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Abstract

We investigate opportunities offered by telematics and analytics to enable better

informed, and more integrated, collaborative management decisions across construc-

tion sites. We focus on efficient refuelling of assets across construction sites. More

specifically, we develop decision support models that, by leveraging data supplied by

different assets, schedule refuelling operations by minimising the distance travelled by

the refuelling truck — the so-called “bowser” — as well as fuel shortages. Motivated

by a practical case study elicited in the context of a project we recently conducted

at Crossrail, we introduce the Dynamic Bowser Routing Problem. In this problem

the decision maker aims to dynamically refuel, by dispatching a bowser truck, a set

of assets which consume fuel and whose location changes over time; the goal is to

ensure that assets do not run out of fuel and that the bowser covers the minimum

possible distance. We investigate deterministic and stochastic variants of this prob-

lem and introduce effective and scalable mathematical programming models to tackle

these cases. We demonstrate the effectiveness of our approaches in the context of an

extensive computational study designed around data collected on site.

Keywords: Routing; Dynamic Bowser Routing Problem; Stochastic Bowser Rout-

ing Problem; Mixed-Integer Linear Programming; Construction.

1 Introduction

The United Kingdom (UK) National Infrastructure Plan comprises a pipeline of public

investment in infrastructure worth over £100 billion between 2016 and 2020 [35] and has

clear aspirations for low-carbon solutions [34, 36]. Unfortunately, the fragmented nature

of construction logistics represents a challenge to these aspirations.

In the context of a public-private partnership funded by Innovate UK, our team inves-

tigated opportunities offered by telematics and analytics to enable better informed, and

more integrated, collaborative management decisions in construction sites. We considered

∗Corresponding author. Address: 29 Buccleuch place, EH89JS, Edinburgh, UK. Email:
roberto.rossi@ed.ac.uk
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Figure 1: The Crossrail project

a selection of Crossrail costruction sites, a strategic UK infrastructure project for which

Costain is one of the main contractors. Crossrail will deliver a new 118km high frequency,

high capacity railway for London and the South East (Fig. 1). Our team mapped current

construction processes and elicited barriers to the fully integrated, low-carbon construc-

tion supply chain. Building upon this analysis, we developed a set of solutions and related

enabling business models; in this work we describe one of these solutions.

We focus on efficient refuelling of assets across construction sites. More specifically,

we develop decision support models that, by leveraging data supplied by different assets,

schedule asset refuelling operations by minimising the distance travelled by the bowser

truck as well as fuel shortages. Surprisingly, there are only few comparable studies in the

literature, none of which fully addresses this challenge.

Our work can be broadly positioned within the Inventory Routing literature. The field

of Inventory Routing (IR), whose origins can be traced back to [9], encompasses problems

which combine vehicle routing and inventory management decisions.

The origins of the “Truck Dispatching Problem,” a generalization of the Traveling

Salesman Problem, date back to the seminal work by [24]. Since the early days, a sizeable

literature developed on the so-called Vehicle Routing Problem (VRP), whose aim is to

dispatch a fleet of vehicles on a given network to serve a set of customers while meeting a

number of constraints. A comprehensive discussion on the VRP can be found in [22, 31].

Pioneering works in inventory control were carried out by [33], who introduced the

concept of “economic order quantity,” and [61], who discussed the first lot-sizing algorithm

for a finite-horizon inventory system subject to dynamic demand. Lot-sizing models are

surveyed in [26, 53]; recent developments in stochastic lot sizing are surveyed in [59].

In IR optimisation is delegated to a central entity that jointly optimises all decisions.

Recent surveys in the area include [15, 4, 14]. The first exact approach to the Inventory

Routing Problem (IRP) was proposed by [5], who considered the single-vehicle case. Com-

putationally efficient approaches to this problem were discussed in [6, 20]. Approaches for

the multi-vehicle case include [21, 19, 2]. Stochastic IRP problems, in which customer

demand is modeled as a random variable, include the seminal work by [27], and a number

of more recent contributions [30, 42, 1, 43, 37, 38, 62, 58].

The Dynamic Bowser Routing Problem (DBRP), discussed in this work, presents a

number of similarities and differences with the classical IRP and its existing variants

presented in the literature. Like the classical IRP, the DBRP features a warehouse (the
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fuel cistern), a truck shipping an “item” (the fuel), and a number of recipients (the assets)

for such item. Like retailers in the IRP, assets hold inventory (the fuel) that is depleted

over time. The key difference from existing works in the IRP literature is the fact that

assets are free to move in the network that represents our construction site layout; this

means that an asset location may change over time and that an asset will move across the

network over time together with its inventory. Moreover, the bowser can only move from

one node of the network to an adjacent one at any given time period; while in classical

IRP one needs to determine the routes visiting the customers served at that time period.

Works on Probabilistic Traveling Salesman Problem [40] and Stochastic Vehicle Rout-

ing Problem [29] have considered situations in which a customer may be present at a

given node of the network with a prescribed probability, but we are not aware of works

investigating the case in which the very same customer, which holds inventory that may

need to be replenished, moves from one node to another over time in a deterministic or

stochastic fashion.

A number of other works in the literature share similarities with our study, although

in different application domains. We hereby provide a survey of what we believe are the

most relevant application domains; for each domain, we try to stress the key differences

from our problem.

In [45, 29] the authors investigated arc routing problems motivated by winter gritting

applications where the “timing” of each intervention is crucial and service cost increases

if intervention is carried out outside the prescribed time window. Our model also features

similar “timing” constraint related to asset fuel stockout, but in road gritting, as in classical

IRP, assets that are replenished (i.e. gritted roads) do not move from one period to the

next.

A stream of literature that gained substantial momentum in recent times is that on

electric vehicle refueling [44, 47, 7]. In electric vehicle refueling assets do move over

time from one node of the road network to the next together with their battery, which

can be seen as energy inventory. However, refueling stations have a fixed location and

the problem typically addresses a strategic decision whose aim is to determine where to

position refueling stations.

Rebalancing in bike sharing [13, 25] is another problem that attracted considerable

interest in recent time. In this problem, the aim is to utilise one or more trucks in order

to regularly rebalance the number of bikes located at self-service stations. The “pick-up

and delivery” nature of this problem clearly differentiates it from our problem.

Moving our attention to robotics, recently [50, 51, 52] investigated stochastic collection

and replenishment of agents motivated by use cases in mining and agricultural settings

in which a replenishment agent transports a resource between a centralised replenishment

point to agents using the resource in the field. They employ Gaussian approximations to

quickly calculate the risk-weighted cost of a schedule; a branch and bound search then

exploits these predictions to minimise the downtime of the agents. Previous works in this

area mainly focused on scheduling the actions of the dedicated replenishment agent from

a short-term and deterministic angle. The discussion in [52, p. 59] presents similarities
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to our setup; this emphasises the practical relevance of our study. However, our modeling

and solution framework has the advantage of relying solely on MILP modeling and not

on ad-hoc algorithms to predict future asset resource levels. Moreover, the discussion in

[52] assumes that uncertain parameters and variables are normally distributed, while our

approach based on piecewise linearisation of loss functions does not require this assumption

and can accommodate any distribution.

Finally, our problem can be seen as a simplified version of the Aerial Fleet Refueling

Problem (AFRP) [8] in which the aim is to schedule deployment of tankers and receiver

aircraft, located at diverse geographical locations, in support of immediate and anticipated

military operations. In contrast to the DBRP, the AFRP features a complex multicriteria

and hierarchical objective function that does not simply minimize the distance covered by

the tanker aircraft. Furthermore, this problem features a substantial number of additional

constraints related to safety of crew and aircrafts. A number of more recent works investi-

gate the Aerial Refueling Scheduling Problem (ARSP) [41], whose aim is to determine the

refueling completion times for fighter aircrafts on multiple tankers in order to minimize

the total weighted tardiness. The ARSP however does not consider the topology of the

theatre of operations.

Having surveyed related works, we next outline our contributions:

• motivated by a practical case study elicited in the context of our project, we introduce

the DBRP;

• we develop mathematical programming models to tackle deterministic as well as

stochastic variants of the problem and we augment these models with valid inequal-

ities that enhance computational performances;

• we introduce a comprehensive test bed built upon real world scenarios and data

observed in the context of our experience at Crossrail sites and we carry out a

thorough computational study based on it; our mathematical programming models

scale well and can tackle instances of realistic size in reasonable time;

• for the stochastic variant of the problem, we contrast results obtained via our math-

ematical programming heuristic against the optimal policy obtained via stochastic

dynamic programming; our analysis shows that our approximation is effective.

The rest of this work is organised as follows. In Section 2 we survey telemetry systems

and related datasets that have been used in our study. In Section 3 we introduce the

DBRP and an associated mathematical programming model. In Section 4 we discuss

the Stochastic Bowser Routing Problem (SBRP), which generalises the DBRP to deal

with stochastic factors, such as asset fuel consumption and location on site; we discuss

a mathematical programming heuristic for the case in which asset fuel consumption is

stochastic. In Section 5 we present our computational study investigating effectiveness

and scalability of our models. Finally, in Section 6 we draw conclusions.
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2 Telemetry at Crossrail construction sites

Modern construction machines, such as excavators, bowser trucks, but also power genera-

tors and pumps, feature a plethora of sensors including but not limited to GPS location,

fuel level, and engine status. Telemetry is the transmission of measurements collected by

these sensors from the equipment to the point of storage/consumption of the data [28, 48].

By building upon telemetry, telematics brings together sensor technologies, telecommuni-

cation, and computer science to monitor and control remote objects [49]. There is a close

connection between telematics and analytics [57]. Telematics systems rely on visualisation

technologies (descriptive analytics), on predictive algorithms (predictive analytics), and

on optimisation models (prescriptive analytics) to support and automate decision making.

The introduction of sector-wide standards such as the Association of Equipment Man-

ufacturers Professionals (AEMP) Telematics Standard [3] has made it possible to collect

and integrate data from a wide range of sources located across a single or multiple con-

struction sites. By relying on this standard, live as well as historical data for each piece

of equipment can be obtained from Application Programming Interfaces (APIs) that rely

on standard HTTP protocols. This opens up a wide range of opportunities to deploy

analytics across the construction site. A sample of telemetry data in XML format that

can be obtained from assets by leveraging the AEMP standard v1.2 is shown in our Sup-

plementary Material. Sampling rate varies from one manufacturer to another, for instance

the JCB LiveLinkTM system remotely samples data from assets every five minutes, while

Komatsu KomtraxTM features a coarser sampling rate of thirty minutes.

In this work we exploit two indicators that can be currently monitored via existing

telemetry systems: asset (GPS) location and fuel consumption: Fig. 2 illustrates location

of a JCB 540-170 telehandler at the Connaught bridge Crossrail site in London between

the 15th and the 19th of March 2016; Fig. 3 illustrates cumulative fuel consumption of

three JCB 540-170 telehandlers deployed on various Crossrail sites between February and

March 2016.

Telemetry data can be used to track past fuel consumption and predict future con-

sumption via predictive analytics techniques. The analysis of past performance generally

proceeds from the visualisation of relevant indicators, for instance in the form of heatmaps

(Fig. 4). Standard methods such as linear and non-linear regression, possibly taking into

account asset location or other relevant predictor variables, can be employed to predict fu-

ture fuel consumption. The thorough investigation of suitable predictive analytics strate-

gies to determine future asset fuel consumption or location is beyond the scope of this

work. However, in the economy of our investigation it is relevant to determine prototype

consumption profiles for a range of assets deployed on construction sites, which we can

then use in our computational study.

By looking at the heatmap in Fig. 4 it is clear that asset utilisation follows specific

patterns; for instance, this asset operates from early morning to mid afternoon and does

not generally operate over weekends — note that different assets feature different profiles,

for instance some assets operate 24/7. In this specific instance, if we consider a time

window during which the asset is in use — e.g. the time window from Mon, 6th of June
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Figure 2: GPS location of a JCB 540-
170 telehandler at the Connaught bridge
Crossrail site in London between the
15th and the 19th of March 2016
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Figure 3: Fuel consumption (in liters) of
three JCB 540-170 telehandlers deployed
on Crossrail sites between February and
March 2016

Mon, 6th of June

Sat, 11th of June

Fuel (lt)

Figure 4: Heatmap representing fuel consumption (in litres) for a Crossrail JCB 540-170
telehandler between the 1st of June and the 30th of June 2016; note that time is divided
into discrete time periods that last 15 minutes each.
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to Sat, 11th of June highlighted in Fig. 4 — a compound Poisson distribution with pa-

rameter λ = 0.502645 and jump size distribution Poisson(0.602257) appears to provide a

good fit for the consumption pattern observed during independent time buckets of 15 min-

utes. Our empirical study revealed that a compound Poisson distribution with Poisson

jump size distribution generally provides a good fit for asset consumption data we col-

lected in June 2016; by exploiting a month worth of fuel consumption data collected from

different types of assets, including a variety of telehandlers and excavators, we excluded

periods of inactivity (i.e. nights and weekend) and we fitted distribution parameters using

a maximum likelihood approach; the resulting distributions are shown in Table 1, the

respective p-values are also reported in the table. Further details on the analysis carried

out, including heatmaps for assets analysed, are provided in our Supplementary Material.

In addition to analyzing asset fuel consumption distributions, we also analysed the

behaviour of a 7.5 tonne bowser truck fitting a 950 litres fuel tank that refuels assets

across a number of Crossrail construction sites. We installed a GPS logger on the truck

and tracked its movements over a working week from Mon, 20th of June to Fri, 24 of June.

The daily distance covered by the bowser truck and the number of journeys are reported

in Fig. 5; Fig. 6 shows distance covered at different hours. A typical day for the bowser

truck comprises two long (approx 40km) journeys across construction sites, and about 20

short journeys carried out within specific construction sites. An example of a long journey

between the Connaught bridge site and the Plumstead site site of Crossrail is shown in

Fig. 7; examples of short on-site journeys at Plumstead site are given in Fig. 8.

In the rest of this work we investigate optimisation models that rely upon telemetry

data to schedule asset refuelling operations across construction sites.

3 The Dynamic Bowser Routing Problem

Motivated by the discussion in the previous sections, we introduce the DBRP. A compre-

hensive table of symbols used in the rest of this work is introduced in Appendix I. We

consider a construction site with A assets (e.g. generators, telehandlers, excavators) all

powered by a single type of fuel (e.g. diesel). The construction site map is given. This

map takes the form of a directed graph 〈V,E〉, where V is the set of nodes, E is the set

Compound Poisson
Asset model λ jump size distribution p-value

JCB 540-170 0.503 Poisson(0.602) 0.920
JCB 540-170 0.774 Poisson(0.684) 0.450
JCB 540-170 0.373 Poisson(1.005) 0.933
JCB JS130 1.039 Poisson(1.011) 0.461
JCB JS130 0.926 Poisson(0.394) 0.117
JCB 86C-1 0.477 Poisson(0.961) 0.779
JCB 531-70 0.283 Poisson(0.052) 0.516

Table 1: Fitted distribution for a selection of JCB assets deployed on Crossrail sites in
June 2016; the distribution represent the fuel consumption over a 15 minutes time bucket.
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Figure 8: Two short on-site journeys at Plumstead site; the first journey (on the left hand
side) covered 1.3km in 44 minutes and comprises four stops of less than five minutes each;
the second journey (on the right hand side) covered 1.7km in 37 minutes and comprises
five stops of less than five minutes each.

Figure 9: Sample site network for the Connaught bridge Crossrail site in London; triangles
represent assets.

of arcs, and N = |V |. We assume this graph to be connected, but not necessarily fully

connected. Nodes in V represent relevant locations across the construction site; an arc

(v1, v2) in E connects two locations v1 ∈ V and v2 ∈ V if it is possible to travel from v1

to v2 in one time period. Essentially, this graph can be seen as a network that represents

adjacent accessible locations (i.e. nodes), and their respective direct travel distances (i.e.

arc weights), across the construction site. This form of map representation is common in

GPS navigation systems and can be easily obtained via GPS traces.1 It should also be

noted that this setup is not limited to a single construction site and the graph may as well

represent multiple interconnected sites.

We consider a discrete planning horizon that comprises T periods. At each point in

time, an asset a = 1, . . . , A can be found in one and only one node v ∈ V ; in practice, on

1see e.g. https://www.openstreetmap.org/

9



the basis of its GPS location an asset will be associated to the nearest node in the site

network (Fig. 9). We assume that asset location lat ∈ V at each time period t ∈ T is

known with certainty. Each asset a features a fuel tank with capacity ca and initial tank

level sa; fuel consumption fat ≥ 0 for an asset at a given time period t ∈ T is given and

known with certainty. We will relax the assumptions of certainty in Section 4.

Each construction site features a fixed site cistern where an infinite amount of fuel is

assumed to be available; in a multi-site setting we assume, without loss of generality, a

single cistern is available for all sites considered. There is a single bowser truck that can

be used to refuel assets. The bowser features a tank with capacity cb and initial level sb,

which is used to store fuel for refuelling assets. To refill its tank, the bowser must return

to the site cistern. We do not model explicitly bowser fuel consumption, since it is unlikely

the bowser will run out of fuel in between two visits to the site cistern: the daily distance

covered by the bowser (Fig. 5) comfortably remains within the range a small truck can

cover.

We model movements so that the bowser can only move from a node to an adjacent

one within a single time period. We assume that refuelling of an asset takes a negligible

time in relation to the size of time periods, and that refuelling can be performed if, at a

given time period, both the bowser and the asset are located at the same node.

Our time modeling strategy resembles a “Large Bucket” strategy, as found in lot-sizing

[12]. The rationale behind our choice of modeling macro (i.e. 10 minutes to 30 minutes)

rather than micro (i.e. real time) periods is related to the fact that, as discussed in Section

2, asset refuelling operations generally require less than five minutes per asset and therefore

fit within a period. Furthermore, the sampling rate of existing telemetry systems is quite

low: between 5 minutes (JCB) and 30 minutes (Komatsu) between two readings.

Even in a deterministic setting, it is unrealistic to require that no asset stocks out, as

the problem may admit no solution; we therefore choose to allow asset fuel stock outs. If

an asset stocks out of fuel, we enforce a penalty cost p per litre of fuel short at the end of

a given period. We assume operations do not stop as a consequence of a fuel shortage; a

premium price will be paid to ensure work continuity, e.g. cost of expediting fuel, averting

operation delays. Our asset therefore operate in a “lost sales” setting, i.e. when an asset is

out of fuel, lost work and associated fuel consumption are not backlogged from one period

to the next.

To summarize, the order of events within a given period t in the planning horizon is as

follows. At the beginning of a period a bowser replenishment takes place if the bowser is

at the cistern node and needs to be replenished; this replenishment is instantaneous.

Immediately after, all assets that happen to be at the same node as the bowser are

replenished according to the given refuelling plan. Assets then start operating and consume

fuel according to the given consumption fat . If an asset runs out of fuel, a premium price

of p per litre of fuel short is paid to ensure business continuity. At the end of the period

all assets, including the bowser, move instantaneously to their next location.
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3.1 A Mixed-Integer Linear Programming model

We introduce a mixed-integer linear programming (MILP) formulation for the DBRP.

Our formulation features parameters di,j , denoting the distance between node i and

node j in the site network; and binary parameter δi,j that is set to one iff it is possible to

travel from node i to node j in one time period. There are five sets of decision variables

• V i
t , a binary variable set to one iff, at time t, the bowser is at node i;

• T i,jt a binary variable set to one iff the bowser transits from node i to node j at the

end of period t, we only introduce variables T i,jt for i, j such that δi,j = 1;

• Qat , the nonnegative quantity of fuel delivered to asset a at time t;

• Sat , the nonnegative fuel shortage for asset a at time t;

• Bt, the nonnegative quantity of fuel transferred from the cistern to the bowser at

time t.

The MILP model is presented in Fig. 10. The objective function (1) minimises the

total distance covered by the bowser plus the penalty cost associated with fuel shortages;

note that both these values can be expressed in the same unit of measure, e.g. monetary

units. Constraints (2) ensure that fuel cannot be transferred from the cistern to the bowser

unless the bowser is at node 1; moreover, it makes sure that the nonnegative quantity of

fuel Bt transferred from the cistern to the bowser at time t does not exceed the bowser

capacity cb. Constraints (3) capture the fact that the initial bowser tank level (sb) plus

all bowser replenishments (Bk) up to period t minus all fuel (Qak) delivered to assets in

periods 1, . . . , t − 1 should not exceed bowser capacity cb. Conversely, constraints (4)

represent the so-called “inventory conservation constraints,” which ensure that the initial

bowser tank level (sb) plus all bowser replenishments (Bk) up to period t minus all fuel

(Qak) delivered to assets in periods 1, . . . , t should remain nonnegative. Constraints (5)

capture the fact that, at each point in time, the bowser must be visiting one and only one

network node. Constraints (6) establish that if the bowser is at node i at time t, it must

transit to some node at the end of period t. Constraints (7, 8, 9) are channeling constraints

linking variables T i,jt (bowser transitions) and variables V i
t (bowser visiting a node). Asset

refuelling and inventory conservation constraints are expressed via constraints (10) and

(11). More specifically, constraints (10) ensure that the initial fuel level of an asset (sa)

plus all fuel deliveries received from the bowser (Qak) up to period t plus all previous fuel

shortages (Sak) up to period t − 1 (recall we operate in a “lost sales” setting) minus fuel

consumption up to period t should be greater or equal to minus the shortage of fuel at

the end of time t (−Sat ). Conversely, constraints (11) ensure that the initial fuel level of

an asset (sa) plus all fuel deliveries received from the bowser (Qak) up to period t plus all

previous fuel shortages (Sak) up to period t− 1 minus fuel consumption up to period t− 1

should not exceed the asset tank capacity (ca). The fact that an asset can be refuelled

only if both machine and bowser are at the same node is captured by constraints (12), in

which lat,i is a binary parameter that is set to one iff asset a is at node i during time period

t ∈ T ; i.e iff lat = i. Finally, constraints (13) capture decision variable domains.
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min
T∑
t=2

∑
i,j|δi,j=1

T i,jt−1di,j + p
T∑
t=1

A∑
a=1

Sat (1)

Subject to

Bt ≤ V 1
t cb t = 1, . . . , T (2)

sb +

t∑
k=1

Bk −
t−1∑
k=1

A∑
a=1

Qak ≤ cb t = 1, . . . , T (3)

sb +
t∑

k=1

Bk −
t∑

k=1

A∑
a=1

Qak ≥ 0 t = 1, . . . , T (4)

N∑
i=1

V i
t = 1 t = 1, . . . , T (5)∑

j|δi,j=1

T i,jt−1 = V i
t−1 t = 2, . . . , T ; i = 1, . . . , N (6)

T i,jt−1 ≥ V
i
t−1 + V j

t − 1 t = 2, . . . , T ; i, j|δi,j = 1 (7)

T i,jt−1 ≤ V
i
t−1 t = 2, . . . , T ; i, j|δi,j = 1 (8)

T i,jt−1 ≤ V
j
t t = 2, . . . , T ; i, j|δi,j = 1 (9)

sa +

t∑
k=1

Qak +

t−1∑
k=1

Sak −
t∑

k=1

fak ≥ −Sat t = 1, . . . , T ; a = 1, . . . , A (10)

sa +
t∑

k=1

Qak +
t−1∑
k=1

Sak −
t−1∑
k=1

fak ≤ ca t = 1, . . . , T ; a = 1, . . . , A (11)

Qat ≤ ca
N∑
i=1

V i
t l
a
t,i t = 1, . . . , T ; a = 1, . . . , A (12)

T i,jt , V i
t ∈ {0, 1}

Qat , Bt ≥ 0

0 ≤ Sat ≤ fat

t = 1, . . . , T ; i, j|δi,j = 1

t = 1, . . . , T ; a = 1, . . . , A

t = 1, . . . , T ; a = 1, . . . , A

(13)

Figure 10: An MILP model for the Dynamic Bowser Routing Problem
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3.2 Valid Inequalities

We next introduce three sets of valid inequalities [23] inspired by the discussion in [5].

The first set of inequalities captures the idea that the amount of fuel that can be

delivered to assets is constrained by the number of visits the bowser pays to each asset as

well as by the asset and bowser capacities.

Lemma 1. For t = 1, . . . , T and a = 1, . . . , A

t∑
k=1

N∑
i=1

V i
k l
a
k,i ≥

(
t∑

k=1

fak − sa −
t∑

k=1

Sak

)
/min(ca, cb) (14)

Proof. Q =
∑t

k=1 f
a
k − sa −

∑t
k=1 S

a
k is the net amount of fuel that has been delivered to

the asset by period t; the minimum value between asset a tank capacity ca and the bowser

capacity cb can be used to determine the minimum number of visits required to deliver Q,

the total number of visits paid must then be greater or equal to this value.

The second set of inequalities makes sure that if an asset a has not been visited by the

bowser in the time span i, . . . , j, then the sum of asset a refuelling quantities Qak in this

time span must be set to zero.

Lemma 2. For i, j = 1, . . . , T , i < j, and a = 1, . . . , A

M
N∑
n=1

j∑
k=i

V n
k l

a
k,n ≥

j∑
k=i

Qak (15)

where M =
∑T

k=1 f
a
k .

Proof. These constraints immediately follow from the description above; we let M =∑T
k=1 f

a
k , since the total amount of fuel delivered to an asset should not exceed its total

consumption up to time T .

The third set of inequalities captures the fact that, if the bowser does not pay a visit

to asset a in the time span j, . . . , t, then the net fuel level at period t is solely determined

by deliveries Qa1, . . . , Q
a
j−1.

Lemma 3. For a = 1, . . . , A, t = 1, . . . , T and j = 1, . . . , t

sa +

j−1∑
k=1

Qak +

t∑
k=1

Sak −
t∑

k=1

fak ≥ −M
N∑
n=1

t∑
k=j

V n
k l

a
k,n (16)

where M =
∑t

k=1 f
a
k .

Proof. These constraints immediately follow from the description above; we let M =∑t
k=1 f

a
k , since a right hand side value of −

∑t
k=1 f

a
k deactivates the constraint.

13



3.3 Numerical example

We now introduce a running example to support our discussion. We consider a planning

horizon of T = 10 periods and a single site network with N = 10 nodes. The distance

matrix is shown in Table 2. There are A = 3 assets with tank capacity ca = 20 and initial

j
1 2 3 4 5 6 7 8 9 10

i

1 96 107
2 121
3 92 103 103 92 77
4 90 91
5 102 126
6 72 139 89
7 80 83
8 119 90 91
9 83

10 79

Table 2: Distance matrix representing the distances di,j for the numerical example; an
empty cell denotes a forbidden transit

tank level sa = 10 for all a = 1, . . . , A. The location of each asset at each time period is

illustrated in Table 3. Fuel consumption of each asset at each time period is illustrated in

Period
1 2 3 4 5 6 7 8 9 10

Asset 1 5 10 1 1 4 4 2 6 6 6
Asset 2 6 1 9 3 2 3 7 7 10 5
Asset 3 10 5 7 5 10 2 10 10 6 3

Table 3: Location (i.e. node index in the site graph) of each asset at each time period.

Table 4; the penalty cost per litre of fuel short is p = 100. Finally, the bowser capacity is

Period
1 2 3 4 5 6 7 8 9 10

Asset 1 4 4 2 1 3 1 4 4 3 3
Asset 2 4 2 3 4 3 1 4 2 4 4
Asset 3 2 4 1 2 2 4 1 1 2 2

Table 4: Fuel consumption (in liters) of each asset at each time period.

cb = 300 and the initial bowser level is sb = 10. An IBM ILOG OPL implementation of

this example is provided in our Electronic Addendum EA1.2

We solve the MILP model discussed by using IBM ILOG CPLEX Optimization Studio

Version 12.6; the optimal solution, which yields a cost of 494, is found in 1.08 seconds on a

2.2GHz Intel Core i7 Macbook Air fitted with 8Gb of RAM. In this specific instance, this

figure simply represents the total distance covered by the bowser, since there are no fuel

2Our Electronic Addendum is available on GitHub https://github.com/gwr3n/dbrp.
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shortages. The optimal bowser routing plan is displayed in Fig. 11 and 12; the optimal

refuelling plan is shown in Fig. 13.

12 5

3

4

8

10

6

9

7

Figure 11: Optimal bowser routing plan.

t Transition

1 1→ 1
2 1→ 1
3 1→ 5
4 5→ 6
5 6→ 3
6 3→ 2
7 2→ 1
8 1→ 1
9 1→ 1

Figure 12: Optimal bowser routing plan.

Period
1 2 3 4 5 6 7 8 9 10
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40

Fuel volume (lt)

Bowser

Asset 1

Asset 2

Asset 3

Figure 13: Bowser and asset refueling plan.

4 The Stochastic Bowser Routing Problem

In the DBRP asset location and fuel consumption throughout the planning horizon are

known with certainty. In this section we investigate stochastic variants of the problem; we

shall name this problem the Stochastic Bowser Routing Problem (SBRP).

4.1 A Stochastic Dynamic Programming formulation

We now introduce a dynamic programming formulation that can seamlessly capture deter-

ministic as well as stochastic variants of the problem; in other words, this approach makes

it possible to relax the assumption of certainty for asset location or fuel consumption. This

flexibility comes at a price; in fact, the curse of dimensionality makes this approach far

less scalable than the mixed integer linear programming approach previously discussed.

However, at least for small instances, this formulation can be effectively employed to derive

optimal policies and investigate the cost of uncertainty.
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Introduced by Bellman in the late Fifties [11] Dynamic Programming is a powerful

modelling and solution framework for decision making under uncertainty. To keep our

discussion focused, we restrict the discussion to discrete stochastic dynamic programs. To

formulate a problem as a stochastic dynamic program the decision maker must define the

planning horizon length, the state space, the set of feasible actions for each state of the

state space, the transition probability from one state-action pair to the set of admissible

future states and the immediate value function associated with every given state-action

pair. At the core of stochastic dynamic programs we find a “functional equation” — also

known as Bellman’s equation. In its most general form, a functional equation vt(s) can

be expressed as

vt(s) = min
k∈As

{
cks +

∑
s′

pks,s′vt+1(s′)

}
, (17)

where As denote the set of all feasible actions in state s; cks denotes the immediate cost

incurred for the state-action pair 〈s, k〉; and pks,s′ is the transition probability from state

s to state s′ when action k is selected. Eq. 17 is clearly independent of the problem

at hand. Note that, without loss of generality, the problem is here expressed in cost

minimization form. Once all aforementioned problem elements have been defined, one can

apply a backward or a forward recursion algorithm to tabulate the functional equation

— a process known in the literature as “memoization” [46] — and determine an optimal

policy.

We next formulate the SBRP as a stochastic dynamic program.

Planning horizon: T periods.

States: a state is encoded as a 5-tuple 〈t, btank, bloc,mtank,mloc〉; where t is the period

associated with the state, btank is the bowser tank level, bloc is the bowser position in the

network, mtank is an array of A asset tank levels, mloc is an array of A asset locations.

Actions: an action is a 4-tuple 〈s, bref, b
′
loc,mref〉; where s is the state associated with

the action, bref is the bowser refuelling quantity for the current period, b′loc is the bowser

location in the next period, mref is an array of A asset refuelling quantities.

Transition probabilities: the transition probabilities depend on what problem pa-

rameters are modelled as random variables. We have developed two variants of the prob-

lem: one in which asset movements from period t to period t+ 1 are captured by means of

a probability mass function over the nodes of the construction site graph; and another in

which an asset fuel consumption in period t is expressed as a generic probability distribu-

tion over a discrete support. In both cases, transition probabilities pks,s′ are immediately

obtained from the given distributions.

Immediate value function: the immediate value function is given by the distance

travelled by the bowser over the arc (bloc, b̄loc) selected by action k, plus the expected

penalty cost paid at the end of the period for each unit of fuel short.

Once all problem elements have been defined, the decision maker may tackle the prob-

lem numerically by applying established complete approaches such as forward or backward

recursion algorithms, or approximate dynamic programming algorithms [54]. We imple-
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mented the model discussed using an open source general purpose library called jsdp.3.

Our implementation of the DBRP is available in package jsdp.app.routing; this package

comprises a deterministic formulation, as well as two stochastic variants of the problem

in which asset location and asset fuel consumption, respectively, are modelled as random

variables. Unfortunately, this approach can only tackle small instances; the interested

reader may refer to [16] for applications of stochastic dynamic programming to inventory

routing instances of realistic size.

In what follows we will present an effective Mixed-Integer Linear Programming heuris-

tic for the case in which asset fuel consumption is random. We leave the investigation of

effective heuristics for the random asset location case as future work.

4.2 A Mixed-Integer Linear Programming heuristic

We consider an SBRP in which asset a’s fuel consumption in period t is a random variable

fat with known probability distribution over nonnegative support, e.g. Poisson; our aim is

to model and solve heuristically this problem.

The SBRP under random fuel consumption is a complex multi-stage stochastic optimi-

sation problem; as mentioned in the previous section, a stochastic dynamic programming

approach can only solve small instances. To develop our heuristic, we proceed as follows:

we approximate the original multi-stage problem as a two-stage stochastic optimisation

problem with complete recourse [17]; and we then employ a “receding horizon” approach

[10] to apply this approximation in the context of the original multi-stage setting.

Formulating the SBRP as a two-stage stochastic optimisation problem effectively

means determining, at the beginning of the planning horizon, a refuelling plan comprising

the optimal bowser route as well as asset replenishment quantities for all future period of

the planning horizon — note that these decisions are fixed once and for all at the beginning

of the planning horizon and they do not depend on random variable realisations. Once the

plan is determined, we observe random fuel consumption for all assets and periods and

determine the values of recourse variables, which represent the amount of fuel spare/short

for each asset at each time period. The optimal plan is the one that minimises travel costs

as well as the expected total penalty cost incurred as a consequences of fuel shortages.

To model this problem we introduce the following recourse decision variables:

• [Iat ]−, the expected fuel shortage for asset a at time t, where [Ia0 ]− = max(−sa, 0);

• [Iat ]+, the expected fuel inventory for asset a at time t, where [Ia0 ]+ = max(sa, 0);

• [Eat ], the expected fuel quantity exceeding tank capacity for asset a at time t.

The certainty equivalent MILP formulation of the problem is presented in Fig. 14.

The objective function (18) now minimizes the sum of the total bowser routing cost and

the expected total penalty cost incurred for fuel shortages.

Constraints (2), (3), (4), (5), (6), (7), (8), (9), (12) are those originally discussed

for the DBRP and do not change. However, asset refuelling and inventory conservation

3http://gwr3n.github.io/jsdp/
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min
T∑
t=2

∑
i,j|δi,j=1

T i,jt−1di,j + p
T∑
t=1

A∑
a=1

[Iat ]− (18)

Subject to

(2), (3), (4), (5), (6), (7), (8), (9), (12)

[Iat ]− = La1,...,t(sa +
t∑

k=1

Qak +
t−1∑
k=1

[Iak ]− −
t∑

k=1

[Eak ]) t = 1, . . . , T ; a = 1, . . . , A (19)

[Iat ]+ = L̂a1,...,t(sa +

t∑
k=1

Qak +

t−1∑
k=1

[Iak ]− −
t∑

k=1

[Eak ]) t = 1, . . . , T ; a = 1, . . . , A (20)

[Eat ] = max([Iat−1]+ +Qat − ca, 0) t = 1, . . . , T ; a = 1, . . . , A (21)

T i,jt , V i
t ∈ {0, 1}

Bt ≥ 0

Qat , [Iat ]+, [Iat ]−, [Eat ] ≥ 0

0 ≤ Sat ≤ fat

t = 1, . . . , T ; i, j|δi,j = 1

t = 1, . . . , T

t = 1, . . . , T ; a = 1, . . . , A

t = 1, . . . , T ; a = 1, . . . , A

(22)

Figure 14: An MILP model for the Bowser Routing Problem under stochastic fuel con-
sumption

constraints (10) and (11) must be adapted in order to take into account the fact that fat

is now a random variable.

Given a fuel quantity Q, to compute the expected fuel shortage [Iat ]− for asset a at

time t as well as the expected fuel inventory [Iat ]+ for asset a at time t, we leverage the first

order loss function La1,...,t(Q) and the complementary first order loss function L̂a1,...,t(Q),

respectively. These are defined as follows

L̂a1,...,t(Q) =

Q∑
k=0

(Q− k)g1,...,t(k) (23)

La1,...,t(Q) =
∞∑
k=Q

(k −Q)g1,...,t(k) (24)

where g1,...,t is the probability mass function of fa1 + . . .+ fat ; these expressions are easily

generalised to the case in which random variables are continuous [56].

Our system operates under a “lost sales” setting; by construction, La1,...,t(Q) represents

the sum of expected shortages observed in periods 1, . . . , t if the available fuel is Q.

Lemma 4. Let Lat (Q) represent expected shortages observed in period t, then

Lat (Q) = La1,...,t(Q)− La1,...,t−1(Q);

similarly,

L̂at (Q) = L̂a1,...,t(Q) + La1,...,t−1(Q).
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Proof. Follows from linearity of expectation.

Lemma 5. We can approximate Lat (Q) and L̂at (Q) as follows

Lat (Q) ≈ La1,...,t(Q+ La1,...,t−1(Q));

L̂at (Q) ≈ L̂a1,...,t(Q+ La1,...,t−1(Q)).

Proof. In a “lost sales” setting, shortages are reset at the end of every period. The intuition

behind our approximation is to increase the available fuel Q by an amount La1,...,t−1(Q)

equal to the sum of expected shortages observed in previous periods.

Lemma 6. The expected fuel quantity exceeding tank capacity for asset a at time t is

[Eat ] = max([Iat−1]+ +Qat − ca, 0).

Proof. Under a “lost sales” setting shortages are reset at the end of every period, hence

the expected initial fuel level at period t is [Iat−1]+; Qat and ca are constant.

Constraints (19) and (20) are obtained by applying Lemma 5 and by reducing the

available fuel by the sum of expected fuel quantities exceeding tank capacity for asset a

at times 1, . . . , t. Constraints (21) follow directly from Lemma 6.

Constraints (19) and (20) can be easily implemented via piecewise linearization tech-

niques presented in [55, 56]. More specifically, let ω = fa1 + . . . + fat and gω(·) denote

the probability density function of ω. Consider a partition of the support Ω of ω into R

disjoint compact subregions Ω1, . . . ,ΩR. The complementary first order loss function is

piecewise linearised as

L̂a1,...,t(Q) =

N∑
r=1

pr max(Q− E[ω|Ωr], 0), (25)

where pr =
∫

Ωr
gω(t)dt and E[ω|Ωr] = 1

pr

∫
Ωr
tgω(t)dt for all r = 1, . . . , R [56, Lemma

10]. A linear expression for the first order loss function is derived by applying the linear

transformation La1,...,t(Q) = L̂a1,...,t(Q)− (Q− E[ω]) [56, Lemma 3].

The max(a, b) operator, which appears in constraints (21) and (25) can be implemented

using the IBM ILOG OPL maxl command; alternatively, one may rely on the piecewise

command in IBM ILOG OPL [39].

Note that our approximation is similar to the one adopted in [32] to model expected

waste in perishable inventory control.

4.3 Numerical example

We consider the same numerical example presented in Section 3.3. However, fuel con-

sumption in each period is now random. More specifically, fuel consumptions in different

periods are independently distributed random variables that follow a Poisson distribution
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with mean values presented in Table 4. We solve this instance by using the MILP ap-

proach presented in the previous section; we employ a piecewise linearisation comprising

8 segments.

By comparing Fig. 12 and 16, it is easy to see that the optimal routing plan did not

change with respect to the deterministic problem; its cost is therefore still 494. However,

by contrasting Fig. 13 and Fig. 17 it is apparent that the optimal refuelling plan has

changed. Moreover, since now fuel consumption is stochastic, we do expect to observe

shortages. An overview on expected shortages is shown in Table 5; the expected total

amount short is 1.68. Since the penalty cost is 100, the expected total cost predicted

by the MILP model — comprising bowser routing cost and expected fuel shortage cost is

494+100 ·(1.68) u 662. The expected total cost obtained via Monte Carlo simulation (500

replications) is 655 — 95.0% confidence interval for mean (student): (633, 676). Ideally,

one may want to compare this cost against the expected total cost of the optimal plan

obtained via stochastic dynamic programming. However, this instance is already too large

to be solved to optimality. In Section 5.2 we will carry out a comprehensive numerical

study on smaller instances to investigate the quality of our approximation.
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Figure 15: Optimal bowser routing plan.

t Transition

1 1→ 1
2 1→ 1
3 1→ 5
4 5→ 6
5 6→ 3
6 3→ 2
7 2→ 1
8 1→ 1
9 1→ 1

Figure 16: Optimal bowser routing plan.
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Figure 17: Bowser and asset refueling plan.

An IBM ILOG OPL implementation of this example is provided in our Electronic
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Period 1 2 3 4 5 6 7 8 9 10

Asset 1 0.027 0.340 0.032 0.038 0.039 0.037 0.049 0.051 0.058 0.066
Asset 2 0.027 0.035 0.032 0.040 0.043 0.040 0.050 0.048 0.055 0.066
Asset 3 0.022 0.034 0.153 0.032 0.038 0.041 0.043 0.045 0.045 0.053

Table 5: Expected fuel shortages; the expected total amount short is 1.6831.

Addendum EA2.

5 Computational Experience

In this section we present our computational study for the deterministic (Section 5.1)

and the stochastic (Section 5.2) settings. All experiments involving MILP models were

performed on a MacBook Air 2.2 GHz Intel Core i7 8 GB of RAM. The optimisation

environment used was IBM ILOG CPLEX Optimization Studio Version 12.6 with de-

fault settings and a time limit of 10 minutes (600 sec). Experiments involving stochastic

dynamic programming were performed on an Intel(R) Xeon(R) @ 3.5GHz with 16Gb of

RAM; the library used was jsdp.4

5.1 Dynamic Bowser Routing Problem

In this section we contrast the computational efficiency of the MILP model presented in

Section 3 to tackle the DBRP. We consider two variants of the model: with and without

valid inequalities presented in Section 3.2. In what follows, we first introduce our test bed

and then present our results.

5.1.1 Test bed

Fuel bowsers come in different sizes and forms, from towable tanks whose capacity ranges

from 500lt to 2000lt, to tanker trucks that may reach up to 15000lt. However, due to

space constraints, a large tanker truck is unlikely to be deployed within a building site.

Generally, these trucks are used to carry fuel to a site cistern, and then smaller towable fuel

tanks or tankers are deployed on site. For this reason we consider three levels of bowser

capacity: 500lt, 1000lt, and 2000lt. Asset tank capacity vary in size depending on the type

of the asset. We will consider the following assets: the JCB 540-170 telehandler, which

fits a 125lt tank; the JCB 531-70 telehandler, which fits a 146lt tank; the JCB JS130, a

13 tons excavator, which fits a 235lt tank; the JCB 86C-1 mini excavator, which fits a

112lt tank. Asset initial fuel levels are uniformly distributed between 0 and 20% of an

asset tank capacity. Fuel consumption in each period of the planning horizon is randomly

generated for each asset by following the distributions in Table 1, which we obtained from

our analysis of JCB LiveLinkTM asset consumption data.

We consider a test bed comprising a total of 108 instances generated as follows: the

planning horizon covers T = 50 periods. The bowser initial tank capacity takes values

cb ∈ {500, 1000, 2000}. The topologies considered in our test bed are shown in Fig. 18;

4The code employed in our experiments is available on http://gwr3n.github.io/jsdp/.
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A: 1 site, 10 nodes B: 1 site, 20 nodes

C: 1 site, 30 nodes

D: 2 sites, 10 nodes each, at a distance of 5 arcs

E: 2 sites, 20 nodes each, at a distance of 5 arcs

F: 3 sites, 10 nodes each, at a distance of 5 arcs

Figure 18: Site topologies considered in our DBRP numerical study.
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these include networks including 1, 2, and 3 sites. Site networks have been generated as

Bernoulli graphs constructed starting with a complete directed graph with n ∈ {10, 20, 30}
vertices and selecting each edge independently through a Bernoulli trial with probability

p = 0.1; this process is repeated until a connected graph is obtained. Since, as discussed

in Section 3, nodes represent adjacent accessible locations in building sites, these graphs

are relatively sparse. Arc lengths are randomly generated from a normal distribution with

mean 100 meters and standard deviation 20 meters. On each site we deploy a number of

assets that ranges in the set {5, 10, 15} — assets on each site are randomly picked from

asset types listed above. Fuel shortage penalty cost take values p ∈ {100, 500}. The

experimental design is full factorial.

To ensure replicability, a complete set of IBM ILOG data files for the test bed is

provided in our Electronic Addendum EA3.

5.1.2 Results

In what follows, we shall refer to the MILP model presented in Section 3 as “MP;” the

MILP model augmented with valid inequalities will be referred to as “MPVI.”

Average key performance indicators recorded by CPLEX are presented in Table 6.

There are a total of 108 instances in our test bed, MP solved 84 of them to optimality

— i.e. 24 instances timed out at 600 sec), MPVI solved 90 of them to optimality —

i.e. 18 instances timed out at 600 sec. The average solution time (including timeouts)

is 217 sec for MP and 122 sec for MPVI; the average time difference between MP and

MPVI is charted in Fig. 19. The average number of nodes explored is 4898 for MP and

319 for MPVI; the average node difference between MP and MPVI is charted in Fig.

20. The average number of simplex iterations5 is almost 800k for MP and about 150k

for MPVI; the average simplex iterations difference between MP and MPVI is charted

in Fig. 21. For those instances that either MP or MPVI could not solve to optimality,

the average optimality gap at timeout is 45.3% for MP and 33.4% for MPVI; the average

optimality gap difference between MP and MPVI is charted in Fig. 22. This analysis

demonstrates the effectiveness of valid inequalities introduced in Section 3; further insights

on the performance on each individual set of inequalities are presented in Appendix II.

5.2 Stochastic Bowser Routing Problem

In this section we investigate the effectiveness and scalability of the MILP heuristic pre-

sented in Section 4.2 for the SBRP. We investigate effectiveness by comparing the simulated

cost of the “true” optimal refueling plan obtained via stochastic dynamic programming

against the simulated cost of the plan obtained via our MILP heuristic. Computing an

optimal refueling plan is computationally demanding, therefore our experiments will be

conducted on a test bed (Section 5.2.1) comprising smaller instances than those presented

in Section 5.1.1. Conversely, scalability will be investigated on this latter test bed.

5This is the total number of simplex method pivoting operations carried out by CPLEX [39].
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Figure 19: Time difference (sec) between
MP and MPVI
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Figure 20: Difference in # explored
nodes between MP and MPVI
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Figure 21: Difference in # simplex iter-
ations between MP and MPVI
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Figure 22: Difference between MP and
MPVI optimality gap (%)

5.2.1 Test bed

We consider a problem over a planning horizon of T = 5 periods. The bowser capacity is

set to 20 and the bowser initial tank level is 0. We consider 3 assets each of which features a

tank with capacity 6; there are three initial tank level (ITL) configurations: s1 = {0, 0, 0},
s2 = {3, 0, 5}, and s3 = {5, 5, 5}, where ska is the initial tank level of asset a in the k-th

configuration. Fuel consumption of asset k in period t follows a Poisson distribution with

mean λkt which has been truncated by fixing a maximum consumption of 7.6 We consider

three possible consumption patterns (CP): in the first pattern, λkt = 3 for all assets and

periods; in the second pattern, λ1
t = 2, λ2

t = 1, λ3
t = 3, for all t = 1, . . . , T ; in the third

pattern, λ1 = {1, 2, 3, 4, 5}, λ2 = {5, 4, 3, 2, 1}, λ3 = {3, 3, 1, 1, 2}, where λkt is the t-th entry

of λk. We consider two possible values for the fuel stockout penalty cost p = {50, 100}.
There are six possible site topologies as shown in Fig. 23 randomly generated in line

with what we previously discussed; arc lengths are randomly generated from a normal

distribution with mean 100 and standard deviation 20. We utilise 5 segments in our

6Probability masses have been normalised to ensure total probability over the truncated support is 1.
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time (sec) timeouts nodes simplex iterations
MP MPVI MP MPVI MP MPVI MP MPVI

Topology
A 0.32 1.78 0 0 0 0 167 156
B 1.97 4.16 0 0 113 0 5697 627
C 232 22.0 4 0 2208 46 503413 23675
D 173 43.2 0 0 11484 484 1034887 76533
E 386 237 8 6 4247 547 1076786 270875
F 509 422 12 12 11334 837 2165064 547446

Assets
5 157 26.2 2 0 5696 287 595398 51087
10 135 114 6 6 2759 268 575213 165201
15 358 224 16 12 6238 402 1222397 243367

Penalty (p)
50 209 122 12 9 4782 309 767015 144513
100 224 121 12 9 5014 329 828323 161924

Overall
217 122 24 18 4897 319 797669 153218

Table 6: Pivot table comparing average key performance indicators for MP and MPVI

piecewise linearisation. Our test bed comprises a total of 108 instances; the experimental

design is full factorial.

5.2.2 Results

We first investigate the effectiveness of the MILP heuristic presented in Section 4.2 for

the SBRP. We do so by analysing two key performance indicators: the linearisation gap

produced by our model, that is the difference between the expected total cost predicted

by the MILP model and the expected total cost estimated by Monte Carlo simulation;

and the optimality gap between the simulated cost of the refuelling plan suggested by our

model and the cost of an optimal plan obtained via stochastic dynamic programming.7

In addition to investigating the cost of implementing a “here-and-now” plan (HN),

which is a plan that fixes the bowser route and all asset replenishment quantities at the

beginning of the planning horizon, we also investigate the performance of our heuristic

in a “receding horizon” (RH) setting [10]. Under this setting, at any period t = 1 . . . , T

we solve our MILP model over planning horizon t, . . . , T , but we only implement time t

decisions — i.e. refuelling of assets and bowser movement that occur at time t. After

implementing these decisions, we observe fuel consumption for period t and in period

t + 1 we solve again our MILP model over planning horizon t + 1, . . . , T by taking into

account the impact of previously observed realisations. This process continues until we

have reached the end of the planning horizon. Since RH is computationally cumbersome,

we limit Monte Carlo simulation to 500 replications with common random numbers [18].

Table 7 report results over the test bed here investigated; the average linearization

gap for our MILP model is 7.71%, the average optimality gap is 7.59% (HN) and 5.18%

7The stochastic dynamic programming code employed in our experiments is available on http://gwr3n.

github.io/jsdp/.
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Figure 23: Site topologies considered in our SBRP numerical study.
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(RH). Average solution time for the stochastic dynamic programming (SDP) approach is

2640 sec, while it is 0.13 sec for our MILP heuristic. These results show that our MILP

approximation is effective and that its performance is enhanced under a RH strategy.

Gap Time (sec)
linearization HN RH SDP MILP

Topology
A 5.14 5.80 5.54 950 0.16
B 9.20 13.1 5.51 2068 0.14
C 6.86 6.69 4.94 3850 0.13
D 7.00 5.04 4.49 2661 0.08
E 8.92 7.53 5.30 3742 0.17
F 9.16 7.33 5.29 2569 0.08

Initial tank level
ITL1 6.55 4.53 4.02 1898 0.11
ITL2 7.33 7.47 5.39 2647 0.12
ITL3 9.25 10.78 6.13 3375 0.15

Consumption pattern
CP1 5.87 6.01 4.04 2639 0.10
CP2 8.88 5.96 2.36 2653 0.17
CP3 8.39 10.82 9.14 2629 0.11

Penalty
100 6.87 7.34 5.06 2645 0.12
500 8.56 7.85 5.30 2635 0.13

Overall
7.71 7.59 5.18 2640 0.13

Table 7: Optimality and linearization gap assessment for our SBRP MILP heuristic

We next investigate scalability. The MILP heuristic presented in Section 4.2 for the

SBRP is not as scalable as the MILP model presented in Section 3 for the DBRP. We

have run experiments on a test bed generated in line with the discussion in Section 5.1.1;

however, we have now considered a shorter planning horizon comprising T = 10 periods

— given a time bucket size of 20-30 minutes, this roughly corresponds to a three- to

five-hour plan. As previously discussed, on each site we deploy a number of assets that

ranges in the set {5, 10, 15}; these are randomly picked from asset types previously listed.

For each asset type, fuel consumption in each period of the planning horizon follows the

distribution in Table 1. Once more, to ensure replicability; a complete set of IBM ILOG

data files for the test bed is provided in our Electronic Addendum EA4. Results of this

study are presented in Table 8. All instances could be solved within the given time limit

of 600 seconds. Average solution time was 8.21 second. This study was limited to default

CPLEX settings; hence improvements may be achieved by using more efficient hardware

and solver setups. Future research may investigate dedicated branch-and-cut strategies

similar to those discussed in [60], which have been shown to boost scalability of MILP

model based on piecewise linearisation strategies like the one here adopted.
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time (sec) nodes simplex iterations

Topology
A 2.20 4286 9530
B 2.83 5465 12131
C 1.44 1416 5932
D 8.53 49396 80924
E 1.93 2447 8698
F 32.3 76087 132668

Assets
5 2.40 3755 9938
10 16.8 39472 69368
15 5.41 26321 45636

Penalty (p)
50 14.9 44482 76571
100 1.52 1884 6724

Overall
8.21 23183 41647

Table 8: Pivot table with average key performance indicators for our SBRP MILP heuristic

6 Conclusion

In this work we focussed on efficient refuelling of assets across construction sites. We

introduced the Bowser Routing Problem and discussed its deterministic (DBRP) and

stochastic (SBRP) variants. For each of these variants, we developed mathematical pro-

gramming models that, by leveraging data supplied by different assets, schedule refuelling

operations by balancing the cost of dispatching a bowser truck with that of incurring fuel

shortages. To enhance computational performances, we discussed valid inequalities. We

carried out a comprehensive set of experiments on a testbed designed around data derived

from our experience at Crossrail sites. In a deterministic setting, this study shows that

our mathematical programming models can tackle instances of realistic size in reasonable

time — generally ranging from seconds to minutes; valid inequalities on average halve

computational time and dramatically reduce the number of explored nodes and simplex

iterations required to reach an optimal solution. In the stochastic case, our mathematical

programming heuristic is effective and produces tight linearisation (approx. 7%) as well

as optimality (approx. 5%) gaps. Computationally, when tested on our original test bed

comprising larger instances, our heuristic can solve all instances in a few seconds on aver-

age and in the worst case within ten minutes. An interesting direction for future research

is to investigate more effective reformulations for this latter MILP heuristic.
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Laroche, Frédéric Meunier, and Ludovic Robinet. Balancing the stations of a self

service “bike hire” system. RAIRO - Operations Research, 45(1):37–61, May 2011.

[14] Luca Bertazzi and Maria Grazia Speranza. Inventory routing problems: an introduc-

tion. EURO Journal on Transportation and Logistics, 1(4):307–326, 2012.

[15] Luca Bertazzi, Martin Savelsbergh, and Maria Grazia Speranza. Inventory routing.

In Bruce Golden, S. Raghavan, and Edward Wasil, editors, The Vehicle Routing

Problem: Latest Advances and New Challenges, volume 43 of Operations Research/-

Computer Science Interfaces, pages 49–72. Springer US, 2008.

[16] Luca Bertazzi, Adamo Bosco, and Demetrio Laganà. Managing stochastic demand in
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la République. Points politique. Seuil, 1978.

[50] Andrew W. Palmer, Andrew J. Hill, and Steven J. Scheding. Stochastic collection

and replenishment (SCAR): Objective functions. In 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3324–3331. IEEE, November

2013.

[51] Andrew W. Palmer, Andrew J. Hill, and Steven J. Scheding. Stochastic collection

and replenishment (SCAR) optimisation for persistent autonomy. In 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 2943–2949. IEEE,

September 2014.

[52] Andrew W. Palmer, Andrew J. Hill, and Steven J. Scheding. Methods for stochastic

collection and replenishment (SCAR) optimisation for persistent autonomy. Robotics

and Autonomous Systems, 87:51–65, January 2017.

[53] Yves Pochet and Laurence A. Wolsey. Production Planning by Mixed Integer Program-

ming. Springer Series in Operations Research and Financial Engineering. Springer

New York, 2006.

32



[54] Warren B. Powell. What you should know about approximate dynamic programming.

Naval Research Logistics (NRL), 56(3):239–249, 2009.

[55] Roberto Rossi and Eligius M. T. Hendrix. Computing linearisation parameters of

arbitrarily distributed first order loss functions. In Proceedings of MAGO’14, XII

Global Optimization Workshop (GOW). University of Malaga, 2012.

[56] Roberto Rossi, S. Armagan Tarim, Steven Prestwich, and Brahim Hnich. Piecewise

linear lower and upper bounds for the standard normal first order loss function.

Applied Mathematics and Computation, 231:489–502, March 2014.

[57] Rahul Saxena and Anand Srinivasan. Business Analytics, volume 186. Springer New

York, New York, NY, 2013.
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Appendix I

Symbols used in the manuscript are listed in Table 9.

Parameters

A number of assets;
〈V,E〉 directed graph with nodes V and edges E;
T number of time periods;
N number of nodes in the site network (i.e. N = |V |);
di,j distance between node i and node j in the site

network, if i = j, dij = 0;
δi,j a binary parameter that is set to one iff it

is possible to travel from node i to node j in one time period;
lat,i a binary parameter that is set to one iff asset a

is at node i during time period t ∈ T ; i.e iff lat = i;
ca tank capacity of asset a;
sa initial tank level of asset a;
fat fuel consumption of asset a in time period t ∈ T
cb bowser tank capacity;
sb initial bowser tank level;
p penalty cost per litre of fuel short;

Decision variables

V i
t a binary variable that is set to one iff, at time t,

the bowser is at node i;

T i,jt an auxiliary binary variable that is set to one iff
the bowser transits from node i to node j by the end
of period t;

Qat the quantity of fuel delivered to asset a at time t;
Sat the fuel shortage for asset a at time t;
Bt the quantity of fuel transferred from the site cistern to the

bowser at time t;
[Iat ]− the expected fuel shortage for asset a at time t,

where [Ia0 ]− = max(−sa, 0);
[Iat ]+ the expected fuel inventory for asset a at time t,

where [Ia0 ]+ = max(sa, 0);
[Eat ] the expected fuel quantity exceeding tank capacity

for asset a at time t.

Functions

L̂a1,...,t(·) complementary first order loss function for consumption over

period 1, . . . , t;
La1,...,t(·) first order loss function for consumption over period 1, . . . , t.

Table 9: Summary table of symbols used in this work.
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Appendix II

In this appendix we present a more detailed overview on the effectiveness of the valid

inequalities discussed in Section 3.2. From Tables 10 and 11 it is clear that the model that

combines all valid inequalities (MPVI) dominates, in terms of explored nodes and simplex

iterations performed, models embedding individual valid inequalities (Eq. 14, Eq. 15, Eq.

16) separately, as well as the model without valid inequalities (MP). This means that all

valid inequalities are effective.

Nodes
MP Eq. 14 Eq. 15 Eq. 16 MPVI

Topology
A 0 0 0 0 0
B 113 3 53 2 0
C 2208 43 845 45 46
D 11484 404 5056 514 484
E 4247 852 2630 486 547
F 11334 4751 6651 1032 837

Assets
5 5696 278 2565 307 287
10 2759 1450 1690 301 268
15 6238 1299 3363 432 402

Penalty (p)
50 4782 985 2406 341 309
100 5014 1033 2673 352 329

Overall
4898 1009 2539 347 319

Table 10: Pivot table comparing average nodes explored for individual valid inequalities

Simplex Iterations
MP Eq. 14 Eq. 15 Eq. 16 MPVI

Topology
A 167 156 182 171 156
B 5697 435 3089 809 627
C 503413 27304 238844 28782 23675
D 1034887 48067 587795 79790 76533
E 1076786 381125 728284 257024 270875
F 2165064 1584704 1521861 563083 547446

Assets
5 595398 34483 347684 52806 51087
10 575213 416857 397354 159315 165201
15 1222397 569556 794990 252708 243367

Penalty (p)
50 767015 305086 492632 146168 144513
100 828323 375511 534054 163718 161924

Overall
797669 340299 513343 154943 153218

Table 11: Pivot table comparing average simplex iterations for individual valid inequalities
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