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Granular flows occur in a wide range of situations of practical interest to industry,
in our natural environment and in our everyday lives. This paper focuses on granular
flow in the so-called inertial regime, when the rheology is independent of the very
large particle stiffness. Such flows have been modelled with the µ(I), Φ(I)-rheology,
which postulates that the bulk friction coefficient µ (i.e. the ratio of the shear
stress to the pressure) and the solids volume fraction φ are functions of the inertial
number I only. Although the µ(I), Φ(I)-rheology has been validated in steady
state against both experiments and discrete particle simulations in several different
geometries, it has recently been shown that this theory is mathematically ill-posed in
time-dependent problems. As a direct result, computations using this rheology may
blow up exponentially, with a growth rate that tends to infinity as the discretization
length tends to zero, as explicitly demonstrated in this paper for the first time. Such
catastrophic instability due to ill-posedness is a common issue when developing
new mathematical models and implies that either some important physics is missing
or the model has not been properly formulated. In this paper an alternative to
the µ(I), Φ(I)-rheology that does not suffer from such defects is proposed. In the
framework of compressible I-dependent rheology (CIDR), new constitutive laws
for the inertial regime are introduced; these match the well-established µ(I) and
Φ(I) relations in the steady-state limit and at the same time are well-posed for
all deformations and all packing densities. Time-dependent numerical solutions of
the resultant equations are performed to demonstrate that the new inertial CIDR
model leads to numerical convergence towards physically realistic solutions that are
supported by discrete element method simulations.
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1. Introduction
The original incompressible µ(I)-rheology was proposed (GDR MiDi 2004; Jop,

Forterre & Pouliquen 2006) to describe granular flow in which the particles are rigid
and the solids volume fraction φ is constant and uniform. The key physical insight
behind the theory was that, under these circumstances, the only non-dimensional
groups are the bulk friction coefficient µ (the ratio τ/p of shear stress to pressure)
and the inertial number

I =
dγ̇
√

p/ρ∗
, (1.1)

where d is the grain diameter, γ̇ is the shear rate, p is the pressure and ρ∗ is
the intrinsic grain density. When forming a constitutive law from these groups,
dimensionless analysis implies that one group must be a function of the other, i.e.

τ

p
=µ(I). (1.2)

This approach has led to significant progress in modelling granular flows (e.g. Lagrée,
Staron & Popinet 2011; Staron, Lagrée & Popinet 2012; Gray & Edwards 2014;
Barker & Gray 2017). However, Barker et al. (2015) identified conditions on µ(I)
and I under which incompressible µ(I)-rheology is ill-posed.

In reality granular flow is compressible and the solids volume fraction φ may
vary. With compressibility there are multiple non-dimensional groups, which greatly
complicates the possible rheology. Nevertheless, GDR MiDi (2004), da Cruz et al.
(2005) and Pouliquen et al. (2006) found that, in steady-state simulations and
experiments, φ depended on just the inertial number

φ =Φ(I), (1.3)

where Φ is a monotonically decreasing function of I. Note that (1.3) implies Bagnold
scaling (Bagnold 1954) for the pressure (i.e. it scales with the square of strain rate).
Specifically, if Ψ (φ) is the inverse function of Φ(I), then (1.1) may be rearranged to
yield

p= ρ∗

(
dγ̇
Ψ (φ)

)2

. (1.4)

This is consistent with the discrete element method (DEM) simulations of Chialvo,
Sun & Sundaresan (2012) in the inertial regime, in which the solids volume fraction
φ is less than a critical volume fraction φc, namely the jamming point (Liu & Nagel
1998). For φ > φc, the stiffness of the particles becomes important and the rheology
changes to either a ‘quasi-static’ or an ‘intermediate’ regime, which both depart from
the Bagnold scaling. In general, the critical volume fraction φc is dependent on the
polydispersity of the grain-size distribution as well as the interparticle friction.

These observations led to the compressible µ(I), Φ(I)-rheology (GDR MiDi 2004;
Pouliquen et al. 2006; Forterre & Pouliquen 2008) in which the scalar relation
(1.3), as well as (1.2), is assumed to hold even in non-steady situations. Although
it might seem that compressibility would reduce the tendency to ill-posedness, in
fact the compressible µ(I), Φ(I)-rheology is even more prone to ill-posedness in
time-dependent calculations than incompressible µ(I)-rheology (Heyman et al. 2017).
Such instability is perhaps not surprising since the equations are not always dissipative
(see appendix B). To demonstrate this ill-posedness, § 3 presents computations for
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928 D. G. Schaeffer and others

a one-dimensional gravity-free shear cell in which the µ(I), Φ(I)-rheology blows
up catastrophically once the mesh size is refined sufficiently, even though the initial
conditions are just a small perturbation of the steady solution.

The purpose of this paper is to develop a viable alternative to µ(I), Φ(I)-rheology
that preserves its successes. This alternative is based on the compressible I-dependent
rheology (CIDR) introduced recently in Barker et al. (2017). After briefly recalling
the general formulation of CIDR, specific yield and dilatancy functions are introduced,
which ensure that the theory is well-posed and reduces to µ(I), Φ(I)-rheology in the
correct limits. Specifically, the new inertial CIDR equations recover both the µ(I)
and Φ(I) relations (1.2)–(1.3) when the flow is isochoric (div u= 0), which in many
geometries corresponds to steady flow. Sample computations with the one-dimensional
inertial CIDR equations in a gravity-free shear cell converge to the steady-state
solution, even for initial conditions that are a long way from steady state. Moreover,
these computations agree well with transient DEM simulations of the same flows.

In §§ 2 and 3 the µ(I), Φ(I)-rheology is described and computations that blow
up because of ill-posedness are presented. Sections 4 and 5 introduce CIDR for
the inertial regime and show that computations converge to steady state, and
these computations are supported by DEM simulations described in § 6. The
final two sections discuss a number of related issues and summarize the overall
conclusions. Appendix A derives conditions for ill-posedness of the one-dimensional
µ(I), Φ(I)-rheology in a gravity-free shear cell, appendix B relates the CIDR
equations to the thermodynamic analysis of Goddard & Lee (2018) and appendix C
describes the formulation of the DEM simulations.

2. The µ(I), Φ(I)-rheology for granular flows
In a continuum formulation, dense granular flow is described by the solids

fraction φ, the velocity vector u and the symmetric Cauchy stress tensor σ . In
two dimensions (to which this paper is restricted) this formulation constitutes six
scalar unknown functions of position and time. These satisfy governing equations
including three conservation laws: one for conservation of mass

(∂t + uj∂j)φ + φ div u= 0, (2.1)

and two momentum conservation laws

ρ∗φ(∂t + uj∂j)ui = ∂jσij, i= 1, 2, (2.2)

where ρ∗ is the intrinsic density of the grains and body forces have been neglected.
In addition to the three conservation laws, three constitutive relations are needed to
close this system.

To write these constitutive laws, it is convenient to decompose the stress tensor into
a pressure term p=−σii/2 plus a trace-free tensor τ , called the shear-stress tensor or
the deviatoric stress tensor, such that

σij =−pδij + τij. (2.3)

The constitutive law for the incompressible µ(I)-rheology (Jop et al. 2006; Forterre
& Pouliquen 2008; Barker et al. 2015) is formulated in terms of the (total) strain-rate
tensor

Dij =
1
2(∂jui + ∂iuj), (2.4)
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Constitutive relations for compressible granular flow in inertial regime 929

but for the compressible generalizations of the µ(I)-rheology (GDR MiDi 2004;
Pouliquen et al. 2006; Forterre & Pouliquen 2008; Barker et al. 2017; Heyman et al.
2017; Goddard & Lee 2018) it is also useful to define the deviatoric strain-rate tensor

Sij = Dij −
1
2(div u)δij, (2.5)

where Sij is trace free. The alignment constitutive law, which is imposed in both
µ(I), Φ(I)-rheology and CIDR, states that

Sij

‖S‖
=

τij

‖τ‖
, (2.6)

where the notation ‖T‖ =
√

tr(T 2)/2 denotes the second invariant of any symmetric
tensor T . In particular, the eigenvectors of the deviatoric stress tensor and the
deviatoric strain-rate tensor are parallel. This matrix equation is in fact equivalent
to just one scalar equation and relies upon the implicit assumption that ‖S‖ 6= 0;
i.e. that material is actually shearing. The other two constitutive laws in the
µ(I), Φ(I)-rheology specify the deviatoric stress τ = ‖τ‖ and the solids fraction φ:

τ =µ(I)p, (2.7)
φ =Φ(I), (2.8)

in terms of the pressure p and the inertial number

I =
2d‖S‖
√

p/ρ∗
, (2.9)

where µ(I) is the bulk friction coefficient and d is the grain diameter.
The constitutive laws (2.6)–(2.8) are referred to as µ(I), Φ(I)-rheology. Commonly

used functional forms for µ(I) and Φ(I) in the constitutive laws (2.7) and (2.8) are

µ(I)=µs +
µd −µs

I0/I + 1
, (2.10)

Φ(I)= φc − aI, (2.11)

where µs, µd, I0, φc and a are constant material parameters (GDR MiDi 2004; Jop
et al. 2006; Forterre & Pouliquen 2008; Trulsson et al. 2013). As shown in figure 1,
these functions provide a good fit for the DEM simulations performed in this paper
(see appendix C). Table 1 lists the best-fit parameters extracted from the steady-state
DEM simulations. Note that figure 1 includes data for multiple cases with differing
particle stiffness and system size, which shows that the parameters do not depend on
the details of the DEM simulations.

Incidentally the form Φ(I) = φc − (φc − φmin)/(I∗/I + 1), where φmin and I∗
are constants, might be preferable to (2.11), which becomes negative for large I.
However, the simpler form (2.11) is adequate for most practical purposes, because I
rarely becomes large enough to drive Φ(I) negative.

Since (2.11) is a monotonically decreasing function, equation (2.8) can be inverted
to write the inertial number as a function of the solids volume fraction

I =Ψ (φ), (2.12)
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k(n) = 105, H = 30d, N = 10 000

0.20
I

0 0.05 0.10 0.15 0.20
I

(a) (b)

FIGURE 1. Steady-state relations for (a) the bulk friction coefficient µ and (b) the solids
volume fraction φ as functions of the inertial number I. Solid blue lines are the functional
forms (2.10) and (2.11) evaluated with the parameters in table 1. Symbols are the results
of multiple DEM simulations (see appendix C for details) in which the normal spring
constant k(n), the cell height H and number of particles N have been varied.

µs = 0.248 µd = 0.588 I0 = 0.145 φc = 0.817 a= 0.314

TABLE 1. The parameters in the constitutive laws (2.10) and (2.11) which are the
best-fit parameters for the DEM data plotted in figure 1.

which, for the specific function (2.11) used here, gives

Ψ (φ)=
φc − φ

a
. (2.13)

From this it is also possible to determine an equation of state for the pressure by
substituting (2.12) into the inertial number (2.9) and solving for p to give

p= ρ∗

(
2d‖S‖
Ψ (φ)

)2

, (2.14)

which, for fixed φ, exhibits the Bagnold scaling in that the pressure scales with the
square of strain rate as in (1.4). Note that this pressure tends to infinity as φ→ φc,
behaviour that is discussed in § 7.2.

3. Catastrophic failure with the µ(I), Φ(I)-rheology
As mentioned in the introduction, it follows from Heyman et al. (2017) that the

dynamic equations of µ(I), Φ(I)-rheology for two-dimensional flow are always ill-
posed. In this section it is demonstrated that ill-posedness can contaminate even the
simplest of problems: flow in a two-dimensional shear cell that depends on only one
spatial variable.

3.1. Equations for one-dimensional flow in a shear cell
In a planar shear cell granular material is confined from above and below by two
parallel flat frictional walls, whose relative motion, in the absence of gravity, provides
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the only driving for the flow. This is a popular idealized geometry for the study of
granular rheology, and the set-up can be either volume controlled, by fixing the wall
separation distance H, or pressure controlled, by applying a normal force at the walls.
In the following investigations H will be fixed and solutions will be restricted to
those which are invariant in the shearing direction x and depend only on the vertical
coordinate z and time. As such, this reduces the two-dimensional problem to one
spatial dimension in the interval 0< z<H. As the flow is taken to be compressible,
both components of the velocity u= (u, w) may be non-zero and depend on z and t.
For this special class of flows, the conservation laws (2.1)–(2.2) simplify to

(∂t +w∂z)φ =−φ∂zw, (3.1)
ρ∗φ(∂t +w∂z)u= ∂zτxz, (3.2)

ρ∗φ(∂t +w∂z)w=−∂zp+ ∂zτzz, (3.3)

since all x-derivatives vanish. In addition, the deviatoric strain rate reduces to

S =
1
2

[
−∂zw ∂zu
∂zu ∂zw

]
, (3.4)

and its second invariant becomes

‖S‖ = 1
2

√
(∂zu)2 + (∂zw)2. (3.5)

It follows that in the shear cell the equation of state (2.14) reduces to

p=
ρ∗d2

Ψ 2(φ)
[(∂zu)2 + (∂zw)2], (3.6)

which provides an explicit expression for the pressure.
The alignment condition (2.6) implies that the relevant components of the deviatoric

stress are [
τxz
τzz

]
=
‖τ‖

‖S‖

[
Sxz
Szz

]
, (3.7)

which using the constitutive law (2.7) and equations (3.5) and (2.12) implies[
τxz
τzz

]
=

µ(Ψ (φ))p√
(∂zu)2 + (∂zw)2

[
∂zu
∂zw

]
. (3.8)

Equations (3.6) and (3.8) may then be substituted into the conservation laws (3.1)–
(3.3) to obtain a system of three partial differential equations (PDEs) for φ, u and w
that are first order in time and second order in space.

For a given set of initial conditions φ(z, 0), u(z, 0), w(z, 0) the three PDEs must be
solved subject to the boundary conditions that there is no slip at the walls

u(H, t)= V0, w(H, t)= 0, u(0, t)= 0, w(0, t)= 0, (3.9a−d)

where V0 is the velocity of the top wall. It is easily verified that the steady linear
shearing solution

φ(z)= φ0, u(z)= V0
z
H
, w(z)= 0, (3.10a−c)

where φ0 is the average initial solids volume fraction

φ0 =
1
H

∫ H

0
φ(z, 0) dz, (3.11)

satisfies (3.1)–(3.3) given (3.6), (3.8) and the boundary conditions (3.9). It is therefore
anticipated that any set of initial conditions will tend to this solution.
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3.2. Blow up and grid dependence with the µ(I), Φ(I)-rheology
For one-dimensional flow in a shear cell, the physical variables are non-dimensionali-
zed with the scalings

z= dẑ, t= (d/V0)t̂, p= ρ∗V2
0 p̂, (u,w)= V0(û, ŵ), (3.12a−d)

where the hats indicate non-dimensional variables. Equations (3.1)–(3.3) with the
relations (3.6) and (3.8) therefore reduce to the non-dimensional system

(∂t̂ + ŵ∂ẑ)φ =−φ∂ẑŵ, (3.13)

φ(∂t̂ + ŵ∂ẑ)û= ∂ẑ

(
µ(Ψ (φ))

Ψ 2(φ)

√
(∂ẑû)2 + (∂ẑŵ)2∂ẑû

)
, (3.14)

φ(∂t̂ + ŵ∂ẑ)ŵ=−∂ẑ

(
(∂ẑû)2 + (∂ẑŵ)2

Ψ 2(φ)

)
+ ∂ẑ

(
µ(Ψ (φ))

Ψ 2(φ)

√
(∂ẑû)2 + (∂ẑŵ)2∂ẑŵ

)
, (3.15)

where the grains size d, the grain density ρ∗ and the wall velocity V0 scale completely
out of the system.

The conservation laws (3.13)–(3.15) are solved by the numerical method of
lines (Schiesser 2012). This method discretizes the spatial derivatives in the PDEs
which generates a system of coupled ordinary differential equations. These are then
integrated forward in time using MATLAB’s ODE15s routine. Two different methods
are used to approximate the spatial derivatives: the first is a finite difference method
using first-order differences, while the second method uses a Chebyshev spectral
scheme (Canuto et al. 1988; Trefethen 2000).

The non-dimensional height of the cell Ĥ is chosen to equal 30 (i.e. the physical
height of the cell is 30 grain diameters). The initial conditions are plotted in figure 2
and are identical to the non-dimensionalized steady solution except that the vertical
velocity has a small smooth imperfection in the centre of the domain:

φ(ẑ)= φ0, û(ẑ)=
ẑ

Ĥ
, ŵ(ẑ, 0)= ε

(
ẑ−

Ĥ
2

)
e−(ẑ−Ĥ/2)2, (3.16a−c)

where ε is a small parameter. It should be noted that this form does not satisfy the
boundary conditions exactly but does within numerical precision. Provided ε is not
too small, the ill-posedness condition (A 19), outlined in appendix A, is satisfied in
the centre of the domain, as shown in figure 2(d), and it is therefore anticipated that
numerical problems will develop.

Confirming this anticipation, various snapshots of the non-dimensional vertical
velocity are shown in figure 3. (The full time evolutions of û(ẑ, t̂), ŵ(ẑ, t̂) and φ(ẑ, t̂)
are shown in supplementary movies 1–3.) In the high-resolution plots (figure 3a,b),
the growth of noise causes the numerical method to break down at the indicated time
– at this point integration tolerances can no longer be met. Note that the misbehaviour
originates in the centre of the domain, where the ill-posedness condition (A 19) is
satisfied. Moreover, although the two solutions blow up at similar times, their spatial
structure is completely different.

In contrast, a low-resolution (Nz= 47) simulation using the finite difference scheme
does not blow up and in fact decays towards the steady state, as shown in figures 3(c)
and 4(a). (The same occurs for the low-resolution run with the Chebyshev spectral
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FIGURE 2. Initial conditions used to illustrate the computational difficulties encountered
with the µ(I), Φ(I)-rheology. Panels (a–c) show the non-dimensional velocity components
û(ẑ, 0), ŵ(ẑ, 0) and the packing fraction φ(ẑ, 0) as a function of the non-dimensional
vertical coordinate ẑ, respectively, for the initial condition (3.16) with φ0= 0.78, ε = 0.05
and Ĥ = 30. Panel (d) shows a plot of the function χ(ẑ), defined in (A 18), which
determines where the flow is well-posed (χ < 0) or ill-posed (χ > 0).

scheme (see figure 4a).) This is exactly the behaviour that one might expect of a well-
posed model, but here it is entirely due to the higher numerical diffusion in the low-
resolution scheme. On grid refinement this diffusion is no longer sufficient to suppress
the underlying ill-posedness of the equations, and instabilities develop.

For all values of Nz above a certain threshold (see figure 4b), the initial perturbation
is amplified indefinitely, causing the method to fail. The time t̂∗ at which the
Chebyshev spectral discretization fails is plotted in figure 4(b) as a function of
the number of grid points Nz. Higher spatial resolution computations resolve higher
wavenumber instabilities that grow at a faster rate, leading to earlier failure.

4. Inertial compressible I-dependent rheology (iCIDR)
The CIDR is a general framework that retains the conservation laws (2.1)–(2.2) and

the alignment condition (2.6), but it modifies the other two constitutive equations. The
constitutive law for the deviatoric stress (2.7) is replaced by assuming that there is a
yield condition such that, if material is deforming, then

‖τ‖ = Y(p, I, φ), (4.1)

where Y is called the ‘yield function’. In addition, it is assumed that the density
evolves dynamically according to a flow rule that is reminiscent of critical state soil
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(a)

(b)
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FIGURE 3. Snapshots of the non-dimensional vertical velocity for the µ(I),Φ(I)-rheology
computed with the method of lines in (a) a high-resolution finite difference discretization
(Nz = 201), (b) a high-resolution Chebychev spectral discretization (Nz = 201) and (c) a
low-resolution finite difference discretization (Nz= 47). In each panel the initial condition
of the vertical velocity (3.16) is shown with a dashed black line. Movies 1–3 show the
full time evolution of all fields (û, ŵ and φ) and are available in the online supplementary
material at https://doi.org/10.1017/jfm.2019.476.

mechanics (Schofield & Wroth 1968; Jackson 1983):

div u= 2f (p, I, φ)‖S‖, (4.2)

where f is called the ‘dilatancy function’. Barker et al. (2017) showed that the CIDR
equations are linearly well-posed provided the yield and dilatancy functions satisfy the
following three conditions:

∂Y
∂p
−

I
2p
∂Y
∂I
= f + I

∂f
∂I
, (4.3)

∂Y
∂I
> 0, (4.4)

∂f
∂p
−

I
2p
∂f
∂I
< 0. (4.5)
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FIGURE 4. (a) A comparison of the temporal evolution of the maximum vertical velocity
|ŵ| for the numerical computations presented in figure 3. The computations use the method
of lines with a finite difference (dashed lines) and a Chebyshev (solids lines) discretization
at both high (red lines) and low (blue lines) spatial resolution. The time t̂∗ = 0.01052 at
which the Chebyshev scheme becomes non-convergent is indicated. (b) The final time t̂∗
before convergence failure is plotted for the Chebyshev spectral discretization as a function
of the number of grid points Nz. The same plot (not shown) for failure of the finite
difference computation is qualitatively similar, but differs in detail.

A key result of this paper is the introduction of new constitutive functions which
are motivated by the inertial regime. These are constructed to satisfy both the well-
posedness conditions (4.3)–(4.5) and the observed asymptotic steady-state behaviour,
known as the µ(I) and Φ(I) relations (1.2)–(1.3). These relationships are derived from
isochoric (constant volume) flows in steady state (see figure 1 and appendix C). For
the purpose of deriving Y and f they may be conveniently stated as follows:

If ∇ · u= 0, then f = 0, I =Ψ (φ), and Y =µ(Ψ (φ))p, (4.6a−c)
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ƒ = 0.8 0.79 0.78 0.77 0.76 0.75

FIGURE 5. Black lines plot the ratio Y/p as a function of I for varying values of the
solids volume fraction φ in iCIDR. The blue line shows Y/p= µ(I) and the black dots
show the steady isochoric state of each of the Y/p lines, i.e. I=Ψ (φ) and Y/p=µ(Ψ (φ)).
The dashed red line shows the value of µd.

where Ψ (φ) is the inverse function of Φ(I). Even with these constraints there are
infinitely many possible choices for the yield function and dilatancy function. What
might be described as the simplest acceptable choice for these functions is now
proposed.

The starting point for this new theory is the relation Y = µ(Ψ (φ))p in (4.6).
However, this cannot lead to a well-posed theory as ∂IY = 0 and thus (4.4) is not
satisfied. Taking instead the simplest non-trivial I-dependence gives

Y(p, I, φ)=µ(Ψ (φ))
I

Ψ (φ)
p, (4.7)

which reduces to the µ(I), Φ(I)-rheology when I = Ψ (φ). Figure 5 is a useful aid
for comparing this formula with µ(I), Φ(I)-rheology. The corresponding dilatancy
function is then found through substitution of (4.7) into the well-posedness PDE (4.3).
Taking contributions from both the homogeneous and particular solutions of (4.3) and
imposing (4.6) gives the expression

f (I, φ)=
1
4
µ(Ψ (φ))

[
I

Ψ (φ)
−
Ψ (φ)

I

]
. (4.8)

This theory will be termed ‘inertial CIDR’ or iCIDR, since, as will be shown, it
captures the Bagnold scaling. In addition to satisfying (4.3) and (4.6), it is readily
verified that the iCIDR constitutive functions (4.7)–(4.8) satisfy the inequalities (4.4)–
(4.5). As such, the dynamic equations which result from iCIDR are guaranteed to
be linearly well-posed for all deformations and for all values of the solids volume
fraction.
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In µ(I), Φ(I)-rheology I is tied rigidly to φ through the I = Ψ (φ) relation (2.12),
whereas for iCIDR I evolves through the flow rule (4.2) given the dilatancy function
(4.8). Substituting (4.8) into (4.2) yields the quadratic equation

I2
− 2

Ψ (φ) div u
µ(Ψ (φ)) ‖S‖

I −Ψ (φ)2 = 0, (4.9)

which has the positive root

I =
Ψ (φ) div u
µ(Ψ (φ))‖S‖

+

√(
Ψ (φ) div u
µ(Ψ (φ))‖S‖

)2

+Ψ 2(φ). (4.10)

The right-hand side of (4.10) is a function of the solids volume fraction φ and the
ratio div u/‖S‖. Equation (2.9) can be used to determine an equation of state for the
pressure

p= ρ∗

(
2d‖S‖

I

)2

. (4.11)

This equation differs from (2.14) only in that Ψ (φ) is replaced by I defined by
(4.10). Since (4.10) depends on the velocity gradient only through the ratio div u/‖S‖,
which is unchanged by scaling the velocity gradient, (4.11) satisfies Bagnold scaling
(Bagnold 1954).

According to (4.9), if ‖S‖→ 0, then I tends to either zero or infinity, depending on
the sign of div u. Hence, it seems that the iCIDR constitutive laws may break down if
‖S‖= 0. However, the inertial number I can be bypassed by calculating an alternative
expression for the pressure. Substituting (2.9) into (4.9) and solving for p gives

p= ρ∗

(
2d

µ(Ψ (φ))Ψ (φ)

)2 [√
(div u)2 +µ(Ψ )2‖S‖2 − div u

]2
, (4.12)

which is well defined for all deformation rates. Note that p is strictly positive unless

‖S‖ = 0 and div u > 0, (4.13a,b)

in which case the pressure is zero. Thus, in the absence of shear, there is no pressure
if the grains are diverging from one another, but there is a finite, positive pressure if
they are converging. Moreover, using the alignment condition (2.6), the yield function
(4.7) and the definition of I, it follows that the deviatoric stress is given by

τij =
2d
√
ρ∗µ(Ψ (φ))

Ψ (φ)

√
p Sij, (4.14)

which is also well defined for all deformation rates. Finally, note that if φ→ φc, then
Ψ (φ)→ 0 and the pressure tends to infinity (provided there is some straining).

5. One-dimensional flow in a shear cell with the iCIDR rheology
The response of the iCIDR rheology is now tested in the one-dimensional

gravitationless shear cell, as studied in § 3.2 for the µ(I), Φ(I)-rheology. In this
geometry the equation of state (4.12) implies the relations for the pressure

p= ρ∗

(
2d

µ(Ψ (φ))Ψ (φ)

)2 [√
(∂zw)2 +µ(Ψ )2[(∂zu)2 + (∂zw)2]2/4− ∂zw

]2
, (5.1)
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and the deviatoric stresses (4.14)[
τxz
τzz

]
=

d
√
ρ∗µ(Ψ (φ))

Ψ (φ)

√
p
[
∂zu
∂zw

]
. (5.2)

Substituting these expressions into the conservation laws (3.1)–(3.3) and using the
scalings (3.12) implies the non-dimensional iCIDR equations are

(∂t̂ + ŵ∂ẑ)φ =−φ∂ẑŵ, (5.3)

φ(∂t̂ + ŵ∂ẑ)û= ∂ẑ

(
µ(Ψ (φ))

Ψ (φ)

√
p̃ ∂ẑû

)
, (5.4)

φ(∂t̂ + ŵ∂ẑ)ŵ=−∂ẑp̃+ ∂ẑ

(
µ(Ψ (φ))

Ψ (φ)

√
p̃ ∂ẑŵ

)
, (5.5)

where the pressure is given by

p̃=
(

2
µ(Ψ (φ))Ψ (φ)

)2 [√
(∂ẑŵ)2 +µ(Ψ )2[(∂ẑû)2 + (∂ẑŵ)2]2/4− ∂ẑŵ

]2
. (5.6)

The pressure (5.6) can be substituted directly into (5.4)–(5.5) to produce a system
of three equations for φ, û and ŵ. Unlike the incompressible µ(I)-rheology and
the incompressible Navier–Stokes equations, in which pressure must be determined
globally as part of solving the equations, all terms in this system (5.4)–(5.5) are
explicitly specified locally. This makes the development of numerical methods much
simpler.

Figure 6(a) and supplementary movies 4 and 5 show numerical solutions according
to iCIDR for the one-dimensional gravity-free flow of § 3, specifically for initial
conditions (3.16). Note that the solution converges smoothly to steady state, the same
steady state as for the µ(I),Φ(I)-rheology (3.10), without any sign of the catastrophic
resolution-dependent blow-up seen before. The simulations are computed using the
method of lines with the finite difference discretization for both Nz= 47 and 201 grid
points. Note that the solutions in figure 6(a) lie directly on top of one another! This
shows that these solutions are grid converged.

The fact that the iCIDR equations are mathematically well-posed suggests that they
can handle larger perturbations from steady state than (3.16). An interesting test case
is an initial condition with |∂ẑû| = 0 for at least one point. This is interesting because
the function χ , defined in (A 18), is infinite when |∂ẑû|= 0, so the µ(I),Φ(I)-rheology
is strongly unstable even at low resolution. Following this idea, the results of a
simulation with the initial condition

φ(ẑ, 0)= φ0, û(ẑ, 0)=
ẑ

Ĥ
+ â sin

(
2π

ẑ

Ĥ

)
, ŵ(ẑ, 0)=−b̂ sin

(
2π

ẑ

Ĥ

)
(5.7a−c)

are plotted in figure 7. As figure 7(d) shows, with the parameters φ0 = 0.78, â =
0.16 and b̂= 0.1, there is a large central region where χ > 0 and two points where
χ is infinite. This problem is therefore very strongly ill-posed for the µ(I), Φ(I)-
rheology. Ill-posed behaviour has been verified numerically; indeed, for these initial
conditions, even for the coarse grid with Nz = 47, the solution blows up (not shown).
By contrast, with the iCIDR equations (5.3)–(5.6) there is no catastrophic blow-up and
the simulations smoothly evolve from the initial conditions towards the steady-state
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FIGURE 6. (a) Numerical computations for the evolution of the one-dimensional vertical
velocity ŵ(ẑ, t̂) for iCIDR. The initial conditions are given by (3.16) with φ0 = 0.78, ε =
0.05 and Ĥ= 30. The method of lines and first-order finite difference approximations are
used to compute the solution, which is shown at a sequence of times with Nz = 47 grid
points (open circles) and Nz = 201 grid points (solid lines). This explicitly demonstrates
that the numerical solution is grid converged. (b) The evolution of the maximum vertical
velocity in time for Nz= 47 grid points (blue circles) and Nz= 201 grid points (red solid
line). The numerical solution is very close to the steady-state solution (3.10) by 10 non-
dimensional units. Supplementary movies 4 and 5 show the evolution of φ(ẑ, t̂), û(ẑ, t̂)
and ŵ(ẑ, t̂) for both the finite difference and Chebyshev spectral discretizations.

solution (3.10) as shown in supplementary movie 6 and in figure 7(a–c) for both high-
and low-resolution runs. This convergence is also exhibited in figure 7(e) where the
maximum vertical velocity is plotted as a function of time: note that the graphs for
different resolutions lie on top of one another.

It is interesting to examine the structure of the solution in figure 7. Initially there
is a rapid readjustment of the two velocity components with a time constant of the
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FIGURE 7. Time-dependent numerical simulation for iCIDR. The flow starts from the
perturbed initial conditions (5.7) with φ0 = 0.78, â = 0.16 and b̂ = 0.1 and converges
towards the steady solution (3.10). In panels (a–c) the solid lines correspond to a
high spatial resolution (Nz = 201) and open circles to a lower resolution (Nz = 47).
Panel (d) is a plot of χ defined in (A 18) at t = 0, which implies that, unlike iCIDR,
the µ(I), Φ(I)-rheology would be strongly ill-posed for these initial conditions. (e) The
iCIDR constitutive relations ensure that at both low (open circles, Nz = 47) and high
(solid red line, Nz = 201) spatial resolution the maximum vertical velocity ŵ decays to
the steady-state value ŵ= 0 everywhere. An animation of the simulation (supplementary
movie 6) is available in the online supplementary material.

order of one time unit. The solids volume fraction starts out independent of ẑ, but it
develops a non-trivial profile which changes sign and then decays much more slowly.
The latter evolution is responsible for the local maximum of |ŵ| near t̂= 3 shown in
figure 7(e).
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6. Comparison of iCIDR with DEM simulations
The DEM calculations detailed in appendix C and figure 1, which were used

to recover the steady µ(I) and Φ(I) relations, are also capable of verifying the
time-dependent characteristics of the iCIDR solutions. Here new DEM simulations
are initialized with the same procedure that was used to obtain the steady linear
shearing solution (3.10), but then the velocity fields are replaced with the sinusoidally
perturbed profiles (5.7) discussed in the previous section. As expected, this results
in a decay from these applied fields back towards the steady solution. Figure 8
shows that the iCIDR solutions differ by less than 2.5 % relative error from the DEM
simulations throughout the dynamics. Figure 8(a–c) shows that iCIDR captures the
spatial variation of the three flow variables φ, û and ŵ. Figure 8(d) indicates that it
also captures complex details of the time evolution. Although more testing is needed,
this agreement indicates that iCIDR correctly represents significant aspects of the
rheology.

7. Discussion of related issues
7.1. Remarks on ill-posedness

Issues of ill-posedness in µ(I)-rheology were first raised in Barker et al. (2015). It
was shown that, although the dynamic equations derived from incompressible µ(I)-
rheology are mathematically well-posed for a large range of inertial numbers, the
system is ill-posed when I is too high or too low. The following remarks may help
reconcile this ill-posedness with the fact that problems of practical interest (e.g. Lagrée
et al. 2011; Staron et al. 2012) have apparently been successfully solved numerically
using µ(I)-rheology.

In the first place, ill-posedness effects may be masked in simulations performed
on a low-resolution grid, as in § 4 of this paper. Specifically, numerical diffusion
may be sufficient to suppress the instability. Ill-posedness may become apparent only
through careful comparison of progressively mesh-refined simulations – see figure 4
of Barker & Gray (2017) and figure 21 of Martin et al. (2017); in these papers certain
spurious flow features continue to become ever more finely scaled as the grid size
gets smaller. It is sometimes suggested that low-resolution solutions of an ill-posed
model might be sufficient for some practical purposes. However, such approaches are
scientifically flawed, because the results rely on numerical diffusion to regularize the
problem, which is dependent on both grid size and numerical scheme, and is often
not known precisely. In our view it is far better to try to understand what physics
is missing in the model, and only compute solutions when a well-posed theory has
been formulated.

Other issues are the following. (i) In some problems, such as column collapse
(Lagrée et al. 2011), the ill-posed region of parameter space may only be active
for a short period of time. In such cases careful comparison of numerical results
at different spatial resolutions, including some very fine grids, may be needed for
non-convergence to become apparent (Barker et al. 2015; Barker & Gray 2017;
Martin et al. 2017). (ii) Ill-posedness may also be partially suppressed by attempts to
remove the singularity in the viscosity at low strain rates. Many numerical codes do
this by introducing an upper bound on the viscosity, which implies that the material
reverts to a Newtonian fluid for slow flows. However, these procedures are ad hoc in
nature, and there is no guarantee that ill-posedness is suppressed completely.

In this subsection attention has been focused on the consequences of ill-posedness
that may be seen through computations. However, on the mathematical side, it
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FIGURE 8. A comparison between the iCIDR continuum calculation, detailed in figure 7,
and the results of two-dimensional DEM simulations initialized with the same flow fields.
Circles are the mean values and error bars represent the standard deviation of 10 repeat
DEM simulations. Supplementary movies 7 and 8 show the evolution of the coarse-grained
velocity components û and ŵ alongside renderings of the particles during the simulation.
Note that û obtained by DEM simulations is given by the relative velocity between the
bottom (ẑ = 0) and top (ẑ = Ĥ) layers under the Lees–Edwards boundary conditions in
order to simplify the comparison with the iCIDR continuum calculation.

seems likely that solutions of an ill-posed initial-value problem exist only for a very
restricted set of initial conditions, far too restricted to model physical problems. A
rigorous proof of this assertion for complicated PDEs like iCIDR would be difficult,
but for a simpler example let us refer to appendix 2 of Barker et al. (2017) for a
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proof of the following fact: the backwards heat equation

∂tu=−∂xxu, u(x, 0)= ε|sin x|p, (7.1a,b)

where ε 6= 0, cannot be solved on any non-zero interval {0 < t < t0} unless p is an
even non-negative integer. The singularities of the initial conditions at x = nπ, n =
0,±1,±2, . . . (which are extremely mild if p is large) make such solutions impossible.

7.2. Behaviour at the boundary of and outside the inertial regime
Regarding the boundary of the inertial regime, note in (2.14) and (5.11) that p tends to
infinity as φ→ φc. In DEM simulations, Chialvo et al. (2012) found that this growth
was cut off and blended into the pressure from the intermediate regime through the
formula

pblend =
pinertpitm

pinert + pitm
, (7.2)

where

pitm = αitm

(
k
d

)3/4 (√
ρ∗dγ̇

)1/2
. (7.3)

Thus the pressure tends to pitm as φ→ φc, where the limit pressure depends on the
elastic modulus. Although it is beyond the scope of the present paper, it is anticipated
that a more complete version of CIDR would remain valid across regime boundaries.

Granular flow at densities φ > φc (provided the strain rate is not too large)
corresponds to what is called the quasi-static regime (Otsuki & Hayakawa 2009;
Chialvo et al. 2012; Singh et al. 2015). In this regime stresses may remain non-zero
even as the strain rate tends to zero, i.e. a static yield stress exists; the scale of these
static stresses is set by k/d, where k is the spring constant in DEM simulations.

CIDR is a general theory that can model granular material outside, as well as
inside, of the inertial regime. In particular, the version of CIDR in § 2(e) of Barker
et al. (2017), which was motivated by critical state soil mechanics (Schofield &
Wroth 1968), has a non-zero static yield stress, as in the quasi-static regime in DEM
simulations. (In that paper, to facilitate comparison with Silbert et al. (2001), the
stress scale was chosen as ρ∗gd, i.e. dependent on gravitational acceleration g. This
was an unfortunate choice with no intrinsic significance. A more appropriate choice
would have been k/d, where k is the spring constant in DEM simulations.)

7.3. Extensions to the theory
Inertial CIDR is also able to incorporate non-monotonicity of the µ(I) function
(DeGiuli & Wyart 2017), which is crucial for modelling hysteretic effects, such as
coexisting static and moving regions, in depth-averaged avalanche models (Daerr &
Douady 1999; Pouliquen & Forterre 2002; Edwards & Gray 2015; Edwards et al.
2017; Russell et al. 2019). Non-monotonic µ=µ(I) functions are problematic in the
incompressible µ(I)-rheology, because they imply that the theory is always ill-posed
in regions of decreasing friction (Barker et al. 2015). For iCIDR, however, having
a non-monotonic µ = µ(I) function is not a problem, because it is formulated in
terms of the solids volume fraction, i.e. µ= µ(Ψ (φ)), and so it does not affect the
well-posedness conditions (4.3)–(4.5).

At present iCIDR is explicitly a local theory which cannot account for the observed
role of fluctuations that inspired the non-local theories of Pouliquen & Forterre (2009),
Kamrin & Koval (2012) and Bouzid et al. (2013). Inclusion of these effects is an
important direction for future work.
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8. Conclusions
The iCIDR equations, introduced in this paper, provide a continuum model for

fluid-like inertial flows of rigid spherical particles that lie below a critical volume
fraction, above which the compressibility of the grains becomes important (Otsuki
& Hayakawa 2009; Chialvo et al. 2012). One striking aspect of the iCIDR theory
is its simplicity: it is a minimal extension of µ(I), Φ(I)-rheology with no extra
variables, no extra parameters, no extra evolution equations beyond conservation of
mass and momentum and no extra boundary conditions. While retaining the success of
µ(I), Φ(I)-rheology for steady inertial flow, iCIDR is well-posed, thermodynamically
sound (Onsager symmetric and dissipative) and agrees well with transient DEM
simulations in a one-dimensional gravity-free shear cell.

Inertial CIDR is very well suited to numerical calculations because the pressure is
defined by a local equation of state. This contrasts with incompressible theories, in
which the pressure can only be found globally as part of solving the equations. The
numerical simulations presented in this paper are therefore a particularly encouraging
proof of concept and it is hoped that other existing numerical methods can similarly
be modified in order to bring the advantages of the iCIDR formulation to a wide range
of practical applications.
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Appendix A. Ill-posedness of the one-dimensional µ(I), Φ(I)-rheology
Although there are some technical complications, effectively the dynamic equations

of µ(I), Φ(I)-rheology for two-dimensional flow are always ill-posed (Heyman et al.
2017). As in Barker et al. (2015), the ill-posedness has a directional character:
plane-wave solutions (in all space) in certain directions suffer uncontrolled growth
while those in other directions decay smoothly to uniform flow. If, as in § 3, solutions
depending on only one spatial variable are sought, these one-dimensional equations
may be either well-posed or ill-posed, depending on whether the one independent
direction retained corresponds to one of the stable or unstable directions. In this
appendix, conditions for the ill-posedness of the one-dimensional system (3.1)–(3.8)
are derived.

The equations (3.1)–(3.3) together with (3.6) and (3.8) are linearized around a base
flow (φ0, u0, w0) in the dependent variables (φ, u, w) by introducing perturbations
(φ̆, ŭ, w̆) of the form φu

w

=
φ0(z, t)

u0(z, t)
w0(z, t)

+
φ̆(z, t)

ŭ(z, t)
w̆(z, t)

 , (A 1)
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and then freezing the base flow coefficients. In the linearization the highest-order
derivatives of the perturbed variables are retained in each equation, together with the
convective derivatives. This leads to linearized equations of the form

∂t

φ̆ŭ
w̆

=
−w0∂z 0 −φ0∂z

a1∂z b11∂zz −w0∂z b12∂zz

a2∂z b21∂zz b22∂zz −w0∂z

φ̆ŭ
w̆

 , (A 2)

where ai and bij are constant coefficients derived from the pressure (3.6) and the
deviatoric stresses (3.8).

The linearized system (A 2) admits normal-mode solutions of the formφ̆(z, t)
ŭ(z, t)
w̆(z, t)

= eiξz+λt

φ̃ũ
w̃

 , (A 3)

in which ξ is the wavenumber, λ is the temporal growth rate and φ̃, ũ and w̃ are
constants. Substituting these into (A 2) reveals that λ must be an eigenvalue of the
matrix

A(ξ)=

−iw0ξ 0 −iφ0ξ

ia1ξ −b11ξ
2
− iw0ξ −b12ξ

2

ia2ξ −b21ξ
2

−b22ξ
2
− iw0ξ

 . (A 4)

The imaginary terms −iw0ξ on the diagonal shift the eigenvalues λ, but do not affect
stability or well-posedness, which are governed by the real part of λ. The vertical
component of the base state velocity w0 is therefore set to zero in what follows.

Denoting the bottom right 2× 2 matrix of terms multiplying −ξ 2 as

Γ =

[
b11 b12
b21 b22

]
, (A 5)

the eigenvalues are calculated by solving

det(A(ξ)− λI)=−(λ3
+ Aλ2

+ Bλ+C)= 0, (A 6)

where the coefficients are

A= (tr Γ )ξ 2
+O(ξ), B= (det Γ )ξ 4

+O(ξ 3), C=O(ξ 4). (A 7a−c)

To test for ill-posedness, the large-wavenumber limit ξ →∞ is taken. Balancing
the order of terms in (A 6), it is clear that λ(ξ) ∼ ξ 2, so the substitution λ = Λξ 2

is made. Then the terms of maximal order in (A 6), i.e. O(ξ 6), have the coefficient
Λ3
+ (tr Γ )Λ2

+ (det Γ )Λ. Thus, to leading order, either Λ= 0, or Λ is a solution of

Λ2
+ (tr Γ )Λ+ det Γ = 0, (A 8)

i.e. one of the two roots

Λ± =
1
2 [−tr Γ ±

√
(tr Γ )2 − 4 det Γ ]. (A 9)
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To determine the signs of these roots, the coefficients in (A 2) are now evaluated.
If the superscript 0 notation is dropped, the coefficients in (A 2) are then

a1 =
2d2

φ
∂zu‖S‖∂φ

(
M(φ)
Ψ 2(φ)

)
,

a2 =
2d2
‖S‖

φ

[
∂zw∂φ

(
M(φ)
Ψ 2(φ)

)
− 2‖S‖∂φ

(
1

Ψ 2(φ)

)]
,

b11 =
d2M(φ)

2φΨ 2(φ)

2(∂zu)2 + (∂zw)2

‖S‖
, b12 =

d2M(φ)
2φΨ 2(φ)

∂zu∂zw
‖S‖

,

b21 =
d2M(φ)

2φΨ 2(φ)

∂zu∂zw
‖S‖

−
2d2

φΨ 2(φ)
∂zu,

b22 =
d2M(φ)

2φΨ 2(φ)

(∂zu)2 + 2(∂zw)2

‖S‖
−

2d2

φΨ 2(φ)
∂zw,



(A 10)

where all values are evaluated with the base-state fields

M(φ)=µ(Ψ (φ)) and ‖S‖ = 1
2

√
(∂zu)2 + (∂zw)2. (A 11a,b)

From (A 10) and (A 5) it follows that

tr Γ =
d2

φΨ 2
[3M

√
(∂zu)2 + (∂zw)2 − 2∂zw] (A 12)

and

det Γ =
2d4M
φ2Ψ 4

√
(∂zu)2 + (∂zw)2[M

√
(∂zu)2 + (∂zw)2 − ∂zw]. (A 13)

The two roots in (A 9) are real since

(tr Γ )2 − 4 det Γ =
(

2d2

φΨ 2

)2

(M‖S‖ − ∂zw)2 > 0. (A 14)

Since λ+ ∼Λ+ξ 2 as ξ→∞, the system is linearly ill-posed if the larger root Λ+
is positive, which occurs if either

(a) tr Γ < 0 or (b) det Γ < 0. (A 15a,b)

It may be seen from (A 12) and (A 13) that if tr Γ < 0 then det Γ < 0, so it suffices
to consider only case (b). Thus,

∂zw√
(∂zu)2 + (∂zw)2

>M(φ) (A 16)

is a sufficient condition for ill-posedness.
Conversely, suppose

∂zw√
(∂zu)2 + (∂zw)2

<M(φ). (A 17)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
1.

52
.2

14
.1

22
, o

n 
13

 D
ec

 2
01

9 
at

 1
1:

50
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.476


Constitutive relations for compressible granular flow in inertial regime 947

Then tr Γ and det Γ are both positive, so Λ± are both negative, and hence λ±∼Λ±ξ 2

are bounded above. From (A 4), the third eigenvalue λ0 asymptotes to −C/B as ξ→
∞. But C/B is the ratio of two quartics and B 6= 0 since det Γ 6= 0. Thus λ0 also
remains bounded as ξ→∞. In other words, (A 17) is a sufficient condition for well-
posedness.

To rewrite (A 16), (A 17) in a way that is useful for the computations in § 3.2, let
us define

χ =
∂zw
|∂zu|
−

M
√

1−M2
. (A 18)

The one-dimensional computations with µ(I), Φ(I)-rheology will be

ill-posed where χ > 0 and well-posed where χ < 0. (A 19a,b)

Appendix B. Positive stress power and Onsager symmetry
Goddard & Lee (2018) examined equations for granular flow in light of Edelen’s

(1972) theory of irreversibility. They showed that the model of Heyman et al. (2017),
which includes µ(I), Φ(I)-rheology, is not Onsager symmetric and not even properly
dissipative. In this appendix the iCIDR equations are shown to have positive stress
power and Onsager symmetry.

Positive-definite stress power means that all deformations with non-zero stress
dissipate energy; i.e. in symbols, the dissipation rate D satisfies

D= tr(σD) > 0 if ‖D‖> 0 and ‖σ‖> 0. (B 1)

Using the decompositions of the stress (2.3) and the strain rate (2.5)

‖D‖ =
√
‖S‖2 + (div u)2/4, ‖σ‖ =

√
‖τ‖2 + p2, (B 2a,b)

and it follows that
D= tr(τS)− p div u. (B 3)

Substituting the alignment condition (2.6) and the dilatancy law (4.2) and recalling
that ‖S‖2

= tr(S2)/2, implies that

D= 2‖τ‖‖S‖ − 2f‖S‖p. (B 4)

The yield condition (4.1), the yield function (4.7) and the dilatancy function (4.8) then
imply that the dissipation rate is

D=M‖S‖
[

3
2

I
Ψ
+

1
2
Ψ

I

]
p, (B 5)

where M = µ(Ψ (φ)) and Ψ = Ψ (φ). Thus, the dissipation rate is non-negative and
in fact positive if ‖S‖> 0 (and hence, by (4.12), p> 0). To determine what happens
when ‖S‖ = 0, the definition of the inertial number (2.9) is substituted into (B 5) to
show that

D=
3dM
√
ρ∗

Ψ
‖S‖2√p+

MΨ
4d
√
ρ∗

p3/2. (B 6)

As before, of course, D> 0 if ‖S‖> 0. If ‖S‖ = 0 but div u< 0, then by (4.12) the
second term in (B 6) is positive. If ‖S‖= 0 but div u> 0, then indeed D= 0, but p= 0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
1.

52
.2

14
.1

22
, o

n 
13

 D
ec

 2
01

9 
at

 1
1:

50
:2

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.476
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and by (4.14) ‖τ‖ = 0, so ‖σ‖ = 0. This completes the verification of (B 1), i.e. the
iCIDR equations always dissipate energy provided there is some deformation and the
stresses are non-zero.

Since the constitutive laws have positive stress power, it follows from Edelen
(1972) that (i) all deformations are irreversible and increase entropy, (ii) the iCIDR
constitutive laws satisfy Onsager symmetry and (iii) each component σij of the stress
equals the derivative of a convex dissipation potential ψ(D) with respect to Dij.
Regarding point (iii), it is convenient to derive ψ through its Legendre transform,

ϕ(S, p)= inf
δ
ψ(S, δ)+ pδ, (B 7)

where δ is a shorter notation for div u when it appears as a dummy variable. Consider
the function

ϕ(S, p)=
2d
√
ρ∗M
Ψ

‖S‖2√p−
MΨ

6d
√
ρ∗

p3/2. (B 8)

The claim is that the iCIDR constitutive relations can be expressed as the derivatives

(a) τij =
∂ϕ

∂Sij
and (b) div u=

∂ϕ

∂p
. (B 9a,b)

The first relation implies

∂ϕ

∂Sij
=

2d
√
ρ∗M
Ψ

Sij
√

p=
M
Ψ

2d‖S‖
√

p/ρ∗

Sij

‖S‖
p, (B 10)

which, in light of (2.6), (4.1) and (4.7), verifies (B 9a). Whilst the the second implies

∂ϕ

∂p
=

d
√
ρ∗M
Ψ
‖S‖2 1
√

p
−

MΨ
4d
√
ρ∗

√
p=

M‖S‖
2

[
1
Ψ

2d‖S‖
√

p/ρ∗
−Ψ

√
p/ρ∗

2d‖S‖

]
, (B 11)

which, in light of (4.2) and (4.8), verifies (B 9b). The dissipation potential ψ(D) is
the inverse Legendre transform of ϕ, which may be written

ψ(S, div u)= ϕ(S, P(S, div u))− P(S, div u) div u, (B 12)

where P(S, div u) is the pressure given by (4.12). Mixing stress and strain-rate
variables, ψ can be calculated as a function of S and p by replacing P in (B 12) by
p and substituting (B 11) for div u, which yields

ψ =
dM
√
ρ∗

Ψ
‖S‖2√p+

MΨ
12d
√
ρ∗

p3/2. (B 13)

Observe that
ψ =D/3, (B 14)

a result that follows from the formula (Goddard & Lee 2018)

ψ(D)=
∫ 1

0
D(λD)

dλ
λ

(B 15)

and the observation that D is homogeneous in D of degree 3. It is not proved directly
that ψ is convex, but rather the fact that the iCIDR constitutive relations are well-
posed (Barker et al. 2017) is used to deduce this (Goddard & Lee 2018).
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Appendix C. Details of the DEM calculations

Two-dimensional DEM simulations (Cundall & Strack 1979) were performed in
a shear-box geometry, both to confirm the well-established steady behaviour and to
explore transient flows. The domain is a rectangle in (x, z) space, with all units
non-dimensionalized with the scalings (3.12), such that 0 6 x̂ < L̂ and 0 6 ẑ < Ĥ.
Boundary conditions and the system size are then designed to suppress confinement
effects so that the volume can be taken to be a representative bulk element. Periodicity
is enforced in the x̂ direction and Lees–Edwards boundary conditions (Lees &
Edwards 1972) are applied at the bottom ẑ= 0 and top ẑ= Ĥ of the domain. There is
no gravity applied to the system and the only driving is provided by the difference in
horizontal velocity between the top and bottom V0, as prescribed by the Lees–Edwards
algorithm.

Details of the precise DEM simulation algorithm can be found in Otsuki &
Hayakawa (2011) as an identical method is employed here. Normal forces f (n)
between particles are calculated from a linear spring–dashpot arrangement with an
associated spring constant k(n) and viscous dissipation constant η(n). Tangential forces
f (t) may either stick or slip depending on whether a Coulomb friction criterion, with
particle friction constant µp, is satisfied. Stick interactions are defined as those with
|f (t)|<µp|f (n)| and, like the normal force, are calculated from a linear spring–dashpot
with parameters k(t) and η(t). Interactions with greater computed tangential forces
are labelled as slip events and the tangential force is truncated to |f (t)| = µp|f (n)|.
In this paper parameters are chosen which give k(n)/p > 104 so that calculations are
in the rigid particle regime of da Cruz et al. (2005). Unless stated otherwise the
values µp = 0.4, k(n) = 104 and k(t) = 0.5k(n) are used. Particle interactions with these
values are very short-lived so that results are invariant of the viscous dissipation. The
tangential dashpot is therefore neglected (η(t) = 0) and η(n) = 4.2 is chosen, as in
Silbert et al. (2001), so that the particles have a restitution coefficient of e= 0.9.

To select a mean packing fraction φ0, the system size along the x̂ direction is
determined as L = ĀN/(Hφ0), where Ā is the average grain area. The shear cell is
then populated with N particles with density ρ∗ and mean diameter d and V0 set
to unity in order to match the non-dimensional iCIDR equations. In order to avoid
crystallization effects, the individual particle diameters are chosen randomly from
a discretized distribution. Here an even spread from 0.8d, 0.9d, d, 1.1d and 1.2d
is taken so that the number of particles of each diameter is N/5. These particles,
which are initially elastic but not frictional, are randomly distributed in the domain.
This results in overlaps which would normally cause very large elastic forces, so
firstly there is a period during which the total kinetic energy of all particles is scaled
to a small constant value so that the system can reach an equilibrium state. The
arrangement which results from this procedure has almost uniform packing density
and very small overlaps. Then, the interaction algorithm is altered so that the particles
are approximately rigid (very large k(n)) and frictional. The true simulation begins
after the velocity fields are prescribed.

The steady-state µ(I) and Φ(I) relations found in previous works (e.g. da Cruz
et al. 2005) are first confirmed in order to obtain macroscopic rheological parameters.
Both curves are derived from the same set of experiments in which the solids volume
fractions φ0 take values in the range 0.76–0.8. This range is expected to lie in the
inertial regime and, due to the Φ(I) relation, each packing corresponds to a unique
inertial number. Once the system has reached a steady state, the flow fields are
coarse-grained. This is achieved by averaging in the x̂ direction and then averaging
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within bins which discretize ẑ into boxes of height 2d. Each run is then repeated
10 times in order to calculate error estimates. The solids volume fraction φ and the
two velocity components û and ŵ are clearly defined in the DEM data and allow the
inertial number to be readily calculated from its definition (1.1). Calculation of the
bulk friction coefficient µ requires the macroscopic stress components to be defined.
As in Silbert et al. (2001) this involves a sum over all particles α in the sampling
volume:

σij =
1

2dL

∑
α

[∑
β>α

rαβi f αβj +mαδûαi δû
α
j

]
, (C 1)

where rαβ is the centre-to-centre vector, f αβ is the total force between particle pairs
and δûα = (ûα − V̂0ẑ/Ĥ, ŵα) is the velocity fluctuation of particle α. From the stress
decomposition (2.3) these stress components are used to calculate the pressure p,
deviatoric stress ‖τ‖ and hence µ across the domain. As these quantities are all
found to be invariant of ẑ, the mean value is taken for the µ(I) data presented in
figure 1(a). The volume fraction is also found to be constant at steady state so that
the Φ(I) relation, plotted in figure 1(b), is simply verified using the mean packing
density Φ = φ0.
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