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Abstract: We present NNPDF3.0, the first set of parton distribution functions (PDFs)

determined with a methodology validated by a closure test. NNPDF3.0 uses a global

dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA

charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse

momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top

quark pair production total cross sections from ATLAS and CMS. Results are based on LO,

NLO and NNLO QCD theory and also include electroweak corrections. To validate our

methodology, we show that PDFs determined from pseudo-data generated from a known

underlying law correctly reproduce the statistical distributions expected on the basis of
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the assumed experimental uncertainties. This closure test ensures that our methodologi-

cal uncertainties are negligible in comparison to the generic theoretical and experimental

uncertainties of PDF determination. This enables us to determine with confidence PDFs

at different perturbative orders and using a variety of experimental datasets ranging from

HERA-only up to a global set including the latest LHC results, all using precisely the

same validated methodology. We explore some of the phenomenological implications of

our results for the upcoming 13TeV Run of the LHC, in particular for Higgs production

cross-sections.
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1 Introduction

Parton distribution functions (PDFs) are currently one of the major sources of uncertainty

in processes at hadron colliders, specifically at the LHC. Ever since they have been quan-

tified for the first time [1], it has been recognized that PDF uncertainties stem from three

sources: the underlying data (which are affected by statistical and systematic errors), the

theory which is used to describe them (which is typically based on the truncation of a

perturbative expansion) and the procedure which is used to extract the PDFs from the

data. This last source of uncertainty is the most elusive, and because of it, it was thought

until very recently [2] that PDF uncertainties are not yet understood from a statistical

point of view.

In a series of papers [3–13] we have introduced a methodology aimed at reducing as

much as possible this procedural uncertainty, up to the point that it can be neglected in

comparison to the remaining data and theory uncertainty. However, as data become more

abundant and precise, and theoretical calculations more accurate, a full characterization

of the procedural uncertainties becomes necessary.

In the present paper we construct for the first time a set of PDFs with an explicit

characterization of procedural uncertainties. We do so by using a methodology which

has been repeatedly suggested [2], and recently used to study specific sources of PDF

uncertainty [14] though never (to the best of our knowledge) for full characterization: the

so called “closure test”. The idea is to assume that the underlying PDFs are known, and

use this assumed set of PDFs to generate artificial data. One may then set theoretical

uncertainties to zero (by using the same theory to generate data and to analyze them), and

fix the data uncertainty to any desired value. By determining PDFs from these artificial

data, one can then tune the methodology until procedural uncertainties have been removed

(or at least made small enough to be undetectable), and the ensuing PDFs faithfully

reproduce the data uncertainty. Thus one may explicitly check that the output PDFs

provide consistent and unbiased [15] estimators of the underlying truth, that confidence

levels reproduce the correct coverage (e.g., that the true value is indeed within the 68%

interval in 68% of cases), and so on. Of course, a full closure test requires verifying that

the procedure is robust: so, for example, that the conclusion that there are no procedural

uncertainties is independent of the assumed underlying set of PDFs.

This program will be fully realized in this paper, whose core is a discussion of the closure

test itself. The main motivation for doing so at this time is, as mentioned, that data are

more and more abundant and accurate and that more and more higher-order calculations

have become available. In this work we will use a very wide dataset, which in particular

includes, besides the data used in previous global PDF fits, all the most recent HERA deep-

inelastic scattering data for inclusive and charm production cross-sections, essentially all

the most recent single-inclusive jet data and W and Z rapidity distributions from the LHC,

and also, for the first time in a global fit, W+c production data, double-differential and

high-mass Drell-Yan distributions, W transverse momentum distributions, and top total

cross section data from ATLAS and CMS. For many of these data, higher-order calculations

and/or fast computational interfaces have become available only recently. The dataset on

– 2 –
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which our PDF determination is based is summarized in section 2, where in particular all

new data included on top of those used for the previous NNPDF2.3 set [13] are discussed.

The theoretical calculations and tools used for their description and inclusion in the PDF

fit are summarized in section 2.3.

The inclusion of these new data and processes in our PDF fitting code has required

very substantial computational upgrades, including a migration of the code to C++. Also,

whereas the basic principles of our methodology are the same as in our previous PDF

determinations, namely, a Monte Carlo approach based on using neural networks as un-

derlying interpolating functions, several improvements have become necessary in order to

ensure the full independence of procedural uncertainties which is required to pass the clo-

sure test. This includes a more general way to define the basis PDFs (needed in order to

test basis-independence in the closure test); an improved way of making sure that the so-

called preprocessing exponents which are introduced as part of the PDF parametrization

do not bias the results of the fit; an improved version of the genetic algorithm used for

PDF minimization; and an improved form of the cross-validation procedure which is used

in order to determine the optimal fit (which in the presence of a redundant parametrization

is not the absolute minimum of the figure of merit, since this would require fitting noise).

All these methodological aspects are summarized in section 3, where we also summarize

the general structure and features of the new NNPDF C++ code.

The closure test procedure is presented in section 4. We actually perform three dif-

ferent kinds of closure test, which we call respectively Level-0, Level-1 and Level-2. In the

Level-0 closure test, perfect data are generated from the assumed underlying law, with no

uncertainty. The test is successful if a perfect fit to the data can be produced, i.e., a fit

with vanishing χ2. By showing that our PDFs pass this test we prove that our methodol-

ogy is not limited by choice of basis functions, functional form, number of parameter, or

minimization algorithm. Also, by looking at the remaining uncertainty on the final PDF

we can determine what we call the “extrapolation uncertainty”, i.e., the uncertainty due

to the fact that data points, even when infinitely precise, are not covering the whole of

phase space. In a Level-1 closure test, data are generated with an uncertainty: this gives a

full pseudodata set, which thus simulates a realistic situation (but with knowledge of the

underlying physical law). However, instead of using the NNPDF Monte Carlo methodol-

ogy, whereby pseudodata replicas are generated about the experimental data, we simply

fit PDF replicas all to the same pseudodata. Despite the fact that the data are not fluc-

tuating (i.e. the replicas are all fitted to the same pseudodata set), we find that results

are affected by an uncertainty which we call “functional uncertainty”, and which is due

to the fact that we are reconstructing a set of functions from a finite amount of discrete

information. In a Level-2 closure test, once pseudodata are constructed, they are treated

as real data according to the NNPDF methodology. We can then check that the closure

test is successful with a wide variety of indicators, which include testing that the PDF

replicas behave according to Bayes’ theorem upon the inclusion of new (pseudo)data. We

finally check that our results are stable upon a wide variety of changes, such as different

assumed underlying PDFs, different choices of basis, different size of the neural network

used for parametrization, and so on. We also show how “self-closure” of the NNPDF3.0

set is succesful, by using it as the input of a Level-2 closure test.

– 3 –
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Finally, we present the NNPDF3.0 set, which, as usual, we deliver at LO, NLO and

NNLO in QCD theory, for a variety of values of αs, and for a variety of values of the

maximum value of active flavor numbers. Also, we provide PDFs determined using various

subsets of our full dataset. This includes sets based on HERA data only (which may

thus be compared to HERAPDF PDFs [16, 17], and may be used for applications where

one wishes to use a PDF set based on a restrictive but consistent dataset); sets based on

a “conservative” data subset, which is found by studying a specific statistical indicator

introduced previously by us [18] which measures the consistency of each dataset with the

remaining data, thereby allowing the removal data which are less compatible with the bulk

of the dataset; sets based on the same data as our previous NNPDF2.3 dataset, thereby

enabling us to separate the impact of new data from that of improved methodology when

comparing NNPDF2.3 to NNPDF3.0; a set without LHC data, which is useful in order

to gauge the impact of the latter; and sets where the HERA data are supplemented by

all available data from either ATLAS or CMS, useful to compare with related studies

presented by the LHC collaborations. All these datasets and their features are presented

and compared in section 5, where we also discuss in light of our results specific issues of

particular recent relevance in PDF determination: jet data and their impact on the gluon

distribution, and the strange PDF which follows from both deep-inelastic and hadronic

scattering data.

Finally, in section 5.4 we briefly discuss the implications of the NNPDF3.0 set for LHC

phenomenology, with special regard to Higgs production in gluon fusion, and a number of

other representative processes, for a center-of-mass energy of 13TeV. Information on deliv-

ery, usage, and future developments is collected in section 6, while some technical results

are relegated to appendices: in appendix A we provide more details for the computation

of QCD and electroweak corrections to LHC Drell-Yan data and in appendix B we present

the definitions of the distance estimators we use to compare between different sets of PDFs.

2 Experimental data

Here we present the new experimental data that have been added in the NNPDF3.0 analy-

sis, and their treatment. After reviewing the NNPDF3.0 dataset, which includes most of the

data on which the previous NNPDF2.3 set was based, we discuss each of the new datasets

in turn. We then review our theoretical treatment, and specifically discuss the computa-

tional tools used to implement perturbative corrections, and particular issues related to

NNLO QCD corrections to jet production, electroweak corrections, and the treatment of

heavy quark mass effects. We finally review the way the total dataset is constructed, and

in particular which data and which cuts are included at each perturbative order, and the

treatment of experimental uncertainties, specifically the systematics.

2.1 Overview

The NNPDF2.3 fit [13] included fixed-target deep inelastic scattering (DIS) data from

NMC [19, 20], BCDMS [21, 22] and SLAC [23]; the combined HERA-I DIS dataset [24],

HERA FL [25] and the separated ZEUS and H1 F c
2 structure function data [26–32], some

– 4 –



J
H
E
P
0
4
(
2
0
1
5
)
0
4
0

ZEUS HERA-II DIS cross-sections [33, 34]; CHORUS inclusive neutrino DIS [35], and

NuTeV dimuon production data [36, 37]; fixed-target E605 [38] and E866 [39–41] Drell-

Yan production data; CDF W asymmetry [42] and CDF [43] and D0 [44] Z rapidity

distributions; CDF [45] and D0 [46] Run-II one-jet inclusive cross-sections; ATLAS [47],

CMS [48] and LHCb [49] data on vector boson production; and ATLAS one-jet inclusive

cross-sections [50] from the 2010 run.

In NNPDF3.0, several new datasets have been included. First, we have included all

relevant inclusive cross section measurements from HERA Run II [51–54]. This includes

the complete set of inclusive measurements from H1 and ZEUS, as well as new H1 data

at low Q2 and high-y. In addition, we have replaced the separate H1 and ZEUS F c
2 data

with the combined measurements of the charm production cross section σred
cc [55]. The

separate HERA-II H1 and ZEUS data, as well as the inclusive HERA-I data, will be

replaced with the combined HERA dataset as soon as it becomes available. However, we

expect this replacement to have a small impact on the PDFs, since the neural network

fit effectively performs a dataset combination. This was explicitly demonstrated for the

combined HERA-I dataset in the NNPDF2.0 analysis [10].

We have included new vector boson production data from the LHC at a center-of-mass

energy of 7TeV from the 2010 and 2011 runs: the 5 fb−1 high-mass Drell-Yan produc-

tion [56] and the 31 pb−1 transverse momentum distribution of W bosons data [57] from

ATLAS; the 5 fb−1 W muon asymmetry [58], the double differential Drell-Yan cross sec-

tions [59], and the differential distributions for W production in association with charm

quarks from CMS [60]; and finally the 940 pb−1 forward Z → ee production data from

LHCb from the 2011 run [61]. In comparison to the NNPDF2.3 dataset, we have removed

the CDF W asymmetry data [42], since more precise and cleaner data from the LHC (based

on leptons rather than on the reconstructed W ) covers the same region in x and extends

their kinematical coverage.

Concerning LHC jet measurements, we have complemented the previously available

ATLAS 7TeV inclusive jet production data from the 2010 run [50] with the 7TeV CMS

5 fb−1 inclusive jet cross-sections from the 2011 run [62], and the ATLAS 2.76TeV jet

cross section data [63], supplemented by their correlations with the 7TeV cross sections.

In comparison to NNPDF2.3, we have removed the Tevatron D0 Run II inclusive jet cross

section measurements [46], which were obtained with the midpoint algorithm, which is

infrared unsafe [64] and therefore cannot be used in conjunction with NNLO calculations.

On the other hand, the CDF Run II inclusive jet measurements, based on the kt algorithm,

are retained in NNPDF3.0.

Finally, we have included total cross section measurements for top quark pair produc-

tion data from ATLAS and CMS at 7 and 8TeV [65–70], for a total of six data points.

Besides extending the traditional dataset used in our previous global fit, NNPDF2.3,

based on deep-inelastic scattering, Drell-Yan, and jet data, to include new information

from HERA and the LHC (whose kinematic coverage and resolution is greatly expanded,

specifically through the inclusive jet production and the high-mass and double-differential

gauge boson production), the NNPDF3.0 dataset uses for the first time in a global fit many

datasets whose importance has been repeatedly emphasized for constraining particular

– 5 –
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PDF combinations [71, 72]: correlated pairs of measurements at different center-of-mass

energies (the ATLAS 2.76 and 7TeV jet measurements) which provide a handle on PDFs

due to the reduced experimental and theoretical systematics of cross-section ratios [73];

W+c production which provides direct information on strangeness [74, 75]; top quark

pair production which provides a handle on the gluon at large-x [76–78]; and the W pT
distribution which also helps to constrain the gluon and sea quarks in a wide range of

x [79]. The inclusion of these data is especially powerful thanks to recent theoretical

progress, specifically the completion of the computation of the NNLO corrections to the

total cross section for top quark pair production [80, 81] and the computation of NNLO

corrections to jet production in the gluon channel [82].

For ease of reference, in tables 1 (for DIS data) and 2 (for hadronic data) we summarize

the complete list of data included in the NNPDF3.0 analysis. For each dataset we provide

the corresponding published reference, the availability and treatment of systematics (to be

discussed in section 2.4.2 below), the number of data points before and after cuts at NLO

and NNLO (to be discussed in section 2.4.1 below). For the new data which were not in

NNPDF2.3 we also give the kinematic coverage (which also flags the new datasets included

for the first time in NNPDF3.0). Finally, in table 3 we also summarize the data which

were in NNPDF2.3, but are no longer used in NNPDF3.0, for the reasons described above.

The kinematical coverage in the
(

x,Q2
)

plane of the NNPDF3.0 dataset is shown in

the scatter plot figure 1 (note that for hadronic data leading-order kinematics has been

assumed for illustrative purposes, as discussed in [10]).

2.2 New experimental data in NNPDF3.0

We now examine in more detail the features of the new experimental data that has been

included in NNPDF3.0. We begin with the new deep-inelastic scattering data. In this work

we have supplemented the combined HERA-I dataset with the inclusion of all the relevant

HERA-II inclusive cross sections measurements from H1 and ZEUS [51–54]. These data

improve the statistical and systematic precision of medium- and high-Q2 data from the

HERA-I run, and thus provide valuable information for quarks at medium and large x. In

addition, we have included low-Q2 data from H1 that provides additional information on

the small-x gluon and that could also be sensitive to potential deviations from fixed-order

DGLAP at small-x.

From the H1 experiment, we have included the new high-Q2 data from the HERA-II

run [51], which covers the large Q2 region, 60 ≤ Q2 ≤ 5 104GeV2, with improved statis-

tical and systematic precision in comparison to Run-I. These data, taken at the default

proton beam energy of Ep = 920GeV used in most of the HERA-II run, have been sup-

plemented with inclusive cross-section measurements performed at lower center-of-mass

energies [52], obtained with proton beam energies of Ep = 575GeV and Ep = 460GeV.

These lower-energy measurements are the same ones used to determine the longitudinal

structure function FL. Therefore, we exclude the previously used FL [25] data from the

present fit to avoid any double counting, and for the same reason we do not include any

other of the updated FL extractions at HERA [84, 85]. For completeness, in NNPDF3.0

– 6 –
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Experiment Dataset Ref. Sys. Unc. Ndat no cuts Kinematics

(NLO/NNLO cuts)

NMC

NMC d/p [19] A full 211 (132/132)

NMC σNC,p [20] A full 289 (224/224)

SLAC

SLAC p [23] A none a 191 (37/37)

SLAC d [23] A none a 191 (37/37)

BCDMS

BCDMS p [21] A full b 351 (333/333)

BCDMS d [22] A full b 254 (248/248)

CHORUS

CHORUS ν [35] A full c 572 (431/431)

CHORUS ν̄ [35] A full c 572 (431/431)

NuTeV

NuTeV ν [36, 37] A none 45 (41/41)

NuTeV ν̄ [36, 37] A none 44 (38/38)

HERA-I

HERA-I NC e+ [24] M full d 434 (379/379)

HERA-I NC e− [24] M full d 145 (145/145)

HERA-I CC e+ [24] M full d 34 (34/34)

HERA-I CC e− [24] M full d 34 (34/34)

ZEUS HERA-II

ZEUS-II NC e− [33] M full e 90 (90/90)

ZEUS-II CC e− [34] M full e 37 (37/37)

ZEUS-II NC e+ [53] M full f 90 (90/90) 5 10−3 ≤ x ≤ 0.40

200 ≤ Q2 ≤ 3 104 GeV2

ZEUS-II CC e+ [54] M full f 35 (35/35) 7.8 10−3 ≤ x ≤ 0.42

280 ≤ Q2 ≤ 3 104 GeV2

H1 HERA-II

H1-II NC e− [51] M full g 139 (139/139) 2 10−3 ≤ x ≤ 0.65

120 ≤ Q2 ≤ 4 104 GeV2

H1-II NC e+ [51] M full g 138 (138/138) 2 10−3 ≤ x ≤ 0.65

120 ≤ Q2 ≤ 4 104 GeV2

H1-II CC e− [51] M full g 29 (29/29) 8 10−3 ≤ x ≤ 0.40

300 ≤ Q2 ≤ 3 104 GeV2

H1-II CC e+ [51] M full g 29 (29/29) 8 10−3 ≤ x ≤ 0.40

300 ≤ Q2 ≤ 3 104 GeV2

H1-II low Q2 [52] M full 136 (124/124) 2.8 10−5 ≤ x ≤ 0.015

1.5 ≤ Q2 ≤ 90 GeV2

H1-II high y [52] M full 55 (52/52) 2.9 10−5 ≤ x ≤ 5 10−3

2.5 ≤ Q2 ≤ 90 GeV2

HERA σc
NC [55] M full 52 (47/47) 3 10−5 ≤ x ≤ 0.05

2.5 ≤ Q2 ≤ 2 103 GeV2

Table 1. List of all the deep-inelastic scattering data included in the NNPDF3.0 analysis. For each

dataset we provide the corresponding reference in the third column. The next three columns pro-

vide information on the treatment of systematic uncertainties for each dataset. The fourth column

specifies the treatment of systematic uncertainties, where M stands for for multiplicative and A for

additive. The fifth column states how the available experimental information on correlated uncer-

tainties other than normalization uncertainties is provided by the experiment: “none” corresponds

to datasets for which only the sum in quadrature of systematic uncertainties is provided, “cov” in

case the covariance matrix is provided and “full” is the full breakup of systematics is provided. The

sixth column gives information on whether datasets share systematic uncertainties among them:

datasets that are marked with the same letter have common correlated systematics; see text for

more details. Then, for each dataset, we provide the total number of data points Ndat available, as

well as the number of data points left after kinematical cuts both in the NLO and in the NNLO fits

(in parenthesis). For the experiments which are new in NNPDF3.0, we also include the information

on their kinematical coverage in the last column.
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Experiment Dataset Ref. Sys. Unc. Ndat no cuts Kinematics

(NLO/NNLO cuts)

DY E866

DY E866 d/p [41] M none 15 (15/15)

DY E866 p [39, 40] M none 184 (184/184)

DY E605 [38] M none 119 (119/119)

CDF

CDF Z rap [43] M full h 29 (29/29)

CDF Run-II kt jets [83] M full h 76 (76/52)

D0

D0 Z rap [44] M full 28 (28/28)

ATLAS

ATLAS W,Z 2010 [47] M full i 30 (30/30)

ATLAS 7 TeV jets 2010 [50] M full i,j 90 (90/9)

ATLAS 2.76 TeV jets [63] M full j 59 (59/3) 20 ≤ pjetT ≤ 200 GeV

0 ≤ |ηjet| ≤ 4.4

ATLAS high-mass DY [56] M full 11 (5/5) 116 ≤ Mll ≤ 1500 GeV

ATLAS W pT [57] M full 11 (9/-) 0 ≤ pWT ≤ 300 GeV

CMS

CMS W electron asy [48] M cov 11 (11/11)

CMS W muon asy [58] M cov 11 (11/11) 0 ≤ |ηl| ≤ 2.4

CMS jets 2011 [62] M full 133 (133/83) 114 ≤ pjetT ≤ 2116 GeV

0 ≤ |ηjet| ≤ 2.5

CMS W + c total [60] M cov 5 (5/5) 0 ≤ |ηl| ≤ 2.1

CMS W + c ratio [60] M cov 5 (5/5) 0 ≤ |ηl| ≤ 2.1

CMS 2D DY 2011 [59] M cov 124 (88/110) 20 ≤ Mll ≤ 1200 GeV

0 ≤ |ηll| ≤ 2.4

LHCb

LHCb W rapidity [49] M cov 10 (10/10)

LHCb Z rapidity [61] M cov 9 (9/9) 2.0 ≤ ηl ≤ 4.5

σ(tt̄)

ATLAS σ(tt̄) [65–67] M none 3 (3/3) —

CMS σ(tt̄) [68–70] M none 3 (3/3) —

Total 5179 (4276/4078)

Table 2. Same as table 1 for fixed-target Drell-Yan production, electroweak vector boson produc-

tion data from the Tevatron and LHC data. Again we explicitly provide the kinematics only for

the new experiments. The tt̄ cross-sections are new in NNPDF3.0, but being total cross-sections

no information on kinematics needs to be provided. In the bottom row of the table we give the

number of data points in the global fit dataset, including also the DIS numbers from Table 1.

we also include the the high-inelasticity data that H1 extracted from their Run II mea-

surements [52].

From the ZEUS experiment, in NNPDF2.3 we already included some HERA-II

data [33, 34], for neutral- and charged-current DIS with an electron beam. We now also

include neutral- and charged-current cross sections with a positron beam [53, 54], which

have been published since. As in the case of H1, ZEUS Run II inclusive cross-sections

exhibit reduced statistical and systematic uncertainties when compared to Run I data in

the medium and large Q2 region. For both H1 and ZEUS, we use the data averaged over

lepton beam polarizations.
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Experiment Dataset Ref. Sys. Unc. Ndat no cuts Details

H1 F c
2

H1 F c
2 01 [30] full 12 Superseded by combination

H1 F c
2 09 [31] full 6 ”

H1 F c
2 10 [32] full 26 ”

ZEUS F c
2

ZEUS F c
2 99 [26] full 21 Superseded by combination

ZEUS F c
2 03 [27] full 31 ”

ZEUS F c
2 08 [28] full 9 ”

ZEUS F c
2 09 [29] full 8 ”

CDF

CDF W asymmetry [42] full 13 Lepton-level data from LHC

D0

D0 Run II cone jets [46] full 110 Infrared unsafe at NNLO

Table 3. Same as table 1, this time for those experiments that were present in NNPDF2.3 but

that have been excluded from NNPDF3.0. In the last column we provide information on why these

experiments are not included anymore in NNPDF3.0.

Turning to semi-inclusive measurements, in NNPDF3.0 we have replaced the sepa-

rate charm structure function data F c
2 from the H1 and ZEUS experiments [26–32] with

the combined HERA charm production dataset [55], which provides data for the reduced

cross-section (rather than structure function) and is based on a more extensive dataset;

furthermore, the cross-calibration between common systematics implies that the combined

data is more accurate than the separate inclusion of the individual measurements. The

combined HERA charm production cross-sections offer a handle on the small-x gluon [86],

provide a unique testing ground for different treatments of heavy quark mass effects, and

allow one to extract the running charm quark mass mc(mc) with competitive uncertain-

ties [87, 88].

Concerning vector boson production at the LHC, NNPDF2.3 already included some

data taken at 7TeV, in particular the CMS W electron asymmetry data from an integrated

luminosity of 880 pb−1 [48], the ATLAS W± and Z rapidity distributions from the 2010

run [47] and the LHCb forward W production data also from 2010 [49]. These datasets

have now been supplemented with essentially all vector boson production data which have

become available since.

From the ATLAS experiment, we include the high-mass Drell-Yan production data

from the 2011 run [56], based on an integrated luminosity of 4.9 fb−1. These data, presented

in terms of the invariant mass of the electron pairs produced at an invariant mass larger

than the Z peak, which extends to Mll = 1.5TeV, can be used to constrain the large-x

antiquarks. In addition, it was shown in ref. [89] that high-mass Drell-Yan at the LHC

can be used to constrain the photon PDFs of the proton, and it was indeed used there to

construct the NNPDF2.3QED PDF set. We also include now the ATLAS measurement

of the W boson transverse momentum distribution from the 2010 run of the LHC at√
s =7TeV [57], corresponding to an integrated luminosity of 31 pb−1. This data, unlike

the 7TeV ATLAS measurement of the Z boson transverse momentum distribution [90], is
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Figure 1. The kinematical coverage in the
(

x,Q2
)

plane of the NNPDF3.0 dataset. For hadronic

data, leading-order kinematics have been assumed for illustrative purposes. The green stars mark

the data already included in NNPDF2.3, while the circles correspond to experiments that are novel

in NNPDF3.0.

provided with all information on correlated uncertainties and has the potential to constrain

the gluon and the light quark distributions in the medium-x region [79].

From the CMS experiment, we include the W muon asymmetry data based on the full

statistics (5 fb−1) of the 7TeV run [58], which have substantially reduced statistical and

systematic uncertainties. We also include the double-differential distributions for Drell-

Yan production from low dilepton masses (from Mll = 20GeV) to high dilepton masses

(up to Mll = 1.5TeV) in bins of the dilepton invariant mass and rapidity, from the full

2011 dataset [59]. The CMS data for the production of charm quarks associated to W

bosons [60], which we also include, provide the absolute cross sections, differential on the

lepton rapidity from the W decay ηl, as well as cross-section ratios W+/W− also binned in

ηl. They are both included, as the former constrain the shape and overall normalization of

the total strangeness s+ s̄ at Q ∼ MW and the latter offer some handle on the strangeness

asymmetry in the proton, s− s̄. Data from this same process are available from the ATLAS

Collaboration [91], but are given at the hadron level and thus cannot be directly included

in our fit (though they could be included by for example estimating a hadron-to-parton

correction factor using MadGraph5 aMC@NLO).

Finally, we include the LHCb Z → ee rapidity distributions from the 2011 dataset [61],

which are more precise than the previous data from the 2010 run. The forward kinematics
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of this data provide constraints on PDFs at smaller and larger values of x than the vector

boson production data from ATLAS and CMS. Further LHCb data from the 2011 run

for Z boson rapidity distributions in the µµ channel [92] and for low mass Drell-Yan

production [93] are still preliminary.

Concerning inclusive jet production from ATLAS and CMS, we include the CMS in-

clusive jet production measurement at 7TeV from the full 5 fb−1 dataset [62], which has

been provided with the full experimental covariance matrix, and which supersedes previous

inclusive jet measurements from CMS [94]. This data has a large kinematical coverage: for

example, in the central rapidity region, the CMS data reaches up to jet transverse momenta

of more than 2TeV, thus constraining the large-x quark and gluon PDFs [95, 96]. From

ATLAS, we include the new inclusive cross-section measurement at
√
s = 2.76TeV [63],

which is provided with the full correlation matrix with the corresponding
√
s = 7TeV mea-

surement. Measuring the ratio of jet cross-sections at two different center of mass energies

enhances the PDF sensitivity thanks to the partial cancellation of theoretical (missing

higher order corrections) and experimental (jet energy scale) systematic uncertainties [73].

On the other hand no LHC dijet data are included [97], since it is notoriously difficult to

achieve a good description of these measurements [95].

Finally, we include six independent measurements of the total top quark pair produc-

tion cross-section from ATLAS and CMS, both at 7TeV and at 8TeV. These data provides

information on the large-x gluon PDF, complementary to that provided by inclusive jet

production. At 7TeV we include the measurements in the dilepton channel, based on

0.70 fb−1 integrated luminosity from ATLAS [65] and on 2.3 fb−1 from CMS [68] and the

measurements performed using lepton+jets events from ATLAS [66] and CMS [69]. At

8TeV we have included the dilepton channel measurement corresponding to an integrated

luminosity of 2.4 fb−1 by CMS [98] and the ATLAS analysis of the lepton+jets final state

in a dataset corresponding to an integrated luminosity of 5.8 fb−1 [67].

2.3 Theoretical treatment

NNPDF3.0 PDFs are provided at LO, NLO and NNLO in perturbative QCD. While for

most of the observables included in the fit NNLO QCD corrections are known, some ob-

servables are known only up to NLO, while for others only partial contributions to the full

NNLO corrections have been calculated. Specifically, NNLO corrections are not available

for two datasets included in our fit: the vector boson transverse momentum distribution

and the W + c rapidity distribution (since there are no NNLO calculations for V+jets and

V+heavy quarks). For the jet inclusive cross section, only the gg-channel has been recently

computed at NNLO [82, 99], while for the full cross section only an approximate NNLO

prediction based on threshold resummation is available [100]. For all other observables

included in the fit the cross sections are known up to NNLO.

The theoretical predictions for DIS observables have been implemented in the FastK-

ernel framework and thoroughly benchmarked [12, 101]. Drell-Yan cross sections, both

for fixed target and for collider experiments, are computed at NNLO by using the local

C-factors computed according to the procedure described in ref. [12]: we define C-factors
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as the ratio of NNLO to NLO calculations for fixed NNLO PDFs, that is

Cnnlo ≡ σ̂nnlo ⊗ Lnnlo

σ̂nlo ⊗ Lnnlo
, (2.1)

where σ̂ is the partonic cross section computed at either NNLO or NLO accuracy, and Lnnlo

is the corresponding parton luminosity computed with a reference set of NNLO parton

distributions. The tools used to compute the C-factors are described in section 2.3.1. For

a detailed description of the procedure that we adopt to include a subset of the inclusive

jet data in our analysis, see section 2.3.2.

Given that electroweak corrections can be relevant in the large invariant mass region

covered by some of the experimental data included in our fit (see ref. [102] for an overview),

we provide EW corrections for all LHC vector boson production data. To include these

corrections in our NLO and NNLO calculation, we compute C−factors, Cew, defined anal-

ogously to eq. (2.1), with the NNLO computation substituted by the NLO+EW one, and

using NLO parton luminosities on both numerator and denominator. All details on their

computation and implementation are provided in section 2.3.3. The QCD NNLO and EW

C-factors for LHC gauge boson production are listed in appendix A.

In this work, we do not include all-order perturbative resummation of QCD corrections:

these will be the object of a future separate study, possibly leading to the construction of

dedicated resummed sets. Also, we do not include nuclear corrections, which are relevant

for fixed-target deuterium DIS data, neutrino DIS data, and fixed-target Drell-Yan data,

given the substantial uncertainties in their modeling and their moderate impact [103]. We

will briefly assess the impact of this omission in section 5.1.4.

The way our dataset is constructed, and in particular which data are included at

various perturbative orders, is discussed in section 2.4.1 below.

2.3.1 Computational tools

The inclusion of perturbative corrections to hadronic processes in PDF fits requires the

fast computation of the relevant cross-sections. Several fast interfaces have been developed

to this purpose, including APPLgrid [104], which provides an interface to MCFM [105,

106] and NLOjet++[107], and FastNLO [108, 109], also interfaced to NLOjet++. The

MCgrid [110] package interfaces the Rivet [111] analysis package to APPLgrid, making

use of the BlackHat/Sherpa [112] prescription for NLO reweighting.

Recently, a new fast interface has become available, namely aMCfast [113], a code

which provides the complete automation of fast NLO QCD calculations for PDF fits, inter-

faced to MadGraph5 aMC@NLO [114], which in turn achieves the complete automation of

the computations of tree-level and next-to-leading order cross sections and of their match-

ing to parton shower simulations.

Such tools have been used extensively in the present analysis. For the 7TeV CMS

jet data, we have used the FastNLO calculation with central scales µF = µR = pjetT . For

the 2.76 ATLAS jet data, we have used instead the APPLgrid calculation, which uses the

same scale choices. For consistency, we use exactly the same settings of the calculation,

including the central scales, as were used in the corresponding ATLAS 7TeV inclusive jet
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analysis. The CDF Run II kt jets have also been computed using the FastNLO calculation

with the same central scales as in the ATLAS and CMS case.

For electroweak vector boson production data, we have used the APPLgrid code

interfaced to MCFM6.6 in all cases, with a consistent choice of electroweak parame-

ters. We use the Gµ scheme, with MZ = 91.1876GeV, MW = 80.398GeV and GF =

1.16637 · 10−5GeV−2 set as input parameters and αe, sin θW derived from those. We turn

off the Narrow-Width approximation. For all rapidity distributions, we set µF = µR = MV ,

with V = W,Z. For the W pT distribution we set µF = µR = MW , while in the case of

CMS double-differential distribution we set the scales to the central value of the invariant

mass bin. The MCFM6.6 calculations have been cross-checked with independent calcu-

lations of DYNNLO [115–118] and FEWZ3.1 [119, 120] at NLO, with the same settings,

finding perfect agreement in all cases.

In the NNLO fits, the NNLO C−factors defined in eq. (2.1) have been computed

with FEWZ3.1 and cross-checked against DYNNLO1.3. Very high statistics runs of all

these codes have been necessary to achieve negligible integration error in all the data bins.

In order to obtain smooth C-factors, the NNLO curves are smoothed with a high-degree

polynomial interpolation. Notice that the difference between smoothed and original NNLO

predictions is always within the Monte Carlo uncertainty of the code used to compute it.

It turns out that these NNLO QCD corrections are sizable, especially for small invariant

masses of the produced lepton pairs as it is shown on the right plot in figure 4: the NNLO C-

factor for the CMS double differential Drell-Yan data at lowMll is around 10%, independent

of the dilepton rapidity. NNLO corrections are also important for the ATLAS high-mass

Drell-Yan data, reaching almost 10% around Mll ∼ 1TeV, see left plot of figure 4. Details

of the computation of the EW corrections and their size are given below in section 2.3.3.

For the computation of top quark pair production data at NLO, we again used AP-

PLgrid interfaced to MCFM6.6. The NNLO C−factors have been computed by using

the NNLO calculation of ref. [81], as implemented in the top++ code [121]. Finally, we

have used aMCfast interfaced to MadGraph5 aMC@NLO to compute the Higgs rapidity

distributions in gluon fusion at NLO with an unphysical boson of mass mh =
√
5GeV.

As explained below in section 3.2.1, this unphysical calculation has been used to enforce

the positivity of cross-sections that depend on the small-x gluon. More details about

Higgs production at NLO in the MadGraph5 aMC@NLO framework can be found in in

refs. [122, 123].

2.3.2 Approximate NNLO treatment of jets

NNLO corrections to jet production in the the gg-channel have become available re-

cently [82, 99]. An approximate NNLO prediction based on threshold resummation (but

including all partonic subchannels) was presented in [100]. Its accuracy can now be gauged

against the existing part of the full calculation.

This was done recently in a systematic study [124], to which we refer for a more detailed

treatment. An important consequence of the analysis of ref. [124] is that some of the

comparisons between the exact computations and the threshold approximation performed

hitherto [100] were marred by the fact that the renormalization scale was set equal to the
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Figure 2. Percentage difference |δ| between the exact and approximate gg-channel NNLO C-factors

as a function of pT and |y| for the CMS, ATLAS 7TeV and 2.76TeV and CDF data that is included

in NNPDF3.0. Each entry in the contour plot correspond to one of the experimental bins of the

corresponding measurement. Differences larger than |δ| = 100% are shown in red.

jet transverse momentum pT in the threshold calculation, while the transverse momentum

of the hardest jet pleadT was used instead for the exact calculation. It turns out that the

perturbative expansion is rather better behaved, with smaller perturbative corrections,

when the scale pT is used, and also, that the regions of agreement are rather different if a

consistent scale choice is made: specifically, when using pT as a scale in the large rapidity

region the accuracy of the threshold approximation appears to be very poor (while there

is a better, accidental agreement when an inconsistent scale choice is made).

The percentage deviation between the exact and approximate calculation (with the

renormalization scales set equal to pT in the two cases) is shown in figure 2 in the (pT , y)

plane for the CMS 2011 [62], ATLAS 7 and 2.76TeV [50, 63] and CDF Run II kt [83]

inclusive jet data included in our fit. A common NNLO reference PDF set, NNPDF2.3, is

used in the two calculations. In figure 2, each of the entries of the contour plot corresponds

to one of the experimental data bins. It is apparent that the threshold approximation and

the exact results are in reasonable agreement in the high-pT and central-y regions. Note

also that the disagreement between the two calculations can become very large for small

transverse momenta and/or large rapidities.

In the kinematical region covered by the Tevatron and LHC jet cross-sections, see

figure 2, the gluon channel is not necessarily dominant, however both theoretical arguments

and the known NLO behavior suggest that the pattern of agreement or disagreement of the
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Figure 3. Same as figure 2, but now showing the size of the approximate gg-channel NNLO

C-factors.

threshold and exact computations is similar in all partonic channels [124]. This result then

suggests that the threshold approximation can be used provided all channels are included,

and a sufficiently conservative cut is applied in order to keep only the regions in which the

size of the deviation between the exact and threshold computations in the gg channel does

not exceed a suitable low threshold.

Reassuringly, these are also the regions in which NNLO corrections are not too large,

as it is apparent from figure 3, where we show the size of the approximate C-factors. It is

clear that the regions in which the quality of the approximation is better are the same as

those where the size of the correction is relatively smaller, and conversely. In particular, in

the region in which the exact and threshold NNLO calculations in the gluon channel differ

by less than 10%, the C-factor eq. (2.1) (summing over all parton channels) is typically of

order 15%, so the expected accuracy of the threshold approximation at NNLO is at the

level of a few percent, smaller than the experimental uncertainties.

In NNPDF3.0, we thus follow the strategy of ref. [124] and compute approximate

NNLO C-factors, eq. (2.1), using the threshold calculation, while restricting the fitted

dataset to the region where, thanks to the comparison with the exact gg calculation, we

know the former to be reliable. This leads to the set of cuts outlined below in section 2.4.

2.3.3 Electroweak corrections

Electroweak corrections, though generally small, may become large at high scales Q2 ≫
M2

V . While this will certainly be an issue for future LHC data at higher center of mass
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Figure 4. Left plot: the NLO, NNLO and NLO+EW predictions compared to the ATLAS high

mass Drell-Yan distribution data as a function of the invariant mass of the dilepton system Mll.

As explained in the text, only virtual pure weak corrections have been included in the calcula-

tion (in particular no photon-initiated corrections are included). The three curves displayed have

been computed with FEWZ3.1 with the same input PDF set, namely NNPDF2.3 with nf = 5

and αs(MZ)) = 0.118. Right plot: same comparison for the CMS double differential Drell-Yan

distribution as a function of the rapidity of the lepton pair in the lowest invariant mass bin, with

20 ≤ Mll ≤ 30GeV. The bottom panels show the corresponding NNLO and EW C-factors that are

applied to the NLO calculations.

energy, already for some high-mass data included in our analysis the high accuracy of

the experimental measurements may require theoretical predictions at the percent level of

precision, and the size of the EW corrections needs to be carefully assessed.

The NLO EW one-loop corrections are known [125–130] and have been imple-

mented in several public codes such as HORACE [125] and ZGRAD2 [129, 130]. In

FEWZ3.1 [119, 120] the NLO EW corrections are combined to the NNLO QCD corrections,

using the complex mass scheme. This code allows the user to separate a gauge-invariant

QED subset of the corrections from the full EW result. The QED subset includes initial-

state QED radiation, final-state QED radiation (FSR) and the initial-final interference

terms. The former cannot be consistently included without taking into account the photon

PDF γ(x,Q2). Within the current uncertainties that affect the photon PDF, as deter-

mined in ref. [89], initial-state QED corrections are compatible with zero for most of the
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data included in the analysis. In case they may be larger, we exclude the data from the

fit, as explained in section 2.4.1. As far as final state radiation (FSR) is concerned, when

available, we use data from which it has already subtracted. These include all ATLAS

and CMS electro-weak vector boson production data, which have been corrected for FSR

(though the correction has not been applied to LHCb data).

We may thus consistently isolate and compute the weak component of the EW correc-

tions with FEWZ3.1 and include it in our calculation via the computation of C−factors

for all the electroweak gauge boson production. The size of the corrections is displayed

in figure 4. We find that the effect of the pure EW corrections is negligible for most of

the data in the Z peak region, of the order 1% or below. For the CMS double differential

distributions, in the smallest invariant mass bin, we find that the pure EW corrections are

small, much smaller than the NNLO QCD corrections. At large invariant masses the pure

EW corrections are rather large and negative, as expected from the results of ref. [131].

This can be clearly seen in figure 4 for the ATLAS high-mass Drell-Yan data, where EW

corrections reach O(7%) in the last bin of the distribution corresponding to a dilepton

invariant mass of Mll ∈ [1000, 1500]. Note that for the last bin of invariant mass measured

by CMS, Mll ∈ [200, 1500]GeV, EW effects are still moderate, since due to the steep fall-off

of the cross-section, most of the events are from the region around Mll ∼ 200GeV.

In summary, although the ATLAS high mass distribution is the only measurement

for which EW corrections are required, for consistency we include them for all the Z/γ∗

production data.

2.3.4 Treatment of heavy quarks

As in previous NNPDF analyses, in NNPDF3.0, heavy quark structure functions have been

computed using the FONLL general-mass variable-flavor-number (GM-VFN) scheme [132].

In this scheme, the massive fixed-order calculation (in which the heavy quark is only

counted in the final state) and resummed calculation (in which the heavy quark is treated

as a massless parton) are consistently matched order by order. There is some latitude in

deciding at which order the fixed-order massive result ought to be included when parton

evolution is treated at a given perturbative order, and the FONLL method allows consistent

matching in any case. Specifically, in a NLO computation one may decide to include

massive contributions to structure functions up to O (αs), (on the grounds that this is the

order at which the massless structure functions are also computed) or up to O
(

α2
s

)

, (on the

grounds that the massive structure function starts at O (αs)). These are called respectively

FONLL-A and FONLL-B schemes [132]. At NNLO, while a similar ambiguity would exist

in principle, in practice the massive coefficient function can only be included up to O
(

α2
s

)

(FONLL-C) because the O
(

α3
s

)

massive result is not known (progress in this direction is

reported e.g. in [133]).

While the FONLL-A scheme was used for the NNPDF2.1 and NNPDF2.3 NLO PDF

sets, we now adopt the FONLL-B scheme for NNPDF3.0 NLO, with FONLL-C used at

NNLO. While this scheme is less systematic, in that when going to NLO to NNLO the

massless computation goes up one order but the massive one does not, it has the advantage

that massive terms at NLO are more accurate, thereby allowing for the inclusion of a
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somewhat wider set of data already at NLO, as small-x and Q2 charm production data are

affected by large O
(

α2
s

)

corrections, and cannot be described in the FONLL-A scheme.

For the same reason, using FONLL-B allows for a more accurate description of the HERA

inclusive cross section data at small-x.

Heavy quark structure functions are computed using the expression which corresponds

to the pole mass definition. Note that the distinction between pole and MS mass is only

relevant at NNLO and beyond [134]. In this paper, we adopt the following values for the

heavy quark pole masses,

mc = 1.275 GeV , mb = 4.18 GeV , mt = 173.07 GeV , (2.2)

which correspond to the current PDG values for the MS masses. Note that these values

are different from the ones used in NNPDF2.3, namely mc =
√
2GeV, mb = 4.75GeV and

mt = 175GeV. A full discussion of heavy quark mass dependence will be the subject of

future work; for the time being we have checked that the dependence of our results on the

value of the heavy quark masses is moderate, in agreement with previous findings in the

framework of NNPDF2.1 [11], as we shall briefly discuss in section 5.1.4 below.

In NNPDF3.0 we take as a default the nf = 5 scheme, in which the number of active

flavors never exceeds nf = 5 (i.e. in the fit the top quark is always treated as massive,

never as a parton), though results will also be provided in the nf = 3, nf = 4 and nf = 6

schemes. Note that in NNPDF2.1 and NNPDF2.3 the default was nf = 6 (with the other

cases also provided). While in previous PDF determinations the distinction between nf = 5

and nf = 6 was relevant only for delivery, as no data above threshold were available, now

several jet data (especially for 2011 CMS inclusive jets, which has the highest reach in pT )

are above top threshold, as well as some CMS and ATLAS high-mass Drell-Yan data. Close

to top threshold use of an nf = 5 scheme might be advantageous because the top mass is

treated exactly, while the loss of accuracy due to the fact that the nf = 5 running of αs

differs from the exact nf = 6 running [135] is a comparatively smaller effect (only visible

for processes which start at high order in αs, see e.g. [136]). Furthermore, most of the codes

which we used for NNLO computations (specifically NLOjet++ and FEWZ) use an nf = 5

scheme, and the same is true for many of the codes and interfaces used in the computation

of LHC processes. With an ever increasing set of LHC data, the use of an nf = 5 both in

fitting, and as a default for PDF delivery appears thus to be more advantageous.

2.4 Construction of the dataset

We strive to include as much of the available experimental data as possible in our dataset.

However, cuts have to be applied in order to ensure that only data for which the available

perturbative treatment is adequate are included in the fit. These cuts are discussed in

section 2.4.1. Also, we include all available information on correlated uncertainties; how-

ever, there is some latitude in the treatment of correlated systematics, which we discuss in

section 2.4.2.
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Experiment Ndat Exclusion regions in the (y, pT ) plane

CDF Run-II kt jets [83] 52
1.1 < |y| < 1.6 pT < 224GeV, pT > 298GeV

|y| > 1.6 all pT bins

ATLAS 2.76TeV jets [63] 3
0.0 < |y| < 0.3 pT < 260GeV

|y| > 0.3 all pT bins

ATLAS 7TeV jets 2010 [50] 9

0.0 < |y| < 0.3 pT < 400GeV

0.3 < |y| < 0.8 pT < 800GeV

|y| > 0.8 all pT bins

CMS jets 2011 [62] 83
1.0 < |y| < 1.5 pT < 272GeV

|y| > 1.5 all pT bins

Table 4. Summary of the exclusion regions in the jet transverse momentum pT and rapidity |y|
used in the NNPDF3.0 NNLO fits for the inclusive jet production measurements. As explained in

the text, these exclusion regions are determined from a cut-off in the relative difference between the

exact and approximate threshold C-factors in the gluon-gluon channel [124]. Ndat in the second

column is the number of experimental data points for these jet datasets that pass the selection cuts

in the NNLO fits.

2.4.1 Kinematic cuts

As in previous NNPDF fits, we apply a cut in Q2 and W 2 to fixed-target DIS data, in

order to make sure that higher-twist corrections are not needed:

Q2 ≥ Q2
min = 3.5 GeV2, W 2 ≥ W 2

min = 12.5 GeV2 . (2.3)

The stability of the fit with respect to these choices (and in particular the explicit check

that they eliminate the need for higher twists) has been studied in detail in ref. [103].

Low-scale DIS data carry less weight in our current fit than they did previously, because

of the inclusion of a large amount of new HERA and LHC data. Therefore, the impact

of these choices is even less important than it was previously. Note that all NNPDF fits

include target-mass corrections, followind the method of ref. [6].

As discussed in section 2.3 above, NNLO corrections are not available for the W pT
distribution and for W + c production. As a consequence, ATLAS W pT distribution data

are included only in the NLO fit. However, we include the CMS W + c distributions also

in the NNLO fit, but with matrix elements computed up to NLO only (but αs running at

NNLO) because these data almost only affect the strange distribution, and the uncertainty

on strangeness is rather larger than the typical size of NNLO corrections, so we would

rather keep the corresponding experimental information.

For inclusive jet production, we include all available data in the NLO fit, while in

the NNLO fit we include only the data points such that the relative difference between

the exact and the approximate gg-channel NNLO C-factors differ by less than 10%. As

already mentioned in section 2.3.2 above, a cut on the size of the C-factors, only accepting

jet data for which the NNLO C-factor does not exceed 15%, results in approximately the

same dataset. In table 4 we summarize the ensuing exclusion regions in the (pT , y) plane

and the number of data points points Ndat which survive the cut for each experiment.
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As discussed in ref. [124] and section 2.3.2 above, this choice of cut ensures that NNLO

corrections are included with an expected accuracy of a few percent for all the bins in

(pT , y) of the inclusive jet cross section data.

For the ATLAS measurement of the W transverse momentum distribution, we include

only those data points with pWT > 25GeV. This cut excludes the first two bins in pT , and is

motivated by the observation that at small pT the perturbative series is not well-behaved

and all-order resummation is needed (either analytically or by matching the fixed order

calculation to a parton shower).

For the neutral-current Drell-Yan measurements from ATLAS and CMS, we include

only data for which the dilepton invariant mass satisfies Mll < 200GeV. This excludes the

last six bins of the ATLAS DY invariant mass distribution and the 12 points in the rapidity

distribution corresponding to the last bin of invariant mass, Mll ∈ [200, 1500]GeV, for the

CMS measurement. The reason behind this cut is that the pure weak corrections that

we include in our calculation, using FEWZ, do not include the QED subset of the total

electroweak correction. In particular, including the photon-initiated contributions to the

dilepton cross-section would require an initial photon PDF γ(x,Q2), which is not fitted in

this analysis. Using the NNPDF2.3QED set, we have found that, while for most data points

this contribution is compatible with zero within the photon PDF uncertainty, for values

of Mll above MZ such correction can become sizable, more than a few percent, and up to

20% for the highest invariant mass values. On this ground, we exclude all neutral-current

Drell-Yan data with Mll > 200GeV from the fit, both at NLO and at NNLO.

The final cut is imposed, for the NLO fit only, to the lowest invariant-mass bin of the

CMS Drell-Yan double differential distributions. As can be seen from figure 4 (right plot),

for the bin with invariant mass 20 ≤ Mll ≤ 30GeV, the NNLO C-factors are large, around

10%, while experimental uncertainties are a few percent. Therefore, it is not possible to

obtain a reasonable fit to these data points in a NLO fit, and therefore the 24 points of the

20 ≤ Mll ≤ 30GeV bin of the CMS data are excluded from the NLO analysis.

The number of data points before and after cuts, both in the NLO and NNLO fit, are

summarized in table 3. At LO we use the same cuts as in the NLO fit: this is a sensible

choice, given that theory uncertainties at LO are larger than experimental uncertainties,

it does not make much sense to attempt to devise a set of optimized kinematical cuts

specifically for the LO fits.

2.4.2 Treatment of correlated systematic uncertainties

In NNPDF3.0 we include all available information on correlated systematic uncertainties.

This information is summarized in tables 1 and 2. All experiments provide uncorrelated

statistical uncertainties; and most of them also a correlated normalization uncertainty. The

exception of the latter case are ratio experiments such as NMC d/p, E866 d/p and the CMS

W electron and muon asymmetries, and measurements which are normalized to the fiducial

cross section like the D0 Z rapidity distribution, the ATLAS W pT distribution and the

CMS 2D Drell-Yan data. On top of these two types of uncertainties, most experiments

also provide information on correlated systematics, either as an overall covariance matrix,

or as a set of nuisance parameters with the corresponding correlation. The last case is the
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most complete in that each individual source of systematic uncertainty can be in principle

treated independently.

In tables 1 and 2 we indicate in the 5th column whether the information on correlated

systematics, on top of the normalization, is either not provided, provided as a covari-

ance matrix, or fully provided with a complete breakdown of all the sources of systematic

uncertainties. Furthermore, in the 6th column, datasets which are affected by common

correlated systematics are flagged with the same letter. In table 1, all the DIS datasets

that are labelled with the same letter in this column share a common normalization uncer-

tainty. In addition, the BCDMS, CHORUS, HERA-I, ZEUS HERA-II and H1 HERA-II

datasets share other correlated systematic uncertainties. In table 2, the CDF datasets share

a normalization uncertainty, the ATLAS 7TeV jets and W,Z rapidity distributions also

have a correlated normalization uncertainty, and the ATLAS inclusive jet measurements

at 2.76TeV and 7TeV share a number of systematic uncertainties, most importantly the

jet energy scale. On the other hand, none of the CMS datasets has common correlated

uncertainties among them.

Normalization uncertainties are special because the uncertainty is proportional to the

measured value, i.e. they are “multiplicative”. This poses peculiar problems in including

them in a fit, because their naive inclusion in the covariance matrix would lead to a system-

atically biased result [137]. A full solution to this problem based on an iterative procedure

(the t0 method) has been presented in ref. [9] and adopted by NNPDF in all PDF determi-

nation from NNPDF2.0 onwards (previous approximate solutions such as adopted in the

MSTW08 [138] PDF determination lead in practice to very similar results in most realistic

situations, see refs. [139, 140]).

In hadron collider experiments, not only normalization uncertainties but most, or per-

haps all other correlated sources of uncertainty are also multiplicative. After checking with

the respective experimental collaborations, we have thus concluded that the most accurate

treatment of correlated systematics is obtained by departing from the standard approach

of fixed-target deep-inelastic experiments, in which all systematics but normalizations are

additive [141], and treating all systematics as multiplicative for hadronic collisions. For

deep-inelastic experiments, we treat all the correlated systematics of the HERA data as

multiplicative, while for fixed-target experiments the systematics are treated as additive

and only the normalization uncertainties as multiplicative. This information is also summa-

rized in tables 1 and 2, where in the 4th column experiments for which correlated system-

atics uncertainties are treated multiplicatively are denoted by M and others are denoted by

A (additive uncertainties); normalization uncertainties are treated multiplicatively for all

experiments. In section 5 we will study the effect of a multiplicative vs. additive treatment

of systematics, and find that it is small though perhaps not completely negligible. This

will be especially true for the gluon PDF at large x, which is determined from collider jet

data, for which an accurate treatment of experimental systematics is crucial.

As usual in the NNPDF methodology, we use the information on correlated systematics

both in order to calculate the χ2 used in fitting PDF to the Monte Carlo replicas, and also

for generating the Monte Carlo replicas themselves. As explained in [6] (see also eq. (4.3)

in section 4), the generation of the Monte Carlo replicas requires the knowledge of the
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individual sources of independent correlated systematic uncertainties. As can be seen from

table 2, for some LHC experiments this breakup is not provided and only the experimental

covariance matrix is available. In those cases, we first create a set of artificial systematics

consistent with the covariance matrix. These are obtained by diagonalizing the covariance

matrix and then rescaling each eigenvector by the square root of its eigenvalue. This

provides a set of Ndat artificial systematics which can be used to generate replica datasets

in the same way as if we had the full breakup of systematics uncertainties, and which

recombine correctly to give the original covariance matrix. This procedure effectively allows

us to generate replica data according to the multivariate Gaussian distribution implied by

the experimental covariance matrix.

3 Improved methodology

The inclusion of a substantial number of LHC datasets in a global PDF determination

presents a variety of technical challenges, both in terms of the complexity of adding new

hadronic observables into the fitting machinery and of the corresponding increase in the

computational cost of running fits. The implementation of the enlarged LHC dataset is

particularly demanding for NNPDF, which, being based upon a genetic algorithm mini-

mization in a large parameter space, is already more computationally intensive than com-

peting approaches. To provide an optimized solution to these challenges, for NNPDF3.0

we have developed a brand new fitting code based on C++ and Python, object-oriented

languages that allow us to streamline the inclusion of new datasets and to achieve a highly

efficient implementation of the minimization algorithms.

In what follows we first describe the modifications of the fitting code which make it

more robust and efficient. Then we discuss the new PDF parametrization and the enforced

positivity constraints. Finally, we discuss the improvements in the minimization strategy.

3.1 Code

The majority of the computer time spent in performing a PDF fit arises from the calculation

of the physical observables for the comparison with experimental data. Indeed, any PDF

determination involves an iterative procedure where all the data points included in the

fit need to be recomputed a very large number of times for different functional forms of

the input PDFs. The computation of physical observables in the NNPDF framework is

based upon the FastKernel method introduced in refs. [10, 13]. We refer the reader to

the original publications for a detailed explanation of the method; here we simply recall a

few basic facts that are necessary to explain the structure of the new code.

3.1.1 FastKernel methodology

For a suitable choice of interpolating functions, the parton distributions at a given scale

Q2 are represented on a grid of points in x:

{

fi(xα, Q
2);α = 1, . . . , Nx

}

, (3.1)
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where the index i identifies the parton flavor, and the index α enumerates the points

on the grid.

Deep-inelastic observables, which are linear in the PDFs, can be computed using a

precomputed kernel σ̂I,J
αj :

FI(xJ , Q
2
J) =

Npdf
∑

j=1

Nx
∑

α=1

σ̂I,J
αj fj(xα, Q

2
0) . (3.2)

The index I here labels the physical observable, xJ and QJ are the corresponding kine-

matical variables for each particular experimental data point, α runs over the points in

the interpolating grid and j is a parton flavor index. The kernel σ̂ is referred to as an FK

table. Similarly, hadronic observables, which are written as a convolution of two PDFs,

can be computed in terms of an (hadronic) FK table Ŵ I,J
klγδ; the final expression is:

FI(xJ , Q
2
J) =

Npdf
∑

k,l=1

Nx
∑

γ,δ=1

Ŵ I,J
klγδfk(xγ , Q

2
0)fl(xδ, Q

2
0) . (3.3)

Once again we used the index I to identify the physical observable and J to label the

specific experimental data point for this observable; the indices k, l run over the parton

flavors, and the indices γ, δ count the points on the interpolating grids. In the fitting code,

for each experimental dataset I we will have a separate FK table that encodes all the

theory information.

The quantities σ̂ and Ŵ in eqs. (3.2), (3.3) encode all the information about the

theoretical description of the observables e.g. the perturbative order, the value of the strong

coupling, the choice of scales, the QCD and electroweak perturbative corrections, or the

prescription for the evolution. A modification in the theoretical formulation is reflected

in a new FK table. The convolutions of the FK tables with the PDFs at the initial scale

are generic, and do not require any knowledge about the theoretical framework. It is thus

clear from their structure that the FK tables now implement a clean separation of the

theory assumptions from the actual fitting procedure. During a fit, the PDFs at the initial

scale are varied in order to minimize the χ2 while the FK tables are always kept fixed and

treated as an external input.

It should be emphasized that the main difference between fast NLO calculators such

as FastNLO, APPLgrid and aMCfast, and our FastKernel method is that in the latter

also the PDF evolution is included into the precomputed tables, while the other approaches

require as input the PDFs evolved at the scales where experimental data is provided. This

optimization step is essential to reduce the computational cost of running NNPDF fits.

Note also that the generic structure eqs. (3.2), (3.3) holds for any fast NLO calculator as

well as for any PDF evolution code. In NNPDF3.0 we use our own internal Mellin-space

Fkgenerator code for PDF evolution and DIS observables, but using x-space codes such

as HOPPET [142] or APFEL [101] should also be possible.

The fact that the expressions eqs. (3.2), (3.3) of observables in terms of FK tables

include the appropriate PDF evolution pre-computed in the FK tables σ̂ (for DIS data)
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and Ŵ (for hadronic observables) is particularly important for processes for which the pre-

computed fast NLO matrix elements, obtained for example from APPLgrid or FastNLO,

require the PDFs at a large number of Q2 values. This is specially true for inclusive jet

production, where for each experimental bin the range of Q2 values for which PDFs need

to be provided is different (since this range depends on the jet pT and rapidity). In these

cases, the associated acceleration due to the pre-computation of the PDF evolution makes

all the difference between a process being practical or impossible to include in an NNPDF

fit. The improvement due to this acceleration is quantified in table 5 below.

3.1.2 NNPDF++

For the NNPDF3.0 determination, a new fitting toolchain has been developed from scratch

with the FK procedure at its core in order to ensure that the most expensive part of any

fit, the calculation of the physical observables, is performed in the most efficient manner

possible. As discussed above the new fitting code has been designed with an explicit

separation between experiment and theory, with all theory information contained within the

FK tables, and all experimental information held within a new data file format, internally

dubbed CommonData. These two data formats have an associated class structure built in

modular C++ (which replaces the previous FORTRAN implementation), each retaining the

following areas of jurisdiction:

• Theoretical treatment: FK tables

– PDF evolution.

– NLO QCD hard-scattering matrix elements.

– Perturbative order, value of αS/αEW and values of the heavy quark masses.

– Heavy flavour renormalization scheme.

– NNLO QCD C-factors.

– NLO electroweak C-factors.

• Experimental information: CommonData

– Process type information.

– Experimental kinematics for each data point.

– Experimental central values.

– Full breakdown of experimental systematic uncertainties.

– Flexible choice of additive/multiplicative for the treatment systematic uncer-

tainties.

The inclusion of a new experimental dataset into an NNPDF fit is therefore now a mat-

ter of converting the experimental results into the CommonData file format, and generating

a set of FK tables each with the desired choices of theory parameters. Once generated, the

CommonData and FK files are stored, and accessed thereon only via a set of classes used

universally throughout the NNPDF++ fitting code.
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These new code structures have enabled a number of methodological improvements

by providing a more efficient and flexible treatment of experimental data. For example,

performing kinematic cuts upon an experimental dataset can now be performed simply and

algorithmically by selecting the points in the CommonData format which pass the required

cuts according to their bundled kinematic information, and matching with the equivalent

points in the FK table. This is a considerable improvement over the earlier structure in

FORTRAN whereby a variation of kinematical cuts necessitated a complete regeneration of

the pre-computed theory tables due to the monolithic treatment of experimental data.

While the construction of this new fitting toolchain in C++ has made it possible to

streamline any variation in the theory settings and experimental cuts, the new fitting code

itself also achieves substantial improvements over the previous FORTRAN implementation.

A modular treatment of most of the fitting procedure has been implemented, including

PDF parametrization (both in terms of the flavor basis and of the specific functional form),

minimization methods and stopping criteria. This allows for the rapid and safe replacement

or improvement of separate modules of the NNPDF fitting framework without the need for

a large amount of programming work, enabling methodological studies of a greater depth

than those that we have been able to perform previously, as we shall report in later sections.

To ensure a fast and efficient minimization procedure, the calculation of observables in

the FK convolution (the main bottleneck here) has been carefully optimized. In particular,

the FK class that holds the hadronic table Ŵ from eq. (3.3) has been designed such that

the Ŵ table is stored with the optimal alignment in machine memory for use with SIMD

(Single Instruction Multiple Data) instructions, which allow for an acceleration of the

observable calculation by performing multiple numerical operations simultaneously. The

large size of a typical FK product makes the careful memory alignment of the FK table

and PDFs extremely beneficial. A number of SIMD instruction sets are available depending

on the individual processor. By default we use a 16-byte memory alignment for suitability

with Streaming SIMD Extensions (SSE) instructions, although this can be modified by a

parameter to 32-bytes for use with processors enabled with Advanced Vector Extensions

(AVX). The product itself is performed both with SIMD instructions and, where available,

OpenMP is used to provide acceleration using multiple CPU cores. An implementation of

the FK product for GPUs, while presenting no technical objections, has so far not been

developed due to scalability concerns on available computing clusters.

Thanks to the implementation of these various conceptual and technical optimizations

in the calculation of physical observables, the NNPDF3.0 fitting code benefits from a sub-

stantial speed-up with respect to alternative calculations, using for example APPLgrid,

where the PDF evolution needs to be performed separately from the calculation of hard-

scattering matrix elements. This performance improvement is also clearly visible when

comparing with the calculation of the hadronic convolution eq. (3.3) using the optimized

settings with that using non-optimized settings. To illustrate this point, in table 5 we

compare the timings, for a couple of representative LHC observables, for the convolution

performed using APPLgrid, a naive FK implementation, and the optimized FK imple-

mentation using the SSE-accelerated calculation, for two representative observables. From

table 5 it is clear that a massive improvement in speed is achieved by precomputing the
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Observable APPLgrid FK optimized FK

W+ production 1.03 ms 0.41 ms (2.5x) 0.32 ms (3.2x)

Inclusive jet production 2.45 ms 20.1 µs (120x) 6.57 µs (370x)

Table 5. Illustrative timings for the calculation of LHC observables using different methods to

perform the convolution between the matrix elements and the PDFs. We provide results for two

different observables: the total cross-section for W+ production and for inclusive jet production

for typical cuts of pT and rapidity. In parenthesis we show the relative speed-up compared to the

the reference convolution based on APPLgrid. The main difference between the second and third

columns is that in the latter case the PDF evolution is included in the precomputed FK table, while

the differences between the third and fourth column arise from the use of explicit SSE acceleration

in the product in the optimized FK convolution.

PDF evolution in the FK table, with further improvements obtained by the careful opti-

mization of the FK product, and even further gains possible when combined with OpenMP

on a multiprocessor platform.

3.2 PDF parametrization

As compared to the NNPDF2.3 analysis, there have been a number of substantial mod-

ifications in the way PDFs are parametrized and constrained. These include the choice

of input scale, the parametrization basis, preprocessing, and the implementation of PDF

positivity, which we now discuss in turn.

3.2.1 Parametrization basis

In previous NNPDF fits, PDFs were parametrized at a reference scale Q2
0 = 2GeV2. In

NNPDF3.0 instead we choose Q2
0 = 1GeV2. Of course, this choice has no effect whatsoever

on the results of the fit: indeed, changing the input scale amounts to a change in the input

PDF parametrization, of which our fits are fully independent, as we have checked at length

previously, and will verify again here (see in particular sections 4.5.3, 4.5.4, 5.3.5). The

motivation for lowering Q2
0 is to be able to span a wider range of possible values of the

charm quark mass, without having to cross the initial evolution scale (i.e. while always

having Q0 ≤ mc), which will simplify future studies of heavy quark mass dependence.

At this reference scale, in previous NNPDF fits, including NNPDF2.3, PDFs were

expressed in terms of the following set of basis functions for quark and antiquark PDFs:

Σ(x,Q2
0) =

(

u+ ū+ d+ d̄+ s+ s̄
)

(x,Q2
0)

T3(x,Q
2
0) =

(

u+ ū− d− d̄
)

(x,Q2
0)

V (x,Q2
0) =

(

u− ū+ d− d̄+ s− s̄
)

(x,Q2
0)

∆S(x,Q
2
0) =

(

d̄− ū
)

(x,Q2
0) (3.4)

s+(x,Q2
0) = (s+ s̄) (x,Q2

0)

s−(x,Q2
0) = (s− s̄) (x,Q2

0) ,

and then the gluon PDF g(x,Q2
0). This basis was chosen because it directly relates physical

observables to PDFs, by making the leading order expression of some physical observables
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in terms of the basis functions particularly simple: for example, T3 is directly related to

the difference in proton and deuteron deep-inelastic structure functions F p
2 −F d

2 , and ∆S is

simply expressed in terms of Drell-Yan production in proton-proton and proton-deuteron

collisions, for which there is data for example from the E866 experiment.

With the widening of the experimental dataset in NNPDF3.0, there is little reason

to favor any particular PDF combination based on data, and thus we prefer to choose

the basis that diagonalizes the DGLAP evolution equations. We emphasize that the only

purpose of such choices is to speed up the minimization while leaving results unaffected:

independence of our results of this basis change will be checked explicitly in sections 4.5.3

and 5 below. The default basis in the NNPDF3.0 fits is thus

Σ(x,Q2
0) =

(

u+ ū+ d+ d̄+ s+ s̄
)

(x,Q2
0)

T3(x,Q
2
0) =

(

u+ ū− d− d̄
)

(x,Q2
0)

T8(x,Q
2
0) =

(

u+ ū+ d+ d̄− 2s− 2s̄
)

(x,Q2
0) (3.5)

V (x,Q2
0) =

(

u− ū+ d− d̄+ s− s̄
)

(x,Q2
0)

V3(x,Q
2
0) =

(

u− ū− d+ d̄
)

(x,Q2
0)

V8(x,Q
2
0) =

(

u− ū+ d− d̄− 2s+ 2s̄
)

(x,Q2
0),

and of course the gluon. Here, as in previous NNPDF fits, we do not introduce an inde-

pendent parametrization for the charm and anticharm PDFs (intrinsic charm). However

we do plan to do it the near future.

As in all previous NNPDF fits, each basis PDF at the reference scale is parametrized

in terms of a neural network (specifically a multi-layer feed-forward perceptron) times a

preprocessing factor:

fi(x,Q0) = Aif̂i(x,Q0); f̂i(x,Q0) = x−αi(1− x)βi NNi(x) (3.6)

where Ai is an overall normalization constant, and fi and f̂i denote the normalized and un-

normalized PDF respectively. The preprocessing term x−αi(1−x)βi is simply there to speed

up the minimization, without biasing the fit. We now discuss the overall normalizations

Ai, while the preprocessing will be addressed in section 3.2.2 below.

Out of the seven normalization constants, Ai in eq. (3.6), three can be constrained by

the valence sum rules (for up, down and strange quarks) and another by the momentum

sum rule. Which particular combinations depends of course of the choice of basis. With

the default NNPDF3.0 basis, eq. (3.5), these constraints lead to

Ag =
1−

∫ 1
0 dxxΣ(x,Q0)

∫ 1
0 dx x ĝ(x,Q0)

; AV
3

∫ 1
0 dx V̂ (x,Q0)

; (3.7)

AV3 =
1

∫ 1
0 dx V̂3(x,Q0)

; AV8 =
3

∫ 1
0 dx V̂8(x,Q0)

.

The other normalization constants can be set arbitrarily to unity, that is AΣ = AT3 =

AT8 = 1: the overall size of these PDFs is then determined by the size of the fitted

network. The finiteness of sum rule integrals eq. (3.7) is enforced by discarding during

– 27 –



J
H
E
P
0
4
(
2
0
1
5
)
0
4
0

the genetic algorithm minimization (see section 3.3.1 below) any mutation for which the

integrals would diverge. This condition, in particular, takes care of those NN configurations

that lead to a too singular behavior at small-x.

Thanks to the flexibility of the new C++ fitting code, in NNPDF3.0 we support the

option of using any arbitrary basis for the neural network parametrization of PDFs. This

will allow us in particular to check explicitly basis independence. However, whenever we

use a basis which differs from the evolution basis eq. (3.5), the PDFs will be transformed

back to the evolution basis before preprocessing and normalization are applied. This has

the advantage of ensuring that the finite integrals eq. (3.7) do not have to be constructed

as the difference of divergent integrals, which would require large numerical cancellations,

thereby potentially leading to numerical instabilities.

3.2.2 Effective preprocessing exponents

As mentioned, when parametrizing PDFs in terms of neural networks, eq. (3.6), prepro-

cessing is introduced as a means to speed up the minimization, by absorbing in a prefactor

the bulk of the fitted behaviour so that the neural net only has to fit deviations from it.

However, we must make sure that the choice of preprocessing function does not bias the

result. As in previous NNPDF fits, starting with NNPDF1.2 [8] onwards, this is done by

randomizing the preprocessing exponents, i.e. by choosing a different value for each replica

within a suitable range. Unlike in previous NNPDF fits, where this range was determined

based on a stability analysis of the results, we now determine the range self-consistently in

a completely automatic way (the same methodology was already used in the NNPDFpol

family of polarized PDF determinations [143, 144]).

This is done in the following way. First of all, we define effective asymptotic exponents

as follows:

αeff,i(x) =
ln fi(x)

ln 1/x
(3.8)

βeff,i(x) =
ln fi(x)

ln(1− x)
. (3.9)

Other definitions would be possible, such as

αeff,i(x) =
d ln fi(x)

d ln 1/x
βeff,i(x) =

d ln fi(x)

d ln(1− x)
. (3.10)

We have checked that their use would not modify qualitatively our results. We choose a

wide starting range for the preprocessing exponents for each PDF, and perform a fit. The

effective exponents eq. (3.8)–(3.9) are then computed for all replicas at x = 10−6 and 10−3

for the low-x exponent αi and at x = 0.95 and 0.65 for the large-x exponent βi, for all PDFs

(except for the gluon and singlet small-x exponent, αi, which is computed at x = 10−6).

The fit is then repeated by taking as new range for each exponent the envelope of twice the

68% confidence interval for each x value. The process is then iterated until convergence,

i.e., until the output preprocessing exponents stop changing. Reassuringly, convergence is

typically very fast: even in the cases where the fitted dataset is varied significantly, only

one iteration is needed to achieve stability.
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NLO NNLO

PDF [αmin, αmax] [βmin, βmax] [αmin, αmax] [βmin, βmax]

Σ [1.06, 1.22] [1.31, 2.68] [1.02, 1.33] [1.31, 2.74]

g [0.96, 1.37] [0.28, 5.45] [1.05, 1.53] [0.85, 5.20]

V [0.54, 0.70] [1.20, 2.91] [0.54, 0.70] [1.18, 2.80]

V3 [0.29, 0.58] [1.31, 3.42] [0.29, 0.61] [1.36, 3.73]

V8 [0.54, 0.73] [0.80, 3.09] [0.55, 0.72] [1.06, 3.07]

T3 [-0.17, 1.36] [1.58, 3.14] [-0.25, 1.41] [1.64, 3.20]

T8 [0.54, 1.25] [1.30, 3.42] [0.54, 1.27] [1.33, 3.23]

Table 6. Ranges from which the small- and large-x preprocessing exponents in eq. (3.6) are

randomly chosen for each PDF. For each replica, a value is chosen from these ranges assuming a

flat probability distribution. We provide the results for the global NLO and NNLO NNPDF3.0 fits.

The two sets of ranges, obtained at each perturbative order, are determined independently using

an iterative procedure, as explained in the text.

This procedure ensures that the final effective exponents are well within the range of

variation both in the region of the smallest and largest x data points, and in the asymptotic

region (these two regions coincide for the gluon and singlet at small x), thereby ensuring

that the allowed range of effective exponents is not artificially reduced by the preprocessing,

either asymptotically or sub-asymptotically.

The final output values of the preprocessing exponents for the central NLO and NNLO

NNPDF3.0 fits are listed in table 6. These ranges have been redetermined self-consistently

for different fits: for example, for fits to reduced datasets, wider ranges are obtained due

to the experimental information being less contraining.

3.2.3 Positivity constraints

As is well known [145], beyond leading-order parton distributions do not need to be pos-

itive definite. However, the requirement that measurable physical observables be positive

still imposes a generalized positivity constraint on the PDFs. In previous NNPDF fits

these constraints were enforced by imposing positivity of the deep-inelastic structure func-

tions FL, F
c
2 and of the neutrino charm production (“dimuon”) cross-section at a scale of

Q2
pos = 5GeV2 in the range x ∈

[

10−5, 1
]

(see in particular section 4.5 and 5.5 of ref. [10]).

However, while these conditions were sufficient to guarantee the positivity of most phys-

ical observables in previous NNPDF fits, in order to ensure positivity of all observables,

the number of independent positivity constraints must be at least equal to the number of

independently parametrized PDFs.

In order to guarantee full positivity of physical observables we have thus enlarged the

set of positivity constraints. In particular, we have chosen to impose positivity of some

pseudo-observables which must respect positivity for reasons of principle, but which are

not measurable in practice. We choose the three tagged deep-inelastic structure functions
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F u
2 , F

d
2 and F s

2 , and the three flavor Drell-Yan rapidity distributions, dσDY
uū /dy , dσDY

dd̄
/dy

and dσDY
ss̄ /dy, defined respectively as the contribution to the structure function or the

Drell-Yan rapidity distribution which is obtained when all quark electric charges are set to

zero except that of the up, down or strange quark flavor, respectively. These six constraints

enforce generalized positivity of the quark and antiquark PDFs. As in previous fits, our

positivity conditions are imposed at the low scale of Q2
pos = 5GeV2, and will then be also

satisfied once the PDFs are evolved upwards in Q2.

Generalized positivity of the gluon is enforced by requiring positivity of the light com-

ponent of the longitudinal structure function F l
L, defined as the contribution to the struc-

ture function FL when all quark electric charges are set to zero but those of the three

lightest flavors. The use of F l
L allows us to impose gluon positivity without having to make

specific choices for the treatment of heavy quarks at the low scale where these conditions are

imposed. This constraint is supplemented with that from the rapidity distribution dσH
gg/dy

for the production in gluon-gluon fusion of a Higgs-like scalar with mass m2
H = 5GeV2

(such a constraint being much more stringent than that from prodiuction of a heavier

Higgs). The use of these two observables ensures positivity of the gluon PDF both at small

and at large x values.

In summary, the pseudo-observables used to enforce generalized PDF positivity, ex-

pressed schematically in terms of their underlying parton content, the following:

F u
2 (x,Q

2) ∝
(

u(x,Q2) + ū(x,Q2)
)

+O (αs)

F d
2 (x,Q

2) ∝
(

d(x,Q2) + d̄(x,Q2)
)

+O (αs)

F s
2 (x,Q

2) ∝
(

s(x,Q2) + s̄(x,Q2)
)

+O (αs)

d2σDY
uū

dM2 dy
∝ u(x1, Q

2)ū(x2, Q
2) +O (αs) (3.11)

d2σDY
dd̄

dM2 dy
∝ d(x1, Q

2)d̄(x2, Q
2) +O (αs)

d2σDY
ss̄

dM2 dy
∝ s(x1, Q

2)s̄(x2, Q
2) +O (αs)

F l
L(x,Q

2) ∝ Cg ⊗ g(x,Q2) + Cq ⊗ q(x,Q2) +O
(

α2
s

)

dσH
gg

dy
∝ g(x1,M

2
H)g(x2,M

2
H) +O

(

α3
s

)

MH ≡ Qpos

All these positivity constraints are imposed at Q2
pos = 5GeV2, and for x ∈

[

10−7, 1
]

,

which, because of the structure of QCD evolution, ensures positivity at all higher scales

(and explains our choice for the mass of the Higgs-like scalar). In practice we compute the

observables at 20 points in the given x range, equally spaced on a log scale for x < 0.1 (ten

points) and on a linear scale for x ≥ 0.1.

During the minimization, the positivity constraints are imposed by adding a Lagrange

multiplier, and then further discarding replicas for which any of the pseudo-observables is

negative by more than 25% of its absolute value computed with a fixed reference PDF set
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(typically, the outcome of a previous fit). The latter condition is necessary for cross sections

which are very close to zero (e.g. close to kinematic boundaries, like the rapidity tails of

Drell-Yan distributions) where the Lagrange multiplier strategy is not effective. For DIS

structure functions and Drell-Yan distributions, the pseudo-observables are computed using

the internal NNPDF FastKernel implementation, while the Higgs-like scalar production

cross section is computed usingMadGraph5 aMC@NLO [114] interfaced to aMCfast [113],

using a tailored model which goes beyond the effective theory approximation for top quark

mass effects [123, 146].

The strategy outlined above has been used to enforce generalized positivity both in the

NLO and NNLO fits. The only difference is that in the NNLO fit we compute the pseudo-

observables at NLO (with the PDFs evolved also at NLO for consistency) because at the

low Q2 values at which the positivity pseudo-observables are computed, large unresummed

NNLO corrections lead to perturbatively unstable predictions at large and small x. In

addition, there is some evidence that the resummed result is closer to NLO than to NNLO,

see for example ref. [147] for the case of deep-inelastic structure functions. The impact of the

positivity constraints on the final PDFs is quite substantial, especially in the extrapolation

regions, as one could expect. This statement will be quantified and discussed in section 5.3,

where we will compare two NNPDF3.0 NLO fits with and without the positivity constraints,

and we will discuss further a posteriori checks of the implementation of the positivity

conditions. In the results section, we also explore the impact of the improved positivity

constraints on searches for high-mass new physics.

In the leading order fits, where PDFs should be strictly positive-definite, exactly the

same strategy as in the NLO and NNLO fits is used (with pseudo-observables now computed

at LO): we have verified that, as one could expect, using the conditions eq. (3.11) expressed

at LO leads to effectively positive-definite PDFs. To avoid the problem of the occasional

replica of the LO fit that might become slightly negative, the LHAPDF6 NNPDF3.0LO

grids provide by construction a positive-definite output. We have verified the robustness of

our LO positivity implementation by comparing it to alternative strategies, such as using

a neural network where the output of the last layer is squared.

3.3 Minimization algorithm

As in previous NNPDF fits, minimization is performed using genetic algorithms, which are

especially suitable for dealing with very large parameter spaces. Because of the extreme

flexibility of the fitting functions and the large number of parameters, the optimal fit is not

necessarily the absolute minimum of the χ2 (see in particular the discussion in section 4

of ref. [6]), which might correspond to an ‘overfit’ in which not only the desired best fit is

reproduced, but also statistical fluctuation about it. As a consequence, a stopping criterion

is needed on top of the minimization method. In NNPDF3.0 we have improved both the

minimization strategy and the stopping criterion.

3.3.1 Genetic algorithms

We have performed a comprehensive re-examination of the genetic algorithm minimization

procedure utilized in previous NNPDF determinations. Our approach has been to take a
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minimal starting methodology with only a few basic features. New features were added in

turn and only retained if they resulted in faster fitting.

The algorithm consists of three main steps: mutation, evaluation and selection. Firstly,

a large number of mutant PDF sets are generated based on a parent set from the previous

generation. The goodness of fit to the data for each mutant is then calculated. The best

fit mutant is identified and passed on to the next generation, while the rest are discarded.

The algorithm is then iterated until a set of stopping criteria are satisfied.

The number of mutants tested each generation is now set to 80 for all generations,

removing the two GA ‘epochs’ used in previous determinations. However, this number is

somewhat arbitrary, as the more significant quantity in terms of fit quality is the total

number of mutants produced during the fit, i.e. the number of mutants multiplied by the

number of generations. If one is increased while the other is decreased by the same factor

the fit results are largely unchanged. All mutants are generated from the single best mutant

from the previous generation.

To generate each mutant, the weights of the neural networks from the parent PDF

set are altered by mutations. In previous NNPDF fits the mutations have consisted of

point changes, where individual weights or thresholds in the networks were mutated at

random. However, investigations of strategies for training neural networks [148] have found

that employing coherent mutations across the whole network architecture instead leads to

improved fitting performance. The general principle that explains this is that of changing

multiple weights which are related by the structure of the network, leading to improvements

in both the speed and quality of the training.

The neural networks used in NNPDF fits consist of connected nodes organized in layers.

To get a value from the network, the nodes in the input layer are set with the required x and

log x value and then the activations of nodes in successive layers are calculated according to

ξ
(l)
i = g

(

∑

j

w
(l)
ij ξ

(l−1)
j + θli

)

(3.12)

g(a) =
1

1 + e−a
(3.13)

where ξ
(l)
i is the activation of the ith node in the l-th layer of the network, w

(l)
ij are the

weights from that node to the nodes in the previous layer and θli is the threshold for that

node. The weights and the thresholds are the parameters in the fit, and so are the objects

which are changed in the mutation. The exception to eq. (3.13) is the last layer, where

in order to allow for an unbounded output a linear activation function g(a) = a is used

instead. The flexibility of the fitting code allows us to easily explore other choices, for

instance a quadratic output of the last layer, g(a) = a2, has been used in studies of the

PDF positivity in leading order fits.

In the NNPDF3.0 fits we use a nodal mutation algorithm, which gives for each node

in each network an independent probability of being mutated. If a node is selected, its

threshold and all of the weights are mutated according to

w → w +
ηrδ
N rite

ite

, (3.14)
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Nwt
gen Nmut

gen Nmax
gen Esw Na

mut N b
mut

NNPDF 2.3 10000 2500 50000 2.3 80 30

NNPDF 3.0 − - 30000 - 80 -

NNPDF2.3

Single Parameter Mutation

PDF Nmut η

Σ(x) 2 10, 1

g(x) 3 10, 3, 0.4

T3(x) 2 1, 0.1

V (x) 3 8, 1, 0.1

∆S(x) 3 5, 1, 0.1

s+(x) 2 5, 0.5

s−(x) 2 1, 0.1

NNPDF3.0

Nodal Mutation

PDF Pmut η

Σ(x) 5% per node 15

g(x) 5% per node 15

V (x) 5% per node 15

V3(x) 5% per node 15

V8(x) 5% per node 15

T3(x) 5% per node 15

T8(x) 5% per node 15

Table 7. Comparison of genetic algorithm parameter between the NNPDF2.3 and NNPDF3.0

fits. In the top table, parameters controlling the maximum fit length, number of mutants, and

(for NNPDF2.3) target weighted training settings are shown. In the tables below, the mutation

parameters are shown for the two determinations in terms of their respective fitting bases. For the

NNPDF3.0 fit the mutation probability is now set at 5% per network node, and the mutation size

is set to a consistent η = 15.

where η is the baseline mutation size, rδ is a uniform random number between −1 and

1, different for each weight, Nite is the number of generations elapsed and rite is a second

uniform random number between 0 and 1 shared by all of the weights. An investigation

performed on closure test fits found that the best value for η is 15, while for the mutation

probability the optimal value turns out to be around 5%, which corresponds to an average

of 3.15 nodal mutations per mutant PDF set.

As with the removal of the fast- and slow-epochs and their replacement with a single set

of GA parameters, the Targeted Weighted Training (TWT) procedure adopted in previous

fits has also been dropped. This was originally introduced in order to avoid imbalanced

training between datasets. With the considerably larger dataset of NNPDF3.0 along with

numerous methodological improvements, such an imbalance is no longer observed even in

fits without weighted training. Whereas previously the minimization was initiated with

a TWT epoch in which the fit quality to individual datasets was minimized neglecting

their cross-correlations, in NNPDF3.0 the minimization always includes all available cross-

correlations between experimental datasets.

With the removal of the TWT mechanism, along with the consolidation of GA training

into a single epoch with a unified set of mutation probabilities and sizes, the number of free

parameters in the NNPDF minimization has been considerably reduced. In table 7 we pro-

vide a comparison summarizing the relevant parameters in the NNPDF2.3 and NNPDF3.0

determinations.
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3.3.2 Stopping criterion

As in previous NNPDF fits, the optimal fit is determined using a cross-validation method.

This is based on the idea of separating the data in two sets, a training set, which is fitted,

and a validation set, which is not fitted. The genetic algorithm is used in order to minimize

the χ2 (or other figure of merit) of the training set, while the χ2 of the validation set is

monitored along the minimization, and the optimal fit is achieved when the validation χ2

stops improving (see ref. [6] for a more detailed discussion).

In previous NNPDF fits this stopping criterion was implemented by monitoring a mov-

ing average of the training and validation χ2, and stopping when the validation moving

average increased while the training moving average decreased by an amount which ex-

ceeded suitably chosen threshold values. The use of a moving average and of threshold

values was necessary in order to prevent the fit from stopping due to a statistical fluctua-

tion, but introduced a certain arbitrariness since the value of these three parameters (the

length of the moving average and the two thresholds) had to be tuned.

In NNPDF3.0 we have improved on this: we now simply stop all fits at the point

in which the fit reaches the absolute minimum of the validation χ2 within the maximum

number of generations Nmax
gen . In practice this is done in the following way. All replicas are

minimized for Nmax
gen generations. In the beginning of the fit, both the validation χ2 and

the PDF configurations are stored. At the end of the each generation, the validation χ2 is

computed again, and if it is lower than the previous stored values, the PDFs are replaced

with the current ones, if not the fit proceeds to the next iteration. At the end, the stored

PDFs have the the lowest validation χ2 seen during the fit, and they are taken as the global

best fit. We call this the ‘look-back’ method, and it is clearly completely objective. The

price to pay for this is that now all replicas have to be run up to Nmax
gen .

In order for the look-back method to be effective, the value of Nmax
gen must be large

enough that the PDFs at the minimum do not depend on it, i.e., such that the choice of

a larger value does not lead to a different minimum. We have verified this explicitly by

checking that results are unchanged if the value of Nmax
gen is increased, see section 4.5.1

below. We have furthermore checked that results are stable upon small variations of the

position of the minimum: this guarantees that the choice of the absolute minimum (which

could correspond to a local fluctuation) does not bias the result in any way. For this

purpose, we have changed the look-back algorithm, by only updating the PDFs when the

χ2 decreases by more than some threshold: we tried increasingly large threshold values

(0.1, 1, and 10 on the total χ2 not divided by the number of data points) and verified

that even though, of course, the stopping point changes, and happens at an earlier stage

for large values of the threshold, the resulting PDFs are indistinguishable. This explicitly

verifies that local minima whose validation χ2 values differ from the absolute minimum by

a small amount correspond to essentially the same PDFs, as one might expect.

Even so, there is still the possibility that occasionally for a particular replica the

training length required to reach the global minimum would be exceptionally long, either

because of an unusual fluctuation of the pseudodata, or because of fluctuations in the

minimization. In that case, the look-back method would not be effective, because the best
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χ2 within the maximal training length would still be far from the absolute minimum. In

order to safeguard against this possibility, we consider the PDF arc-length defined as

L =

∫

√

1 +

(

df

dx

)2

dx, (3.15)

suitably discretised. Use of an the arc-length penalty has been previously suggested as

a way of penalizing functional forms that are too wiggly, see e.g. example the studies in

ref. [149].

We then take the value of L as an indicator of convergence: a PDF replica with a

very unlikely value of L is assumed not to have converged, and thus discarded. This is

implemented through an arc-length veto. The arc-length is computed for each PDF replica,

and the average length and its standard deviation over the replica sample are determined

for each PDF. We then discard PDF replicas for which at least one PDF the arc-length

exceeds by more than four sigma the mean arc-length for that PDF.

Finally, at the end of the minimization, an a posteriori quality check on the result-

ing sample of Monte Carlo replicas is performed for each fit. These quality tests verify

that the PDF generalized positivity has been successfully implemented (see discussion in

section 3.2.3), that no replica has a too unlikely arc-length, eq. (3.15), and that likewise

no replica has a too unlikely value of the χ2. As in the case of arc-length, if any given

replica has a χ2 whose value is more that four-sigma away the mean χ2, it is automatically

replaced by another replica that instead satisfies this condition.

4 Closure testing

In this section we describe in detail the strategy that has been used to validate the new

fitting methodology described in the previous section: closure testing. The benchmarking of

fitting methodology is especially important due to the substantial increase in experimental

data included in NNPDF3.0, and the increased precision of the resulting PDFs: as data

become more precise and their kinematic coverage increases, it becomes more and more

important to eliminate methodological uncertainties, so that the only uncertainties in our

PDFs are experimental and theoretical. For example a basic requirement for a successful

methodology is to be able to fit widely different datasets with the same methodology, and

without having to tune it or modify it according to the dataset, or to the theory which is

used to describe it (for example at different orders in perturbative QCD). As we will show

below, these requirements can indeed be achieved in the NNPDF3.0 framework. NNPDF3.0

is in fact the first PDF determination for which the complete fitting methodology has been

thoroughly tested and tuned in closure tests based on pseudo-data that have the same

kinematical coverage and statistical properties as the experimental data included in the fit.

The idea of using perfect pseudo-data to validate some specific aspects of a PDF fitting

methodology has been previously explored in ref. [14].

The basic idea of the closure test is simple [2]: we take a given assumed form for

the PDFs (for example MSTW08), a given theoretical model (for example NLO pQCD),

and with them generate a set of global pseudo-data with known but realistic statistical
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properties (by using the covariance matrices of the real datasets that together make up, for

example, the NNPDF3.0 dataset). These pseudo-data are then ‘perfect’, in the sense that

they have known statistical properties, no internal inconsistencies, and are also entirely

consistent with the theoretical model used to produce them. Thus if we then use our

fitting methodology to perform a fit to these pseudo-data, we should reproduce the assumed

underlying PDF, within the correct uncertainties. This latter point can be explored in some

depth by changing by hand the level of uncertainties incorporated within the pseudo-data.

We will first introduce the idea of closure testing in the context of the NNPDF fits,

and discuss its practical implementation. Then we will quantify the efficiency of our neural

network training methodology by performing closure tests to perfect pseudo-data, without

any fluctuations, so that the fit quality can be arbitrarily good. We then perform fits

where the pseudo-data is supplemented with different levels of statistical and systematic

fluctuations. Finally, in the last part of this section we use closure tests to assess the

robustness of our methodology against variations of some of its ingredients, like the choice

of PDF fitting basis or the dependence on the size of the neural network. Some of these

last checks have also been performed on real data, as will be reported in section 5.

4.1 NNPDF closure testing

The framework used in NNPDF3.0 for the computation of observables, as presented in

section 3.1.1, provides us with the ideal tool to successfully implement closure tests. In

particular, the clean separation between theoretical assumptions and input PDFs allows us

to generate pseudo-data using a given set of PDFs and the experimental covariance matrix

as an input, and to perform a fit to this pseudo-data using exactly the same theoretical

settings (encoded in the FK tables) that were used for generating them.

Throughout this section we shall refer to the parton distributions used to generate the

pseudo-data as the input PDFs, and denote them by fin. Any PDF set available through

the LHAPDF interface can be used as an input set to generate the pseudo-data: most of

the closure tests described here will be performed using MSTW08, though we will also later

describe results using other input PDFs. We denote the set of pseudo-data by D = {DI}:
the dependence of the pseudo-data on the input PDF fin and experimental covariance

matrix will be left implicit.

The outcome of the closure test fits is then a set of fitted PDFs, ffit, which we will

compare to the input PDFs in order to study the statistical precision and possible system-

atic biases in the fitting methodology. For any PDF set f , whether input or fitted, the

FastKernel framework delivers a set of theoretical predictions, T [f ] = {TI [f ]}, based on

a particular theoretical model, which for present purposes we take to be NLO perturbative

QCD, precisely as implemented in the NNPDF3.0 fits to real data, with the same param-

eter choices and so on. The one exception to this statement is that for closure tests to

MSTW08 we drop the generalized positivity constraints introduced in section 3.2.3, since

positivity was imposed differently by MSTW. We have checked however, by performing

closure tests based on NNPDF3.0 as input PDFs, that none of the conclusions drawn in

this section is affected once the generalized positivity is included in the fit.
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Fitting is performed by minimizing a χ2 function (denoted during the fitting as the

‘error function’): this is also used to assess the quality of the resulting fit. Such a χ2 depends

on the dataset, D, and on the theoretical predictions of the PDFs f being fitted, T [f ]:

χ2[T [f ],D] =
1

ND

∑

I,J

(TI [f ]−DI)C
−1
IJ (TJ [f ]−DJ) . (4.1)

In this expression, CIJ is the covariance matrix of the data (here we always use the t0-

covariance matrix in order to avoid bias in the inclusion of multiplicative uncertainties,

see section 2.4.2), and ND is the total number of data points of the dataset. Note that

when fitting the pseudo-data we thus use exactly the same procedure (in fact the same

code) as we use in a fit to real data: we use the same error function, evaluated with the

real data replaced by pseudo-data, the t0 covariance matrix, and then the same fitting

methodology (genetic algorithm, stopping criterion, etc). Since in the closure test fits the

“correct” solution is known — it is given by the PDFs fin used as an input — the result

ffit of the fit should then reproduce the input PDFs within the statistical uncertainties of

ffit as determined by the fit.

For the purposes of the studies that will be performed in this paper, we will introduce

three distinct categories (levels) of closure tests depending on the amount of stochastic

noise added to the pseudo-data points generated from the initial PDFs. In order to make

these tests as realistic as possible, this stochastic noise is generated using the complete

information in the experimental covariance matrix, so that the fluctuations and correlations

of the pseudo-data reproduce precisely those of the real experimental data. For the baseline

closure tests presented in this section, the pseudo-data is in one-to-one correspondence with

the experimental data used in the global fit, that is we have generated pseudo-data for every

point in the NNPDF3.0 global dataset described in tables 1 and 2.

The three levels of closure test that we will study, which we call Level 0, Level 1 and

Level 2 for reasons that will soon become apparent, are set up as follows:

• Level 0.

Using a given set of input PDFs, pseudo-data D0 = {D0
I} are generated using the

FastKernel convolution, eqs. (3.2), (3.3). In these Level 0 fits, no stochastic noise is

added to the pseudo-data. Then we perform Nrep fits, each to exactly the same set

of pseudo-data, minimizing the error function (which here is the same as the χ2 per

degree of freedom, i.e. χ2[T [f ],D0]), but using different seeds for the initialization

of the random numbers used in the minimization. This yields an ensemble of PDF

replicas {fk
fit}, where k = 1, . . . , Nrep.

Note that the error function which we minimize is still computed using the covariance

matrix of the data, even though now the pseudo-data have zero uncertainty. While of

course the overall normalization of the error function is immaterial (as the minimum

is at zero), this has the advantage of reproducing the correlations in the underlying

dataset, which means that the total amount of independent experimental information

(the number of independent data points) is the same as in the original dataset.
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It should be clear from its definition that in Level 0 closure tests, the fit quality

can be arbitrarily good, provided we use a sufficiently flexible PDF parametrization

and a sufficiently efficient minimization algorithm. Indeed, since, by construction,

the pseudo-data does not have any stochastic noise, and there are no inconsistencies,

there exist perfect fits to the Level 0 pseudo-data that have a vanishing χ2. We use

the plural here because there clearly exists an infinity of fits which lead to vanishing

χ2 by going through all data points, but differ in the way they interpolate between

data points. These optimal solutions to the minimization problem reproduce precisely

the predictions of the set of PDFs used as input in the generation of the pseudo-data

at each of the experimental data points. The Level 0 closure test is thus a highly non-

trivial test of the efficiency of the minimization procedure: at Level 0 the value of the

error function (i.e., the χ2 evaluated for each replica) should decrease monotonically

towards zero as the fit proceeds, if the functional form used for parametrizing the

fitted PDFs is flexible enough. Consequently, the best-fit χ2 (i.e. the χ2 evaluated

for the average of all replicas) should also go to zero.

• Level 1.

Now we add stochastic fluctuations on top of the pseudo-data generated for the

Level 0 closure tests, D0
I , as follows:

D1
I = (1 + rnorI σnor

I )

(

D0
I +

Nsys
∑

p=1

rsysI,pσ
sys
I,p + rstatI σstat

I

)

, (4.2)

where, as explained in [6], σstat
I , σsys

I,p and σnor
I are the statistic, systematic and nor-

malization uncertainties for each dataset, and the random numbers rnorI , rsysI,p and

rstatI are generated with the appropriate distribution to reproduce the experimental

covariance matrix. These shifted data points represent the central values of a hypo-

thetical experiment, for which the size of the statistical, systematic and normalization

uncertainties are given in eq. (4.2).

In Level 1 fits, the same underlying pseudo-data, generated by the random numbers

in eq. (4.2), are used for the fit of all the Nrep replicas, but as at Level 0 a different

random seed is used to initialize the minimization of each replica. Therefore no

additional stochastic fluctuations (“Monte Carlo replicas”) are added to eq. (4.2),

and thus, as we will confirm later, in a Level 1 fit the experimental uncertainties

are not propagated into the uncertainties of the fitted PDFs. The ensemble of PDF

replicas {fk
fit} resulting from the Level 1 fits is thus expected to underestimate the

PDF uncertainties.

From its definition, given that the pseudo-data have fluctuated on average by one

standard deviation away from the Level 0 value, we expect that in Level 1 closure

tests the error function (which as at Level 0 coincides with the t0 χ2 per degree of

freedom, i.e. χ2[T [f ],D1]) of the best fit will be around one. Moreover, also here

there exist perfect solutions for the minimization, for which the χ2 of the fitted PDFs

coincides exactly with the χ2 computed with the input PDFs used for the generation
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of the pseudo-data, i.e. such that χ2[T [ffit],D1] = χ2[T [fin],D1]. Nevertheless, not

all PDFs produced by the fitting will be perfect, and the distribution of the fitted

PDFs will be too narrow.

• Level 2.

Now, starting from the shifted pseudo-data in eq. (4.2), we generate Nrep Monte

Carlo replicas as in the standard NNPDF procedure. Schematically, this means that

we will have, for each replica k, a set of pseudo-data Dk
2 = {D2,k

I } with

D2,k
I =

(

1 + rnor,kI σnor
I

)

(

D1
I +

Nsys
∑

p=1

rsys,kI,p σsys
I,p + rstat,kI σstat

I

)

, (4.3)

for k = 1, . . . , Nrep, and the set of random numbers is different replica by replica.

From the practical point of view, once we have a set of Level 1 pseudo-data eq. (4.2),

the Level 2Nrep Monte Carlo pseudo-data replicas eq. (4.3) are obtained using exactly

the same code as is used for the fits to real data. Fits to the Level 2 pseudo-data

replicas are also performed in exactly the same way as to real data replicas, using the

same error function, and with different random seeds to initialize the minimization

fitting algorithm for each replica.

In Level 2 fits, each Monte Carlo replica represents a fluctuation around the Level 1

pseudo-data, and the procedure should correctly propagate the fluctuations in the

pseudo-data, due to experimental statistical, systematic and normalization uncer-

tainties, into the fitted PDFs. The fit to each data replica yields a PDF replica fk
fit,

and the ensemble of PDF replicas then contains all the information on PDF uncer-

tainties and correlations. Hence we expect the final error function of a Level 2 fit

(taken as χ2[T [fk
fit],Dk

2 ] just like in a fit to real data) to be close to two (since, in a

sense, each replica contains two fluctuations), while the χ2 per degree of freedom of

the replica PDFs to the pseudo-data (i.e. χ2[T [fk
fit],D1]) will be close to one. More-

over we expect the input PDFs fin to lie within the one-sigma band of the fitted

PDFs with a probability of around 68%.

In the following sections, we discuss in detail the results of these closure tests, starting

from Level 0 and then moving to Level 1 and Level 2, including variations of some of the

fitting methodology settings such as the stopping or the fraction of trained data. For ease of

reference, the closure fits discussed in this section have been summarized in table 8, where

we collect the tag of the fit, the set of input PDFs used for the pseudo-data generation,

the level of closure fit, the settings for the stopping and data training fraction, and other

relevant information. All these fits are done using NLO theory, though of course given the

use of pseudo-data this choice is immaterial in the interpretation of the closure tests.

4.2 Validation of the training efficiency: Level 0 closure tests

We present the results of a number of Level 0 closure tests, using them to assess the training

efficiency of the NNPDF3.0 minimization. Indeed, in Level 0 fits there exists in principle
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tag fin level stopping training fraction details

C1 MSTW08NLO 0 fixed length 1k 100%

C2 MSTW08NLO 0 fixed length 3k 100%

C3 MSTW08NLO 0 fixed length 5k 100%

C4 MSTW08NLO 0 fixed length 10k 100%

C5 MSTW08NLO 0 fixed length 30k 100%

C6 MSTW08NLO 0 fixed length 50k 100%

C7 MSTW08NLO 0 fixed length 100k 100%

C8 MSTW08NLO 1 look-back 30k 50%

C9 MSTW08NLO 2 look-back 30k 50%

C10 CT10 2 look-back 30k 50%

C11 MSTW08NLO 2 look-back 80k 50%

C12 MSTW08NLO 2 look-back 30k 50% NNPDF2.3 basis

C13 MSTW08NLO 2 look-back 30k 25%

C14 MSTW08NLO 2 look-back 30k 75%

C15 MSTW08NLO 2 look-back 30k 50% 2-20-15-1 NN arch

C16 NNPDF3.0 2 look-back 30k 50%

C17 NNPDF3.0 2 look-back 30k 50% with positivity

Table 8. List of closure fits used in this section. The tag in the first column is used to identify the

fits in the text. The second column reports the choice of fin for each fit. The level of the closure fit

can be found in the third column, while the fourth column specifies the stopping method and the

length of the fit, and the last columns provides additional relevant information.

an optimal solution for the minimization: that which reproduces exactly the input PDFs

used for the pseudo-data generation. Therefore, we can study which minimization strategy

gets closest to this optimal solution, with the smallest computational effort.

4.2.1 Training methodology efficiency

The two main ingredients of our fitting methodology that can be tested in Level 0 closure

tests are the adequacy of the neural network architecture, ensuring that it provides a

flexible enough parametrization to reproduce any kind of input PDFs, and the efficiency

of the genetic algorithm minimization, by comparing different options and verifying which

one gets to the optimal solution quickest. Since in this case no stochastic fluctuations are

added in the generation of the pseudo-data, when the fitted PDFs are equal to the input

ones, the χ2 of the fit, as already mentioned, will exactly vanish: χ2[T [ffit],D0] = 0. As

the length of the training is increased, the fitted PDFs are expected to get closer and closer

to the input ones.

In order to verify this feature, we have performed a number of fixed length fits to the

full dataset, and studied the dependence on the training length of the χ2 of the best-fit

PDF, i.e. χ2[T [ffit],D0] evaluated for the average of all replicas. The fits used for this study

are the fits C1 to C7 in table 8. All these fits use identical settings with the only difference
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Effectiveness of Genetic Algorithm in Level 0 Closure Tests

Figure 5. The normalized χ2 per degree of freedom of Level 0 closure tests, eq. (4.1) computed

for the central PDF (average over replicas), as a function of the length of the genetic algorithms

minimization. We compare the results for the GA settings used in NNPDF3.0, based in particular

on the nodal mutations strategy, with the corresponding GA settings used in the NNPDF2.3 fit.

The results for each closure test are marked with crosses; lines joining these points are added to

guide the eye.

being the training length, that ranges from short fits of 1k to very long fits of 100k genetic

algorithm generations. In all these Level 0 closure tests, the input PDF set is taken to be

MSTW08 NLO.

The dependence of the χ2 per degree of freedom on the training length for these Level 0

closure tests is plotted in figure 5. We compare the results for the genetic algorithm used in

NNPDF3.0, based in particular on the nodal mutations strategy discussed in section 3.3.1,

with the corresponding genetic algorithm used in the NNPDF2.3 fit. The results for each

closure test are marked with crosses, with auxiliary lines joining these points to guide the

eye. It is clear from the figure that as expected the χ2 of the fit keeps decreasing as the fit

length is increased, with a behaviour that is approximately described by a power law.

It is important to recall that the normalization of the χ2 eq. (4.1) for Level 0 fits is

arbitrary: the uncertainty in the data being fitted vanishes, and thus the inverse of its

covariance matrix is singular. As explained above, we have chosen to normalize the χ2

using the covariance matrix of the original experimental data, even though at Level 0 this

plays no role neither in the data generation nor in the fitting. Thus the absolute numerical

value of the χ2 simply tells us what is the average distance of the best fit to the data

on the scale of these experimental uncertainties. Thus figure 5 shows that after 30k GA

generation each fitted point differs from the data by about 0.03σ. This fit quality is very
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uniform across replicas. For instance, at 30k GA, where the χ2 of the central PDF is 0.0014

(as shown in figure 5), the average over replicas is 〈χ2〉 = 0.010± 0.008: the quality of the

fit of individual replicas is about one order of magnitude worse that that of the average

over replicas.

Therefore, it is possible to achieve an arbitrarily small value of χ2 by increasing the

training length, though as we approach the minimum the number of generations needed

will grow exponentially.1

It is also clear from figure 5 that the NNPDF3.0 minimization, based on the nodal

genetic algorithm, is substantially more efficient than the NNPDF2.3 one, reaching values

of χ2 which are up to one order of magnitude smaller for a given fixed training length.

This of course will be of great importance when we come to the fits to experimental data,

allowing a more efficient exploration of the minima of the parameter space.

Given that the χ2 is essentially vanishing, we expect almost perfect agreement between

the fitted and input PDFs. Indeed such an agreement can be found in the corresponding

comparison shown in figures 6 and 7. In these plots we show, for the Level 0 fit with a

training length of 100K (fit C7), the results of the fit and the input PDFs, in this case

MSTW08. The central value of our fitted PDFs is computed as the average over replicas

in the usual way:

〈ffit〉 =
1

Nrep

Nrep
∑

k=1

fk
fit , (4.4)

the angled brackets denoting the average over replicas, and the variance as,

σ2
fit = 〈(f2

fit − 〈ffit〉)2〉 =
1

Nrep

Nrep
∑

k=1

(

fk
fit − 〈ffit〉

)2
. (4.5)

It is clear from these plots that the neural network architecture is flexible enough to repro-

duce the input PDFs, and that the genetic algorithm minimization is working as expected.

It is interesting to observe that PDFs for which experimental information is very dense,

such as for example the up quark in the valence region, are perfectly reproduced with essen-

tially zero uncertainty. PDFs for which information is more sparse or indirect, such as for

example the gluon, have an uncertainty even when the χ2 at the data points is essentially

zero, because there is still a certain freedom in interpolating between data points. Indeed,

if we look at the particular combination of PDFs which corresponds to the leading-order

expression of the structure function F p
2 , namely 4

9 (u+ ū+ c+ c̄)+ 1
9

(

d+ d̄+ s+ s̄
)

, which

is directly probed by the HERA data, the uncertainty on it at small x in the HERA data

region 10−4 ∼< x ∼< 10−3 is significantly smaller than that on each individual PDF entering

this combination (see the bottom row of figure 7).

Additional interesting information can be extracted from Level 0 fits by looking at the

PDF uncertainties of the resulting fit, computed as usual as the standard deviation over

the sample of Nrep = 100 fitted replicas, either at the level of parton distributions or at

1This is a well known behavior of genetic algorithms. In this particular case, once we are close enough

to the absolute minimum, it might be more useful to switch to other strategies like steepest descent, though

of course this is purely an academic issue.
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Figure 6. Comparison between the results of the Level 0 closure fit with 100K GA generations

(fit C7) and the corresponding input PDF set, the central value of MSTW08 NLO PDF set. The

green band shows the one-sigma interval computed over the sample of Nrep = 100 replicas, with

the the green dotted line showing the mean value. The plots show the gluon, u, ū and d PDFs on

both linear (right hand side) and logarithmic (left) scales in x, at the scale Q2 = 1 GeV2 where the

PDFs are parametrized.
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Figure 7. Same as figure 6 for the d̄, s and s̄ PDFs, and for the combination of PDFs which

corresponds to the leading-order expression of F p
2 .

the level of physical observables. Recall that at Level 0 the only difference between each

of the replicas is the random seed used to initialize the minimization, and therefore, their

spread quantifies different possibilities of approaching the underlying input PDFs. Given
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Figure 8. The estimator ϕχ2 eq. (4.6), as a function of the length of the genetic algorithms mini-

mization. We compare the results for the GA settings used in NNPDF3.0, with the corresponding

GA settings used in the NNPDF2.3 fit. The results for each closure test are marked with crosses,

with auxiliary lines joining these points.

that the Level 0 input pseudo-data do not fluctuate, the cross-sections computed from the

fitted PDFs must converge to these input values for each replica as the training length is

increased; i.e. the uncertainty on the predicted value for all the observables included in the

fit must go to zero.

To verify this expectation, it is convenient to define an indicator which measures the

standard deviation over the replica sample in units of the data uncertainty. This can be

defined as follows:

ϕχ2 ≡
√

〈χ2[T [ffit],D0]〉 − χ2[〈T [ffit]〉,D0] . (4.6)

To see that this does the job, consider the first term in eq. (4.6) in more detail: using the

definition of the χ2 in eq. (4.1), we find that

ND〈χ2[T [f ],D]〉 =

〈

∑

I,J

(TI [f ]−DI)C
−1
IJ (TJ [f ]−DJ)

〉

=
∑

I,J

〈TI [f ]C
−1
IJ TJ [f ]〉 −

∑

I,J

〈TI [f ]〉C−1
IJ DJ

−
∑

I,J

DI C
−1
IJ 〈TJ [f ]〉+

∑

I,J

DI C
−1
IJ DJ , (4.7)

so that

〈χ2[T [f ],D]〉 − χ2[〈T [f ]〉,D] =
1

ND

∑

I,J

(

〈TI [f ]C
−1
IJ TJ [f ]〉 − 〈TI [f ]〉C−1

IJ 〈TJ [f ]〉
)

. (4.8)
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Thus in terms of the covariance matrix of the theoretical predictions

TIJ ≡ (〈TI [f ]TJ [f ]〉 − 〈TI [f ]〉〈TJ [f ]〉), (4.9)

we have

ϕ2
χ2 ≡ 1

ND

∑

I,J

C−1
IJ TJI , (4.10)

i.e. the average over all the data points of the uncertainties and correlations of the theo-

retical predictions, TIJ , normalized according to the corresponding uncertainties and cor-

relations of the data as expressed through the covariance matrix CIJ . If the covariance

matrix was diagonal, i.e. in the absence of correlations, this would just be the variance of

the predictions, divided by the experimental variance, averaged over data points; ϕ2
χ2 is

thus recognized to provide the generalization of this in the presence of correlations.

In figure 8 we show ϕχ2 , eq. (4.6), for the Level 0 fits as a function of the length

of the genetic algorithms minimization. As before, we compare the results for the GA

settings used in NNPDF3.0, with the corresponding GA settings used in the NNPDF2.3

fit. We can see that indeed, as we increase the training length, the spread of the theoretical

predictions at the data points for different replicas at the level of fitted cross-sections

decreases monotonically, and again here we observe the improvement from the more efficient

minimization strategy in NNPDF3.0. Specifically, for the longest training length we find

that standard deviation of the theoretical predictions is on average almost by a factor 20

smaller than the nominal standard deviation of the data.

On the other hand, the fitted PDFs themselves need not become identical replica

by replica, even at Level 0, since different functional forms for the PDFs can yield the

same predictions for the observables. Of course, in the kinematic regions where data are

available, the fluctuations of the PDFs are limited by the fact that the neural networks

provide a smooth interpolation between points that are constrained by data. In this respect,

in regions where the PDFs are well constrained by experimental data, PDF uncertainties

should be very small, and indeed they are.

This is however not necessarily the case in the extrapolation regions, where we expect

large PDF uncertainties, which moreover are essentially independent of the training length.

This is due to the fact that there the functional forms can vary substantially without

affecting the fitted figure of merit, χ2[T [ffit],D0]. These two effects, very small PDF

uncertainties in the data region, and large PDF uncertainties in the extrapolation regions,

in particular at small and large x are still clearly visible in the plots in figure 6, even

at the end of a 100k-generation training. These results provide a way of quantifying the

extrapolation uncertainty on the PDFs due to the lack of direct constraints in these regions:

this is an irreducible source of PDF uncertainty that can only be reduced if new data is

provided, and that accounts for most of the PDF uncertainties in the fits to real data in

the extrapolation regions.

4.2.2 Effective preprocessing exponents

When using as an input to the closure test a PDF set based on a relatively simple functional

form, such as for example MSTW08 [138] or CT10 [150, 151], the exponents that char-
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Figure 9. Small-x (left) and large-x (right) behaviour of the fitted PDF for uv compared to the be-

haviour of the MSTW08 input functions. In both cases the values are obtained using eq. (3.8)–(3.9).

acterize the asymptotic small-x and large-x behavior of the individual PDFs are known,

since they are part of the set of parameters defining the PDF parametrization at the initial

scale. For instance, in the MSTW08 fit, the PDFs are parametrized at the initial scale of

Q2
0 = 1GeV2 using a generic functional form Ax−α(1− x)β

(

1 + ǫx0.5 + γx
)

and therefore,

the asymptotic small-x and large-x behaviors will both be powerlike, parametrized by the

exponents α and β. Note that in general one has to be careful with this naive interpretation

since sub-asymptotic corrections can be numerically large.

In the context of NNPDF fits, no explicit assumption is made on the functional form

of PDFs, which are instead parametrized using neural networks. On the other hand,

preprocessing is introduced in order to absorb the dominant behavior of the fitted PDFs at

small- and large-x and speed up the fitting. As explained in secttion 3.2.2, when fitting real

data, the range in which preprocessing is varied for each PDF is determined dynamically

through an iterative procedure.

In the context of a Level 0 closure test, when a PDF set based on a known functional

form is used as input, it is interesting to verify that the small-x and large-x behaviour of

the fitted PDFs reproduce the ones of the input PDFs. This can be achieved by comparing

the effective preprocessing exponents between the fitted and input PDFs. These effective

exponents can be computed as in eq. (3.8)–(3.9). The results of this comparison are shown

in figure 9, for the Level 0 closure test with 100K generations (fit C7 in table 8). A

beautiful agreement is found, with the MSTW08 value always within in the one-sigma band

of the fitted PDFs, thus showing that our methodology is capable of precise quantitative

predictions on the behavior of the functions that we are trying to fit. Similar results are

obtained for all the other PDF combinations.

4.3 PDF uncertainties in closure tests

In the previous section we studied Level 0 closure tests, in which the fit quality can become

arbitrarily good, and the PDF uncertainties arise purely due to the fact that the experi-

mental data used in the fit has finite kinematical coverage. Now we turn to Level 1 and

Level 2 closure tests, and in doing so we shed some light, in the cleanly controlled environ-
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ment of closure testing, on the various different origins of PDF uncertainties: specifically

those due to the fluctuations of the experimental data, to the choice of functional form, and

to the extrapolation uncertainties due to the finite coverage of the data. Following this, we

go on to quantify how well the closure test is passed, both in terms of central values and

uncertainties, using various statistical estimators.

4.3.1 PDF uncertainties: data, functional and extrapolation components

A more sophisticated understanding of the various sources that form the total PDF uncer-

tainties can be obtained in the context of closure tests by comparing Level 0, Level 1, and

Level 2 fits. Indeed, in each of these fits the PDF uncertainty band has different compo-

nents. In Level 0 fits, the only significant component is the interpolation and extrapolation

uncertainty (which we will refer to as extrapolation uncertainty for short); in Level 1, one

also has the uncertainty due to the choice of functional form; and in Level 2 finally one

also adds the uncertainties due to the fluctuations of the experimental data. Therefore,

by comparing Level 0, Level 1 and Level 2 closure fits we can analyse how the total PDF

uncertainties are decomposed into data, functional and extrapolation uncertainties.

Let us begin with the extrapolation uncertainty. As discussed in the previous section,

in a Level 0 closure test, the PDF uncertainty at the fitted data points should go to zero

as the training length is increased. This implies that, in the experimental data region,

PDF uncertainties should also decrease monotonically as a function of the training length

wherever data are available. However, in between data (interpolation) and outside the data

region (extrapolation) PDFs can fluctuate. This residual uncertainty, which remains even

at infinite Level 0 training length, we refer to as the extrapolation uncertainty.

Note that, given the highly non-trivial dependence of PDFs on the measured cross-

sections, and the wide range of observables included in the fit, it is very difficult to determine

precisely how this extrapolation region is defined: while a non-negligible extrapolation

component is expected for all PDFs at small enough and large enough values of x, significant

uncertainties due to interpolation could also be present at intermediate x. In fact, this also

accounts for possible degeneracies between PDFs: for example, even in Level 0 closure fits

some PDFs can compensate each other to produce exactly the same cross-section, and this

effect will also be included in the extrapolation uncertainty.

To illustrate this point, in figure 10 we show the results of Level 0 closure tests for all

PDFs, for three fits with identical settings but different training length, 5k, 30k and 100k

GA generations respectively. We can see that while the uncertainties at 100k generations

are smaller than at 5k, they do not go to zero, and in fact for very small or very large

values of x, where there is no experimental information, they remain very large. This is

a direct consequence of the lack of experimental data in this region, and illustrates this

irreducible component of the PDF uncertainties that we denote as extrapolation uncer-

tainty. Furthermore, in most of the data region (with the possible exception of a very

small region around the valence peak x ∼ 0.2 − 0.3 for the up and down distributions)

the uncertainty at 30k generations and 100k generations are very close, and in particular

rather closer than the corresponding ϕχ2 values of figure 8. This is especially noticeable

for the up and gluon distributions, and it means that, even in the data region, there is an

– 48 –



J
H
E
P
0
4
(
2
0
1
5
)
0
4
0

irreducible component of the uncertainty which does not go to zero even for extremely long

training length, and can only be reduced with more data, as it is due to the interpolation

between data points. Otherwise stated, at 30k, the uncertainty of the Level 0 fit shown in

figure 8, which is evaluated only at the data points and is thus due to fitting inefficiency, is

already subdominant in comparison to the extrapolation uncertainty almost everywhere.

Now we can see how the total PDF uncertainty also contains functional and data

uncertainties by comparing the results of Level 0, Level 1 and Level 2 closure tests with

otherwise all other fit settings identical. Figure 11 shows the ratios of the uncertainty

of the fitted PDFs to the respective central values in each case, for the C5, C8 and C9

closure test fits, see table 8, corresponding to Level 0, Level 1 and Level 2 closure tests

respectively. The MSTW08 NLO set is used as input PDF fin, and a total training length

of 30k generations is used in all cases. For the three fits, the PDF uncertainty bands

are defined as the 68% confidence interval from the sample of Nrep = 100 fitted replicas.

Results are provided for the PDFs in the flavor basis at the input parametrization scale of

Q2 = 1 GeV2, though the qualitative interpretation is the same in any other basis.

In order to understand these results, it is useful to review our expectations for the

results of the Level 1 and Level 2 closure fits, as we have done above for Level 0. In a Level 1

fit, the central values of the data have been fluctuated around the theoretical prediction, and

therefore ffit = fin no longer provides an absolute minimum for the χ2. Indeed, provided

the PDF parametrization is flexible enough, the minimization algorithm should find a

large number of different functional forms that yield an equally good χ2[T [ffit],D1] ≈ 1.

Therefore, in Level 1 closure fits, on top of the extrapolation component, the total PDF

uncertainty will include a new component, which we refer to as functional uncertainty.

This functional uncertainty is a consequence of the fact that, as discussed in sec-

tion 3.3.2, the optimal χ2 in the presence of data fluctuations is not the absolute minimum

of the χ2. In a closure test, this is obvious: the optimal result corresponds to the true

underlying functional form, and thus the optimal χ2 is the one of the Level 1 pseudo-data,

whose value is of order one (and tends to one in the limit of infinite size of the data sample).

For an infinite-dimensional space of functions, this χ2 value can be obtained in an infinity

of different ways, whose spread provides the functional uncertainty. The look-back method

discussed in section 3.3.2 ensures that regardless of the length of the fit, the final χ2 does

not decrease beyond the overlearning point, and thus again this functional uncertainty will

survive even for infinite training length.

In a Level 2 fit, the starting point is again the Level 1 pseudo-data generated by

adding a Gaussian fluctuation over the predictions obtained from the input PDFs. Now

however there is a second step, which reproduces the actual fitting strategy used in the

NNPDF framework: starting from these pseudo-data, a set of Nrep Monte Carlo replicas

is generated that reflects the statistical and systematic errors given by the experimental

measurements. Because each replica fluctuates around Level 1 data, the expectation for

the minimized figure of merit for each replica in Level 2 fits is χ2[T [ffit],Dk
2 ] ≈ 2, although

we still expect χ2[T [ffit],D1] ≈ 1. In Level 2 closure tests, each replica is fitted with exactly

the same algorithm, yielding an ensemble of fitted PDFs {fk
fit} whose statistical properties

are a faithful propagation of the fluctuations in the underlying dataset. The increase in

the uncertainty from Level 1 to Level 2 fits is the genuine data uncertainty.
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Figure 10. Comparison of relative PDF uncertainties obtained from Level 0 closure test fits with

MSTW2008 NLO as input set and three different training lengths. The black band shows the results

with 5k GA generations, the dark green band with 30k generations, and the pale green band with

100k generations. Results for the u, ū, d and d̄ PDFs are shown at the input parametrization scale

of Q2 = 1 GeV2, both in a logarithmic (left) and in a linear (right) scales.
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Figure 10 (cont.). Same as above for the g, s and s̄ PDFs. The spike on the gluon PDF at

x ∼ 0.005 is caused by the fact that the gluon from the input PDF set, MSTW08, has a node in

this region, and thus the relative PDF uncertainty blows up.

Following these considerations, it is possible to understand quantitatively the features

that are observed in figure 11. Firstly, we see that Level 0 uncertainties are smaller than

Level 1 and in turn these are smaller than those at Level 2: this confirms the expectation

that at each Level we are adding a new component of the total PDF uncertainty, extrapo-

lation, functional and data components, respectively. We also observe that in the small-x

and large-x regions it is the extrapolation uncertainty that dominates, that is, the Level 2

PDF uncertainties are already reasonably reproduced by those of Level 0 closure fits.

However, as already noticed from figure 10, the Level 0 extrapolation component can be

significant also in some regions with experimental data, like medium x, due to interpolation

and degeneracies. Indeed, it is clear from figure 11 that the Level 0 uncertainty in the data
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region is typically of order of 5% or more, and only goes down to about 1% in a very

small region close to the valence peak for the up and down quark distributions. But we

know from figure 8 that on average the uncertainty at the data points is by about a factor

ϕχ2 ≈ 0.09 (for a 30k fit) smaller than the uncertainty of the original experimental data

〈σdat〉 ≈ 18%, i.e. it is of order of 1-2%. This uncertainty is due to fitting inefficiency, but

anything on top of that, i.e. the Level 0 uncertainty seen in figure 11 except for the up and

down quarks at the valence peak, is a genuine extrapolation uncertainty.

By comparing to the Level 1 results, we see that the functional uncertainty is generally

sizable, especially in regions at the boundary between data and extrapolation, in particular

at large x. Interestingly, in regions where we have a rather reasonable coverage from

available data, the three components are roughly of similar size. Take for example the gluon

around x ∼ 10−3, which is well constrained by the high-precision HERA measurements.

We see that the extrapolation, functional and data uncertainties are all of similar size, and

thus a proper estimate of the total PDF uncertainty must include all three components.

The same applies for other PDF flavors, such as for example strangeness for x ∼> 0.01 (with

abundant constraints from neutrino DIS and LHC data) or the up and down quarks at

medium and large-x (with many DIS and LHC datasets providing information on them).

An important general conclusion is that data uncertainties are not dominant anywhere,

and thus a PDF determination that does not include the extrapolation and functional com-

ponents will underestimate the overall PDF uncertainty. This conclusions is consistent with

that of previous rather less sophisticated, NNPDF studies such as those of ref. [152]. It is

natural to conjecture that the tolerance method [153] which is used in Hessian fits, pro-

vides an alternative way of supplementing the data uncertainty with these extra necessary

components.

4.3.2 Quantitative validation of PDF uncertainties in closure tests

In the previous section we discussed the various components of the total PDF uncertainty

in a purely qualitative way, by comparing the results of Level 0, Level 1 and Level 2 closure

tests. In this section we provide some quantitative estimators of the successfulness and

effectiveness of the closure tests, which will be used in section 4.4 to validate the closure

test fits.

In Level 1 and Level 2 closure fits, we expect that the central χ2 obtained from the

average of the fitted PDFs should reproduce the one computed using the input PDFs, that

is χ2[〈T [f ]〉,D1] ≈ χ2[T [fin],D1] where by D1 we indicate that that we use the Level 1

pseudo-data, which include the fluctuations.

We can test for a particular fit whether this is the case by defining the following

statistical estimator

∆χ2 =
χ2[〈T [f ]〉,D1]− χ2[T [fin],D1]

χ2[T [fin],D1]
, (4.11)

that is, the difference between the central χ2 of the closure test fit, computed with an

average over replica PDFs, and the χ2 of the input PDF set, both computed with respect

to the same closure test dataset. This estimator is therefore a measure of how close the
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Figure 11. Same as figure 10, but now comparing PDF uncertainties obtained from Level 0, Level 1

and Level 2 closure test fits. The plots show the 68% confidence level PDF uncertainty band for

each of the fits, normalized to the corresponding central value of each fit.
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Figure 11 (cont.).

closure test fit reproduces the theoretical predictions of the input PDF, and therefore it

provides a quantitative measure of the success of the test.

In particular, noting that in genetic algorithm minimization χ2 is a decreasing function

along the training, ∆χ2 > 0 corresponds to underlearning (the optimal χ2 has not been

reached yet), ∆χ2 = 0 corresponds to perfect learning of the underlying law, while in

fixed-length genetic minimization ∆χ2 < 0 would correspond to overlearning, i.e., the fit

is learning the noise in the data. Of course in a closure test the true underlying χ2 is

known and thus one could stop at the optimal point by comparing to it, which of course

is not possible in a realistic situation. The effectiveness of the method for determining the

optimal stopping point that is actually used — in our case, the look-back method described

in section 3.3.1 — can then be measured by simply evaluating how close ∆χ2 eq. (4.11) is to

zero at the actual stopping point. The estimator eq. (4.11) thus quantifies how successful

the closure test fit is in terms of reproducing the central values of the input PDFs.
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We now introduce an estimator which allows for an assessment of the accuracy with

which PDF uncertainties are reproduced. To this purpose, we first recall that for an

unbiased estimator, assuming gaussianity, the n-sigma intervals about the prediction can

be interpreted as confidence levels for the true value (see e.g. ref. [15]): this means that the

true value must fall on average within the one sigma uncertainty band in 68.3% of cases,

within the two-sigma band in 95.5% of cases, and so on.

We thus define the estimator

ξnσ =
1

NPDF

1

Nx

1

Nfits

NPDF
∑

i=1

Nx
∑

j=1

Nfits
∑

l=1

I
[−nσ

i(l)
fit (xj),nσ

i(l)
fit (xj)]

(

〈f i(l)
fit (xj)〉 − f i

in(xj)
)

, (4.12)

where n is a positive integer, and NPDF, Nx and Nfits are the number of PDF flavors, x

values and fits respectively, over which averages are performed. For the sampling of the

PDFs in x, we use 20 points between 10−5 and 1, half of them log spaced below 0.1 and the

rest linearly spaced. In eq. (4.12), IA(x) denotes the indicator function of the interval A:

it is only non-zero, and actually equal to one, if its argument lies in the interval A, while

it vanishes for all other values of its argument. Finally, 〈f i(l)
fit 〉 and σ

i(l)
fit are the average

PDFs and the corresponding standard deviation of the i PDF flavor for fit l, computed

over the sample of Nrep = 100 replicas of fit l. The estimators ξ1σ, ξ2σ, . . . provide the

fraction of those fits for which the input PDF falls within one sigma, two sigma, etc of the

central PDF f̄
i(l)
fit , averaged over PDF flavors and values of x. In a successful closure test

we should thus find that ξ1σ ≈ 0.68, ξ2σ ≈ 0.95, etc.

In principle, in order to calculate ξ1σ, eq. (4.12), we would need to, for instance,

generate 100 closure test fits each one with Nrep = 100 replicas, following the procedure

explained above. However performing this very large number of fits is very computationally

expensive, and we would instead like to obtain an estimate of ξ1σ which involves fewer fits.

To achieve this, we can approximate the mean of each fit, 〈f i(l)
fit 〉, by fitting a single replica

to each set of closure test data at Level 1, i.e. without additional replica fluctuations. We

can also replace the individual values of σi(l) in eq. (4.12) with the corresponding values

taken from a single 100 replica fit, making use of the fact that the variation in the PDF

uncertainties between different closure test fits is small.

4.4 Validation of the closure test fits

Using the statistical estimators introduced in the previous section, we now move to validate

quantitatively the results of the closure fits. First, we show how close the central values and

χ2 values of the input and fitted PDFs are to each other, both for the total dataset and for

individual experiments. Then we discuss a quantitative validation of the PDF uncertainties

obtained in the closure tests, using the estimators defined in section 4.3.2 for this purpose.

Finally in this section we will show how one can also use the Bayesian reweighting proce-

dure [18, 154] to provide further evidence that the closure tests are working as expected.

Indeed, it turns out that reweighting provides the most stringent validation test, since for

it to be successful it is necessary to reproduce not only central values and uncertainties,

but also higher moments and correlations.
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4.4.1 Central values

A first indicator of the quality of a closure test is provided by the values of the central χ2

obtained using the fit, χ2[〈T [ffit]〉,D1]. This should reproduce the values of the χ2 obtained

using the generating PDFs, that is χ2[T [fin],D1]. For our baseline Level 2 closure test,

using pseudo-data based on MSTW08, and performed with the look-back stopping criterion

rather than at fixed length (fit C9 in table 8), we obtain the following result for eq. (4.11),

∆χ2 = −0.011 , (4.13)

which shows that the fitted PDFs reproduce the χ2 of the generating PDFs at the 1%

level, with a small amount of overlearning, which must be viewed as an inefficiency of

the look-back method. The result for the corresponding Level 1 fit (C8) is very similar:

∆χ2 = −0.015.

This level of agreement is achieved not only for the total χ2, but also for the individual

experiments included in the global fit. This is important to test, since each experiment

fluctuates by a different amount, and we want the closure test to reproduce these fluctu-

ations. Figure 12 shows the contributions in the Level 2 fit C9 to χ2[〈T [ffit]〉,D1] from

the pseudo-data generated for each individual experiment, compared to the corresponding

contributions to χ2[T [fin],D1]. The horizontal bars show the total χ2 for the two PDF

sets, and are computed as the weighted average of the χ2 of each individual dataset. The

datasets shown are the same used in the baseline NNPDF3.0 global fit (see tables 1 and 2

in section 2).

We see from figure 12 that the closure test successfully reproduces the χ2 of the input

PDFs, MSTW08, not only for the total dataset but also experiment by experiment. Note

that especially for experiments with only a small number of points the fluctuations added

to the pseudo-data can lead to a χ2 quite different from one, and this is exactly reproduced

by the closure test results. Figure 12 is thus a strong check that, at least at the level of

central values, the Level 2 closure fits are successful.

4.4.2 PDF uncertainties: qualitative validation

We can get a first assessment of the uncertainty of the Level 2 closure fit by means of the

estimator ϕχ2 eq. (4.6). For the Level 2 closure fit C9 we get

ϕχ2 = 0.254 , (4.14)

a result that indicates that the PDF uncertainty on the data points from the Level 2 closure

fits is roughly a factor of four smaller than that the original experimental uncertainty, due to

the combination of all the data into the PDFs. For the Level 1 fit C8 this number is rather

smaller: ϕχ2 = 0.173, confirming that at Level 1 the data uncertainty is still missing.

Since contributions to ϕχ2 are entirely from the data points, there is no extrapolation

uncertainty; however, the Level 0 uncertainty, though small, is not exactly zero because

this would require infinite training length. From figure 8 we may read off that the Level 0

contribution to ϕχ2 is of order of ϕχ2 ≈ 0.09. Hence, combining uncertainties in quadrature,

we get that the contribution of the functional uncertainty to ϕχ2 is about 0.15, and the
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Figure 12. Comparison of the χ2 to the closure test data, χ2[D1], obtained with the input (red)

and with the fitted (green) PDFs, for the Level 2 closure test fit based on MSTW08 pseudo-data,

fit C9 in table 8. The horizontal bars show the total χ2 for the two PDF sets, and are computed as

the weighted average of the χ2 of each individual dataset. The datasets shown are the same used

in the baseline NNPDF3.0 global fit, see tables 1 and 2 in section 2.

data uncertainty contribution is about 0.21, so, at least on average, the data and functional

uncertainties are of comparable size.

Recalling that ϕχ2 is essentially the ratio of the uncertainty of the fitted PDFs at the

data points to that of the original data, we conclude that the fitting procedure leads to

an error reduction by a factor of four or so. However, we must now verify that this error

reduction is real, namely that uncertainties are correctly estimated by the closure test.

We do this first in a more qualitative way, and then more quantitatively in sections 4.4.3

and 4.4.4 below.

To this purpose, we first look at the distance between the fitted PDFs and the under-

lying “truth” in units of the standard deviation. This is most efficiently done using the

distance estimators, as defined in appendix B, between the closure test fit PDFs and the

input MSTW08 PDFs. The distances between fitted and input PDFs in closure tests are

normalized such that d(x,Q) ∼ 1 corresponds to agreement at the one-sigma level (in units

of the uncertainties of the closure test fitted PDF), d(x,Q) ∼ 2 corresponds to agreement

at the two-sigma level and so on, that is,

dσ [fi,fit, fi,in] (x,Q) ≡

√

(

f̄i,fit(x,Q)− fi,in(x,Q)
)2

σ2 [fi,fit] (x,Q)
, (4.15)

where i stands for the PDF flavor. In the following, distances are computed at the initial

parametrization scale of Q2 = 1GeV2.
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Figure 13. Distances, eq. (4.15), between the central values of the fitted PDFs from the Level 2

closure test C9 and the MSTW08 PDFs, which are used as input to generate the theory predictions

of the closure test. These distances are computed using eq. (4.15), that is, normalized to the

standard deviation of the fitted PDFs. Distances are computed at the input parametrization scale

of Q2 = 1GeV2, see text for more details.

Using the definition eq. (4.15), the distances between the central values of the fitted

and the input PDFs (MSTW08) in the Level 2 closure test C9 are shown in figure 13.

The distances in figure 13 show that the fitted and input PDFs are in good agreement,

at the level of one sigma or better (in units of the uncertainty of the fitted PDF), with

some PDFs for some points in x differing by an amount between one and two sigma, as one

would expect if the underlying distribution was roughly Gaussian. In the extrapolation

regions, at small and large x, the distances between input and fitted PDFs become smaller

because of the large PDF uncertainties in these regions.

From the distance comparisons of figure 13 we can see that, at the qualitative level,

the closure test is successful since the fitted PDFs fluctuate around the truth by an amount

which is roughly compatible with statistical expectations. More insight on this compari-

son is provided by plotting, for all PDF flavors, the ratio ffit/fin between the fitted and

input PDFs, including both the fitted PDF central values and uncertainties. This com-

parison is shown in figure 14 for each parton flavor. It is clear from these plots that the

NNPDF methodology reproduces successfully the input PDFs, with deviations from the

input functions usually by two standard deviations at most. This comparison provides

further evidence that PDF uncertainties are properly estimated in Level 2 closure tests, in

that the central value of the fitted PDFs fluctuates around the truth by an amount which

is consistent with the size of the PDF errors.

A final qualitative comparison can be performed by using the arc-length, which, as

discussed in section 3.3.2, provides a measure of the complexity of a function defined over

a finite interval. A function that has a more complicated structure is expected to have a

larger arc-length, and vice-versa. In the context of our fits, PDFs with too large arc-lengths

might be an indication of over-fitting, with a PDF trying to use a contrived shape in order

to fit statistical fluctuations. For this reason, as explained in section 3.3.2, replicas that

at the end of the fit have some PDFs with unnaturally large arc-length are discarded from

the final sample.
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Figure 14. Ratio of the PDFs obtained from the Level 2 closure test C9, which uses MSTW08

as input, with respect to the input MSTW2008 PDFs themselves. The green band shows the one

sigma interval of the fitted PDFs, while the green dotted line is the corresponding mean. The plots

show the up and down PDFs on both linear (right hand side) and logarithmic (left) scales in x. The

corresponding comparison in terms of distances, eq. (4.15), is shown in figure 13. The comparison

is performed at the fitting scale of Q2 = 1 GeV2.
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Figure 14 (cont.). Same as above for gluon and strange PDFs.

In the context of closure tests, comparing the arc-lengths of the fitted PDFs with those

of the input PDFs provide an integrated comparison, rather than point by point, that the

fitted PDFs reproduce the input ones. The arc-lengths of the Level 2 fit C9, using MSTW08

as input, are shown in figure 15. Arc-lengths are computed at the input parametrization

scale of Q2 = 1GeV2. As expected from the comparison at the level of PDFs, there is

also good agreement between the input and fitted PDFs at the level of arc-lengths, the

arc-length of the input PDF typically lying within the 68% confidence level of the fitted

PDFs.

4.4.3 PDF uncertainties: quantitative validation

The results of sections 4.4.1 and 4.4.2 provide evidence the Level 2 closure tests are suc-

cessful, both in terms of central values and of PDF uncertainties. We now provide a more

quantitative assessment of this success using the indicators described in section 4.3.2.
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Figure 15. Comparison of the arc-lengths of the fitted and input PDFs, calculated using eq. (3.15)

for the C9 Level 2 closure test, using MSTW08 NLO as input. Arc-lengths are computed at the

input parametrization scale of Q2 = 1GeV2. For the fitted PDFs, we show the central value and

the 68% confidence interval.

In order to validate quantitatively the agreement in central values we compute the ξnσ
estimators eq. (4.12) for Level 2 fit C9. We obtain the following results:

ξ
(l2)
1σ = 0.699 , ξ

(l2)
2σ = 0.948 , (4.16)

to be compared with the theoretical expectations of 0.68 and 0.95. This excellent agree-

ment confirms that the PDF replicas obtained by our fitting methodology can indeed be

interpreted as a representation of the probability distribution for the PDFs given the data

used in the fit.

To verify that this agreement is not accidental, or a fluke of the definition of the estima-

tor ξnσ, but rather a robust feature of our analysis, we have redone the whole procedure but

this time based on Level 1 closure fits, set up in the same way as C8, and computed again

the ξnσ estimators. We already know from the qualitative comparisons between Level 1

and Level 2 uncertainties from figure 11 that in Level 1 closure tests PDF uncertainties are

underestimated, and therefore in this case the central value of the fitted PDF will fluctuate

more than its estimated uncertainty would suggest.

This implies that in Level 1 closure tests we expect the ξnσ estimators to be smaller

than the theoretical expectations above. Indeed, computing ξ1σ and ξ2σ at Level 1 this is

precisely what we find:

ξ
(l1)
1σ = 0.512 , ξ

(l1)
2σ = 0.836 , (4.17)

which shows that indeed the Level 1 closure tests fail, in the sense that Level 1 fits under-

estimate PDF uncertainties. This confirms that the Level 2 step, that is the generation of
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Figure 16. Histograms for the difference between the input PDF and the single replica fits obtained

from different sets of closure test data, in units of the standard deviation of standard Level 1 (left)

and Level 2 (right) fits. An appropriately scaled Gaussian distribution is shown for comparison.

Nrep Monte Carlo replicas on top of the pseudo-data with the fluctuations, is essential to

obtain the correct PDF uncertainties.

The fact that the Level 2 closure test leads to a correct estimate of the PDF uncertain-

ties, while the Level 1 fails, can be tested in more detail by looking at the distribution of

the mean of our fit for different closure test datasets: this tests not only the one- and two-

sigma confidence intervals, but the shape of the whole distribution of deviations between

the prediction and the truth. Figure 16 shows the histograms of the differences between

〈ffit〉 obtained using different closure test datasets (that is, pseudo-data generated with

different random seeds) and the central value fin of the MSTW input PDFs, in units of the

standard deviation of a standard Level 1 or Level 2 closure test. The histogram is gener-

ated using the values at x = 0.05, 0.1 and 0.2 for each PDF, as a representative sampling.

The resulting distribution is very close to a Gaussian distribution with standard deviation

1 when scaled with the Level 2 uncertainties, and is considerably wider using the Level 1

uncertainties. This is consistent with the results found above that Level 2 uncertainties

reproduce the correct fluctuations of the central values while Level 1 underestimates them.

4.4.4 Closure test validation using Bayesian reweighting

The results above show that our Level 2 closure tests are successful in terms of both central

values and uncertainties, both at the qualitative and quantitative levels. However, it is still

conceivable that they could fail for higher moments of the fitted distribution, including

the correlations. In this respect, the most stringent validation of our fitting methodology,

also in the context of closure tests, is provided by exploiting the Bayesian reweighting

method [154]. Reweighting allows one to determine a new set of PDFs from a prior set

when new data are added. Since reweighting is analytic, in the sense that the weights

are computed using the χ2 to the new data without the need for refitting, by comparing

the reweighted distribution to a refitted distribution in a closure test, one can test rather

precisely the fitting methodology.

With this motivation, we have performed, based on closure tests, two reweighting

analyses, one at Level 1 and the other at Level 2. The priors consist in each case of sets
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Figure 17. Distribution of the distances, for the central values, between the reweighted and the

refitted PDFs for the Level 1 (left) and the Level 2 (right) closure test fits. See appendix B for the

definition of the distances. Also shown is a χ2 distribution with one degree of freedom.

of 1000 PDF replicas, produced using the same dataset as was used in the NNPDF2.3-like

fits described in section 5, in particular without the inclusive jet production data (which in

NNPDF2.3 are from CDF and ATLAS). The pseudo-data were generated using MSTW08

as the input PDF, NLO QCD, and so on, just as for the C8 and C9 closure tests. They

were then fitted in the usual way. The jet data were then included by reweighting the prior

in the usual way [154], and the results compared with the corresponding closure test PDFs

in which instead the jet data were included by generating pseudo-data, adding them to the

prior pseudo-data and then refitting.

First, we compute the distance between the central values of the reweighted and refitted

PDFs. The distribution of these distances, in both the Level 1 and Level 2 cases, is shown

in figure 17. These distributions are obtained from a sampling produced using 100 points

in x for each PDF in the flavor basis, in the range between 10−5 and 1. We expect this

distribution of distances, for a successful reweighting test, to follow a χ2 distribution with

one degree of freedom.

From figure 17 we see that the distribution of distances follows the statistical expec-

tation of a χ2 distribution with one degree of freedom, as seen by comparing with the

superimposed curve representing the latter, both in Level 1 and Level 2. This means that

both Level 1 and Level 2 closure tests faithfully reproduce central values.

A more stringent test is obtained when computing uncertainties. The comparison

between the reweighted and refitted results including uncertainties for Level 1 and Level 2

closure tests, are shown in figure 18. Several interesting conclusions can be drawn from this

comparison. First, it is clear that at Level 2 the reweighted and refitted results are in perfect

agreement, thus validating the procedure. Second, at Level 1 the refitted uncertainties are

rather smaller than the reweighted ones, thus signaling a failure of the procedure.

The more interesting observation however is that in fact the Level 1 reweighted and

Level 2 reweighted results essentially coincide. This, upon reflection, is to be expected:

indeed, if the new data bring in sufficient new information, Bayesian reweighting produces

results which are largely independent of the prior. Because the jet data are controlling
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Figure 18. The large-x gluon PDF at the initial parametrization scale of Q2 = 1 GeV2, comparing

the results of adding the inclusive jet data by reweighting (green solid band) and by refitting (red

hatched band). Results are shown for a Level 1 closure test fit (left) and for a Level 2 closure test

fit (right). See text for more details.

the large-x gluon uncertainty, and these are introduced by reweighting in both cases, this

uncertainty comes out to be the same even when the uncertainties in the prior are not

accurately estimated, as in the Level 1 fit. If instead the jet data are introduced by Level 1

refitting, the ensuing uncertainty comes out to be too small, because Level 1 does not

properly account for the data uncertainty as discussed in section 4.3.1.

4.5 Robustness of the fitting methodology

We now turn to study the robustness of the fitting methodology against changes in some

of its parameters, in the context of the closure test fits. The main advantage of using

closure tests, as compared to attempting to address these issues in fits to real experimental

data, is that any deviation from expectation must be attributed uniquely to deficiencies

in the methodology, rather than blamed on spurious reasons like inconsistencies in the

data, or failings of the theoretical description: in a closure test data and theory are by

construction ‘perfect’.

First, we study how the fit results change when the training length is modified, then

when the fraction of data included in the training set is varied, then we examine the effects

of modifying the basis in which the PDFs are parametrized, and finally we verify that our

baseline neural network architecture is redundant enough by comparing with the results of

a fit with a huge neural network. Most of the closure tests in this section are performed

using MSTW08 as input PDF, but we finally also explore the robustness of the closure

testing against variations of this choice, in particular using CT10 and NNPDF3.0 itself as

input PDFs.

4.5.1 Independence of the maximum number of GA generations

In NNPDF3.0, the cross-validation strategy that determines the optimal stopping point for

the neural network training is based on the look-back method, described in section 3.3.2.

Provided that the maximum number of genetic algorithm generations Ngen is large enough,

we expect results based on the look-back method to be independent of the value of Ngen.
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Figure 19. Distances between central values and uncertainties of two Level 2 closure test fits with

maximum numbers of generations set to 30k and 80k, fits C9 and C11 in table 8, with all other fit

setting identical. Distances are calculated at the input parametrization scale of Q2 = 1 GeV2. Left

plots are in a log scale while right plots are in a linear scale.

The condition for this to take place is that Ngen must be sufficiently large so that the

look-back algorithm is able to the identify an optimal stopping point by finding somewhere

close to the absolute minimum of the validation χ2.

To verify this expectation, in figure 19 we show the distances for two Level 2 closure

test fits with the maximum numbers of generations set to 30k and 80k (fits C9 and C11

in table 8), all other settings being identical. Both fits use the look-back procedure to

determine the ideal stopping point, and only differ in the maximum number of generations

that are analyzed by the look-back algorithm. Since the random seed used for the fit is the

same in the two cases, this is completely equivalent to looking at the same fit had it been

left to run for a larger number of generations.

Both the distances between central values, and the distances between uncertainties,

are smaller than one for all the PDFs in the flavor basis over the whole range of x values,

showing that the two fits are statistically indistinguishable. We can therefore rule out any

sizable dependence on the total training length in our current results, and we can stick to

a baseline maximum number of generations of 30k in our fits to real data.
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4.5.2 Dependence on the training fraction

As discussed in section 3.3.2, the look-back cross-validation algorithm requires us to sep-

arate the fitted dataset into two disjoint subsets, the training set and the validation set,

and in the standard fits each contains 50% of the total dataset. During the minimization,

only the training set is seen by the neural network, with the validation being used only

to determine the optimal stopping point. While the exact value of the training fraction

would be irrelevant in the limit of infinite statistics, one could argue that for our large, but

finite, dataset, results might change substantially if this 50% is varied to some other value.

In particular, we must be sure that a training fraction of 50% is enough to retain all the

relevant information contained in the original dataset.

In order to study the impact on the fitted PDFs of the use of a different training

fraction, we have produced Level 2 closure fits with identical settings, the only difference

being the value of this training fraction. Compared to the baseline fit with a training

fraction of 50% (fit C9 in table 8), we have produced a fit with a smaller training frac-

tion, 25% (fit C13), and another one with a larger training fraction, 75% (fit C14). The

comparison between these three values of the training fraction, quantified by the distance

plots of figure 20 and figure 21, indicate that the resulting uncertainties on the fitted PDFs

increase when the training fraction is reduced to 25%, showing that, for the NNPDF3.0

dataset, some of the information which is lost when using the smaller training fraction is

not redundant. This effect can be quantified more directly by looking at the PDFs in the

two fits, shown in figure 22. Is clear that the reduction of the training fractions entails a

considerable increase of the PDF uncertainties.

On the other hand, as can be seen from the distances in figure 21, the fits with training

fractions of 50% and 75% are statistically indistinguishable. We thus conclude that the

loss of information due to the training-validation splitting of the dataset required by the

cross-validation procedure is small provided the training fraction is above 50%, but would

be problematic for smaller training fractions.

4.5.3 Parametrization basis independence

One of the most attractive features of the new NNPDF3.0 methodology is that thanks to the

new flexible C++ fitting code, it is possible to change the basis for the PDF parametrization

rather easily, as discussed in section 3.2. In turn, this allows us to perform detailed tests

of the robustness of the whole fitting procedure: indeed, for a truly unbiased fit, results

should be independent of the parametrization basis, since they are all related to each other

by linear transformation. Note that in the standard Hessian approach to PDF fitting even

adding a few extra parameters to the input parametrization can be quite complicated, let

alone changing the parametrization basis altogether.

In order to test for this, we have produced a closure test Level 2 fit, C12 in table 8, which

is otherwise identical to fit C9 but uses the NNPDF2.3 parametrization basis, eq. (3.4),

rather than the new NNPDF3.0 parametrization basis, eq. (3.5). The distances between

fits C9 and C12, that is, between fits in the NNPDF3.0 and NNPDF2.3 parametrization
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Figure 20. Same as figure 19 for the Level 2 closure fits based on training fractions of 25% and

50%, fits C9 and C13 in table 8.

basis, are shown in figure 23. We see that distances are quite small, though slightly larger

than for statistically indistinguishable fits.

Distances are typically between d ∼ 1 and d ∼ 3, so some slight differences due to

the choice of basis are found, which are however much smaller than the corresponding

PDF uncertainties: this means that basis independence is satisfied up to inefficiencies of

the algorithm at the quarter-sigma level. Of course, this does not fully test for basis

independence, as three of the basis combinations (singlet, triplet, and valence) are the

same in the two bases which are being compared. However, it is worth noticing that PDFs

with a relatively simple shape (with a single maximum) such as the strange combinations

in one basis, are obtained as linear combinations of PDFs with a more complex dip-bump

shape in the other basis: the stability of results then provides a strong check that the final

PDF shape is independent of a bias due to the form of the parametrizing function. We

can conclude that our results are independent for all practical purposes of the choice of

fitting basis. As will be shown in section 5.3.5, similar conclusions will be derived of the

corresponding tests in the fits to real experimental data.

4.5.4 Redundancy of the neural network architecture

To be used as reliable unbiased interpolants, neural networks have to be characterized by

an architecture redundant enough for the problem at hand: adding or removing nodes,

even a substantial number of them, should leave the final results unchanged. The choice of
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Figure 21. Same as figure 19 for the Level 2 closure fits based on training fractions of 50% and

75%, fits C9 and C14 in table 8.

       x  
-210 -110

)2
 (

 x
, Q

3
x 

T

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2=1 GeV2Level 2 Closure Test, Fit C9 vs C13,  Q

Train Frac = 50%

Train Frac = 25%

2=1 GeV2Level 2 Closure Test, Fit C9 vs C13,  Q

       x  
-210 -110

)2
 (

 x
, Q

+
x 

s

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2=1 GeV2Level 2 Closure Test, Fit C9 vs C13,  Q

Train Frac = 50%

Train Frac = 25%

2=1 GeV2Level 2 Closure Test, Fit C9 vs C13,  Q

Figure 22. Comparison between PDFs in the Level 2 closure fits based on two different training

fractions, 50% and 25%, corresponding to fits C9 and C13 in table 8. We show the quark triplet

xT3(x,Q
2
0) (left plot) and the total strangeness xs+(x,Q2

0) (right plot) at the initial parametrization

scale of Q2
0 = 1GeV2. The increase in PDF uncertainties when the training fraction is decreased to

25% is a result of the loss of non-redundant information as compared to the baseline fit with 50%

training fraction

a 2-5-3-1 architecture as baseline for the NNPDF fits can be justified precisely by showing

its redundancy, as we did in previous work [6]. Using the closure testing technology, we

have revisited for the current fits the stability of the fit results with respect to this choice

of the architecture of the neural networks.
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Figure 23. Same as figure 19 for the Level 2 closure fits based on the NNPDF3.0 and NNPDF2.3

input parametrization basis, fits C9 and C112 in table 8.

Starting from our baseline architecture, 2-5-3-1, which has 37 free parameters for each

PDF, or 259 in total, we have performed a closure fit with instead a huge neural network,

with architecture 2-20-15-1, therefore increasing by more than a factor 10 the number of

free parameters in the fit. Other than this modification, exactly the same fit settings were

used in the two cases.

The distances between the two fits can be seen in figure 24. Remarkably, even in-

creasing the architecture to have a factor 10 more free parameters, the fit using the huge

networks is still quite close to the fit with standard sized networks. Again, we do not have

perfect statistical equivalence, but inefficiencies are well below the half-sigma level.

This test also provides another demonstration of the resilience to over-fitting of our

fitting methodology. Indeed, one might fear that such a large increase in architecture

would lead to massive overlearning, while in actual fact results are virtually unchanged.

This is thus a significant test of the effectiveness of the look-back method in determining

the optimal stopping point.

Interestingly, we also observe a very moderate increase in CPU time when using the

huge network as compared to our baseline architecture. This is because when a network is

very redundant, it often makes little difference which parameters the algorithm changes.

Finally, let us mention that several other tests of neural network architecture were

also performed, including changing the number of layers in the networks and the number

of inputs. In most cases the results were either very similar to those from the standard

structure or (for some smaller networks) noticeably worse.
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Figure 24. Same as figure 19 for the Level 2 closure fits based on 2-5-3-1 and 2-20-15-1 architec-

tures, fits C9 and C15 in table 8.

4.5.5 Robustness with respect to the choice of input PDF set

So far in this section we have shown results fitted to the pseudo-data generated using

MSTW08 as input PDF, and studied the effects of changing some of the settings of the

closure test fits. However, it is important to verify that there is nothing special in using

pseudo-data generated with MSTW08, and that our methodology is flexible enough so that

similar successful closure fits are achieved if other PDFs are used as input. In particular,

we want to explicitly verify that self-closure is successful: using NNPDF3.0 as input PDF,

and checking that it is correctly reproduced by the closure fit. Note that the MSTW08 and

CT10 parametrizations are relatively simple, so we need to verify that everything works

fine even when a very flexible PDF parametrization is used as input in the closure test.

As a preliminary test, we have verified that Level 0 tests works regardless of the input

PDFs, by producing a number of fixed length Level 0 fits for different input PDFs, and

checking that all the conclusions of section 4.2 are unchanged if input PDFs other than

MSTW08 are used to generate the pseudo-data. We have then moved to Level 2 tests:

we have performed closure test fits using exactly the same methodology as those based on

MSTW08, but now using pseudo-data generated using different input PDF sets, in par-

ticular with the CT10 and NNPDF3.0 NLO sets. In the latter case, we have performed

closure tests with and without the inclusion of the generalized positivity constraints de-

scribed in section 3.2.3. Given that NNPDF3.0 satisfies these constraints, this is a useful
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cross-check. These closure tests are labeled in table 8 as C10 (for CT10) and C16 and C17

(for NNPDF3.0 without and with positivity constraints).

First, figure 25 shows the distances between the fitted and the input PDFs, eq. (4.15),

for the closure test fit which uses the CT10 NLO PDF set to generate the data. Let us recall,

as discussed above, that these distances are normalized to the standard deviation of the

fitted PDFs, and thus a value dσ ∼ 1 indicates that input and fitted PDFs agree at the one

sigma level, and so on. These distances should be compared with the corresponding results

obtained using MSTW08 as input, figure 13. We observe that, just as with MSTW08, the

fitted PDFs are mostly within one sigma of the input PDFs, and never more than around

two sigma away. In this respect, the closure test based on CT10 is as successful as that

based on MSTW08. We have verified that this is also the case using some of the other

estimators considered in this section.

The distances eq. (4.15) are shown again in figure 26 now for a closure test fit using

as input the NNPDF3.0 NLO PDFs. As in other closure tests, no generalized positivity

is required here. This fit is therefore the ultimate closure test, providing evidence of self-

closure, where the PDF set used to generate the pseudo-data has been determined using the

same methodology as the closure test fit. Again, the agreement using NNPDF3.0 as input

is as good as that obtained using other PDFs with a less flexible parametrization, showing

that the closure tests works also in the case of a initial condition with substantial structure.

All of the closure test fits shown so far have been performed without the positivity

constraints used in the fits to real data, described in section 3.2.3. The motivation for

this is that for some of the input PDFs used in the closure tests, in particular MSTW08,

generalized positivity is not satisfied and therefore including such constraints would result

in inconsistencies with the generated pseudo-data in the closure test, potentially biasing

the results. On the other hand, as shown in section 5.3.2, the NNPDF3.0 fits satisfy the

generalized positivity constraints by construction, and therefore if we use NNPDF3.0 as

input PDF we can include generalized positivity in the closure test, expecting to find no

differences with respect to the previous case. Figure 27 shows the distances, eq. (4.15), for

the closure test using as input the NNPDF3.0 NLO PDFs and now also with the generalized

positivity constraints imposed during the closure test fit. We indeed find that the level of

agreement is similar as that of the closure test when no positivity constraints were imposed

during the minimization.

5 The NNPDF3.0 PDF set

In this section we present the NNPDF3.0 LO, NLO and NNLO global fits. First, we discuss

fit quality and the dependence of the χ2 on its exact definition and on the treatment of

systematic and normalization uncertainties. Then we show results for PDFs, we compare

the new sets with NNPDF2.3 and with other existing PDF sets.

Next, we explore the dependence of the NNPDF3.0 partons on the choice of dataset.

We propose a new definition of conservative PDF set, based on an estimator which allows

for an assessment of the consistency of an individual dataset with the global fit, and

compare these conservative partons with the global fit results. We then study a wide range
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Figure 25. Distances, eq. (4.15), between the central values of the PDFs from the closure test fit

and the CT10 PDFs, in units of the standard deviation of the fit PDFs.
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Figure 26. Same as figure 25 for the closure test based on NNPDF3.0 as input PDFs, without

positivity constraints.
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Figure 27. Same as figure 26, this time including the generalized positivity constraints in the

closure test fit. See text for more details.
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of variations of the fitted dataset, including fits without LHC data, fits with only HERA

and LHC data, and fits based on the NNPDF2.3 dataset. Fits to reduced datasets are also

used to study the impact of jet data on the global fit and their stability, and the size of

the strange PDF, which has been the object of various recent studies.

We then turn to an assessment of the stability of the NNPDF3.0 results upon variations

in the fitting methodology. These include the impact of positivity constraints, the stability

upon change of fitting basis, and the dependence on the additive or multiplicative (recall

section 2.4.2) treatment of systematic errors.

Finally, we study the implications of NNPDF3.0 for LHC phenomenology. We com-

pare NLO and NNLO PDF luminosities at
√
s =13TeV with NNPDF2.3 and with

CT10 and MMHT. We then provide predictions for the LHC at 13TeV, using the Mad-

Graph5 aMC@NLO program [114], for a number of representative processes like vector

boson production, top quark production and Higgs production. In addition, we also dis-

cuss, using the iHixs [155] code, the implications for the dominant Higgs production channel

at the LHC, gluon-fusion, and compute NNLO cross-sections. In this case we also study the

dependence of σ(gg → h) on the choice of fitted dataset. To complete our brief exploration

of the implications of NNPDF3.0 at the LHC, we study the production of systems of very

high invariant masses, close to the kinematic threshold, which are relevant for searches of

massive New Physics at the energy frontier.

5.1 The NNPDF3.0 set of parton distributions

In this section first of all we discuss the quality of the LO, NLO and NNLO fits and the

dependence of the χ2 on its definition, and then present the NNPDF3.0 PDFs and un-

certainties and compare this PDF set to the previous NNPDF2.3 set. We then turn to

a discussion on the way theoretical uncertainties on PDFs could be estimated by com-

paring PDFs at different perturbative orders. We finally briefly discuss other sources of

uncertainties which are currently not included in the total PDF uncertainty.

5.1.1 Fit quality

In table 9 we present the results for the fit quality of the global LO, NLO and NNLO sets.

The comparison is performed for a common value of αs(MZ) = 0.118 (but PDFs in a wide

range of values of αs(MZ) are also available, see section 6). We show the results obtained

both using the experimental and the t0 χ2 definition (see refs. [9, 139]). Note that the t0
definition varies with the perturbative order, as it depends on the theoretical values of the

cross-sections included in the fit. The t0 χ
2 is used for minimization as it corresponds to an

unbiased maximum-likelihood estimator even in the presence of multiplicative uncertain-

ties [9] (see section 2.4.2). The experimental definition, which is based on the experimental

covariance matrix, cannot be used for minimization as it would lead to biased results, but

it is best suited for benchmarking as it only depends on publicly available results (the final

PDFs and the experimental covariance matrix).

The overall fit quality is good, with an experimental χ2 value of 1.23 at NLO and 1.29

at NNLO; the t0 values are very close, 1.25 and 1.27 at NLO and NNLO, respectively (see

table 9). The LO fit is characterized of course by a much poorer fit quality, due to the
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LO NLO NNLO

Ndat χ2
exp χ2

t0 Ndat χ2
exp χ2

t0 Ndat χ2
exp χ2

t0

Total 4258 2.42 2.17 4276 1.23 1.25 4078 1.29 1.27

NMC d/p 132 1.41 1.09 132 0.92 0.92 132 0.93 0.93

NMC 224 2.83 3.3 224 1.63 1.66 224 1.52 1.55

SLAC 74 3.29 2.96 74 1.59 1.62 74 1.13 1.17

BCDMS 581 1.78 1.78 581 1.22 1.27 581 1.29 1.35

CHORUS 862 1.55 1.16 862 1.11 1.15 862 1.09 1.13

NuTeV 79 0.97 1.03 79 0.70 0.66 79 0.86 0.81

HERA-I 592 1.75 1.51 592 1.05 1.16 592 1.04 1.12

ZEUS HERA-II 252 1.94 1.44 252 1.40 1.49 252 1.48 1.52

H1 HERA-II 511 3.28 2.09 511 1.65 1.65 511 1.79 1.76

HERA σc
NC 38 1.80 2.69 47 1.27 1.12 47 1.28 1.20

E886 d/p 15 2.04 1.10 15 0.53 0.54 15 0.48 0.48

E886 p 184 0.98 1.64 184 1.19 1.11 184 1.55 1.17

E605 119 0.67 1.07 119 0.78 0.79 119 0.90 0.72

CDF Z rapidity 29 2.02 3.88 29 1.33 1.55 29 1.53 1.62

CDF Run-II kt jets 76 1.51 2.12 76 0.96 1.05 52 1.80 1.20

D0 Z rapidity 28 1.35 2.48 28 0.57 0.68 28 0.61 0.65

ATLAS W,Z 2010 30 5.94 3.20 30 1.19 1.25 30 1.23 1.18

ATLAS 7 TeV jets 2010 90 2.31 0.62 90 1.07 0.52 9 1.36 0.85

ATLAS 2.76 TeV jets 59 3.88 0.61 59 1.29 0.65 3 0.33 0.33

ATLAS high-mass DY 5 13.0 15.6 5 2.06 2.84 5 1.45 1.81

ATLAS W pT — — — 9 1.13 1.28 — — —

CMS W electron asy 11 10.9 0.95 11 0.87 0.79 11 0.73 0.70

CMS W muon asy 11 76.8 2.25 11 1.81 1.80 11 1.72 1.72

CMS jets 2011 133 1.83 1.74 133 0.96 0.91 83 1.9 1.07

CMS W + c total 5 11.2 25.8 5 0.96 1.30 5 0.84 1.11

CMS W + c ratio 5 2.04 2.17 5 2.02 2.02 5 1.77 1.77

CMS 2D DY 2011 88 4.11 12.8 88 1.23 1.56 110 1.36 1.59

LHCb W rapidity 10 3.17 4.01 10 0.71 0.69 10 0.72 0.63

LHCb Z rapidity 9 5.14 6.17 9 1.10 1.34 9 1.59 1.80

σ(tt̄) 6 42.1 115 6 1.43 1.68 6 0.66 0.61

Table 9. The values of the χ2 per data point for the LO, NLO and NNLO central fits of

the NNPDF3.0 family with αs(MZ) = 0.118, obtained using both the experimental and the

t0 definitions.
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missing NLO corrections. For some experiments like CHORUS, SLAC, ATLAS high-mass

Drell-Yan, the W lepton asymmetry or top quark pair production, the χ2 improves when

going from NLO to NNLO: for top, in particular, this is related to the presence of large

NNLO corrections [76, 81] (a good χ2 at NLO would require unnaturally small values of

the top mass, far from the current PDG value). However, for most of the experiments

it remains either very similar or gets slightly worse. This is also the case for the new

HERA-II datasets. For the jet data the fit quality is quite similar at NLO and NNLO

using the t0 definition, but note that the kinematical cuts in the two cases are different

(see section 2.4.1). This is also the case for the CMS Drell-Yan data: the χ2 is slightly

worse at NNLO but only because at NLO we impose kinematical cuts that remove the

region with large NNLO corrections: without such cuts, the χ2 is much poorer at NLO.

Another interesting feature that one can observe from table 9 is that, even for the same

underlying PDFs, the numerical differences between the two definitions of the χ2 can be

substantial. This effect is particularly acute for experiments where systematic uncertainties

dominate over statistical ones, and emphasizes the crucial role of a careful estimation of

systematic errors for PDF fitting. One such example is provided by the NNLO fit, where

for the CMS inclusive jet data the best-fit χ2 changes from 1.90 (experimental definition) to

1.07 (t0 definition). Reassuringly, as we will show in section 5.3.3 below, these differences

in the value of the χ2 do not have a large impact on the PDFs, which are rather stable

upon changes of the χ2 definition. The dependence of the χ2 on its definition is weaker for

fixed target experiments and DIS data, for which statistical uncertainties are dominant.

5.1.2 Parton distributions

We now compare the NNPDF3.0 LO, NLO and NNLO partons, with αs(MZ) = 0.118,

with the corresponding NNPDF2.3 sets and with each other. In figure 28 we show the

distances between the parton distributions in the NNPDF3.0 and NNPDF2.3 sets for the

three perturbative orders, LO, NLO and NNLO. We recall that when comparing two sets of

Nrep = 100 replicas, d ∼ 1 means that the two sets are statistically equivalent (they cannot

be distinguished from replica sets extracted from the same underlying probability distri-

bution), while d ∼ 10 means that the sets correspond to PDFs that agree at the one-sigma

level. A full discussion of distances in given in appendix B; note that in comparison to pre-

vious NNPDF papers we have slightly changed the algorithm used in computing distances

(in particular by removing an averaging and smoothing procedure), without changing their

statistical interpretation. Distances are computed at a scale of Q2 = 2GeV2. At LO, when

comparing to NNPDF2.3 we use the set with αs(MZ) = 0.119, since αs(MZ) = 0.118 is

not available for NNPDF2.3 LO. This has a minor effect on the comparison.

The sizes of the distances shown in figure 28, vary significantly with the perturbative

order. At LO, the gluon in the two sets is in very good agreement for x ∼< 0.01. This

suggests that Monte Carlo tunes (which strongly depend on the small-x gluon) based on

NNPDF2.3LO, such as the Monash 2013 tune of Pythia8 [156] should also work reasonably

well with NNPDF3.0LO. On the other hand, larger differences, between one and two-sigma,

are found at medium and large x, both for the quarks and the gluon. Note that, however,

at LO theory uncertainties dominate over PDF uncertainties.
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Figure 28. Distances between NNPDF2.3 and NNPDF3.0 at LO (top), NLO (center) and NNLO

(bottom) PDFs, with αs(MZ) = 0.118. computed between sets of Nrep = 100 replicas at Q2 =

2GeV2. Note that at LO, the NNPDF2.3 set has αs(MZ) = 0.119.

At NLO and NNLO, NNPDF2.3 and NNPDF3.0 are typically in agreement at the

one-sigma level, with occasionally somewhat larger distances, of order 1.5-sigma. In par-

ticular, while the total quark singlet PDF is relatively stable, there are larger differences

for individual quark flavors, especially at medium and large-x. Significant differences are

also found for the gluon PDF, especially at NLO, where however it should be kept in mind

that NNPDF2.3 used the FONLL-A treatment of heavy quarks, while NNPDF3.0 uses

FONLL-B (see section 2.3.4). This comparison also shows that PDF uncertainties change

at the level of one-sigma: this is to be expected, as a consequence of the constraints coming

from new data, and the improved fitting methodology.

Now we turn to the direct comparison of NNPDF2.3 and NNPDF3.0 NLO PDFs: in

figure 29 the gluon, singlet PDF, isospin triplet and total valence PDFs are shown, with

αs(MZ) = 0.118 at Q2 = 2GeV2. We can see that in the NNPDF3.0 NLO set, the central

value of the gluon never turns negative, even at small-x: it is flat down to x ∼ 104 and
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Figure 29. Comparison of NNPDF2.3 and NNPDF3.0 NLO PDFs at Q2 = 2GeV2 with αs(MZ) =

0.118. From top to bottom and from left to right the gluon, singlet, isospin triplet and total valence

are shown.

then it begins to grow, within its large uncertainty, always remaining above its NNPDF2.3

counterpart. The difference can be understood as a consequence of moving to the FONLL-B

heavy quark scheme, and due to the more stringent positivity constraints that are imposed

now (see section 3.2.3). For the total quark singlet there is good agreement between 2.3

and 3.0. For the quark triplet we see two interesting features: first at large x the result in

3.0 is larger than in 2.3, especially in the region where the PDF peaks, and also the small-x

uncertainties are substantially larger, suggesting that they were somewhat underestimated

in NNPDF2.3, presumably due to the less flexible methodology and less efficient treatment

of preprocessing (see section 3.2.2). As will be shown below, the small-x uncertainties in

the triplet between NNPDF2.3 and NNPDF3.0 become more similar when the comparison

is performed in terms of 68% confidence level intervals, see figure 34.

The same comparison is performed at NNLO in figure 30. In this case, we observe

good consistency for the gluon PDF, with a reduction in the PDF uncertainties at small-x.

Note that in both NNLO fits the same FONLL-C GM-VFN scheme is being used. The

agreement is also good for the quark singlet, as it was at NLO. For the triplet PDF T3,

the small-x uncertainties, as at NLO, are larger in 3.0 than in 2.3, though as in the case of

NLO the two PDF uncertainty bands are in rather better agreement if 68% CL contours

instead of one-sigma uncertainties are compared.

It is also interesting to compare the NNPDF2.3 and 3.0 sets at the higher scale Q2 =

104GeV2, typical of LHC processes. Results for this comparison, at NNLO, are shown

figure 31, as ratios to the NNPDF3.0 central value. We see that the two PDF sets agree

typically at the one-sigma level or better, with some exceptions. The NNPDF3.0 gluon is
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Figure 30. Same as figure 29 but at NNLO.

somewhat softer than in NNPDF2.3, in particular in the region around x ∼ 0.01 which

is important for the Higgs cross-section in gluon fusion. It is interesting to observe that

this difference is not due to the different value of the charm mass used in NNPDF2.3 and

NNPDF3.0, as the sensitivity of the gluon to the charm mass is minimal in this region, and

becomes sizable only at very large x ∼> 0.2,and to a lesser extent small x ∼< 10−5, where

however uncertainties are very large (see ref. [11], figure 40, and also section 5.1.4, figure 41

below). The total quark singlet is also harder for x ≤ 10−3, where the two error bands

do not overlap, except for x ∼< 10−4 where the two sets agree again at one-sigma. For the

triplet, there is good agreement, except near x ∼ 0.3 where the NNPDF2.3 and 3.0 fits

disagree at the two-sigma level; for the total valence PDF there is a reasonable agreement

for all values of x.

In order to assess the phenomenological impact of these changes, it is useful to look at

parton luminosities. Following ref. [157], we define the parton luminosity for the ij initial

state as

Φij

(

M2
X

)

=
1

s

∫ 1

τ

dx1
x1

fi
(

x1,M
2
X

)

fj
(

τ/x1,M
2
X

)

, (5.1)

where fi(x,M
2
X) is the PDF for the i-th parton, τ ≡ M2

X/s and MX is the invariant mass

of the final state.

We compare gg, qq, qq̄ and qg luminosities obtained using NLO and NNLO PDF sets for√
s=13TeV and αs(MZ) = 0.118 (where for quarks a sum over light flavors is understood).

The NLO and NNLO comparisons between NNPDF2.3 and NNPDF3.0 luminosities are

shown in figures 32 and 33 respectively. At NLO, we generally find agreement at the one-

sigma level, with some differences in the qq channel for MX ∼ 500GeV, where the error
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Figure 31. Same as figure 30, but at Q2 = 104 GeV2, and with results shown as ratios to the

NNPDF3.0 central value.

bands of the two PDF sets barely overlap, and in the qg channel above 1TeV, where the

luminosity is rather larger in NNPDF3.0 than in NNPDF2.3. Note that in the gg channel

in the region around 100-200GeV the NNPDF3.0 luminosity is somewhat softer than in

NNPDF2.3, though always in agreement within PDF uncertainties.

At NNLO, in the qq and qq̄ channels there is generally good agreement, with differ-

ences well within one sigma: for qq̄, the NNPDF3.0 luminosity tends to be larger at high

invariant masses, while for qq around 500GeV NNPDF3.0 is somewhat lower, with barely

overlapping error bands. More significant differences are found in the gg channel, where the

luminosity at medium invariant masses is smaller by about one sigma in NNPDF3.0 than

in NNPDF2.3: in particular, for 30GeV ≤ MX ≤ 300GeV, the gg one sigma bands barely

overlap. This has important consequences for gluon-initiated processes such as inclusive

Higgs production, see section 5.4.3 below. As discussed in section 5.1.2, these differences

stem from a combination of the improved fitting methodology and the new constraints

from HERA and LHC data.

Finally, we compare one-sigma uncertainty bands to 68% confidence level intervals.

For this comparison we use the NNPDF3.0 NLO fit with Nrep = 1000 replicas; the conclu-

sions would be qualitatively the same for the NNLO fit. Of course if the PDF probability

distribution is Gaussian the one-sigma and 68% intervals coincide. While this is usually the

case, for some PDFs in specific x regions there are significant deviations from gaussianity

that can be quantified by this type of comparison: typically, this happens in extrapo-

lation regions where there are no direct experimental constraints, especially if positivity

constraints, which are asymmetric, play a significant role.
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Figure 32. Parton luminosities, eq. (5.1) computed using NNPDF2.3 and NNPDF3.0 NLO PDFs

with αs(MZ) = 0.118, as a function of the invariant mass of the final state MX . Results are shown

as ratios to NNPDF2.3. From top to bottom and from left to right the qq̄, qq, qq and qg luminosities

are shown.
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Figure 33. Same as figure 32 at NNLO.
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Figure 34. Comparison of one-sigma uncertainty bands and 68% confidence level intervals for the

NNPDF3.0 NLO set with αs(Mz) = 0.119 at Q2 = 2GeV2. The set with Nrep = 1000 replicas has

been used. From top to bottom and from left to right the gluon, singlet, isospin triplet and total

valence are shown.

This comparison is shown in figure 34: for most PDFs there is a good agreement, the

only exception being the small-x extrapolation regions, x ∼< 10−4, where 68% CL intervals

are typically smaller than the one-sigma bands, indicating the presence of non-gaussian

outliers. For the triplet, differences are already significant for x ∼< 10−3. Note that because

of the generalized positivity constraints, the lower limit of 68% CL interval is typically just

above zero.

5.1.3 Perturbative stability and theoretical uncertainties

We now compare the NNPDF3.0 LO, NLO and NNLO sets: this is a meaningful comparison

because the same methodology is used at all orders, with only the underlying QCD theory

(and to a small extent the dataset) changing from one order to the next. In figure 35

we show the distances between the NNPDF3.0 pairs of fits at two consecutive orders: LO

vs. NLO, and NLO vs. NNLO. In the former case, the main variation is of course seen in the

gluon PDF, which as well known is very different at LO; there are also significant differences

in the large-x quarks. Of course, at LO theory uncertainties completely dominate over the

PDF uncertainty, which depends on the data and is roughly the same at all orders, as this

comparison clearly shows.

Distances become much smaller when comparing NLO to NNLO: for central values,

the main differences are in the gluon PDF, both at small x and at large x, and in the

medium- and large-x quarks, in particular the total quark singlet. Uncertainties are again

quite stable, with the exception on the large-x gluon, where the PDF uncertainties are
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Figure 35. Same as figure 28, but now comparing NNPDF3.0 LO vs. NLO (top) and NLO

vs. NNLO (bottom).

larger at NNLO because of the additional cuts applied to the jet data (recall section 2.3.2).

These differences in the fitted jet dataset also impact the central values of the two fits.

Next, in figure 36 we compare the LO, NLO and NNLO NNPDF3.0 parton distributions

at Q2 = 2GeV2. The large shift in the gluon between LO and NLO and its subsequent

stability at NNLO is clearly seen. Specifically, the LO gluon is very large, compensating

for missing NLO terms in the DIS splitting functions and anomalous dimensions. This

is a crucial ingredient for the tunes to semi-hard and soft data in Monte Carlo parton

shower programs (see e.g. ref. [156]). However, in the small x region missing higher order

corrections cause tension between the very accurate HERA data which results in a bigger

uncertainty at NLO than at LO, which then also propagates onto the singlet quark.

At NLO, the small-x gluon is rather flatter than the NNLO one, which tends to go

negative at small-x, being prevented to do so by positivity bounds. This relatively unsta-

ble perturbative behaviour of the small-x gluon might be related to unresummed small-x

perturbative corrections [158]. Quark PDFs are generally quite stable, with NNLO and

NLO always in agreement at the one-sigma level, and sizable shifts only seen when going

from LO to NLO, especially in the region around x ∼ 0.1.

The comparison of parton distributions at different perturbative orders provides a way

of estimating the uncertainty related to missing higher-order corrections in the computa-

tions used for PDF determination, using a method suggested in refs. [159, 160] and applied

to PDFs in ref. [161]. This source of theoretical uncertainty is currently not part of the total
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Figure 36. Same as figure 29, but now comparing NNPDF3.0 LO, NLO and NNLO PDFs.

PDF errors, which only includes uncertainties due to the data and the methodology (recall

section 4.3, especially figure 11). As these become increasingly small, however, an estimate

of the theoretical uncertainty related to missing higher perturbative orders becomes more

and more important.

While a full study of these uncertainties is beyond the scope of this work, we may

provide a first estimate by simply studying the variation of each individual PDF when

going up one order: this must be taken as an order-of-magnitude estimate for the time

being, as a detailed estimate of the impact of this shift on the predictions for physical

processes would involve a study of the way perturbative corrections to different processes

are correlated [160, 161]. In the remainder of this section, we will refer to the uncertainty

related to missing higher orders as “theory uncertainty”, while we will call PDF uncertainty

the standard uncertainty as discussed on section 4.3, which only includes the uncertainty

from the data and the methodology.

In figure 37 the relative shift in the central values of the NNPDF3.0 PDFs at Q2 =

104GeV2 when going from LO to NLO (normalized to the NLO) is compared to the PDF

uncertainty at the two orders. This shift may be viewed as the LO theory uncertainty, and

thus likely an upper bound to the NLO theory uncertainty. It is clear that at LO theory

uncertainties are dominant essentially everywhere, and especially for the small-x gluon and

the medium and small-x quarks, as also apparent from figure 36.

The shifts when going from NLO to NNLO (normalized to the NNLO) are shown in

figure 38. At this order, the theory uncertainty becomes smaller than the PDF uncertainty,

thereby suggesting that their current neglect is mostly justified. However, is also apparent

that theory and PDF uncertainties may become comparable in some important cases, like
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Figure 37. The shift in NNPDF3.0 PDFs with αs(MZ) = 0.118 at Q2 = 104 GeV2 when going

from LO to NLO, normalized to the NLO central value, compared to the LO and NLO PDF

uncertainties. From top to bottom and from left to right the gluon, singlet, isospin triplet and total

valence are shown.

the large-x gluon, relevant for example for top quark pair production, or the medium-x

quark singlet PDF, which is relevant for LHC electroweak boson production. Note that

for the gluon at x ∼ 10−2, relevant for Higgs production in gluon-fusion, the perturbative

convergence is very good, as already highlighted in ref. [161].

The results of figures 37 and 38 suggest that as PDF uncertainties decrease, either by

the addition of new experimental constraints or by refinements in the fitting methodology,

a careful estimate of theory uncertainties will become mandatory. In the case of NNPDF3.0

this is especially true now given that, thanks to the closure test validation, methodological

uncertainties are under full control.

5.1.4 Model uncertainties

While uncertainties related to higher order corrections are perhaps the largest source of

uncertainty which is not determined systematically and thus not included in the standard

PDF uncertainty, there are a few more sources of uncertainty which are also not part of

the current PDF uncertainty and which might become relevant as the precision of the data

increases. These have to do with further approximations which are made in the theoretical

description of the data, and we generically refer to them as “model” uncertainties. We

now discuss the likely dominant sources of model uncertainties, namely, those related to

nuclear corrections and those related to the treatment of heavy quarks.

Several fixed-target data included in the NNPDF3.0 PDF determination are taken on

nuclear targets. These include all of the neutrino deep-inelastic scattering data, namely
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Figure 38. Same as figure 37, but now comparing NLO and NNLO.
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Figure 39. Same as figure 28, but now comparing the NNPDF3.0 NLO PDFs with and without

deuterium nuclear corrections.

the CHORUS and NuTeV data sets of table 1, the data for charged-lepton deep-inelastic

scattering from deuteron targets in the NMC, BCDMS, and SLAC data sets also in table 1,

and the data for Drell-Yan production on a deuterium target in the DY E866 data set in

table 2. The impact of nuclear corrections on the NNPDF2.3 PDF determination was

previously discussed in ref. [103], where the NNPDF2.3 fit was repeated by introducing

deuterium nuclear corrections according to various models, and found to be non-negligible

(up to about one and a half sigma) but effecting only the down distribution at large x.

We have repeated the NNPDF3.0 PDF determination, but now including deuterium

corrections according to the recent model of ref. [162], which supersedes the previous treat-

ment of higher twist corrections of ref. [163], considered in ref. [103] along with other

models. The pattern of deviations between the PDFs determined with and without nu-
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Figure 40. Same as figure 31, but now comparing the NNPDF3.0 NLO fit with and without

deuterium nuclear corrections. From left to right the up and down quark PDFs are shown.

clear correction is shown in figure 39, and it is very similar to that seen in ref. [103] when

correcting the NNPDF2.3 in an analogous way, but with a somewhat more moderate im-

pact, as one might expect given the fact that the data set used to determine NNPDF3.0

is bigger than that used for NNPDF2.3. Essentially only the up and down quark distribu-

tions are affected; they are compared in figure 40, at Q2 = 104GeV2: it is apparent that

the effect is always below one sigma. In view of the theoretical uncertainty involved in

the modeling of these corrections, we prefer not to include them in the fit as it is unclear

that the uncertainty on them is significantly smaller than their size. Nuclear corrections

to neutrino data are likely to be yet smaller, with the possible exception of the strange

distribution [162].

Another important potential source of theoretical uncertainty is related to the treat-

ment of heavy quarks. As discussed in section 2.3.4, we use a computational scheme,

the FONLL scheme, which ensures that all the available perturbative information is in-

cluded. However, there are also aspects that go beyond perturbation theory, namely, the

dependence on the quark mass itself, and the possible presence of an intrinsic heavy quark

component [164], namely, the possibility that the boundary condition for the evolution of

the heavy quark PDFs is not zero, but rather an independently parametrized PDF [165].

The dependence of PDFs on the values of the heavy quark masses was previously

studied by us in ref. [11] within the context of the NNPDF2.1 PDF determination, where

the values of mc and mb were varied, in the absence of intrinsic heavy quark PDFs. The

main result of this study was that the value of the heavy quark mass mostly affects the

heavy quark PDF by providing the threshold for generating it by perturbative evolution:

a lower mass value corresponds to a larger PDF at a given scale, because the evolution

length is larger. For the b quark PDFs, which are expected to be perturbative quantities,

with a negligible intrinsic component, this dependence on the quark mass value is likely to

be a real physical effect. However since charm has a threshold at the boundary between the

perturbative and nonperturbative regions, charm PDFs might have a significant intrinsic

component, and much of the dependence on the charm mass might be compensated by

changes in this intrinsic PDF.

As mentioned in section 2.3.4, eq. (2.2), the heavy quark mass values used in the current

NNPDF3.0 PDF determination differ from the values previously used in the NNPDF 2.3
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Figure 41. Dependence on the value of the heavy quark masses of parton luminosities eq. (5.1)

computed using NNPDF3.0 NLO PDFs with αs(MZ) = 0.118. Results are shown as ratios to the

default set. For left to right the up-antiup, down-antidown and gluon-gluon luminosities are shown.

determination, essentially because now we use MS PDG mass values, while the previous

values were close to pole mass values. The shift is larger than the current uncertainty on

MS masses. In order to assess the impact of this change, and thus also of the dependence on

heavy quark masses, we have repeated the NNPDF3.0 PDF NLO determination using the

heavy quark mass values that were used for the NNPDF2.3 set. In figure 41 the respective

parton luminosities at Q2 = 104GeV2 are compared.

Results are in agreement with the findings of ref. [11], where a similar effect due to

changes of the charm mass was observed. Note that the impact of changing the bottom

mass was found to be negligible on all luminosities, except the bottom luminosity itself.

The effect is not entirely negligible. However, as mentioned above, we expect that some

of this dependence might be absorbed into an intrinsic charm PDF. At NLO, MS and

pole mass-scheme expressions coincide, with a small correction at NNLO, hence it seems

more appropriate to use the more accurate MS mass value. The shifts seen in figure 41

should be taken as an upper bound to the size of the uncertainty related to the charm mass

value, whose exact assessment will only be possible once an intrinsic charm component is

introduced in our PDF fits.

We finally mention that further model uncertainties are expected to come from the

treatment of electroweak interactions, both in the choice of parameters, and the treatment

of higher order terms (including mixed strong-electroweak corrections [166]). These are

generally smaller than the uncertainties discussed here, though they could become signifi-

cant in particular kinematic regions or for specific processes, such as for instance high-mass

production of W pairs.

5.2 Dependence on the dataset

We now study the dependence of the NNPDF3.0 PDFs on the choice of dataset, exploring

a wide range of variations as compared to the dataset used in the reference global fit. First,

we propose a new definition of conservative PDFs based on a maximally consistent dataset,

along the lines of previous proposals [167], but now using an objective criterion, rather than

theoretical expectations. Then we explore systematically the impact of the new data in the

NNPDF3.0 framework, by comparing fits to various subsets of data both to the global fit,

and to a minimal fit based on HERA data only; in this context we also study the impact

of the new HERA-II data. We also construct sets where the HERA data is supplemented
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by all available data by either ATLAS or CMS; these are specially useful for comparisons

with related studies by the LHC collaborations. We specifically study in detail the impact

of jet data, the associate theoretical uncertainties, and their impact on the uncertainty on

the large-x gluon, and the impact of W+c data on strangeness and their relative weight in

comparison to neutrino data.

5.2.1 Conservative PDFs from a consistent dataset

Inconsistencies between data which enter a global PDF determination can distort the sta-

tistical interpretation of PDF uncertainties. Inconsistency of any individual dataset with

the bulk of the global fit may suggest that its understanding, either from the theoretical

or experimental point of view, is not complete, and that its exclusion from the fit might be

advantageous. In order to minimize such inconsistencies, “conservative” partons have been

suggested, for example by introducing restrictive kinematic cuts which remove potentially

dangerous regions [167], or by picking data which one might expect to be more reliable: for

example, the NNPDF2.3 collider-only fit [13], based on the expectation that collider data,

because of their higher energy, should be more reliable than fixed-target data.

We propose a new objective definition of a conservative set of PDFs based on a measure

of consistency between datasets introduced in refs. [18, 154]. This is based on observing that

lack of compatibility can always be viewed as an underestimate of the covariance matrix: if

the covariance matrix is inflated by a factor α2, then compatibility can always be attained

if α2 if large enough (crudely speaking, if uncertainties are all multiplied by a factor α).

It is then possible to measure compatibility by assuming that the prior knowledge is given

by all experiments in the global dataset but the given one, and using Bayes’ theorem to

study how this prior is modified when adding the experiment whose consistency is under

investigation. One may then compute the a posteriori probability P (α) that the covariance

matrix of the given experiment should be rescaled by a factor α. Compatibility corresponds

to the case in which P (α) peaks around α ∼ 1, while if the most likely value is at α0 > 1,

this means that compatibility is only achieved when uncertainties are inflated by α0 (see

refs. [18, 154] for a more detailed discussion and definition). The t0 definition of the χ2,

which is used for minimization (see section 5.1.1), is also used in the determination of P (α).

We then proceed as follows. We compute the probability distribution of the rescaling

variable α, P (α) for each dataset included in the global fit, and we determine the mean, the

median and the mode of the corresponding P (α) distribution. We then exclude from the

conservative fit all experiments for which at least two of these three quantities are above

some threshold value, denoted by αmax. We discard all datasets for which the criterion fails

either at NLO or at NNLO (or both), which corresponds to the most conservative choice

of only retaining experiments which are well described at all perturbative orders, and has

the obvious advantage that the dataset does not depend on the perturbative order, thereby

keeping PDF uncertainties separate from the theory uncertainties discussed in section 5.1.3.

In practice, for simplicity we compute the probability P (α) without excluding the given

experiment from the global fit: this provides a conservative estimate of the compatibility

(which is clearly increased by including the experiment under investigation in the prior)
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NLO global fit NNLO global fit

Experiment mean mode median mean mode median

NMC d/p 1.04 1.01 1.03 1.04 1.01 1.03

NMC σNC,p 1.32 1.31 1.27 1.27 1.26 1.27

SLAC 1.31 1.27 1.30 1.13 1.09 1.12

BCDMS 1.17 1.16 1.17 1.20 1.19 1.20

CHORUS 1.11 1.10 1.11 1.10 1.09 1.09

NuTeV 1.04 0.90 0.98 1.06 0.92 1.00

HERA-I 1.09 1.09 1.10 1.10 1.09 1.09

ZEUS HERA-II 1.23 1.22 1.23 1.25 1.24 1.25

H1 HERA-II 1.30 1.3 1.31 1.35 1.34 1.34

HERA σc
NC 1.10 1.06 1.09 1.14 1.11 1.13

E886 d/p 1.00 0.88 0.96 1.01 0.88 0.96

E886 p 1.13 1.11 1.12 1.15 1.14 1.15

E605 0.97 0.94 0.96 0.94 0.91 0.93

CDF Z rapidity 1.34 1.28 1.32 1.39 1.32 1.36

CDF Run-II kt jets 1.09 1.06 1.08 1.15 1.12 1.14

D0 Z rapidity 1.34 1.28 1.32 0.86 0.82 0.85

ATLAS W,Z 2010 1.20 1.15 1.18 1.17 1.12 1.15

ATLAS 7TeV jets 2010 0.76 0.74 0.75 1.09 0.92 1.02

ATLAS 2.76TeV jets 0.86 0.83 0.85 1.07 0.57 0.83

ATLAS high-mass DY 2.22 1.68 2.03 1.82 1.34 1.63

CMS W electron asy 1.05 0.91 0.99 1.00 0.87 0.95

CMS W muon asy 1.62 1.42 1.54 1.60 1.40 1.53

CMS jets 2011 1.01 0.97 0.99 1.09 1.07 1.08

CMS W+c total 1.60 1.17 1.42 1.50 1.09 1.33

CMS W+c ratio 1.93 1.43 1.74 1.88 1.39 1.69

CMS 2D DY 2011 1.27 1.25 1.27 1.28 1.27 1.28

LHCb W,Z rapidity 1.10 1.02 1.07 1.20 1.12 1.17

σ(tt̄) 1.65 1.24 1.49 1.09 0.75 0.95

Table 10. The mean, mode and median of the P (α) distributions [18, 154] (see text) for all the

experiments in the NNPDF3.0 global fits, both at NLO (left) and at NNLO (right).

without requiring us to construct a new set of 1000 replicas when each of the experiments

is excluded in turn. The values of the mean, median and mode thus computed for all the

experiments in the NNPDF3.0 global fits at NLO and NNLO are collected in table 10.2

2We notice that the ATLAS W pT data, which are included in the NNPDF3.0 global fit, are not included

in table 12. This is due to the fact the we construct NLO and NNLO conservative PDF sets s based on the

same datasets. Since the ATLAS W pT data are excluded from the global NNLO fit because of the lack of

availability of a NNLO prediction, they will not be included in our conservative set.
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αmax = 1.1 αmax = 1.2 αmax = 1.3 Global fit

χ2
nlo χ2

nnlo χ2
nlo χ2

nnlo χ2
nlo χ2

nnlo χ2
nlo χ2

nnlo

Total 0.96 1.01 1.06 1.10 1.12 1.16 1.23 1.29

NMC d/p 0.91 0.91 0.89 0.89 0.88 0.89 0.92 0.93

NMC σNC,p — — — — — — 1.63 1.52

SLAC — — — — 1.77 1.19 1.59 1.13

BCDMS — — 1.11 1.15 1.12 1.16 1.22 1.29

CHORUS — — 1.06 1.02 1.09 1.07 1.11 1.09

NuTeV 0.35 0.34 0.62 0.64 0.70 0.70 0.70 0.86

HERA-I 0.97 0.98 1.02 1.00 1.02 0.99 1.05 1.04

ZEUS HERA-II — — — — 1.41 1.48 1.40 1.48

H1 HERA-II — — — — — — 1.65 1.79

HERA σc
NC — — 1.21 1.32 1.20 1.31 1.27 1.28

E886 d/p 0.30 0.30 0.43 0.40 0.44 0.46 0.53 0.48

E886 p — — 1.18 1.40 1.27 1.53 1.19 1.55

E605 1.04 1.10 0.74 0.83 0.75 0.88 0.78 0.90

CDF Z rapidity — — — — — — 1.33 1.53

CDF Run-II kt jets — — 1.01 2.01 1.04 1.84 0.96 1.80

D0 Z rapidity 0.56 0.61 0.62 0.71 0.60 0.69 0.57 0.61

ATLAS W,Z 2010 — — 1.19 1.13 1.19 1.17 1.19 1.23

ATLAS 7 TeV jets 2010 0.96 1.65 1.08 1.58 1.10 1.54 1.07 1.36

ATLAS 2.76 TeV jets 1.03 0.38 1.38 0.36 1.35 0.35 1.29 0.33

ATLAS high-mass DY — — — — — — 2.06 1.45

ATLAS W pT — — — — — — 1.13 —

CMS W electron asy 0.98 0.84 0.82 0.72 0.85 0.73 0.87 0.73

CMS W muon asy — - — — — — 1.81 1.72

CMS jets 2011 0.90 2.09 0.96 2.09 0.99 2.10 0.96 1.90

CMS W + c total — — — — — — 0.96 0.84

CMS W + c ratio — — — — — — 2.02 1.77

CMS 2D DY 2011 — — — — 1.20 1.30 1.23 1.36

LHCb W rapidity — — 0.69 0.65 0.74 0.69 0.71 0.72

LHCb Z rapidity — - 1.23 1.78 1.11 1.58 1.10 1.59

σ(tt̄) — - — — — — 1.43 0.66

Table 11. The experimental χ2 values at NLO and NNLO for NNPDF3.0 fits to conservative

datasets corresponding to three different values of the threshold αmax (see text). In each case, the

χ2 is shown for the datasets which pass the conservative cut. The values for the global fit (same as

in table 9) are also shown for ease of comparison.
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Figure 42. Same as figure 28, but now comparing the baseline NNPDF3.0 global fit to the

conservative fits obtained using the three values of αmax of table 11: αmax = 1.1 (top), αmax = 1.2

(center), αmax = 1.3 (bottom).

In the following we present results for partons obtained by fitting to datasets con-

structed by only including data from table 10 which pass the conservative cuts correspond-

ing to three different values of αmax, namely 1.1, 1.2 and 1.3. In table 11 we provide the

χ2 (for ease of comparison we show results obtained using the experimental definition, see

section 5.1.1) for the PDF fits to these datasets. To facilitate the comparison with the

global fit, we also provide its χ2 values in the same table, taken from table 9.

The improvement in global fit quality as αmax is lowered is apparent, with the most

conservative option leading to an essentially perfect χ2 of order one. It is interesting to

observe that NMC proton data, which are known to have internal inconsistencies [3], as

well as other datasets such as the H1 HERA-II data, the ATLAS high-mass Drell-Yan

data, and the CMS W+c data are excluded even from the least conservative set, the one

with αmax = 1.3. On the other hand, the CMS inclusive jet data is included for all values

of αmax; note that for this dataset the experimental χ2 shown in table 11 is significantly

worse than the t0 value used for minimization and the determination of P (α).
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NNLO global fit NNLO cons. fit αmax = 1.1

Experiment mean mode median mean mode median

NMC σNC,p 1.27 1.26 1.27 1.50 1.45 1.48

SLAC 1.13 1.09 1.12 1.61 1.37 1.48

BCDMS 1.20 1.19 1.20 2.02 1.86 1.92

CHORUS 1.10 1.09 1.09 2.55 1.69 2.32

ZEUS HERA-II 1.25 1.24 1.25 1.38 1.33 1.36

H1 HERA-II 1.35 1.34 1.34 1.51 1.47 1.49

HERA σc
NC 1.14 1.11 1.13 1.13 1.09 1.12

E886 p 1.15 1.14 1.15 2.18 1.62 2.03

CDF Z rapidity 1.39 1.32 1.36 1.56 1.40 1.50

CDF Run-II kt jets 1.15 1.12 1.14 1.25 1.18 1.22

ATLAS W,Z 2010 1.17 1.12 1.15 1.38 1.25 1.32

ATLAS high-mass DY 1.00 1.34 1.63 1.63 1.19 1.45

CMS W muon asy 1.60 1.40 1.53 2.90 2.48 2.81

CMS W+c total 1.50 1.09 1.33 1.85 1.37 1.67

CMS W+c ratio 2.00 1.39 1.69 2.12 1.58 1.94

CMS 2D DY 2011 1.28 1.27 1.28 1.29 1.28 1.29

LHCb 1.20 1.12 1.17 1.58 1.22 1.48

Table 12. The mean, mode and median of the P (α) distributions at NNLO for the experiments

excluded from the conservative fit with αmax = 1.1, either when the prior is the global fit (same as

table 10) or when using as prior the conservative set itself.

The maximally consistent dataset, found with αmax = 1.1, includes the NMC d/p

data, the NuTeV and HERA-I DIS data, the Drell-Yan data from E866 and E605, the D0

Z rapidity, the ATLAS and CMS inclusive jets and the CMS W electron asymmetry.

In table 12, we furthermore compare the mean, mode and median of the P (α) dis-

tributions for the experiments excluded from the NNLO conservative fit with αmax = 1.1

when the global fit is used as prior (i.e. the same numbers for the corresponding entries

in table 10), to the same quantities computed using as a prior the conservative fit itself.

All the peak values of P (α) deteriorate when using the conservative set as a prior, as

they ought to. Clearly, this deterioration will be maximal for datasets which are internally

consistent, but inconsistent with the rest, and more moderate for experiments which are

affected by internal inconsistencies, so that a rescaling of uncertainties is needed in order

to describe them, regardless of what one takes as a prior. This is the case for instance for

the NMC σNC,p which are affected by internal inconsistencies as already mentioned.

The distance between the conservative sets and the baseline NNPDF3.0 NNLO global

fit are show in figure 42, while PDFs are compared directly at Q2 = 2GeV2 in figure 43,

where the NNLO conservative fits with αmax = 1.1 and 1.2 and the reference fit are shown,

and at Q2 = 104GeV2 in figure 44, where the NNLO conservative fit with αmax = 1.1 is
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Figure 43. Same as figure 37, but now comparing the default global NNLO fit to the two conser-

vative fits with αmax = 1.1 and αmax = 1.2.

shown as a ratio to the default global fit. All sets are consistent with the global fit, with

PDFs that differ at most at the one-sigma level, thereby confirming the consistency of the

procedure, though of course PDF uncertainties are larger in the fits to reduced datasets.

The small-x gluon is similar in all cases because is driven by the HERA-I data, while there

is more dependence on the choice of αmax at medium and large x: interestingly, in the

region relevant for Higgs production in gluon fusion the gluon is significantly affected by

the choice of αmax, though not beyond the one-sigma level. The quarks are also in good

agreement, with the main differences seen at medium x. The set with αmax = 1.1 has

of course the largest PDF uncertainties, though even with the correspondingly restricted

dataset of table 11 they are not much worse than those of the global fit, with the valence and

triplet, and thus the quark-antiquark flavor separation becoming rather more uncertain.

These conservative parton sets may be used for studies aimed at assessing how individ-

ual datasets affect LHC observables, by studying their effect on a maximally self-consistent

dataset, such as performed in ref. [168]. In the future, as more and more data will become

available, this approach might also be used in deciding for an optimal dataset on which a

global fit should be based.

5.2.2 Impact of the new HERA and LHC data

We now examine in detail the impact of the new HERA and LHC data in NNPDF3.0.

Results will be shown for NNLO fits, by investigating the impact of the new data both

on the global fit, and also on a HERA-only fit: while the former is more realistic, the

latter allows for an assessment of the specific impact of each individual piece of data
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Figure 44. Same as figure 43, but at Q2 = 104 GeV2, and with results shown as ratios to the

NNPDF3.0 default global fit.

(though of course it over-estimates their impact in a realistic setting). Jet data will be

specifically discussed in section 5.2.3 below. In all these fits, exactly the same theory and

the same methodology of the default set will be used, with only the dataset changing, so

that the impact of the dataset is specifically assessed. This will eventually allow us to

provide a quantitative assessment of the dependence on the dataset of the uncertainty on

our prediction.

In order to have a first overall assessment, we have produced a variant of the NNPDF3.0

fit using the same methodology, but using an NNPDF2.3-like dataset. We include in the

dataset for this fit all, and only, the data from tables 1–2 which were included in the

NNPDF2.3 dataset. This is not quite identical to the NNPDF2.3 dataset, because we

include these data with the same cuts as in NNPDF3.0 (which are sometimes slightly

different than those of NNPDF2.3, as discussed in section 2) and not the data of tables 3,

despite the fact that these were included in NNPDF2.3. It is however adequate to assess

the (moderate) impact of the new data as we now see.

The distances between PDFs from this fit and their NNPDF3.0 counterparts are shown

in figure 45, while the PDFs at Q = 104GeV2 are compared in figure 46. Is clear that the

new data affects moderately all PDFs: central values vary within half a sigma of the PDF

errors at most. This was to be expected, since the NNPDF2.3 PDFs already described

rather well all the new experimental data that has been added in NNPDF3.0, so the main

impact of the new data is to reduce uncertainties. Indeed, the PDF comparison shows that

the change in uncertainties, seen in the distance plot again at a half-sigma level, always

corresponds to a reduction in uncertainty.
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Figure 45. Same as figure 28, but now comparing the default NNLO set to a set obtained using

the same methodology but an NNPDF2.3-like dataset.
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Figure 46. Comparison of NNPDF3.0 NNLO PDFs at Q2 = 104 GeV2 to PDFs obtained using

an NNPDF2.3-like dataset. Results are shown as ratio to the default set. From top to bottom and

from left to right the gluon, anti-up, anti-down quarks and total strangeness are shown.

The largest effect on central values is seen for the large- and medium-x quarks, followed

by the gluon in the same region. The small-x gluons and quarks are quite stable since there

is no new data that affects them in this region. Uncertainties mostly improve for the gluon

PDF, both at large x thanks to the LHC jet and top quark data, and at medium and

small x from the new HERA-II data. The new data favor a rather softer gluon at large

x in comparison to the NNPDF2.3-like dataset, though differences are always within the

PDF uncertainties. Also for the antiquark sea there is a visible improvement, especially

at medium x, where the bulk of the LHC electroweak vector boson production data is.
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Figure 47. Same as figure 28, but now comparing the default NNLO set to PDFs obtained using

the same dataset, but with all LHC data excluded.

Finally, there are some improvements in strangeness; the role of the LHC data in pinning

down s(x,Q) is discussed in more detail in section 5.2.4.

We now focus specifically on the impact of LHC data: to this purpose, we produce

a fit excluding all the LHC data from the dataset, including those which were already in

NNPDF2.3, and keeping all the other data in the NNPDF3.0 fit (including the HERA-II

data). The corresponding distances are shown in figure 47, while PDFs are compared in

figure 48.

The impact is seen to be moderate, at a half-sigma level, both for central values and

for uncertainties, but it always leads to an improvement in uncertainties. Central values

are mostly affected for quarks at medium and large x, at to a lesser extent for the gluon.

Reassuringly, PDFs without LHC data are always within the one sigma uncertainty

bands of the global fit PDFs, confirming the consistency of LHC data with the previous

dataset. The gluon at medium and small x is already well constrained by HERA and

Tevatron data, but the LHC improves uncertainties for x ≥ 0.02, thanks to the ATLAS

and CMS inclusive jet data and top quark production data. The down quark and strange

PDFs are also affected, especially in the small-x region, but also at medium x.

Next, we construct a PDF set based on HERA data only. This is then used to further

assess the impact of the ATLAS and CMS data. These HERA-only PDFs are compared to

the global fit at Q2 = 2GeV2 in figure 49. Clearly, most PDFs, with the partial exception

of the small-x gluon, have much larger uncertainties than the global fit: specifically, the

quark flavor separation and the large-x gluon are very poorly constrained in a HERA-only

fit, which is thus not competitive with a global fit for phenomenology applications.

The HERA dataset has widened considerably with the addition of the complete HERA-

II inclusive data from H1 and ZEUS and combined HERA charm production data. In order

to study the impact of this data, we have produced a version of the HERA-only fit in which

we have kept only the combined HERA-I data, i.e. a HERA-I-only fit. The NNLO PDFs of

the HERA-only and HERA-I-only fits are compared at Q2 = 104GeV2 in figure 50. The ad-

ditional information provided by HERA-II apparently has a moderate impact: the gluon is

mostly unchanged, while the PDF uncertainties on the medium- and large-x up antiquarks
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Figure 48. Same as figure 46 but now comparing the default NNLO set to PDFs obtained using

the same dataset, but with all LHC data excluded.
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Figure 49. Same as figure 43 but now comparing the default NNLO set to PDFs obtained using

only HERA data.

and (to a lesser extent) on the down antiquarks are moderately reduced. We conclude that,

while certainly beneficial, the new HERA-II data does not change substantially the known

fact that HERA-only fits are affected by large PDF uncertainties.
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Figure 50. Same as figure 46 but now comparing HERA-only and HERA-I-only PDFs (see text).

We now study the response of HERA-only fit of figure 43 upon addition of various

pieces of data. In particular, we produce two fits, respectively from a dataset obtained

by adding to the HERA data all the ATLAS data or all the CMS data. Specifically

(see table 1) in the HERA+CMS fit, the HERA data is supplemented with data on jet

production, W asymmetries, Drell-Yan differential distributions, W+c production and top

quark total cross-sections, while in the HERA+ATLAS fit, the HERA measurements are

supplemented with W,Z rapidity distributions from the 2010 dataset, inclusive jet data at

7TeV and 2.76TeV, and high-mass Drell-Yan production.

The distances between the HERA-only and HERA+ATLAS, or HERA-only

vs. HERA+CMS fits are shown in figure 51, while the gluon and d̄ PDFs are shown in

figure 52, with the default global fit also shown for reference. The impact of the LHC data

is now apparent, in particular for PDF combinations which are poorly constrained by a

fit to HERA data only, specifically the large-x gluon and the the quark flavor separation.

Note that the CMS data provides more stringent constraints on the gluon at large x since

it uses the 2011 inclusive jet data, which for ATLAS is still not available. ATLAS and CMS

have a similar constraining power for the medium and large-x quarks, with CMS slightly

superior for the strangeness PDFs thanks to the availability of the W+c measurements,

and also for flavor separation (and thus for d̄) due to the fact that the CMS electroweak

dataset is somewhat more extensive.

On the other hand, comparison to the global fit shows that neither of these

HERA+ATLAS or HERA+CMS fits is yet competitive. Also, comparison of these result

to our previous assessment of the overall impact of LHC data on the global fit (figures 47

and 48) shows that gauging the impact of LHC data on PDFs by their effect on a HERA-
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Figure 51. Same as figure 28, but now comparing the NNLO HERA-only and HERA+ATLAS

PDFs (top) or the HERA-only and HERA+CMS PDFs (bottom) (see text).

only fit might be somewhat misleading: because of the good consistency of LHC data with

the pre-LHC global dataset, their impact in the global fit is rather less pronounced.

We finally come to a global assessment of the dependence of the PDF uncertainty on

the dataset. This can be done by using the estimator ϕχ2 , eq. (4.6), which, as discussed in

section 4, is essentially the ratio of the PDF uncertainty on the prediction to the original

experimental uncertainties, averaged over all data, and keeping into account all correlations.

Its value thus measures by how much the data uncertainty, propagated to the PDFs, and

then propagated back to the data, is reduced due to the fact that the PDF fits combines

many data points into a single set of PDFs which are constrained both by theory (such as

perturbative evolution, which connects different values of Q2, and sum rules, which relates

different values of x) and also by smoothness (the value of any PDF at neighboring points

in x cannot differ by an arbitrarily large amount). For a single data point, or if data

points were independent, its value would be one by definition, while its deviation from one

estimates the uncertainty reduction (or increase, which could happen in principle when

combining inconsistent data). Note that this indicator only probes the PDF uncertainty

at the data points: so the reduction in uncertainty when widening the dataset is actually

somewhat underestimated by it, in that for a bigger dataset the given value of ϕ actually

refers to a wider kinematic region.
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Figure 52. Comparison of the gluon and antidown NNLO PDFs at Q2 = 104 GeV2 of the HERA-

only and HERA+ATLAS sets (top) or the HERA-only and HERA+CMS sets (bottom), shown as

rations to the HERA-only PDFs. For reference, the PDFs from the default NNPDF3.0 global set

are also shown.

In table 13 we show ϕχ2 for the global NNPDF3.0 NLO and NNLO fits, as well as for

the fits based on reduced datasets, starting from the HERA-I only fit and including the fit

without LHC data, in increasing order of the size of the fitted dataset. The result for the

conservative set refers to the fit with threshold αmax = 1.1.

For the global fits, we find ϕχ2 = 0.291 and 0.302 for the NLO and NNLO sets

respectively, to be compared with the corresponding value at LO, ϕχ2 = 0.512. The

improvement between LO and NLO, almost by a factor of two in terms of the reduction of

the PDF uncertainties to the fitted data points, is clear evidence of the better consistency

of the NLO fit in comparison to the LO one. On the other hand, the NNLO fit is very

similar to the NLO one in this respect (perhaps marginally worse), consistent with the

observation that the quality of the NNLO fit is not better than that of the NLO fit, as also

measured by the value of the χ2, see table 9.

The monotonic decrease of the values of ϕχ2 for the fits to reduced datasets, from

HERA-I to HERA-all, to HERA+ATLAS or HERA+CMS, to the global fit, shows the

constant uncertainty reduction as more data are combined. The uncertainty on the con-

servative fit is larger than that of any fit except the HERA-I fit. This provides evidence

in favor of using our current default as reference, rather than the conservative set, as the

substantial decrease in ϕχ2 in the global fit in comparison to the conservative one suggests

that the overall consistency of the global fit is still quite good. Finally, the uncertainty on

the no-LHC fit is larger than that of a global fit, and in fact comparable to that of the

HERA+CMS fit: this shows that even though the impact of the LHC data is moderate, it

is visible, and it is comparable to the impact of all the other non-HERA data.
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Dataset ϕχ2 NLO ϕχ2 NNLO

Global 0.291 0.302

HERA-I 0.453 0.439

HERA all 0.375 0.343

HERA+ATLAS 0.391 0.318

HERA+CMS 0.315 0.345

Conservative 0.422 0.478

no LHC 0.312 0.316

Table 13. The value of the fractional uncertainty ϕχ2 , eq. (4.6), for the default NNPDF3.0 NLO

and NNLO fits compared to that obtained in various fits to reduced datasets. For the LO global

fit, we find ϕχ2 = 0.512. The result for the conservative set refers to the fit with αmax = 1.1.
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Figure 53. Comparison of the gluon in a fit to a dataset without jet data and in the global fit at

NLO (top) and NNLO (bottom), plotted at Q2 = 2GeV2 vs. x on a logarithmic (left) and linear

(right) scale.

5.2.3 Impact of jet data on the global fit

We now explore the impact of jet data in the NLO and NNLO NNPDF3.0 fits, with the

motivation of making sure that theoretical limitations in the description of jet data, and

in particular the current lack of full knowledge of NNLO corrections, does not bias the

fit results.

To this purpose, we have produced versions of the NNPDF3.0 PDF fit in which all

jet data are removed from the global dataset: the gluon from these sets is compared to

that from the default global fit at Q2 = 2GeV2 in figure 53: other PDFs are essentially

unchanged upon removing jet data. It is clear that removing jet data from the global
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fit leads to a substantial increase of the PDF uncertainties on the gluon at medium- and

large-x. However, when jet data are included, the uncertainties are very similar at NLO

and NNLO, despite the fact that at NNLO the jet dataset is significantly smaller due to

the more restrictive cuts which we have introduced in order to account for the incomplete

knowledge of NNLO corrections to jet production (see section 2.3.2): in fact, if anything,

the uncertainties are somewhat smaller at NNLO. This is reassuring in that it is consistent

with the expectation that no instabilities are introduced by jet data in the NNLO fit despite

potentially large perturbative corrections, and in fact the fit becomes tighter at NNLO.

In table 14 we compare at NLO and NNLO the χ2 to the collider jet data, both in the

reference NNPDF3.0 fit and in the fit without jet data. We provide the results using both

the experimental and the t0 χ2 definitions, whose values can differ significantly, especially

at NNLO. The description of jet data turns out to be reasonably good even when they

are not included in the fit, especially at NNLO. This is evidence for consistency, and it

explains why they help in reducing the gluon uncertainty. We also show the value of the

χ2 for top pair production, which is also sensitive to the gluon. The fact that this value

changes very little upon inclusion of jet data is also evidence for general consistency.

We conclude that based on all evidence not including jet data (or not including them

at NNLO) would not lead to a significant change of the central value of the extracted gluon

distribution but it would lead to a deterioration of its uncertainty. Given our conservative

treatment of NNLO perturbative corrections, described in section 2.3.2, and in the absence

of indications of instability or inconsistency, we believe that the determination of the gluon

is most reliable when jet data are kept in the dataset, as we do for our default fit.

5.2.4 Nucleon strangeness

Recently the size of the strange distribution has been the object of experimental and

phenomenological debate. In global fits, the strange PDF is mostly constrained by

the neutrino-induced deep-inelastic scattering data, such as CHORUS, NuTeV and NO-

MAD [36, 37, 169, 170]. While also inclusive data is sensitive to strangeness, the strongest

constraint come from the so-called dimuon process, charm production in charged-current

DIS. However, the theoretical treatment of this data is affected by various sources of theo-

retical uncertainty, such as the need to model charm fragmentation, the treatment of charm

quark mass effects at low scales, and effects related to the use of nuclear targets. Recently,

LHC data which constrain the strange PDF have become available: on top of inclusive W

and Z production on- and off-shell production, W production in association with charm

quarks which directly probes strangeness at leading order.

In PDF global fits, with strangeness mostly based on neutrino data, the strange sea is

typically smaller than the up and down quark sea by a factor of order ∼ 1
2 . In 2012, a QCD

analysis of the ATLAS data on W and Z rapidity distributions at 7TeV [171] suggested

that the size of the strange and up and down sea is comparable, at least for x ∼ 0.01.

This analysis was revisited in the NNPDF2.3 framework [13], with the conclusion that

while the ATLAS data in isolation do favor a central value of s(x,Q2) similar in size to

ū(x,Q2) and d̄(x,Q2), the uncertainties involved are so large that it is difficult to make a

clear-cut statement, and in particular the central value of the strangeness fraction in the
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NLO

Exp χ2 t0 χ2

Dataset Global No Jets Global No Jets

CDF Run II 0.95 1.51 1.05 1.62

ATLAS 7TeV + 2.76TeV 1.58 1.88 0.86 0.96

CMS 7TeV 2011 0.96 1.32 0.90 1.17

Top quark pair-production 1.43 1.26 1.67 1.49

NNLO

Exp χ2 t0 χ2

Dataset Global No Jets Global No Jets

CDF Run II 1.84 1.85 1.20 1.58

ATLAS 7TeV + 2.76TeV 1.17 1.00 0.72 0.65

CMS 7TeV 2011 1.91 2.23 1.07 1.37

Top quark pair-production 0.73 0.43 0.61 0.42

Table 14. The χ2 to jet data, computed using the default NNPDF3.0 PDFs, or PDFs based on a

dataset without jet data; values in italics correspond to data which have not been included in the

fit. Values are provided using both the experimental and t0 definition of the χ2 (see section 5.1.1).

The value for top data (included in all fits) is also shown.

global NNPDF2.3 fit is compatible with that of a HERA+ATLAS fit at the one-sigma

level. Also, it was found that when including the ATLAS data in the global fit they would

have little impact, and strangeness would still be suppressed.

As discussed in section 2.1, in NNPDF3.0 we have also included (both at NLO and

NNLO, see section 2.4.1) the CMS data [60] for W+c which have become available, and

which directly constrain the strange distribution. The CMS W+c data have been recently

used in a QCD analysis [58], together with HERA data, to show that the strange PDF

s(x,Q2) from collider-only data can be determined with a precision comparable to that of

global fits which include neutrino data. The CMS data favors a suppressed strangeness,

consistent with the indications from the neutrino data. ATLAS W+c data (not included

in NNPDF3.0 because they are only available at the hadron level) seem instead to favor a

less suppressed strangeness [91]. Fits including LHC W,Z and W+c data along with fixed

target deep-inelastic scattering and Drell-Yan data have also been studied in ref. [75], with

the conclusion that a good fit to all these datasets can be obtained and finding again a

suppressed strangeness.

We now study this issue in light of the NNPDF3.0 global PDF determination, by

constructing PDF sets based on data which include or exclude in turn various pieces of

experimental information which are sensitive to strangeness. Specifically we have pro-

duced PDF sets based on the following modifications of the NNPDF3.0 default dataset of

tables 1–2:

• all neutrino data (CHORUS and NuTeV) removed, CMS W+c data included;
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Figure 54. The strangeness ratio rs eq. (5.2), at NNLO sets with αs(MZ) = 0.118 plotted vs. x

at Q2 = 2GeV2 (left) and Q2 = 104 GeV2 (right) for the default NNPDF3.0 PDF set compared to

set obtained excluding from the fitted dataset either neutrino data, or W+c, or both neutrino and

W+c data. and a fit with neither of the two datasets.

• all neutrino data (CHORUS and NuTeV) included, CMS W+c data removed;

• both neutrino data (CHORUS and NuTeV) and CMS W+c data removed.

We now compare results obtained in each case, specifically for the strangeness fraction

rs, defined as

rs(x,Q
2) =

s(x,Q2) + s̄(x,Q2)

d̄(x,Q2) + ū(x,Q2)
. (5.2)

In figure 54 rs is shown for the default NNPDF3.0 fit and the three above fits, plotted as

a function of x, for Q2 = 2GeV2 and Q2 = 104GeV2.

First, we observe the remarkable compatibility of the various fits (with, as usual,

smaller uncertainty at a higher scale due to asymptotic freedom): for all fits and all x

the one-sigma PDF uncertainty bands overlap. The global fit is always the most accurate,

though at very low x ∼< 10−3 and high scale the uncertainty is of similar size in all fits (in

fact, it is even somewhat smaller in the fit without W+c than in the global fit, though this

is a statistical fluctuation due to the large uncertainty on the uncertainty in this region).

While when removing neutrino data the uncertainty blows up, removing the W+c has very

little impact, leading to a moderate uncertainty reduction for x ≥ 0.05 when added to

the fit without neutrino data. The fits without neutrino data do lead to a slightly higher

central value of rs in the region of x ∼ 0.01, but the effect is not significant on the scale of

the uncertainty on these fits, though it would be significant on the scale of the uncertainty

of the global fit. It must therefore be considered a statistical fluctuation due to the large

uncertainty in the fit without neutrino data.

The χ2 for the relevant experiments in these various fits are collected in table 15,

thereby allowing us to compare how well each experiment is described when included or

excluded from the fit. We see that W+c data are well described regardless of whether they

are included in the fit or not, while the neutrino data are not well described unless they are

included in the fit. This again shows that the impact of the W+c can only be moderate.

We conclude that the W+c data alone are not yet competitive with the neutrino

data in determining strangeness, and that their inclusion does not modify significantly the
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χ2
exp

Global No neutrino No W+c No neutrino/W+c

CHORUS 1.13 3.87 1.09 3.45

NuTeV 0.62 4.31 0.66 6.45

ATLAS W,Z 2010 1.21 1.05 1.24 1.08

CMS W+c 2011 0.86 0.50 0.90 0.61

Table 15. Values of the χ2 (experimental definition, see section 5.1.1) to different data with

sensitivity to strangeness, using as input PDFs obtained from fits in which these data are included

or excluded in turn; values in italics denotes cases in which the given data was not included in the

fit. See text for more details.

assessment of the size of the nucleon strangeness in previous global fits, for which there is

thus clear evidence for suppression in comparison to light quarks by a factor of between

two and three at low scales.

5.3 Stability

We will now check the dependence and stability of our results upon our methodology and

its variations. Some of the issues which we address here were already studied in section 4.5

in the context of closure tests, but others are specific to the fit to actual data.

Specifically, we will study the impact on the NNPDF3.0 results of the new minimization

and stopping methodology discussed in section 3.3 in comparison to that previously used in

NNPDF2.3, the impact of the improved treatment of positivity discussed in section 3.2.3,

the impact of a multiplicative vs. additive treatment of systematic uncertainties (see sec-

tion 2.4.2), our improved self-consistent determination of preprocessing ranges presented

in section 3.2.2, and finally the independence of fitting basis (already tested in closure tests

in section 4.5.3).

5.3.1 Impact of the NNPDF3.0 methodology

First, we discuss the impact of the NNPDF3.0 methodology, by comparing the NNPDF2.3

global fit with the fit discussed in section 5.2.2 and shown in figure 46, based on an

NNPDF2.3-like dataset, but with NNPDF3.0 methodology and theory settings (specifi-

cally the use of FONLL-B), i.e. by varying the methodology with fixed dataset. This is the

complementary comparison to that which we performed in section 5.2.2, where instead we

varied the dataset with fixed methodology. With this comparison we can fully disentangle

the effects of the new experimental data in NNPDF3.0 from that of the improved fitting

methodology and the new theoretical settings.

The distances between the original NNPDF2.3 PDFs of ref. [13] and the NNPDF3.0

fit with NNPDF2.3 data are shown in figure 55 both at NLO and NNLO, while the NNLO

PDFs are compared in figure 56.

In the NLO fit the new methodology and theory settings have an impact on the small-

x gluon and large-x quarks at the one and a half sigma level. The differences in the
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Figure 55. Same as figure 45, but now comparing the PDFs obtained from an NNPDF2.3-like

dataset with NNPDF3.0 methodology and theory to the published [13] NNPDF2.3 sets at NLO(top)

and NNLO (bottom).

gluon can be understood as a consequence of having switched from the FONLL-A heavy

quark scheme used in NNPDF2.3 to the more accurate FONLL-B adopted in NNPDF3.0,

while the differences seen for quarks are necessarily a consequence of the more efficient

methodology and extended positivity constraints (see section 5.3.2 below). At NNLO

the non-insignificant differences seen in all PDFs reflect the improved methodology and

positivity, as the NNLO theory used in 2.3 and 3.0 is the same. At high scale the most

noticeable difference is the softening of the small-x gluon seen in figure 56.

The main conclusion of this comparison is that a significant part of the differences

between the final NNPDF2.3 and NNPDF3.0 sets, as seen specifically at high scale in

figure 31 and at low scale in figure 30, are due to the improved methodology (minimization

and generalized positivity). This is consistent with the conclusion of section 5.2.2 (see in

particular figures 45–46) that the new data added in NNPDF3.0 have generally a moderate

impact. In fact, we may cross-check the impact of the new methodology by comparing the

χ2 of the fit to the NNPDF2.3-like dataset discussed in section 5.2.2, to the χ2 of the original

NNPDF2.3 fit to the same dataset: up to minor differences in the dataset, the difference

in χ2 are then due to the methodology. With NNPDF2.3 PDFs we get χ2 = 1.1701, while

with NNPDF3.0 methodology and an NNPDF2.3-like dataset we get χ2 = 1.1536, which

is a small but non-negligible improvement, of more than 50 units in total χ2, which must

be entirely attributed to the new methodology.
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Figure 56. Same as figure 46, but now comparing the PDFs obtained from an NNPDF2.3-like

dataset with NNPDF3.0 methodology and theory to the published [13] NNPDF2.3 sets at NLO(top)

and NNLO (bottom).

5.3.2 Constraints from positivity

As explained in section 3.2.3, in NNPDF3.0 we adopt a more extensive set of positivity

constraints: specifically now the number of constraints is equal to the number of PDFs (in

fact, it exceeds them because the gluon is constrained by two different pseudo-observables),

thereby ensuring not only positivity of the observables used in PDF fitting, but also of

potential new observables such as cross-sections for new physics processes used in searches

(see section 5.4.4 below).

In order to quantify the impact of these positivity constraint, we have produced an

unphysical variant of the NNPDF3.0 NNLO in which positivity constraints are removed

(so in particular physical cross-sections could become negative). The distances between

the default fit and the fit without positivity are shown in figure 57, while some of the PDFs

which change most are compared in figure 58.

The impact of positivity is relatively mild except for the small-x gluon and the large-x

strangeness, for which there is little direct experimental information. For all other PDFs

and x ranges the impact of positivity is below the one sigma level. Note that even so, strict

positivity is necessary if one wishes to obtain meaningful predictions, e.g. in new physics

searches. For the gluon, the effects of the positivity can be noticed already at x ∼< 10−3,

while at even smaller x the gluon would become much more negative if positivity were not

imposed: so the impact of positivity is to make the gluon less negative at small x. For the

strangeness asymmetry, interestingly, the dip-bump structure seen in the global fit is seen

to be a consequence of positivity.
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Figure 57. Same as figure 45, but now comparing the default set to its counterpart obtained

without imposing positivity.
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Figure 58. Comparison of the default NNPDF3.0 NNLO PDFs at Q2 = 2GeV2 with αs(MZ) =

0.118 to their counterpart obtained without imposing positivity; the gluon (left) and strangeness

asymmetry (right) are shown.

As a test of the efficiency of the Lagrange multiplier method we use to impose positivity,

we have explicitly checked a posteriori that physical cross sections at NLO and NNLO are

indeed not negative (note that because positivity is always imposed at NLO, as discussed

in section 3.2.3, small violations of positivity at NNLO are in principle possible). This is

illustrated in figure 59, where we plot two pseudo-observables which are used to impose

positivity, namely the light component of FL, and the ss̄ Drell-Yan rapidity distribution:

individual replicas are shown (green dashed curves) as well as the reference set in the

positivity implementation (see section 3.2.3), and the effectiveness of positivity (especially

for the Drell-Yan distribution) is clearly seen.

5.3.3 Additive versus multiplicative systematics

As discussed in section 2.4.2, there is a certain latitude in the treatment of correlated

systematics, in particular whether they are treated additively or multiplicatively (only

normalization uncertainties being certainly multiplicative). In order to test the impact of

the additive vs. multiplicative treatment of systematics, we have produced two modified

version of the NNPDF3.0 fit, which only differ in the treatment of the systematics: in the
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Figure 59. The light quark contribution to FL (left), and the ss̄ Drell-Yan rapidity distribution

(right) plotted in arbitrary units at Q2 = 5GeV2 for individual replicas in the NNPDF3.0 NLO set

(dashed green lines). The reference set used in the positivity implementation (see section 3.2.3) is

also shown (red line).

first one we treat all systematics but the normalization as additive, and in the second, all

systematics but the normalization is randomized, and treated as either additive or multi-

plicative at random for each replica. The default treatment (multiplicative or additive) of

systematics is given in tables 1 and 2 (fourth column).

The distances between these two fits and the default are shown in figure 60, while

two PDFs for which the effect of the change is most noticeable are shown in figure 61 for

the additive case, compared to the NNPDF3.0 default. The impact of the treatment of

systematics turns out to be essentially indistinguishable from statistical fluctuations for all

PDFs except the large-x gluon, for which it can have an effect at the half-sigma level if

all systematics is treated as additive. This can be understood as a consequence of the fact

that the gluon depends strongly on jet data, which are affected by large systematics. The

impact on the gluon is explicitly shown in figure 61. The singlet is also shown: in this case,

the change in uncertainty at small x seen in the plot is actually compatible with a statistical

fluctuations, as the distance plot figure 60 demonstrates. When systematics are randomized

the effect is diluted and the changes are always compatible with statistical fluctuations.

We conclude that the treatment of systematics, while an issue in principle, in practice

affects results at a level which is compatible with fluctuations: in the absence of information

on how to treat the systematics this would be randomized, but then results are compatible

with the default. Even when all systematics are treated as additive, which is an extreme

case, only the gluon changes significantly: but then the gluon is mostly affected by HERA

and jet data, for both of which the preferred treatment of systematics is multiplicative [172,

173]. The default treatment of systematics in the NNPDF3.0 fit thus appears to be both

reliable and robust.

5.3.4 Independence of preprocessing

As discussed in section 3.2.2, in NNPDF3.0 the preprocessing exponents which character-

ize the function that relates PDFs to their neural network parametrization according to

eq. (3.6) are determined self-consistently. This method has been already used in NNPDF

polarized PDF fits [143, 144]. We now check that indeed the method works, and specifically
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Figure 60. Same as figure 45, but now comparing the default set to its counterpart in which sys-

tematics (except normalization) is treated as additive (top) or in which the treatment of systematics

(except normalization) is randomized (bottom).
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Figure 61. Comparison of the NNLO gluon (left) and singlet (right) in a fit in which all systematic

uncertainties but normalization are treated as additive, to the baseline NNPDF3.0 fit, where sys-

tematic uncertainties are treated as specified in tables 1–2. The PDFs are plotted at Q2 = 2GeV2

with a linear scale, since the difference between baseline and additive is most important at large-x.
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that the ranges of the effective exponents eq. (3.8)–(3.9) are well within the preprocessing

ranges, and thus not biased by it.

The effective exponents and preprocessing ranges for the gluon and singlet in the global

NNPDF3.0 NLO fit are shown in figure 62: the green solid band is the 68% confidence level

interval for each effective exponent as a function of x, for theNrep = 1000 replica fit, and the

green dashed line is twice this interval. The red hatched band (and the red dashed lines) are

the corresponding results obtained from the Nrep = 100 replica fit. In each case, the black

solid horizontal lines are the extremes of the preprocessing range, determined from the

effective exponents of a previous fit according to the procedure discussed in section 3.2.2.

The preprocessing range is self-consistent in the sense that if the range is determined again

from the values of the effective exponents shown in figure 62 it is essentially unchanged, as

it can be seen from visual inspection of the plot.

It is furthermore clear that indeed the effective range is always well within the allowed

preprocessing range, thereby ensuring that the former is not influenced or distorted by

the latter. We have checked that this is the case for all PDFs and all PDF sets discussed

in this paper. Of course, when changing substantially the dataset, such as, for example,

when constructing the HERA-only PDFs of section 5.2, the preprocessing ranges may

change significantly (with fewer data the acceptable ranges are generally wider) and thus

the procedure has to be iterated again for convergence.

5.3.5 Independence of the PDF fitting basis

We finally wish to test for independence of the fit results of the choice of PDF basis. This

was already tested explicitly in section 4 in the framework of a closure test, and it is now

verified for the fit to actual data, which is possibly more complicated, both because the

final NNPDF3.0 PDFs have sometimes more structure than the MSTW2008 PDFs used

in that closure test, and also because of potential inconsistencies between data which are

by construction absent in a closure test. It is worth pointing out that this independence

is usually not achieved, or at least not completely, by PDF determinations based on a

standard functional forms, as shown in ref. [174].

In figure 63 we show the distances between the default NNPDF3.0 NNLO PDFs and

the same fit but using the NNPDF2.3 fitting PDF basis eq. (3.4) instead of the default

NNPDF3.0 basis eq. (3.5) for the parametrization of input PDFs. Results are consistent

to what was found in the closure test: distances are mostly compatible with statistical

equivalence, with only strangeness (whose parametrization is affected by the change of

basis) deviating at the half-sigma level at the valence peak, which is above the threshold

of statistical indistinguishability. Note that the dip-bump structure in s− seen in figure 58

(and related to positivity) arises due to interference of different PDFs in the NNPDF2.3

basis, yet it is perfectly reproduced, thereby confirming the remarkable stability of the

NNPDF3.0 results.

5.4 Implications for LHC phenomenology

We now turn to a brief preliminary investigation of the implications of NNPDF3.0 PDFs

for LHC phenomenology. We start by comparing the NNLO PDF luminosities at 13TeV,
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Figure 62. The small-x and large-x effective asymptotic exponents, αeff , eq. (3.8) (left) and βeff ,

eq. (3.9) (right), for the gluon (top) and singlet (bottom) in the NNPDF3.0 NLO set. The green

solid band is the 68% confidence level interval for each effective exponent as a function of x, for

the Nrep = 1000 replica fit, and the green dashed line is twice this interval. The red hatched band

(and the red dashed lines) are the corresponding results obtained from the Nrep = 100 replica fit.

In each case, the black solid horizontal lines provide the corresponding range for the preprocessing

exponents in the input PDF parametrization eq. (3.6).
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Figure 63. Same as figure 45, but now comparing the default NNPDF3.0 fit to one in which the

NNPDF2.3 basis eq. (3.4) instead of the basis eq. (3.5) has been used for PDF parametrization.
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Figure 64. Same as figure 33 but now comparing NNPDF3.0, MMHT and CT10 NNLO (all with

αs(MZ) = 0.118). Results are shown as ratios to NNPDF3.0.

both to NNPDF2.3, with CT10 and MMHT. Then we move to predictions for a vari-

ety of LHC cross-sections at 13TeV, which we compute at NLO using the automated

MadGraph5 aMC@NLO program [114], and for which we compare results obtained using

NNPDF2.3 and NNPDF3.0 PDFs: specifically, vector boson, top, and Higgs production.

Then we turn to the implications of NNPDF3.0 PDFs for the dominant Higgs production

channel at the LHC, gluon-fusion, and provide NNLO cross-sections computed with the

iHixs code [155], including a study the dependence of results on the dataset used for PDF

determination. Finally, we study the production of high-mass states, close to the LHC

kinematic threshold, as relevant for searches of massive New Physics at the energy frontier.

5.4.1 PDF luminosities

In figure 64 we compare the PDF luminosities obtained using the NNPDF3.0 set and dis-

cussed in section 5.1.2 to CT10 [150, 151] and MMHT14 [162]. Note that these comparisons

might become obsolete once CT10 PDFs are updated, though they will be easily updated

using the recent APFEL tool [175]. The three sets are consistent within their uncertainties.

Quite in general NNPDF3.0 has smaller uncertainties in the data region, but larger uncer-

tainties in the extrapolation regions. For the gg luminosity in the region relevant for Higgs

production, the agreement between the three sets has improved in comparison to previous

benchmarks using NNPDF2.3 and MSTW2008 [139]. Large differences in central values

are found for large values of MX , relevant for the production of very massive New Physics

particles, though all sets are compatible within their very large uncertainties.
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5.4.2 Implications for
√

s = 13 TeV LHC processes

An extensive phenomenological comparison of NNPDF3.0 for all processes and a wide

range of PDF sets is beyond the scope of this work. We will thus only compare NNPDF2.3

and NNPDF3.0, for a limited set of LHC observables. Unless otherwise stated, we use

the NLO sets with αs = 0.118 and work in the Nf = 5 variable-flavor-number scheme

with massless bottom quarks. Theoretical predictions at NLO are computed using the

MadGraph5 aMC@NLO program [114], version 2.1.2, interfaced to LHAPDF6. The NLO

results are sufficient to assess the PDF dependence of these observables, as typically the

NNLO/NLO K-factor have a weak PDF dependence. In addition to NNPDF3.0 global fit

results, we also provide predictions using the conservative parton set with αmax = 1.1 as

an illustration of results found using a maximally consistent dataset (see [176]).

Even though we do not aim to a direct comparison to the raw data, cross-sections

have been computed at the fiducial level, including resonance decays for some processes,

and using realistic generation cuts. Jets are reconstructed with the anti-kT algorithm [177]

with radius R = 0.5, and the following cuts are applied to all jets in the final state:

|ηjet| ≤ 4.5 , pT,jet ≥ 25 GeV . (5.3)

For final-state leptons, the following cuts are applied:

|ηl| ≤ 2.5 , pT,l ≥ 25 GeV , ml+l− ≥ 30 GeV . (5.4)

Finally, for photons we impose

|ηγ | ≤ 2.5 , pT,γ ≥ 25 GeV , (5.5)

and use the Frixione isolation criterion [178], with ǫγ = 1.0 and n = 1 and an isolation cone

radius R0 = 0.4. No further analysis cuts are applied. Renormalization and factorization

scales are set dynamically event by event to µf = µr = HT /2, with HT the scalar sum of

the transverse energies of all the final-state particles. Within each run, PDF and scale un-

certainties in MadGraph5 aMC@NLO are obtained at no extra cost using the reweighting

technique introduced in ref. [179]: we thus provide in each case both the central value and

the PDF uncertainty.

Results are collected in table 16, where processes are grouped into three subsets: pro-

cesses which are sensitive to quark and antiquarks, processes which are sensitive to the

gluon PDF, and Higgs production processes, except gluon fusion which is discussed in

the next section. The results of table 16 are also represented in figure 65, normalized to

NNPDF2.3.

For all these cross-section a remarkable stability between NNPDF2.3 and NNPDF3.0

is observed, with all results varying by no more that the size of the corresponding PDF

uncertainty. For top-quark pair production, going from NNPDF2.3 to NNPDF3.0 the cross-

section increases by about 1%, about half the PDF uncertainty. This can be understood

recalling that thee NNPDF3.0 gg luminosity is harder than is NNPDF2.3 counterpart

for MX ∼ 400GeV; this also explains the behaviour of the closely related ttH production
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Process NNPDF2.3 NNPDF3.0 RelDiff NNPDF3.0 αmax = 1.1

p+ p → Z0 → e+e− 1.403 nb (± 1.5%) 1.404 nb (± 2.0%) +0.1% 1.45 nb (± 2.0%)

p+ p → W+ → e+νe 10.30 nb (± 1.3%) 10.21 nb (± 1.9%) -0.9% 10.29 nb (± 2.3%)

p+ p → W+ → e−ν̄e 7.67 nb (± 1.3%) 7.75 nb (± 1.9%) +1.1% 7.96 nb (± 1.9%)

p+ p → W+c̄ 2.665 nb (± 3.5%) 2.680 nb (± 4.2%) +0.56% 2.807 nb (± 8.8%)

p+ p → e+νe + jet 2.353 nb (± 1.2%) 2.332 nb (± 1.5%) -0.9% 2.325 nb (± 1.6%)

p+ p → γ + jet 62.24 nb (± 1.2%) 63.85 (± 1.8%) +2.6% 61.51 (± 1.9%)

p+ p → tt̄ 678 pb (± 1.7%) 672 pb (± 1.6%) -0.9% 655 pb (± 3.3%)

p+ p → He+e− 26.48 fb (± 1.4%) 26.58 fb (± 1.5%) +0.4% 27.07 fb (± 2.3%)

p+ p → He+νe 0.134 pb (± 1.6%) 0.131 pb (± 1.6%) -2.2% 0.137 pb (± 2.6%)

p+ p → Htt̄ 0.458 pb (± 2.2%) 0.4595 pb (± 1.7%) +0.6% 0.459 pb (± 4.0%)

Table 16. Cross-sections for LHC at 13TeV, computed at NLO using MadGraph5 aMC@NLO

using NNPDF2.3 and NNPDF3.0 NLO PDFs, with Nf = 5 and αs(MZ) = 0.118. In each case,

central values and the one-sigma PDF uncertainty (in parenthesis) are given. We also show the

percentage difference between the central values using the two PDF sets and the prediction using

conservative partons with αmax = 1.1.

process. Note that NNPDF2.3 already gave a very good description of all available ATLAS

and CMS 7TeV and 8TeV production data [76], even though they were not included in

the fit. For W production in association with charm quarks, we use a NF = 3 scheme in

order to retain the full charm mass dependence. For this observable, results are very stable

when moving from NNPDF2.3 to NNPDF3.0.

Coming now to Higgs production, for ttH the NNPDF3.0 result is about 2.3% larger

than the NNPDF2.3 prediction, consistent with the expectation from the gg luminosity

comparisons in figure 32 for MX ∼ 500 = 700GeV (recall that the calculation uses a

dynamical setting of the factorization scale). For the associate production channels, hW

and hZ, driven by the qq̄ luminosities, differences are well within one sigma, as expected

from the luminosities of figure 32.

Coming finally to the comparison with the conservative PDFs, we note that prediction

obtained using the latter are generally consistent at the one sigma level with the default

ones, occasionally with differences at the two sigma level, such as for example for hl+ν.

Of course, predictions from conservative partons are generally affected by larger PDF

uncertainties because of the smaller dataset, though in some cases they are only slightly less

accurate than the global fit, such as for example for inclusive W and Z production. On the

other hand, for processes that depend on strangeness (like W+c) or that are gluon-driven

(like tt̄ and tt̄h) the PDF uncertainties are substantially larger in the conservative partons

than in the global fit.

5.4.3 Higgs production in gluon fusion

We now focus specifically on Higgs production in gluon fusion, the dominant channel at the

LHC, for which theoretical uncertainties are a limiting factor for the determination of Higgs

properties. We provide predictions for the total cross-section at NLO and NNLO for the

LHC 13TeV, comparing the default NNPDF3.0 set to NNPDF2.3 and to the various sets
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Figure 65. Graphical comparison of the results of table 16. Results are shown normalized to the

NNPDF2.3 central value.

based on alternative datasets discussed in section 5.2, with the main goal of studying the

dependence of this prediction on the underlying PDFs, along the lines of the study presented

in ref. [168]. The uncertainties shown are pure PDF uncertainties, with αs(MZ) = 0.118,

i.e. the αs uncertainty is not included. The inclusive cross-section is computed using

iHixs 1.3.3, with mh = 125GeV, renormalization and factorization scales set to µr =

µf = mh and the infinite top mass (effective theory) approach. Clearly, our predictions

are not meant to be realistic, however, the effects which we do not include (such as for

instance electroweak corrections, or finite top, bottom and charm mass contributions)

have a negligible PDF dependence, while αs uncertainties are completely independent of

the PDF uncertainty, given that the PDF and αs uncertainties combine in quadrature in

the gaussian case even when correlated [180]. Hence our results do provide an accurate

assessment of the PDF dependence of the cross-section and its uncertainty.

Results are collected in table 17, and summarized graphically in figures 66–67. We

show results obtained using NNPDF2.3, and the following NNPDF3.0 sets: 2.3-like dataset,

default, conservative with αmax = 1.1, no jet data, no LHC data and HERA-only, all of

which have been discussed in detail in section 5.2. In table 17 we also show the pull of

each prediction compared to the NNPDF2.3 result, defined as

P ≡ (σggh(2.3)− σggh(3.0))
√

∆σ2
ggh(3.0) + ∆σ2

ggh(2.3)
, (5.6)

where ∆σggh is the one-sigma PDF uncertainty.
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σggh (pb) NLO Pull σggh (pb) NNLO Pull

NNPDF2.3 34.72 ± 0.33 — 46.39 ± 0.46 —

NNPDF3.0 with 2.3 data 34.06 ± 0.57 1.0 45.14 ± 0.74 1.4

NNPDF3.0 global 33.96 ± 0.61 1.1 45.01 ± 0.72 1.6

NNPDF3.0 conservative αmax = 1.1 33.31 ± 0.54 2.2 43.70 ± 1.12 2.2

NNPDF3.0 no Jets 34.56 ± 1.04 0.2 45.32 ± 0.92 1.0

NNPDF3.0 noLHC 34.12 ± 0.80 0.7 45.10 ± 0.91 1.3

NNPDF3.0 HERA-only 31.96 ± 3.03 0.9 43.02 ± 2.21 1.5

Table 17. The total cross-section for Higgs production in gluon fusion at the LHC 13TeV at NLO

(left) and NNLO (right) for αs(Mz) = 0.118. The pull P eq. (5.6) is also given.
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Figure 66. Graphical representation of the NLO results of table 17.

As expected from the comparison of the gluon-gluon luminosities in figure 33,

the NNLO cross-section decreases by about 2-sigma when going from NNPDF2.3 to

NNPDF3.0, while the PDF uncertainty increases substantially. At NLO the effect is less

marked, with the NNPDF2.3 and NNPDF3.0 in agreement at the one-sigma level. Be-

cause a similar result is found using NNPDF3.0 PDFs based on a 2.3-like dataset we must

conclude that the change is mostly due to methodological improvements, rather than the

underlying data. Because of the validation from closure testing, the NNPDF3.0 results are

more reliable, both in terms of central values and uncertainties.

Results obtained using NNPDF3.0 sets based on alternative datasets are always mutu-

ally consistent at the one sigma level, with the conservative partons leading to a lower result

and the fit with no jets to a slightly higher one but with significantly larger uncertainty.

The lowest central value is found using the HERA-only set, which however is affected by a

PDF uncertainty which is by a factor three larger than the default.
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Figure 67. Graphical representation of the NNLO results of table 17.

Despite these variations in results, all pulls are of similar size, between 0.7 and 1.1 at

NLO and between 1.3 and 1.6 at NNLO, with the only exception of conservative partons,

which have a larger pull of 2.2 both at NLO and NNLO. This means that the dependence

of the results on the dataset appears to be consistent with statistical fluctuations.

5.4.4 New physics particle production at high masses

A wide variety of scenarios of physics beyond the standard model include heavy particles

at the TeV scale that could be within the reach of the LHC. Production of very massive

particles probes PDFs at large x, where they are poorly known due to the lack of direct

experimental information, and thus the corresponding predictions are affected by substan-

tial PDF uncertainties (see e.g. refs. [181, 182]). Consequently, PDFs can be a limiting

factor in the determination of exclusion regions, and improving their knowledge can lead

to an increase in the search potential. In this context an accurate assessment of their

uncertainties is therefore crucial. The unbiased NNPDF approach is advantageous in this

respect in that it leads to uncertainty estimates which are not biased by assumptions on

the functional form of PDFs. The only significant constraint on PDFs close to threshold

comes from positivity, which is now implemented in an optimal way as we discussed in

sections 3.2.3–5.3.2 above.

As an example, we consider high-mass Drell-Yan production and the pair production

of supersymmetric particles. High-mass dilepton production is frequently used to search

for new physics that couples to the electroweak sector, and thus it is important to provide

precise predictions for the SM production mechanisms.

We have computed the dilepton invariant mass distribution in pp → γ∗/Z → l+l−

events at the LHC 14TeV with NNPDF3.0 at NLO and NNLO using FEWZ. Recall from

section 3.2.3 that positivity is always imposed at NLO, so an explicit check of positivity of

the NNLO result is nontrivial. Results are shown in figure 68, in different Mll bins: each

of the Nrep = 100 NLO (left) or NNLO (right) Monte Carlo replicas is shown as a green
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Figure 68. The dilepton invariant mass distribution in pp → γ∗/Z → l+l− at the LHC 14TeV

with NNPDF3.0 at NLO (left) and NNLO (right) using FEWZ. Each (green) dashed line is one of

the Nrep = 100 Monte Carlo replicas, while the solid (red) line is the average and the outer solid

(blue) lines give the edges of the one-sigma interval. Both the absolute result (top) and the ratio

to the central value (bottom) are shown.

dashed line, together with the corresponding central values and one-sigma intervals. All

MC replicas are positive up to the highest invariant mass bins.

As a second example, we provide predictions for the pair production of super-

symmetric particles at the LHC 14TeV. The computation has been performed using

Prospino [183, 184] with NNPDF3.0 NLO, using settings as close as possible to those

of refs. [181, 182], though the only relevant physical input for our illustrative study are

the sparticle masses. Note that for this processes NNLO calculations are not available.

We have produced results for squark-squark, squark-antisquark and gluino-gluino produc-

tion, for three different values of the sparticle masses, namely 1TeV, 2TeV and 3TeV.

We show the predictions for the Nrep = 100 Monte Carlo replicas of NNPDF3.0 for the

squark-antisquark and gluino-gluino channels; the squark-squark cross-section (not shown)

is always positive in the mass range that we are considering. In each case, we also provide

the average result and the 68% confidence level interval. For comparison, predictions using

the NNPDF2.3 NLO PDFs are also shown.

Results are shown in figure 69. In the case of gluino-gluino production (right), all

replicas are strictly positive up to mg̃ = 2TeV. At 3TeV, some replicas lead to slightly

negative cross-sections: 15 in NNPDF2.3, and only 3 in NNPDF3.0. In both cases, the 68%

confidence levels are always positive; we conclude that the occasional negative replica can
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Figure 69. Cross-sections for NLO squark-antisquark (left) and gluino-gluino (right) pair produc-

tion at the LHC 14TeV with NNPDF3.0 and NNPDF2.3, for sparticle masses of 1TeV, 2TeV and

3TeV. In each case, we show the predictions for the Nrep = 100 Monte Carlo replicas as well as by

the average result and the 68% confidence level interval.

be set to zero with no impact on the central value or uncertainty. For squark-antisquark

production (left) all cross sections are positive up to mq̃ = 2TeV, while for mq̃ = 3TeV

some cross-sections are slightly negative. For NNPDF2.3, the central value was negative,

while now for NNPDF3.0 the central value is positive and only a small part of the 68%

confidence level range is in the negative region. This means that our improved positivity is

still not fully efficient, and it allows some replicas to lead to negative cross-section: partly

because positivity is imposed with a Lagrange multiplier which carries a large but finite

penalty, and also, because positivity is only imposed for standard model processes, and

not for all possible processes. Setting these negative cross-sections to zero would of course

not modify the upper uncertainty range, implying that for this particular subprocesses and

sparticle masses arbitrarily small production cross-sections are allowed within the large

PDF uncertainties. Note however the very large PDF uncertainties at the largest masses:

for example, for squark-antisquark production, the 68% CL range for the cross-section for

mq̃ = 3TeV is σ(q̃ ¯̃q) ∈
[

0, 15 · 10−5
]

pb, with a central value of ∼ 5 · 10−5 pb.

We conclude that, thanks to the improved implementation of positivity in NNPDF3.0,

the cross-section for high-mass particle production is positive, thereby improving over

NNPDF2.3. Occasional replicas leading to negative cross-sections very close to thresh-

old can be set to zero without significantly affecting central values and uncertainties.
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6 Summary and outlook

We conclude by summarizing the NNPDF3.0 fits that will be made public, their use in

specific phenomenological application, and future developments.

All PDF sets are made available via the LHAPDF6 library [185], from version

6.1.4 onward, http://lhapdf.hepforge.org/. For the global fits, we also provide the

corresponding grids in LHAPDF5 format via the the NNPDF HepForge webpage,

http://nnpdf.hepforge.org/, though whenever possible, the modern v6 interface should

be used.

The interpolation used in the delivery of NNPDF sets has been substantially improved

in the transition from LHAPDF5 to LHAPDF6.

• The default interpolation algorithms, of LHAPDF6 are now used, instead of the in-

house interpolation used by NNPDF sets in LHAPDF5. These algorithms are faster

and more accurate, but we have checked that in most of the relevant range of x and

Q2 the LHAPDF6 and LHAPDF5 algorithms agree at the permille level.

• A wider range for the x and Q grids is now adopted: the NNPDF3.0 sets can be

used for

10−9 ≤ x ≤ 1 , 1GeV ≤ Q ≤ 100TeV , (6.1)

which is adequate for future phenomenological applications, including calculations of

cross-section of ultra-high energy neutrinos, which require PDFs down to x ∼ 10−8,

and studies of a Future Circular Collider with a center-of-mass energy of 100TeV.

Outside the range in eq. (6.1), where no experimental information is available, the

values of the PDFs are frozen.

• Thanks to the novel functionalities in LHAPDF6, for all the NNPDF3.0 sets the Q2

interpolation grid has been divided into different subgrids separated by heavy quark

thresholds. This ensures that the correct threshold behavior of the heavy quark PDFs

is satisfied also by the interpolation, and in particular that the heavy quark PDFs

are exactly zero below the threshold.

The NNPDF3.0 PDF sets to be made available via LHAPDF6 are the following:

• Global NNPDF3.0 sets — baseline fits

The baseline LO, NLO and NNLO NNPDF3.0 sets are based on the global dataset,

with αs(MZ) = 0.118 and a variable-flavor number with up to five active flavors, the

convention for the corresponding LHAPDF6 grid files is

NNPDF30 lo as 0118

NNPDF30 nlo as 0118

NNPDF30 nnlo as 0118

The leading order NNPDF3.0 allows, among other applications, to compare theo-

retical predictions for cross-sections computed at different perturbative orders. In
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LHAPDF6, the output of the NNPDF3.0 LO PDFs is forced to be positive using

the suitable meta-data instructions. For uses in leading-order Monte Carlo event

generators, we still recommend the use NNPDF2.3LO, since, as part of the updated

Monash 2013 Tune [156] of Pythia8 [186], it has been shown to provide an excellent

description of a variety of soft and semi-hard data.

• Global NNPDF3.0 sets — fits with αs variations

Using the same global dataset as above, for the NLO and NNLO fits we have produced

fits with different values of αs(MZ), that can be used to evaluate the combined

PDF+αs uncertainties in cross-sections:

NNPDF30 nlo as 0115, NNPDF30 nlo as 0117, NNPDF30 nlo as 0119,

NNPDF30 nlo as 0121

NNPDF30 nnlo as 0115, NNPDF30 nnlo as 0117, NNPDF30 nnlo as 0119,

NNPDF30 nnlo as 0121

The procedure to combine PDF and αs uncertainties in a Monte Carlo set like

NNPDF3.0 is explained in [135] (see also ref. [187]). The choice of the uncertainty

δ αs to be assigned to the strong coupling is left to the PDF users. For LO, we

also provide a fit with αs(MZ) = 0.130, as this is the value typically required in LO

calculations:

NNPDF30 lo as 0130

Note that from the NLO and NNLO range of αs values, the predictions for any other

value of αs not included in the list can be easily obtained from either interpolation

or extrapolation.

• Global NNPDF3.0 — fits with different maximum number of active flavors

For various important phenomenological applications, PDF sets in which either the

charm quark or both the charm and bottom quarks are treated as massive are re-

quired. In the following we denote these two schemes as the Nf = 3 and Nf = 4

schemes. In order to obtain Nf = 3 and Nf = 4 versions of the NNPDF3.0 sets,

we follow the procedure outlined in [11]. We start from the baseline NNPDF3.0 fits,

where the charm and bottom quarks are massless parton (Nf = 5 scheme), at the

input scale, Q2
0 = 1GeV2. This boundary condition is then evolved upwards in Q2,

but using the Nf = 3 and Nf = 4 schemes, to produce the desired sets with differ-

ent maximum number of active partons. This has been done for a reduced range of

αs(MZ) values, to be able to compute the combined PDF+αs uncertainties. These

fits are:

NNPDF30 nlo as 0117 nf3, NNPDF30 nlo as 0118 nf3, NNPDF30 nlo as 0119 nf3

NNPDF30 nnlo as 0117 nf3, NNPDF30 nnlo as 0118 nf3,

NNPDF30 nnlo as 0119 nf3
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NNPDF30 nlo as 0117 nf4, NNPDF30 nlo as 0118 nf4, NNPDF30 nlo as 0119 nf4

NNPDF30 nnlo as 0117 nf4, NNPDF30 nnlo as 0118 nf4,

NNPDF30 nnlo as 0119 nf4

In addition, using a similar procedure we have provided sets in the Nf = 6 scheme,

that is, treating the top quark as a massless parton. While treating the top quark

as massless is not justified at the LHC, it might become appropriate at higher en-

ergy colliders, see for example ref. [188]. These sets that include the top PDF are

denoted as

NNPDF30 nlo as 0117 nf6, NNPDF30 nlo as 0118 nf6, NNPDF30 nlo as 0119 nf6

NNPDF30 nnlo as 0117 nf6, NNPDF30 nnlo as 0118 nf6,

NNPDF30 nnlo as 0119 nf6

Likewise, we also provide similar fits with different maximum number of active flavors

for the LO fits, for the two values of αs used:

NNPDF30 lo as 0118 nf3, NNPDF30 lo as 0118 nf4, NNPDF30 lo as 0118 nf6,

NNPDF30 lo as 0130 nf3, NNPDF30 lo as 0130 nf4, NNPDF30 lo as 0130 nf6

• Fits based on reduced datasets

We have also released fits based on reduced datasets, as discussed in detail in sec-

tion 5.2. First, conservative partons, for which the fit with the choice of threshold

value of αmax = 1.1 is used. We provide results in the restricted range of αs values:

NNPDF30 nlo as 0117 cons, NNPDF30 nlo as 0118 cons, NNPDF30 nlo as 0119 cons

NNPDF30 nnlo as 0117 cons, NNPDF30 nnlo as 0118 cons, NNPDF30 nnlo as 0119 cons

Then, HERA-only PDFs, which may be useful to gauge the impact of new LHC

measurements:

NNPDF30 nlo as 0117 hera, NNPDF30 nlo as 0118 hera, NNPDF30 nlo as 0119 hera

NNPDF30 nnlo as 0117 hera, NNPDF30 nnlo as 0118 hera, NNPDF30 nnlo as 0119 hera

In view of possible reweighting applications, for the central value of αs(MZ) = 0.118

also sets Nrep = 1000 are provided,

NNPDF30 nlo as 0118 hera 1000

NNPDF30 nnlo as 0118 hera 1000

Next, HERA+ATLAS and HERA+CMS fits. These can be useful to compare with

analogous fits presented by the LHC collaborations, and are labeled as
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NNPDF30 nlo as 0117 atlas, NNPDF30 nlo as 0118 atlas, NNPDF30 nlo as 0119 atlas

NNPDF30 nnlo as 0117 atlas, NNPDF30 nnlo as 0118 atlas,

NNPDF30 nnlo as 0119 atlas

NNPDF30 nlo as 0117 cms, NNPDF30 nlo as 0118 cms, NNPDF30 nlo as 0119 cms

NNPDF30 nnlo as 0117 cms, NNPDF30 nnlo as 0118 cms, NNPDF30 nnlo as 0119 cms

Then, sets without LHC data, sometimes used for theory comparisons with LHC

measurements. Also here, in view of possible reweighting exercises with LHC data,

we provide for the central value of αs(MZ) = 0.118 a set of Nrep = 1000 replicas:

NNPDF30 nlo as 0117 nolhc, NNPDF30 nlo as 0118 nolhc, NNPDF30 nlo as 0119 nolhc

NNPDF30 nlo as 0118 nolhc 1000

NNPDF30 nnlo as 0117 nolhc, NNPDF30 nnlo as 0118 nolhc,

NNPDF30 nnlo as 0119 nolhc

NNPDF30 nnlo as 0118 nolhc 1000

Finally, a fit excluding all jet data, which avoids the use of approximate NNLO

results. Again, these are provided in a range of αs values, and denoted by

NNPDF30 nlo as 0117 nojet, NNPDF30 nlo as 0118 nojet, NNPDF30 nlo as 0119 nojet

NNPDF30 nnlo as 0117 nojet, NNPDF30 nnlo as 0118 nojet,

NNPDF30 nnlo as 0119 nojet

Note that for all fits for which Nrep = 1000 replicas are available, the corresponding Nrep =

100 replica sets have been obtained using independent random seeds, so that the Nrep =

1000 and Nrep = 100 replica sets are fully independent.

Now that PDFs validated by a closure test, and fitted to a wide variety of LHC data

are available, three main directions of progress are foreseen. From a methodological point

of view, some optimization is still possible: specifically by producing sets with a reduced

number of PDF replicas which retain as much as possible of the information from the full

dataset. From the phenomenological point of view, new data will be added to the dataset

as soon as they become available. These include the final combined HERA dataset, jet

data from ATLAS and CMS from the 2011 and 2012 runs, and electroweak gauge boson

production at 8TeV, and, in the longer term, LHC data from Run II will also be included.

Finally, from the theory point of view we plan to improve the treatment of heavy quarks

by introducing an intrinsic charm PDFs, to provide PDF sets based on resummed QCD

theory, and to produce QCD+QED sets including a full fit of the photon PDF.

With data, methodology and theory under control the main outstanding issue is a full

characterization of theoretical uncertainties on PDFs, which remains an open problem. It

will have to be addressed in order for parton distributions to become a controlled tool for

precision physics at present and future colliders.
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A QCD and weak corrections to vector boson production data

In this appendix we provide a detailed overview of the theoretical calculations that we have

used to include LHC vector boson production data in the NNPDF3.0 analysis. For each

datapoint, we provide the size of the NNLO QCD and of the NLO weak corrections, com-

paring with the total experimental uncertainty. Results for the QCD and weak corrections

are given for all the LHC neutral current Drell-Yan measurements included in NNPDF3.0,

namely for the CMS double differential distributions from the 2011 run [59], the ATLAS

high mass Drell-Yan distributions from the 2011 run [56], the ATLAS Z boson rapidity

distribution from the 2010 run [47], and for LHCb Z rapidity distributions in the forward

region from the 2011 run [61]. Using these calculations, here we also provide, for the

neutral-current Drell-Yan data, the NNLO and weak C-factors, defined as in section 2.3.

As we will show now, the effect of the pure weak corrections is negligible for neutral-

current Drell-Yan data around Z peak region, and it becomes numerically important for

small and large values of the dilepton mass Mll. For charged-current Drell-Yan production,

weak corrections are small outside the W peak region (where all the available data lies)

and thus can be safely neglected in the present analysis. For charged-current DY, NNLO

QCD corrections are moderate; they have been included in the NNPDF3.0 analysis but

are not discussed explicitly in this appendix.

In this work, theoretical predictions are obtained with FEWZ3.1 [120] and have been

cross-checked against DYNNLO1.3 [115]. The NNPDF2.3 NLO set with αs = 0.118 is

used as input for the NLO theoretical predictions, and NNPDF2.3 NNLO is used for the

corresponding NNLO calculations, as well as to determine the C-factors. The Gµ scheme

is adopted for all electroweak computations, where the input parameters are MZ , MW and

GF , while αe and sW may be obtained from these using:

sW = 1− M2
W

M2
Z

αe = R2
t GFM

2
W

sW
π

, (A.1)
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where R2
t = 1.4142135624. In this analysis we use GF = 1.16637 · 10−5GeV−2 , MW =

80.398GeV, MZ = 91.1876GeV and do not adopt the narrow-width approximation.

A.1 CMS double differential distributions

The CMS experiment has measured [59] the lepton pair rapidity distributions yll for the

Drell-Yan process in six bins of the invariant mass of the final state lepton pair, Mll. For

each bin in Mll, the yll distribution is divided in 24 equally spaced bins in rapidity, up

to yll < 2.4, except for the last bin in Mll that is divided in 12 bins. In the theoretical

calculations, we set µF and µR to the average value 〈Mll〉 of each dilepton invariant mass

bin. The cuts on the final state leptons are the following:

pmin
T > 9GeV ∧ pmax

T > 14GeV ,

20GeV < Mll < 1500GeV ,

|η1,2l | < 2.4 ,

with pmin
T (pmax

T ) being the transverse momentum of the softer (harder) lepton, and |ηl| are
the rapidities of the two leptons. In tables 18–23 we provide the results of our calculations,

and compare the total experimental uncertainty with the corresponding NNLO QCD and

the NLO pure weak corrections, for the six bins in invariant mass of this measurement.

The NNLO corrections to this measurement are found to be substantial, specially in

the bins with Mll below the Z peak region. For example, the average NNLO correction

is around 10% in the first bin, ∼6% in the second bin, and and ∼4% in the Z peak

region. These corrections are also found to be relatively constant as a function of the

dilepton rapidity |yll|, except for the last bin of the distribution, where the correction is

substantially larger. The comparison between data and theory predictions for the first bin

of this measurement was shown in figure 4. In the region with dilepton mass Mll ≤ 45GeV,

the NNLO QCD corrections are larger than the experimental uncertainties, and therefore

their inclusion is essential to achieve a good fit quality.

Concerning the pure weak corrections, 6th column of tables 18–23, we note that it is

found to be at most at the few percent level, for example, the average over all rapidity

bins is ∼ 3% for the second invariant mass bin and ∼ 4% for the third. Above the Z

peak mass we find these weak corrections to be below the 1% range. Note that in the

highest invariant mass bin, with 200 ≤ Mll ≤ 1500GeV, the cross-sections are dominated

by the region around Mll ∼ 200GeV, while the contribution from higher masses, where

weak effects are known to be more substantial, has less weight.

A.2 ATLAS high-mass Drell-Yan differential cross section

Now we turn to present the results for the ATLAS high-mass Drell-Yan production data

from the 2011 run [56], based on an integrated luminosity of 4.9 fb−1. This measurement

is presented in terms of the invariant mass of the electron pairs produced in the range

116GeV < Mll < 1.5TeV. Theoretical predictions are computed using the same codes

and settings described above, we have used as renormalization and factorization scales
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20GeV < Mll < 30GeV

|yll| dσexp/dyll/dMll (pb) dσNLO/dyll/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.1] 17.84 14.83 6.5 8.1 0.4

[0.1, 0.2] 17.68 14.78 6.2 8.9 0.6

[0.2, 0.3] 17.21 14.80 6.4 9.0 0.3

[0.3, 0.4] 17.63 14.78 6.0 8.9 0.4

[0.4, 0.5] 17.84 14.70 5.6 8.8 0.4

[0.5, 0.6] 18.10 14.71 5.2 8.8 0.2

[0.6, 0.7] 18.41 14.59 4.8 8.9 0.4

[0.7, 0.8] 18.16 14.54 4.3 9.2 0.2

[0.8, 0.9] 18.05 14.46 3.8 9.4 0.6

[0.9, 1.0] 17.84 14.36 3.5 9.6 0.5

[1.0, 1.1] 17.52 14.31 3.3 9.7 0.3

[1.1, 1.2] 17.47 14.16 3.3 9.8 0.4

[1.2, 1.3] 16.90 14.07 3.4 9.9 0.4

[1.3, 1.4] 16.95 13.93 4.0 10.1 0.1

[1.4, 1.5] 16.32 13.75 4.5 10.4 0.5

[1.5, 1.6] 16.48 13.60 4.5 10.7 0.1

[1.6, 1.7] 15.48 13.25 4.7 10.7 0.2

[1.7, 1.8] 15.22 12.84 5.2 10.3 0.4

[1.8, 1.9] 14.06 12.25 5.2 9.2 0.1

[1.9, 2.0] 12.59 11.24 5.4 7.6 0.8

[2.0, 2.1] 11.02 9.58 5.2 6.1 0.8

[2.1, 2.2] 8.39 7.28 5.6 6.0 0.6

[2.2, 2.3] 5.46 4.58 7.7 9.5 0.3

[2.3, 2.4] 2.05 1.48 10.3 13.4 0.4

Average 5.2 9.3 0.6

Table 18. Experimental measurements and theoretical predictions for the CMS Drell-Yan double

differential distributions in the dilepton invariant mass bin with 20GeV < Mll < 30GeV, as a

function of the dilepton rapidity |yll|. For each rapidity bin we provide the experimental central value

(2nd column), the NLO theoretical predictions obtained with NNPDF2.3NLO with αs = 0.118 (3rd

column), the total percentage experimental uncertainty (4th column), the NNLO QCD correction

(5th column) and the NLO pure weak correction (6th column). In the last row the average over all

the rapidity bins is provided. See text for more details.

µF = µR = MZ and the following cuts to the final states leptons have been applied:

plT > 25GeV ,

|η1,2l | < 2.5 .

In table 24, with the same structure as table 18, we provide the experimental central value,

the NLO theoretical predictions obtained with NNPDF2.3NLO with αs = 0.118, the total

percentage experimental uncertainty, the NNLO QCD correction, and the NLO pure weak

correction. In the last row, the average over all the data points in the measurement is given.
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30GeV < Mll < 45GeV

|yll| dσexp/dyll/dMll (pb) dσNLO/dyll/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.1] 26.87 25.36 3.5 6.7 3.1

[0.1, 0.2] 25.66 25.42 3.3 6.4 3.0

[0.2, 0.3] 25.87 25.37 3.0 6.2 2.7

[0.3, 0.4] 25.66 25.45 3.1 6.1 2.6

[0.4, 0.5] 26.13 25.28 2.8 6.1 3.0

[0.5, 0.6] 27.08 25.22 2.7 6.0 2.9

[0.6, 0.7] 26.18 25.29 2.8 5.8 2.7

[0.7, 0.8] 25.66 25.19 3.1 5.6 2.8

[0.8, 0.9] 26.29 25.06 3.0 5.3 2.8

[0.9, 1.0] 25.61 24.95 2.9 5.2 3.0

[1.0, 1.1] 25.71 24.93 2.9 5.2 2.6

[1.1, 1.2] 25.55 24.72 2.7 5.3 2.7

[1.2, 1.3] 24.50 24.33 2.8 5.5 3.6

[1.3, 1.4] 25.76 24.21 2.6 5.8 2.4

[1.4, 1.5] 24.08 23.30 2.6 5.8 3.0

[1.5, 1.6] 23.35 22.19 2.7 5.6 2.9

[1.6, 1.7] 21.67 20.58 2.7 4.9 3.8

[1.7, 1.8] 19.26 18.63 2.7 3.6 2.8

[1.8, 1.9] 16.58 16.13 3.2 1.6 3.1

[1.9, 2.0] 13.80 13.21 3.4 0.9 3.7

[2.0, 2.1] 11.02 10.30 4.3 3.7 3.4

[2.1, 2.2] 7.87 7.41 5.3 5.4 3.7

[2.2, 2.3] 4.67 4.43 6.7 3.2 4.3

[2.3, 2.4] 1.63 1.49 9.6 17.5 6.2

Average 3.5 5.6 3.2

Table 19. Same as table 18 for the dilepton invariant mass bin with 30GeV < Mll < 45GeV.

As expected, the size of the pure weak corrections increases monotonically with the

value of Mll, reaching up to ∼ 7% in the highest mass bin. While the uncertainties in

experimental data are still rather higher due to the limited statistics, is clear that for

8TeV data and even more for Run II measurements, including electroweak corrections in

PDf fits will be mandatory. On the other hand, QCD NNLO corrections are found to be

at the few percent level, typically smaller than the total experimental uncertainty.

A.3 ATLAS Z rapidity distribution

Now we consider the ATLAS measurements of the Z rapidity distribution from an in-

tegrated luminosity of 36 pb−1 [47]. This dataset was already included in our previous

NNPDF2.3 analysis [13]. In the theoretical calculations, we have used the following cuts
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45GeV < Mll < 60GeV

|yll| dσexp/dyll/dMll (pb) dσNLO/dyll/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.1] 11.23 10.51 2.8 5.7 2.9

[0.1, 0.2] 11.18 10.51 2.8 4.6 3.3

[0.2, 0.3] 11.07 10.51 3.3 3.9 2.7

[0.3, 0.4] 11.33 10.50 3.2 3.4 3.3

[0.4, 0.5] 10.65 10.46 3.9 3.1 2.8

[0.5, 0.6] 11.70 10.50 2.7 3.0 2.4

[0.6, 0.7] 11.49 10.41 2.7 3.0 3.4

[0.7, 0.8] 11.28 10.39 3.3 3.0 3.0

[0.8, 0.9] 11.28 10.30 2.8 3.0 3.4

[0.9, 1.0] 11.18 10.21 2.8 2.9 2.9

[1.0, 1.1] 10.76 10.02 2.9 2.8 2.7

[1.1, 1.2] 10.28 9.73 3.1 2.6 3.0

[1.2, 1.3] 9.76 9.25 3.2 2.2 3.3

[1.3, 1.4] 9.81 8.69 2.7 1.8 3.5

[1.4, 1.5] 8.92 8.15 2.9 1.2 3.0

[1.5, 1.6] 8.40 7.48 3.8 0.5 3.3

[1.6, 1.7] 7.35 6.79 2.9 0.5 2.6

[1.7, 1.8] 6.40 5.99 3.3 1.6 3.0

[1.8, 1.9] 5.93 5.14 4.4 3.1 3.2

[1.9, 2.0] 4.93 4.28 5.3 4.8 3.0

[2.0, 2.1] 4.04 3.34 6.5 6.9 3.6

[2.1, 2.2] 2.57 2.42 6.1 9.4 2.5

[2.2, 2.3] 1.78 1.44 11.8 12.7 3.7

[2.3, 2.4] 0.63 0.50 16.7 18.1 0.4

Average 4.4 4.3 3.9

Table 20. Same as table 18 for the dilepton invariant mass bin with 45GeV < Mll < 60GeV.

for the final-state lepton kinematics:

plT ≥ 20 GeV,

66 GeV ≤ Mll ≤ 116 GeV,

|η1,2l | ≤ 4.9.

In table 25, with again the same structure as table 18, we provide for this measurement the

experimental central value, the NLO theoretical predictions obtained with NNPDF2.3NLO

with αs = 0.118, the total percentage experimental uncertainty, the NNLO QCD correction,

and the NLO pure weak correction.

From table 25 we see that in the Z peak region, both the NNLO QCD and NLO weak

corrections are small, of the order 1% at most, and slowly varying with the lepton rapidity.

On the other hand, the precision of the data is high and therefore it is necessary to include
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60GeV < Mll < 120GeV

|yll| dσexp/dyll/dMll (pb) dσNLO/dyll/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.1] 317.44 294.30 1.3 2.2 1.1

[0.1, 0.2] 315.35 291.35 1.3 2.1 2.1

[0.2, 0.3] 315.87 291.02 1.3 2.0 1.6

[0.3, 0.4] 312.72 289.59 1.3 1.9 1.3

[0.4, 0.5] 312.72 286.10 1.3 1.8 1.6

[0.5, 0.6] 309.57 282.63 1.4 1.7 1.8

[0.6, 0.7] 306.95 276.41 1.4 1.5 1.6

[0.7, 0.8] 299.60 270.50 1.4 1.4 2.1

[0.8, 0.9] 292.26 264.98 1.4 1.2 0.9

[0.9, 1.0] 285.96 255.89 1.5 1.0 1.8

[1.0, 1.1] 275.99 245.52 1.5 0.8 2.3

[1.1, 1.2] 264.45 237.54 1.6 0.6 0.9

[1.2, 1.3] 249.76 223.67 1.7 0.3 1.4

[1.3, 1.4] 234.02 208.77 1.6 0.1 2.2

[1.4, 1.5] 219.33 193.84 1.7 0.2 1.5

[1.5, 1.6] 196.76 176.08 1.6 0.5 2.1

[1.6, 1.7] 177.87 156.71 1.8 0.9 2.3

[1.7, 1.8] 153.74 139.25 2.0 1.3 1.2

[1.8, 1.9] 131.70 117.22 2.0 1.8 1.8

[1.9, 2.0] 106.51 96.52 2.5 2.4 1.4

[2.0, 2.1] 82.38 74.07 3.2 3.3 2.5

[2.1, 2.2] 57.19 52.84 3.7 4.8 0.3

[2.2, 2.3] 33.58 31.05 6.3 8.5 1.9

[2.3, 2.4] 10.49 10.40 5.0 44.5 0.1

Average 2.1 3.6 1.6

Table 21. Same as table 18 for the dilepton invariant mass bin with 60GeV < Mll < 120GeV.

these corrections in the theory calculation, as has been done in this work. This is specially

true in the central region, with |yll| ∼< 1.6.

A.4 LHCb Z forward rapidity distribution

Finally, we present here the theoretical predictions for the LHCb Z → ee rapidity distri-

butions in the forward region from the 2011 dataset [61]. In the calculation, the following

cuts on the lepton kinematics have been used,

plT ≥ 20 GeV,

60 GeV ≤ Mll ≤ 120 GeV,

2 ≤ η1,2l ≤ 4.5.

Results are shown in table 26, with the usual structure. As in the previous case of the

ATLAS measurement of the Z rapidity distribution, and as we expect for calculations in
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120GeV < Mll < 200GeV

|yll| dσexp/dyll/dMll (pb) dσNLO/dyll/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.1] 3.47 3.24 4.7 1.0 0.8

[0.1, 0.2] 3.61 3.22 4.5 0.5 0.3

[0.2, 0.3] 3.54 3.21 4.8 0.0 0.8

[0.3, 0.4] 3.52 3.17 4.5 0.3 0.0

[0.4, 0.5] 3.38 3.15 4.2 0.5 0.7

[0.5, 0.6] 3.52 3.10 4.2 0.5 0.2

[0.6, 0.7] 3.31 3.05 4.6 0.4 0.4

[0.7, 0.8] 3.32 2.99 4.1 0.2 0.4

[0.8, 0.9] 3.22 2.92 4.6 0.1 0.1

[0.9, 1.0] 3.05 2.83 4.1 0.0 0.4

[1.0, 1.1] 3.03 2.74 4.0 0.1 0.7

[1.1, 1.2] 2.79 2.61 4.1 0.2 0.2

[1.2, 1.3] 2.71 2.49 4.2 0.5 0.4

[1.3, 1.4] 2.52 2.34 4.4 0.8 0.4

[1.4, 1.5] 2.44 2.16 4.5 1.3 0.0

[1.5, 1.6] 2.19 1.98 5.0 1.7 0.5

[1.6, 1.7] 1.95 1.76 5.4 2.2 0.5

[1.7, 1.8] 1.58 1.54 6.3 2.4 0.4

[1.8, 1.9] 1.25 1.29 7.5 2.4 0.6

[1.9, 2.0] 1.16 1.05 8.6 1.8 0.4

[2.0, 2.1] 0.73 0.80 10.8 0.4 0.2

[2.1, 2.2] 0.53 0.56 13.9 2.3 0.5

[2.2, 2.3] 0.28 0.32 18.7 6.8 2.1

[2.3, 2.4] 0.11 0.10 24.8 13.4 0.6

Average 6.9 1.7 0.5

Table 22. Same as table 18 for the dilepton invariant mass bin with 120GeV < Mll < 200GeV.

the the Z peak region, the NLO pure weak corrections are found to be quite small, of order

1% at most, and slowly varying with the lepton rapidity. On the the hand the NNLO

QCD corrections are more important, and interestingly they increase monotonically with

the rapidity of the dilepton system, reaching up to ∼ 4% in the most forward bin. The

experimental uncertainties for this measurement in any case are larger than the NNLO

QCD corrections.

B Distance estimators

In previous publications we have extensively used, for comparisons between PDFs, the

distance between two NNPDF fits, each represented by a sample of Monte Carlo replicas.

This distance estimator was first introduced in ref. [10], and can be used both to assess the

compatibility between two PDFs sets, and to test whether two PDF sets are statistically
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200GeV < Mll < 1500GeV

|yll| dσexp/dyll/dMll (pb) dσNLO/dyll/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.2] 0.530 0.533 13.8 1.3 0.0

[0.2, 0.4] 0.609 0.527 10.3 1.6 0.0

[0.4, 0.6] 0.651 0.518 8.0 1.5 0.1

[0.6, 0.8] 0.522 0.501 9.2 2.0 0.0

[0.8, 1.0] 0.534 0.476 7.7 2.5 0.1

[1.0, 1.2] 0.527 0.439 7.4 0.8 0.2

[1.2, 1.4] 0.476 0.388 6.9 3.4 0.1

[1.4, 1.6] 0.323 0.319 9.0 2.6 0.1

[1.6, 1.8] 0.247 0.238 10.5 0.5 0.3

[1.8, 2.0] 0.152 0.154 14.5 2.2 0.0

[2.0, 2.2] 0.097 0.078 20.6 4.4 0.5

[2.2, 2.4] 0.022 0.021 36.4 11.4 0.6

Average 12.9 2.9 0.2

Table 23. Same as table 18 for the dilepton invariant mass bin with 200GeV < Mll < 1200GeV.

ATLAS 2011 DY invariant mass distribution

Mll dσexp/dMll (pb) dσNLO/dMll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[116, 130] 224.00 212.78 4.3 0.9 0.7

[130, 150] 102.00 91.60 4.5 1.3 0.4

[150, 170] 51.20 45.15 5.0 1.5 0.1

[170, 190] 28.40 25.55 5.4 2.8 0.1

[190, 210] 18.70 15.76 6.1 3.4 0.2

[210, 230] 10.70 10.28 7.5 1.6 0.1

[230, 250] 8.23 7.22 7.9 0.4 0.2

[250, 300] 4.66 3.93 7.2 0.0 0.0

[300, 400] 1.70 1.40 7.8 3.4 0.3

[400, 500] 0.47 0.45 11.3 4.7 1.0

[500, 700] 0.15 0.12 12.4 5.0 1.5

[700, 1000] 0.0221 0.0196 25.1 9.0 3.4

[1000, 1500] 0.0029 0.0022 51.0 1.0 6.8

Average 12.0 2.7 1.2

Table 24. Same as table 18 for the ATLAS measurement of the high-mass Drell-Yan invariant

dilepton mass distribution from the 2011 dataset.

equivalent. In the course of the present work we have updated the definition of this distance

estimator, as we discuss the details of this new definition below. We also explain how the

distance estimator can be suitably modified to be used in the validation of the closure

test fits.

Given a Monte Carlo sample of Nrep replicas representing the probability distribution

of a given PDF set,
{

f (k)
}

, the expectation value of the distribution as a function of x and
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ATLAS Z rapidity distribution

|yll| dσexp/dyll (pb) dσNLO/dyll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[0.0, 0.4] 129.27 123.44 1.9 0.7 0.9

[0.4, 0.8] 129.44 122.22 1.9 0.9 0.7

[0.8, 1.2] 125.81 119.98 1.8 0.8 0.7

[1.2, 1.6] 118.23 116.58 1.9 0.7 0.8

[1.6, 2.0] 113.37 112.07 2.3 0.6 0.6

[2.0, 2.4] 105.26 105.32 3.7 0.6 0.9

[2.4, 2.8] 92.18 92.63 6.3 0.9 0.7

[2.8, 3.6] 53.38 54.93 10.1 2.2 0.7

Average 3.7 0.9 0.8

Table 25. Same as table 18 for the ATLAS measurement of the rapidity distributions of Z bosons

from the 2010 dataset.

LHCb Z → e+e− forward rapidity distribution

yll dσexp/dyll (pb) dσNLO/dyll (pb) ∆exp (%) ∆NNLO (%) ∆pureEW (%)

[2.00, 2.25] 13.6 13.2 6.6 1.2 1.2

[2.25, 2.50] 39.4 36.7 3.6 0.8 0.4

[2.50, 2.75] 56.7 51.8 3.4 0.2 0.6

[2.75, 3.00] 63.2 61.0 3.3 0.5 0.7

[3.00, 3.25] 59.9 56.1 3.8 1.2 0.6

[3.25, 3.50] 43.8 38.0 4.3 1.9 0.3

[3.50, 3.75] 20.5 17.3 6.8 2.6 0.6

[3.75, 4.00] 5.9 4.6 16.9 3.0 0.1

[4.00, 4.25] 0.66 0.5 80.3 4.0 0.1

Average 14.3 1.7 0.5

Table 26. Same as table 18 for the LHCb measurement of the rapidity distributions of Z bosons

in the forward region from the 2011 dataset.

Q2 is given by

f̄(x,Q2) ≡
〈

f(x,Q2)
〉

rep
=

1

Nrep

Nrep
∑

k

f (k)(x,Q2) , (B.1)

where the index (k) runs over all the replicas in the sample. The variance of the sample is

estimated as

σ2
[

f(x,Q2)
]

=
1

Nrep − 1

Nrep
∑

k

(

f (k)(x,Q2)−
〈

f(x,Q2)
〉

rep

)2
. (B.2)

The variance of the mean is, in turn, defined in terms of the variance of the sample by

σ2
[

〈

f(x,Q2)
〉

rep

]

=
1

Nrep
σ2
[

f(x,Q2)
]

. (B.3)
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The variance of the variance itself can be computed using

σ2
[

σ2
[

f(x,Q2)
]]

=
1

Nrep

[

m4

[

f(x,Q2)
]

− Nrep − 3

Nrep − 1

(

σ2
[

f(x,Q2)
])2
]

, (B.4)

wherem4

[

f(x,Q2)
]

denotes the fourth moment of the probability distribution for f(x,Q2),

namely

m4

[

f(x,Q2)
]

=
1

Nrep





Nrep
∑

k=1

(

f (k)(x,Q2)−
〈

f(x,Q2)
〉

rep

)4



 . (B.5)

Given the definitions above, the distance between two sets of PDFs, each characterized

by a given distribution of the Monte Carlo replicas, denoted by
{

f (k)
}

and
{

g(k)
}

, can be

defined as the square root of the square difference of the PDF central values in units of the

uncertainty of the mean, that is

df̄ ,ḡ(x,Q
2) =

√

√

√

√

(

f̄ − ḡ
)2

σ2
[

f̄
]

+ σ2 [ḡ]
. (B.6)

In eq. (B.6), the denominator uses the variance of the mean of the distribution, defined as

in eq. (B.3). An analogous distance can be defined for the variances of the two samples:

dσ[f ],σ[g](x,Q
2) =

√

(σ2 [f ]− σ2 [g])2

σ2 [σ2 [f ]] + σ2 [σ2 [g]]
, (B.7)

where now in the denominator we have the variance of the variance, eq. (B.4).

The distances for the central values and for the variances defined in eqs. (B.6) and (B.7)

test whether the underlying distributions from which the two Monte Carlo samples
{

f (k)
}

and
{

g(k)
}

are drawn have respectively the same mean and the same standard deviation. In

particular, it is possible to show that one expects these distances to fluctuate around d ∼ 1

if the two samples do indeed come from the same distribution. On the other hand, values

of the distances around d ∼
√

Nrep indicates that the central values (the variances) of the

two PDF sets differ by one standard deviation in units of the variance of the distribution

eq. (B.2) (in units of the variance of the variance eq. (B.4)).

In this paper, when producing the distances between two NNPDF sets, eqs. (B.6)

and (B.7), we always compare sets of Nrep = 100 replicas, and therefore a value of the

distance around d ∼ 10 indicates that two sets differ by one standard deviation (this applies

both to central values and to variances). The PDFs are sampled at the scale Q2
0 = 2GeV2

for 50 points in x equally spaced in logarithmic scale in the interval [10−5, 0.1] and then

50 more points linearly spaced over the interval [0.1, 0.95].

The main difference between the new definition of the distance estimators and the

previous one introduced in ref. [10], and used in previous NNPDF publications, is that we

have now removed the additional bootstrap sampling of the distances distributions. For this

reason, with the new definition, distances can become arbitrarily small, for instance when

the central values of the two distributions coincide. Other than this, the interpretation of

the distance plots is very similar both with the old and new definitions.
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The new definition for the distance introduced above is used in this paper whenever we

are comparing two NNPDF fits. In the context of closure tests described in section 4, it is

useful to use a slightly different definition. The motivation is that we want to compare the

closure test fitted PDFs with the input PDF, and therefore we need to remove the scaling

factor 1/
√

Nrep, which is only required when comparing two Monte Carlo sets. In addition,

in the denominator we should include only the variance of the fitted PDFs, since for the

input PDF only the central value is used in the definition of the pseudo data. Therefore,

when comparing closure test fitted PDFs with the corresponding input PDF in section 4,

we define the distance of the fitted PDF set, ffit, with respect to the initial PDF set used

for generating the pseudodata, fin, as follows

dct [fi,fit, fi,in] (x,Q) ≡

√

(

f̄i,fit(x,Q)− fi,in(x,Q)
)2

σ2 [fi,fit] (x,Q)
. (B.8)

With this definition, the distance eq. (B.8) between the closure test PDF and the underlying

theory is measured in units of the standard deviation of the fitted PDFs. In this work, the

distances between closure test fits will be always calculated at the initial parametrisation

scale of Q2 = 1GeV2.
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