THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Among-individual and within-individual variation in seasonal migration covaries with subsequent reproductive success in a partially migratory bird

Citation for published version:

Reid, JM, Souter, M, Fenn, SR, Acker, P, Payo-payo, A, Burthe, SJ, Wanless, S \& Daunt, F 2020, 'Amongindividual and within-individual variation in seasonal migration covaries with subsequent reproductive success in a partially migratory bird', Proceedings of the Royal Society B: Biological Sciences, vol. 287, no. 1931, pp. 20200928. https://doi.org/10.1098/rspb.2020.0928

Digital Object Identifier (DOI):
10.1098/rspb.2020.0928

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:
Proceedings of the Royal Society B: Biological Sciences

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

```
Among-individual and within-individual variation in seasonal migration
covaries with subsequent reproductive success in a partially-migratory bird
Jane M. Reid,1,2* , Moray Souter }\mp@subsup{}{}{3}\mathrm{ , Sarah R. Fenn1, Paul Acker }\mp@subsup{}{}{1}\mathrm{ , Ana Payo-Payo}\mp@subsup{}{}{1},\mathrm{ Sarah J. Burthe4,
Sarah Wanless 4 & Francis Daunt 4
1}\mathrm{ School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland
2Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Norway
3}\mathrm{ Grampian Ringing Group, Aberdeen, Scotland
4}\mathrm{ Centre for Ecology & Hydrology, Edinburgh, Scotland
*Corresponding author:
Jane M. Reid, School of Biological Sciences, Zoology Building, University of Aberdeen,
Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
jane.reid@abdn.ac.uk
Running head: Plastic migration & reproductive success
```


Abstract

Within-individual and among-individual variation in expression of key environmentallysensitive traits, and associated variation in fitness components occurring within and between years, determine the extents of phenotypic plasticity and selection and shape population responses to changing environments. Reversible seasonal migration is one key trait that directly mediates spatial escape from seasonally-deteriorating environments, causing spatioseasonal population dynamics. Yet, within-individual and among-individual variation in seasonal migration versus residence, and dynamic associations with subsequent reproductive success, have not been fully quantified. We used novel capture-mark-recapture mixture models to assign individual European shags (Phalacrocorax aristotelis) to 'resident, 'early migrant' or 'late migrant' strategies in two consecutive years, using year-round local resightings. We demonstrate substantial among-individual variation in strategy within years, and directional within-individual change between years. Further, subsequent reproductive success varied substantially among strategies, and relationships differed between years; residents and late migrants had highest success in the two years respectively, matching the years in which these strategies were most frequently expressed. These results imply that migratory strategies can experience fluctuating reproductive selection, and that flexible expression of migration can be partially aligned with reproductive outcomes. Plastic seasonal migration could then potentially contribute to adaptive population responses to currently changing forms of environmental seasonality.

Key words: Annual reproductive success; capture-mark-recapture mixture model; fluctuating selection; partial migration; phenotypic plasticity; spatial population dynamics.

1. Introduction

Population responses to changing environments depend on dynamic relationships between components of fitness and within-individual and among-individual variation in expression of environmentally-sensitive phenotypic traits [1-6]. Specifically, population outcomes depend on the degrees to which individuals' phenotypes, and the fitness consequences of those phenotypes, vary within and among seasons and years, representing labile plasticity and temporal variation in selection $[1,6]$. They also depend on the degree to which temporal variation in individual phenotype is aligned with temporal variation in the fitness consequences, representing adaptive plasticity [6,7]. Quantifying such effects is prerequisite for predicting individual and population responses to environmental variation and change, and for identifying mechanisms that maintain or constrain the critical phenotypic variation [5-8].

One key trait that directly mediates spatial escape from seasonally-deteriorating local environments, and thereby directly causes spatial population dynamics on short (within-year) time scales, is seasonal migration (i.e. reversible cross-season movements). Phenotypic expression of seasonal migration, versus year-round residence at one location, commonly varies substantially among individuals within populations. Many populations are therefore 'partially migratory', including many fish, birds, mammals and amphibians [9-15]. Further, experiments show that expression of migration can be state-, condition- and densitydependent, representing rapid labile plasticity (i.e. within-individual variation [16-18], also termed phenotypic flexibility [19]). Hence, individuals can switch between residence and migration both between years, and on shorter timeframes within years. For example, individuals may be 'early' (pre-emptive or anticipatory) migrants that move in advance of predictable local environmental deterioration (e.g. onset of winter or other forms of
seasonality), or 'late' (responsive) migrants that move upon experiencing further environmental deterioration [12,14,20-22]. Dynamic relationships between such variable expression of migration versus residence and major fitness components must then be quantified in order to understand the maintenance of within-individual and among-individual variation and to consider the short-term and longer-term population consequences; but this is rarely achieved [13,14,23,24].

Recent studies show that survival probability can be higher in migrants $[25,26]$ or residents [10,13], or be similar for both groups [27], and that such relationships can vary with environmental conditions [28]. Carry-over effects can then cause subsequent reproductive success to differ between surviving sympatric-breeding residents and migrants [29], but such effects are not always evident [13,24]. However, no studies have yet quantified variation in subsequent reproductive success across multiple co-existing phenotypes, for example across early migrants versus late migrants versus residents (hereafter termed 'migratory strategies'). Consequently, no studies have quantified the degree to which associations between such migratory strategies and reproductive success can vary between years, or hence examined whether migratory strategies that yield the highest success in any particular year are more frequently expressed. Evidence of any such adaptive labile plasticity would imply that dynamic seasonal migration could contribute to maintaining populations experiencing changing forms of environmental seasonality, by rapidly reshaping spatio-seasonal population distributions [14].

Quantifying such effects requires quantifying variation in reproductive success in relation to individual location(s) during the preceding non-breeding season, which is still very challenging. Retrieval of location data from non-transmitting archival loggers or bio-markers (e.g. stable isotopes) is often restricted to individuals that return and breed and can
consequently be (re-)captured. Such state-dependent sampling could bias estimated relationships with reproductive success, and bio-markers may not clearly distinguish migratory strategies that differ in timing. Meanwhile, technologies that directly transmit individuals' locations are still typically deployed on relatively few (often non-random) individuals. Systems where marked individuals can be directly observed all year therefore provide valuable opportunities to relate reproductive success to preceding non-breeding season locations, but require advanced statistical analyses to account for inevitably incomplete observations and resulting uncertainty.

Accordingly, we fitted novel capture-mark-recapture mixture models to year-round local (i.e. breeding area) resightings of colour-ringed European shags (Phalacrocorax aristotelis) in a partially-migratory population to probabilistically assign individuals as 'early migrant', 'late migrant' or 'resident' in each of two winters. We thereby quantified variation in phenotypic expression of seasonal migration arising within and among individuals, within and between the two years, with associated uncertainty. We then tested whether subsequent reproductive success differed between the three migratory strategies, whether observed relationships differed between the two years, and whether between-year directional changes in individual migratory strategy occurred and were aligned with reproductive outcomes. We thereby consider the scope for adaptive labile plasticity in a key trait, seasonal migration, that directly shapes spatio-seasonal population dynamics.

2. Methods

(a) Overall approach

One approach to quantifying variation in reproductive success in relation to preceding nonbreeding season location (and hence migratory strategy) is to mark individuals with fieldreadable tags, then undertake intensive non-breeding season resighting surveys followed by comprehensive reproductive monitoring. However, even in readily observable systems, not all present individuals are typically detected in any one survey. Utilising 'capture-markrecapture' (CMR) analyses can then minimise bias in parameter estimates, but basic analyses assume that all individuals within defined model strata have identical occasion-specific detection probabilities (i.e. no heterogeneity). In partially-migratory populations, this assumption will be strongly violated regarding local (breeding area) detection probability (P_{L}) during non-breeding season surveys. Here, individuals that have migrated away (i.e. temporarily emigrated) cannot be locally detected, while individuals that remain resident are locally detectable. However, this heterogeneity provides information with which to infer individuals' migratory strategies solely from local resightings; locally detected individuals are by definition currently resident, while individuals that are not locally detected on any occasion have a non-zero probability of being a departed migrant. Repeated surveys can then allow individuals to be assigned to strategies with high probability.

Finite mixture models, that consider a specified number of latent (i.e. unobserved) classes of individuals with different detection probabilities (and/or other parameters, [3034]), provide one means of utilising heterogeneity in PL to infer individual migratory strategy. Such models can assign individuals to latent classes (representing different migratory strategies) given their observed encounter history, yielding posterior probabilities of class membership [30]. Advantages are that classes need not be defined a priori but can emerge
from analyses, and uncertainty in class assignments can be formally quantified and propagated through subsequent analyses [30,31,33] (e.g. relating individuals' probabilistic class membership to subsequent reproductive success). Potential challenges are that biological interpretations of model-estimated classes may not be clear or necessarily consistent across different datasets. These challenges can be mitigated by formulating model structures with clear objectives and biological knowledge of the focal system; by using additional information and/or heuristic criteria to validate class interpretations; and by explicitly evaluating uncertainty in class assignments and consistency across datasets [30,32,35].

(b) Field data

We collected the required data for two full annual cycles (2017-2018, 2018-2019) for shags breeding at Bullers of Buchan, Aberdeenshire, Scotland (hereafter 'BoB', Supplementary Material S1, [36]). During 2009-2018, shags hatched or breeding at BoB were marked with individually-coded colour-rings (licenced by British Trust for Ornithology), creating a sample of identifiable adults (age ≥ 3 years) alive during 2017-2019 (Supplementary Material S1). Each breeding season (April-July), the breeding area was intensively surveyed every 5-10 days (19, 18 and 20 surveys in 2017-2019 respectively). All nests were mapped and systematically monitored through to offspring fledging or nest failure following established protocols [37], and all adults were systematically identified as unringed or colour-ringed, and ring codes recorded (Supplementary Material S1). Coastal rocks were also surveyed for roosting shags, yielding observations of additional colour-ringed individuals that were apparently not currently breeding (sub-adults, skipping adults or failed breeders). This systematic effort ensured overall breeding season $\mathrm{P}_{\mathrm{L}} \approx 1$ (Supplementary Material S1).

These observations identified 121 and 127 colour-ringed individuals alive in summers 2017 and 2018 that would be age ≥ 3 years, and hence deemed capable of breeding, in summers 2018 and 2019 respectively (conditional on over-winter survival, Supplementary Material S1). The reproductive success of all surviving individuals was measured as the number of chicks fledged (range: 0-4) following standard protocols [37] (Supplementary Material S1). Surviving individuals that apparently did not breed (or could have failed early) were assigned values of zero, thereby preventing bias due to excluding failed or non-breeders [38] (Supplementary Material S4).

Since shags have partially-wettable plumage they must return to land daily to dry, facilitating year-round resightings [29,39]. Accordingly, during winters (Sept $1^{\text {stt }}-$ Feb $28^{\text {th }}$) 2017-2018 and 2018-2019, all daytime and pre-dusk roost sites within daily foraging range of BoB (ca. 16km) were regularly surveyed for colour-ringed shags (Supplementary Material S1). This provided substantial data on local non-breeding season presence in the BoB area, overall 77 positive survey days (i.e. ≥ 1 colour-ringed individual locally resighted) totalling 1250 resightings of 111 individuals in 2017-2018; and 48 positive survey days totalling 942 resightings of 117 individuals in 2018-2019. Further winter surveys were undertaken across multiple other night roost sites and their adjacent day roosts spanning $>500 \mathrm{~km}$ of UK east coast, providing direct resightings of some colour-ringed individuals that bred at BoB and had definitely migrated away $[28,29,39]$ (Supplementary Material S1). However, since surveys did not cover the entire UK coastline, not all departed migrants would be directly identified.

(c) Mixture model analyses

Individuals' local encounter histories were compiled by defining 17 consecutive 10-day 'occasions' spanning Sept $1^{\text {stt }}$ Feb $18^{\text {th }}$ through each winter. This is the maximum number (i.e.
shortest duration) of equal-duration occasions for which there was ≥ 1 local positive survey day within each occasion in both winters. Later (\geq Feb $19^{\text {th }}$) sightings were excluded because data inspection showed that some known (i.e. directly observed elsewhere) migrants had already returned, meaning that local breeding area resightings were no longer highly informative of an individual's migratory strategy (Supplementary Material S2). Two occasions representing the breeding seasons before and after each focal winter were also included. Each individual's full encounter history for each year therefore comprised 19 occasions, on which it was locally observed or not (Supplementary Material S3). Winter resightings from other locations (i.e. direct observations of migrants elsewhere) were not included in encounter histories, but were used to validate mixture model class interpretations (i.e. assess whether known migrants were assigned as migrants based on local resightings), as is good practice with mixture models (details below and Supplementary Material S3).

Resightings during 2010-2017 strongly suggested three broad categories of individuals: those regularly locally resighted throughout winter ('residents'); those never resighted locally in autumn or winter, or only very early in autumn (early September, putative 'early migrants'); and those resighted locally through autumn (September-November) but not later in winter (late November-January, putative 'late migrants'). Accordingly, CMR mixture models with three latent classes in PL were fitted to data from 2017-2018 and 2018-2019 (full technical details, Supplementary Material S2). Initial analyses showed that three-class models were substantially better supported than two-class alternatives, providing formal support for the three-class structure $(\triangle \mathrm{AIC} c \geq 20$, Supplementary Material S 2$)$. Occasion-specific parameter structures for P_{L} were then defined to broadly capture the three postulated migratory strategies (full details, Supplementary Material S2). These constraints ensured that all estimated P_{L} values exceeded zero, allowing estimation of individual class assignment
probabilities. They also facilitate inference since local resightings in different winter occasions are not equally informative regarding migratory strategy (e.g. residence is more strongly implied by local mid-winter resightings than by early September resightings). However, note that all $P\llcorner$ values are estimated from the local resighting data, not set a priori. Annual survival probabilities $\left(\phi_{A}\right)$ were known to be high in both years. Of 121 and 127 focal individuals observed in summers 2017 and 2018, 111 and 122 were resighted in summers 2018 and 2019 respectively. This implies $\phi_{A} \geq 0.92$ and ≥ 0.96 respectively, and hence $\phi \geq 0.995$ and ≥ 0.998 for each inter-occasion interval ($\phi_{l}=\phi_{A}{ }^{1 / 18}$ given 19 occasions and 18 intervals, assuming timeindependent mortality). Consequently, we fitted constant ϕ_{l} across all 18 intervals within each annual cycle, and did not attempt to estimate class-specific survival probabilities with the current dataset and analysis (Supplementary Material S2).

CMR mixture models were fitted in programme E-Surge, and individual class probabilities extracted [30,31,40] (Supplementary Material S2). Separate models were fitted to encounter histories for 2017-2018 and 2018-2019, facilitating model validation and estimation of class probabilities (Supplementary Material S2). General goodness of fit (GoF) tests for CMR mixture models are not yet available. We therefore structured the encounter histories into three fixed post hoc groups according to their most probable latent class, and assessed GoF of models fitted to the group-structured approximation. There was no evidence of substantial lack of fit (bootstrap p: 0.16 and 0.11 for 2017-2018 and 2018-2019 respectively) or additional overdispersion (median \hat{c} : 1.07 and 1.09 respectively; full details, Supplementary Material S2).

The biological interpretation of resultant mixture model latent classes as distinct 'resident', 'late migrant' and 'early migrant' migratory strategies was validated in four ways. First, we summarised the distributions of individual class membership probabilities and
thereby quantified the degree to which individuals were assigned to distinct classes with high probabilities (versus more continuously distributed probabilities, [30]). Second, we examined whether estimated P_{L} values concurred with patterns expected for each postulated strategy (e.g. low mid-winter P_{L} for migrants, higher for residents). Third, we examined whether each individual's most probable class matched heuristic interpretation of its local encounter history based on its last autumn resighting occasion and total positive winter occasions (i.e. early last observation and few positive occasions for early migrants; late last observation and many positive occasions for residents; intermediate values for late migrants). Fourth, for directly observed migrants (i.e. individuals resighted at night roosts elsewhere in winter), we evaluated whether the total summed mixture model probabilities that these individuals were migrants (early plus late) were close to one. Additionally, to assess across-year consistency of class assignment probabilities, we quantified the differences in probabilities for the set of identical or very similar encounter histories that occurred in both 2017-2018 and 2018-2019.

Mixture models also directly estimate initial class probabilities [30,33], here interpretable as the proportions of early migrants, late migrants and residents at the start of each annual cycle. To further quantify these proportions among individuals that survived each winter and whose reproductive success was observed, we drew each individual's class from the multinomial distribution defined by its simplex of estimated class probabilities (which sum to one), and recorded the total number of individuals assigned to each class. We tested whether estimated class frequencies differed between the two years using a robust χ^{2} test on the 3-strategy by 2-year contingency table. This process was repeated for 10000 independent realisations of each individual's class, thereby propagating uncertainty resulting from class probabilities <1. Resulting distributions of class frequencies and χ^{2} statistics are summarised as the mean and 95\% confidence interval across 10000 iterations.

Finally, to quantify the degree and form of between-year change in migratory strategy within individuals that survived through both years, the frequencies with which individuals were assigned to the same or different classes across the two years were extracted. Robust χ^{2} tests on the 3x3-strategy contingency table were used to test whether these frequencies differed from a null expectation generated by random resampling from the overall class frequencies estimated in 2018-2019, conditional on classes assigned in 2017-2018 (full details and other null models, Supplementary Material S3). These analyses were also repeated for 10000 independent realisations, and distributions of frequencies and χ^{2} statistics summarised as above.

(d) Reproductive success

We fitted a generalised linear model (GLM) to test whether mean annual reproductive success differed between the three mixture classes (specified as a three-level fixed effect), and hence between the three inferred migratory strategies. We explicitly tested for a class-by-year interaction, and hence for between-year variation in the relationship between reproductive success and migratory strategy. Models with and without the interaction were fitted assuming a quasi-Poisson distribution of reproductive success, and the comparative ANOVA test statistic (χ^{2} obs) extracted. This analysis was again repeated for 10000 independent realisations of each individual's probabilistic class assignment. Each model was then refitted with individual reproductive success randomly resampled from the focal year's observations, yielding a null χ^{2} Rand. The statistic $\chi^{2}{ }_{\text {Diff }}=\chi^{2}$ obs $-\chi^{2}$ Rand was computed, where positive values imply that the class-by-year interaction effect was greater given observed versus randomised reproductive success. The proportion of iterations for which this difference was negative ($\mathrm{P}\left(\mathrm{X}^{2}\right.$ Diff $\left.<0\right)$) was extracted.

To broadly capture variation in reproductive success with age, and hence minimise the degree to which current analyses could potentially be confounded by age-specific variation, we also fitted a two-level factor defining individuals as young (aged 3-4 years) or older (5+ years) adults (details in Supplementary Material S4). While most focal colour-ringed individuals had unringed mates, there were 17 breeding attempts where both adults were colour-ringed. Their observed reproductive success consequently occurred in the dataset twice. To account for resulting non-independence, reproductive success was resampled at the level of breeding attempts (rather than individuals). Across 103 individuals that appeared in the dataset in both years, the between-year correlation in individual reproductive success was small (Spearman correlation $r_{s}=-0.08$). Individual reproductive success was therefore resampled independently for each year. In practice, since most individuals were assigned to one mixture class with very high probability (see Results), conclusions were the same if models were directly fitted taking each individual's most probable class and hence migratory strategy in each year, with random individual effects. Possible effects of sex on relationships between migratory strategy and reproductive success were not considered because $\sim 55 \%$ of adults were of unknown sex. Across known-sex individuals, frequencies of assigned migratory strategies did not differ between females and males (Supplementary Material S4). Similarly, there was no consistent age-specific variation in migratory strategy across the current dataset (Supplementary Material S4). Analyses were run in R v3.5.1 [40].

3. Results

(a) Migratory strategies

The mixture models successfully assigned encounter histories, and hence individuals, to distinct classes that were clearly and consistently interpretable as resident, late migrant and early migrant (Fig. 1). In each year, most individuals were assigned to one class with very high probability (overall ≥ 0.95 for $\geq 83 \%$ of individuals, ≥ 0.75 for $\geq 97 \%$ of individuals; Fig. 1 , Supplementary Material S1). Estimated class-specific PLfor the 17 winter occasions concurred with patterns expected for the three migratory strategies. Specifically, $P_{\llcorner }$was always low for early migrants and close to zero through mid-winter, and initially high and then lower for late migrants (Fig. 1). PL for residents varied among occasions, reflecting variable survey success, but was often substantially higher than for the migrant classes through mid-winter (Fig. 1). Consequently, encounter histories assigned with high probabilities clearly matched heuristic interpretations; early and late migrants were typically last seen before winter occasion 4 (early October) and 11 (early December) respectively while residents were seen subsequently, with more positive occasions in total (Fig. 1). The few less certain assignments were probabilistically split between early and late migrant, or between late migrant and resident (Fig. 1, Supplementary Material S3). In total, 17 and 29 focal individuals were resighted at night roosts elsewhere in winters 2017-2018 and 2018-2019 respectively (46 encounter histories of 36 different individuals), and hence were known migrants (Supplementary Material S1). The mixture models assigned all 46 histories as migrant with very high total probabilities (mean: 0.999, range: 0.964-1.000). By corollary, zero individuals assigned as resident by the mixture models were resighted elsewhere. Comparisons of 15 identical or similar encounter histories observed in both years showed that class assignment
probabilities were highly consistent across years (mean absolute difference: 0.008 , range: 0.000-0.090, Supplementary Material S2).

(b) Strategy frequencies and between-year change

Estimated initial probabilities ($\pm 1 \mathrm{SE}$) for the three mixture classes representing residents, late migrants and early migrants were $0.42 \pm 0.05,0.26 \pm 0.04$ and 0.32 ± 0.06 respectively in 20172018, and $0.22 \pm 0.04,0.39 \pm 0.05$ and 0.39 ± 0.06 respectively in 2018-2019. The relative class frequencies estimated across individuals with observed reproductive success were quantitatively similar (Supplementary Material S1). These frequencies differed between years (mean $\chi^{2}: 11.2,95 \% \mathrm{Cl}: 8.5-14.0 ;$ mean $\mathrm{p}: 0.005,95 \% \mathrm{Cl}: 0.001-0.016$ across 10000 realisations). Overall, residents were most frequent in 2017-2018 but least frequent in 20182019, while late migrants, and to some degree early migrants, were more frequent in 20182019 than 2017-2018. The population sample was therefore more migratory in 2018-2019 than in 2017-2018.

These changes in frequencies between years arose partly because, of 103 individuals that survived through both years, a mean proportion of 0.36 ($95 \% \mathrm{Cl}: 0.32-0.40$) were assigned to different classes in the two years and hence changed strategy (Table 1A, hence mean proportion assigned to the same class in both years: $0.64,95 \% \mathrm{Cl}: 0.60-0.68)$. The frequencies of individuals assigned to the same and different classes differed substantially from null expectation (mean $\chi^{2}: 76.2,95 \% \mathrm{Cl}: 38.4-140.9$, all $\mathrm{p}<0.001$ across 10000 realisations, Table 1, Supplementary Material S3). More individuals than expected retained the same strategy across both years, while few or no individuals changed from late or early migrant to resident, from early migrant to late migrant or from resident to early migrant (Table 1B). Individuals that changed strategy therefore predominantly became slightly more migratory (i.e. resident
to late migrant, and late migrant to early migrant, Table 1, Supplementary Material S3). There was therefore evidence of substantial between-year individual repeatability in migratory strategy, but also of substantial directional change.

(c) Reproductive success

Mean reproductive success ($\pm 1 \mathrm{SD}$) across all observed focal individuals was 1.1 ± 1.1 and 1.0 ± 1.1 fledged chicks in 2018 and 2019 respectively. In 2018, individuals assigned as residents during the preceding winter had substantially higher mean reproductive success than early migrants, while late migrants had intermediate success (Fig. 2). In 2019, late migrants had higher mean reproductive success than residents and early migrants (Fig. 2). Consequently, there was a strong class-by-year interaction, largely reflecting that residents had high mean success in 2018 but low mean success in 2019 (Fig. 2, Supplementary Material S4). Residents and late migrants, and to some extent early migrants, therefore had highest relative reproductive success in the year in which they were most frequent (Fig. 2). As anticipated, young adults had lower success than older adults (Fig. 2, Supplementary Material S4).

The substantial decrease in mean reproductive success of residents in 2019 compared to 2018, and the corresponding relative increase in success of late migrants (Fig. 2), could potentially arise if the most successful resident individuals in 2017-2018 became late migrants in 2018-2019 and remained successful. High reproductive success would then be associated primarily with individuals rather than migratory strategies. However, additional analyses provided no evidence of such individual effects. Specifically, reproductive success of late migrants in 2019 did not differ between surviving individuals that had been residents or late migrants in 2017-2018 (Table 2A). Further, reproductive success of residents in 2018 did not
differ between individuals that subsequently remained as residents or became late migrants in 2018-2019 (Table 2B). If anything, individuals that became late migrants tended to have lower reproductive success in 2018, opposing the between-year change in mean reproductive success estimated across all individuals (Fig. 2).

4. Discussion

Population responses to environmental variation and change depend on patterns of variation and covariation in individual phenotypes and fitness, representing plasticity and selection $[1,2,6,8]$. Seasonal migration (versus residence) is one key phenotype that allows rapid spatial escape from temporarily deteriorating environments, but patterns of dynamic (co)variation in migratory phenotypes and fitness components have not been fully quantified. We show that substantial phenotypic variation, with individuals classified with high probabilities as early migrants (inferred to depart from the breeding area in early autumn), late migrants (depart in late autumn) and year-round residents, is evident within a European shag population, and that these 'migratory strategies' can have substantially differing subsequent mean year-specific reproductive success. Further, strategy frequencies and associated reproductive success varied markedly between two study years, and in each year the strategy associated with the highest estimated success in each year was more frequently expressed. These results highlight that seasonal migration can be an individually- and temporally-variable non-neutral trait, and imply that flexible seasonal migration may have capacity to mediate adaptive plastic responses to currently changing forms of environmental seasonality.

(a) Migratory strategy

Objectively classifying individual migratory strategy is generally challenging, requiring yearround location data and appropriate analyses [22,24]. We used capture-mark-recapture mixture models to assign individuals to latent classes representing distinct migratory strategies, with explicit uncertainty, solely using local (breeding area) observations (further commentary, Supplementary Material S2). CMR mixture models were originally devised to overcome 'nuisance' heterogeneity in detection probability and minimise resulting bias in estimated survival probabilities and population sizes [30,32,35]. In that context, support for a model with K classes does not necessarily mean that K biologically meaningful distinct groups exist, but simply that K latent classes adequately capture heterogeneity [30,34,35]. However, in our analyses, most encounter histories were assigned to one of three mixture classes with very high probability, and these classes are clearly biologically interpretable as 'resident', 'late migrant' and 'early migrant' (Fig. 1). While there may not in fact be three entirely distinct strategies, this structure clearly provides a very good approximation that allows strong individual-level inference. The few less typical cases with higher class uncertainty (Fig. 1, Supplementary Material S3), might represent slightly different strategies (e.g. mid-autumn departure), or could reflect further individual heterogeneity in P_{L} conditional on presence, or simply chance sequences of local resighting failure. Nevertheless, our results strongly imply the existence of different 'migratory strategies', such that some sympatric-breeding individuals spend considerably more time per year than others in the breeding area environment.

Our analyses also demonstrate substantial within-individual variation in non-breeding season location within years, and in defined migratory strategy between years. Defining individual state at any instant as resident (i.e. in the breeding area) or migrant (i.e. away),
individuals were inferred to transition between these states at different times of year, or never, generating emergent early migrant, late migrant and resident strategies that can be viewed as differential within-year plasticity. Further, while 64% of surviving individuals were assigned to the same class in both study years, representing high between-year repeatability of migratory strategy, 36% changed class, demonstrating between-year plasticity. Indeed, evidence of labile plasticity in migration, both within and between years, is accumulating in diverse taxa (but see [15]). For example, European blackbirds (Turdus merula) can show early or late migration alongside residence [21]; storms can induce altitudinal migration in whiteruffed manakins (Corapipo altera, [20]); and adult roach (Rutilus rutilus, [42]), elk (Cervus elaphus, [12]) and skylarks (Alauda arvensis, [24]) can switch between migration and residence between years.

In European shags, the form of between-year variation differed substantially from null expectations, and resulted in directional change that contributed to making the population more migratory in 2018-2019 than 2017-2018. Specifically, approximately 42\% of surviving residents became late migrants and 31% of surviving late migrants became early migrants, but other transitions were infrequent to the degree that zero surviving early migrants became residents (Table 1, Supplementary Material S3). Overall, these observed patterns of withinyear and between-year migratory plasticity and repeatability are consistent with a 'threshold model', which proposes that discrete phenotypes are expressed when an underlying continuously-distributed 'liability' exceeds some threshold [43] (Supplementary Material S5). This model was previously suggested to apply to migration versus residence in birds and fish $[23,44]$, and to other discrete phenotypes including wingless versus winged (dispersive) morphs in hemimetabolous insects [45]. The patterns of phenotypic variation observed in shags could arise given among-individual variation and time-of-season dependence in liability,
and increased population mean liability in 2018-2019 compared to 2017-2018 (Supplementary Material S5). Any effects of migratory strategy on subsequent reproductive success would then impose selection on a threshold trait, and hence on underlying migratory liability.

(b) Reproductive success

Despite recent interest in partial migration and its consequences [9,11-29], no studies have yet quantified within-year and between-year variation in sympatric reproductive success across diverse migratory strategies (more than simply resident versus migrant). For example, a leading study that used stable isotopes to assign individual skylarks as resident or migrant found no difference in breeding success across four years, but sample sizes were small and individuals that were not clearly assigned as simply resident or migrant were excluded [24]. Previous analyses of a different shag population breeding on Isle of May, Scotland, showed that residents had higher breeding success than migrants across three years, but did not distinguish early and late migrants [29].

Our comprehensive reproductive monitoring of shags that survived through each winter revealed substantial variation in mean reproductive success with migratory strategy, and showed that the most successful strategy differed between years (Fig. 2). The estimated mean between-class differences exceeded 0.7 fledged chicks in both years, constituting notable effects compared to the grand mean success of approximately 1 fledged chick. Direct causal effects of migratory strategy on subsequent reproductive success cannot, of course, be proved by phenotypic associations. However, there was no evidence that observed differences in relative reproductive success between residents and late migrants across the two years arose because individuals that switched strategies had consistent reproductive
success (Table 2). Instead, the observed relationships could potentially reflect varying carryover effects of winter location(s), perhaps including lasting effects on physiology or acquisition of breeding sites or local ecological information. Such mechanisms can be investigated in future. Our results then imply time-lagged indirect selection on migratory liability, and imply that such selection can act on both the occurrence and within-year timing of migration, and can also differ markedly between consecutive years.

Further, in each study year, more individuals expressed the migratory strategy that yielded highest mean reproductive success; residents were most frequent and had high reproductive success in 2018, while late migrants were more frequent and had highest reproductive success in 2019 (Fig. 2). Switching from residence to late migration is therefore expected to yield the highest mean reproductive success across the two years (Supplementary Material S4), and this was indeed the most frequently observed form of between-year switching. Strong evidence of adaptive plasticity of course cannot be definitively inferred across two years. However, the observed patterns could indicate adaptive labile plasticity expressed by some individuals, which is still surprisingly infrequently demonstrated for any trait or system [3,5,7,23]. This would in turn imply selection for migratory liability values near the threshold, thereby maintaining both within-year and between-year environmental responsiveness and generating substantial phenotypic variation.

However, this interpretation would raise the question of why plasticity was far from complete. Many individuals were early migrants in both years, even though repeated early migration is expected to yield low mean reproductive success (Supplementary Material S4), and some 2017-2018 residents remained resident in 2018-2019. Proximately, this implies that some individuals have high or low migratory liabilities, whether due to genetic or permanent
environmental effects, and may consequently be quasi-obligate migrants and residents [e.g. 42]. High migratory liabilities could be maintained in a population if early migration yields the highest probability of over-winter survival, at least in some years, as recently shown for blackbirds (Turdus merula, [26]) and shags breeding on Isle of May [28].

Overall, our current results provide evidence of among-individual variation, withinindividual plasticity and fluctuating reproductive selection on a key phenotype across two years, and indicate that plasticity and selection could be aligned. More years of data are clearly now required to ascertain which, if either, currently observed pattern of variation in reproductive success with migratory strategy (Fig. 2) is more typical; whether early migration is ever associated with high reproductive success; to identify underlying environmental drivers; and to quantify relative reproductive success of individuals that do and do not change migratory strategies between years. Partially-migratory systems then provide exciting opportunities to quantify the magnitude and form of adaptive labile plasticity, the direct and constitutive costs, and hence the direct implications of such processes for spatio-seasonal population dynamics (e.g. [6,14]).

Acknowledgements

We thank Raymond Duncan (Grampian Ringing Group), whose insatiable enthusiasm for ringing was inspirational. We thank everyone who contributed to fieldwork, especially Mike Harris and David Hunter; Roger Pradel for generous advice on CMR mixture models; and UK Natural Environment Research Council for funding (NE/R000859/1, NE/P009719/1).

References

1. Siepielski AM, DiBattista JD, Carlson SM. 2009 It's about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Let. 12,1261-1276. doi.org/10.1111/j.1461-0248.2009.01381.x
2. Chevin LM, Lande R, Mace GM. 2010 Adaptation, plasticity and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8,e1000357. doi: 10.1371/journal.pbio. 1000357
3. Chevin LM, Collins S, Lefèvre F. 2013 Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Func. Ecol. 27,966-979. doi.org/10.1111/j.1365-2435.2012.02043.x
4. Nettle D, Bateson M. 2015 Adaptive developmental plasticity: what is it, how can we recognise it and when can it evolve? Proc. R. Soc. B 282,20151005. doi.org/10.1098/rspb.2015.1005
5. Arnold PA, Nicotra AB, Kruuk LEB. 2019 Sparse evidence for selection on phenotypic plasticity in response to temperature. Phil. Trans. R. Soc. B 374,20180185. doi.org/10.1098/rstb. 2018.0185
6. Fox RJ, Donelson JM, Schunter C, Ravasi Y, Gaitán-Espitia JD. 2019 Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B 374,20180174. doi.org/10.1098/rstb.2018.0174
7. Chevin LM, Visser ME, Tufto J. 2015 Estimating the variation, autocorrelation, and environmental sensitivity of phenotypic selection. Evolution 69,2319-2332. doi.org/10.1098/rstb.2018.0174
8. Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 2007 Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Func. Ecol. 21,394-407. doi.org/10.1111/j.1365-2435.2007.01283.x
9. Chapman BB, Brönmark C, Nilsson JÅ, Hansson LA. 2011 The ecology and evolution of partial migration. Oikos 120,1764-1775. doi.org/10.1111/j.1600-0706.2011.20131.x
10. Grayson K, Bailey LL, Wilbur HM. 2011 Life history benefits of residency in a partially migratory pond-breeding amphibian. Ecology 92,1236-1246. doi.org/10.1890/11-0133.1
11. McGuire LP, Boyle WA. 2013 Altitudinal migration in bats: evidence, patterns and drivers. Biol. Rev. 88,767-786. doi.org/10.1111/brv. 12024
12. Eggeman SL, Hebblewhite M, Bohm H, Whittington J, Merrill EH. 2016 Behavioural flexibility in migratory behaviour in a long-lived herbivore. J. Anim. Ecol. 85,785-797. doi.org/10.1111/1365-2656.12495
13. Buchan C, Gilroy JJ, Catry I, Franco AMA. 2019 Fitness consequences of different migratory strategies in partially migratory populations: a multi-taxa meta-analysis. J. Anim. Ecol. online. doi.org/10.1111/1365-2656.13155
14. Reid JM, Travis JMJ, Daunt F, Burthe SJ, Wanless S, Dytham C. 2018 Population and evolutionary dynamics in spatially-structured seasonally-varying environments. Biol. Rev. 93,1578-1603. doi.org/10.1111/brv. 12409
15. Sawyer H, Merkle JA, Middleton AD, Dwinnell SPH, Monteith KL. 2019 Migratory plasticity is not ubiquitous among large herbivores. J. Anim. Ecol. 88,450-460. doi.org/10.1111/13652656.12926
16. Brodersen J, Nilsson PA, Hansson LA, Skov C. Brönmark C. 2008 Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89,1195-1200. doi.org/10.1890/07-1318.1
17. Grayson KL, Wilbur HM. 2009 Sex- and context-dependent migration in a pond-breeding amphibian. Ecology 90,06-312. doi.org/10.1890/08-0935.1
18. Skov C, Aerestrup K, Baktoft H, Brodersen J, Brönmark C, Hansson LA, Nielsen EE, Nielsen T, Nilsson PA. 2010 Influences of environmental cues, migratory history, and habitat familiarity on partial migration. Behav. Ecol. 21,1140-1146. doi.org/10.1093/beheco/arq121
19. Piersma T, Drent J. 2003 Phenotypic flexibility and the evolution of organismal design. Trends Ecol. Evol. 18, 228-233. doi.org/10.1016/S0169-5347(03)00036-3
20. Boyle WA, Norris DR, Guglielmo CG. 2010 Storms drive altitudinal migration in a tropical bird. Proc. R. Soc. B 277,2511-2519. doi.org/10.1098/rspb.2010.0344
21. Fudickar AM, Schmidt A, Hau M, Quetting M, Partecke J. 2013 Female-biased obligate strategies in a partially migratory population. J. Anim. Ecol. 82,863-871. doi.org/10.1111/13652656.12052
22. Cagnacci F, Focardi S, Ghisla A, van Moorter B, Merrill EH, Gurarie E, Heurich M, Mysterud A, et al. 2016 How many routes lead to migration? Comparison of methods to assess and characterize migratory movements. J. Anim. Ecol. 85,54-68. doi.org/10.1111/1365-2656.12449
23. Dodson JJ, Aubin-Horth N, Thériault V, Páez DJ. 2013 The evolutionary ecology of alternative migratory tactics in salmonid fishes. Biol. Rev. 88,602-625. doi.org/10.1111/brv. 12019
24. Hegemann A, Marra PP, Tieleman BI. 2015 Causes and consequences of partial migration in a passerine bird. Am. Nat. 186,531-546. doi.org/10.1086/682667
25. Skov C, Chapman BB, Baktoft H, Brodersen J, Brönmark C, Hansson LA, Hulthén K, Nilsson PA. 2013 Migration confers survival benefits against avian predators for partially migratory freshwater fish. Biol. Let. 9,20121178. doi.org/10.1098/rsbl.2012.1178
26. Zúñiga D, Gager Y, Kokko H, Fudickar AM, Schmidt A, Naef-Daenzer B, Wikelski M, Partecke J. 2017 Migration confers winter survival benefits in a partially migratory songbird. eLife 6,e28123. doi.org/10.7554/eLife.28123.001
27. Green DJ, Whitehorne IBJ, Middletone HA, Morrissey CA. 2015 Do American dippers obtain a survival benefit from altitudinal migration? PLoS One 10,e0125734. doi:10.1371/journal.pone. 0125734
28. Acker P, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, Grist H, Sturgeon J, Swann RL, Gunn C, Payo-Payo A, Reid JM. Strong selection on seasonal migration versus residence induced by extreme climatic events. In review.
29. Grist H, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, Reid JM. 2017 Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86,1010-1021. doi.org/10.1111/1365-2656.12691
30. Pledger S, Phillpot P. 2008 Using mixtures to model heterogeneity in ecological capture-recapture studies. Biometrical Journal 50,1022-1034. doi.org/10.1002/bimj. 200810446
31. Pledger S, Pollock KH, Norris JL. 2003. Open capture-recapture models with heterogeneity: I. Cormack-Jolly-Seber model. Biometrics 59,786-794. doi.org/10.1111/j.0006341X.2003.00092.x
32. Cubaynes S, Lavergne C, Marboutin E, Gimenez O. 2012 Assessing individual heterogeneity using model selection criteria: how many mixture components in capture-recapture models? Methods Ecol. Evol. 3,564-573. doi.org/10.1111/j.2041-210X.2011.00175.x
33. Gimenez O, Cam E, Gaillard JM. 2018 Individual heterogeneity and capture-recapture models: what, why and how? Oikos 127,664-686. doi.org/10.1111/oik. 04532
34. Hamel S, Yoccoz NG, Gaillard JM. 2017 Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists. Biol. Rev. 92,754-775. doi.org/10.1111/brv. 12254
35. Péron G, Crochet PAC, Choquet R, Pradel R, Lebreton JD, Gimenez O. 2011 Capture-recapture models with heterogeneity to study survival senescence in the wild. Oikos 119,524-532. doi.org/10.1111/j.1600-1706.2009.17882.x
36. Reid, JM. 2020. Data for: Among-individual and within-individual variation in seasonal migration covaries with subsequent reproductive success in a partially-migratory bird. Dryad Digital Repository doi:10.5061/dryad.pvmcvdnhv.
37. Walsh PM, Halley DJ, Harris MP, del Nevo A, Sim IMW, Tasker ML. 1995 Seabird monitoring handbook for Britain and Ireland. JNCC, Peterborough.
38. Lee AM, Reid JM, Beissinger SR. 2017 Modelling effects of nonbreeders on population growth estimates. J. Anim. Ecol. 86:75-87. doi.org/10.1111/1365-2656.12592
39. Grist H, Daunt F, Wanless S, Nelson EJ, Harris MP, Newell M, Burthe S, Reid JM. 2014 Site fidelity and individual variation in winter location in partially migratory European shags. PLoS One 9,e98562.
40. Choquet R, Nogué E. 2011 E-SURGE 1.8 User's Manual. CEFE, Montpellier, France. http://ftp.cefe.cnrs.fr/biom/soft-cr/.
41. R Core Team 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
42. Brodersen J, Chapman BB, Nilsson PA, Skov C, Hansson LA, Brönmark C. 2014 Fixed and flexible: coexistence of obligate and facultative migratory strategies in a freshwater fish. PLoS One 9,e90294. doi.org/10.1371/journal.pone. 0090294
43. Lynch M, Walsh B. 1998 Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland.
44. Pulido F. 2011 Evolutionary genetics of partial migration - the threshold model of migration revis(it)ed. Oikos 120,1776-1783. doi.org/10.1111/j.1600-0706.2011.19844.x
45. Roff DA. 1996 The evolution of threshold traits in animals. Q. Rev. Biol. 71,3-35. doi.org/10.1086/419266

Table 1. Frequencies of inferred two-year migratory strategies for 103 European shags included in analyses for both focal years, given (A) mixture model-assigned strategies for both years, and (B) model-assigned strategy for 2017-2018 and a randomly resampled strategy for 2018-2019 (full details, Supplementary Material S3). Rows and columns index strategies in 2017-2018 and 2018-2019 respectively, showing the mean frequency and 95\% confidence interval across 10000 realisations. In (A), dark grey shading (leading diagonal) identifies individuals assigned to the same strategy in both years. Light grey and white identify individuals that became more and less migratory in 2018-2019 respectively. In (B), dark and light grey indicate two-year strategies that occurred more and less frequently than expected respectively (compared to frequencies in A). White indicates strategies whose frequencies did not differ from overall expectation, but occurred more frequently than expected conditional on change (Supplementary Material S3). In addition, 17 new individuals entered the dataset in 2018-2019 (and hence do not contribute to estimates of between-year individual variation): 2,6 and 9 residents, late migrants and early migrants respectively.

			2018-2019 677		
			Resident	Late migrant	Early migrant
(A)	∞ 	Resident	22.4 (21,24)	19.1 (17,21)	3.1 67.4
		Late migrant	2.0 (1,3)	17.3 (14,20)	$8.7(6,11)$
		Early migrant	0.0 (0,0)	4.1 (2,6)	26.3 (24,29)
(B)	~NNNN	Resident	10.6 (5,17)	$17.5(11,24)$	$16.5(10,23)$
		Late migrant	$6.6(2,11)$	11.0 (6,16)	$10.4(5,16)$
					685
		Early migrant	$7.2(3,12)$	12.0 (7,17)	$11.2(6,17)$

Table 2. Comparisons of (A) reproductive success in 2019 of individuals assigned as late migrants (LM) in 2018-2019 that were residents (R) or late migrants in 2017-2018, and (B) reproductive success in 2018 of individuals assigned as residents in 2017-2018 that remained as residents or became late migrants in 2018-2019. Statistics are the number of individuals in each group (N), the group mean and standard deviation (SD) of reproductive success in the focal year, and the Wilcoxon test statistic (W) for the difference in mean and associated p value (all presented as means and 95\% confidence intervals across 10000 realisations). Statistics for reproductive success in 2018 of individuals assigned as late migrants in both years are shown for comparison, but do not contribute to current hypothesis tests.

Year	Classes	\mathbf{N}	Mean	SD	\mathbf{W}	\mathbf{p}
(A) 2019	$\mathbf{R} \rightarrow \mathbf{L M}$	19.0	1.32	1.01		
		$(17,21)$	$(1.21,1.42)$	$(0.95,1.08)$	154.4	0.71
			17.2	1.42	1.07	$(118.0,194.0)$
		$(14,20)$	$(1.21,1.61)$	$(0.98,1.16)$		
			$(18,21)$	$(1.65,1.80)$	$(0.86,0.96)$	144.7
(B) 2018	$\mathbf{R} \rightarrow \mathbf{R}$	19.3	1.74	0.88	0.36	
		18.2	1.35	1.21	$(123.0,166.5)$	$(0.11,0.74)$
		$(16,20)$	$(1.21,1.50)$	$(1.15,1.26)$		
			17.2	1.02	1.09	

Figure 1. Summaries of mixture model latent class assignments for European shags observed in (A-E) 2017-2018 and (F-J) 2018-2019. (A,F): Frequencies of individual maximum class membership probability. (B, G): Ternary plots visualising each individual's simplex of class probabilities. Vertices represent classes interpreted as resident (R, left), early migrant (EM, right) and late migrant (LM, top). Points represent individuals, line segments indicate multiple identical points. Most points are at or near the vertices, indicating individuals assigned to one class with very high probability. Points on intervening dashed lines indicate individuals assigned to two classes with non-zero probabilities. Few points are within the triangular space, indicating little three-way uncertainty. (C,H): Estimated local (breeding area) resighting probabilities (PL , with 95% confidence intervals) across 19 occasions for the classes representing residents (black, solid line), late migrants (mid-grey, dashed line) and early migrants (light grey, dotted line). (D,I): Last autumn observation occasion for individuals assigned as resident, late migrant or early migrant with probability ≥ 0.95 (96 and 101 individuals in 2017-2018 and 2018-2019 respectively, occasion zero is the initial summer). (E, J): Total positive winter occasions for these individuals.

Figure 2. (A) Predicted mean reproductive success in 2018 and 2019 for individuals assigned as resident (R), late migrant (LM) or early migrant (EM) during the preceding winter. Open and filled symbols denote young (age 3-4 years) and older (age 5+) adults respectively. (B) Relative (mean-standardised) predicted reproductive success for each migratory strategy versus the proportion of individuals assigned to that strategy in each year (shown for older adults only for clarity). On both panels, squares, circles and triangles represent residents, late migrants and early migrants respectively. Black and grey symbols denote 2017-2018 and 2018-2019 respectively. Points denote back-transformed mean predicted values and vertical solid and dashed lines denote back-transformed mean standard errors and 95\% confidence intervals estimated across 10000 realisations. Horizontal solid and dashed lines denote mean standard errors and 95\% confidence intervals for initial class probabilities.

Supplementary material

Among-individual and within-individual variation in seasonal migration covaries with subsequent reproductive success in a partially-migratory bird
Jane M. Reid, Moray Souter, Sarah R. Fenn, Paul Acker, Ana Payo-Payo, Sarah J. Burthe, Sarah Wanless \& Francis Daunt

Proceedings of the Royal Society B
10.1098/rspb.xxxx.xxxx

S1. Details of the field system

European shags are seabirds that are restricted to coastal areas all year round, and have patchy breeding and wintering distributions due to their requirements for appropriate nest and night roost sites (typically on rocky islands and cliffs). They additionally use coastal rocks as day roosts between foraging bouts, where colour-ringed individuals can be readily observed all year round [1].

Figure S1 shows the locations of the Bullers of Buchan ('BoB') study area and adjacent day roosts and breeding colonies. During 2009-2018, samples of chicks and adults were ringed at BoB, using colour-rings with three-letter individual codes (licensed by British Trust for

Ornithology). The ringed individuals comprised those that could be accessed without undue risk to researchers or other breeding seabirds in the cliff colony. Totals ringed per year varied through approximately 60-110 chicks and 2-12 adults, representing $5-10 \%$ of the total individuals present. Some ringing occurred within nine widely-distributed and accessible subcolonies within the overall colony. Recruited and surviving colour-ringed adults could subsequently breed at any nest site, including many sites that were not accessible for ringing but could still be readily viewed from cliff tops to record reproductive success. Consequently, breeding attempts made by ringed adults are likely to be broadly representative of the whole colony. Reproductive success of these individuals was ascertained by systematically recording nest contents every 5-10 days throughout the breeding period following well-established and widely used seabird monitoring protocols [2]. Offspring were deemed to have reached fledging age once observed with fully grown wing and tail feathers, with little or no down remaining on the back and upper wings [2].

Most breeding shags that had been ringed at BoB and recruited locally bred within the main study area. However, adjacent breeding areas ($\sim 3 \mathrm{~km}$ south and north) were also intensively surveyed to locate colour-ringed adults that had dispersed slightly further (Fig. S1). Beyond these areas, there are no further shag breeding areas for >40km (Fig. S1). Data from three immigrants that were originally ringed at colonies further south in Scotland (Isle of May and Craigleith, Firth of Forth), and then dispersed to breed at BoB, were included in analyses. There is no evidence of long-distance breeding dispersal of recruited adults.

European shags typically breed from age three years. Although they can attempt to breed aged two years, this was rarely observed at Bullers of Buchan in 2018 and 2019 (only two
attempts by known ringed two year-olds). Individuals that would have been two years old in the summer following each focal winter were consequently excluded from current analyses of reproductive success. All surviving three year-olds were defined as adults and included (Table S1). The frequent breeding season surveys ensured that most colour-ringed individuals were resighted on multiple occasions during in each summer (Figure S2). Adults that were not seen in a particular breeding season were never seen subsequently, either in subsequent breeding seasons or winters, implying that breeding season resighting probability was close to 1 during 2017-2019.

During 2017-2019, local (i.e. breeding area) winter resighting surveys of all local roost sites were undertaken by experienced observers, primarily JMR and MS, typically at times of day and tide that surveys undertaken during 2009-2017 had shown to maximise the probability of observing roosting shags (including pre-dusk gatherings). Roosting groups were repeatedly scanned with 60x magnification telescopes, and colour-ring codes recorded and checked. This core survey effort was supplemented with substantial additional effort from numerous other observers, who checked diverse local sites at diverse times of day and tide. This substantial combined effort reduced heterogeneity in local resighting probability per defined 10-day 'occasion', and increased the probability that colour-ringed shags that were locally present would be resighted on multiple occasions during the winter.
(B)

(A)

Figure S1. (A) Location of the main Bullers of Buchan study area, and (B) zoomed-in locations of the main breeding colony (red), two adjacent sub-colonies (orange, Whinnyfold to the south and Longhaven to the north), and three main winter day roost sites (blue) ranging up to 16 km north of the main breeding area. The next nearest breeding colonies to the north and south are also shown (yellow). Wider surveys showed that few shags utilised winter day roost sites south of Bullers of Buchan, since the main foraging areas are slightly north.

89
90

91

Figure S2. Frequency distributions of the number of times that an adult colour-ringed shag was resighted at Bullers of Buchan during the breeding season in (A) 2017, (B) 2018 and (C) 2019. Y -axes show the numbers of individuals. Mean numbers of resightings per individual were 4.1, 4.7 and 5.6 in 2017-2019 respectively, and variances were 4.1, 4.4 and 5.8 respectively. Consequently, there was therefore little or no overdispersion compared to expectation given a Poisson distribution of resightings.

Winter surveys for colour-ringed shags were also carried out at numerous other sites along the east coast of Scotland, primarily ranging from Northumberland to Caithness [1,2-4]. These surveys focussed on key night roost locations where shags could be observed pre-dusk, as well as day roosts adjacent to the night roosts. Totals of 17 and 29 colour-ringed individuals known to breed at Bullers of Buchan were resighted at night roosts elsewhere in winters 2017-2018 and 2018-2019 respectively (36 different individuals), and hence were directly observed to be migrants. These individuals were observed between $\sim 35 \mathrm{~km}$ and 160 km away from Bullers of Buchan (Fig. S3). These individuals were seen at these locations on multiple occasions through the winter, with no intervening sightings in the Bullers of Buchan area. They consequently provide direct evidence that focal individuals had moved away for a protracted period, representing migration rather than solely daily foraging trips. The total of 46 individual-year encounter histories comprised 24 and 22 that the mixture models assigned as late migrants and early migrants respectively. Individuals that were never observed in any of the survey areas in either of the two winters are likely to have moved further away.

Figure S3. Distribution of distances (km) that migrant individual shags were observed away from Bullers of Buchan across winters 2017-2018 and 2018-2019. The discrete distribution reflects the distances to major surveyed night roost sites.

Table S1. Data summaries for 2017-2018 and 2018-2019: numbers of (A) focal individuals, (B) observed surviving individuals, (C) individuals with observed reproductive success and unique breeding events, (D) focal individuals originally ringed as chicks or adults, (E) individuals observed as young or older adults, (F) estimated initial class (i.e. state) probabilities (± 1 standard error) and 95% confidence interval, (G) surviving individuals assigned to their most likely class with probabilities $\mathrm{P}_{\operatorname{Max}} \geq 0.95$ or ≥ 0.75, (H) individuals with observed reproductive success assigned to the classes interpreted as resident (R), late migrant (LM) or early migrant (EM). H shows means and 95% confidence intervals across 10000 realisations of individuals' probabilistic class assignments. In B, C, G and H, proportions are shown in parentheses.

	2017-2018	2018-2019
(A) Focal individuals	121	127
(B) Surviving individuals	111 (0.92)	122 (0.96)
(C) Observed reproductive success	Individuals: 105 (0.95) Breeding events: 95	Individuals: 118 (0.97) Breeding events: 111
(D) Chicks, adults	72,33	87, 31
(E) Young, older	41,64	34, 84
(F) Initial class probabilities	R: $0.42 \pm 0.05,95 \% \mathrm{Cl}: 0.33,0.52$ LM: $0.26 \pm 0.04,95 \% \mathrm{Cl}: 0.19,0.35$ EM: $0.32 \pm 0.05,95 \% \mathrm{Cl}: 0.22,0.41$	R: $0.22 \pm 0.04,95 \% \mathrm{Cl}: 0.16,0.30$ LM: 0.39士0.05, 95\%CI: 0.30,0.50 EM: 0.39さ0.05, 95\%CI: 0.29,0.51
(G) Confident assignments	$\begin{aligned} & P_{\text {Max }} \geq 0.95: 96(0.86) \\ & P_{\text {Max }} \geq 0.75: 109(0.98) \end{aligned}$	$\begin{aligned} & P_{\operatorname{Max}} \geq 0.95: 101(0.83) \\ & P_{\operatorname{Max}} \geq 0.75: 118(0.97) \end{aligned}$
(H) Individuals assigned as R, LM or EM	R: 43.9 (0.42), $95 \% \mathrm{Cl}: 42,46$ LM: 28.6 (0.27), 95\%CI: 26,31 EM: 32.4 (0.31), $95 \% \mathrm{Cl}: 31,34$	R: 25.2 (0.21), $95 \% \mathrm{Cl}: 24,27$ LM: 46.7 (0.40), 95\%CI: 43,50 EM: 46.2 (0.39), 95\%CI: 43,49

S2. Details of capture-mark-recapture mixture models

Diverse methods of extending basic capture-mark-recapture (CMR) models to estimate movement probabilities and account for temporary emigration have been devised, including utilising multiple secondary occasions (robust design), multi-site observations in multi-state models, and individual covariates that predict emigration [5-8]. Our analyses illustrate use of CMR mixture models to assign encounter histories, and hence individuals, to latent classes that represent different migratory strategies. We illustrate that individuals can be assigned to interpretable classes with high probability solely using frequent local (breeding area) resightings. This approach could be logistically feasible in diverse systems, and particularly useful for systems where individuals that have migrated away (i.e. temporarily emigrated) are not readily observable. Here, we provide further details of current analyses, and highlight some considerations for applying similar analyses to other datasets.

Number of mixture classes: Support for modelling any particular number of classes within a mixture model can be formally assessed by using standard information criteria (including AIC) to compare candidate models with different numbers of classes [9-11]. This approach has been validated using simulated CMR datasets with two classes of detection probability, showing that AIC commonly identifies the correct model structure (i.e. two classes versus one or three classes, [9]; see also [10]). These simulations assumed no temporal (i.e. amongoccasion) variation in detection probability, meaning that straightforward comparison between candidate models with constant detection probability within one, two or three mixture classes was appropriate. However, specifying an appropriate set of candidate models becomes more complex when detection probabilities vary among occasions and such
variation can differ between mixture classes. A large number of models, with different class structures, could then be postulated.

Consequently, to validate the foundations of our inferences for shags, we first fitted mixture models that assumed two or three latent classes in resighting (i.e. detection) probability assuming constant probability across all occasions, and used AIC adjusted for small sample sizes (AICc) to assess support for these different structures. These models were fitted to separate datasets for 2017-2018 and 2018-2019. The three-class model was considerably better supported than the two-class model in both years ($\Delta \mathrm{AICc}>20$, Table S2). It has previously been suggested that it may rarely be useful to fit mixture models with more than three classes to typical CMR datasets, due to high resulting uncertainty [9]. Exploratory analyses of models with four mixture classes fitted to the current shag dataset supported this view. AICc values were similar to those for three-class models, but class assignments were highly uncertain and no longer easily interpretable. Further, simulations have shown that in these circumstances AIC may tend to indicate support for models with too many classes, especially for long-lived species with substantial heterogeneity ([9], see also [10]). Consequently, four-class models were not considered further in current analyses.

Table S2. Summaries of capture-mark-recapture (CMR) mixture models fitted to encounter histories observed in 2017-2018 and 2018-2019 with (A) two or three mixture classes in local resighting probability with constant class-specific probability, and (B) three mixture classes in local resighting probability with class-specific probabilities that varied among occasions. Here, probabilities were constrained either following Table S3 (model i), with additional independent variation in resighting probability for the postulated late migrant and resident classes (model ii), and with resighting probability for the final summer occasion fixed to one (model iii). Model deviance, number of parameters (Par.), AIC adjusted for small sample sizes (AICc) and the difference in AICc between each model and the best supported model in each section ($\triangle A I C C$) are shown. The model with three mixture classes and constraints on local resighting probability following Table S3 was best supported in both years (model i, bold). This model was consequently used to compute individual class assignment probabilities and infer individual migratory strategy, and hence to quantify relationships with subsequent reproductive success.

		2017-2018				2018-2019			
		Deviance	Par.	AICc	$\triangle \mathrm{AICc}$	Deviance	Par.	AICc	$\triangle \mathrm{AICc}$
(A)	Two classes	2511.5	4	2519.5	+20.2	2609.3	4	2617.3	+29.8
	Three classes	2487.2	6	2499.3	-	2575.4	6	2587.5	-
(B)	Model i	1871.3	31	1935.4	-	1776.4	31	1840.9	-
	Model ii	1865.3	34	1935.7	+0.2	1771.3	34	1842.3	+1.4
	Model iii	1877.1	30	1939.0	+3.6	1780.1	30	1842.3	+1.4

Parameter constraints: We took the well-supported three-class model and applied constraints on the form of temporal (i.e. among-occasion) variation in local resighting probability $\left(\mathrm{P}_{\mathrm{L}}\right)$ according to our biological understanding of the system and the postulated existence of three broad migratory strategies (i.e. resident, late migrant and early migrant, Table S3). These constraints were implemented primarily because exploratory analyses of models with full unconstrained occasion-dependence in $P_{\llcorner }$for all three mixture classes showed that estimates of $P\llcorner$ were bounded at zero for the putative migrant classes in some winter occasions. This makes biological sense; local resighting probability for migrant classes will be zero at times of year when all migrants are locally absent. However, estimated values of $P_{L}=0$ prevented useful estimation of individual class assignment probabilities, or hence quantitative inference of individual migratory strategies. Consequently, values of $P_{\llcorner }$for the migrant classes were constrained to be identical across restricted sets of winter occasions (Table S3). Since migrants were occasionally locally present and resighted in early and late winter (i.e. before departure or after return), the constrained values of $P_{\llcorner }$were then estimated as slightly above zero (main text Figure $1 \mathrm{C}, \mathrm{H}$), thereby allowing individual class assignment probabilities to be computed. Further exploratory analyses with different parameter constraints showed that imposing some biologically-informed constraints also facilitated inference. This is because local resightings in different winter occasions are not equally informative regarding individual migratory strategy. For example, a local mid-winter resighting strongly implies that an individual is 'resident', but an early September resighting does not. Finally, imposing constraints that differed among mixture classes also meant that the order of identity of the three emerging mixture class was consistent across different analyses and datasets (rather than varying according to starting values and the input order of encounter histories, which occurs in the absence of any other constraints). This facilitated
subsequent analyses and model comparisons. However, it is important to note that while parameter constraints are set a priori, parameter values are estimated from the encounter history data. Consequently, values will not necessarily concur with those that would be expected for the three postulated migratory strategies, and there are no a priori defined exact 'cut-off' dates that define strategies (e.g. early versus late migrants).

Table S3. Structure of occasion-specific local resighting probabilities (P_{L}) for a three-class mixture model specified to capture postulated resident (R), late migrant (LM) and early migrant (EM) strategies. Occasions (Occ.) comprise 17 winter occasions (W_{i}) and the previous and subsequent summer breeding seasons (S_{1} and S_{2}, hence 19 occasions in total). P_{L} parameters for each winter are specified as X_{y}, where X is e, I or r denoting the EM, LM and R strategies respectively, and y is the first winter occasion for that parameter. Some X_{y} values for early and late migrants were constrained to be identical across multiple occasions, primarily to prevent estimation of occasion-specific $P_{L}=0$. Since individuals only enter the dataset if observed in summer S_{1}, initial $P_{L}=1$ for all classes (i.e. conditioning on initial encounter). Since there was no expectation that P_{L} in summer S_{2} would differ between classes, this parameter was set equal (s_{2}). P_{L} was also set equal for the LM and R strategies for occasions $W_{1}-W_{3}$, when all such individuals are locally present and are expected to be equally observable. Groups of adjacent parameters that were constrained to be equal are highlighted in shades of grey.

Occ.	S 1	W_{1}	W_{2}	W_{3}	W_{4}	W_{5}	W_{6}	W_{7}	W_{8}	W9	W_{10}	W_{11}	\mathbf{W}_{12}	W_{13}	W_{14}	W_{15}	W_{16}	W_{17}	S2
R	1	r_{1}	r_{2}	r_{3}	r_{4}	r_{5}	r_{6}	r_{7}	r_{8}	r 9	r_{10}	r_{11}	r_{12}	r_{13}	r_{14}	r_{15}	r_{16}	r_{17}	S_{2}
LM	1	r_{1}	r_{2}	r_{3}	14	I_{5}	I_{6}	17	18	19	19	19	19	19	19	l_{15}	l_{15}	l_{15}	S_{2}
EM	1	e_{1}	e_{1}	e_{1}	e_{4}	e_{15}	e_{15}	e_{15}	S_{2}										

Observations from previous years suggested that migrants could start to return from late January, with most returning from late February. Consequently, the last winter occasion for which resighting data were collected (Feb 19 ${ }^{\text {th }}-28^{\text {th }}$) was excluded from encounter histories because sightings were no longer strongly informative of an individual's migratory strategy. Local resighting probability was constrained to be constant across the three previous late winter occasions for both early and late migrants, but allowed to differ from mid-winter values (Table S3). This allows PL to increase in late winter, as migrants return. However, in practice, late winter $P_{\llcorner }$was estimated to be only slightly higher than mid-winter $P_{\llcorner }$for both migrant classes (main Figure 1). There was therefore no evidence that early and late migrants returned at substantially different times (up to mid-February) as well as departing at different times.

Additional constrained models: We fitted two sets of additional models to verify whether conclusions were robust given slightly different parameter constraints from those defined in the primary model (Table S3).

1. Different constraints on winter P_{L} : We fitted a set of 7 additional models with slightly different constraints on winter P_{L} (codes in Box 1). These models were considerably less well supported than the primary model ($\Delta \mathrm{A} \mid C c \gg 2$), except for a model where P_{L} values for the postulated late migrant class for the first three winter occasions varied independently from those for the postulated resident class (rather than being constrained to be equal, as in Table S3). This model was only slightly less well supported than the primary model in both years (lower deviance, but more parameters, Table S2B model ii versus model i). Individual class
assignment probabilities calculated from the two models were quantitatively very similar, meaning that the choice between these models did not alter subsequent inferences.
2. Different constraints on final summer P_{L} (i.e. parameter S_{2}): The primary model estimated the constant between-occasion survival probability ϕ_{l} to be 1.00 in both years. Consequently, local resighting probability in each subsequent summer $\left(S_{2}\right)$ was estimated as <1. In reality, some or all individuals that were unobserved in the subsequent summer will have died during winter, implying that ϕ_{l} was slightly overestimated and S_{2} slightly underestimated. These small biases probably arose because $\phi_{/}$was constrained to be equal across all occasions for all three classes. This in turn was because estimation of fully time- and class-specific ϕ_{l} was not feasible given current sample sizes of individuals (~ 120 encounter histories per year) relative to the large number of survival parameters in a fully saturated model (3 classes $\times 18$ intervals $=54$ parameters $)$, coupled with high overall annual survival probabilities (≥ 0.92) and no a priori expectation of when mortality would occur or that it should be concentrated into specific occasions. Consequently, to evaluate the implications of minor biases for individual class assignment probabilities and hence inference of individual migratory strategy, an additional model was fitted, parameterised following Table S3 but with s_{2} fixed to equal 1. This forced estimation of $\phi_{l}<1$, in practice yielding estimates of 0.995 ($95 \% \mathrm{Cl}: 0.991,0.997$) and 0.997 ($95 \% \mathrm{Cl}: 0.994,0.999$) for 2017-2018 and 2018-2019 respectively). This model was slightly less well supported than the primary model in both years (Table S2B model iii versus model i). Class assignment probabilities estimated for surviving individuals were quantitatively very similar across both models. The primary model was consequently used for subsequent inference, but class assignment probabilities for individuals that were not observed during the second summer or subsequently, and hence most likely died during the
focal winter, were not interpreted. These individuals anyway do not enter analyses of variation in reproductive success during the subsequent summer.

Goodness of fit: General goodness of fit (GoF) tests for CMR mixture models are not yet available. We therefore used a group-structured approximation to evaluate GoF and overdispersion. We assigned each observed encounter history to its most likely class according to mixture model probabilities, then structured the encounter histories into three fixed groups defined by the assigned classes. Standard approaches to evaluating GoF of group-structured CMR models can then, in principle, be applied. However, in the current case, fully time-dependent group-structured CMR models could not be usefully fitted and evaluated because local resighting probability $\left(\mathrm{P}_{\mathrm{L}}\right)$ was estimated as zero for the migrant groups in some mid-winter occasions (as makes biological sense, see above). We therefore fitted models with constrained group-structured temporal variation in P_{L} (following Table S3), and used simulation utilities in programme MARK to assess GoF and overdispersion (ĉ, full methodological details and explanations in [12]). In brief, we simulated 1000 independent datasets given estimated parameters of the group-structured model and with the same number of encounter histories as in the real datasets, refitted the model, and quantified the proportion of instances in which the deviance exceeded that estimated when the model was fitted to the real data. This gives a bootstrap probability that the fitted model does not fit the data; values >0.05 can be interpreted that the observed deviance can arise by chance. Overdispersion was estimated from these simulations as the ratios of observed to mean simulated deviance or \hat{c}. As a further measure, the value of \hat{c} for which the proportions of simulated values that were higher and lower were exactly 0.5 (i.e. 'median ĉ') was computed (see [12]).

In summary, these analyses suggested that a model with three fixed classes of resighting probability, fitted by assigning each observed encounter history to its most likely class as estimated by the mixture model, adequately fitted the data with little additional overdispersion (Table S4). This implies that the three-class mixture model also adequately fitted the data; indeed the mixture model likely fits even better than the group-structured approximation, since encounter histories can be assigned to multiple classes with some probability, better capturing remaining heterogeneity.

Note that this approach to assessing GoF for mixture models would not work so well for datasets and models where most individual encounter histories are not assigned to single classes with high probability (as they were in our current analyses). The simple groupstructured approximation would then be less useful.

Table S4. Summary of (A) bootstrap goodness of fit (GoF) tests and (B) median ĉ simulations for group-structured CMR models, where each encounter history was assigned to its most likely class of resighting probability as estimated by mixture models. In (A) the GoF probability is the proportion of bootstrap replicates where the deviance of the model fitted to simulated data exceeded that of the model fitted to the real observed data. Overdispersion was estimated as the ratio of observed to simulated (i) deviance and (ii) \hat{c}.

		2017-2018	2018-2019
(A)	GoF probability	0.164	0.110
	Observed model deviance	857.1	745.4
	Mean simulated deviance	814.3	698.8
	Observed / mean simulated deviance	1.05	1.07
(ii)	Observed model \hat{c}	14.3	13.3
	Mean simulated \hat{c}	12.8	11.6
	Observed / mean simulated \hat{c}	1.12	1.15
(B)	Median \hat{c}	1.07	1.09

Box 1. E-SURGE specifications for a CMR mixture model with three mixture classes in detection (resighting) probability:

Number of states: 4 (3 live states and dead)

GEPAT code:

Initial state probabilities:

State transition probabilities (assuming no transitions among classes):

Event probabilities:

$*$	β
$*$	β
$*$	β
$*$	-

GEMACO code:

Initial state: to

Transition: i

Event (following Table S3):

```
firste+nexte.[from(1:2).t(2_4)+from(1).t(5_18)+from(2).t(5_9,10:15,16:18)+from(3).t(2:4,5:15,16:18)
+from(1:3).t(19)]
```

First detection probability was fixed to 1 . Replicate models were fitted with multiple random starting values, yielding no evidence of local minima of the deviance. Individual class assignment probabilities were calculated (following [5,12]) and saved by selecting 'View history state dependent probability' in the 'Run \& See' menu [13].

GEMACO event code for 7 additional candidate models, with slightly different constraints on occasionspecific local resighting probability, that were less well supported (all with firste+nexte.):

- [from+t]
- [from(1).t(2_18) + from(2).t(2_8,9:18) + from(3).t(2:18) + from(1:3).t(19)]
- [from(1).t(2_18) + from(2).t(2_8,9:18) + from(3).t(2:4,5:15,16:18) + from(1:3).t(19)]
- $[$ from $(1: 2) \cdot t(2,3,4,5,6)+$ from(1).t(7_18) + from(2).t(7,8,9) + from(3).t(1:9) + from(2:3).t(10:15,16:18) $+\operatorname{from}(1: 3) . t(19)]$
- [from(1).t(2_18) + from(2).t(2_8,9:15,16:18)+ from(3).t(2:4,5:15,16:18) + from(1:3).t(19)]
- [from(1).t(2_18) + from(2).t(2_9,10:15,16:18)+ from(3).t(2:4,5:15,16:18) + from(1:3).t(19)]
$\bullet[$ from(1:2).t(2,3,4) + from(1).t(5_18) + from(2).t(5_8,9:15,16:18)+ from(3).t(2:4,5:15,16:18) + from(1:3).t(19)]

The use of CMR mixture models to assign encounter histories, and hence individuals, to different latent classes that represent different migratory strategies worked well with our dataset, but some points should be considered for application to other datasets or questions.

Separate year models: We fitted separate models to separate encounter histories for 20172018 and 2018-2019 (hence, in Table $S_{3}, S_{1}=2017$ and $S_{2}=2018$, or $S_{1}=2018$ and $S_{2}=2019$). This facilitated: (i) direct estimation of initial class probabilities for each year (i.e. the proportions of individuals entering each winter that were assigned to the classes interpreted as residents, late migrants and early migrants); (ii) direct estimation of individual class assignment probabilities for each year; (iii) comparison of class assignment probabilities for identical or similar encounter histories that were observed in both years, thereby validating whether class interpretations were consistent; and (iv) assessment of goodness of fit and overdispersion using tractable group structured approximations. Comparisons of 15 identical or very similar encounter histories showed that class assignment probabilities were indeed very similar across the two years (Table S5). 'Very similar' encounter histories were defined as those with the same number of positive occasions, with broadly similar distributions across each winter (Table S5).

Table S5. Comparisons of class assignment probabilities for (A) 10 identical and (B) 5 very similar encounter histories observed in both 2017-2018 and 2018-2019. The probability P_{A} that each encounter history is assigned to the resident (R), late migrant (LM) or early migrant (EM) class in each year is shown, with the absolute magnitude of the between-year difference. The focal encounter histories comprise 5, 4 and 6 that were assigned to the R, LM and EM classes with high probabilities respectively (grey shading).

| 2017-2018
 Encounter history | $P_{A}(\mathrm{R}) \mathrm{P}_{\mathrm{A}}(\mathrm{LM}) \mathrm{P}_{\mathrm{A}}(\mathrm{EM})$ | | | \|ll||$2018-2019$
 Encounter history $P_{A}(R) P_{A}(L M) P_{A}(E M)$ | | | | Absolute difference $P_{A}(R) P_{A}(L M) P_{A}(E M)$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (A) 1000000000000000001 | 0.000 | 0.001 | 0.999 | 1000000000000000001 | 0.000 | 0.001 | 0.999 | 0.000 | 0.001 | 0.0 |
| 10000000000000000 | 0.000 | 0.002 | 0.998 | 100000000000000 | 0.000 | 0.003 | 0.997 | 0.000 | 0.001 | 0.001 |
| 1001000000000000001 | 0.000 | 0.014 | 0.986 | 1001000000000000001 | 0.000 | 0.017 | 0.983 | . 000 | 0.003 | 0.003 |
| 1001010000000000001 | 0.000 | 0.821 | 0.179 | 1001010000000000001 | 0.000 | 0.824 | 0.176 | 0.000 | 0.003 | 0.003 |
| 101000000000000000 | 0.00 | 0.001 | 0.999 | 10100000000000000 | 0.000 | 0.006 | 0.99 | 0.000 | 0.005 | 0.005 |
| 1100000000000000001 | 0.000 | 0.005 | 0.995 | 1100000000000000001 | 0.000 | 0.003 | 0.997 | 0.000 | 0.002 | . |
| 1101000000000000001 | 0.000 | 0.134 | 0.866 | 110100000000000000 | 0.000 | 0.044 | 0.956 | 0.000 | 0.090 | 0.090 |
| 110101000000000000 | 0.000 | 0.980 | 0.020 | 1101010000 | 0.000 | 0.923 | 0.0 | 0.000 | 0.057 | 0.057 |
| 1101101110000000001 | 0.000 | 1.000 | 0.000 | 110110111000000000 | 0.001 | 0.999 | 0.000 | 0.000 | 0.000 | 0.00 |
| 1111111000000000001 | 0.00 | 1.000 | 0.000 | 1111111000000000001 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.00 |
| (B) 1111111111110011001 | 1.000 | 0.000 | 0.000 | 11 | 1.000 | 0.000 | 0.00 | 0.000 | 0.000 | 0.000 |
| 1111111111110101011 | 1.000 | 0.000 | 0.000 | 1111111111101001011 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
| 1111110011101111001 | 1.000 | 0.000 | 0.000 | 1111111110100101011 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 |
| 1111110110110111011 | 1.000 | 0.000 | 0.000 | 1111111110100111011 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 1101111101000111001 | 0.980 | 0.020 | 0.000 | 1101111011000101011 | 0.999 | 0.001 | 0.000 | 0.019 | 0.019 | 0.00 |

It would in principle be possible to fit a single CMR mixture model to individuals' two-year encounter histories. By allowing class (i.e. state) transitions in the middle summer, the probability of changing class between years could then be estimated (at the population level). However, such two-year models would not necessarily define the same biologically interpretable mixture classes as the single-year models, and individual class assignment probabilities cannot be so easily estimated when individuals can change class. Such additional analyses therefore provide no major benefit given our current aims. Indeed, since no parameter values are shared between the two years and most individuals were assigned to one class in each year with very high probability, the frequencies of individual class transitions can be estimated post hoc, while propagating the small remaining uncertainty (see main text). However, CMR mixture models that directly consider multiple years may be appropriate for other datasets and questions.

Encounter history structure: Given our datasets for 2017-2018 and 2018-2019, the mixture models assigned most individuals to one of three classes with very high probability (Fig. 1). However, in general, such assignments, and hence the success of the mixture model approach, will be sensitive to the structures of the defined encounter history. For example, exploratory analyses showed that defining encounter histories with fewer longer winter resighting occasions yielded less clear assignments for some individuals. This is because there was less information to distinguish late migrants from unobserved residents, or to distinguish early migrants from unobserved late migrants. However, defining more shorter occasions also caused problems since local detection probability P_{L} for all classes was then very low for some occasions with little field effort, impeding discrimination. The specification of 17 10-day winter occasions represents a heuristic balance; similar exploratory analyses and decisions should be undertaken to successfully apply similar analyses to other datasets. In principle, encounter occasions do not necessarily have to be of uniform duration. For example, when two successful surveys were undertaken within the same 10-day period these could have been split into two occasions, potentially further increasing power for class assignments. However, since the fine-scale distribution of survey dates differed somewhat between our two focal years, further targeted sub-division of encounter occasions would have impeded between-year comparisons and consistency.

Individual assignments and survival: Individual class assignments can be uncertain for individuals that died at some (unknown) early time in winter, for example because there is little information to distinguish a dead (and hence unobserved) potential resident from a migrant that survived until late winter but cannot be locally observed (see also [10]). The very high breeding season resighting probability in our system likely contributed substantially to
the high individual assignment probabilities, since it allowed clear distinction between winter mortality and low winter-long local detection probability. [6] note that individual class assignments will also be highly uncertain for individuals that enter a dataset at later occasions. This does not affect our current analyses, which focus on multiple occasions within one year, since all individuals enter the dataset in the initial summer. Note that individual class assignments should not be used to estimate class-specific survival probabilities post hoc. Rather, such probabilities should be directly estimated within the CMR mixture model. This is technically feasible, but was not attempted in our current analyses because overall adult survival probabilities across both focal years were very high (see above). This implies that there will be low power to detect variation in survival among the relatively large number of between-occasion intervals, but also implies that survival is unlikely have varied substantially among strategies across the current dataset.

Between-class transitions: A further possibility would be to consider two mixture classes of detection probability relating to resident and migrant states, and then allow transitions between them (thereby capturing 'late migrants' that switch between resident and migrant states during mid-winter). However, exploratory analyses of the current datasets suggested that this approach did not work as well as specifying three mixture classes. It required further constraints on the transition process to allow transitions away from the resident state at the end of the initial summer and transitions back to that state before the subsequent summer, and allow transitions away from the resident state in late autumn (to capture 'late migrants'), but prevent estimation of repeated transitions between resident and migrants states within winters (which system-wide observations suggest very rarely occur). This required tight a priori specification of time windows when 'early migrants' and 'late migrants' could depart
and hence what classes of individuals existed. In contrast, the three-class mixture model allowed these classes to emerge without requiring strong a priori definitions.

Note that for other kinds of datasets and structures, for example with sparse local winter sightings but larger numbers of sightings across one or multiple other sites, relationships between winter location and subsequent reproductive success might be best estimated using other approaches, for example using multi-state models that consider multiple observable (and/or unobservable) winter locations and reproductive outcomes as explicit states. Our clear interpretation of different mixture classes as early and late migrants and residents also assumes that there is no further major heterogeneity in resighting (i.e. detection) probability within classes; for example that there were no residents that were consistently not observed. This assumption is likely to be valid in our system, as evidenced by the goodness of fit tests that showed no major lack of fit of the group-structured approximation. This is facilitated because individual shags using day roost sites are highly visible, and these sites are highly spatially restricted (meaning that all individuals can in principle be observed). However, caution may be required in other systems whose ecologies could foster greater individual heterogeneity in local detection.

S3. Details of class assignments

Figure S4 summarises the probabilities with which individual shags were assigned to the three mixture model classes interpreted as residents, late migrants and early migrants in 2017-2018 and 2018-2019, further illustrating that individuals could be assigned to any of the three strategies with high probabilities. Table S6 provides examples of individual encounter histories that were assigned to each class with high probability, and with lower probability. All encounter histories are provided in the supporting datafiles.

Figure S4. Frequencies of the probabilities with which individuals were assigned to the mixture model classes interpreted as (A and D) resident (R), (B and E) late migrant (LM) or (C and F) early migrant (EM) in (A-C) 2017-2018 and (D-F) 2018-2019.

Table S6. Illustrative examples of individual encounter histories (i-xi) from 2017-2018 assigned with high probability ($\mathrm{P}_{\mathrm{A}} \approx 1$) to the mixture classes interpreted as (A) resident (R), (B) late migrant (LM) and (C) early migrant (EM), or (D) assigned with lower probability. For each of the 19 occasions $\left(S_{1}, W_{1}-W_{17}\right.$ and S_{2}, representing the 17 winter occasions and the preceding and subsequent summers), 1 (grey shading) and 0 respectively denote that an individual was or was not locally resighted. Assignment probabilities $\left(\mathrm{P}_{\mathrm{A}}\right)$ are shown, where $P_{A}(R)+P_{A}(L M)+P_{A}(E M)=1$.

Testing whether patterns of change in individual migratory strategy between years differ from null expectation requires definition of an appropriate expectation. Table S7 shows the expected frequencies of two-year migratory strategies given different null models. The conclusion that more surviving individuals than expected retained the same strategy across both years, and that plasticity was directional, was consistent across all considered null models. It was also consistent given a further null expectation that all strategies occurred with an equal probability of 0.33 in 2018-2019 (data not shown).

Table S7. Frequencies of two-year migration strategies for 103 individual European shags included in analyses for both focal years, given (A) observed (probabilistic) strategies for both years, (B) a strategy randomly sampled (with replacement) from the observed strategies in both years, (C) observed (probabilistic) strategy for 2017-2018 and a strategy for 2018-2019 randomly sampled with replacement from the strategies observed in 2018-2019, and (D) observed (probabilistic) strategy for 2017-2018 and a strategy for 2018-2019 randomly sampled with replacement from the strategies observed in 2017-2018. Block C matches the results presented in main Table 1. In addition, (E) shows the expected null frequencies of twoyear strategies conditional on change, assuming that new strategies occur with equal probability of 0.5. Rows and columns index strategies assigned in 2017-2018 and 2018-2019 respectively, with the mean frequency and 95% confidence interval across 10000 realisations. In A, dark grey shading (leading diagonal) identifies strategies where individuals were assigned to the same class in both years. Light grey and white identifies strategies where individuals became more and less migratory in 2018-2019 respectively. In B-D, italics show the mean and 95% confidence interval of the difference between the observed and randomised frequencies. Yellow and blue shading indicate two-year strategies that occurred more and less frequently than expected respectively, and green shading indicates strategies whose frequencies did not differ from overall expectation (but were more frequent than expected conditional on change). Comparison between A and E shows that individuals that changed strategy between years became more migratory than expected by chance (mean χ^{2} : 20.1, 95% Cl: $15.5-24.8$, all $p<0.005$ across 10000 realisations).

				2018-2019		
				Resident	Late migrant	Early migrant
(A)	$\infty$$\underset{1}{2}$NNNN	Resident	Obs.	$22.4(21,24)$	$19.1(17,21)$	$3.1(2,4)$
		Late migrant	Obs.	$2.0(1,3)$	$17.3(14,20)$	$8.7(6,11)$
		Early migrant	Obs.	0.0 (0,0)	$4.1(2,6)$	26.3 (24,29)
(B)	$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{N}{n} \\ & \underset{N}{2} \end{aligned}$	Resident	Samp.Diff.	$\begin{gathered} 5.8(2,11) \\ 16.6(12,21) \end{gathered}$	$\begin{aligned} & \hline 9.6(4,16) \\ & 9.5(3,15) \end{aligned}$	$\begin{gathered} \hline 9.1(4,15) \\ -6.0(-12,-1) \end{gathered}$
		Late migrant	Samp. Diff.	$\begin{gathered} 9.6(4,16) \\ -7.5(-14,-2) \end{gathered}$	$\begin{gathered} 15.9(9,24) \\ 1.4(-7,9) \end{gathered}$	$\begin{aligned} & \hline 14.9(8,22) \\ & -6.2(-14,1) \end{aligned}$
		Early migrant	Samp. Diff.	$\begin{gathered} 9.1(4,15) \\ -9.1(-15,-4) \end{gathered}$	$\begin{gathered} 14.9(8-22) \\ -10.8(-18,-4) \end{gathered}$	$\begin{aligned} & 14.1(7,22) \\ & 12.2(5,19) \end{aligned}$
(C)	onNNNN	Resident	Samp. Diff.	$\begin{aligned} & 10.6(5,17) \\ & 11.8(6,16) \end{aligned}$	$\begin{gathered} 17.5(11,24) \\ 1.6(-3,8) \end{gathered}$	$\begin{aligned} & 16.5(10,23) \\ & -13.4(-20,-7) \end{aligned}$
		Late migrant	Samp. Diff.	$\begin{aligned} & 6.6(2,11) \\ & -4.6(-9,0) \end{aligned}$	$\begin{gathered} 11.0(6,16) \\ 6.3(1,12) \end{gathered}$	$\begin{aligned} & 10.4(5,16) \\ & -1.7(-7,4) \end{aligned}$
		Early migrant	Samp. Diff.	$\begin{gathered} \hline 7.2(3,12) \\ -7.2(-12,-3) \end{gathered}$	$\begin{gathered} 12.0(7,17) \\ -7.9(-13,-2) \end{gathered}$	$\begin{aligned} & 11.2(6,17) \\ & 15.1(10,20) \end{aligned}$
(D)	∞NNNNN	Resident	Samp. Diff.	$\begin{aligned} & 10.6(5,16) \\ & 11.8(6,17) \end{aligned}$	$\begin{gathered} 17.4(11,24) \\ 1.6(-5,8) \end{gathered}$	$\begin{aligned} & 16.5(10,23) \\ & -13.4(-20,-7) \end{aligned}$
		Late migrant	Samp.	$6.6(3,11)$	$11.0(6,16)$	$10.4(6,16)$
				-4.6 (-9,0)	$6.3(1,12)$	-1.7 (-7,4)
		Early migrant	Samp.	$7.2(3,12)$	$11.9(7,17)$	$11.3(6,17)$
			Diff.	-7.2 (-12,-3)	-7.8(-13,-2)	$15.1(9,20)$
		Early migrant	Samp.	2.1 (1,3.5)	2.1 (1,3.5)	-

(E)		Resident	Samp.	-	$11.1(10,12)$	11.1 (10,12)
		Late migrant	Samp.	$5.4(4,6.5)$	-	$5.4(4,6.5)$
		Early migrant	Samp.	2.1 (1,3.5)	2.1 (1,3.5)	-

S4. Details of reproductive success analyses

Raw distributions of annual reproductive success of individual European shags classified as most likely to be resident, late migrant and early migrant are shown in Figure S5. All focal individuals that were resighted in each summer were included in analyses. The only exceptions were 6 and 4 individuals in 2018 and 2019 respectively whose nests were unobservable (in sea-caves); these outcomes were assumed 'missing completely at random' with respect to migratory strategy. Full results of models fitted to estimate variation in reproductive success as a function of inferred migratory strategy are shown in Table S8. The mean expected reproductive success for each possible two-year migratory strategy is shown in Table S9.

Figure S5. Frequency distributions of reproductive success of shags classified as (A and D) resident, (B and E) late migrant and (C and F) early migrant in (A-C) 2018 and (D-F) 2019.

Table S8. Summaries of models estimating effects of assigned class and hence migratory strategy (resident, late migrant or early migrant) and age category (young or older adults) on reproductive success in (A) 2018, (B) 2019 and (C) both years combined. Estimated effect sizes (on the latent log scale) and associated standard errors (SE) and probabilities (p) are presented. χ^{2} is the overall test statistic comparing models (A, B) with and without effects of migratory strategy, or (C) with and without effects of the strategy by year interaction. χ^{2} Diff is the difference in χ^{2} between models with observed and randomised reproductive success. All statistics are presented as means and 95% confidence intervals over 10000 realisations of each individual's probabilistic migratory strategy. $\mathrm{P}\left(\mathrm{X}^{2}\right.$ Diff $\left.<0\right)$ is the proportion of realisations where χ^{2} Diff was negative. Late migrant, early migrant and older age effects are estimated as contrasts from young residents. There was no evidence of a migratory strategy by age class interaction in either 2018 or 2019.

(A) 2018	Estimate	SE	p
Resident	0.17 (0.10,0.25)	0.22 (0.21,0.23)	0.45 (0.26,0.66)
Late Migrant	-0.30 (-0.48,-0.15)	0.25 (0.24,0.27)	0.25 (0.06,0.55)
Early Migrant	-0.88 (-0.98,-0.75)	0.27 (0.25,0.27)	$0.0014(0.0005,0.0046)$
Older age	0.31 (0.22,0.35)	0.23 (0.22,0.23)	0.18 (0.12,0.27)
χ^{2}	13.6 (10.5,16.3)		0.0025 (0.0005,0.0087)
χ^{2} Diff	11.5 (5.3,15.4)		$\mathrm{P}\left(\chi^{2}\right.$ Diff $\left.<0\right): 0.002$
(B) 2019			
Resident	-0.84 (-0.92,-0.74)	0.32 (0.31,0.34)	0.011 (0.007,0.021)
Late Migrant	0.67 (0.55,0.78)	0.28 (0.26,0.29)	0.018 (0.007,0.044)
Early Migrant	0.20 (0.07,0.33)	0.30 (0.28,0.31)	0.50 (0.28,0.80)
Older age	0.61 (0.57,0.64)	0.24 (0.24,0.25)	0.015 (0.010,0.021)
χ^{2}	9.3 (5.9,13.0)		0.019 (0.0021,0.065)
χ^{2} Diff	7.0 (0.45,11.9)		$\mathrm{P}\left(\mathrm{X}^{2}\right.$ Diff $\left.<0\right): 0.020$
(C) Both years			
Resident	0.06 (-0.002,0.11)	0.19 (0.18,0.19)	0.76 (0.53,0.98)
Late Migrant	-0.25 (-0.42,-0.10)	0.24 (0.23,0.26)	0.32 (0.09,0.67)
Early Migrant	-0.87 (-0.96,-0.75)	0.27 (0.25,0.27)	$0.002(0.0005,0.004)$
Year	-0.76 (-0.85,-0.66)	0.28 (0.26,0.29)	0.007 (0.003,0.014)
Late Migrant:Year	0.92 (0.72,1.12)	0.37 (0.35,0.38)	0.016 (0.003,0.045)
Early Migrant:Year	1.06 (0.88,1.23)	0.40 (0.38,0.41)	0.010 (0.003,0.025)
Older age	0.45 (0.42,0.48)	0.16 (0.16,0.17)	0.007 (0.004, 0.012)
χ^{2}	10.5 (8.1,13.2)		$0.009(0.002,0.024)$
χ^{2} Diff	8.3 (2.2,12.2)		$\mathrm{P}\left(\mathrm{x}^{2}\right.$ Diff $\left.<0\right): 0.009$

Table S9. Expected mean reproductive success ($\pm 1 \mathrm{SE}$) for two-year migratory strategies comprising combinations of resident (R), late migrant (LM) and early migrant (EM) for (A) young (aged 3-4 years) adults and (B) older (aged 5+ years) adults. Rows and columns identify strategies in 2017-2018 and 2018-2019 respectively. Expectations are simply calculated as the means of predicted strategy-specific reproductive success in 2017-2018 and 2018-2019 and are consequently cross-sectional rather than individual-based. Standard errors are calculated using the Delta method. Darker colours highlight strategies with higher expected reproductive success. Thick borders highlight the most frequently observed two-year strategies (Table 1).

		(A) Young adults2018-2019		
		R	LM	EM
$\begin{aligned} & \infty \\ & \underset{\sim}{N} \\ & \underset{N}{1} \\ & \underset{N}{\mathbf{N}} \end{aligned}$	R	0.78 ± 0.12	1.01 ± 0.13	0.83 ± 0.12
	LM	0.66 ± 0.11	0.89 ± 0.12	0.71 ± 0.11
	EM	0.47 ± 0.09	0.70 ± 0.11	0.52 ± 0.09

(B) Older adults		
$2018-2019$		
\mathbf{R}	LM	EM
1.22 ± 0.14	1.58 ± 0.15	1.30 ± 0.14
1.03 ± 0.17	1.40 ± 0.17	1.11 ± 0.16
0.74 ± 0.13	1.10 ± 0.13	0.82 ± 0.12

Age and sex effects

The dataset included individuals that had been ringed as chicks and hence were of exact known age, and individuals that had been ringed as full breeding adults and hence were ≥ 3 years old at first capture (Table S1). Since local ringing commenced in 2009 and shags regularly live up to ${ }^{\sim} 15+$ years, the available data do not yet cover the full likely age range, or hence allow detailed analyses of age-specific variation in migratory strategy or reproductive success. However, to capture coarse age structure, and thereby examine whether observed relationships between reproductive success and migratory strategy could potentially be confounded by age, we classified all focal individuals in each year as young adults (aged 3-4 years) or older adults (aged 5+ years). This classification was designed to capture expected lower reproductive success in young adults, as was apparent in exploratory analyses of a larger dataset on shags breeding on Isle of May, Scotland.

Classification was straightforward and accurate for known-age individuals ringed as chicks. All individuals ringed as adults were classified as older adults. This classification is correct for individuals observed ≥ 2 years after ringing (i.e. ringed before 2017 and 2018 for analyses of reproductive success in 2018 and 2019 respectively), but could be incorrect for some individuals observed the year after ringing (which could be aged 4 years). In practice, such mis-categorisation is likely to be infrequent, since individuals ringed as adults are most likely to have been >3 years old at capture. Conclusions were unchanged when analyses of age effects were repeated after excluding the few individuals that could potentially have been misclassified. Note that no individuals were included in analyses of reproductive success in their ringing year, since their migratory strategy in the preceding winter is unknown.

Individuals were assigned as male or female based on call during ringing of adults or subsequent field encounters (following [15]). There were no conflicts across 20 instances where individuals were independently assigned twice. When a known-sex individual was paired with another ringed individual that individual was assigned as the opposite sex. This process yielded totals of 56 assigned-sex focal individuals in both 2018 and 2019, comprising 21 females and 35 males in both years. This slight bias towards assigned males likely arises because male calls are more audible.

These additional analyses showed that the frequencies with which individuals were assigned as resident, late migrant or early migrant differed between young and older age classes in 2017-2018. Here, late migrants were more likely to be young, and less likely to be older, than expected by chance (Table S10). However, there was no evidence of a similar pattern in 20182019 (Table S10), meaning that there was little evident age-specific variation in migratory strategy over the whole dataset. Similar patterns were evident when analyses were restricted to individuals whose age category was known with certainty. Sex-specific frequencies of the different migratory strategies also did not differ from random expectation in either year (Table S10).

There was no evidence that mated pairs systematically stay together over winter. For 10 and 7 pairs observed in 2018 and 2019 where both adults were colour-ringed, both adults were assigned to the same most-likely class in only 1 and 2 instances respectively (always both assigned as early migrants).

Table S10. Frequencies of assigned migration strategies for (A and B) young versus older individuals and (C and D) females versus males in (A and C) 2017-2018 and (B and D) 20182019, and χ^{2} test statistics and associated p values. Mean statistics and 95% confidence intervals calculated across 10000 realisations of each individual's probabilistic migratory strategy are shown.

		Residents	Late migrants	Early migrants	χ^{2} test statistic p value
(A) 2017-2018	Young Older	$\begin{aligned} & 11.2(10,12) \\ & 32.8(32,34) \end{aligned}$	$\begin{aligned} & 18.5(16,21) \\ & 10.1(8,12) \end{aligned}$	$\begin{aligned} & 11.3(10,13) \\ & 21.1(20,22) \end{aligned}$	$\begin{aligned} & \hline \chi^{2}: 11.8(8.1,16.1) \\ & p: 0.005(0.001,0.02) \end{aligned}$
(B) 2018-2019	Young Older	$\begin{aligned} & \hline 5.0(5,5) \\ & 20.2(19,22) \end{aligned}$	$\begin{aligned} & 14.1(12,15) \\ & 32.6(30,36) \end{aligned}$	$\begin{aligned} & 14.9(14,17) \\ & 31.2(29,34) \end{aligned}$	$\begin{aligned} & \chi^{2}: 1.4(0.9,2.2) \\ & p: 0.52(0.34,0.70) \end{aligned}$
(C) 2017-2018	Female Male	$\begin{aligned} & 11.4(11,12) \\ & 14.2(14,15) \end{aligned}$	$\begin{aligned} & 3.4(2,4) \\ & 7.8(6,9) \end{aligned}$	$\begin{aligned} & \hline 6.1(6,7) \\ & 13.0(12,14) \end{aligned}$	$\begin{aligned} & \hline \chi^{2}: 1.2(0.5,2.2) \\ & p: 0.61(0.38,0.83) \end{aligned}$
(D) 2018-2019	Female Male	$\begin{aligned} & 4.7(4,5) \\ & 6.2(6,7) \end{aligned}$	$\begin{aligned} & 7.7(6,9) \\ & 15.3(13,17) \end{aligned}$	$\begin{aligned} & \hline 8.6(7,10) \\ & 13.5(12,15) \end{aligned}$	$\begin{aligned} & \chi^{2}: 0.5(0.1,1.5) \\ & p: 0.83(0.53,1.00) \end{aligned}$

S5. ‘Threshold model’ for partial migration

The 'threshold model' of quantitative genetics proposes that discrete phenotypes, such as residence versus migration, are expressed as a function of a continuous underlying 'liability', which is best viewed as a compound latent trait that is influenced by some combination of genetic and permanent and/or temporary environmental effects [16]. Different phenotypes are expressed when liability values are above versus below some threshold(s). The existence of variation in liability within a population (whether genetic and/or environmental) then generates phenotypic variation. In the current context, variation in liability for seasonal migration can generate partial migration [17].

The threshold model can rationalise the occurrence of different annual 'migratory strategies', such as early migration, late migration and residence, and hence within-year phenotypic plasticity. Conceptually, early migrants comprise individuals whose liabilities exceed the migration threshold in early autumn, late migrants comprise individuals whose liabilities exceed the threshold later in autumn, and residents comprise individuals whose liabilities never exceed the threshold (Figure S5A). Such among-individual variation could arise, for example, because different individuals have different physiological responses to changing daylength, or to seasonally changing environmental conditions.

Further, the threshold model can rationalise how the relative frequencies of different migratory strategies could change between years (i.e. the form of between-year phenotypic plasticity). For example, poorer local environmental conditions in one year compared to the previous year could increase liability values across all or most population members. This
would generate increased proportions of early and late migrants and a decreased proportion of residents (Figure S5). Moreover, if there are permanent individual effects on liability (either genetic or environmental, the latter representing developmental plasticity and/or subsequent phenotypic canalisation), individual changes would be directional, such that residents become late migrants and late migrants become early migrants, but early migrants do not become residents. These changes qualitatively match those observed in the European shag system.

Figure S5. Illustration of hypothetical forms of variation in individual liability for seasonal migration versus residence ('migratory liability') given (A) relatively good and (B) relatively poor local (i.e. breeding area) environmental conditions. Dark grey, mid grey and light grey bands illustrate potential patterns of within-winter temporal variation in migratory liability spanning September-February (sequential months abbreviated S, O, N, D, J and F) in relation to a threshold (dashed line). Individuals whose liability values exceed the threshold at different times become early (dark grey) or late (mid grey) migrants, while individuals whose liability values remain less than the threshold stay resident (light grey). Given poorer local environmental conditions all liabilities are increased, yielding increased proportions of early and late migrants and a decreased proportion of residents in B compared to A (illustrated by wider dark and mid grey bands, and a narrower light grey band). Note that the direction of liability that leads to migration is arbitrary, and among-year variation could be similarly conceptualised as a change in threshold rather than a change in liability. The depicted liabilities are hypothetical and designed to illustrate a general concept; in reality they could be different shapes, and are not necessarily symmetrical.

Supplementary references

1. Grist H, Daunt F, Wanless S, Nelson EJ, Harris MP, Newell M, Burthe S, Reid JM. 2014 Site fidelity and individual variation in winter location in partially migratory European shags. PLoS One 9,e98562.
2. Walsh PM, Halley DJ, Harris MP, del Nevo A, Sim IMW, Tasker ML. 1995 Seabird monitoring handbook for Britain and Ireland. JNCC, Peterborough.
3. Grist H, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, Reid JM. 2017 Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86,1010-1021.
4. Acker P, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, Grist H, Sturgeon J, Swann RL, Gunn C, Payo-Payo A, Reid JM. Strong selection on seasonal migration versus residence induced by extreme climatic events. In review.
5. Kendall WL, Nichols JD, Hines JE. 2017 Estimating temporary emigration using capture-recapture data with Pollock's robust design. Ecology 78,563-578.
6. Pledger S, Phillpot P. 2008 Using mixtures to model heterogeneity in ecological capture-recapture studies. Biometrical Journal 50,1022-1034.
7. Lebreton JD, Nichols JD, Barker RJ, Pradel R, Spendelow JA. 2009 Modeling individual animal histories with multistate capture-recapture models. Adv. Ecol. Res. 41,87-173.
8. Péron G, Crochet PAC, Choquet R, Pradel R, Lebreton JD, Gimenez O. 2011 Capture-recapture models with heterogeneity to study survival senescence in the wild. Oikos 119,524-532.
9. Cubaynes S, Lavergne C, Marboutin E, Gimenez O. 2012 Assessing individual heterogeneity using model selection criteria: how many mixture components in capture-recapture models? Methods Ecol. Evol. 3,564-573.
10. Hamel S, Yoccoz NG, Gaillard JM. 2017 Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists. Biol. Rev. 92,754-775.
11. Gimenez O, Cam E, Gaillard JM. 2018 Individual heterogeneity and capture-recapture models: what, why and how? Oikos 127,664-686.
12. Cooch E, White G. 1998 Program MARK - a 'gentle introduction'. http://www.phidot.org/software/mark/docs/book/
13. Pledger S, Pollock KH, Norris JL. 2003. Open capture-recapture models with heterogeneity: I. Cormack-Jolly-Seber model. Biometrics 59,786-794.
14. Choquet R, Nogué E. 2011 E-SURGE 1.8 User's Manual. CEFE, UMR 5175, Montpellier, France. http://ftp.cefe.cnrs.fr/biom/soft-cr/.
15. Snow BK. 1963 The behaviour of the shag. British Birds 56,77-103.
16. Lynch M, Walsh B. 1998 Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland.
17. Pulido F. 2011 Evolutionary genetics of partial migration - the threshold model of migration revis(it)ed. Oikos 120,1776-1783.
