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University of Edinburgh, Edinburgh, UK A time step must be selected for any explicit discrete element method (DEM)
simulation. This time step must be small enough to ensure a stable simula-

Correspondence ] ) . .

Kevin J. Hanley, School of Engineering, tion but should not be overly conservative for computational efficiency. There

Institute for Infrastructure and are established methods to estimate critical time steps for simulations of spher-

Environment, The University of
Edinburgh, Edinburgh EH9 3FG, UK.
Email: K.Hanley@ed.ac.uk time steps for DEM simulations involving nonspherical particles: a fact which

ical particles. However, there is a comparable lack of guidance on choosing

is increasingly problematic as simulations of nonspherical particles become
more commonplace. In this article, the eigenvalues of the amplification matrix
are used to develop an explicit formula for the critical time step for a range
of shapes including ellipsoids, convex superquadrics and convex, central sym-
metric polyhedra. This derivation is based on a linear analysis and applies to
both underdamped and overdamped systems. The dependence on the particle
mass and contact stiffness expected for a system of spheres is recovered. For
a fixed particle mass, as particle shape becomes increasingly nonspherical, the
critical time step decreases nonlinearly. Thus, estimating a critical time step by
assuming a sphere of equivalent volume may not always be conservative.
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1 | INTRODUCTION

The discrete element method (DEM) was proposed by Cundall and Strack! for modeling systems of particles and
their interactions. The particles in DEM are modeled as rigid bodies which are allowed to overlap when they
come into contact, from which interparticle forces are calculated using a contact model. Particle motions can
be described as a system of second-order differential equations which require solution using a suitable numer-
ical integration scheme. Typically an explicit, conditionally stable integration scheme of second-order accuracy
is chosen.? Stability is contingent on choosing a sufficiently small time step. However, as reducing the time
step increases the computational cost of a simulation, it is desirable that the chosen time step is not unnec-
essarily small. This is an important consideration since DEM simulations often require considerable computa-
tional effort: a fact which has motivated the adoption of high-performance computing and the development of
parallelized codes.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
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2 Wl LEY PENG ET AL.

DEM often uses disks (2D) or spheres (3D) as the shape of element, again to reduce the computational cost. When
a linear contact model is adopted, the critical time step has a 4/ % dependency where m and k, respectively, represent

some measure of particle mass and contact stiffness. Cundall and Strack® estimated a time step with this dependency for
a single particle of mass m connected to the ground by a spring of stiffness k. Belytschko? proposed modal decomposition
of the equations of motion to obtain a simple system with a single degree of freedom for explicit finite element analyses.
The eigenvalues of the amplification matrix for this system cannot exceed 1 in magnitude* which gives the maximum
stable time step. O’Sullivan and Bray® drew an analogy between particles in a DEM simulation and nodes of a finite
element mesh. Based on this, they found critical time steps for regular packings of uniform disks and spheres. Even
though these approaches are not strictly applicable to nonlinear systems, they have nonetheless been extended to systems
of disks/spheres with nonlinear contact models®® and rotational resistance.’® Otsubo et al. estimated the critical time
step using a nonlinear contact model based on eigenvalue decomposition of the global mass and stiffness matrices for
idealized and randomly packed assemblies of spheres. Tavarez and Plesha ™! constructed mass and stiffness matrices for a
DEM unit cell of monosized spheres to obtain an upper-bound estimate of the critical time step. Burns et al.!? developed a
framework for selecting a stable time step for both linear and nonlinear interactions of spheres by analyzing the equations
of motion as a nonlinear map. The most common approach to estimate a critical time step for nonlinear contact between
spheres is fundamentally based on the propagation of Rayleigh waves through a particle assembly.!314

These prior studies of the critical time step considered disks or spheres. However, advances in computational power
have made it increasingly feasible to run DEM simulations using particle shapes other than disks or spheres. Lu et al.!®
discuss the increased scientific interest in modeling systems of nonspherical particles and the various methods being used
to achieve this, for example, ellipsoids, superquadrics (a generalization of ellipsoids), polyhedra or rigid clusters composed
of multiple spheres. At present, time steps for nonspherical particle systems are often found by trial and error though
some limited progress has been made to rigorously establish critical time steps. Hart et al. 1° conservatively recommended

a critical time step proportional to 4/ % for the block-based 3DEC code, taking m as the smallest particle mass and k as

the largest contact stiffness in the system. The commercial DEM code PFC!” automatically estimates the critical time
step based on two constraints: one using contact stiffness matrices under the assumption that the degrees of freedom
decouple from each other; the other a kinematic constraint which depends on the maximum components of translational
velocity and acceleration among all particles in the system. The critical time step is taken as the minimum value.!” This
methodology is applied for all particle shapes including spheres, multisphere clusters, and polyhedra. However, as the
maximum components of translational velocity and acceleration cannot be known before analysis, the critical time step
is recomputed during the simulation based on the continually changing particle velocities and accelerations which “may
be relatively expensive”.!” Burns et al.!® obtained critical time steps proportional to \/% for any planar rigid body subject
to linear damping and forcing. A limitation of this analysis is that particle rotations have one degree of freedom, within
the contact plane, which does not represent all possible particle kinematics.

In this article, we build upon this previous work to establish critical time steps for a subset of nonspherical particles
including ellipsoids, convex superquadrics, and polyhedra which are both convex and central symmetric. Two analyses are
compared: one based on the application of Belytschko’s criterion to the characteristic equation at the interparticle contact
and the other based on the eigenvalues of the amplification matrix. Both assume a linear contact model and damping.

2 | RELATIVE ACCELERATION BETWEEN TWO CONTACTING PARTICLES

Consider two arbitrarily shaped particles with centers of mass x; and x», contacting at x, as shown in Figure 1. Force F
and moment M act on particle 2. The global moment on each particle can be expressed for any arbitrary global coordinate
system as

ri =X — X1, ®
r; =X, — X, (2)
Mg =n X (-F)+(-M), (3

Mg =r, XF+ M. 4)
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FIGURE 1

can be viewed at wileyonlinelibrary.com]

Tllustration of two nonspherical particles in contact [Color figure

(On particle 2)

M (On particle 2)

Moments on each particle may be converted from a global to a local coordinate system using rotation matrices:

My = RiMg,

M, = RyMg,,

5
(6)

where Mg; = [Mij,MGjy,Msz]T and My; = [Mp, M Ljy,MLjZ]T, j=1,2. The rotation matrices can be written in terms of

unit quaternions:

| qﬁu + q)2cl - q§1 - Q§1 2gx19y1 — 2qu1 G 2Qx19z1 + 2q w1qn
Ri=| 2qugy +2qwqu oy~ 9% 90— 95 29nda —2quda |5 (7)
2¢aqa —2qmgn 2QQa +2qndn Qo —dn —dy + 9% |
[ 2, +0, -0, -0 20000 —20wdz  200do+2Qndpn |
Ro=| 2goqy+29wdz  45,— 4 T4, -q, 26242 —2qwde |- ®)
20092 —2qwdy 290202 +20wGe 9, — 9% — 4, +42 |

Suppose the moments of inertia of these two particles are:
’— Ixxl I xyl Ile

L = Iyxl Iyyl Iyzl s (9)
L szl I 1 Izz]

[ L. Lys Lep
IZ = IyXZ Iyy2 Iyzz . (10)

LIZXZ Izyz Izzz

These can be computed knowing each particle’s geometry. We define a, b, c to be the half-lengths in the x, y, z directions
of an axis-aligned bounding box around any particle in its local coordinate system. The local rotational accelerations of
the particles are

o =L"' My —enxon), (11)
o1 =L"' My, — 02 x o), (12)

where @;; and @y, are the rotational velocities of the two particles in their local coordinate systems. These can be returned
to the global coordinate system using the rotation matrices:

@1 =Ri'or, (13)
@c2 =R o1z, (14)
e = R0y = [0y, @y, 0417, (15)

e = R0, = [0, 0y, 0] (16)

‘lozoz/11/811 38 [8959 awu/z001°01/3Pda/10p/ - TET'L1T 0€0°881 - Areaqr auruQ A3im ] Aq pajutig



4 Wl LEY PENG ET AL.

The translational accelerations of the two particles at the contact point are

X1 = @G X1 +6061><((061><r1)—n77 17)
1

Xo =@ X2 + o X((DG2><F2)+m—- (18)
2

Finally, the relative translational and rotational accelerations at the contact may be computed:
X, =X — X, (19)

0. = @gy — B¢ .- (20)

3 | MAXIMUM RELATIVE TRANSLATIONAL ACCELERATION AT THE
CONTACT

In the commercial PFC!7 code, the kinematic time step constraint, which in addition to a stiffness constraint determines
the simulation time step, is based on the maximum components of translational velocity and acceleration among all parti-
cles in the system. For this two-particle case, we have made a similar assumption that the maximum relative translational
acceleration at the contact, that is, the maximum magnitude of X., determines the critical time step. X, appears in the
differential equation describing the system’s dynamics at the contact:

Mx.+ Cx.+Kx, =F, (21)

where M, C, and K refer to the particle mass, damping, and contact stiffness matrices, respectively.? Imposing contact
models and integrators, an amplification matrix can be obtained.

The magnitude of X, depends on up to 18 independent parameters for moments of inertia, as shown by Equations (9)
and (10). In order to find a practical solution, several additional assumptions are made to constrain the analysis:

1. Only a single contact is possible between two particles;

2. Each particle is central symmetric with a local coordinate system coinciding with the principal axes of moment of
inertia, that is, I;; =0 when i #};

3. The semiaxis lengths a > b > ¢ and I; > I, > I« (the former ensuring the latter for most shapes).

Therefore, each particle has three nonzero parameters defining its moment of inertia: I, Iy, I .. These assumptions
restrict the applicability of this analysis to a subset of shapes including ellipsoids, convex superquadrics, and polyhedra
which are both convex and central symmetric. It is also noted that this analysis is limited to a single contact per particle;
multiple simultaneous contacts require the critical time step to be reduced from the two-particle estimate derived in this
article.”

The location of the contact point x, on the surface of particle 1 and the orientation of particle 2 relative to particle 1 both
affect x.. Figure 2 shows three of the infinitely many configurations of particles 1 and 2 in center-to-center and tip-to-tip
contact, in which the two ellipsoids both have semiaxis lengths of a =3 m, b=2m, and ¢ =1 m, respectively, from major
to minor. It can be shown that the maximum X, arises for orthogonal “tip-to-tip” contacts. A graphical demonstration
of this is given in Appendix Al. The expressions for the relative translational acceleration at the contact are shown as
Equations (22)-(24) for Figure 2(A-C), respectively, obtained by combining Equations (1)-(19):

a 1 1 00 (Lzy —Liy —1yyp)
I}: + m—l m—z Fx al(w}%l + wil) + W
X = 0 L AL S T | 0 Eo|+| 2eatbntahy) | aowalnlarla) | )
La L my m, 5 Ly . I, . s
0 0 T [ ax(@2, + w2) + 220%aln T Th)
Ly  m m x2 y2 I
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FIGURE 2 Three examples
showing particle 2 changing its position
and orientation relative to particle 1

(A) (B) ©
( i + i + 1 + 1 0 0 Tr h [ 1@ @upa =Ly —Ln) + 40500 oz~ Lo —1yy5) i
Iy Ly, my m, 5 Fx I Ly
o = 0 TaEeiil o Fy |+| “otale ety Stdn el | (23)
= 22 1 2 1 =2
1 1
L 0 0 m—l + Z | FZ | cl(wfd + G);I) + 61.2(60)2‘2 + (1);2)
’— Ia'zz ;“_12 + mL + i 0 O 1r Fx 7 [ €10y @y @al _Iyyl _lz.zl) + A, 0 zZ(Izz2_I)oc2_Iyy2) i
X2 b 1 mz 5 vl 02
X = 0 Ii +=+L4L 0 Fy |+| 2fralnTeclm) y SomaleinTla) | (24)
pedl %2 1 2 “ocl %2
BT E, 2 2 2 2
] 0 0 e + ol | B I | c1(wf, +a>y1) + az(a)x2+a)y2)

We can write a generic expression for ¥, as

A, 0 ol[E] [o
=0 A, ol|F|+lal (25)
0 0 AJllR| |e,

where A,, Ay, A, are comprehensive inverse inertia coefficients and Q,, Q,, Q; are terms related to the particles’ rotational

velocities. With the assumption that a >b>cand I ,>1,, > I, we can state that

2 2

4 4, 1 1

Axjyj S Amax = — +——+ — + —. 26
WS L e oy my (26)

Equation (25) shows that, for nonspherical particles, the relative translational acceleration at the contact is influ-
enced by two factors: the contact force, which is related to the interparticle overlap, and particle rotation. We denote
these two terms as the “translation-dominant” and “rotation-dominant” terms which we analyse separately, that is, crit-
ical time steps are obtained by neglecting either the “rotation-dominant” or “translation-dominant” terms in Sections
4 and 5, respectively. In practice, the translation-dominant time step is several orders of magnitude smaller than the
rotation-dominant time step in most scenarios and hence determines the critical time step.

4 | CRITICAL TIME STEP FOR TRANSLATION-DOMINANT SCENARIOS
If the rotation-dominant term is neglected, that is, Q,, Q,,Q, =0,

Ko = A maF. (27)

4.1 | Belytschko’s criterion

For an explicit finite element method analysis, Belytschko® expressed the critical time step as

2
Atcri = — (28)
(/]

max
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6 WILEY PENG ET AL.
for a linear system with Rayleigh damping where @,y is the largest natural angular frequency of the system. The linear

contact model is given by Equation (29) in which k; and ¢; are the contact stiffness and viscous damping coefficient,
respectively, in the jth direction:

Fj = _ijcj - ijcj (] =1,2, 3) (29)
Combining Equations (27) and (29), the ordinary differential equation of the contact point is
X + G Amax X + K Amax X =0 (=1,2,3) (30)

which has the characteristic equation

§* + ¢ Amax S + kA max = 0. (31)
The roots of the characteristic equation are
5= % ( — CiAma % \/%?Azmax - 4ijmax> . (32)

The overdamped case, for which c]?A Zax — 4kiAmax > 0, does not have a natural angular frequency. Hence At cannot
be derived from Belytschko’s criterion. The underdamped case, for which cJ.ZAIZnaX — 4kjA max < 0, has a maximum natural
angular frequency!® of

VAR Amax = CAZ oy
WDmax = B . (33)

According to Equation (28), the critical time step is
2 4

Omax L[4 Ame - A2

max

In the undamped case, ¢; =0 so
2

V& Amax

Equation (34) has some similarity to the collision time between particles reported by Silbert et al.,?° although that has
no dependence on the particle shape:

At = (35)

Ay = ———. (36)

A fraction of this collision time has been adopted in other studies as a suitable simulation time step.
The critical damping is obtained by setting ¢’ A7, — 4kjAmax = 0:

Cj,cri = 211|| Alz_ax (37)

Since Belytschko’s criterion (Equation (28)) requires the system to have a natural angular frequency, it is applicable
only to the underdamped case. The normal and shear damping coefficients need to be maintained below the critical value
(Equation (37)) to make this approach valid: a significant limitation. In subsection 4.2, we propose an alternative which
does not have this limitation, that is, is applicable irrespective of the choice of damping coefficients.

4.2 | Amplification matrix method

Linearity is a requirement of the amplification matrix method!® by which the critical time step can be derived from the
eigenvalues of the amplification matrix. The linear contact model adopted is shown as Equation (29). It has previously
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PENG ET AL. WI LEY 7

been shown that the Euler and velocity Verlet integrators give identical critical time steps for undamped systems.?! An
Euler integrator is adopted which gives two equations:

Xen+1 — Xen

N, =Xcn (38)
Xyl — X, .
% = Xcn, (39)

n and n+1 denote successive time steps. Combining this integrator with the linear contact model results in
Equation (40) where Kj = —kjAmax and Cj= —CjAmax, j=1,2, 3:

xcj,n+1 1 At 0 xcj,n
xcj,n+1 =10 1 At xcj,n . (40)
Xejn+1 Kj Cj 0 ]|%gn

Thus, the amplification matrix is 3 x 3. Its eigenvalues can be obtained analytically using the characteristic polynomial
given by Equation (41). It is noted that the commonly used velocity Verlet integrator and its variants would result in a
5% 5 amplification matrix.

0 1-4 At|=0. (41)
K; Cc; -4
The three eigenvalues are
p |, V26camt) |
et w TS
(E-DD _ A+V3DEGAHD |
g 52 »Fp T3 (42)
(=\3-DD _ (A-V3)BGAHD) 42
62 3x2*°p 3
where
D= \/\/ (=9GAt + 27K;AL? - 2)* — 4(3CiAt + 1)3 — 9C At + 27K AL — 2. (43)

|A] < 1is required for stability, with the critical time step being found from || = 1. Considering only the real 4,

D V26CAr+1)
+ +

» \_{/5 3D +1 (44)

wIN

which has two solutions for D: D = %( —5+4/21- IZC}At) orD= %( —1x4/-3-12G At). Equating these solu-
tions to Equation (43) gives two meaningful values for the time step:

G x/Ci-aK]

At= ————. 45
K (45)

A third solution, At = — 3% is disregarded since this gives D = 0 on substitution into Equation (43).
J

C2-4K

C+ -
Since C},K; <0, % < 0. Therefore, the critical time step may be expressed as
J

G- \/CJZ —4K; \/4k.iAmax + CjzAfnax + G Amax

Atei =
cri Kj kj A

(46)
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8 Wl LEY PENG ET AL.

In the undamped case, C;=0 so

-2 (47)

4
Kj  \/kAmax

which matches the critical time step from Belytschko’s criterion in Equation (35).
For physical realism,??> the normal contact stiffness k,,> k;, the shear contact stiffness. Conservatively taking the larger,

At = -

2
Alyj = —— (48)

kn Amax

for the undamped case. Even though Equation (48) contains k,, the shear direction is usually the one which limits the
critical time step as implied by Equations (22)-(24). This is consistent with the findings of Tu and Andrade’ and Burns
et al.,'2 among others.

4.3 | Special case of undamped spheres

For two identical spheres of radius r and mass m, a;=a, =7, Lyq =Ly = %mr2 SO Ampax = % Substituting into
Equation (48), we obtain
2 m
Atc:ri,sphere = T (49)
V7V

Thus, the expected result of a4/ % is recovered for a two-sphere interaction with a linear contact model. Our « of %

is considerably more conservative than a = \/5 found by Burns et al.!2 for the same two-sphere configuration. A large
factor of safety must be applied for multicontact situations comprising more than two spheres!?; for multiple contacts, a
wide range of a values have been recommended, for example, 0.17,° 0.5, or 1.27.7

5 | CRITICAL TIME STEP FOR ROTATION-DOMINANT SCENARIOS

One could envisage a scenario in which particles have large initial rotational velocities, or particles acquire high rotational
velocities via moments induced by fluid motion, for example, through coupling with computational fluid dynamics. If
the translation-dominant term in Equation (25) is neglected, using Equations (1)-(18) and (20) the following expressions
are obtained for Figure 2(A-C), respectively:

[ 0y0a0y—Tn)  0uwpln k) ]
Loa ) Iy )
. @101 (Lea—Ippn @50 B3 (boea—1 2
wc — X ; od "izz + x2 o peds , (50)
w1 w2
_ Py (Lot —&,1) _ Y% Iy —Ln )
L IZZI Ixe B
_9y@a %1—1 1) _ @0 yZ(Ixe _@yz )
[xxl ) Iz,zz )
. @30 (La—Izz1 o
wc = X17% = Xl 22 + Xz n 2 , (51)
yy1 w2
_ @ 3 0y (I.‘cxl _69’1) _ Wy Wy q)yz _ézz )
L Izzl I.vocz B
_Wyg Ty —I1) @00 (I —1y)
Ia éyzzz )
R @0 gUa—Iz1) | D@y, =14
W, = T + T (52)
wl xx2
_wxlwyl(I)ocl _&vl) _ wxzwzi(Lx_’_Izz:)
L Izzl Iyyz i

Defining the maximum magnitude of particle rotational velocity wmax as max (|@gl),

|@Dex/y/z | < @hax (Bmax 1 + Bmax 2)s (53)
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PENG ET AL. WI LEY 9

where
Bpax = max <|I’°‘_ ol e = ZZ',”W_I“I>. (54)
I, L, Ly
In addition, note that
w -

max (/) = max <' e b‘/y/Z'> - Zoms, (55)

Combining Equations (53) and (55),
Atgri = 2 . (56)

®max (Bmax 1 + Bmax 2)

For a system containing particles of different types, Bmax can be the maximum obtainable, leading to the following
rotation-dominant critical time step:

A= — L (57)

®max Bmax

This expression requires estimation or evaluation of the maximum particle angular velocity during a simulation.

6 | NUMERICS

As the translation-dominant time step is generally orders of magnitude smaller than the rotation-dominant time step,
that is the focus of these numerics. However, as an illustration, subsection 6.4 compares the translation-dominant and
rotation-dominant time steps for a study of particle aspect ratio.

6.1 | Damping coefficient

Three equations are presented in subsections 4.1 and 4.2 to determine a critical time step when viscous damping is valid:

1. Equation (34) derived based on Belytschko’s criterion. Applicable only to underdamped systems; considers particle
shape in its formulation

2. Equation (36) from Silbert et al.2? Applicable only to underdamped systems; no consideration of particle shape

3. Equation (46) derived based on the amplification matrix method. Applicable to both underdamped and overdamped

systems; considers particle shape in its formulation

To enable a fair comparison across a range of damping coefficients, consider the spherical particle case in subsec-
tion 4.3 where Aoy = — Suppose k,=ks=k and ¢, = ¢, = c. We define a normalized dimensionless number g = ? to
Vm

quantify the amount of damplng present. The three equatlons listed above can be rewritten for identical spherical partlcles
in terms of g as follows:

| k 4
Atai\| — = —— (58)
TVom g aope

Atcrl\/? = L’ (59)
m
Atcrl\/i ﬂ + "“‘ ﬂz + =) (60)

for Equations (34), (36), and (46), respectively. Afcriq/ nkT isdimensionless. Figure 3 shows the evolution of At/ % with g.
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10 Wl LEY PENG ET AL.

10 T

T ik FIGURE 3 Nondimensionalized critical time step for two

£ Eg. (38) ﬂ;“r"’*' ' contacting spheres against the damping coefficient f for
—O0—Eq. (59) J-*éff_ Equations (58)-(60) [Color figure can be viewed at
—— Eq. (60) i Al 7  wileyonlinelibrary.com]
1
4 5
s
0.0040 - T - | - | - FIGURE 4 Critical time step for two contacting ellipsoids
———N=0 . o
- with semiaxis lengths a =3 m, b=2m, ¢c=1m as the normal contact
N stiffness k,, varies from 1x 101 to 10 x 10!°N m™! at a fixed particle
0.0032 | ——N=2 . 3 ) .
o pia density p of 1000kgm™ [Color figure can be viewed at
\ ! N4 wileyonlinelibrary.com]

0.0024 N

T o P Y ——N=5%

0.0016

Critical time step Az, (s)

0.0008 -

0.0000 : ; : :
0 2 4 6 8 10

Normal contact stiffness &, (101“ N/m})

The curves for Equation (58), derived based on Belytschko’s criterion,> and Equation (59) from Silbert et al.,?°

both contain vertical asymptotes (at p= % and 2V/2, respectively) which correspond to critical damping. Beyond

these critical damping values, complex values of At appear which lack a physical meaning. Hence, Equations (58)
and (59) are applicable only to underdamped cases. Equation (60), based on the amplification matrix method,
is applicable at all levels of damping. For low-damping cases, Equations (58) and (60) are similar—and are
identical in the undamped case as already seen from Equations (35) and (48). Since the critical time step
based on the amplification matrix method is the most generally applicable, that is adopted for the remaining
numerics.

6.2 | Contact stiffness

Consider the two ellipsoids shown in Figure 2 as representative particles which satisfy the assumptions in
Section 3. Each ellipsoid is identical, with density of 1000kgm™ and contact stiffness k, =k ranging from
1x10% to 10x10Nm™. We introduce a new dimensionless number, N, to quantify the damping for non-
spherical particles in terms of Amax: ¢y = ¢s=N+/k;/Amax. The evolution of At,; with k, is shown in Figure 4
for N =0, 1, 2, 3, 4, or 5. Decreasing the particle stiffness increases the critical time step irrespective

of damping.
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6.3 | Particle density

The same two ellipsoids are adopted as in subsection 6.2. Now the contact stiffness is fixed at k, = k; =1x 101 Nm™!
while the density is varied from 500 to 5000 kg m~3. Figure 5 shows that increasing the particle density, and hence mass,
increases the critical time step. This is the motivation for “density scaling” in which the particle densities are artifi-
cially increased by orders of magnitude in quasi-static simulations, enabling an increase of time step and a reduction of
computation time.

6.4 | Particle aspect ratio

For a nonspherical particle, one would expect a change of aspect ratio to change a particle’s moment of inertia, and
thereby change the critical time step in accordance with Section 4. Choosing the two standard ellipsoids with density
of 1000 kg m ~3, contact stiffness of k, = ks =1x 10N m~! and no damping, we fix the volume V = gnabc = 8z m3 of
each ellipsoid and systematically vary two aspect ratios, defined ase; = ‘bl, ey = lc—’ Sincea >b > c, e1, e, > 1. The maximum
rotational velocity has been set at wm,, = 1 rad s~ Figure 6 shows the evolution of the critical time step with aspect

0.010 T T T

0.008 |——N=2 PPt

0.006 |

0.004

Critical time step Ar_, (s)

0.002

FIGURE 5 Critical time step for two contacting ellipsoids with

semiaxis lengths a =3 m, b=2m, c=1m as the particle density p 0.000 . ! . ! . L . L .
varies from 500 to 5000 kg m 3 at a fixed normal contact stiffness k,, of L 200y =000 200 3000
1x10'° Nnr! [Color figure can be viewed at wileyonlinelibrary.com] Particle density p (kg/m®)

1.5

—O— Aspect ratio e, = 1.0
—O— Aspect ratio e, = 2.0
—4— Aspect ratio e, = 3.0
—/— Aspect ratio e, = 4.0

14

—C— Aspect ratio e, = 5.0

—O— Aspect ratio e, = 1.0
—O— Aspect ratio e, = 2.0
6.8 |—— Aspect ratio e, = 3.0
—.— Aspect ratio e, = 4.0

Critical time step Az, (107 §)
Critical time step Ar_, (s)

—C— Aspect ratio e, = 5.0 b=

1 2 3 4 5

Aspect ratio e, Aspect ratio e,
(A) Translation-dominant expression for the critical time step (B) Rotation-dominant expression for the critical time step
FIGURE 6 Critical time step for two contacting ellipsoids as the particle aspect ratios e, and e, are systematically varied from 1 to 5 at

a fixed normal contact stiffness k, = 1 X 101N m !, particle density p = 1000 kg m —3, and particle volume V = 87 m?3 [Color figure can be
viewed at wileyonlinelibrary.com]

‘lozoz/11/811 38 [8959 awu/z001°01/3Pda/10p/ - TET'L1T 0€0°881 - Areaqr auruQ A3im ] Aq pajutig



12 Wl LEY PENG ET AL.

ratios e; or e, considering both the translation- and rotation-dominant expressions for the critical time step. Using the
translation-dominant expression, the critical time step decreases as the aspect ratios e; or e, increase, that is, a nonspher-
ical particle necessitates a smaller critical time step to ensure stability than a spherical particle of equivalent volume. The
same is true using the rotation-dominant expression. It is therefore not advisable to assume equivalent diameters in order
to calculate a simulation time step if particle aspect ratios differ significantly from one. The translation-dominant time
step is more than four orders of magnitude smaller than the rotation-dominant time step for this representative situation.

7 | CONCLUSIONS

This article has proposed a practical criterion for determining the critical time step for nonspherical particles which are
convex and possess central symmetry, for example, ellipsoids, convex superquadrics and certain polyhedra. The deriva-
tion using the amplification matrix method is based on linearity so is limited to a linear contact model with optional
viscous damping. The derived expression, which applies across the whole range of damping from undamped to over-

damped, has the expected \/% dependence on particle mass and contact stiffness. Hence, as the mass increases or the

stiffness decreases, the critical time step increases. A second methodology based on Belytschko’s criterion yielded the
same critical time step as the amplification matrix method in the absence of damping. As particle shapes become increas-
ingly nonspherical, quantified in this article by the deviation from unity of the aspect ratios of ellipsoids, the critical time
step reduces nonlinearly. This indicates that the assumption of an “equivalent sphere” for estimating a critical time step
is potentially nonconservative.
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APPENDIX A. MAXIMUM RELATIVE ACCELERATION ASSOCIATED WITH ORTHOGONAL
CONTACT

To demonstrate that orthogonal contact leads to the maximum relative translational acceleration at the contact,
that is, the maximum magnitude of X, consider the same two ellipsoids as in Section 6, both with unit density. The
center of ellipsoid 1 is fixed at the origin (0,0,0) with an axis-aligned orientation (g, =¢q,=q;=0,q,=1). The con-
tact force is fixed at (1,1,1) for this analysis and the particle rotational velocities are zero for both particles in this
analysis. Overlaps are restricted to negligible values. The configuration of the contacting ellipsoid 2 is altered in two
different ways:

Change center of ellipsoid 2 Move the center of ellipsoid 2 without changing its fixed orientation, giving a range
of contact points on the surface of ellipsoid 1

Change orientation of ellipsoid 2 ~ Change the orientation of ellipsoid 2 without changing the contact point between
the ellipsoids

Change center of ellipsoid 2

The orientation of ellipsoid 2 is fixed, with a rotation of 45° around the minus y axis (gx =g, =0, g, = — sin( g),

qw = cos( g)). 23 Tts center is moved within Octant I (x,y,z> 0) as shown in Figure A1(A) to generate contact points cov-

ering one-eighth of the surface of ellipsoid 1. Two scenarios are considered as depicted in Figure A1(A,C). The only

difference between these scenarios is a 90° rotation of ellipsoid 2 around its local x axis.

Figure A2 shows the partial surface of ellipsoid 1, colored by the magnitude of relative translational acceleration at the
contact. For both scenarios, the maximum acceleration occurs at the longitudinal tip of ellipsoid 1. The relative positions
of the ellipsoids when X is a maximum is shown in Figure A1(B,D) for scenarios 1 and 2, respectively.

Change orientation of ellipsoid 2

The contact point is fixed, within a small tolerance, at (3,0,0): the tip of ellipsoid 1 at which ¥, is a maximum.
The orientation of ellipsoid 2 is changed by moving its center point within Octant I as indicated in Figure A3(A,C).
The same two scenarios are considered as before, differing only by a 90° rotation of ellipsoid 2 around its
local x axis.

Figure A4 shows the surface formed from the center points of ellipsoid 2, colored as before by the magnitude of X..
For both scenarios, the magnitude of ¥, approaches a similar maximum value at three distinct orientations. Two of these
orientations, shown in red at the left and bottom of Figure A4, correspond to nonorthogonal contact configurations. The
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(A) Sketch of ellipsoid 2 changing orientation (Scenario 1) (B) Configuration for maximum X _ (Scenario 1)

(C) Sketch of ellipsoid 2 changing orientation (Scenario 2) (D) Configuration for maximum X _ (Scenario 2)

FIGURE Al Illustration of the two scenarios for the center of ellipsoid 2 moving relative to ellipsoid 1 (A and C), and the
configuration of the two ellipsoids when the magnitude of relative translational acceleration at the contact is a maximum (B and D) [Color
figure can be viewed at wileyonlinelibrary.com]

T T~

1.001 ' @ Contact relative
acceleration (m/s%)

@ Contact relative

acceleration (m/s?)

7

(A) Scenario in Figure Al(a) (B) Scenario in Figure Al(c)

FIGURE A2 Partial surface of ellipsoid 1, colored by the magnitude of relative translational acceleration at the contact as the center of
ellipsoid 2 is moved [Color figure can be viewed at wileyonlinelibrary.com]
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(A) Sketch of ellipsoid 2 changing orientation (Scenario 1) (B) Configuration for maximum X (Scenario 1)

(C) Sketch of ellipsoid 2 changing orientation (Scenario 2) (D) Configuration for maximum X, (Scenario 2)

FIGURE A3 Illustration of the two scenarios in which the orientation of ellipsoid 2, and hence the position of its center, are changed
relative to ellipsoid 1 (A and C), and the configuration of the two ellipsoids when the magnitude of relative translational acceleration at the
contact is a maximum (B and D) [Color figure can be viewed at wileyonlinelibrary.com]

Contact relative : . — Contact relative
acceleration (m/s?)
T

acceleration (m/s?)|
T

(A) Scenario in Figure A3(a) (B) Scenario in Figure A3(c)

FIGURE A4 Surface formed by the center points of ellipsoid 2 as its orientation is changed, colored by the magnitude of relative
translational acceleration at the contact [Color figure can be viewed at wileyonlinelibrary.com]

third, at z=3m, is an orthogonal configuration which is more convenient for analysis than the nonorthogonal configura-
tions. Therefore, the orthogonal configurations shown in Figure A3(B,D), for scenarios 1 and 2, respectively, are identified
as those giving the maximum magnitude of relative translational acceleration at the contact.
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