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Abstract: Microcirculatory dysfunction is associated with organ failure, poor response to vasoactive
drugs and increased mortality in cirrhosis, but monitoring techniques are not established.
We hypothesized that the chorioretinal structures of the eye could be visualized as a non-invasive
proxy of the systemic microvasculature in cirrhosis and would correlate with renal dysfunction.
Optical Coherence Tomography (OCT) was performed to image the retina in n = 55 cirrhosis patients
being assessed for liver transplantation. OCT parameters were compared with established cohorts
of age- and sex-matched healthy volunteers (HV) and patients with chronic kidney disease (CKD).
Retinal thickness, macular volume and choroidal thickness were significantly reduced relative to
HV and comparable to CKD patients (macular volume: HV vs. cirrhosis mean difference 0.44 mm3

(95% CI 0.26–0.61), p ≤ 0.0001). Reduced retinal thickness and macular volume correlated with renal
dysfunction in cirrhosis (macular volume vs. MDRD-6 eGFR r = 0.40, p = 0.006). Retinal changes had
resolved substantially 6 weeks following transplantation. There was an inverse association between
choroidal thickness and circulating markers of endothelial dysfunction (endothelin-1 r = −0.49,
p ≤ 0.001; von Willebrand factor r = −0.32, p ≤ 0.05). Retinal OCT may represent a non-invasive
window to the microcirculation in cirrhosis and a dynamic measure of renal and endothelial
dysfunction. Validation in different cirrhosis populations is now required.

Keywords: microcirculation; cirrhosis; optical coherence tomography; renal dysfunction

1. Introduction

Decompensation and organ dysfunction in liver cirrhosis are characterised by systemic
inflammation, regional microcirculatory alterations and profound systemic haemodynamic
adaptations [1,2]. In patients with cirrhosis, splanchnic vasodilatation causes arterial ‘steal’ from the
systemic circulation into the splanchnic bed [3], which decreases the effective blood volume and in
turn triggers a variety of compensatory mechanisms. Marked changes occur in the renal circulation
secondary to neurohormonal activation (renin-angiotensin-aldosterone system, sympathetic nervous
system, vasopressin), a loss of renal autoregulation and an imbalance of intra-renal vasoconstrictors
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and vasodilators. Cardiac dysfunction (including cirrhotic or alcoholic cardiomyopathy) compounds
circulatory derangements and kidney hypoperfusion. Accordingly, haemodynamic changes have
been demonstrated in a range of extrahepatic vascular beds using modern vascular imaging
techniques [4,5]. However, although the macrocirculation has been extensively characterised in
cirrhosis, the microcirculation has been relatively understudied [6]. Emerging data suggest that, as in
patients with severe sepsis [7], dysregulated systemic inflammation and microcirculatory alterations in
different cirrhosis phenotypes may correlate with poor clinical outcomes [8]. Furthermore, despite
normalisation of systemic haemodynamic variables in cirrhosis using fluids and vasoactive drugs,
there is not necessarily a parallel improvement in microcirculatory perfusion and restoration of tissue
oxygenation. This loss of haemodynamic coherence could explain the variability in response to
terlipressin in patients with hepatorenal syndrome, illustrated by the drug’s heterogeneous effect
on renal perfusion indices [9]. Assessment of the microcirculation could therefore play a potentially
critical role in understanding the complex pathophysiology in an individual patient, monitoring of
treatment interventions, and prognostication across different clinical states of cirrhosis.

Although there are no techniques to monitor the microcirculation in widespread clinical use,
a number of modalities have recently been examined. In particular, novel handheld microscopes [10] have
been used to visualise the sublingual microcirculation in critical illness (e.g., sepsis, high-risk surgery) [11]
and also to study the effects of pharmacological therapies targeting the microcirculation [12]. The retinal
vasculature is an established non-invasive proxy of systemic microvascular health. Optical coherence
tomography (OCT) allows direct visualisation of chorioretinal microvascular structures. We recently
used OCT to show that chorioretinal thinning in chronic kidney disease (CKD) is associated with lower
eGFR and correlates with circulating markers of inflammation and endothelial function [13]. As renal
(and other organ) dysfunction in decompensated cirrhosis is common, associated with a high mortality,
and characterised by a systemic proinflammatory and pro-oxidant milieu, we hypothesised that OCT
could be used to detect and monitor chorioretinal changes within the eye, providing a surrogate measure
of the renal and extrahepatic microcirculations. Here we report an initial pilot study in a cohort of patients
with liver cirrhosis undergoing assessment for liver transplantation and show significant chorioretinal
alterations that correlated with renal function and markers of endothelial dysfunction. Furthermore,
these OCT features were dynamic and resolved substantially following liver transplantation.

2. Experimental Section

2.1. Ethics

This observational study was conducted according to the ethical principles of the Declaration of
Helsinki 2013 and following approval from the North West—Haydock Research Ethics Committee (REC
Reference: 17/NW/0692) and the National Health Service (NHS) Lothian Research and Development
department (Reference: 2017/0326). All patients gave written informed consent to participate in the study.

2.2. Participants

Consecutive male and female adult patients with liver cirrhosis admitted to the Edinburgh
Transplant Centre (Royal Infirmary of Edinburgh, Edinburgh, UK) over a 6-month period were invited
to join this study. Inclusion criteria were: male or female subjects over 18 years of age; patients with
cirrhosis being assessed for liver transplantation; able to give informed consent and able to understand
and willing to comply with the requirements of the study. Exclusion criteria were: lack of capacity to
give informed consent; patients with acute liver failure being assessed for liver transplantation.

Permission was obtained to record the results of all investigations performed routinely as part of
the NHS transplant assessment process. These data included: routine blood tests (full blood count,
urea and electrolytes, liver function tests and coagulation); urinary sodium and creatinine clearance;
anthropometric assessments. Estimated glomerular filtration rate (eGFR) was calculated using the
Modification of Diet in Renal Disease-6 (MDRD-6) equation. The MDRD-6 equation has greater
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accuracy in patients with cirrhosis (compared to the traditional MDRD-4 equation) and the Organ
Procurement and Transplantation Network consensus supports the use of MDRD-6 when assessing
renal function in transplant assessment patients [14]. Results of additional tests including pulmonary
function tests, cardio-pulmonary exercise testing, ECG and echocardiogram were recorded, but were
not included in this analysis.

2.3. Study Visit

2.3.1. Optical Coherence Tomography (OCT)

Retinal assessment included retinal thickness, retinal nerve fiber layer (RNFL) thickness, macular
volume and choroidal thickness as previously described [13], using the Heidelberg Spectralis OCT
imaging platform that yields images with an axial or depth resolution of 3 µm/pixel and lateral
resolution of 10 µm/pixel enabling identification of the retinal layers and choroid for quantification.
The OCT imaging and analysis methodology is shown in Figure 1. Each procedure was performed
under the same degree lighting (i.e., a dimmed room so as to avoid the need for pupillary dilatation)
and took approximately 5–10 min to complete. Where possible, both eyes were scanned; however,
images obtained from the right eye were preferentially used for analysis. In order to minimize bias,
all OCT image analysis was performed by an expert assessor (Kirstie Hetherington) who was blinded
to clinical status.

Imaging metrics (retinal thickness, RNFL thickness, macular volume, and choroidal thickness)
in cirrhosis patients were compared with two pre-existing cohorts, of age- and sex-matched healthy
volunteers (HV, n = 50) and patients with chronic kidney disease (CKD, n = 50), who had previously
undergone OCT assessment on the same high-resolution Heidelberg SPECTRALIS® platform.
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Figure 1. (a) The left panel is a representative en face retinal optical coherence tomography (OCT)
image obtained using the Heidelberg SPECTRALIS® OCT platform. The right panel is a cross sectional
image taken at the level of the green line on the en face view. The line of the OCT scan passes through
the fovea and optic disc. Choroidal thickness was measured manually at 3 locations on the macula
using enhanced depth imaging technology (I: 2 mm nasal to the fovea, II = sub-foveal, III = 2 mm
temporal to the fovea). (b) Sixty-one sequential horizontal line scans were performed covering the
macular area. The retinal thickness of each area within the Early Treatment Diabetic Retinopathy Study
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(ETDRS) map (shown in the left panel) was automatically measured and then all areas combined
to give the macular volume. The retinal layer is defined as the area between the internal limiting
membrane (ILM) and the hypo-reflective line between the retinal pigment epithelium (RPE) and the
choriocapillaries (CC) (depicted in the en face view of the macula shown in the right panel). The ETDRS
map subdivides the macula, and retinal thickness was measured in eight zones (IS, inner-superior; IN,
inner-nasal; II, inner-inferior; IT, inner-temporal; OS, outer-superior; ON, outer-nasal; OI, outer-inferior;
OT, outer-temporal). All measurements were made by a trained technician who was blinded to all
participant details.

2.3.2. Sample Collection and Analysis

Blood was collected for routine serum biochemistry tests and plasma biomarker analysis. Validated
ELISA kits were used to measure circulating levels of von Willebrand factor (Human von Willebrand
Factor ELISA kit, #ab108918; Abcam, Cambridge, UK) and Endothelin-1 (Endothelin-1 Quantikine’
ELISA kit from, #DET100; R&D Systems, Abingdon, UK). A urine sample was collected for urinary
protein to creatinine ratio (uPCR) and biomarker analysis.

2.4. Follow-Up

Participants who were listed and received a liver transplant during the timeframe of the study
were invited for a follow-up study visit at the Royal Infirmary of Edinburgh Clinical Research Facility,
approximately 6 weeks after their transplant date. At this visit all study assessments were repeated.
Morbidity data were collected for all transplanted patients including the warm ischaemic time,
graft function at 6 weeks, the development of AKI or need for renal replacement therapy at the time of
transplantation, length of Intensive Care Unit stay, and overall hospital stay.

2.5. Statistics

2.5.1. Sample Size

This was a pilot study and, as such, the sample size was pragmatic, based upon the anticipated
recruitment rate and study duration. Approximately 4–5 patients per week are admitted for liver
transplant assessment, therefore based on a refusal rate of 50%, we anticipated recruitment of 54 patients
over a 6-month period.

2.5.2. Statistical analysis

Summary statistics (n, mean, standard deviation (SD), median, min, max) are presented for
all recruited patients, and also for the subgroup who received a liver transplant during the period
of the study to allow comparison. All data were assessed for normality, and log transformed if
appropriate, before parametric tests were used. Two-tailed independent sample t-tests were used to
compare continuous pre-transplant data according to AKI at transplantation, graft loss and survival
(‘yes’ × ‘no’). Chi squared tests were used to examine relationships between liver disease severity scores
and categorical outcomes. One-way analysis of variance (ANOVA) was used to compare continuous
post-transplant outcomes according to liver disease severity (≥3 categories, e.g., Child-Pugh Class
A/B/C). Pearson’s correlations were used to assess relationships between continuous pre-transplant
and post-transplant data. A p-value < 0.05 was considered statistically significant. All statistics were
calculated using IBM SPSS® Statistics, version 24 (IBM, Armonk, NY, USA).
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3. Results

3.1. Participant Disposition

A total of 55 patients with cirrhosis were recruited. Of these, two participants were too unwell to
undergo OCT scanning, one participant was unwilling to attend, and three participants were unable to
comply with the examination process. Results of the remaining 49 participants were used for analysis;
29 (59%) were male, mean age 58 ± 9 years and mean eGFR 100 ± 24 mL/min/1.73 m2. The mean
Model for End-Stage Liver Disease (MELD) score was 14 (range 6–27) and the mean United Kingdom
Model for End-Stage Liver Disease (UKELD) score was 53 (range 45–62). Seven (14%) participants had
Child-Pugh (C-P) class A disease, 22 (45%) C-P class B, and 20 (41%) C-P class C. OCT imaging metrics
in cirrhosis patients were compared with pre-existing cohorts of age- and sex-matched HV and CKD
patients. Baseline patient characteristics are summarised in Table 1.

Table 1. Participant Characteristics.

Participant Characteristics Healthy Volunteer
Cohort (n = 50)

Cirrhosis Cohort
(n = 49)

CKD Cohort
(n = 50)

Demographics
Age (years) 50 ± 8 58 ± 9 53 ± 16

Male sex, n (%) 28 (56) 29 (59) 33 (66)
Clinical measurements

BMI (kg/m2) 25.5 ± 4.3 27.3 ± 5.3 26.9 ± 5.0
Systolic blood pressure

(mmHg) 129 ± 14 124.9 ± 17 134 ± 17

Diastolic blood pressure
(mmHg) 81 ± 9 68.8 ± 9 78 ± 10

Mean arterial pressure
(mmHg) 95 ± 16 87 ± 10 96 ± 10

Serum creatinine (µmol/L) 74 ± 11 70 ± 18 219 ± 126
CKD stage

1 (eGFR ≥ 90 + uPCR > 15) - 6 2
2 (eGFR 60–89 + uPCR > 15) - 5 8

3 (eGFR 30–59) - 2 20
4 (eGFR 15–29) - 0 13
5 (eGFR < 15) - 0 8

Estimated GFR,
mL/min/1.73 m2 98 ± 13 100 ± 24 37 ± 23

Data shown as mean ± standard deviation unless stated. BMI, body mass index; CKD, chronic kidney disease;
eGFR, estimated glomerular filtration rate; uPCR, urinary protein creatinine ratio.

3.2. Chorioretinal Measurements in Cirrhosis

3.2.1. Chorioretinal Parameters in Cirrhosis, CKD and HV

Participants with cirrhosis had marked retinal thinning at all macular locations when compared
to HV (F 82.3, p < 0.001) (Supplementary Table S1). These abnormalities were comparable to, or more
severe than, those shown in CKD patients, despite marked disparity in eGFR (eGFR cirrhosis, mean± SD;
100 ± 24 mL/min/1.73 m2, CKD: 37 ± 23 mL/min/1.73 m2 (Figure 2A). In keeping with a thinner retina,
participants with cirrhosis had a significant reduction in macular volume (HV vs. cirrhosis mean
difference 0.44 mm3, 95% CI 0.26–0.61, p < 0.0001) (Figure 2B; Supplementary Table S2). Moreover,
in all three macular locations significant choroidal thinning was recorded (Figure 2C; Supplementary
Table S3). This was most marked in locations II and III where the choroid was found to be ~30%
thinner in cirrhosis relative to HV. No significant difference was found in either retinal thickness,
macular volume or choroidal thickness between patients when grouped by aetiology of liver disease
(alcohol related liver disease, chronic viral hepatitis, non-alcoholic fatty liver disease, primary biliary
cholangitis, primary sclerosing cholangitis, or cryptogenic cirrhosis).



J. Clin. Med. 2020, 9, 3332 6 of 11

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 6 of 12 

 

 

Figure 2. (A) Box and whiskers plot comparison of retinal thickness at each macular location between 

participants with cirrhosis, healthy volunteers (HV) and chronic kidney disease (CKD). ON; outer 

nasal, OS; outer superior, OT, outer temporal, OI; outer inferior, IN; inner nasal, IS; inner superior, IT; 

inner temporal, II; inner inferior. (B) Box and whiskers plot comparison of macular volume. (C) Box 

and whiskers plot comparison of choroidal thickness. All whiskers represent minimum to maximum. 

* p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001. 

3.2.2. Correlation of Chorioretinal Parameters with Renal Function and Liver Disease Severity 

Retinal thickness and macular volume were shown to correlate significantly with (log-

transformed) creatinine and eGFR. As renal function declined, so too did retinal thickness and 

macular volume (Figure 3). No significant association was found between MELD score and either 

retinal thickness or macular volume; however, the data suggested a non-significant trend towards 

lower retinal thickness and macular volume with increasing severity of liver disease, as defined by 

cirrhotic prognostic subgroup and variceal severity (Figures S2 and S3). Choroidal thickness did not 

correlate with renal function, MELD, or severity of liver disease. 

Figure 2. (A) Box and whiskers plot comparison of retinal thickness at each macular location between
participants with cirrhosis, healthy volunteers (HV) and chronic kidney disease (CKD). ON; outer nasal,
OS; outer superior, OT, outer temporal, OI; outer inferior, IN; inner nasal, IS; inner superior, IT;
inner temporal, II; inner inferior. (B) Box and whiskers plot comparison of macular volume. (C) Box
and whiskers plot comparison of choroidal thickness. All whiskers represent minimum to maximum.
* p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001.

3.2.2. Correlation of Chorioretinal Parameters with Renal Function and Liver Disease Severity

Retinal thickness and macular volume were shown to correlate significantly with (log-transformed)
creatinine and eGFR. As renal function declined, so too did retinal thickness and macular volume
(Figure 3). No significant association was found between MELD score and either retinal thickness or
macular volume; however, the data suggested a non-significant trend towards lower retinal thickness
and macular volume with increasing severity of liver disease, as defined by cirrhotic prognostic
subgroup and variceal severity (Figures S2 and S3). Choroidal thickness did not correlate with renal
function, MELD, or severity of liver disease.

3.2.3. Alterations in Chorioretinal Parameters with Liver Transplantation

A total of 14 participants underwent liver transplantation over the duration of the study and were
invited back for repeat OCT. Three participants were lost to follow up (one participant died and two
did not attend), and two were unable to comply with the examination process; therefore, comparison
of chorioretinal parameters before and after transplantation was possible in nine participants. Retinal
thickness (Figure 4; Supplementary Table S4) and macular volume measurements (Supplementary
Table S5) had increased significantly 6 weeks after liver transplant (retinal thickness: F = 9.5, p = 0.003
(two-way mixed design ANOVA); macular volume pre-OLT (mean ± SD) 7.9 ± 0.3 mm3 vs. post-OLT
8.1 ± 0.3 mm3, p = 0.0007). No significant change was seen in choroidal thickness when re-measured
after OLT. The data also suggested that choroidal thinning in location I, when measured at liver
transplant assessment, may predict post-transplant acute kidney injury (AKI 170 ± 9 µm vs. no-AKI
231 ± 11 µm, p < 0.05) (Figure S1), although patient numbers were small. A similar pattern was seen at
location II and III, however these data did not reach statistical significance.
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Figure 3. (A,B) Scatter plots of retinal thickness (RT) with estimated glomerular filtration rate (eGFR).
(C) Scatter plot of macular volume (MV) and estimated glomerular filtration rate. Pearson correlation
coefficients are shown (top right). IN, inner nasal; IS, inner superior; IT, inner temporal; II, inner inferior;
ON, outer nasal; OS, outer superior; OT, outer temporal; OI, outer inferior. MDRD-6, Modification of
Diet in Renal Disease-6 equation.
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3.2.4. Chorioretinal Parameters and Markers of Inflammation and Endothelial Dysfunction

Based on these data, further work was performed to explore the mechanistic roles of inflammation
and endothelial dysfunction in mediating chorioretinal changes. Plasma von Willebrand factor (vWF;
an endothelial activation marker) [15] and endothelin-1 (ET-1; an endogenous vasoconstrictor strongly
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linked with endothelial dysfunction) [16] were measured. Both vWF and ET-1 were markedly elevated
before OLT, correlating significantly with severity of liver disease (MELD and variceal staging) and
decreased substantially when rechecked 6 weeks after transplantation (Table 2). Moreover, there was a
statistically significant, negative association between both plasma vWF and ET-1 level and choroidal
thickness (Figure 5). No significant association was found between vWF or ET-1 and measures of
retinal thickness and macular volume.

Table 2. Serum levels of endothelin-1 (ET-1) and von Willebrand factor (vWF) pre and post orthotopic
liver transplant (OLT).

Pre OLT (n = 55) Post OLT (n = 12) p-Value

mean ± SD mean ± SD
vWF

(mIU/mL) 3047 ± 1330 1744 ± 637 0.006

ET-1
(pg/mL) 3.9 ± 1.3 3.1 ± 0.6 0.06

Data shown as mean ± standard deviation (SD) with two-tailed paired t-test.
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4. Discussion

Recent advances in multimodal retinal imaging devices enable non-invasive visualisation of the
chorioretinal microvascular structures at high resolution. Examination of the microvasculature in
this way has been used extensively in the research of both retinal and neurological disorders [17,18].
Moreover, retinal microvascular changes have been linked to increased cardiovascular risk [19,20],
including the incidence of stroke [21] and coronary heart disease [22], suggesting that these abnormalities
may reflect systemic microcirculatory dysfunction, and could represent an early, non-invasive
technique to detect subclinical vascular pathology [22]. Cirrhosis is associated with widespread
microcirculatory dysfunction and haemodynamic abnormalities. Correction of macrocirculatory
derangement (fluid resuscitation and vasoactive drugs) does not always lead to microcirculatory
improvement, and haemodynamic coherence is lost [23]. Such microcirculatory dysfunction is
independently associated with adverse outcomes, even after normalisation of systemic haemodynamic
parameters [24,25].

We have shown, to our knowledge for the first time, significant chorioretinal abnormalities in
patients with cirrhosis of diverse aetiology, attending for liver transplant assessment. Compared to an
age- and sex-matched cohort of healthy volunteers, participants with cirrhosis exhibited significant
retinal thinning and reduced macular volume, with changes comparable to or more severe than those
seen in CKD. Moreover, as in CKD, retinal thickness and macular volume were found to correlate
significantly with eGFR. It is widely recognised that serum creatinine based estimating equations
overestimate GFR by >20% in patients with cirrhosis [26]. It is possible that OCT scanning may
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represent a more effective indicator of renal risk (both acute kidney injury at transplantation and
progressive renal dysfunction thereafter) when compared to serum creatinine or eGFR. Further work is
required to understand the causality of these chorioretinal abnormalities and ascertain their ability to
predict risk. Intriguingly, these chorioretinal abnormalities were dynamic, and reversed substantially
following liver transplantation. Furthermore, the choroid (a dense microvascular network receiving
>80% retinal blood flow) was ~30% thinner in cirrhosis compared with HV, representing significant
vascular rarefaction [27]. Importantly, choroidal thinning was positively associated with markers of
endothelial dysfunction (ET-1) and systemic inflammation (vWF). This is consistent with the theory
that choroidal thinning may reflect systemic microvascular dysfunction.

In a similar fashion, video microscopy (VM) has been used to facilitate in vivo visualisation of
the sublingual microcirculation. Using this technique, Sakr et al. showed an association between the
degree of microcirculatory dysfunction and progression to multiorgan failure and death in patients
with septic shock [7]. Using the same technology, Sheikh et al. demonstrated a significant reduction in
sublingual microvascular blood flow in patients with decompensated cirrhosis, compared to those with
compensated disease [28]. Moreover, small but significant alterations in the sublingual microcirculation
were shown in patients with cirrhosis compared to HV matched for age, sex, and cardiovascular risk
factors [29]. However, a recent study using VM in combination with Near Infrared Spectroscopy did
not show any association between peripheral microcirculatory parameters and the severity of liver
disease [30].

A key observation in this pilot study was that chorioretinal abnormalities in cirrhosis patients
resolved substantially following liver transplantation. Further work is required to validate our
observations and to elucidate the cause(s) of these OCT changes in cirrhosis, such as the potential role
of increased sympathetic tone. Indeed, while the choroidal circulation has autonomic innervation,
the retinal circulation does not. Thus, the thinning of the outer retina and choroid would be consistent
with increased sympathetic tone affecting the choroidal vasculature. We did not investigate measures
of sympathetic activity (e.g., serum norepinephrine) in the current pilot study, but these would be
an interesting area for future research in different cirrhosis settings, such as acute decompensation
of cirrhosis. A limitation of this study was the small sub-group (n = 9) of patients transplanted
within the study period. A more prolonged period of follow-up would increase the number of
participants with chorioretinal data before and after OLT, improving the statistical power. Future
studies could also use data linkage to explore whether these OCT metrics are predictive of renal, liver,
and cardiovascular outcomes in cirrhosis populations. It is conceivable that chorioretinal microvascular
changes may also represent a dynamic and accessible non-invasive response marker for guiding the
use of vasoactive pharmacological agents in cirrhosis such as non-selective β-blockers for variceal
prophylaxis or vasoconstrictors for hepatorenal syndrome. The recent development of portable OCT
machines will permit evaluation in different clinical settings, including in patients who are too unwell
to transfer to a research facility.
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