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Abstract—This paper describes a novel Deep Learning 

architecture to assist with steering a powered wheelchair. A rule-

based approach is utilized to train and test a Long Short Term 

Memory (LSTM) Neural Network. It is the first time a LSTM has 

been used for steering a powered wheelchair. A disabled driver 

uses a joystick to provide desired speed and direction, and the 

Neural Network provides a safe direction for the wheelchair. 

Results from the Neural Network are mixed with desired speed 

and direction to avoid obstacles. Inputs originate from a joystick 

and from three ultrasonic transducers attached to the chair.  The 

resultant course is a blend of desired directions and directions that 

steer the chair to avoid collision. A rule-based approach is used to 

create a training and test set for the Neural Network system and 

applies deep learning to predict a safe route for a wheelchair. The 

user can over-ride the new system if necessary. 

 
Index Terms—Deep Learning, Neural Network, Rule-based, 

Disabled, Steer, Wheelchair. 

 

I. INTRODUCTION 

HIS paper presents a novel architecture to provide a safe 

steering direction for a powered wheelchair. The 

architecture applies a rule-based approach to generate an input 

set to train and test a Long Short Term Memory (LSTM) Neural 

Network. The research is part of broader research conducted by 

the authors based on [1]. The novel architecture is compared to 

the system presented in [2] and is applied to three scenarios. 

Two of these scenarios were considered in [2]. Results are 

compared and advantages of the new architecture are presented. 

The World Health Organization’s (WHO) report on 

disability indicated that around one sixth of the world 

population were suffering of some sort of disability and 2 to 4% 

of them were subject to significant difficulties in mobility. 

These numbers were greater than previous WHO estimates due 

to population ageing, fast spread of chronic disorders, and 

advances in modern medical treatment [3]. In many cases, 

people with disabilities struggled with daily manoeuvring tasks 

and often relied on helpers and carers for other daily activities 

[4]. 

During the past three decades, many researchers created 

systems that aimed to help disabled powered wheelchair users 

to navigate their wheelchairs safely. Song and Chen [5] applied 

asymmetric mapping and ultrasonic sensors for wheelchair 
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navigation. Lee [6] used infrared light reflection for wheelchair 

localization. Sanders et al. [7] created a system that improved 

driving with sensors that controlled veer.  Langner [8] created 

a scanning collision avoidance device (SCAD) based on a 

single rotating ultrasonic transducer. Sanders and Bausch [9] 

created an expert system that improved steering of a powered 

wheelchair by interpreting users’ hand tremor. Most of the 

research aimed at helping physically disabled powered 

wheelchair drivers to maneuver their wheelchairs safely and 

enhance their quality of life. The research often assumed 

powered wheelchair users were cognitively aware of their 

surroundings but lacked the physical ability to drive their 

wheelchairs. Over the years, the type of disability of powered 

wheelchair users shifted from mostly physically disabled to 

mostly mentally disabled or mentally and physically disabled. 

The older systems successfully helped physically disabled users 

to drive their wheelchairs but did not provide much help for 

mentally or physically and mentally disabled users.  

To help mentally or physically and mentally disabled users, 

researchers have used more advanced methods and approaches 

for example Artificial Intelligence (AI) and Multiple Criteria 

Decision Making (MCDM). Sanders [10] created a system 

based on self-reliance factors to share control between human 

powered wheelchair users and ultrasonic sensor system. 

Sanders et al. [11] created a rule-based system to choose a 

steering direction of a powered wheelchair. Haddad et al. [12] 

created a system based on ultrasonic sensor readings and 

combined MCDM with vector algebra to provide a safe steering 

direction. Haddad and Sanders [2] used PROMETHEE II, a 

MCDM method to recommend a best-compromise path. 

Haddad et al. [13] created an intelligent Human Machine 

interface (HMI) and control for steering a powered wheelchair 

using a Raspberry Pi microcomputer. 

More advanced and sophisticated AI algorithms could be 

used and applied to improve the quality of life of mentally or 

physically and mentally disabled powered wheelchair users by 

helping them drive their powered wheelchairs safely. That 

could increase their self-reliance and self-confidence, and 

reduce the need for help from carers and helpers. A system is 

presented here that uses a rule-based approach to generate an 

input set to train and test a LSTM Neural Network is described. 

The LSTM Neural Networks used deep learning to classify 
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input data (data from three ultrasonic sensors) to six steering 

directions. Sensor readings were sent through different layers 

of the network, with each layer defining features of the sensor 

readings. After data were processed through the layers, the 

system identified the appropriate identifiers for classifying the 

sensor reading to six classes that represented different steering 

directions for a powered wheelchair: Right spin, Right turn, 

Left spin, Left turn, Forward, and Stop. 

The rule-based approach is briefly explained in Section II. 

Section III briefly describes LSTM Neural Networks, presents 

the LSTM Network architecture used in this research, the 

training and testing of the LSTM Network used, and then 

considers three real world scenarios to test the Network. Section 

IV presents the approach used to mix the Neural Network 

outputs with the joystick inputs. Results are described within 

Section V and some Conclusions and Future Work are 

described within Section VI. 

II. THE RULE-BASED APPROACH 

Researchers have considered different types of sensors to 

assist wheelchairs with driving safely. Sanders et al. [14] 

presented sensors to help wheelchair drivers drive their 

wheelchairs safely, including infrared [15]; ultrasonic [16], and 

structured light [17]. Global systems demonstrated poor 

performance inside buildings [18]. Other local architectures 

have been successfully applied, including: odometers, tilt 

sensors, gyroscopes, or ultrasonics [19], [20] & [21]. This paper 

used ultrasonic sensors similar to those considered in [2]. Three 

sensors were used and were mounted on to the front of the 

wheelchair. The first sensor measured distance from the nearest 

obstacle on the right of the chair, the second sensor measured 

distance from the nearest obstacle to the front of the wheelchair, 

and the third sensor measured the distance from the nearest 

obstacle on the left. 

The ultrasonic sensors were studied and tested using different 

objects to create polar plots. Due to their physical structure, 

these sensors did not suffer from cross talk and side lobe 

interference.  

An example of the polar plot of the ultrasonic sensors used is 

shown in Fig. 1. Distance was estimated by measuring time for 

a pulse to travel towards an obstacle and back again [22].  

 

 
Fig. 1.  Polar plot for HC SR04 ultrasonic sensor detecting an object. 
 

A matrix was over-laid on the area in front of each sensor. 

Each matrix consisted of four elements: Adjacent, Nearby, 

Distant, and Faraway as shown in Figs 2, 3 & 4. Sensor readings 

identified the distance between the wheelchair and the nearest 

obstacle. The readings were: Distance from an obstacle to the 

right of the wheelchair (Dr), Distance to the center (Dc), and 

Distance to the left (Dl). When no object was in the sensor range 

the distance was set to Faraway. 

 

 
Fig. 2.  Four-element matrix layout of the area in front of an ultrasonic sensor. 

 

 
Fig. 3.  Close up view of the four-element matrix layout of the area in front of 
an ultrasonic sensor shown in Fig. 2. 

 

 
Fig. 4.  Configuration of the array of three ultrasonic sensors used in this paper. 

 

Based on the configuration shown in Fig. 4 a rule-based 

approach was used to deduce an overall direction for the 

powered wheelchair depending on the sensor readings as shown 

in Table I. 

 
TABLE I 

DEDUCED RULES FOR AN OVERALL DIRECTION FOR A POWERED WHEELCHAIR  

Dr Dc Dl Overall Direction 

Dr>50 Dc>50 Dl>50 Forward 

Dr>50 Dc>50 25<Dl<50 Forward 

Dr>50 Dc>50 10<Dl<25 Right turn 
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Dr>50 Dc>50 Dl<10 Right spin 

Dr>50 25<Dc<50 Dl>50 Right turn 

Dr>50 25<Dc<50 25<Dl<50 Right turn 

Dr>50 25<Dc<50 10<Dl<25 Right spin 

Dr>50 25<Dc<50 Dl<10 Right spin 

Dr>50 10<Dc<25 Dl>50 Right turn 
Dr>50 10<Dc<25 25<Dl<50 Right turn 

Dr>50 10<Dc<25 10<Dl<25 Right spin 

Dr>50 10<Dc<25 Dl<10 Right spin 
Dr>50 Dc<10 Dl>50 Right spin 

Dr>50 Dc<10 25<Dl<50 Right spin 

Dr>50 Dc<10 10<Dl<25 Stop  
Dr>50 Dc<10 Dl<10 Stop 

25<Dr<50 Dc>50 Dl>50 Forward 

25<Dr<50 Dc>50 25<Dl<50 Forward 
25<Dr<50 Dc>50 10<Dl<25 Right turn 

25<Dr<50 Dc>50 Dl<10 Right turn 

25<Dr<50 25<Dc<50 Dl>50 Left turn 
25<Dr<50 25<Dc<50 25<Dl<50 Forward 

25<Dr<50 25<Dc<50 10<Dl<25 Right turn 

25<Dr<50 25<Dc<50 Dl<10 Right spin 
25<Dr<50 10<Dc<25 Dl>50 Left turn 

25<Dr<50 10<Dc<25 25<Dl<50 Left turn 

25<Dr<50 10<Dc<25 10<Dl<25 Right turn 
25<Dr<50 10<Dc<25 Dl<10 Right spin 

25<Dr<50 Dc<10 Dl>50 Left spin 

25<Dr<50 Dc<10 25<Dl<50 Left spin 
25<Dr<50 Dc<10 10<Dl<25 Stop 

25<Dr<50 Dc<10 Dl<10 Stop 

10<Dr<25 Dc>50 Dl>50 Right turn 
10<Dr<25 Dc>50 25<Dl<50 Right turn 

10<Dr<25 Dc>50 10<Dl<25 Forward 

10<Dr<25 Dc>50 Dl<10 Forward 
10<Dr<25 25<Dc<50 Dl>50 Left spin 

10<Dr<25 25<Dc<50 25<Dl<50 Left turn 

10<Dr<25 25<Dc<50 10<Dl<25 Forward 
10<Dr<25 25<Dc<50 Dl<10 Right turn 

10<Dr<25 10<Dc<25 Dl>50 Left spin 

10<Dr<25 10<Dc<25 25<Dl<50 Left turn 
10<Dr<25 10<Dc<25 10<Dl<25 Stop 

10<Dr<25 10<Dc<25 Dl<10 Stop 

10<Dr<25 Dc<10 Dl>50 Left spin 
10<Dr<25 Dc<10 25<Dl<50 Left spin 

10<Dr<25 Dc<10 10<Dl<25 Stop 

10<Dr<25 Dc<10 Dl<10 Stop 
Dr<10 Dc>50 Dl>50 Left spin 

Dr<10 Dc>50 25<Dl<50 Left turn 

Dr<10 Dc>50 10<Dl<25 Forward 
Dr<10 Dc>50 Dl<10 Forward 

Dr<10 25<Dc<50 Dl>50 Left spin 

Dr<10 25<Dc<50 25<Dl<50 Left spin 
Dr<10 25<Dc<50 10<Dl<25 Right turn 

Dr<10 25<Dc<50 Dl<10 Forward 
Dr<10 10<Dc<25 Dl>50 Left spin 

Dr<10 10<Dc<25 25<Dl<50 Left spin 

Dr<10 10<Dc<25 10<Dl<25 Stop 
Dr<10 10<Dc<25 Dl<10 Forward 

Dr<10 Dc<10 Dl>50 Stop 

Dr<10 Dc<10 25<Dl<50 Stop 
Dr<10 Dc<10 10<Dl<25 Stop 

Dr<10 Dc<10 Dl<10 Stop 

 

M.S. Excel was used to produce five thousand randomly 

generated values for Dr, Dc, and Dl. Table I was used to give 

each set of Dr, Dc, and Dl an Overall Direction to create a 

(5000x4) matrix. 

III. LONG SHORT TERM MEMORY (LSTM) NEURAL 

NETWORK 

LSTM Neural Networks are often considered as a branch of 

Recurrent Neural Network (RNN). They were introduced by 

Hochreiter and Schmidhuber [23], since then, researchers have 

worked on simplifying their architecture, and improving their 

efficiency and accuracy [24] & [25]. LSTM have been 

successfully applied to handwriting recognition problems, text 

completion, and many other problems [26]. 

A. LSTM Architecture Used 

The LSTM architecture used in this paper is shown in Fig. 5. 

It considered five layers: 

1) Sequence Input Layer with three inputs. 

2) Bilstm Layer(100,'OutputMode','sequence') 

3) Fully Connected Layer with six nodes. 

4) Softmax Layer. 

5) Classification Layer. 

 

 
Fig. 5.  LSTM Neural Network used in this paper; 3 inputs, 6 output classes. 

 

Fig. 6 shows a screen shot of the MATLAB code used to 

create the layers of the LSTM Network used in this research and 

to set the training options of the Network. 

 

 
Fig. 6.  MATLAB code used to create layers of the LSTM Neural Network and 
to set the training options of the Network used in this paper. 

 

Using the MATLAB code shown in Fig. 6 a LSTM Neural 

Network was created with 3 inputs, 100 hidden units in the 

bilstm Layer, and 6 output classes. An adaptive momentum 

estimation algorithm was used in this architecture with an initial 

learning rate of 0.01 and maximum number of epochs of 100. 

B. Training and Testing of the Network 

Training and testing of the LSTM Network was conducted 
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on a MATLAB platform. The (5000x4) matrix was imported to 

MATLAB and used as training and testing sets. Fig. 7 shows a 

screen shot of the MATLAB code used to split the (5000x4) 

matrix in a ratio 7:3 for training and testing sets respectively. 

 
Fig. 7.  Screen shot of the MATLAB code used to create separate training and 

testing sets from (5000x4) matrix. 

 

Fig. 8 shows Network training progress with an initial 

learning rate 0.01 and 100 epochs, as Network training 

progressed. The Network accuracy increased to around 97%. 

Fig. 9 shows the training result. Fig. 10 shows that Network 

accuracy reached 96.87% when tested with the testing set 

(shown in a red oval in Fig. 10). Fig. 11 shows the confusion 

chart produced from testing the Network with the testing set.  

 

 
Fig. 8.  Screen shot of Network training progress Network accuracy increasing 

and Network loss decreasing. 

 

 
Fig. 9.  Screen shot of Network training outcome. 
 

 
Fig. 10.  Screen shot of Network accuracy when tested with the testing set. 

 

 
Fig. 11.  Screen shot of the confusion chart used to assess Network accuracy. 

 

Fig. 9 shows that the Network required 2 minutes and 11 

seconds to complete 100 epochs with an initial learning rate of 

0.01. The Network produced high accuracy as shown in Fig. 10. 

Different values for initial learning rate and maximum number 

of epochs were considered. A best compromise between 

learning time needed and overall accuracy of the Network was 

conducted. The initial learning rate and maximum number of 

epochs was set to 0.01 and 100 respectively. 

C. Real World Testing of the System 

The trained and tested Network was used to provide an 

overall outcome based on ultrasonic sensor readings. Three 

scenarios were considered as a powered wheelchair moved 

through a setting with some boxes as obstacles as shown in    

Fig. 12. Scenarios 1 & 2 were similar to those considered in [2]. 

1) Scenario 1: No object detected (Location A in Fig. 12). 

2) Scenario 2: Object detected to the right (Location B in     

Fig 12). 

3) Scenario 3: Objects detected to the left and also ahead 

(Location C in Fig 12). 

 

Six options for the overall direction of a powered wheelchair 

were considered: Left turn, Left spin, Forward, Right turn, 

Right spin, and Stop. 

 

1) Scenario 1: (Location A in Fig. 12) 

As the chair started moving, nothing was within range of the 

sensors.  All the distances were set to Faraway. 
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Fig. 12.  Powered wheelchair driving through a setting containing obstacles. 

 

A screen shot of the MATLAB code used to apply the 

Network for scenario 1 is shown in Fig. 13. The Network 

output was “Forward” and highlighted by a red oval in Fig. 13. 

 

 
Fig. 13.  Screen shot of MATLAB code for scenario 1. The Network output 

was Forward. 
 

2) Scenario 2: (Location B in Fig. 12) 

An object was detected to the right as the wheelchair moved 

forward. A screen shot of the MATLAB code used to apply 

the Network for scenario 2 is shown in Fig. 14. The Network 

output was “Left turn”, highlighted by a red oval in   Fig. 14. 

 

 
Fig. 14.  Screen shot of MATLAB code for scenario 2. The Network output 

was Left turn. 

 

3) Scenario 3: (Location C in Fig. 12) 

The wheelchair moved away from the obstacle and the chair 

moved in a new direction. Two more obstacles were detected 

at a far distance to the left and in front of the wheelchair as 

shown in position C in Fig. 12. A screen shot of the MATLAB 

code used to apply the Network for scenario 3 is shown in Fig. 

15. The Network output was “Right turn” and is highlighted 

by a red oval in Fig. 15. 

 

 
Fig. 15.  Screen shot of MATLAB code for scenario 3. The Network output 

was Right turn. 

IV. MIXING NETWORK OUTPUT WITH JOYSTICK INPUT  

This research combined human driving skill and autonomy 

with intervention from the ultrasonic sensors if they were 

required. A joystick provided an interface between the powered 

wheelchair users and their wheelchairs for control of speed and 

direction. Disabled drivers could use their skill to safely drive, 

but the sensors were often more accurate, and they could 

balance any lack of ability or awareness. When in varying or 

complicated environments then the ultrasonic sensors often 

provided better choices about courses to follow.  In all three 

scenarios considered in this paper, the user joystick was held in 

a position aiming to reach the destination point shown in Fig. 

12 by taking the shortest path without considering obstacles in 

the surrounding environment.  

V. RESULTS  

The LSTM Neural Network presented in this paper showed 

successful outcomes when tested. Sensors measured the 

distance from the nearest obstacle to the right, center, and left 

of a wheelchair. Sensor readings were used as inputs for the 

LSTM Network.  Fig. 16 shows the resultant direction when 

mixing the LSTM Network output for scenario 1 with nothing 

being detected and the joystick pushed forward. The solid red 

arrow is the output from the LSTM Network, the dotted orange 

arrow is the joystick input, and the dashed black arrow is the 

resultant bearing and speed. 

 

 
Fig. 16.  Resultant direction of the Wheelchair for scenario 1 after mixing the 

LSTM Network output with joystick input. 
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Fig. 17 shows the resultant direction when mixing the LSTM 

Network output for scenario 2 with one obstacle detected on the 

right and the input form the joystick when pushed forward. The 

solid red arrow is the output from the LSTM Network, the 

dotted orange arrow is the input from the joystick, and the 

dashed black arrow is the resultant speed and bearing. 

 

 

 
Fig. 17.  Resultant direction of the Wheelchair for scenario 2 after mixing the 

LSTM Network output with joystick input. 

 

Fig. 18 shows the resultant direction when mixing the LSTM 

Network output for scenario 3. The obstacle detected in 

scenario 2 was no longer detected. Instead, as the wheelchair 

moved in the new direction, two objects were sensed on the left 

and in front of the wheelchair. The joystick was pushed right 

toward the destination point. The solid red arrow is the output 

from the LSTM Network, the dotted orange arrow is the input 

from the joystick, and the dashed black arrow is the resultant 

direction and speed. 

 
 

 
Fig. 18.  Resultant direction of the Wheelchair for scenario 3 after mixing the 

LSTM Network output with joystick input. 

VI. DISCUSSION 

Work presented in this paper could bring benefits to society 

by improving mobility. The new approach could be used to 

enhance the quality of life and improve mobility for children 

and young people with multiple-sclerosis, arthritis, stroke, 

paraplegia, orthopedic-impairment, cerebral-palsy and diabetes 

and will be useful for people with missing or damaged-limbs. 

The work will benefit disabled and older users and children in 

schools and institutions, making a significant positive 

difference, especially for people with limited spatial awareness 

or cognitive ability. The research could introduce some 

autonomy and reduce the need for carers. 

The new architecture successfully mixed input from a 

joystick with sensors to maintain the autonomy of the driver.  

Wheelchair drivers successfully controlled the direction of their 

chairs while the sensor systems handled obstacle avoidance. 

The sensors provided a safe path as the wheelchair moved. 

Results from scenarios 1 and 2 demonstrated that the system 

provided a safe direction and steered the chair away from 

obstacles. Results from scenario 3 demonstrated the fast sensor 

update time and quick system response to changes in the 

surrounding environment of the wheelchair. 

If obstacles were further apart or there were fewer of them, 

then drivers did not require help. If a driver was provided with 

higher authority in those cases, then satisfaction and 

performance was improved. If there were many obstacles or 

nothing close to the chair, then the input from the joystick was 

successfully modified to avoid collision. 

The environment surrounding a powered wheelchair can 

include many obstacles and obstacles can suddenly appear. The 

new approach used a rule based approach to provide inputs to 

the Neural Network. The rule based approach provided robust 

inputs to the ANN and the ANN produced dynamic and reliable 

outcomes and would provide quick responses when obstacles 

suddenly appeared. 

Since the new approach was created using ANNs, Transfer 

Learning (TL) could be applied to transform the new approach 

[27]. The new approach could be generalized to fit any type of 

powered wheelchair. 

VII. CONCLUSIONS AND FUTURE WORK 

Systems presented here provided a faster and more dynamic 

response to obstacles than the system presented in [2] and 

successfully steered chairs away from obstacles. 

The new system could learn to steer a powered wheelchair in 

new environments as opposed to the system presented in [2]. 

The new system introduced some autonomy and potentially 

reduced the need for helpers by using a simple and 

computationally inexpensive LSTM Neural Network. 

The output from the LSTM Network could be over-ridden if 

a joystick was held still in a position. Joystick input was 

integrated so that the system would eventually be over-ridden 

by the disabled user.  If nothing was detected then a chair tended 

to drive as directed by a user through the joystick. 

Results from testing the LSTM Network confirmed that it 

performed satisfactorily. The new approach will be extensively 

tested to ensure safety concerns have been answered and 

drivers’ safety standards have been met before clinically trialed 
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at Chailey Heritage foundation. 

Many researchers successfully applied AI techniques for 

powered mobility such as probabilistic AI techniques under 

uncertainty [28], Learning from Demonstration [29], 

continuous path refinement using covariant gradient techniques 

[30] and probabilistic graphical model for natural language 

commands [31]. The work presented in this papers applied 

ANNs to powered wheelchair navigation and improved user 

self-confidence and reliance by increasing autonomy and 

providing a safe steering direction using dynamic and simple 

yet effective AI techniques. 

A reason for the work was to reduce cost. The new approach 

provided safe and reliable results and increased user autonomy 

so that the need for and cost of carers will be reduced. Authors 

are considering uploading the program to an open access 

platform were users can download and use the new approach 

free of charge.” 

The research is now exploring the adjustment of pre-planned 

routes [32], force sensing [33], analyzing performance both 

with ultrasonic sensors connected, and when they are 

disconnected [34] and analyzing the effect of time delays on 

driving performance [35]. 

The authors will consider different input devices for example 

lever switches and head or chin switches. The authors will 

investigate applying Neural Networks for this application using 

different programming languages such as Python and R. 

Future work will consider different types of AI applied to 

wheelchair problems. More advanced and computationally 

cheap AI techniques will be investigated. More sophisticated 

AI Algorithms will be considered and other types of Neural 

Networks could be used. The authors will consider overall 

directions.  A deeper LSTM Network will be investigated with 

more layers and other types of sensors will be investigated for 

example, video cameras laser and infrared sensors. 
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