

Edinburgh Research Explorer

HETSIM: Simulating Large-Scale Heterogeneous Systems using
a Trace-driven, Synchronization and Dependency-Aware
Framework

Citation for published version:
Pal, S, Kaszyk, K, Cole, M, O'Boyle, MFP & Dreslinski, R 2020, 'HETSIM: Simulating Large-Scale
Heterogeneous Systems using a Trace-driven, Synchronization and Dependency-Aware Framework', Paper
presented at Workshop on Modeling & Simulation of Systems and Applications 2020, Virtual Workshop,
12/08/20 - 12/08/20.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Jul. 2021

https://www.research.ed.ac.uk/en/publications/cf8683f9-960a-4df5-8887-27183fdcc086

HETSIM: Simulating Large-Scale Heterogeneous Systems using a Trace-driven, Synchronization and
Dependency-Aware Framework (Advances in ModSim Implementation)

Subhankar Pal∗, Kuba Kaszyk†, Murray Cole†, Michael O’Boyle†, Ronald Dreslinski∗ — Universities of ∗Michigan and †Edinburgh

INTRODUCTION – Early-stage design-space exploration (DSE)
and performance/power evaluation of large-scale heterogeneous
systems, such as those composed of chip multiprocessors (CMPs)
coupled with fixed-function logic, have gained importance in the
dark silicon era. Prior work has explored trace-based simulation
techniques, that offer good trade-offs between simulation accuracy
and speed, to simulate CMPs with up to 100s of threads, and
similar methods are used for accelerators. However, there is
lack of a unified framework for fast simulation of large-scale
heterogeneous systems. In this work, we propose HETSIM, a
trace-driven framework for estimating performance and power
of accelerators, CMPs and heterogeneous systems with 1000s of
cores. We present results on (i) a CMP and (ii) a heterogeneous
accelerator, demonstrating average speedups of 5.5× and 16.1×
over detailed gem5 models with deviations in simulated time and
power consumption of 4.6-28.1% and 1.7-3.3%, respectively.
PROPOSED APPROACH – Figure 1 summarizes the approach
used in HETSIM. The first step involves executing a multithreaded
version of the application on a native multiprocessing system
to verify correctness. Next, the application code is instrumented
with trace-generating function calls, and run through the native
system to generate trace files – one per thread/core/processing
element (PE) in the target architecture. Instrumentation is a one-
time overhead for DSE of the target’s memory subsystem. To
further reduce the burden on the end-user, we provide an LLVM-
based compiler pass, which automatically identifies target-specific
intrinsics and memory accesses, and re-compiles the code with
instrumentation. Lastly, the compute units in a gem5 model of the
target are swapped with trace replay engines (TREs) that execute
the “instructions” in their corresponding trace files, according to
the rates at which the cores/PEs would issue them.
CAPTURED OPERATIONS – HETSIM captures broad classes of
operations that appear in heterogeneous systems. Within a region-
of-interest in the application, HETSIM captures:
Memory Operations: Memory accesses are captured with high
fidelity using LD/ST tokens followed by their address. In addition,
a dependency list for memory operations allows HETSIM to model
flexible target architectures, such as complex in-order (InO) cores
that support prefetch instructions and multiple outstanding loads.
Computation: HETSIM encodes all non-memory instructions,
such as arithmetic ops, branches, etc. using the STALL token.
Consecutive STALLs in a trace file are coalesced for faster trace
replay and reduced trace storage. A TRE scales the number of
STALLs based on the level of acceleration in the target.
Communication: Tokens such as PUSH and POP followed by the
core ID are used to perform buffered pushes and pops of data.
These are universal primitives for fast PE-to-PE communication
in accelerators, such as systolic arrays. SIGNAL and WAIT are
common primitives employed for handshaking between differ-
ent hardware blocks. BARRIER is another useful primitive for
synchronization across a set of PEs. Finally, LOCK/UNLOCK, in
addition to the signaling and barrier synchronization primitives,
are used to model Pthreads calls for CMP systems.
EVALUATION – We provide a summary of our evaluation of
HETSIM for the DSE of two target systems.
Target 1: In-Order Manycore CMP – We evaluate a 32-128 core
CMP system with shared 16 kB L1 (1 slice/core) and 256 kB L2 (4
slices) caches, executing matrix multiplication (GeMM). Figure 2
shows the execution-time deviation and speedup of HETSIM over
a gem5 model that uses MinorCPU cores. We have also simulated
this system with up to 4096 cores using HETSIM on a 64-core
Threadripper 2990WX CPU with 128 GB of RAM (not shown).
Target 2: Heterogeneous Sparse Matrix Multiplication (SpMM)
Accelerator – We deployed HETSIM for scalability studies on a
heterogeneous SpMM accelerator prototype chip [1] that uses a
tiled architecture – 8 tiles with 4 custom PEs and 2 Arm Cortex-M
cores per tile. The algorithm is split into two phases – a multiply
phase that uses caches and a merge phase that uses scratchpads.

Not for public release. Handle internal to DARPA/MTO and SDH performers only. Exceptions may be approved by the SDH Program Manager. 69

• Implement a multithreaded version of the
application using Pthreads
• Run it on a native multiprocessing system to

verify functional correctness

• Next, the application code is instrumented with
trace-generating function calls
• The instrumentation can be done manually or

using an LLVM compiler pass
• Run the traces through the native system to

generate trace files, one per GPE and LCP

• Swap the detailed cores in Transmuter’s
architectural model with trace replay engines
that execute the “instructions” in their
corresponding trace files

HetSim: A Trace-Driven Simulation Approach

Trace File 0

Target Architecture Model

1:
 F

un
ct

io
na

l
Ve

rif
ic

at
io

n Multithreaded
Application Code

Core
0

Core
1

Core
N…

Trace Instrumentation
(automatic/manual)

Instrumented
Application Code

Core
0

Core
1

Core
N… …

Functionally
Verified Code

SMP Hardware

SMP Hardware

Compute
Subsystem

Performance
+ Power

Estimates

Memory
Subsys-

tem

2:
 T

ra
ce

G

en
er

at
io

n
3:

 S
im

ul
at

io
n Target Architecture Model

Trace Replay
Engine

Subsystem

Memory
Subsys-

tem

Trace File

Fig. 1. Trace-based simulation approach deployed in the proposed HETSIM.

0
5
10
15
20
25

0%
20%
40%
60%
80%

100%

512 1024 2048

Sp
ee

du
p

ov
er

ge

m
5-

SE

De
vi

at
io

n
ov

er

ge
m

5-
SE

Matrix Dimension (fixed density of 6.4%)

Deviation Speedup

0
2
4
6
8
10

0%
20%
40%
60%
80%

100%

32 64 128 32 64 128

Sp
ee

du
p

ov
er

ge

m
5-

SE

De
vi

at
io

n
ov

er

ge
m

5-
SE

Cores

Deviation Speedup

Mat Dim.=256 Mat Dim.=512
Fig. 2. Timing accuracy and speedup of HETSIM over gem5 models of a CMP
system executing GeMM (left) and a heterogeneous SpMM accelerator (right).

Figure 2 (right) plots the accuracy and speedup of HETSIM over a
gem5 core model of the accelerator that uses MinorCPUs for the
PEs as well as the Arm cores. The average deviation of HETSIM
from the measured chip performance is 34.6% for multiply and
4.0% for merge in our scalability studies (see Fig. 5 in [1]).

Overall, the timing and power deviations range from 4.6-28.1%
to 1.7-3.3%, respectively, over detailed gem5 models, with a
speedup of 4.7-17.3× (up to 8.6× for non-DSE experiments). Note
that hand-annotated traces were used for Target 2, and automating
trace instrumentation for accelerators is work-in-progress.

TABLE I
COMPARISON OF HETSIM WITH PRIOR TRACE-DRIVEN FRAMEWORKS.

Work ISA Thread-
ing Exec. Sim.

Limit
Synchro-
nization

Target
Platform

Trace Gen./
Replay

Elastic
Traces [2] Agnostic Single OoO - - CMP gem5/gem5
ElasticSim-
MATE [3] Armv7/8 Multi OoO 128 OpenMP CMP gem5/gem5
Synchro-
Trace [4] Agnostic Multi InO 64 Pthreads/

OpenMP CMP Native/gem5
SST/
Macro [5] N/A Multi OoO 1000 MPI Multi-

CMP Sys. Native/Custom

HETSIM Agnostic Multi InO 4096 Pthreads/
Custom

CMP/accel.
/hetero. Native/gem5

RELATED WORK – A few works have explored similar trace-
driven methodologies as HETSIM, albeit only for simulating
relatively small-scale CMP systems. We provide a qualitative
comparison over these work in Table I. One close work, Synchro-
Trace [4], uses dependency and synchronization aware traces for
CMP systems with simple in-order cores. In contrast, HETSIM
is applicable to CMPs, accelerators and heterogeneous targets, as
well as offers flexibility to simulate complex in-order cores.
DISCUSSION – HETSIM addresses the issue of simulating hetero-
geneous systems with 1000s of cores within practical constraints.
We have used HETSIM to evaluate the impact of bandwidth and
clock speed scaling on a heterogeneous accelerator. We are in the
process of using the same for a reconfigurable system in a multi-
University project. The current effort is focused on automatic trace
instrumentation, to make it more accurate and robust and support
heterogeneous systems.

REFERENCES

[1] S. Pal et al., “A 7.3 M Output Non-Zeros/J Sparse Matrix-Matrix Multiplication
Accelerator using Memory Reconfiguration in 40 nm,” VLSI, 2019.

[2] R. Jagtap et al., “Exploring system performance using elastic traces: Fast,
accurate and portable,” SAMOS, 2017.

[3] A. Nocua et al., “ElasticSimMATE: A fast and accurate gem5 trace-driven
simulator for multicore systems,” ReCoSoC, 2017.

[4] K. Sangaiah et al., “SynchroTrace: Synchronization-Aware architecture-
Agnostic traces for lightweight multicore simulation of CMP and HPC
workloads,” TACO, 2018.

[5] C. L. Janssen et al., “A simulator for large-scale parallel computer architectures,”
IJDST, 2010.

