those shown in Bao et al. (2017, Table E.6).
Here the intermediate and final buffer values are calculated from the budget equations
Bn = Bn−1 + Xn − Pn. Otherwise, the values are copied from Bao et al. (2017, Tables
E.3-E.5).

by risk-sharing. The risk-sharing system reduces the volatility of payments for the agents and the
price of this is a lower expected return, in absolute terms.

However, in relative terms, all of the agents get a higher expected return per unit of volatility of
payment size. For example, for the contingent claim paid out at time 1, we have EP (P1) /sdP (P1) =
20.335, compared to the same statistic for the payment into the system at time 1 (which is what
the first agent would get if they didn’t join the risk-sharing system): EP (X1) /sdP (X1) = 5.307.

The last agent has a higher expected payment with the risk-sharing system than without it.
However, they have a lower volatility of payment size. The last agent takes more risk, something
that is seen in other risk-sharing systems: the last generations have the highest expected return
and the highest volatility of return (Donnelly, 2017; Døskeland and Nordahl, 2008).
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n EP (Pn) sdP (Pn) EP(Pn)
sdP(Pn) EP (Xn) sdP (Xn) EP(Xn)

sdP(Xn)

1 1.010140 0.049676 20.335 1.040000 0.195959 5.307
2 1.023884 0.083940 12.198 1.040000 0.195959 5.307
3 1.043132 0.127110 8.207 1.040000 0.195959 5.307

Table 1: The Open-Ended Buffer example in Bao et al. (2017, Section 7.1). The values of Xn are
the payments into the system from the agents and the values Pn are the payments out of
the system to the agents. Investment returns are zero and the agents have a power utility
function. The Pareto efficient, financially fair risk-sharing rule is (P1, P2, P3, B3). The
values of B3 are close to, but not exactly the same as, those shown in Bao et al. (2017,
Table E.6). Here the statistics are calculated using the values of Xn and Pn displayed
in Figure 9. They differ slightly from the statistics in Bao et al. (2017, Table 1), due to
rounding error differences.

Barrieu and Scandolo (2008)

Barrieu and Scandolo (2008) wish to determine the optimal risk exchange between exactly two
agents over many time periods. The idea is that the agents will receive random cashflows at times
1, 2, . . . , N outside of the system. The agents will pay the cashflows received at time n into the
risk-sharing system and, in return, get a cashflow from the system at the same time n. The rules
for the allocation of the cashflows between the two agents are decided at time 0. Thus the total
cashflows paid into the system at each time n by the two agents is re-distributed between them at
time n, according to the rules decided at time 0. No buffer account is needed. Agents’ preferences
are modelled by quite general preference functionals.

Barrieu and Scandolo (2008) extend Pareto-efficiency from the one period to the multi-period
setting, and determine necessary and sufficient conditions for the Pareto-efficiency of an allocation.

As an illustration of their results, consider Agent A and Agent B over a two-period model
(Barrieu and Scandolo, 2008, Section 5.3.1). The two agents have exponential-type utility functions
uk(x) = − exp (−γkx), for x ∈ R, where γk is the coefficient of risk aversion, for k ∈ {A,B}. Such
a utility function implies constant absolute risk aversion. For example, an individual acting under
exponential utility would invest a constant amount in a risky stock in order to maximize the
expected value of the utility of their wealth at a fixed point in time.

Suppose that Agent k receives the random amount X1 at time 1 and X2 at time 2. The preference
functional of Agent k ∈ {A,B} is defined as

U (X1, X2) = E (uk(X1)) + βkE (uk(X2)) .

The constants βk > 0 can represent a preference for having money sooner rather than later.
Suppose that the total amount of money received by both agents at time n is represented by the

random variable X̂n, for n = 1, 2. The agents wish to share this money among themselves, so that
Agent A receives XA

n at time n = 1, 2. As all the money received at time n is re-allocated at time
n, it follows that Agent B receives XB

n := X̂n −XA
n at time n = 1, 2.

The result of Barrieu and Scandolo (2008, Section 5.3.1), here slightly paraphrased, is that an
allocation ((XA

1 , X
B
1 ), (XA

2 , X
B
2 )) is Pareto-efficient if and only if Agent A receives the allocation

XA
1 = 1

γA + γB

(
γBX̂1 + ln

(
γB
γA

)
+ ln (λ)

)
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at time 1 and the allocation

XA
2 = 1

γA + γB

(
γBX̂2 + ln

(
βA
βB

)
+ ln

(
γB
γA

)
+ ln (λ)

)
at time 2, for a constant λ ∈ R. The constant λ is determined as the solution of

γA exp
(
−γAXA

1
)

= λγB exp
(
−γBXB

1
)

βAγA exp
(
−γAXA

2
)

= λβBγB exp
(
−γBXB

2
)
.

The above forms of XA
1 and XA

2 imply that Agent B receives the allocation

XB
1 = X̂1 −XA

1 = 1
γA + γB

(
γAX̂1 + ln

(
γA
γB

)
− ln (λ)

)
at time 1 and the allocation

XB
2 = X̂2 −XA

2 = 1
γA + γB

(
γAX̂2 + ln

(
βB
βA

)
+ ln

(
γA
γB

)
− ln (λ)

)
at time 2.

33



6 Conclusion
Various mechanisms through which risk-sharing takes place have been described. These range
from participating policies, to funded pension plans to theoretical frameworks. The risk-sharing
mechanism is usually implicit: money is paid into the risk-sharing system, invested and then paid
out following pre-determined rules which aren’t explicitly fair to each generation. The theoretical
frameworks which apply financial fairness and Pareto-efficiency are a notable exception.

In participating policies (Section 3) the risk-sharing is achieved through either a buffer account.
The purpose of the buffer may be multi-purpose: in addition to risk-sharing across cohorts of poli-
cyholders, it may also smooth returns over a single cohort’s policy duration and provide capital to
support policy guarantees. Both the insurance company and the policyholders may have legitimate
claims on the buffer. It is difficult to tease out solely the inter-generational risk-sharing aspect in
those participating policies which include it. This is probably why there so few papers written on
he topic.

In funded pension plans (Section 4), the funding ratio may be used as an indirect measure of a
buffer. There is no explicit buffer account. Several papers consider the impact of CDC schemes on
different generations, usually based on Dutch CDC schemes. The general consensus is that they
are welfare-improving, compared to investing individually. The framework is generally the same:
use a simple Black-Scholes market model and assume that equal numbers of generations enter and
exit the scheme at the start of each time period.

The theoretical frameworks described in Section 5 come closest to risk-sharing mechanisms which
are designed to be fair. However, it is hard to see how to apply them in practice in a pension saving
and spending context. The rules for allocating money are calculated from algorithms, which make
them difficult to communicate. They rely on assigning a utility function to each agent in the
risk-sharing system, which immediately makes them quite abstract.
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