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SUMMARY
Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here,
we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and
heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding
changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting
the mRNA showed decreased RNA association. Among translation components, RNA association was
most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B,
and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B,
and Ded1 primarily targeted the 50 ends of mRNAs. Following glucose withdrawal, 50 binding was abolished
within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced pro-
gressive loss of 50 RNA binding by initiation factors over �16 min and provoked mRNA degradation, partic-
ularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms un-
derlying translational control of gene expression during stress.
INTRODUCTION

All organisms are subject to a continuously changing environ-

ment, to which they must adapt in order to survive. This problem

is especially acute for unicellular, non-motile organisms, such as

the budding yeast Saccharomyces cerevisiae. In general,

budding yeast respond to stress by inducing global changes in

gene expression. At the transcriptional level, this involves the

activation of the environmental stress response, in which hun-

dreds of stress-response genes are upregulated and genes en-

coding ribosome maturation and protein synthesis factors are

suppressed. To a large extent, these coordinated changes in

gene expression are induced regardless of the identity of the

initiating stress (Gasch et al., 2000).

Transcriptional reprogramming is complemented with rapid

posttranscriptional changes, particularly at the level of protein

synthesis. Cytoplasmic translation is dramatically attenuated in

response to a variety of environmental stresses, including

various types of nutrient deprivation, but also physical stresses

involving changes in temperature, osmotic balance, or oxidation

state. In terms of both speed and scale, glucose starvation trig-

gers the most drastic translational shutdown of any stress (Ashe

et al., 2000; Kuhn et al., 2001). Glucose is the preferred energy
470 Molecular Cell 80, 470–484, November 5, 2020 ª 2020 The Auth
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and carbon source for yeast, and its absence quickly reduces

cellular biosynthetic capacity. Physical stresses, such as heat

shock, can similarly limit biosynthesis while also damaging the

existing proteome. In response, cells halt bulk protein synthesis

until protective measures are in place.

Translation initiation is generally the rate-limiting step in pro-

tein synthesis and a frequent target of regulation, including dur-

ing stress (reviewed in Crawford and Pavitt, 2019; Dever et al.,

2016; and Janapala et al., 2019). The initiation process begins

with assembly of the 43S preinitiation complex (PIC), composed

of the 40S subunit plus eukaryotic initiation factor 1 (eIF1), eIF1A,

eIF3, eIF5, and eIF2:GTP in complex with the initiator tRNA (Hin-

nebusch, 2017). In parallel, the mRNA is activated for translation

by the eIF4F complex, consisting of the cap-binding protein

eIF4E, the scaffolding subunit eIF4G, and the ATP-dependent

helicases eIF4A and Ded1 (Gao et al., 2016). The PIC is recruited

to the 50 end of the mRNA with the help of the eIF4F complex,

eIF3, and eIF4B (Mitchell et al., 2010; Park et al., 2011; Sen

et al., 2015; Walker et al., 2013) and begins scanning along the

transcript until it reaches the start codon. The scanning process

is aided by the helicase activities of Ded1 and eIF4A, which help

unwind secondary structure ahead of the translocating ribo-

some. Ded1 is preferentially required for translation of mRNAs
or(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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with highly structured 50 UTRs, whereas eIF4A is required for

optimal translation of all mRNAs, regardless of secondary struc-

ture (Iserman et al., 2020; Sen et al., 2015). eIF4Bmay also assist

in the scanning process through its stimulatory effect on eIF4A

(Andreou et al., 2017; Sen et al., 2015, 2016; Walker et al., 2013).

The best-studied example of translational control during

stress involves the heterotrimeric eIF2 complex, which delivers

the initiator tRNA to the 43S PIC. Amino acid starvation triggers

the activation of the Gcn2 kinase, whose sole target is a

conserved serine residue of eIF2a (Dever et al., 1992; Dey

et al., 2005; Harding et al., 2000). Phosphorylated eIF2a blocks

recycling of the complex for use in subsequent rounds of trans-

lation and thus impairs bulk translation initiation. TheGcn2-eIF2a

pathway is highly conserved throughout eukaryotes (Castilho

et al., 2014), but, at least in yeast, it is activated in only a limited

number of stress conditions (reviewed in Simpson and Ashe,

2012). Notably, eIF2a phosphorylation is not required for transla-

tion inhibition in response to glucose withdrawal (Ashe et al.,

2000) or heat shock (Grousl et al., 2009). The mechanism of

translational arrest during these stresses remains unknown.

Historically, a powerful tool for analyzing protein-RNA inter-

actions, including those involved in translation, has been ultra-

violet (UV) crosslinking (Dreyfuss et al., 1984). In vivo irradia-

tion with UV light induces covalent crosslinks between

protein and RNA. Subsequently, specific purification of a

given protein allows for the identification of bound RNAs

(the crosslinking and analysis of cDNA [CRAC] and CLIP

methods). In a reciprocal approach, the RNA itself can be

used to pull down associated proteins. Polyadenylated tran-

scripts can be purified using oligo(dT) selection (Castello

et al., 2012; Dreyfuss et al., 1984, 1993; Perez-Perri et al.,

2018), but this approach is not applicable to the majority of

eukaryotic RNAs, including immature mRNAs, rRNA, tRNA,

and a host of additional noncoding RNAs. More recently,

alternative methods have been developed to purify RNA,

regardless of class (Bao et al., 2018; Huang et al., 2018;

Queiroz et al., 2019; Shchepachev et al., 2019; Trendel

et al., 2019; Urdaneta et al., 2019). One such technique is

TRAPP (total RNA-associated proteome purification), which

takes advantage of the intrinsic affinity between RNA and sil-

ica to isolate crosslinked protein-RNA complexes (Shchepa-

chev et al., 2019).

Here, we applied TRAPP to yeast cells exposed to either

glucose withdrawal or heat shock. This revealed extensive re-

modeling of the yeast protein-RNA interactome in response to

stress and provides insights into the mechanism of translational

repression.
Figure 1. The Impact of Stress on the Yeast RNA-Binding Proteome

(A) Summary of the TRAPP protocol. See main text for details. 4tU, 4-thiouracil;

(B) Time course showing changes in RNA association during glucose starvation

(C) Same as (B) but for heat shock.

(D) Density plot showing changes in RNA binding at 16 min following a mock shi

(E) Bar chart showing all proteins with greater than 2-fold change in RNA associatio

panel shows changes in protein abundance following 16 min of glucose starvatio

(F) Principal-component analysis (PCA) showing differences between conditions

principal component.

(G) PCA comparing the changes in RNA binding for individual proteins following

See also Figure S1.
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RESULTS

Global RBP Dynamics in Response to Cell Stress
We previously developed TRAPP as a method to characterize

the global RNA-binding proteome (Shchepachev et al., 2019).

Here, we applied TRAPP to assess RBP dynamics in response

to glucose starvation or heat shock. An overview of the

approach is shown in Figure 1A. Yeast cells were grown in

the presence of the photoreactive nucleobase 4-thiouracil

(4tU), which is incorporated into nascent RNA during tran-

scription. Following labeling, the cultures were rapidly filtered

and shifted to medium containing the nonfermentable carbon

sources of glycerol and ethanol (glucose withdrawal) or to

standard glucose medium pre-warmed to 42�C (heat shock).

At defined time points after transfer (2, 4, 8, 12, and

16 min), cells were irradiated with 350 nm UV light to induce

crosslinks between 4tU-labeled RNAs and interacting RBPs.

For comparison, cells were also irradiated prior to transfer

(control) or transferred and irradiated without being subjected

to stress (mock treated).

To quantify protein association with RNA, the TRAPP protocol

also incorporates stable isotope labeling in cell culture (SILAC).

Control cells were grown inmedia containing 13C6 (‘‘heavy’’) argi-

nine and lysine, although stressed cells were cultured with stan-

dard amino acids (‘‘light’’). Stressed and control cultures were

combined in equal proportion following irradiation and lysed

together under denaturing conditions. Subsequently, the cleared

cell lysate was incubated with silica beads, which bind RNA

along with any crosslinked protein. Following elution of the

RNA:protein complexes, the RNA component was degraded

and the remaining protein was analyzed by mass spectrometry.

After filtering for proteins previously identified as high-confi-

dence RNA binders (Shchepachev et al., 2019), we quantified

the association of 338 proteins during glucose starvation and

399 following heat shock across all time points (Figures 1B and

1C). Most RBPs showed similar RNA association before and af-

ter glucose withdrawal; in total, only 22 proteins showed a

greater than 2-fold shift in RNA binding by 16 min (Figure 1E; Ta-

ble S2). Heat shock induced a more extensive response, with a

greater bias toward loss of RNA binding (Figures 1C, 1D, and

S1A). In contrast to the two stresses, a mock shift for 16 min pro-

duced no substantial changes in RNA binding (Figures 1D, 1E,

and S1A). As an additional control, we also measured total pro-

tein levels before and after each stress (Figures 1E, S1A, and

S1B; Table S3). RBP abundance was generally constant, sug-

gesting that the observed differences in TRAPP recovery are

attributable to changes in RNA association.
GTC, guanidinium thiocyanate.

for individual RBPs in TRAPP analyses.

ft, glucose starvation, or heat shock.

n after 16min of glucose starvation (left) or amock shift (center). The right-hand

n (right). Error bars represent standard deviation.

and time points. Axis titles show the extent of variation explained by a given

heat shock, glucose starvation, or mock shift of 16 min.
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In general, glucose starvation caused more rapid changes in

the RNA-protein interactome compared to heat shock. Many

RBPs changed dramatically within the first 2 min following

glucose depletion and were unchanged thereafter (Figures 1B

and S1D). By contrast, heat shock induced more gradual, pro-

gressive changes in RNA binding throughout the time course

(Figure 1C). These observations were further supported by prin-

cipal-component analysis (PCA) (Figure 1F). All of the glucose

starvation time points clustered close together, indicating a

high degree of similarity following the initial rapid response.

With heat shock, individual data points were more distinct in

the PCA, showing a clear progression throughout the time

course.

A decrease in intracellular pH has been suggested to underlie

the response of yeast cells to multiple stresses (Dechant et al.,

2014; Garcı́a et al., 2017; Munder et al., 2016; Triandafillou

et al., 2020). We therefore tested the effects of sorbic acid, a pro-

tonophore that equilibrates the cytosolic and extracellular pH.

Cell cultures were incubated for 2 min in medium buffered at

pH 5, together with increasing concentrations of sorbic acid (2,

4, and 6 mM) that are expected to correlate with decreasing

intracellular pH (Munder et al., 2016). We observed substantial

remodeling of the RBPome following sorbic acid treatment,

including reduced binding of eIF4A and eIF4B (see below; Fig-

ure S1C). Overall, however, the changes seen following sorbate

treatment were distinct from either glucose starvation or heat

shock (Figures 1F and S1C; Table S2). We conclude that pH-

mediated signaling is not the major contributor to the changes

in RNA binding observed during these stresses. However, we

cannot exclude the possibility that sorbate treatment induces

stress effects in addition to the change in pH.

PCA analyses were also used to assess changes across the

proteome for the glucose withdrawal and heat shock data (Fig-

ure 1G). A relatively small number of proteins were clearly outliers

in their response to stress. Specific RBPs will be discussed

below, but we note that a group of proteins showing strongly

altered RNA binding, particularly Pin4, Mrn1, Pbp2, and Nab6,

remain relatively uncharacterized (Hogan et al., 2008; Riordan

et al., 2011). Their identification shows the potential value of

TRAPP in providing initial functional data on uncharacterized

factors. Further analyses of these proteins will be reported

elsewhere.

Glucose Starvation and Heat Shock Have Distinct
Effects on Ribosome Biogenesis
Strikingly, most ribosome maturation factors showed no appre-

ciable drop in RNA binding in response to glucose starvation

(Figure 2A), suggesting that glucose withdrawal rapidly pauses

ribosome maturation and stabilizes the pre-rRNA. A substantial

drop in RNA binding was seen only for Sdo1 (Figure S1D), which
Figure 2. Changes in RNA Binding among Ribosomal Proteins

(A) Time course showing changes in RNA binding during glucose withdrawal (up

TRAPP analyses. Included in the figure are ribosome biogenesis factors (left), lar

(B) Scatterplot comparing the effects of glucose starvation and heat shock at 16

(C) Time course showing RNA association for Rps2, Rps3, and Rps5.

(D) Crystal structure (PDB: 3J77) of the yeast ribosome highlighting the changes

(E) A closeup view of the mRNA entry channel with amino acid-RNA crosslinking
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catalyzes the final step of 60S maturation (Kargas et al., 2019).

Heat shock, by contrast, induced a progressive decrease in

RNA binding over the 16-min time course for nearly all matura-

tion factors. This indicates that the inhibition of ribosome synthe-

sis develops over time, with maturation or degradation of the

nascent particles. Notably, Sdo1 was again a rare exception,

showing modest but significantly increased RNA association,

potentially reflecting accumulation of very late pre-ribosomes

immediately prior to final maturation of 60S subunits.

Ribosomal Protein Binding Dynamics in Response to
Cell Stress
A number of ribosomal proteins (RPs) showed decreased RNA

association following either glucose withdrawal or heat shock

(Figure 2A). The same set of RPs from the 40S subunit were

altered in each stress (Figure 2B), but glucose starvation induced

more rapid responses (for examples, see Figure 2C). We map-

ped these TRAPP results onto the structure of the ribosome,

with each protein colored according to its change in RNA binding

at 16 min following glucose withdrawal (Figure 2D). Intriguingly,

RPs with altered binding predominately clustered around the

mRNA channel. Indeed, the subset of proteins that directly con-

tact the translatingmRNA (e.g., Rps3) showed themost substan-

tial drop in RNA association. We conclude that decreased trans-

lation during stress drives reduced RNA association for RPs that

would otherwise contact the mRNA.

Finally, wemapped precise amino acid sites of RNA crosslink-

ing to RPs, using published data from the iTRAPP method

(Shchepachev et al., 2019). Visualization of these sites on the ri-

bosomal structure (Figure 2E) revealed a succession of cross-

linked amino acids along the surfaces of Rps2 (uS5) and Rps3

(uS3), apparently tracing the path of the mRNA as it approaches

the channel. This is consistent with cryoelectron microscopy

(cryo-EM) models of the yeast initiation complex (Llácer et al.,

2018) and highlights the utility of TRAPP for capturing precise,

in vivo interactions.

A Common Set of Translation Initiation Factors Are
Regulated in Response to Stress
We first confirmed that our strains and conditions recapitulate

the reported translation inhibition following glucose withdrawal

by polysome gradient analysis (Figure S2A; Ashe et al., 2000).

Polysome levels were also reduced following heat shock but to

a lesser extent (Figure S2A).

We next asked whether the TRAPP data could shed light on

the mechanism of translational repression. We focused first on

translation initiation, as it is the most common target of regula-

tion. The RNA binding dynamics for each eIF are shown in Fig-

ure S2B. An overview of the translation initiation pathway is

shown in Figure 3A (for details, see Introduction). Each protein
per; blue lines) and heat shock (lower; red lines) for various classes of RBPs in

ge ribosomal subunits (center), and small ribosomal subunits (right).

min on RNA binding for ribosomal proteins.

in RNA association for each detected ribosomal protein.

sites highlighted in green.



Figure 3. Changes in RNA Binding among

Translation Initiation Factors

(A) Overview of the translation initiation process.

Each protein is colored according to its change in

RNA association during glucose starvation in

TRAPP analyses. Translation initiation factors

shown in gray were not detected as RNA binding.

(B) Time course showing changes in RNA binding

for eIF4A, eIF4B, and Ded1 following glucose

starvation (blue) and heat shock (pink) in TRAPP

analyses.

See also Figure S2B.
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is colored according to its change in RNA binding, specifically in

response to glucosewithdrawal, but most eIFs showed a consis-

tent response to both stress conditions (Figure S2B).

We first considered the set of initiation factors primarily asso-

ciated with the 40S subunit, including eIF1, eIF1A, eIF5, and

eIF5B. These proteins remained associated with RNA following

stress (Figures 3A and S2B), suggesting that their binding to the

40S subunit was unaltered. Next, we considered the eIF3 com-

plex, subunits of which predominately bind either the mRNA or

40S ribosomes. The eIF3g and eIF3a subunits predominately

contact the mRNA during translation (Valá�sek et al., 2017)

and showed decreased RNA association. Conversely, eIF3b

and eIF3i, which only interact with the 40S ribosome, were un-

changed. Clu1 was also unchanged in RNA binding, but its

place in the complex, if any, is unclear (Vornlocher et al.,

1999). Only eiF3j showed increased RNA association following

both stresses. However, eIF3j is not a constitutive subunit of

the yeast eIF3 complex and may primarily function in transla-

tion termination (Beznosková et al., 2013; Young and Guydosh,

2019).

These findings suggested that the 43S preinitiation complex

assembles normally during stress. However, a downstream

block in translation initiation may impair its recruitment to

mRNA. We therefore assessed mRNA-specific initiation fac-

tors that recruit the 43S complex. The cap binding protein

eIF4E was largely unaffected by either stress (Figure S2B),

whereas RNA binding by eIF4G was unaltered by glucose

withdrawal but modestly reduced with heat shock. More dra-

matic effects on RNA binding were seen for the scanning fac-
Molecula
tors eIF4A and eIF4B (Figure 3B). RNA

association was strongly decreased

following either stress but with much

faster kinetics during glucose with-

drawal. These observations are consis-

tent with the reported loss of eIF4A

from polysomes following glucose with-

drawal (Castelli et al., 2011). eIF4A is a

‘‘DEAD-box’’ ATP-dependent RNA heli-

case, in which ATPase activity is

coupled to mRNA binding and unwind-

ing. Notably, a related DEAD-box trans-

lation initiation factor, Ded1, also

showed a robust decrease in RNA bind-

ing during both stresses, though this
was significantly less pronounced for glucose withdrawal

(see below).

When bound tomRNA, eIF4A, eIF4B, and Ded1 recruit the 43S

preinitiation complex, and Ded1 additionally assists in scanning

and start codon recognition (Andreou et al., 2017; Guenther

et al., 2018; Sen et al., 2015; Walker et al., 2013). Loss of RNA

binding by these factors is therefore expected to strongly impair

translation initiation. We conclude that a specific block in PIC

recruitment and/or mRNA scanning underlies the translation

repression seen following either glucose withdrawal or

heat shock.

Differential RNA Binding by eIF4A, eIF4B, and Ded1
upon Stress
To further investigate the role of eIF4A, eIF4B, and Ded1 in trans-

lation shutoff, we mapped the RNA binding sites for each protein

using CRAC. Strains were constructed in which eIF4A and Ded1

were expressed as N-terminal, FH-tagged (FLAG-Ala4-His8)

fusion proteins and eIF4B was expressed with a C-terminal HF

tag (His8-Ala4-FLAG), under control of the endogenous pro-

moters. The fusion proteins each supported wild-type growth,

indicating that they are functional. Actively growing cells ex-

pressing the fusion proteins were UV-irradiated at 254 nm for

�4–6 s in a VariX crosslinker to covalently fix direct protein:RNA

contacts. After stringent, tandem-affinity purification, partial

RNase digestion, and radiolabeling, protein:RNA complexes

were isolated using SDS-PAGE (Figure S3A). Subsequently,

crosslinked RNA fragments were amplified using RT-PCR and

analyzed by high-throughput sequencing. For each protein, we
r Cell 80, 470–484, November 5, 2020 475
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collected datasets from unstressed cells (‘‘control’’), mock-

shifted cells without stress (16 min), and following glucose with-

drawal (30 s and 16 min) or heat shock (16 min; Figure S3B; Ta-

bles S4, S5, and S6). Metaplots of individual replicates showed

good reproducibility (Figure S3D), and for subsequent analyses,

replicate datasets were merged to provide improved coverage

along individual transcripts.

We first examined interactions between each translation factor

and ribosomal RNA in control cells (Figures S4A and S4B). eIF4A

showed weak binding throughout 18S, together with two sharp

peaks in 25S. However, both crosslinking sites were buried

within the ribosome so likely represent sequencing artifacts.

Clear results were seen with eIF4B, for which we observed a sin-

glemajor crosslinking site, situated close to themRNA exit chan-

nel (nucleotide 1,060). Ded1 also crosslinked mainly to 18S

rRNA, with prominent peaks near the mRNA entry (nucleotide

492) and exit (nucleotide 1,053) channel and additional binding

at position 719. Crosslinking at all three sites is consistent with

previously reported interactions between Ded1 and 18S rRNA

(Guenther et al., 2018).

A breakdown of crosslinked RNAs by biotype revealed sub-

stantial differences pre- and post-stress. In unstressed cells,

eIF4Bprimarily targetedmRNAs, but this enrichmentwas abruptly

lost following exposure to either stress (Figure 4A). By contrast,

cells subjected to a mock shift were indistinguishable from the

control, indicating that the experimental protocol per se did not

significantly perturb the cells. Similar but less dramatic trends

were seen for Ded1 and eIF4A (Figure S3C). Analysis of binding

sites on individual mRNAs provided a high-resolution snapshot

of translation dynamics. Figures 4B–4D analyze 2,000 transcripts

showing the strongest binding to eIF4B in unstressed conditions.

The vast majority of transcripts showed decreased binding by

eIF4B, Ded1, and eIF4A upon exposure to stress. Remarkably,

bindingwas greatly decreasedwithin the first 30 s of glucosewith-

drawal, consistent with prior reports that translation initiation is

repressed within the first minute (Ashe et al., 2000). Binding was

reduced across mRNAs, but the reduction was substantially

more pronounced when considering only 50 binding, defined as

reads mapping to either the 50 UTR or the first 150 nt of the

open reading frame (Figures 4B–4D). This specific loss of 50 bind-
ing was also seen in a metagene analysis of the top 2,000 bound

mRNAs (Figures 4E and S3D). Heatmaps of the distribution of

eIF4B along each of the 2,000 mRNAs confirmed that loss of 50

binding is a general feature (Figure S3E; Table S7).
Figure 4. Genome-wide Analysis of the RNA Binding Profiles of eIF4A,

(A) Breakdown of eIF4B-bound RNAs by biotype in CRAC analyses.

(B) Boxplot showing the changes in eIF4B binding to individual mRNAs following

with 25th and 75th percentiles. The whiskers show the 10th and 90th percentiles. ***

(E), all analyses are based on a set of 2,000 transcripts that show the strongest

(C) Same as (B) but for Ded1.

(D) Scatterplots comparing the changes in RNA binding between control and eith

heat shock (16 min).

(E) Metaplots showing the distribution of eIF4A, eIF4B, and Ded1 binding around

(F) Binding of eIF4A, eIF4B, and Ded1 across the ACT1, URA5, RPL6B, and TEF

million, with the exact value indicated in the upper right corner of each box. RNA-

spike-in control and thus represents the absolute abundance of eachmRNA comp

the bottom. The open reading frames (ORFs) are indicated as black boxes, with

See also Figures S3–S5.
Having examined the ‘‘average’’ binding profile bymetaplot, we

next investigated how binding varied between individual mRNAs

(Figures 4F and S5A). OnmostmRNAs, eIF4A and eIF4B targeted

a single site close to the start codon (shown for TEF1 and URA5).

For aminority of transcripts, we observed two distinct peaks, usu-

ally on either side of the start codon (shown forACT1 andRPL6B).

Overall, the two translation factors displayed a strikingly similar

binding profile, consistent with eIF4B’s role as a cofactor for

eIF4A (Andreou et al., 2017). In agreement with the metagene

analysis, most individual transcripts showed sharply reduced

binding to both eIF4A and eIF4B following stress.

Ded1 displayed a more complicated binding pattern. For most

transcripts, includingACT1 andURA5 (Figure 4F), Ded1 showed a

similar distribution to eIF4A and eIF4B, binding at a single site near

the 50 end in unstressed cells and largely dissociating during

stress. However, a substantial fraction of transcripts showed

pervasive binding throughout the length of the mRNA. To quantify

this difference, we generated heatmaps in which individual tran-

scripts were sorted by their ratio of 50 versus pervasive binding.

For Ded1, 66% of transcripts showed at least as much binding

at downstream sites as at the 50 end (Figures S5B and S5D). By

contrast, only 5% of transcripts showed a comparable ratio for

eIF4B (Figures S5C and S5D). The RPL6BmRNA illustrates these

points well (Figure 4F). In unstressed cells, Ded1 was bound

throughout the transcript, with modest enrichment at the 50 end.
Intriguingly, 50 binding was selectively lost in response to glucose

withdrawal, although downstream binding was maintained. By

contrast, heat shock resulted in a general loss of Ded1 binding

across the length of the mRNA. Similar results were seen for other

transcripts, including TEF1 (Figure 4F) and RPL34B (Figure S5A),

albeit to varying degrees. At the metagene level, we observed a

specific reduction in 50 binding, although downstream binding

was relatively unaltered following glucose withdrawal but

decreased following heat shock (Figure 4E). Importantly, these

observations are consistent with the TRAPP data, which showed

that glucose withdrawal had a relatively modest effect on binding

of Ded1 to RNA in comparison to heat shock (Figure 3B).

For most mRNA species, targeting by Ded1 was approxi-

mately proportional to transcript abundance, but there were a

number of outliers (Figure S5E). The most prominent was the

DED1 mRNA itself, which was highly bound by Ded1. Intrigu-

ingly, most binding was concentrated within the 30 UTR (Fig-

ure S5A), a pattern counter to most other mRNAs and suggestive

of some form of auto-regulatory control.
eIF4B, and Ded1

either mock shift or stress in CRAC analyses. Each box represents the median

p < 10�15 relative to mock, using the unpaired t test to comparemeans. For (B)–

binding to eIF4B in unstressed conditions.

er mock shift (16 min), glucose starvation (30 s), glucose starvation (16 min), or

the mRNA start codon in CRAC analyses.

1 mRNAs. Each set of tracks is normalized to total library size using reads per

seq traces are shown at the bottom as a control. Each track is normalized to a

ared to the control. Each box represents a 3-kbwindow; a scale bar is shown at

UTRs as flanking gray boxes of intermediate thickness.
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Heat Shock Triggers General mRNA Decay
Our results indicate that specific translation initiation factors

dissociate from mRNAs in response to stress. To control for

changes in mRNA levels, we harvested RNA before and 16 min

after each stress and performed RNA sequencing (RNA-seq),

with RNA from Schizosaccharomyces pombe included as a

spike-in control for quantitation. Replicates collected for each

condition showed excellent reproducibility (Figure S6A; Table

S8). Glucose withdrawal reduced overall mRNA abundance by

15%–20%, although heat shock reduced mRNA levels by

20%–25% (Figure 5A). The reduction in total mRNA was much

less than the reduction in RNA binding by eIF4A, eIF4B, and

Ded1 (Figure 3B), showing that the decreased initiation factor

binding was not due to reduced mRNA abundance. This conclu-

sion was further supported by analysis of individual mRNAs

(Figure S6B).

Most mRNAs were only mildly affected by glucose depletion

but were substantially decreased in response to heat shock (Fig-

ures 5B and 5C). GO analysis of the 500 most-depleted mRNAs

revealed strong enrichment for translation-associated tran-

scripts, primarily components of the ribosome biogenesis and

cytoplasmic translation machinery (Figure 5D). This enrichment

was seen for both stresses but was more significant following

heat shock. We confirmed these results with quantitation of

mRNAs that either encode ribosomal proteins or fall into the ribo-

some biogenesis (RiBi) regulon (Figure 5E), a group of over 200

coordinately regulated factors (Jorgensen et al., 2004; Klinge

and Woolford, 2019; Wade et al., 2006). Both groups of mRNAs

were, on average, reduced �2.5-fold by glucose depletion and

�16-fold following heat shock (Figure 5E).

The stability of a given mRNA species is often determined by

competition between translation and degradation (Chan et al.,

2018; Huch and Nissan, 2014; Schwartz and Parker, 1999). We

therefore tested whether the decrease in abundance of specific

transcripts could reflect mRNA decay induced by the translation

shutdown. To determine the role of translation, heat shock was

combined with cycloheximide treatment, which freezes ribo-

somes in place by inhibiting translation elongation. Notably, treat-

ment with cycloheximide largely prevented the drop in mRNA

levels following heat shock (Figures 5A, 5C, and 6A). We conclude

that ribosome-bound mRNAs are protected from rapid mRNA

decay induced during heat shock. In the absence of cyclohexi-

mide, mRNA degradation may be triggered by the shutdown in

translation initiation combined with the ensuing ribosome runoff,

resulting in ‘‘naked’’ mRNAs susceptible to degradation factors.

This hypothesis predicts that translation initiation factors

dissociate from mRNAs prior to degradation of the transcript.

To test this idea, we examined eIF4B binding by CRAC following

heat shock, either with or without cotreatment with cyclohexi-

mide (shown for individual mRNAs in Figure 5F and as metagene

plot in Figure 5G). If translation factors dissociate prior to mRNA

decay, then eIF4B should lose 50 RNA binding during heat shock,

even if mRNA levels are stabilized by cycloheximide. Indeed,

eIF4B binding to specific mRNAs was sharply reduced following

heat shock, even when the cells were cotreated with cyclohexi-

mide to maintain mRNA levels. Similar results were observed

genome-wide (Figure 5G). We conclude that translation initiation

shutoff occurs upstream of mRNA decay.
478 Molecular Cell 80, 470–484, November 5, 2020
Heat Shock Induces Preferential mRNA 50 Degradation
Finally, we investigated the factors required for heat-shock-

induced mRNA decay. In the cytoplasm, mRNAs can be 50

degraded by the 50 / 30 exonuclease Xrn1 and/or 30 degraded
by the 30 / 50 exonuclease activity of the exosome, which

also requires the Ski2 helicase as a cofactor. Strains lacking

either Xrn1 or Ski2 are viable, whereas loss of both activities in-

duces synthetic lethality (Brown et al., 2000), reflecting redun-

dancy in the degradation pathways. We separately deleted the

genes encoding Xrn1 and Ski2 and tested whether the effects

of heat shock were rescued in the mutant strains by RNA-seq,

including S. pombe RNA as a spike-in control. Figure 6A shows

the comparison of heat shock alone, with heat shock in combina-

tion with cycloheximide, loss of Ski2, or loss of Xrn1 for the top

5,000 mRNAs.

Cycloheximide treatment caused the expected increase in

mRNA levels (Figure 6A). The absence of Xrn1 also increased

the abundance of many mRNAs following heat shock, whereas

loss of Ski2 had minimal effects. Analysis of the classes of

mRNAs most affected by heat shock, RPs and RiBi factors, sup-

ported these conclusions (Figure 6B). Loss of Ski2 conferred

only mild protection on RP mRNAs with little effect on RiBi

mRNAs. Loss of Xrn1 stabilized RP mRNAs �2-fold, with stron-

ger overall stabilization for RiBi mRNAs (Figure 6B). Heterogene-

ity between RiBi mRNAs, with some species showing reduced

abundance, probably reflects the role of Xrn1 in normal pre-

rRNA processing.

DISCUSSION

RNA-binding proteins (RBPs) are critically important in the

cellular response to environmental stress. The TRAPP technique

allows RBP dynamics to be followed quantitatively on short time-

scales and is thus well suited for monitoring global changes in

the protein-RNA interactome during stress. Here, we used

TRAPP to follow RBP dynamics in S. cerevisiae during glucose

starvation and heat shock. We observed rapid and specific

changes in RNA binding for dozens of proteins, with transla-

tion-associated factors among the most significantly altered.

Taken together, our results shed light on themechanism of trans-

lational repression in yeast.

Consistent with a general shutdown of translation in response

to stress, ribosomal proteins surrounding the mRNA channel

showed decreased RNA association (Figure 2). Similar findings

have recently been reported for human cells exposed to arsenite

stress (Trendel et al., 2019). Consistent with our observations,

the human channel proteins hRPS3 and hRPS28 showed espe-

cially strong loss of RNA binding (Trendel et al., 2019). Arsenite

triggered extensive ribosomal degradation, perhaps to further

enforce the translation shutdown or as a means to remove

damaged ribosomes. However, we found no evidence of ribo-

some degradation in response to stress in yeast. Indeed, the

abundance of most proteins was completely unaffected by

either stress (Figure S1), suggesting changes in RBP levels are

not a significant driver of rapid translation shutoff in yeast.

Throughout eukaryotes, phosphorylation of the translation

initiation factor eIF2a leads to translation shutdown in response

to various stresses. However, both glucose starvation and heat



Figure 5. Global Analysis of mRNA Levels in Response to Stress

(A) Bar graph showing the change in total mRNA abundance relative to an S. pombe spike-in control following glucose withdrawal (blue), heat shock (red), or heat

shock plus cycloheximide (purple) for 16 min.

(B) As in (A) but with boxplots showing changes in the abundance for 5,000 individual mRNAs. All samples were normalized to a single control sample (not shown).

(C) Scatterplots comparing mRNA levels following glucose starvation (upper), heat shock (middle), or heat shock plus cycloheximide (lower) for 16 min relative to

control. Points below the dotted red line indicate mRNAs with reduced abundance following stress. Each plot includes the 5,000 most-abundant mRNAs. RPKM

(reads per kilobase per million) values were adjusted to account for the spike-in control.

(D) GO (gene ontology) term enrichment among the 500 most-decreased mRNAs for each stress.

(E) Violin plots showing the changes in mRNA levels for ribosomal protein (RP) mRNAs (upper) or ribosome biogenesis (RiBi) mRNAs (lower).

(F) CRAC analysis showing binding of eIF4B across a selected genomic region (upper). RNA-seq tracks are normalized to a spike-in control and thus represent the

absolute abundance of each mRNA compared to the control (lower). A scale bar is shown at the bottom. The ORFs are indicated as black boxes, with UTRs as

flanking gray boxes of intermediate thickness.

(G) Metaplots showing the distribution of eIF4B binding around the mRNA start codon.

See also Figures S5 and S6B.
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shock trigger translational repression via different but largely un-

defined pathways (Ashe et al., 2000; Grousl et al., 2009). To char-

acterize these pathways, we examined translation initiation fac-

tors for RNA binding dynamics. Initiation factors that specifically
associate with the 40S subunit showed little change in RNA bind-

ing during either stress. In contrast, both stresses provoked a

rapid loss of mRNA binding by factors involved in 43S complex

recruitment and scanning (the RNA helicases Ded1 and eIF4A,
Molecular Cell 80, 470–484, November 5, 2020 479



Figure 6. Cycloheximide Treatment or xrn1D Inhibits mRNA Decay during Heat Shock

(A) Scatterplots comparing mRNA levels following heat shock for 16 min (x axis) relative to heat shock plus cycloheximide (upper); heat shock in a strain lacking

Ski2 (middle); heat shock in a strain lacking Xrn1 (lower). Each plot includes the 5,000 most-abundant mRNAs.

(B) Violin plots showing changes in mRNA levels among transcripts encoding ribosomal protein or ribosome biogenesis factors.

(C) Model of the translational response to glucose starvation and heat shock. Upon exposure to either stress, the 40S scanning factors eIF4A, eIF4B, and Ded1

dissociate from the 50 end of mRNAs, halting translation initiation. Already-initiated ribosomes continue translating before eventually terminating, potentially

leaving ‘‘naked’’ mRNAs unprotected by the translational machinery. In the case of heat shock, Xrn1 is involved in degradation of a subset of these transcripts.

With glucose starvation, by contrast, most mRNAs remain relatively stable.
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as well as the eIF4A cofactor eIF4B). We propose that this pre-

vents recruitment and/or scanning of the 43S PIC, blocking

translation initiation (Figure 6C). RPs that interact with the

mRNA during elongation (e.g., Rps2, 3, and 5) showed a slower

reduction in RNA binding during glucose starvation (Figure 2),

supporting the idea that already-initiated ribosomes can

continue elongation (Ashe et al., 2000).

To understand the translation shutdown in more detail, we

mapped the RNA binding sites for eIF4A, eIF4B, and Ded1 using

CRAC. In unstressed cells, eIF4A and B primarily targeted the 50

ends of mRNAs, consistent with their role in initiation. Recent

work proposed Ded1 as a stress sensor, due to its ability to

reversibly condense into phase-separated granules (Hondele

et al., 2019; Iserman et al., 2020; Wallace et al., 2015). Granule
480 Molecular Cell 80, 470–484, November 5, 2020
formation was stimulated by heat shock or a drop in intracellular

pH, suggesting a possible mechanism for translation inhibition

(Iserman et al., 2020). Our CRAC data on Ded1 are consistent

with this model, showing a general loss of interactions with

mRNA translation initiation regions but retention of binding

further 30 along the transcript (Figures 4 and S5). The specific

RNA targets for Ded1-mediated assembly into stress-induced

granules remain unknown (Hilliker et al., 2011; Iserman et al.,

2020), but transcripts with pervasive Ded1 binding are strong

candidates.

Loss of eIF4A or eIF4B in yeast confers greater inhibition of

general translation than inactivation of Ded1 (Sen et al., 2016).

Like Ded1, eIF4B condenses into phase-separated granules dur-

ing heat shock (Wallace et al., 2015), suggesting that both
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proteins function as independent stress sensors. In principal, the

loss of eIF4B binding to mRNAs during stress could reflect the

loss of either of the functionally interacting initiation factors,

eIF4A or Ded1. However, the CRAC data are more consistent

with eIF4A playing the major role in eIF4B recruitment.

Because heat shock and glucose withdrawal can each drive

relocation of translation factors and mRNAs into phase-sepa-

rated cytoplasmic granules, similar effects on RNA stability

might have been anticipated. However, this was not the case.

Following glucose withdrawal, mRNA levels were relatively sta-

ble, whereas heat shock induced a substantial decrease in abun-

dance for many mRNAs. This could reflect transcriptional

repression or reduced RNA stability (Arribere et al., 2011), but ef-

fects of transcription are expected to be minimal over short pe-

riods. Depletion was particularly strong for mRNAs encoding

nucleolar ribosome synthesis factors or cytoplasmic ribosomal

proteins. These mRNAs were reduced 10-fold or more in

16 min, demonstrating activated RNA degradation (Figure 5).

The same mRNAs are transcriptionally repressed as part of the

integrated stress response (Gasch et al., 2000), which presum-

ably maintains prolonged repression of ribosome synthesis.

Remarkably, most mRNAs were stabilized by cotreatment with

the translation elongation inhibitor cycloheximide, indicating

that ribosome-bound mRNAs are protected from degradation.

Taken together, our findings lead us to the model in Figure 6C:

under normal circumstances (i.e., in the absence of cyclohexi-

mide), heat shock triggers a halt in cap-dependent translation

initiation, followed by runoff of already-initiated ribosomes.

Without the protection of polysomes, the resulting transcripts

are subject to degradation by the exonuclease Xrn1 and perhaps

additional pathways. Under non-stress conditions, cyclohexi-

mide traps mRNAs in polysomes, blocking relocation to P-

bodies (Sheth and Parker, 2003; Teixeira et al., 2005), and stabi-

lizes mRNAs through inhibition of decapping (Hilgers et al.,

2006). We predict that this is also the case following heat shock.

This model is consistent with prior observations suggesting a

competition between translation and mRNA decay. Mutations

in translation initiation factors lead to increased deadenylation

and decapping (Schwartz and Parker, 1999). Moreover, chem-

ical inhibition of translation initiation results in rapid mRNA

decay (Chan et al., 2018). We suggest that a similar phenome-

non occurs in response to heat shock, with some transcripts

subject to increased degradation in the absence of active

translation. A major open question is how translation-related

mRNAs are preferentially targeted during heat shock and why

they remain relatively stable during the shift from glucose to

an alternative carbon source (Figure 5). The translation shutoff

in response to glucose withdrawal is, if anything, more severe

than that seen with heat shock (Figure S2A). Cytoplasmic

mRNA deadenylation is downregulated following glucose with-

drawal, making it likely that glucose signaling pathways block

degradation in addition to immediately blocking initiation. Iden-

tifying the key signaling factors and their downstream targets is

now a priority.

Limitations of Study
Current methods for characterizing the RNA-bound proteome,

including TRAPP, do not distinguish RNA classes. So, for
most proteins, it is unclear whether a reduced TRAPP signal

represents a loss of binding to only a subset of targets, in the

absence of follow-up CRAC analyses. A technique that allows

the simultaneous identification of proteins and RNAs is a

long-term goal for the field. In the CRAC analyses, the data

are normalized based on reads per million. In consequence,

only changes in relative, but not absolute, binding can be

determined.

The mechanisms that drive translation factor release from

mRNA 50 regions during stress remain unclear (Figure 4). For

glucose starvation, this occurred remarkably quickly. Binding

was completely ablated within 30 s, the earliest time point we

could test. An unresolved question is how information on the

depletion of glucose from the medium is gathered and trans-

mitted to drive such rapid changes in protein binding. The pro-

teins involved are extremely abundant; eIF4A (Tif1 plus Tif2) is

present at �150,000 copies per yeast cell, comparable to the

ribosome, with eIF4B (Tif3) and Ded1 at �25,000 copies (Ho

et al., 2018). Presumably, extensive signal amplification is

required to effectively regulate such abundant target proteins.

Various signaling proteins and mRNA decay factors have been

implicated in translation shutoff (Ashe et al., 2000; Coller and

Parker, 2005; Holmes et al., 2004; Vaidyanathan et al., 2014),

but their connections with the translation initiation machinery

remain unknown.
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von der Haar, T., and Valá�sek, L.S. (2013). Translation initiation factors eIF3

and HCR1 control translation termination and stop codon read-through in

yeast cells. PLoS Genet. 9, e1003962.

Brown, J.T., Bai, X., and Johnson, A.W. (2000). The yeast antiviral proteins

Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6, 449–457.

Castelli, L.M., Lui, J., Campbell, S.G., Rowe, W., Zeef, L.A., Holmes, L.E.,

Hoyle, N.P., Bone, J., Selley, J.N., Sims, P.F., and Ashe, M.P. (2011).

Glucose depletion inhibits translation initiation via eIF4A loss and subsequent

48S preinitiation complex accumulation, while the pentose phosphate

pathway is coordinately up-regulated. Mol. Biol. Cell 22, 3379–3393.

Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B.M., Strein,

C., Davey, N.E., Humphreys, D.T., Preiss, T., Steinmetz, L.M., et al. (2012).

Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.

Cell 149, 1393–1406.

Castilho, B.A., Shanmugam, R., Silva, R.C., Ramesh, R., Himme, B.M., and

Sattlegger, E. (2014). Keeping the eIF2 alpha kinase Gcn2 in check.

Biochim. Biophys. Acta 1843, 1948–1968.

Chan, L.Y., Mugler, C.F., Heinrich, S., Vallotton, P., and Weis, K. (2018). Non-

invasive measurement of mRNA decay reveals translation initiation as the ma-

jor determinant of mRNA stability. eLife 7, e32536.

Coller, J., and Parker, R. (2005). General translational repression by activators

of mRNA decapping. Cell 122, 875–886.

Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification

rates, individualized p.p.b.-range mass accuracies and proteome-wide pro-

tein quantification. Nat. Biotechnol. 26, 1367–1372.
482 Molecular Cell 80, 470–484, November 5, 2020
Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann,

M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant

environment. J. Proteome Res. 10, 1794–1805.

Crawford, R.A., and Pavitt, G.D. (2019). Translational regulation in response to

stress in Saccharomyces cerevisiae. Yeast 36, 5–21.
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Llácer, J.L., Hussain, T., Saini, A.K., Nanda, J.S., Kaur, S., Gordiyenko, Y.,

Kumar, R., Hinnebusch, A.G., Lorsch, J.R., and Ramakrishnan, V. (2018).

Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit

to promote start-codon recognition. eLife 7, e39273.

McKellar, S.W., Ivanova, I., van Nues, R.W., Cordiner, R.A., Worboys, W.,

Langford, A., Jensen, T.H., and Granneman, S. (2020). Monitoring protein-

RNA interaction dynamics in vivo at high temporal resolution using cCRAC.

J. Vis. Exp. e61027.

Mitchell, S.F., Walker, S.E., Algire, M.A., Park, E.H., Hinnebusch, A.G., and

Lorsch, J.R. (2010). The 50-7-methylguanosine cap on eukaryotic mRNAs

serves both to stimulate canonical translation initiation and to block an alterna-

tive pathway. Mol. Cell 39, 950–962.

Munder, M.C., Midtvedt, D., Franzmann, T., N€uske, E., Otto, O., Herbig, M.,

Ulbricht, E., M€uller, P., Taubenberger, A., Maharana, S., et al. (2016). A pH-

driven transition of the cytoplasm from a fluid- to a solid-like state promotes

entry into dormancy. eLife 5, e09347.
Olsen, J.V., Macek, B., Lange, O., Makarov, A., Horning, S., and Mann, M.

(2007). Higher-energy C-trap dissociation for peptide modification analysis.

Nat. Methods 4, 709–712.

Park, E.H., Walker, S.E., Lee, J.M., Rothenburg, S., Lorsch, J.R., and

Hinnebusch, A.G. (2011). Multiple elements in the eIF4G1 N-terminus promote

assembly of eIF4G1dPABP mRNPs in vivo. EMBO J. 30, 302–316.

Perez-Perri, J.I., Rogell, B., Schwarzl, T., Stein, F., Zhou, Y., Rettel, M., Brosig,

A., and Hentze, M.W. (2018). Discovery of RNA-binding proteins and charac-

terization of their dynamic responses by enhanced RNA interactome capture.

Nat. Commun. 9, 4408.

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,

Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The

PRIDE database and related tools and resources in 2019: improving support

for quantification data. Nucleic Acids Res. 47 (D1), D442–D450.

Queiroz, R.M.L., Smith, T., Villanueva, E., Marti-Solano, M., Monti, M.,

Pizzinga, M., Mirea, D.M., Ramakrishna, M., Harvey, R.F., Dezi, V., et al.

(2019). Comprehensive identification of RNA-protein interactions in any organ-

ism using orthogonal organic phase separation (OOPS). Nat. Biotechnol. 37,

169–178.

Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26, 841–842.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purifica-

tion, enrichment, pre-fractionation and storage of peptides for proteomics us-

ing StageTips. Nat. Protoc. 2, 1896–1906.

Riordan, D.P., Herschlag, D., and Brown, P.O. (2011). Identification of RNA

recognition elements in the Saccharomyces cerevisiae transcriptome.

Nucleic Acids Res. 39, 1501–1509.
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CRAC and RNAseq raw data NCBI Gene Expression Omnibus GSE148166

Mass Spectrometry raw data ProteomeXchange (PRIDE) PXD019141
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pML104-TIF3 targeting gRNA This paper. pSB051
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Novoalign v2.07.00 Novocraft http://www.novocraft.com/products/
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software/igv/
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pycrac-software

MaxQuant v1.6.1.0 Cox and Mann, 2008 https://www.maxquant.org/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to the LeadContact, David Tollervey (d.tollervey@ed.

ac.uk).

Materials Availability
Plasmids and strains generated in this study are available upon request.

Data and Code Availability
The accession number for all sequence data reported in this paper is GEO: GSE148166.

The proteomics data are available through the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner

repository with the dataset identifier PRIDE: PXD019141.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All S. cerevisiae strains used in this study were derived from the BY4741 background (MATa his3D1 leu2D0 met15D0 ura3D0). For

SILAC experiments, we used a strain auxotrophic for lysine and arginine biosynthesis (BY4741 Dlys9 Darg4) (Shchepachev

et al., 2019).

METHOD DETAILS

Cell culture and medium
All yeast strains were cultured at 30�C in synthetic medium containing 2% glucose to 0.4 OD600. Cells were either harvested directly

(control), or collected by filtration and transferred to medium containing glucose (mock shift), medium lacking glucose but containing

2% glycerol and 2% ethanol (glucose starvation), or to glucose-containing medium prewarmed to 42�C (heat shock). Cycloheximide

was used at a concentration of 0.1 mg/mL.

Plasmid construction
All proteinswere taggedusingCRISPR-Cas9asdescribed (Laugheryetal., 2015). eIF4BandDed1were taggedusing thepML104vector

backbone (Addgene: 67638) while eIF4A was tagged using pML107 (Addgene: 67639). Both plasmids included an ampicillin resistance

gene, a Cas9 expression construct, and a guide RNA (gRNA) cloning site, but differed in selectable marker (URA3 and LEU2, respec-

tively). Plasmid DNA was prepared from dam- E. coli. For each plasmid, 10 mg were digested overnight with SwaI (NEB Cat#R0604S),

and then for 2 h at 50�C with BclI-HF (NEB Cat#R3160S). The digested vector was purified by gel extraction (QIAGEN Cat#28704).

Guide RNA oligos were designed as reported (Laughery et al., 2015). Each oligo pair was annealed in a reaction consisting of 1 mM

forward oligo, 1 mM reverse oligo, 50 mM Tris-HCl 7.5, 10 mM MgCl2, 1 mM ATP, and 10 mM DTT in a 100 mL reaction volume. The

hybridization reaction was initially incubated at 95�C for 6min, and gradually decreased to 25�C at the rate of 1.33�C/min. Hybridized

substrates were then ligated into the digested vector at 25�C for 4 h. The ligation reaction consisted of 265 ng vector, 0.8 nmol insert,

50mMTris-HCl 7.5, 10mMMgCl2, 1 mMATP, 10mMDTT, and 800 units of T4 DNA ligase (NEBM0202L) in a 40 mL reaction volume.

The ligation mix was transformed into homemade DH5a E. coli, and plated overnight on LB-Amp. DNA was isolated from several

colonies and sequenced to ensure correct insertion of the guide sequence.

Strain construction
For CRAC experiments, the chromosomal copies of TIF1 (one of two genes encoding eIF4A) andDED1were N-terminally taggedwith

FH (Flag-His), consisting of a single Flag motif, a four-alanine spacer, and eight consecutive histidine residues (DYKDDDD

KAAAAHHHHHHHH). TIF3 (eIF4B) was C-terminally tagged with the same elements in reverse (HHHHHHHHAAAADYKDDDDK),

the HF (His-Flag) tag. For the DED1 tagging, we appended an additional amino acid (asparagine) to the N terminus of the tag to

remove the gRNA cleavage site. All strains were generated using CRISPR as described below (Laughery et al., 2015) .
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To generate repair templates, we designed fragments consisting of the HF or FH DNA sequence flanked by 50 bp homology arms.

Typically, synonymous mutations were used to disrupt the PAM site to prevent any further cleavage by Cas9. Each repair template

wasmade by annealing two single stranded oligo nucleotides sharing 20 bp of complementarity at their 30 ends. Each oligo pair was an-

nealed in a reaction consisting of 10mMforward oligo, 10mMreverse oligo, 50mMNaCl, 10mMTris-HCl 7.9, 10mMMgCl2, and 100 mg/

mLBSA in a 43 mL reaction volume. The hybridization reactionwas initially incubated at 95�C for 6min, and gradually decreased to 25�C
at the rate of 1.33�C/min. Subsequently, the annealed oligos were incubated in the same buffer supplemented with 250 mMdNTPs (Ta-

kara Cat#RR002M) and 5U Klenow exo- (NEB Cat#M0212L) in a 50mL reaction at 37�C for 1 h to fill in the single stranded regions.

To tag the genes of interest, BY4741 yeast were transformed using the standard LiOAc protocol with 500 ng of gRNA plasmid and

10 pmol of the corresponding repair template. Transformants were plated onto either leu- or ura- medium. After three days, several

clones from each transformation were plated again on selective medium, and allowed to grow for an additional 2-3 days. Single col-

onies were selected and plated on YPD for 2 days. Finally, individual colonies were grown overnight in liquid YPD and frozen. The

clones were verified by PCR using flanking primers and confirmed by sequencing. The SKI2 gene was deleted using a guide RNA

targeting the end of the open reading frame using the same approach as with the tagging.

All yeast strains used in this study are listed in the Key Resources Table. DNA oligonucleotides and plasmids used for strain con-

struction are listed in Table S1 and the Key Resources Table, respectively.

TRAPP
For TRAPP experiments, cells were cultured at 30�C in 700 mL of synthetic dropout (SD) -arg -lys -trp -ura (Formedium

Cat#DCS1339), supplemented with 20 mg/mL uracil (Sigma-Aldrich Cat#U0750-100G) and 2% glucose. Light media additionally

included 30 mg/mL lysine (Sigma-Aldrich L5626-100G), and 5 mg/mL arginine (Sigma-Aldrich Cat#A5131-100G), while heavy media

included 30 mg/mL 13C6 lysine (CK Isotopes Cat#CLM-2247-H), and 5 mg/mL 13C6 arginine (CK Isotopes Cat#CLM-2265-H). For most

experiments, light labeling was used for cells exposed to stress, while heavy labeling was used for control cells. Prior to each exper-

iment, cells were cultured with heavy isotope for at least 8 generations to ensure complete labeling.

Overnight starter cultures were inoculated into fresh media at a starting OD600 of 0.05. At OD600 0.15, 4-thiouracil (4tU) (Sigma-Al-

drich Cat#440736-1G) was added to the media at a final concentration of 0.5 mM, and the cells were grown for another 200 minutes

(approx. OD600 0.4). After 4tU treatment for three hours, heavy labeled cells were collected by filtration and transferred to 700 mL of

heavymedia lacking 4tU. The UV lamps were allowed to warm up for oneminute, before the shutters were opened and the cells were

crosslinked for 38 s (350 nm; 7.3 J cm�2). Cells were harvested by filtration, resuspended in 50 mL ice-cold PBS, and 200 ODs were

collected by centrifugation. The cell pellets were frozen for later processing.

Light-labeled cells were collected by filtration and quickly (3-4 s) transferred tomedium containing 2%each of glycerol and ethanol

instead of glucose (glucose starvation), or standard medium pre-warmed to 42�C (heat shock). Cells for each time point were grown

separately and harvesting times were sufficiently staggered to allow enough time to collect each time point. For the earliest time

point, the cells were transferred to the appropriate medium lacking 4tU and crosslinked at 2 min. The cells were then processed

as described above for the control sample. For all other time points, the cells were first transferred to medium containing 4tU and

cultured for the appropriate amount of time. Two min prior to the end point, the cells were collected by filtration and transferred

to media lacking 4tU. The cells were then crosslinked and processed as described above.

In preparation for TRAPP, 10 g of silica sand (Honeywell Cat#S5631-500G) was left overnight in 50 mL of 1M HCl. The sand was

then washed with 50 mL water three times (2,000 g; 2 min). After the final wash, the sand was resuspended in equivolume water to

achieve a 50% slurry suspension.

Matching SILAC pairs were each resuspended in 1 mL of a 1:1 mix between phenol pH 8 (Sigma-Aldrich Cat#P4557-400ML) and

GTC lysis buffer (4 M guanidine thiocyanate, 50 mM Tris-HCl pH 8.0, 10 mM EDTA, and 1% b-mercaptoethanol), and combined in

equal proportion (400 ODs total in 2 mL phenol-GTC) in a 50 mL conical. Three mL of zirconia beads (Thistle Scientific

Cat#11079105z) was added and the cells were vortexed for 6 min to lyse the cells. An additional 8 mL of phenol-GTC was added,

and the cells were vortexed for an additional 1 min. The cell lysate was centrifuged at 4,600rpm in a Sorvall centrifuge for 5 min.

The supernatant was transferred to several 2 mL Eppendorf tubes, and centrifuged at 16000 g for 10 min. The cleared lysate was

pooled in a fresh 50 mL conical, and added to 0.1 volumes of 3 M sodium acetate pH 4.0 and mixed. An equal volume of ethanol

was slowly added to the mix, followed by 1 mL of 50% silica slurry and an additional 500 mL of ethanol. The lysate was incubated

at room temperature on a rotating wheel for 30 min.

The silica sand was washed three times at 2,000 rpm for 2 min with 10 mL of wash buffer I (4 M guanidine thiocyanate, 1 M sodium

acetate pH 4, and 30% ethanol), followed by three washes with 10 mL of wash buffer II (100 mM NaCl, 50 mM Tris-HCl pH 6.4, and

80% ethanol). The silica was resuspended in �3.5 mL wash buffer II, transferred to two 2 mL Eppendorf tubes, and centrifuged at

2,000 g for 2 min. The supernatant was removed and the tubes were centrifuged in a SpeedVac for 20 min at 45�C to remove residual

wash buffer.

Protein:RNA complexes were eluted three timeswith 10mMTris pH 8.0. For each elution, the silica was thoroughly resuspended in

500 mL of elution buffer, and incubated with shaking at 37�C for 5 min. The resulting eluates were combined and centrifuged at

20000 g to remove residual silica. The supernatant was removed, centrifuged a second time, and the resulting supernatant was trans-

ferred to protein LoBind tubes (Eppendorf Cat#022431102). The eluates were incubated with 0.25 mL of RNaseA/T1 (Invitrogen

Cat#AM2286) for two hours at 37�C, followed by centrifugation overnight in a SpeedVac at room temperature.
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The protein in each tubewas resuspended in 35 mL of 1.5X Laemmli buffer (90mMTris-HCl pH 6.8, 3%SDS, 15%glycerol, and 8%

b-mercaptoethanol). Matching samples were combined into a single tube, and incubated for 5 min at 100�C. Approximately 25 mL

was loaded onto a 4%–20%Miniprotean TGX gel (Bio-Rad Cat#4561093) and run in Tris-Glycine running buffer. Individual samples

were typically split across two lanes to avoid overloading. Each gel was run at 50 V for 40min (approximately 2 cm), and then placed in

a 15 cm Petri dish and rinsed with distilled water for approximately 30 min. Subsequently, the gel was stained with Imperial Protein

Stain (Thermo-Scientific Cat#24615) for 1 h, rinsed several times with water, and allowed to destain in water for 3 h to overnight.

Protein smears were cut into two sections consisting of high- and low-molecular weight proteins. Each gel fragment was diced into

smaller pieces roughly 1mm3 in size and collected in a 1.5mL Eppendorf tube. The gel pieces were destained in a solution consisting

of 50 mM ammonium biocarbonate and 50% acetonitrile for 30 min at 37�C with shaking at 750 rpm.

Proteins were then digested with trypsin as described by Shevchenko et al. (1996). Briefly, proteins were reduced with 10 mM di-

thiothreitol in ammonium bicarbonate for 30 min at 37�C and alkylated with 55 mM iodoacetamide in ammonium bicarbonate for

20 min at ambient temperature in the dark. They were then digested overnight at 37�C with 13 ng/mL trypsin (Pierce Cat#90057).

For this and subsequent steps, enough solution was added to cover the gel pieces completely. Subsequently, the gel fragments

were treated with acetonitrile for 5 min to further shrink them. The acetonitrile solution was removed, and disulfide bonds were

reduced with 10 mM dithiothreitol in a 50 mM ammonium bicarbonate solution for 30 min at 37�C with shaking. The DTT was

removed, and the gel pieces were again shrunk by 5 min incubation with acetonitrile. Subsequently, the gel fragments were treated

with 55 mM iodacetamide and 50 mM ammonium bicarbonate to alkylate free cysteines. The samples were digested overnight with

trypsin in buffer consisting of 10 mM ammonium bicarbonate and 10% acetonitrile.

Following trypsin digestion, the samples were acidified to pH 1-2 using 10% trifluoroacetic acid (TFA) and processed using the

stage-tip method (Rappsilber et al., 2007). Briefly, three C-18 discs (Sigma-Aldrich Cat#66883-U) were cut out and placed in a

200 mL pipet tip with gentle compression. Each stage tip was placed in a 1.5 mL collection tube with a hole in the lid to hold the stage

tip. The stage tips were conditioned with washes of 40 mL methanol followed by 80 mL of 0.1% TFA. Subsequently, the peptide so-

lution was loaded on the stage tip and centrifuged at 1000 g, to allow the peptide to bind the column. Once all of the solution had

passed through, the stage tips were loaded with 25 mL of 0.1% TFA, and temporarily placed at 4�C.
In parallel, the remaining gel fragments were incubated for 10 min in a solution consisting of 80% ACN and 0.1% TFA in order to

remove any remaining peptides from the gel. This solution was then transferred to a 2 mL Protein LoBind tube and dried under vac-

uum centrifugation at 60�C. Afterward, the protein pellet was resuspended in 200 mL of 0.1% TFA and passed through the stage tip.

Finally, the stage tip was washed twice with 100 mL of 0.1% TFA, and then placed at �20�C for storage prior to mass spectrometry.

Mass Spectrometry
Following digestion, samples were diluted with equal volume of 0.1% Trifluoroacetic acid (TFA) and spun onto StageTips as

described by . Peptides were eluted in 40 mL of 80% acetonitrile in 0.1% TFA and concentrated down to 5 mL by vacuum centrifu-

gation (Concentrator 5301, Eppendorf, UK). The peptide sample was then prepared for LC-MS/MS analysis by diluting it to 5 mL by

0.1% TFA. MS-analyses were performed on an Orbitrap FusionTM LumosTM TribridTM mass spectrometer (Thermo Fisher Scientific,

UK), coupled on-line, to Ultimate 3000 RSLCnano Systems (Dionex, Thermo Fisher Scientific). Peptides were separated on a 50 cm

EASY-Spray column (Thermo Fisher Scientific, UK) assembled in an EASY-Spray source (Thermo Fisher Scientific, UK) and operated

at a constant temperature of 50�C.
Mobile phase A consisted of water and 0.1% formic acid (Sigma Aldrich, UK); mobile phase B consisted of 80% acetonitrile and

0.1% formic acid. The total run time per fraction was 190 min and for protein abundance samples was 160 min per fraction. Peptides

were loaded onto the column at a flow rate of 0.3 mLmin-1 and eluted at a flow rate of 0.25 mLmin-1 according to the following gradient:

2 to 40% buffer B in 150 min, then to 95% in 16 min. For protein abundance samples the gradient was 2 to 40% mobile phase B in

120min and then to 05% in 16min. In both cases, sampleswere subjected tomass spectrometry analysis under the same conditions.

Specifically, survey scans were performed at resolution of 120,000 in the orbitrap with scan range 400-1,900 m/z and an ion target of

4.0e5. The RF lens was set to 30% and the maximum injection time to 50ms. The cycle time was set to 3 s and dynamic exclusion to

60 s. MS2 was performed in the Ion Trap at a rapid scan mode with ion target of 1.0E4 and HCD fragmentation with normalized colli-

sion energy of 27 (Olsen et al., 2007). The isolation window in the quadrupole was set at 1.4 Thomson and themaximum injection time

was set to 35 ms. Only ions with charge between 2 and 7 were selected for MS2.

Total proteomics
Cell culturing was performed as described above for the TRAPP experiments. Approximately 50 ODs of cells were resuspended in

200 mL of TN150 (50mMTris-HCl pH 7.5, 150mMNaCl, 0.1%NP-40, 5mM b-mercaptoethanol and a cOmplete EDTA-free protease-

inhibitor cocktail (Roche Cat#11873580001) (1 tablet / 50 mL) and added to 500 mL of zirconia beads in a 1.5 mL Eppendorf tube. The

cells were lysed with five one-minute pulses, with cooling on ice for oneminute in between. The lysate was further diluted with 0.6 mL

TN150, briefly vortexed, and combined 1:1 with 3X Laemmli buffer. The sample was incubated at 100�C for five minutes and centri-

fuged at 20,000 g for 1 min. Approximately 10 mL of supernatant was loaded onto a 4%–20% Miniprotean TGX gel and run in Tris-

Glycine running buffer at 100 V. Subsequently, the gel was washed with water, stained with Imperial Protein Stain for 1 h, rinsed

several times with water, and allowed to destain in water overnight. Each lane was divided cut into six fractions, and then processed

as described above for TRAPP.
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RNAseq
S. cerevisiae BY4741 cells were grown to 0.4 OD in SD -trp (Formedium Cat#DCS0149) media. For control samples, the cells were

collected by filtration, transferred to 50 mL ice-cold PBS, and centrifuged. Cell pellets were frozen for later use. For stress samples,

cells were collected by filtration and transferred to the appropriate medium for 16 min, collected by filtration, and frozen at �80�C.
Biological duplicates were collected for each condition. Schizosaccharomyces pombe 972H cells were harvested separately and

frozen for use as a spike-in control. RNA from all sampleswas purified using phenol:chloroform extraction.S. pombeRNAwas spiked

into each sample at a final concentration of 2%. Libraries for RNAseqwere prepared by theWellcome Trust Clinical Research Facility

at Western General Hospital (Edinburgh, UK) using the poly(A) mRNAmagnetic isolation kit (NEBCat#E7490) and the NEBNEXTUltra

II Directional RNA Library Prep kit (NEB Cat#7760). The libraries were sequenced using Next-Seq with single-end, 75nt output.

Polysome profiling
The technique used was modified from Winz et al. (2019). Overnight cultures of yeast were diluted to 0.05 in 100 mL of SC -trp me-

dium and cultured with shaking at 30�C. At OD600 0.4, the cells were treated with 0.1 mg/mL cycloheximide (Sigma-Aldrich

Cat#C7698-5G) for 2 minutes. The cells were collected by filtration and resuspended in 50 mL of ice-cold PBS supplemented

with cycloheximide. The cells were then pelleted at 4600 rpm for 2 min and stored at �80�C.
For lysis, cells were resuspended in 200 mL of buffer (20 mMHEPES-KOH, 7.4; 100 mM KOAc; and 2 mMMgOAc) and transferred

to 2 mL tubes containing 200 mL of zirconia beads. Cells were lysed with five one-minute vortexing pulses, with cooling on ice in be-

tween rounds. The lysate was dilutedwith an additional 200 mL of lysis buffer, and the combined supernatant was transferred to a new

Eppendorf tube. The lysate was cleared using two rounds of centrifugation at max speed for 5 min each.

Approximately 20 OD260 of cells were loaded onto 10%–45% sucrose gradients in 1X gradient buffer (10 mM Tris-acetate, pH 7.4,

70 mM ammonium acetate, 4 mMmagnesium acetate) prepared using the Gradient Master (BioComp). Subsequently, the gradients

were centrifuged in an SW40-Ti rotor in an Optima XPN-100 Ultracentrifuge (Beckman Coulter) at 38,000 rpm for 2.5 h at 4�C. Absor-
bance profiles were visualized using the Piston Gradient Fractionator (BioComp).

CRAC
TheCRACprotocol is based onGranneman et al. (2011), with somemodifications. Most importantly, we substituted the two Protein A

affinity tags and the TEV cleavage site with a single Flag tag. The histidine tag was lengthened from six residues to eight.

For each CRAC experiment, 700mL of cells were grown in SC -trpmedia. At OD600 0.4, the cells were UV-irradiated at 254 nmwith

a dose of 100 mJ/cm2 (4-6 s) using the Vari-X-Link crosslinker (McKellar et al., 2020; van Nues et al., 2017). Following crosslinking,

cells were collected by filtration and resuspended in 50 mL ice-cold PBS, and then centrifuged at 4,600 g for 2 min. The cell pellets

were stored at �80�C.
Cell pellets were resuspended in 500 mL TN150 (50mMTris-HCl pH 7.5, 150mMNaCl, 0.1%NP-40, 5mM b-mercaptoethanol and

a protease-inhibitor cocktail (1 tablet / 50mL) and added to 1.25mL of zirconia beads in a 50mL conical. The cells were lysedwith five

one-minute pulses, with cooling on ice in between. The lysate was further dilutedwith 1.5mL TN150, briefly vortexed, and centrifuged

at 4,600 g for 5 min. The supernatant was transferred to Eppendorf tubes and spun for an additional 20 min at 16,000 g. In parallel,

100 mL of magnetic anti-Flag bead slurry (Sigma-Aldrich Cat#M8823-1ML) was washed twice with TN150. The cleared lysate was

incubated with the anti-Flag beads for two hours at 4�C, with nutating. Subsequently, the beads were washed four times with

TN150 (5 min nutating at 4�C) and then incubated with 200 mL of flag peptide (Sigma-Aldrich Cat#F3290-4MG) (100 mg / mL in

TBS) at 37�C with shaking for 15 min. The eluate was transferred to a fresh tube containing 350 mL TN150 and treated with

RNace-IT (Agilent Cat#400720) (0.1U, 5 min, 37�C) to fragment protein-bound RNA. The RNase reaction was quenched by transfer-

ring the eluate to a tube containing 400 mg guanidine hydrochloride. The solution was adjusted for nickel affinity purification with the

addition of 27 mL NaCl (5 M) and 3 mL imidazole (2.5 M) and added to 50 mL of washed nickel beads (QIAGEN Cat#30410).

Following an overnight incubation, the nickel beads were transferred to a spin column and washed three times with 400 mL WBI

(6.0 M guanidine hydrochloride, 50 mM Tris-HCl pH 7.5, 300 mM NaCl, 0.1% NP-40, 10 mM imidazole, and 5 mM b-mercaptoetha-

nol), and then three times with 600 mL 1xPNK buffer (50mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.5% NP-40, and 5 mM b-mercaptoe-

thanol). Subsequent reactions (80 mL total volume for each) were performed in the columns, and afterward washed oncewithWBI and

three times with 1xPNK buffer:

1. Phosphatase treatment (1x PNK buffer, 8 U TSAP (Promega, Cat#M9910), 80 U RNasIN (Promega Cat#N2511); 37�C
for 30 min).

2. 30 linker ligation (1x PNK buffer, 20 U T4 RNA ligase I (NEB Cat#M0204L), 20 U T4 RNA Ligase II truncated K227Q (NEB

Cat#M0351L), 80 U RNasIN, 1 mM preadenylated 30 miRCat-33 linker (IDT); 25�C for 6 h).

3. 50 end phosphorylation and radiolabeling (1x PNK buffer, 40 U T4 PNK (NEB Cat#M0201L), 40 mCi 32P-gATP; 37�C for 60 min,

with addition of 100 nmol of ATP after 40 min).

4. 50 linker ligation (1x PNK buffer, 40 U T4 RNA ligase I, 80 U RNasIN, 50 linker, 1 mM ATP; 16�C overnight).

The beads were washed twice with WBII (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% NP-40, 10 mM imidazole, and 5 mM b-mer-

captoethanol). Protein:RNA complexes were eluted twice (10 minutes each) in 40 mL of elution buffer (same asWBII but with 300 mM
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imidazole). At this point, different replicates or conditions for the same protein were combined. Themerged eluates were precipitated

with 5X volume acetone at �20�C for at least two hours. RNPs were pelleted at 16000 g for 20 min, and resuspended in 20 mL 1X

NuPAGE sample loading buffer (Invitrogen Cat#NP0007) supplemented with 8% b-mercaptoethanol. The sample was denatured

by incubation at 65�C for 10 min, and run on a 4%–12% Bis-tris NuPAGE gel (Invitrogen NP0321BOX) at 150 V in 1X NuPAGE

MOPS buffer (Invitrogen Cat#NP0001-02). The protein:RNA complexes were transferred to Hybond-N+ nitrocellulose membranes

(GE Healthcare Cat#RPN303B) with NuPAGE transfer buffer (Invitrogen Cat#NP0006-1) for 1.5 h at 100V.

Labeled RNAwas detected by autoradiography. The appropriate region was excised from themembrane and treated with 0.25 mg/

mL Proteinase K (Roche Cat#03115836001) (50 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.1% NP-40, 10 mM imidazole, 1% SDS, 5 mM

EDTA, and 5mM b-mercaptoethanol; 2 hr 55�Cwith shaking) in a 500 mL reaction. The RNA component was isolated with a standard

phenol:chloroform extraction followed by ethanol precipitation. The RNA was reverse transcribed using Superscript III (Invitrogen

Cat#18080-044) and the miRCat-33 RT oligo (IDT) for 1 hr at 50�C in a 20 mL reaction. The resulting cDNA was amplified by PCR

in five separate reactions using La Taq (Takara, Cat#RR002M) (2 mL template, 18-21 cycles) PCR reactions were combined, precip-

itated in ethanol, and resolved on a 3% Metaphore agarose gel (Lonza Cat#50180). A region corresponding to 140 to 200 bp was

excised from the gel and extracted using the Min-elute kit (QIAGEN Cat#28606). Libraries were sequenced by the Wellcome Trust

Clinical Research Facility (Edinburgh, UK) on Next-Seq with single-end, 75nt output.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass spectrometry analysis
TheMaxQuant software platform (Cox andMann, 2008) version 1.6.1.0 was used to process the raw files and search was conducted

against Saccharomyces cerevisiae complete/reference proteome set of UniProt database (released on 14/06/2019), using the

Andromeda search engine (Cox et al., 2011). For the first search, peptide tolerance was set to 20 ppmwhile for the main search pep-

tide tolerance was set to 4.5 pm. Isotope mass tolerance was 2 ppm and maximum charge to 7. Digestion mode was set to specific

with trypsin allowing maximum of twomissed cleavages. Carbamidomethylation of cysteine was set as fixedmodification. Oxidation

of methionine and acetylation of the N-terminal were set as variable modifications. Multiplicity was set to 2 and for heavy labels Argi-

nine 6 and Lysine 6 were selected. Peptide and protein identifications were filtered to 1%FDR. Only proteins identified with high con-

fidence (peptides R 2) were considered for further analysis.

For glucose starvation, we performed each time course in quadruplicate, and for heat shock in triplicate. The exception was the

two-minute time point for each condition, which was only performed in duplicate. For each analysis, only proteins expressed in at

least two replicates for every time point shown therein were included.

PCA
For the PCA analysis in Figure 1F, all TRAPP datasets were included. The raw log2 values were mainly between�2 and +2, and data

normalization was not required. For each protein, the median value between replicates was used. In total, 302 proteins were present

in at least two biological replicates for each time point and condition, and thus included in the analysis. For the PCA in Figure 1G, only

the 16 min time points from glucose starvation, heat shock, and mock shift were included. PCA was calculated with python v3.6.8

using the Jupiter notebook and the scikit-learn v0.22.2 library.

Ribosome structure
The ribosome structure PDB: 3J77 (Figure 2) is derived from Svidritskiy et al. (2014). ThemRNAwasmodeled into the structure, using

PDB: 3J81 (Hussain et al., 2014).

CRAC analysis
The datasets were dumultiplexed using pyBarcodeFilter from the pyCRAC package (Webb et al., 2014). Flexbar v3.4.0 (Dodt et al.,

2012) was used to remove sequencing adapters, trim low-quality positions from the 30 end, and remove low-quality reads (param-

eters: -ao 4 -u 2 -q TAIL -m 11 -at RIGHTwith adaptor sequence TGGAATTCTCGGGTGCCAAGGC). In addition to the barcode, each

read contained three random nucleotides at the 50 end to allow PCR duplicates to be removed by collapsing identical sequences with

pyFastqDuplicateRemover (Webb et al., 2014). Reads were filtered to exclude low-entropy sequences using bbduk (https://

sourceforge.net/projects/bbmap/) with parameters entropy = 0.5 entropywindow = 10 entropyk = 6. Because translation initiation

factors largely target spliced mRNAs, the sequencing reads were mapped to a modified version of the S. cerevisiae EF4.74 genome

(Ensembl) in which the introns had been bioinformatically removed. The reads were aligned using Novoalign v2.07.00, with reads

mapping to multiple locations randomly assigned (-r Random).

The numbers of reads mapping to different mRNAs were determined using pyReadCounters (Webb et al., 2014) and a custom

genome annotation file. Binding to individual mRNAs was quantified in one of two ways: 1) ‘total binding’, reflecting the number

of reads mapping anywhere within a given transcript, and 2) ‘50 end binding’, reflecting the number of reads mapping within the 50

UTR and the first 150 nt of coding sequence. Three pseudocounts were added to each transcript to improve the quantification.

Most analyses (Figures 4B–4E, S4D, and S4E) were based on the list of 2,000 transcripts showing the strongest binding to eIF4B,

defined by the reads per million average between the ‘control’ and ‘mock shift’ conditions. In order to visualize binding across
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individual transcripts (e.g., Figure 4F), the coverage at each position along the genome was calculated and normalized to the library

size using genomecov from bedtools v2.27.0 (Quinlan and Hall, 2010). The Integrative Genomics Browser was used to visualize bind-

ing across individual transcripts (Robinson et al., 2011). Coverage around start codons (Figures 4E, S4D, and S4E) was calculated

using pyBinCollector (Webb et al., 2014). The resulting metaplots were generated in GraphPad Prism 8, while the heatmaps were

made using Excel. Statistical analysis was performed using Graphpad. For Figures 4B and 4C, an unpaired t test was used to calcu-

late changes in RNA binding before and after stress (for details, see the figure legend).

RNAseq data analysis
RNAseq reads were aligned to a concatenated genome consisting of the intronless S. cerevisiae genome and the 972H Schizosac-

charomyces pombe genome using Novoalign. The reads mapping to the S. pombe genome were tabulated using pyReadCounters

together with a custom annotation file. These values were used as a normalization standard to allow for quantitative comparisons

between datasets. Genome coverage files (e.g., Figure 4F) were generated using genomecov from bedtools and scaled using values

determined from the S. pombe spike-in control. For all analyses, we used the top 5,000 transcripts, defined by their average expres-

sion across all three conditions (control, glucose withdrawal 16 min, and heat shock 16 min). GO analysis was performed using

GOrilla (Eden et al., 2009) on the 500 genes showing the greatest decline inmRNA levels. Violin plots were generated using GraphPad

Prism 8.
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