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HETSIM: Simulating Large-Scale Heterogeneous Systems using a Trace-driven, Synchronization and
Dependency-Aware Framework (Advances in ModSim Implementation)

Subhankar Pal∗, Kuba Kaszyk†, Murray Cole†, Michael O’Boyle†, Ronald Dreslinski∗ — Universities of ∗Michigan and †Edinburgh

INTRODUCTION – Early-stage design-space exploration (DSE)
and performance/power evaluation of large-scale heterogeneous
systems, such as those composed of chip multiprocessors (CMPs)
coupled with fixed-function logic, have gained importance in the
dark silicon era. Prior work has explored trace-based simulation
techniques, that offer good trade-offs between simulation accuracy
and speed, to simulate CMPs with up to 100s of threads, and
similar methods are used for accelerators. However, there is
lack of a unified framework for fast simulation of large-scale
heterogeneous systems. In this work, we propose HETSIM, a
trace-driven framework for estimating performance and power
of accelerators, CMPs and heterogeneous systems with 1000s of
cores. We present results on (i) a CMP and (ii) a heterogeneous
accelerator, demonstrating average speedups of 5.5× and 16.1×
over detailed gem5 models with deviations in simulated time and
power consumption of 4.6-28.1% and 1.7-3.3%, respectively.
PROPOSED APPROACH – Figure 1 summarizes the approach
used in HETSIM. The first step involves executing a multithreaded
version of the application on a native multiprocessing system
to verify correctness. Next, the application code is instrumented
with trace-generating function calls, and run through the native
system to generate trace files – one per thread/core/processing
element (PE) in the target architecture. Instrumentation is a one-
time overhead for DSE of the target’s memory subsystem. To
further reduce the burden on the end-user, we provide an LLVM-
based compiler pass, which automatically identifies target-specific
intrinsics and memory accesses, and re-compiles the code with
instrumentation. Lastly, the compute units in a gem5 model of the
target are swapped with trace replay engines (TREs) that execute
the “instructions” in their corresponding trace files, according to
the rates at which the cores/PEs would issue them.
CAPTURED OPERATIONS – HETSIM captures broad classes of
operations that appear in heterogeneous systems. Within a region-
of-interest in the application, HETSIM captures:
Memory Operations: Memory accesses are captured with high
fidelity using LD/ST tokens followed by their address. In addition,
a dependency list for memory operations allows HETSIM to model
flexible target architectures, such as complex in-order (InO) cores
that support prefetch instructions and multiple outstanding loads.
Computation: HETSIM encodes all non-memory instructions,
such as arithmetic ops, branches, etc. using the STALL token.
Consecutive STALLs in a trace file are coalesced for faster trace
replay and reduced trace storage. A TRE scales the number of
STALLs based on the level of acceleration in the target.
Communication: Tokens such as PUSH and POP followed by the
core ID are used to perform buffered pushes and pops of data.
These are universal primitives for fast PE-to-PE communication
in accelerators, such as systolic arrays. SIGNAL and WAIT are
common primitives employed for handshaking between differ-
ent hardware blocks. BARRIER is another useful primitive for
synchronization across a set of PEs. Finally, LOCK/UNLOCK, in
addition to the signaling and barrier synchronization primitives,
are used to model Pthreads calls for CMP systems.
EVALUATION – We provide a summary of our evaluation of
HETSIM for the DSE of two target systems.
Target 1: In-Order Manycore CMP – We evaluate a 32-128 core
CMP system with shared 16 kB L1 (1 slice/core) and 256 kB L2 (4
slices) caches, executing matrix multiplication (GeMM). Figure 2
shows the execution-time deviation and speedup of HETSIM over
a gem5 model that uses MinorCPU cores. We have also simulated
this system with up to 4096 cores using HETSIM on a 64-core
Threadripper 2990WX CPU with 128 GB of RAM (not shown).
Target 2: Heterogeneous Sparse Matrix Multiplication (SpMM)
Accelerator – We deployed HETSIM for scalability studies on a
heterogeneous SpMM accelerator prototype chip [1] that uses a
tiled architecture – 8 tiles with 4 custom PEs and 2 Arm Cortex-M
cores per tile. The algorithm is split into two phases – a multiply
phase that uses caches and a merge phase that uses scratchpads.
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• Implement a multithreaded version of the 
application using Pthreads
• Run it on a native multiprocessing system to 

verify functional correctness

• Next, the application code is instrumented with 
trace-generating function calls
• The instrumentation can be done manually or 

using an LLVM compiler pass 
• Run the traces through the native system to 

generate trace files, one per GPE and LCP

• Swap the detailed cores in Transmuter’s
architectural model with trace replay engines 
that execute the “instructions” in their 
corresponding trace files

HetSim: A Trace-Driven Simulation Approach
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Fig. 1. Trace-based simulation approach deployed in the proposed HETSIM.
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Fig. 2. Timing accuracy and speedup of HETSIM over gem5 models of a CMP
system executing GeMM (left) and a heterogeneous SpMM accelerator (right).

Figure 2 (right) plots the accuracy and speedup of HETSIM over a
gem5 core model of the accelerator that uses MinorCPUs for the
PEs as well as the Arm cores. The average deviation of HETSIM
from the measured chip performance is 34.6% for multiply and
4.0% for merge in our scalability studies (see Fig. 5 in [1]).

Overall, the timing and power deviations range from 4.6-28.1%
to 1.7-3.3%, respectively, over detailed gem5 models, with a
speedup of 4.7-17.3× (up to 8.6× for non-DSE experiments). Note
that hand-annotated traces were used for Target 2, and automating
trace instrumentation for accelerators is work-in-progress.

TABLE I
COMPARISON OF HETSIM WITH PRIOR TRACE-DRIVEN FRAMEWORKS.

Work ISA Thread-
ing Exec. Sim.

Limit
Synchro-
nization

Target
Platform

Trace Gen./
Replay

Elastic
Traces [2] Agnostic Single OoO - - CMP gem5/gem5
ElasticSim-
MATE [3] Armv7/8 Multi OoO 128 OpenMP CMP gem5/gem5
Synchro-
Trace [4] Agnostic Multi InO 64 Pthreads/

OpenMP CMP Native/gem5
SST/
Macro [5] N/A Multi OoO 1000 MPI Multi-

CMP Sys. Native/Custom

HETSIM Agnostic Multi InO 4096 Pthreads/
Custom

CMP/accel.
/hetero. Native/gem5

RELATED WORK – A few works have explored similar trace-
driven methodologies as HETSIM, albeit only for simulating
relatively small-scale CMP systems. We provide a qualitative
comparison over these work in Table I. One close work, Synchro-
Trace [4], uses dependency and synchronization aware traces for
CMP systems with simple in-order cores. In contrast, HETSIM
is applicable to CMPs, accelerators and heterogeneous targets, as
well as offers flexibility to simulate complex in-order cores.
DISCUSSION – HETSIM addresses the issue of simulating hetero-
geneous systems with 1000s of cores within practical constraints.
We have used HETSIM to evaluate the impact of bandwidth and
clock speed scaling on a heterogeneous accelerator. We are in the
process of using the same for a reconfigurable system in a multi-
University project. The current effort is focused on automatic trace
instrumentation, to make it more accurate and robust and support
heterogeneous systems.
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