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Air pollution has been recognized as a threat to
human health since the time of Hippocrates, ca 400
BC. Successive written accounts of air pollution occur
in different countries through the following two
millennia until measurements, from the eighteenth
century onwards, show the growing scale of poor air
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quality in urban centres and close to industry, and the chemical characteristics of the gases and
particulate matter. The industrial revolution accelerated both the magnitude of emissions of the
primary pollutants and the geographical spread of contributing countries as highly polluted
cities became the defining issue, culminating with the great smog of London in 1952. Europe
and North America dominated emissions and suffered the majority of adverse effects until
the latter decades of the twentieth century, by which time the transboundary issues of acid
rain, forest decline and ground-level ozone became the main environmental and political air
quality issues. As controls on emissions of sulfur and nitrogen oxides (SO2 and NOx) began
to take effect in Europe and North America, emissions in East and South Asia grew strongly
and dominated global emissions by the early years of the twenty-first century. The effects of
air quality on human health had also returned to the top of the priorities by 2000 as new
epidemiological evidence emerged. By this time, extensive networks of surface measurements
and satellite remote sensing provided global measurements of both primary and secondary
pollutants. Global emissions of SO2 and NOx peaked, respectively, in ca 1990 and 2018 and
have since declined to 2020 as a result of widespread emission controls. By contrast, with a
lack of actions to abate ammonia, global emissions have continued to grow.

This article is part of a discussion meeting issue ‘Air quality, past present and future’.

1. Introduction
The potential subject area is large and the focus here is on the chronology of air pollution by
human activity, identifying the main issues, their causes and the regional and global trends. Other
papers in this volume, to which links are made, provide the wider context, the policies developed
to address the problems and the possible futures.

There are four rather different sources of evidence to provide the narrative for this account.
These include written documents including early legislation, direct measurements of atmospheric
composition, chemistry transport models, which simulate atmospheric composition changes from
a knowledge of emissions, meteorology and chemical processing of pollutant gases, and, finally,
remote sensing of the atmosphere from aircraft and space. The early documents are fascinating
and provide hints at the underlying chemistry, but are entirely lacking in quantitative detail.
Legal documents indicate the intent, but, for reasons elaborated later, did not significantly
constrain the developing global issues until the later decades of the twentieth century. High-
quality measurements of air pollutants are restricted to the last 150 years and numerical modelling
to the last 40 years, leaving considerable scope for speculation on the early trends. There
is necessarily some subjectivity in the selection of information sources used to describe the
air pollution chronology outlined here, as summarized in table 1. For this purpose, we have
focused on what we consider to represent major milestones based on: (i) the recognition of
key aspects of air pollution, (ii) of quantitative evidence and (iii) of major points of changes
in air pollution levels. Other perspectives on the topic have been provided by Colbeck [5] and
Mosley [6]. The main air pollutants of interest examined here are sulfur dioxide (SO2), nitrogen
oxides (NOx), ammonia (NH3), volatile organic compounds (VOCs), primary particulate matter
(PM), and their reaction products, including fine particulate matter (PM2.5) and tropospheric
ozone (O3).

Clear written evidence shows that early society recognized a threat to human health and the
wider environment from air pollution. However, the identity of the gases and particles remained
largely unknown, and there were no measurements to quantify the problem. Early attempts to
regulate emissions show that the lawyers in their day clearly had the means to articulate societal
desire for a cleaner environment, but the laws developed were not supported by the infrastructure
necessary to make them effective. The lack of consistent language describing the underlying
science also makes the early literature difficult to interpret from a twenty-first century perspective.
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Table 1. Components of the selected chronology of air pollution presented in this paper.

date air pollution event

400 BCE The relationship between air and health developed as an important part of the book Airs,
waters and places attributed to Hippocrates

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

first century AD Writers from imperial Rome, e.g. Seneca and Frontinus, refer to the probable health impacts of
smoke

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

947–1279 Smoke and gaseous pollutants from coal burning identified as a problem in Central Asia by
Al-Mas’ūd̄ı (947) and in China during the Song Dynasty (960–1279)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1273 The Smoke Abatement Act, the earliest legislation in England, prohibits use of coal as it is
‘prejudicial to health’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1610 The Law of Nuisance (UK):William Aldred’s pig farm case
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1661 John Evelyn published Fumifugium or The Inconvenience of the Aer and Smoak of London
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

seventeenth century Harmful effects of air ascribed to various components, e.g. Kenelme Digby (acids), Nehemiah
Grew (lead), John Evelyn (sulfur) and John Hall (antimony or mercury)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eighteenth century Guillaume François Rouelle detects SO2 by absorbing the gas in strong alkalis; Carl Wilhelm
Scheele detects NH3 via absorption with acids

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1872 Robert Angus Smith publishes Air and Rain: The Beginnings of a Chemical Climatology, having
undertaken the first multisite, multipollutant measurements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1878 The UK Royal Commission on Noxious Vapours
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1894 The ‘great horse manure crises’ of London and New York
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1905 Smoke Nuisance Acts in Bengal 1905
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1952 The Great London Smog; 12 000 die in two weeks [1]
Los Angeles smog, chemistry and effects described [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1956 The UK Clean Air Act
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1960 Extensive local ecological damage by smelters (e.g. [3])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From 1967, air pollution problems are recognized as international issues
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1960s Acid rain extensively described by Svante Oden
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1972 United Nations Stockholm Conference confirms acid rain as an important international issue in
Europe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1970s Ground-level ozone threat to ecosystems identified in North America and Europe following
earlier concerns of effects of the ozone on human health

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1977 USA establishes its National Acid Deposition Program (NADP)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1979 UNECE Convention on Long Range Transport of Air Pollution (LRTAP) established
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1980s Forest decline recognized in Europe and North America
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1985 Helsinki Protocol: Commitment to reduced SO2 emissions by 30% (The 30% club)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1980s–1990s Eutrophication of ecosystems by nitrogen deposition recognized
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1991 Canada-USA Air Quality Agreement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1993 The ‘Six Cities’ study in North America re-focuses attention on the human health effects of air
pollution PM10

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1995 Launch of the first satellite for passive remote sensing atmospheric composition (GOME) for
global ozone monitoring [4]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Continued.)
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Table 1. (Continued.)

date air pollution event
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1999 The UNECE Gothenburg Protocol adopted to tackle multipollutant multieffects (acidity, ozone and
eutrophication)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2000s Emissions of SO2 and NOx in Asia increasingly dominate global emissions and adverse effects
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2010 Widespread evidence of recovery from effects of acid deposition in Europe and North America with the
decline in emissions of SO2 and NOx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 Beijing smog, 13th January, with concentrations of PM and SO2 similar to London 1952
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2015 Global SO2 emissions reduced by 15% from the 1990 peak, while all other air pollutants still increasing
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2018 Emissions of SO2 and NO2 declining rapidly in China
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2018 Peak global NOx emission? Global emissions of NH3 and VOC continue to rise
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2020 COVID-19: The global pandemic dramatically reduces emissions of industrial- and transport-related
emissions of SO2, NOx , VOC and primary PM

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The early history takes us to the period of elucidation of the compounds present in the
atmosphere and to early measurements, mainly in the seventeenth to nineteenth centuries,
following which direct measurements began in earnest. Sporadic measurements of air quality
began in the late nineteenth century, especially by Robert Angus Smith in the UK [7], the first
scientist to attempt multisite, multipollutant investigations of the chemical climatology of the
polluted atmosphere. The early developments in understanding of air pollution were mainly by
chemists, who continued their leadership of the mechanistic underpinning of the science through
the twentieth century (e.g. [8,9]). Distributed sites to measure atmospheric composition gradually
developed through the mid-twentieth century and by the time acid rain became a focus of
scientific and political interest in the late 1960s there were networks in Europe and North America
to study the composition of air and precipitation at regional scales (e.g. [10,11]). In addition, local
pollution problems in industrial cities, mainly in Europe and North America, and around notable
point sources, provided early measurements of large local effects by some of the main pollutants.

The ground-based monitoring networks in place by the year 2000 (table 1) included regional
and global air chemistry measurements. The third main source of time-series data to assess the
chronology of air pollution is the application of chemistry transport models (CTMs) with global
meteorological models and spatially disaggregated inventories of pollutant emissions. The final
source of data is that provided by satellite remote sensing, which has developed over the last
three decades, providing global concentration fields for the major air pollutant gases (SO2, NO2,
NH3, CO, and O3).

These complementary sources are used here to provide a summary of the development of
specific air pollution issues through the late nineteenth and early twentieth centuries and in
the last two decades revealing some important signs of recovery from effects of air pollution
in Europe, North America and East Asia.

2. Pre-1750 early evidence air pollution posed a risk to human health and
ecosystems

Early humans would have been aware of at least some of the potential hazards in the air they
breathed from their general discomfort in the presence of smoke and combustion gases close to
open fires. The need for shelter and warmth led to fires inside shelters, and in confined structures,
the exposure to potentially toxic gases and particles is considerably enhanced. Given the directly
noxious properties of many combustion products (smell, and lachrymose and respiratory effects),
it is surprising that so many societies had dwellings with open fires and no chimneys. The
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development of the chimney itself can be seen as a key milestone for indoor air quality, adopted at
first in the largest houses from the twelfth century [12]. Today, indoor air pollution is an important
contributor to effects on human health. All subsequent analysis here, however, is devoted to the
outdoor environment.

Evidence from Greece shows that the problems of polluted air outdoors were being
documented at least 2400 years ago. The book Airs, waters and places attributed to Hippocrates
(ca 400 BC) suggested all sorts of illness as being related to the quality of air. The worst it seems
was in cities facing damp westerly winds, where the inhabitants ‘are likely to have deep, hoarse
voices, because of the atmosphere, since it is usually impure and unhealthy in such places’ ([13],
p. 83). Writers a little later from Imperial Rome understood the probable health impacts of smoke
with Seneca (ca AD 63–65) referring to the problem and Frontinus (ca AD 96) proudly declaring
how his contribution to aqueducts and fountains has helped make the air purer: ‘the causes of the
unwholesome atmosphere, which gave the air of the City so bad a name with the ancients, are
now removed’ ([14], p. 417). As Seneca recorded of a health break from Rome:

As soon as I escaped from the oppressive atmosphere of the city, and from that awful
odour of reeking kitchens which, when in use, pour forth a ruinous mess of steam and
soot, I perceived at once that my health was mending . . . So I am my old self again,
feeling now no wavering languor in my system, and no sluggishness in my brain ([15],
p. 193).

It is notable that the reference to the brain matches an effect of ammonium-containing
air pollution from naturally burning coal caves along the Silk Road in Central Asia as later
recorded by the Arab geographer Al-Mas’ūdı̄ [16]. A book by Shen Kuo (1031–1095) written
during the Song Dynasty (AD 961–1279) provides further evidence of concern in China
about air pollution from coal burning [17]. Other post-classical writers, especially in the Arab
world, contributed observations about air pollution during the ‘Dark Ages’ when considerable
learning was being lost in Europe [18]. Ultimately, however, little changed throughout the
Middle Ages in the understanding of the causes of disease and possible role of air pollutants
reflecting the persistence of the classical miasmatic concept that odours and other matter in
air were the controlling influences for human health [19], an idea going back to the time of
Hippocrates.

In the seventeenth century, John Evelyn published Fumifugium or The Inconvenience of the Aer
and Smoak of London [20] (figure 1). This iconic document described air pollution in London and
suggested ways of reducing the scale of the problem. He proposed moving industries including
brewing and lime-burning to the countryside, well outside the city. John Graunt, a contemporary
of Evelyn, suggested a correlation between rates of mortality and pollution, especially in fog
episodes [21]. In the absence of any chemical data, or indeed any numerical values to quantify
the pollutants present, we have only the narrative, but it clearly identifies a serious problem for
human health. Evelyn wrote of London in 1661: ‘that this glorious and ancient city should wrap
her stately head in clouds of smoke and sulphur, so full of stink and darkness’.

There was some recognition of the strong-smelling sulfur pollutants derived from coal or
industrial processes such as discussed in Fumifugium and also in Shakespeare’s observation
about the reek of lime-kilns (The Merry Wives of Windsor, Act III, Scene 3). Lime-kilns were used
extensively in Europe since Roman times and were a noted source of air pollution. There was
little understanding of atmospheric chemistry, however, although scientific interest became more
important by the mid-1600s [19], with the harmful effects of air pollutants ascribed to various
components of the air by Kenelme Digby (acids), Nehemiah Grew (lead), John Evelyn (sulfur)
and John Hall (antimony or mercury).

3. The development of laws to control air pollution 1273–1900
The earliest legislation in England was the 1273 Smoke Abatement Act, prohibiting the use of coal
as it was ‘prejudicial to health’ [22]. Some mediaeval societies approached air pollution control
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Figure 1. John Evelyn and the title page of Fumifugium (1661). (Online version in colour.)

by keeping the sources outside the city walls, a concept found in Aristotle’s Athenian Politics and
in ancient Roman regulation [23]. This practice continued in mediaeval Europe, but also Asia,
notably in relation to the extensive fifteenth-century Thuriang pottery kilns, which were located
in the northern lee of Si Satchanali, Thailand. These early examples of what we may now like
to call ‘environmental law’ include controls on the burning of sea coal and the ‘forestry laws’
(protecting the various species of game living in the forests). Most of these examples derive from
the particular whims and prejudices of individual rulers, often heavily influenced by those within
the upper social echelons of society. There was no modern science involved: the problem was
perhaps a visual blot on the monarch’s landscape, an appalling smell or a passion for hunting.
In every case, the control or prohibition was imposed without any need to resort to the scientific
knowledge base of the time.

In the Western world, one has to look to the Renaissance and the subsequent Reformation as
forming the basis from which arose our modern methodologies for scientific enquiry. In the UK,
this change in methods of enquiry alongside the rise of industrialization in the latter part of the
eighteenth century and its increasing pace in the nineteenth century enabled the likes of David
Hume (1711–1776), Jeremy Bentham (1748–1832) and John Stuart Mill (1806–1873) to articulate
social philosophies such as utilitarianism—philosophies which ultimately gave momentum to
centralized regulation of what we would now describe as ‘environmental issues’.

The direct intervention of the British Government by way of legislation was limited throughout
this period. The Alkali Works Regulation Act 1863 and its Alkali Inspectorate were the prime
example of governmental responsiveness to environmental matters during this period: necessity,
driven by widespread and self-evident health and welfare problems, but enacted reluctantly.

Initially, it was the ‘common law’ that was used to combat instances of polluting activity in
England. The English ‘civil claims procedure’ requires a complainant, a defendant and proof on a
balance of probabilities that the ‘injury’ complained of was caused by the action or inaction of the
defendant by reason of breach of a standard of care—a standard established and refined by the
judiciary over many decades on a case-by-case basis. This was thereby inevitably a standard that
was intrinsically susceptible to circumstance and prevailing norms. This reliance on an ‘after-
the-fact’ procedure, coupled with a requirement to establish a clear, legally recognizable causal
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link between alleged cause and supposed effect, was to permeate the UK’s approach to what we
now term environmental regulation. The approach was one of future prevention of what could
be shown to have already been clearly unacceptable rather than a ‘precautionary approach’, the
latter now underpinning much of current thinking in relation to matters of the environment and
social well-being generally.

A key step on the way to developing a UK legal framework for air pollution is the ‘The Law
of Nuisance’. As early as 1610, William Aldred’s case, as it is known, saw the courts intervene
against one Thomas Benton for building a pigsty ‘so near the house of the plaintiff that the
air therof was corrupted’. The court found that light and clean air were considered necessary
for wholesome habitation. In discussing the issues raised, the court drew a distinction between
‘trifling inconveniences’ that made life inconvenient or uncomfortable—when location could be
a legitimate consideration in making such a finding—and material damage to property that
diminished its value when location was largely irrelevant. The overall result was that the common
law proved increasingly inadequate to address the sorts of issues that social philosophers and
reformers were coming to focus on as increasing urbanization gave rise to self-evident public
health and welfare issues.

Between 1800 and 1850, the population in England and Wales doubled to 16 million and
doubled again by 1900, accompanied by dramatic changes in the distribution and concentration
of the population as industrialization drew people from rural areas to what soon became highly
urbanized areas with insanitary housing, disease, noxious emissions and fossil fuels adding to
the toxic mix. The ‘Royal Commission on Noxious Vapours’ of 1878 recorded many examples
of the kinds of damage resulting from what at that time was uncontrolled industry. However,
the UK government was slow to take remedial action because of the importance of industry
to the national economy. Despite the manufacturing controls introduced in the Alkali Act
1863, and the establishment of an Alkali Inspectorate, the increasing number of alkali works
(manufacturing sodium carbonate, while emitting hydrochloric acid as air pollution) meant that
the UK experienced no meaningful decrease in emissions of pollutants. Legislation requirements
to use ‘best practicable means’, together with a piecemeal approach, exacerbated what was in any
event often indifferent enforcement of the legislation.

Nevertheless, laws to control air pollution that are recognizably modern did develop through
the latter part of the nineteenth century, and these also reflected the sanitary reform that
characterized the broad public health concerns of the time [24]. As might be expected, they were
common in Europe and North America, but also followed imperial administrations across the
world, so were well known in India (e.g. Smoke Nuisance Acts in Bengal 1905 and Bombay 1912)
and Hong Kong. The wide range of international law was reviewed at the London Public Health
Congress in 1905, often cited as the place where Henry Antoine Des Voeux coined the term ‘smog’
[25]

4. 1750–1950 Urban air quality and the industrial revolution
During the early phase of the industrial revolution, beginning in the UK in the late eighteenth
century and spreading through Europe and North America, a rapid growth in coal combustion in
the developing cities substantially increased emissions of SO2, NO2, NH3 and smoke (e.g. [26,27]).
The problem of air pollution focused in this period on human health. In part, emissions were due
to industrial development and rapidly increasing emissions from short stacks. Additional sources
were from domestic emissions by the rapidly growing urban population of factory workers who
mostly burned coal for warmth and cooking. Ambient concentrations were not measured during
the eighteenth and early nineteenth centuries, and values are a matter of speculation.

Emissions from combustion were the main contributors to poor air quality, but they were not
the only pollutants. It is important to mention emissions of NH3 from the large urban population
of horses for transport, which would have added to NH3 released by coal combustion [16].
The quantity of horse dung on urban roads was recognized as a growing problem in the late
nineteenth century, for example 100 000 horses in New York producing 1000 tonnes of manure
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daily (the ‘great manure crisis’ in New York and London; [28]), with a major problem projected
into future decades. Prior to the twentieth century, horse populations were substantial in all major
cities. The poor state of sewage treatment, especially during the rapid expansion of the eighteenth
and nineteenth centuries, also contributed to emissions of NH3. The rapid replacement of horse
drawn transport by motor vehicles in the early decades of the twentieth century avoided the
problems forecast for cities like London and New York. Little attention has been drawn to the
combination of SO2, NOx and NH3 in the urban chemical climate of the nineteenth century,
perhaps due to the lack of measurements and the focus on pollutants from combustion sources.
But the presence of large emissions of NH3 would have promoted the formation of particulate
(NH4)2SO4 [29] and the rapid deposition of SO2 to terrestrial surfaces [30]. Among the few early
urban measurements, Smith [31], recorded concentrations of NHx (NHx is the sum of gaseous
NH3 and particulate NH4

+) in London of 80 to greater than 1000 µg m−3, with the highest values
recorded during fog. The deposition of NH3 would also have contributed to changes in species
richness of plant communities in urban areas [32].

The degradation of air quality during the period 1750 into the twentieth century was primarily
in urban areas or close to large industrial point sources. Most major European cities in the
late nineteenth century had air quality problems. London and Edinburgh, respectively known
colloquially as ‘the Smoke’ and ‘Auld Reekie’, were notable but far from unique. All major cities
of the UK suffered. Popular works of English literature by Dickens and Conan Doyle contain
many descriptions of dense swirling smog contributing to an air of danger and gloom in Victorian
London. Likewise, the major cities throughout Europe, where coal provided the main fuel for
industry and domestic heating, developed similar air quality problems.

The pollutants from coal combustion included SO2, NO2, smoke and, to a lesser extent, HCl
from the chlorine in coal [33,34]. Urban concentrations of SO2 and smoke in the large cities in the
middle decades of the twentieth century were commonly between 50 and 100 µg m−3, and many
UK cities had annual values in this range [35]. Meteorological conditions in the winter months
leading to low wind speed and a cold surface air greatly reduce dispersion of pollution, and in
these conditions, concentrations of smoke and SO2 could exceed 1000 µg m−3, as in the infamous
1952 London smog episode [19].

5. 1952 The Great London Smog
Air pollution was, until the 1950s, largely accepted as a consequence of industrial activity, with a
perceived willingness to tolerate the grime, degraded visibility, erosion and blackening of valued
buildings and effects on human health, agriculture and natural ecosystems. It took a major event
to change the public and political perception of the problem and the need for control measures.

The 1952 London smog resulted in the premature mortality of approximately 12 000 people
[1]. The public and then more slowly the political reaction led to the introduction of the Clean
Air Act in 1956, some 3 years after the event. It arose from a Bill to the UK Parliament initially
proposed by a back-bench Member of Parliament (Sir Gerald Nabarro), and not an initiative of
the Government Ministers at the time, an indication of the prevailing focus on housing, industrial
growth and recovery from the effects of the Second World War. The lack of prioritization for
matters of the environment was a feature of 1950s Britain, where food rationing was still in
place in 1952. However, this Act of Parliament was a very important step, eventually leading
to widespread reductions in emissions of smoke and SO2 in urban areas.

During the three decades following the London smog, many urban power stations and other
polluting industrial sources were closed, and new, larger, more efficient power stations were
constructed in rural areas. These each typically produced 2000 MW output of electrical power and
consumed 5 million tonnes of coal annually. UK emissions of SO2 continued to increase through
the 1950s to a peak in the 1960s, mainly driven by industrial emissions and especially power
generation. The new large power stations were equipped with reasonably effective controls for
PM, but none of the new units had SO2 removing equipment until Drax in 1988 and Ratcliffe in
1995. The closure of the large number of smaller very polluting urban power stations and other
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Figure 2. The decline in SO2 and smoke in London following the Clean Air Act (1956), including data from the ‘bubbler method’
sampling air through a peroxide solution in water and ultraviolet (UV) spectroscopy. (M. L. Williams, personal communication,
2017). (Online version in colour.)

industrial sources with short stacks further reduced emissions of SO2 and smoke in cities and
contributed significantly to the improving urban air quality. Ambient concentrations of smoke
and SO2 declined by 60% between 1962 and 1975 in London, nearly a quarter of a century after
the event that tipped the scales in favour of effective action on urban air quality (figure 2).

Recognizing needs to reduce ground-level concentrations of SO2 and smoke, new power
stations from the 1950s were built with increasingly high chimney stacks. The large rural power
stations, many in the Trent and Ouse valleys of the English Midlands and industrial north, had
larger stack heights, many at 200 m, promoting dispersion and reducing local effects [36]. Similar
changes in power generation were taking place across Europe where SO2 emissions peaked in the
1980s [37]. It is notable that on a global scale, Europe and North America were responsible for
most (greater than 80%) of the global SO2 emissions prior to 1970 (figure 3). Emissions in North
America grew rather faster than those in Europe and with tall stacks also used in North America
to disperse pollutants, to minimize local effects. Global emissions of NOx, non-methane volatile
organic compound (NMVOC) and NH3 also increased rapidly during the late twentieth century
(figure 3), as consequences of increased energy consumption, transport, solvents and agricultural
activity. These graphs show the major shifts since 1980, where China and the Asia/Pacific region
have replaced Europe and North America as the main global sources of air pollution.

6. The recognition of regional air quality issues and long-range transport of air
pollution

Although there had been earlier concerns regarding ecological effects, the policies to control
air pollution during the 1950s and 1960s were aimed at protecting human health, with a focus
on urban air quality. But, as noted above, the gradual improvement of urban air quality took
place while country-scale emissions of SO2 were close to their maximum, as a consequence of
increasing emissions from large combustion plants with tall chimney stacks. During this period,
annual UK emissions of SO2 reached their peak of 3 Mt S annually [39]. Annual European and
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Figure 3. Global and regional emissions of SO2, NOx , NH3 and NMVOC between 1750 and 2010. Adapted from Hoesly et al. [37].
The dots show global estimates of an earlier study (CMIP5 [38]). (Online version in colour.)

North American emissions of SO2 also peaked during this period at 32 Mt-S [40] and 31 Mt-S [41],
respectively.

The scale and effects on the countryside from the high levels of SO2 (and NO2) were not
immediately recognized as an issue. In the Pennine hills between Sheffield and Manchester,
the Forestry Commission was unable to establish plantations of Scots Pine due to the ambient
exposure to SO2 and large areas of central England as well as all of the major cities were devoid
of lichen species sensitive to SO2 [42]. Effects on agricultural crops were substantial, with some
cultivars of grass developing resistance to SO2 [43], but knowledge of these domestic problems
of air pollution was insufficient for the UK Government to introduce further legislation to reduce
emissions. The Clean Air Act was regarded as adequate, and there were no limits on the overall
scale of SO2 emissions, just a requirement to use stack heights tall enough to minimize the
concentrations downwind at the surface following the philosophy of Best Practical Means [44].
Policy priorities at this stage were firmly focused on human health.

Elsewhere in continental Europe, tall stacks and large power plants located outside the cities
were also regarded as effective policies to minimize effects on human health. Areas highly
polluted by SO2 were extensive over England, Germany, eastern central Europe and the Low
Countries (figure 4). Ecological effects were not considered sufficiently important to introduce
further control measures, even though it was known that some industrial processes, especially
smelting, produced striking examples of local damage from SO2 and metal deposition. For
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Figure 4. Annual mean European SO2 concentrations (µg m−3) in 1970, at around the time of peak SO2 emissions, modelled
using EMEP4UK with 1970 emissions and 2012 meteorology (M. Vieno et al., personal communication, 2020). (Online version in
colour.)

example, emissions from the Sudbury smelter in eastern Canada during the early twentieth
century caused extensive areas of natural vegetation to be destroyed by the combination of
exposure to very large concentrations of SO2 and large deposition rates of a range of metals
[45,46]. Smelters were present in many countries globally, and large exposures to SO2 and metal
deposition were common in their proximity with examples in Slovenia, Peru, Canada, USA,
Russia, China, France, Poland and Zambia [47].

7. Early evidence of air pollution transport frommeasurements
There were seventeenth-century analyses of rainfall, possibly the first by Ole Borch in Denmark.
These became more commonly undertaken by agriculturalists during the 1800s [19] and
increasingly used worldwide [10,48,49], providing early evidence of inter-country exchange
of pollutants from observations of contaminated snowfall. The deposition of urban sulfate in
London rainfall was determined by Robert Angus Smith in 1869–1870 [7]. The number of
estimates of the concentrations of substances in air increased rapidly through the nineteenth
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century. Russell [50] measured total PM gravimetrically in central London at 120, 360 and
860 µg m−3 in fine, dull and foggy weather, respectively [51]. Although measurements of carbon
dioxide were frequent (as listed in Callendar [52]), this occurred only occasionally for trace gases
such as ammonia [31,53]. The early twentieth century saw the development of the deposit gauge
that measured wet deposition and whatever else fell into the large glass bowl [54] and the use of
lead peroxide candles to determine deposited sulfur dioxide [55]. The widespread occurrence of
SO2 led to increasingly sophisticated methods that involved drawing air through Dreschel bottles
(bubblers) containing solutions of iodine, hydrogen peroxide or disulfitomercurate [56].

Table 2 shows the dates when regional networks to measure atmospheric composition were
introduced, revealing that only the European Air Chemistry Network (EACN) was in place
prior to the peak in European emissions of SO2. At the global scale, monitoring of global trends
in background atmospheric composition is now coordinated through the Global Atmospheric
Watch (GAW) network [58], whose origins can be traced back to the Background Air Pollution
Monitoring Network (BAPMoN) first established in 1974 [59].

8. Long-range transport of air pollution
The Norwegian playwright Henrik Ibsen’s play ‘Fire’ (Brand) showed that people were aware of
long-range transport of pollutants in the nineteenth century [60]:

Worse times, worse sins through the night of future flashes of Britain’s suffocating coal dust
is slowly descending over the countryside soiling all that is green strangling all that strives
to grow creeping low and mixed with poison stealing sun and light from the valley pelting
down as rain of ashes.

Even in the early 1950s, it was known that the majority of UK sulfur emissions were exported
from the UK coastline, as Meetham [61] demonstrated using national monitoring data and a
simple atmospheric mass balance. However, the magnitude of the effects of long-range transport
of air pollutants from the major emitting countries in Europe on the net importing countries was
not considered an important issue until the late 1960s and 1970s. The potential for transboundary
transport within Europe can be readily visualized from the data in figure 4, given typical
boundary layer wind-speeds of 10 m s−1 and an atmospheric e-folding lifetime for SOx of a few
days.

9. 1960s Acid rain
Swedish scientist Svante Oden initially advanced the idea that the long-range transport of sulfur
and acidity in Europe from the major sulfur emitting countries (UK, Germany, France and
Poland in particular) was responsible for widespread acidification of freshwaters and loss of
fish populations in Scandinavia [62]. Monitoring data for air and precipitation established by
Egner and colleagues from 1955 (the EACN) provided the vital chemical data showing both
the geographical patterns and trends in concentrations of the major ions in precipitation (e.g.
[10]). The EACN data showed acidity and sulfate in precipitation increasing steadily through the
1950s and 1960s [63]. Oden attracted considerable Swedish interest with these ideas, much of
it critical. The ideas were new and many aspects of the atmospheric chemistry and physics of
the compounds involved were poorly understood. However, the evidence was persuasive, and
further analysis by Swedish colleagues provided strong support for his arguments. A United
Nations conference on the Human Environment in Stockholm in 1972 advanced the wider
case that the pollution of one country by another through emission, atmospheric transport and
deposition was unacceptable [64], building on the evidence of long-range transport of sulfur
compounds within Europe and the effects in Scandinavia.

The Stockholm Conference of 1972 was a turning point in environmental science. There
is little doubt that long-range transport and effects of pollutants had been taking place for
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Table 3. The series of international conferences on acid deposition showing the broadening of issues and scale from 1976 to
2016.

date issue location reference to proceedings

1976 acid rain Columbus, OH, USA Dochinger & Seliga [67]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1980 acid rain Sandefjord, Norway Drabløs & Tollan [68]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1985 acid deposition, forest decline Muskoka, Ontario, Canada Martin [69]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1990 acid deposition, eutrophication, ozone Glasgow, UK Last [70]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1995 acid deposition, eutrophication, ozone, critical levels Gothenburg, Sweden Grennfelt [71]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2000 acid deposition, eutrophication, ozone, recovery Tsukuba, Japan Satake [72]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2005 acid deposition, eutrophication, ozone, recovery Prague, Czech Republic Brimblecombe et al. [73]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2011 acid deposition, eutrophication, ozone, recovery Beijing, China
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2016 acid deposition, eutrophication, ozone, recovery Rochester, NY, USA Aherne et al. [74]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

decades; in fact, many had noted the inter-country transport of pollutants in Europe (e.g. [60]).
It was only following Oden’s analysis that international scientific and political attention was
drawn to the subject and monitoring and process studies demonstrated the scale and ecological
significance.

The initial reaction of the major polluting countries in Europe was mixed. All recognized the
need to quantify the scale of inter-country transport of the major pollutants, the underpinning
atmospheric chemistry and physics, and the effects on ecosystems. However, the legal
instruments needed to be developed, and the supporting monitoring and analysis tools were
still lacking. The industrial nations had designed tall stacks to disperse the pollutants without
considering possible effects outside their jurisdiction. The combination of the science and political
background is described in detail by Grennfelt et al. [57]. An earlier description of the political
background in the UK by Rose [65] provides further insights and is typical of the large number
of publications on the politics of acid rain. Research and monitoring activities expanded across
Europe and the essential details of the emissions, atmospheric chemistry and deposition were
presented at Dubrovnik in 1977 [66].

The first major international conference on acid rain was held in Columbus, OH, USA in 1975,
beginning an important series of meetings on the subject approximately every 5 years from 1975 to
2015. Table 3 provides links to this series of meetings which shows the developing global scale of
air pollution issues through the latter decades of the twentieth century, beginning with acid rain.
The results of the Norwegian SNSF research programme into the causes and effects of acid rain
were presented at the second international Acid Rain conference in Sandefjord in 1980 [68]. Clear
links between sulfur emissions in the industrial nations of Europe and long-range transport to,
and deposition and effects within, Norway and more widely in Scandinavia were demonstrated.
The effects were primarily on freshwaters, with large declines in fish populations in the most
acidified regions. The early studies in Scandinavia did not show negative effects on forests of the
long-range transport of pollutants. Discussion meetings at the Royal Society of London reported
the Pathways of pollutants in the atmosphere in 1979 (Phil. Trans. A, vol. 290) and Terrestrial
Effects of deposited sulfur and nitrogen compounds in 1984 (Phil. Trans. B, vol. 305).

By the late 1970s, the requirement to reduce European emissions especially of SO2, and
thereby reduce deposition of acidifying compounds, in Scandinavia, was clear. This led to the
establishment of the Convention on Long-range Transboundary Air Pollution (LRTAP) as a major
international framework to address the problem [75]. This required extensive monitoring of
the chemical composition of air and precipitation and associated meteorological variables, the
development of atmospheric transport and deposition models to quantify the net transfer of
pollutants between countries (the European Monitoring and assessment Programme (EMEP)),
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and a framework for interpretation and negotiation of the issues between the countries. The
development of the LRTAP Convention has proved a very effective process to bring together
the process-based science, the monitoring and the modelling (within the EMEP) and policy
development, ultimately leading to international agreements to reduce emissions of SO2 and
subsequently NO2, VOC and other air pollutants.

Like the human–health-oriented measurement programmes instigated in the USA, the LRTAP
programme recognized the need to simultaneously measure a wide range of constituents, but also
recognized the need to make measurements over long time periods to overcome the considerable
inter-annual variability in meteorological conditions [76]. The LRTAP programme also introduced
the explicit goal of making measurements to support associated atmospheric modelling.

In the early 1980s, a group of European countries considered a reduction in SO2 emissions
appropriate, but in the absence of country-specific contributions to the ecological damage in
Scandinavia, an arbitrary agreement to reduce emissions by 30% was proposed. Many, but not all
countries, supported the measure, forming the 30% club. Arguments were presented that the costs
of control were substantially greater than the benefits. For example, it was stated (incorrectly) that
‘acid deposition is a million dollar problem with a billion dollar solution’ [77]. Nevertheless, the
30% club was the basis for the first Sulphur Protocol, signed in Helsinki in 1985, which stipulated
a reduction in sulfur emissions of 30% between 1980 and 1993.

Freshwater acidification and a decline in fish populations were the initial focus and the
evidence that the cause was long-range transport of pollutants, mainly sulfur, was compelling.
There was a secondary focus on the health of forests in Scandinavia but here the evidence was not
persuasive.

The scientific and political interest in acid rain in Scandinavia and more widely in Europe
stimulated interest elsewhere, especially North America, where similarly large increases in
emissions of SO2 had occurred (figure 3). The USA had established its own National Atmospheric
Deposition Program (NADP) in 1977. The combination of a large source area in the Ohio River
valley and a large area downwind with geology and ecosystems sensitive to acidification soon led
to the recognition of problems from long-range transport of pollutants similar to those identified
in Europe. The fact that substantial areas of acid-sensitive ecosystems were located in Canada
added a political dimension similar to that in Europe, with one country being responsible for
ecological problems in a neighbouring territory.

10. 1980s Forest decline
By 1980 acid rain, or more correctly acid deposition, recognizing the importance of both wet and
dry deposition to the total input to the ground [78], was established as an international issue, and
all industrial countries engaged in research and many in the development of control measures.

Interest in acid deposition in Europe was greatly stimulated in the early 1980s by a decline in
the health of forests in the most polluted regions [79]. The most damaged forests were those
in the uplands in border regions of the Czech Republic, Poland and the German Democratic
Republic where die-back of the forest was extensive. In parts of Germany, especially the Harz
Mountains, the tree-line moved down the hills as damage at high elevation which was a feature
of the problem progressed to lower levels. The large areas of forest decline throughout Germany
(Waldsterben) became a defining environmental issue of the late twentieth century [32]. The
causes of forest decline were hotly debated and contentious [79]. The main causal agents appeared
to be acid deposition and ozone, but excessive nitrogen deposition and metals were also possible
contributors and, at many of the sites of forest decline, exposures to large inputs of a combination
of these pollutants were common. While many publications address the problem, there is no
consensus to date on the proportions of the observed damage attributable to each of the pollutants
and mechanisms of damage.

Forest decline was an important part of the acid deposition story in North America, and a
particular species, red spruce, showed winter injury that was shown to be associated with the
exposure to acidic cloud-water and sulfate in the Appalachians [80].
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From the mid-1980s, sulfur and acid deposition declined steadily in Europe and North
America, with recovery in atmospheric composition preceding any signs of ecosystem recovery
[81,82]. While there were clear links between acid deposition and forest decline in both Europe
and North America, ground-level ozone was also implicated in both regions [83,84].

11. Ground-level ozone
The broadening of the ecological focus from freshwaters to forests and the expansion of the
number of pollutants implicated in effects was an important development. In expanding the range
of effects and pollutants, the regional scale was also expanding considerably.

Ozone is formed within the atmosphere following photolysis of oxygen in the stratosphere,
and some is transferred into the troposphere and contributes to ozone at the ground level [85].
However, ozone is also produced through the photochemical degradation of carbon monoxide
and VOCs in the presence of NO2, and the issue of ozone in surface air is commonly referred to
as ground-level ozone to distinguish it from stratospheric ozone issues. It was first recognized as
a problem for human health and vegetation in California, and especially the Los Angeles basin,
where it was first described by Middleton et al. [86]. The presence of ozone concentrations that
posed a risk to vegetation and human health over Europe was demonstrated in the early 1970s
[87]. Over Europe, the background concentration of ozone has increased by approximately a
factor of two since pre-industrial times [88], and episodes of elevated ozone were shown to be
widespread in Europe in the 1980s [89]. The effects of ozone on natural vegetation and crops are
discussed by Stevens et al. [32] and Emberson [90], respectively. The discovery of damaging ozone
concentrations in Europe and North America greatly increased the recognition of photochemical
oxidants in regional air quality issues in the 1970s and 1980s. The focus of control measures
therefore broadened from sulfur and nitrogen oxides to include VOCs in many other industrial
countries [57].

The relatively long lifetime of ozone in the troposphere (approx. 20 days) and photochemical
production over regional scales makes ground-level ozone a continental and hemispheric scale
pollutant [91]. The industrial regions of Europe and North America experienced frequent summer
episodes of ozone in the 1970s and 1980s with concentrations exceeding 200 µg m−3. The control
measures to date have all been country or regional in scale, and while important progress has
been made in reducing peak values, especially in California, but also across much of the USA and
Europe, ozone remains a substantial threat to crops, natural vegetation and human health [32,90].
Methane is playing a major role in the formation of background ozone, and there is increasing
interest in taking policy actions to control methane emissions as it is both a greenhouse gas and
an ozone precursor [92].

12. 1990 Eutrophication: the effects of nitrogen deposition on ecosystems
As an understanding of acid deposition developed, and ground-level ozone was recognized as
an additional regional-scale air pollution issue, the importance of nitrogen compounds grew.
Nitrogen compounds were always a part of acid deposition, even when deposited in reduced
form as NH3 or NH4

+ in precipitation, as the protons generated in soil following microbial
oxidation to nitrate create acidity [93]. However, the Netherlands and the UK were first to observe
widespread changes in botanical species composition of heathlands [94]. It was soon shown that
the changes were being driven by nitrogen deposition from the atmosphere and by ammonia
in particular. As always in ecology, the story is a little more complex, as the replacement of
heather-dominated heathlands by grassland in the Netherlands was mediated by the heather
beetle, but the underlying driver of change was the deposition of nitrogen compounds from the
atmosphere [95]. The eutrophication of ecosystems by nitrogen deposition has been shown to
reduce species richness of grasslands over regional scales in Europe [96,97]. Close to livestock
sources of ammonia, the changes in flora can be substantial [98] and the form of the nitrogen
deposited has been shown to be an important factor in the scale of effects, with gaseous ammonia
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being more damaging to heather than wet-deposited NO3
− or NH4

+ [16,99]. Similar effects of
deposited nitrogen on ecosystems have been reported in North America and China.

The scale of effects of pollutants on ecosystems quantified at the turn of the twenty-first
century showed that 24% of global forests were exposed to phytotoxic exposures of ozone [100].
The development of the Critical Loads approach and integrated assessment methods proved
valuable instruments in the development of policies to maximize the ecological benefits of control
measures within the LRTAP Convention [57].

13. 1990s Human health regains the focus of political attention on air quality
As noted above, the early evidence of air pollution effects were largely human health-related
until the discovery of acid rain effects in Scandinavia in the late 1960s. The recognition of
effects of long-range transport and the deposition of pollutants changed the scientific and, for
a while, the political attention. The broadening of the science interest into ground-level ozone
and eutrophication were important in the science and effects, and led to controls on the precursor
pollutant emissions in Europe through LRTAP protocols. In North America, efforts to control the
precursor gases followed a different control process, but achieved similar reductions in emissions
over the longer term. Emissions of SO2 in Europe and North America have been reduced in 2016
by approximately 90% from their peak values in the 1970s and 1980s, respectively (figure 3).

However, in the early 1990s, a publication showing associations across six US cities between
human mortality and morbidity and levels of air pollutants, especially PM, changed the
political and scientific focus of effects [101]. Subsequent publications on human health effects of
pollutants following similar epidemiological approaches revealed the scale of effects on human
health throughout the developed and developing nations. Current estimates are that outdoor
concentrations of PM2.5 alone are responsible for annual burdens of 4.2 million premature deaths
and 100 million disability-adjusted life-years lost globally [102]. These publications showed air
pollution to be one of the major global causes of premature mortality and drew attention to the
human health effects of pollutants at much smaller concentrations than had been implicated in
the London smog of 1952. This refocused scientific and political attention on air pollutants back
to human health.

The underlying logic of the change in focus is understandable, given the large numbers
of individuals and the societal costs of poor health and mortality. By comparison, effects of
pollutants on natural ecosystems, which are always difficult to value, and on agricultural and
forest crops are smaller in value than those on human health. For these reasons, ecosystem
effects have become a secondary consideration for the policy makers. Human health has been
the primary focus for the control of air pollution since the late 1990s. Clean air legislation in
Europe, North America, Japan and other developed countries targets both ambient levels and
emission sources. Nevertheless, the multi-impact effects of PM, NO2 and O3 on human health
and managed and natural ecosystems mean that UNECE-LRTAP protocols still fulfil a crucial
role [57].

14. Particulate matter
The chronology presented here describes the development of air quality issues as they arose rather
than providing a narrative for each pollutant. However, it is important to draw attention to PM
and its role in current air quality problems.

PM features in the earliest reports of air pollution, although terminology has been inconsistent
and often poorly defined with terms including smoke, soot, fume, haze and dust, frequently
used somewhat indiscriminately through the literature. PM, described in detail by Harrison
[103], in this issue, refers to the sum of all solid and liquid particles suspended in air and is a
complex mixture of size, spanning at least four orders of magnitude (1–10 000 nm) and with a
large range of chemical composition. The latter reflects the wide variety of contemporary sources
and very broadly comprises carbonaceous particles emitted directly from combustion, dusts from
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industrial processes and within-atmosphere conversions of inorganic (SO2, NOx and NH3) and
organic (VOC) gases into PM.

PM is the main contributor to human health effects by some margin, and it is also the form in
which most of the long-range transport of sulfur and nitrogen-containing pollutants occurs. PM
contributes to changes in the Earth’s energy balance both by absorption (e.g. black carbon) and by
dispersion and reflection of radiation. Many of the links between air quality and climate change
are therefore due to interactions between PM and the radiative balance and thus climate [104].
Similarly, many of the effects of pollutants on ecosystems are due to the deposition of PM either
directly by dry deposition on foliar surfaces or through occult or wet deposition [105].

Smog includes both particulate and gaseous components, but the visibility effects are
dominated by PM.

Given the contribution of PM to the chemical climatology of the atmosphere over the
developed and rapidly developing countries and the contribution of PM to effects on human
health, it is likely that PM will continue to dominate control measures for some decades to come.

15. 2010–2020 Air quality globally
Emissions of most primary pollutants have declined in Europe, North America and Japan from
the 1990s until the present with the greatest progress in SO2, but even NO2 and VOC emissions
have decreased more than 50% from their peaks in these regions. By contrast, during the period
1990–2010, emissions have increased in East and South Asia, and elsewhere, so that reductions in
global total emissions, even for SO2, are modest, with a reduction of 15% from the peak in 1990
(figure 3) [37].

For NOx emissions, the global total continued to rise and all the reductions in emissions in
Europe, North America and elsewhere have been counterbalanced by increases elsewhere and
mainly in Asia (figure 3). For NH3 and VOC, the case is similar to that for NOx, with the global
total steadily increasing [37].

The large increases in emissions of all primary pollutants in South and East Asia have been
widely reported and described by Zheng et al. [106]. Air quality in Asian megacities shows values
for PM, SO2 and NO2 in episode conditions that are similar to the highly polluted atmosphere of
London in the smog episodes of the 1950s, for example the Beijing ‘haze’ events in January 2012.

The global burden of air pollutants has therefore continued to increase into the first two
decades of the twenty-first century. The focus of political attention remains firmly on human
health due to the PM and NO2 exposure in urban areas of the developed and developing
world. The distribution of ambient PM2.5 concentrations experienced by different regional
populations presented in figure 5 shows how the current global air pollution health burden is
disproportionately borne by countries in East and South Asia, rather than the countries that
were afflicted in the early stages of the Industrial Revolution. Even so, the majority of the
world’s population live in locations where levels of ambient PM2.5 exceed the WHO guideline
value.

It is important to note that this focus on human health deflects attention from the continued
widespread exceedances of thresholds for effects of pollutants on managed and natural
ecosystems [90].

16. Satellite remote sensing
The need to observe tropospheric pollution globally drove the development of passive and some
active remote sensing techniques to measure the tropospheric burden of key pollutants trace gases
and aerosol. In 1981, 1984 and twice in 1994 the MAPS (Mapping Pollution with Satellites), a
gas correlation radiometer instrument flew for typically 9 day missions on the space shuttle and
measured middle and upper tropospheric CO between approximately 55°N and approximately
55°S. A more advanced nadir gas correlation instrument MOPITT (Measurements of Pollution in
The Troposphere) measuring in both the thermal and short-wave infrared has now made over
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Figure 5. Distributions of the population as a function of annual (2013) average ambient PM2.5 concentration for the world’s 10
most populous countries and the rest of the world. Dashed vertical lines indicateWorld Health Organization Interim Targets (IT)
and the Air Quality Guideline (AQG). Source: Brauer et al. [107]. (Online version in colour.)

20 years of measurements of tropospheric CO and some CH4 from the NASA Terra, which was
launched at the end of 1999.

The total columns and vertical profiles of ozone, O3, data products from NASA TOMS and
SBUV on Nimbus 7 and later TOMS and SAGE II data [108,109] were used to retrieve O3, O3
amounts and distributions with a focus in the tropics.

From 1984, the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric
CHartographY) project was developed and proposed to ESA in 1988. This led to the smaller
GOME (Global Ozone Monitoring Experiment), being flown on ESA ERS-2 (1995–2011, [4])
and SCIAMACHY on ESA ENVISAT (2002–2012, [110,111]). Both satellites flew in polar orbits
with equator crossing times of 10.30 and 10.00, respectively, and measured in nadir viewing
geometry the upwelling radiation in the solar spectral region at the top of the atmosphere. The
UV and visible nadir measurements of GOME and SCIAMACHY have been exploited to retrieve
tropospheric columns of NO2, O3, SO2, HCHO, CHO.CHO, BrO, IO and H2O [4] in cloud-free
regions and above clouds. The SCIAMACHY short-wave infrared spectral measurements enabled
CO columns and for the first time the total dry column mixing ratios of CH4 and CO2 to be
determined globally.

Satellite measurements revealed the growth in emissions in Asia and the declines in Europe
and North America during the period 1996–2004 [112]. Satellite remote sensing in the solar
spectral region also provides global fields for tropospheric SO2, CO, HCHO and CHO.CHO.

The launch of the instruments AIRS on NASA and IASI, a CNES FTIR on EUMETSAT MetOp
A B, has led to the detection of NH3 (see [113,114]). A combination of data from the GOME,
SCIAMACHY and OMI instruments provides clear evidence of the increase in NO2 in Eastern
China between 1995 and 2010 and the subsequent decline from 2010 to 2018, as shown in
figure 6.

Satellite remote sensing also provides measures of PM, aerosol optical thickness, e.g. MODIS
on NASA Terra (1999–present) and Aqua (2002–present) [107].

17. 2020 Are we at the global peak of air quality problems?
Global emissions of sulfur have declined since the peak in 2000, and recent trends in China
since 2012 show a reduction in emissions approaching 50% (figures 3 and 7). Such a reduction
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Figure 6. Trends in the tropospheric NO2 column over East China between 1995 and 2018 (A. Richter and J. P. Burrows, personal
communication, 2020). (Online version in colour.)

represents remarkable progress, relative to the time it took to reduce emissions in Europe and
North America by a similar amount (approx. 20 years). Emissions of NOx in China have also
declined, by approximately 25% over the last 8 years [115] and figure 6, although surface ozone
has continued to increase [116]. It is therefore possible that the world has passed the point of
maximum emissions of several major gaseous air pollutants as a combination of further controls
in North America, Europe and East Asia drive down global totals. Climate change policies
directed towards reduced use of coal and oil are expected to contribute further reductions in
emissions of SO2 and NO2 over coming decades [117]. However, there are good reasons to be
cautious, because emissions of ammonia, an important contributor to PM and eutrophication,
continue to rise, and possible feedbacks between emissions of these gases and climate may drive
overall emissions upwards [118,119]. Global emissions of CH4 and VOC also continue to rise,
and in the case of biogenic emissions, it is possible that changes in climate and the widespread
planting of new forests may accelerate global emissions of biogenic VOC (BVOC). Decisions over
the species chosen for tree planting to increase carbon sequestration will also need to be made to
simultaneously ensure that BVOC emissions do not increase. At present, it remains inconsistent in
international policy that land use, land-use change and forestry are recognized as areas to count
as carbon credits in the UN Framework Convention on Climate Change, but when it comes to the
revised Gothenburg Protocol under the LRTAP Convention, the accompanying BVOC emissions
are considered ‘natural’ and are excluded from the emissions commitments. Both the benefits for
carbon and the possible disbenefits for BVOC will need to be recognized in future international
agreements.

Despite the widespread elevated levels of PM2.5 illustrated in figure 5, data from the global
burden of disease project (figure 8) indicate that globally the world may now be on a downward
trend of death rates from outdoor PM2.5 and from ground-level ozone.

Given the current scale of effects of air pollution on human health and ecosystems and
uncertainties in measurements and modelling, it is premature to celebrate the downturn in global
emissions of two of the most important air pollutants (SO2 and NOx). However, the temporal
pattern in emissions of pollutants displayed in the Environmental Kuznets Curve [120], with
increasing efforts to control emissions as economies mature, continues to be consistent with
observations as parts of Asia now show substantial reductions in emissions, at least for pollution
arising from combustion sources. Furthermore, there is a reasonable expectation that measures to
combat climate change and increase the use of renewable energy in developing regions, especially
Africa, may substantially mitigate emissions of air pollutants as their economies develop.
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18. Concluding remarks
In providing a chronology of what has become a very large and complex field, this narrative has,
of necessity, been selective. It has also been excessively brief on developments over the last two
decades during which the range of issues, geographical scale and very different trends in different
areas of the world obscures the wider picture. The suggestion that the world has passed the peak
in air pollution problems is a strong statement, and may prove to be incorrect. However, the
evidence from SO2 and NOx emissions is persuasive for the major emitting countries in Europe,
North America and also for East Asia. If similarly strong controls were applied to ammonia
emissions, which are certainly possible technically, the current problems with the nitrogen cycle
could also be addressed [121]. It is less clear when or how global VOC emissions may be

www.ourworldindata.org/air-pollution/
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controlled, but these emissions will become less important if the world moves towards a lower
NOx chemical climate.

19. COVID-19
The Discussion meeting at the Royal Society in London 11th and 12th November 2019 took place
just before the first case of the Sars-COVID-19 was reported in China on the 17th November 2019.
By June 2020, 6.3 million cases had been reported across 188 countries and territories resulting
in 376 000 deaths. Lockdown measures have led to major effects on industrial and transport
activities and reduced emissions of many of the primary pollutants contributing to poor air
quality. While it is too soon to provide a detailed analysis, there are many preliminary reports,
including surface measurements from monitoring networks and satellite remote sensing. In the
major cities, reduced combustion-related emissions are revealed by CO2 flux measurements, with
reductions of 55% in central London [122]. The reductions in urban NO2 in the UK during the
first weeks of lockdown of 20–30% [122] are similar to reductions in other major cities across the
developed world. Similar reductions have been observed in column NO2 satellite remote sensing
(J.P. Burrows, personal communication, 2020).

The effects on PM2,5 are much smaller and more variable than effects on NO2, with some
COVID-19-affected cities in China reporting reductions in PM10 similar in scale to reductions in
NO2 but for a shorter period [123]. The analysis for the UK during lockdown suggested reductions
in personal exposure in London to PM2.5 in the range 5–25%, depending on the mode of travel,
but effects on ambient PM are small and very variable.

The global scale of the pandemic produced a clear effect on global emissions of combustion-
related emissions of pollutants, with expected health and environmental benefits due mainly to
reduced NOx emissions. Whether these benefits lead to longer-term reductions in emissions is
much less clear as transport and industrial emissions grow following the widespread population
lockdown. It seems likely that an effect of COVID-19 will be to reduce net acidity and increase
the gaseous alkaline fraction [16] as transport and combustion emission are reduced, but with
little anticipated reduction in NH3 emissions from agriculture. While this may be associated
with health benefits, additional adverse effects of ‘alkaline air’ on ecosystems will also need to
be considered.
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