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The optimal utilisation of hyper-spectral satellite observations in numerical weather
prediction is often inhibited by incorrectly assuming independent interchannel observation
errors. However, in order to represent these observation-error covariance structures, an
accurate knowledge of the true variances and correlations is needed. This structure is likely
to vary with observation type and assimilation system. The work in this article presents the
initial results for the estimation of IASI interchannel observation-error correlations when
the data are processed in the Met Office one-dimensional (1D-Var) and four-dimensional
(4D-Var) variational assimilation systems. The method used to calculate the observation
errors is a post-analysis diagnostic which utilises the background and analysis departures
from the two systems.

The results show significant differences in the source and structure of the observation
errors when processed in the two different assimilation systems, but also highlight some
common features. When the observations are processed in 1D-Var, the diagnosed error
variances are approximately half the size of the error variances used in the current
operational system and are very close in size to the instrument noise, suggesting that
this is the main source of error. The errors contain no consistent correlations, with the
exception of a handful of spectrally close channels. When the observations are processed
in 4D-Var, we again find that the observation errors are being overestimated operationally,
but the overestimation is significantly larger for many channels. In contrast to 1D-Var,
the diagnosed error variances are often larger than the instrument noise in 4D-Var. It is
postulated that horizontal errors of representation, not seen in 1D-Var, are a significant
contributor to the overall error here. Finally, observation errors diagnosed from 4D-Var
are found to contain strong, consistent correlation structures for channels sensitive to water
vapour and surface properties.
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1. Introduction

In numerical weather prediction (NWP), the governing equations
used to describe the behaviour of the atmosphere are sampled
by millions of observations in a 6 h period. Satellite observations
are the dominant contributor to the data assimilation algorithms
used in global NWP in both quantity and impact on forecast
accuracy. Joo et al. (2012) shows that a significant contribution
to this dominance is given by hyperspectral sounders, such as
the Infrared Atmospheric Sounding Interferometer (IASI) and
the Atmospheric Infrared Sounder (AIRS), which sample the
infrared spectrum using thousands of channels at a close spectral
proximity.

The contribution an observation makes to the data assimilation
system is governed by the error associated with its measurement
and representation; observations with large errors will receive low
weighting in the assimilation while those with small errors have a
larger impact. Satellite observation errors, including those from
hyperspectral sounders, are usually assumed to be uncorrelated
in both the horizontal and the vertical. For IASI observations, the
assumption of horizontal uncorrelation is supported by intelligent
thinning of the data to avoid assimilating observations that are
too close spatially.

Ensuring spectrally independent observation errors is more
difficult. A measurement in any IASI channel will be sensitive to
the temperature and humidity profile over several atmospheric
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levels; the distribution being represented by the broad weighting
functions of the instrument. Therefore the errors in channels
spectrally close to each other are likely to be correlated if
some misrepresentation of the observation is common over
several levels; for example, the sensitivity to a certain trace gas.
Additionally, correlated errors of representation will be present
between channels that observe spatial scales or features within
the instrument’s 12 km field of view which the model does not
represent well. Also, any errors in the forward model, such as
those of spectroscopy, may be correlated between channels.

The current IASI channel selection procedure attempts to
lessen the impact of spectrally correlated errors by avoiding
the assimilation of spectrally close channels. But it is generally
acknowledged that vertical correlation structure is still present
among those channels chosen for assimilation. However, because
of a lack of knowledge of the true error correlation structure
and the perceived expense of including this structure in the
assimilation, the observation errors are treated as uncorrelated
between channels. To avoid misweighting the IASI observations
in the data assimilation, the error variances are inflated to account
for the lack of correlation. The level of inflation for an observation
error is determined by the channel in which the measurement
was taken. This technique is used at the Met Office, Météo-France
and ECMWF to treat IASI observation-error correlations.

Mistreating observation errors as uncorrelated has been shown
to be detrimental to the analysis accuracy and information content
when using hyperspectral satellite observations (Liu and Rabier,
2003; Rabier et al., 2003; Collard, 2004; Stewart et al., 2008). When
used in conjunction with data thinning or channel-constraining
algorithms, it inhibits the impact of using greater volumes of
satellite data, as shown in Collard (2004) and Dando et al.
(2007). With the increasing resolution of NWP models, such
a restriction on data usage is hardly desirable. This motivated
studies into the quantification, and future use in assimilation, of
these observation-error correlations.

A number of methods exist for quantifying error correlations
in data assimilation; however the application of such methods is
not without difficulty. The most commonly used estimation
technique is the observational method, often known as the
Hollingsworth–Lönnberg method. Hollingsworth and Lönnberg
(1986) describe the method which separates background and
observation errors using background innovation statistics,
under the assumption that the background errors carry spatial
correlations while the observation errors do not. With additional
inputs, it can be modified to account for correlated errors in the
observations. Garand et al. (2007) applied the method to AIRS
data, showing significant interchannel error correlations. More
recently, Bormann and Bauer (2010) and Bormann et al. (2010)
applied the method to ATOVS (Advanced TIROS Operational
Vertical Sounder), AIRS and IASI data used in the ECMWF
analysis, again demonstrating considerable correlation structures
in certain wavelength bands.

In other techniques, Dee and Da Silva (1999) used a maximum
likelihood method to estimate information on error statistics.
This work resulted in the derivation of statistical parameters
which varied in time. Desroziers and Ivanov (2001) used statistics
from analysis innovations to tune background- and observation-
error parameters, resulting in a successful description of the
observation-error parameters in a 3D-Var framework.

A method that addressed the separation of correlated
observation and background errors was proposed in Desroziers
et al. (2005). This method uses post-analysis diagnostics
from linear estimation theory to statistically approximate the
covariances of the observation errors. This approach has been
used to estimate error variances and interchannel correlations
in both the Météo-France (Desroziers et al., 2005) and ECMWF
(Bormann et al., 2010) variational assimilation systems. Findings
include an overestimation of observation-error variances and
strong interchannel correlations at certain wavelengths.

Once observation-error correlations have been quantified, it is
useful to be able to identify their sources. As mentioned above,

errors in the meteorology, the forward model, and resolution
representation can be correlated in the vertical. Current methods
make no attempt to calculate the separate contribution from each
source of error.

The work described in this article considers the initial
application of the Desroziers observation-error diagnostic to
estimate the interchannel error correlation structure of IASI
observations used in both the Met Office 1D-Var and 4D-Var
assimilation system. For each assimilation system, we will compare
the diagnosed observation-error variances with those currently
used, and establish the level of correlation between the observation
errors. Attention will be paid to any variation in structure between
different groups of channels. Unlike previous articles on the
subject, we will also compare the error variance and correlation
structures diagnosed for the two systems, and draw conclusions
on the potential origin of the differences. Some results and
discussion of this work have been previously presented in Stewart
et al. (2009) and Stewart (2010).

The article is structured as follows. Firstly in Section 2, we
describe the Desroziers technique used to estimate observation-
error covariances, and the two assimilation systems which we will
be using to process the observations. Section 2 then describes
the IASI data used and the experimental set-up. The results are
contained in Section 3. Section 3 is separated into the results for
processing the IASI observations in 1D-Var, the results for the
processing in 4D-Var, and a comparison of the two methods.
Finally, a summary and conclusions are given in Section 4.

2. Methodology

Below we describe the methods and data used in this article.

2.1. Desroziers technique of error approximation

The technique proposed by Desroziers et al. (2005) is based on
linear estimation theory, where the optimal analysis describing
the true state of the atmosphere, xa, can be expressed in terms
of the background state, xb, and the background innovation
vector, do

b,

xa = xb + BHT(HBHT + R)−1do
b , (1)

where R and B are the observation- and background-error
covariance matrices, respectively, and H is the Jacobian of the
nonlinear observation operator H. The background innovation
vector is the difference between the observations, y, and their
background counterparts, H(xb),

do
b = y − H(xb). (2)

Similarly, the analysis innovation vector, do
a , is given by

the differences between the observations and their analysis
counterparts, H(xa),

do
a = y − H(xa). (3)

Desroziers et al. (2005) showed that, by taking the statistical
expectation, E, of the product of (2) and (3) under the assumption
of mutually uncorrelated observation and background errors, an
approximation of the observation-error covariance matrix is
obtained:

E
[

do
a (do

b)T
] ≈ R. (4)

This relation is satisfied exactly, provided the covariance matrices
used in (3) are consistent with the true observation- and
background-error covariances. However, given that we know
that we are misrepresenting the observation-error covariance
structure, Desroziers et al. (2005) suggest the use of the estimation
technique as an iterative procedure; using the previously
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diagnosed R matrix at each iteration should result in an R
matrix closer and closer to reality.

Desroziers et al. (2005) used the estimation technique
to successfully diagnose background- and observation-error
variances for radiosonde wind observations in the French
ARPEGE system. For a toy problem, they were also able
to tune iteratively observation-error variances and recover
observation-error covariances, starting from a mis-specification
of both. Bormann and Bauer (2010) and Bormann et al.
(2010) applied the estimation technique on a larger scale,
estimating the error covariance structure for clear-sky sounder
radiances used in the ECMWF assimilation system. Results
for IASI observations showed noticeable correlation structure
in the surface-sensitive and short-wave temperature-sounding
channels, and a significant degree of correlation between
humidity-sounding channels, provided the correlation scales for
the background and observation errors were sufficiently different.

2.2. Assimilation systems

The results presented here will show the interchannel error
correlation structure for clear-sky IASI observations processed in
the Met Office 1D-Var and 4D-Var systems. The two systems are
used together for the processing and assimilation of satellite data
in NWP at the Met Office.

The objective of both 1D-Var and 4D-Var retrieval systems
is to minimise a cost function that penalises distance from the
observations taken at a sequence of times, yi, and a previous
short-range forecast (or background state), xb,

J(x) = 1

2
(x − xb)TB−1(x − xb)

+ 1

2

n∑

i=1

{yi − Hi(x)}TR−1
i {yi − Hi(x)},

(5)

where n is the total number of observations. The observation
operator Hi is comprised of a Radiative Transfer for TIROS
Operational Vertical Sounder (RTTOV) radiative transfer model,
as described in Matricardi et al. (2004) and Saunders et al. (2005);
it accurately predicts brightness temperatures given first-guess
model fields of temperature and humidity, as well as surface
air temperature, skin temperature, surface humidity and surface
emissivity. The product of the cost function minimisation is an
updated estimate of the analysis state of the atmosphere.

The 1D-Var retrieval system, as described in Hilton et al.
(2009), is used on individual observations prior to their
assimilation into the NWP model. It is called by the Observation
Processing System (OPS) which is used to pre-screen and quality
control the observations. Since the 1D-Var retrieval is applied
to single observations, the cost function (5) is minimised with
n = 1.

One quality control procedure in the OPS identifies
observations which are too far from the forecast background
and hence may cause problems in the later assimilation. A large
value of the cost function (5), or a slow convergence rate, is an
indicator of inconsistency between the background forecast and
the observations, and hence observations with these attributes
are eliminated at this stage. The observations that ‘pass’ the OPS
analysis checks are deemed suitable for assimilation in the Met
Office 4D-Var assimilation system (VAR).

The 1D-Var retrieval also provides estimates of the atmospheric
variables not represented in 4D-Var but required for radiative
transfer calculations. The analysed variables in 4D-Var are a
subset of the full state vector variables, and those variables, such
as skin temperature, which are not included are unmodifiable. It
is therefore crucial to the success of the assimilation that these
variables are accurately specified prior to the 4D-Var assimilation.
The full state vector, i.e. all variables, is used in the 1D-Var
retrieval, and the analysis values of those variables not analysed

in 4D-Var are passed there. The first set of statistics in our
experiments will be generated using the background, do

b, and
analysis, do

a , innovations from these 1D-Var analyses.
When the 1D-Var retrieval is performed in the OPS, the

observation operator (or forward model) is fitted separately
to each individual column of observations, so the position of
the observations, and hence any resolution conflict, is already
determined. Therefore, it can be argued that the horizontal errors
of representation, created by a contrast in model and observation
resolution, will appear in the background matrix B. Hence, the
error of representation component of the observation error will
be only in the vertical. Therefore, from the 1D-Var diagnostics,
we expect observation errors to be predominantly attributed to
instrument noise, forward model error and vertical errors of
representation.

The 1D-Var retrieval produces a quality controlled subset of
brightness temperature measurements suitable for assimilation
in the Met Office incremental 4D-Var assimilation system. The
4D-Var retrieval system minimises the cost function (5) over the
full sequence of observations, yi, and assimilates the observations
at their measurement times. In 1D-Var, each observation is
assimilated at its own horizontal location, while in 4D-Var all
the observations are assimilated together at model grid points. A
detailed description of the 4D-Var procedure at the Met Office is
given in Rawlins et al. (2007).

The 4D-Var algorithm generates an optimal analysis increment
which is used to update the solution state at the start of the
assimilation time window. From this starting state, the nonlinear
model is run over the time window to generate the forecast.
The forecast model (or analysis) fields are output at model grid
points at predetermined times, and can be interpolated to the
observation locations. In the 4D-Var assimilation, all observation
information is fitted to the resolution provided by the model,
and so correlated errors of representation (both horizontal and
vertical) are expected to be contained wholly in R. The second set
of statistics in our experiments will be generated using the analysis
innovations from the interpolated analyses, and the background
innovations.

The application of the Desroziers diagnostic to both the 1D-Var
and 4D-Var analyses estimates the error correlations of the
observations used in both systems. However, the diagnosed errors
are unlikely to be independent of the system used. While both
systems implement a variational assimilation scheme, there are
differences in the treatment of the observations. Processes includ-
ing bias correction, cloud detection, thinning and interaction
with background errors, may impact on the diagnostics.

In this work, the bias correction and cloud detection are the
same for both sytems; the cloud detection scheme follows that
described in English et al. (1999) for completely clear scenes.
However, the diagnostics may be affected by the difference in
the assimilation state vector, the sample of observations and the
background errors used. As discussed above, in 1D-Var the full
state vector is analysed, while in 4D-Var a subset of this vector
is analysed and certain variables are set to the retrieved values
from the 1D-Var. In this work, surface skin temperature is the
only variable analysed in 1D-Var but not in 4D-Var. Since this
work was completed, cloud-top pressure, cloud fraction and land
surface emissivity are also pre-analysed in the Met Office 1D-Var
system; however, these will not impact on this work. The analysis
of fewer variables could potentially lead to exaggerated error
correlations in 4D-Var, when small error correlations in 1D-Var
(from cloud contamination, for example) are propagated and
enlarged in 4D-Var when no modification to affected variables is
possible. Also, the 4D-Var diagnostics are calculated from a subset
of the data used to calculate the 1D-Var diagnostics, because
of additional thinning and processing required to generate
the statistics. Therefore, with a smaller sample set, diagnosed
correlation features from the 4D-Var diagnostics could be more
affected by noise.

In 1D-Var the background-error covariances were generated by
interpolating the Met Office 3D-Var background-error covariance
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Table 1. Groups of channels by similar spectral properties.

Description 1D-Var 4D-Var IASI channel no.
channel no. channel no. (wavelength, cm−1)

Temperature sounding 0–123 0–86 16–457 (648.75–759.00)
Window (surface sensitive) 124–152 87–108 515–2245 (773.50–1206.00)
Water vapour sensitive 148, 150, 153–182 109–138 2019, 2119, 2741–5405

(1149.50, 1174.50, 1330.00–1996.00)

matrix to the pressure levels used in the 1D-Var retrieval. The
3D-Var background-error covariance matrix was generated using
a National Meteorological Center (NMC) method to estimate
forecast error using differences from a T+24 h and T+48 h
operational forecast over a number of days. The background-error
covariances in 4D-Var were generated using a NMC method as
described in Rawlins et al. (2007). In Desroziers et al. (2009), it is
shown that the ability of the method used in this article to estimate
observation errors is dependent on the difference between the
assumed observation and background-error correlation length-
scales. If the two correlation length-scales are too close, then the
algorithm’s ability to distinguish between the two sources of error
is inhibited. Work examining the impact of different background-
error specifications, including using background errors which are
tuned to 4D-Var in the 1D-Var system, is ongoing at the Met
Office, but is not included in this article.

Because horizontal errors of representation are contained in
the observation error in 4D-Var processing but not in 1D-Var
processing, we expect that these will be a major contributor to
any differences in the diagnosed errors from the two systems.
However, errors from the different experimental set-ups of the
systems and the different specification of the background-error
covariances may also contribute.

2.3. Data

The Desroziers estimation technique described above is applied
to data from the IASI instrument on board MetOp-A. IASI is
an infrared Fourier transform spectrometer measuring in the
spectral interval of 645–2760 cm−1 at a resolution of 0.5 cm−1.
IASI observations are an important component of the global
observing system, and their positive impact on forecasting at the
Met Office, ECMWF and Météo-France has been demonstrated
in Collard and McNally (2009), Hilton et al. (2009), Rabier et al.
(2009) and Guidard et al. (2011).

IASI has the potential to provide observations in 8461 channels,
but at the time of the research only observations from a subset of
314 derived in Collard (2007) were used. This subset was chosen
under the assumption that error correlations between channels
would not be represented. The channels are predominantly in
the CO2 temperature sounding band, with additional channels
chosen to provide information on water vapour, trace gases,
surface properties, etc. Because of the need to avoid highly
correlated channels, the water vapour (WV) band is largely
undersampled, despite the need for an accurate representation
of humidity structures; the increased use of WV channels was
shown to result in a degradation in analysis accuracy in the
current framework. Of these 314, 183 channels are used in the
1D-Var assimilation and 139 are used in the 4D-Var assimilation;
fewer channels are used in the 4D-Var assimilation since the
inclusion of certain channels was found to have a negative impact
on analysis accuracy under current conditions. For the 4D-Var
statistics, only observations that pass the 1D-Var quality control
are used.

Table 1 groups the channels used in 1D-Var and 4D-Var by
similar spectral properties. The channels are shown on a typical
IASI spectrum in Figure 1 (1D-Var channels) and Figure 2
(4D-Var channels); the different colours represent the different
groups of channels.

Figure 1. Channels used in 1D-Var on a typical IASI spectrum (K): temperature-
sounding channels indexed 0–123 (blue), window channels indexed 124–152
(red), and water vapour channels indexed 148, 150, 153–182 (green).

Figure 2. Channels used in 4D-Var on a typical IASI spectrum (K): temperature-
sounding channels indexed 0–86 (blue), window channels indexed 87–108 (red),
and water vapour channels indexed 109–138 (green).

2.4. Experimental set-up

The Desroziers diagnostic is calculated for two situations: firstly
using the analysis output from the 1D-Var retrieval and secondly
using the analysis output from the 4D-Var assimilation. The
background and analysis increment statistics are generated from
the assimilation of only clear-sky, sea surface IASI observations.
Observations are from both day- and night-time, with the
exception of daytime observations from short-wave channels,
which are eliminated. Using only IASI observations in the
assimilation makes the diagnosed error structures independent of
different observation types. Also, any impact of misweighting the
IASI observations will be independent of other observation types
in both 1D-Var and 4D-Var.

The 1D-Var results presented here are calculated using 27 854
IASI observations taken on 17 July 2008 from the 6 h cycles at
0000, 0600, 1200 and 1800 UTC. These observations are those
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which were suitable for use in the 4D-Var assimilation, prior
to the additional observation thinning necessary in this system.
Here the 4D-Var results are calculated from a thinned subset of
the same IASI observations, but only those taken at 1800 UTC.
A total of 2073 observations taken at this time are used in the
4D-Var system. This smaller sample of observations is the result
of the extra calculations required after the 4D-Var assimilation
had been run. To ensure the same observations are used to
generate the do

b innovations (calculated before the assimilation)
and the do

a innovations (calculated after the assimilation), we
match observations using their latitude and longitide values. This
was not necessary for the 1D-Var diagnostics. To support the
results generated using this smaller sample size, we performed the
same experiments using the same IASI observations from another
day. The results from these experiments will not be shown here,
but were qualitatively similar to our findings, suggesting that
results using this smaller sample size are not overly governed by
noise.

In addition to the use of the Desroziers diagnostic, we also use a
Hollingworth–Lönnberg method to calculate the error variances
from the 4D-Var analyses. A comparison of the two methods
for diagnosing observation-error covariances has previously been
performed for the ECMWF assimilation system in Bormann et al.
(2010), and we use it here to verify the robustness of the Desroziers
method.

The Hollingsworth and Lönnberg (1986) method typically
uses background innovations from a dense observing network
to estimate background and observation errors, under the
assumption that the background errors carry spatial correlations
while the observation errors do not. Observation errors are
estimated by calculating innovation covariances for pairs of
observations at various separations. By stratifying the covariances
as a function of separation distance, the covariance relationship
can be extrapolated to zero separation and split into a
spatially correlated and spatially uncorrelated component. the
latter representing the observation error. Using this method,
innovation covariances calculated for the same channel in a
pair of observations will provide an estimate of the observation-
error variances; innovation covariances calculated for different
channels in a pair of observations will tell us about the
observation-error covariances.

In this work, the innovation covariances are calculated from
pairs of observations whose separation distance is that of the
model resolution. A simple Monte Carlo experiment, drawing
random pairs of points from boxes similar in size to the model
grid, was used to estimate the observation separation represen-
tative of the VAR analysis resolution. When the number of pairs
was plotted against separation, the mean of the distribution was
84.8 km; this distance was used as the observation separation
for the Hollingsworth and Lönnberg calculations. Rather than
extrapolating the covariance relationship to zero separation using
a correlation function, the innovation covariances at 84.8 km
were subtracted from those at close to zero separation. The
difference is taken to represent the observation-error component
of the covariance. A similar method used in Bormann and Bauer
(2010) was shown to give more robust results than the use of a
correlation function.

3. Results

In this section we present the observation-error structures derived
when IASI observations are assimilated in the Met Office 1D-Var
and 4D-Var systems. The observation errors are derived using the
Desroziers technique described in Section 2.1. Comparisons are
made with the operational observation-error variances, and the
observation-error correlation matrices are calculated. Diagnosed
interchannel correlation structures will be compared for the two
retrieval systems, and conclusions will be drawn as to the origin
of the observation-error correlations.

Figure 3. Global location and background innovation value O–B (K) for
observations in IASI channel 5403.

3.1. 1D-Var assimilation

First we consider the application of the Desroziers diagnostic to
the 1D-Var analyses. Figure 3 shows the global location of all the
observations used in the 1D-Var retrieval, and the size of their
background innovations for IASI channel 5403, which is highly
sensitive to WV.

The observation-error variances calculated using the Desroziers
diagnostic, the operational error variances used in 1D-Var at the
Met Office, and an approximation of the IASI instrument noise are
shown in Figure 4. The operational error variances are comprised
of the instrument noise plus a forward model error of 0.2 K2.
Results are shown for the 183 channels used in the 1D-Var
retrieval.

The structure of the operational and diagnostic error variances
in Figure 4 is very similar, but the diagnosed error variance
is noticeably lower than the operational error variance for
all channels. The largest difference is in the indexed channels
148–180 which are highly sensitive to WV. Also the diagnosed
error variances are very close in size to the instrument noise. This
suggests that the forward model component of the error variances
is being overestimated in 1D-Var, especially in channels sensitive
to WV, and that a large part of the true observation error is from
the instrument noise.

Once the observation error covariances are calculated, the error
correlation matrix, C, can be determined easily from the error
covariance matrix using the identity R = D1/2CD1/2 where D
is the diagonal matrix of error variances. The diagnosed error
correlation matrix for the 183 channels used in the 1D-Var
retrieval is shown in Figure 5. Noticeably, the correlation
structure is not uniformly symmetric, which is a necessity for
an error correlation matrix. However, this is expected since we
are violating one of the diagnostic assumptions by using an error
covariance matrix which is not entirely representative of the
true error structure, i.e. R operational �= R truth. Potentially an
iterative procedure for updating the error variances, as proposed
in Desroziers et al. (2005), would make the error covariance
matrix R closer to symmetric as we moved closer to using the true
error correlation matrix; however this will be influenced by the
specification of the background-error covariance matrix.

Looking at the error correlations in Figure 5, we observe that in
the temperature-sounding channels, indexed below 120, there is
little identifiable correlation structure with the exception of two
channels which are strongly correlated with their neighbours (IASI
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Figure 4. Operational error variances (K2) (black line), diagnosed error variances
(red line) and instrument noise (green line).

Figure 5. Diagnosed observation-error correlation matrix for the 183 channels
used in 1D-Var. The wavenumber of the channels is given on the top axis and the
colour bar indicates correlation value.

channels 180 and 243, wavelength 689.75 cm−1 and 705.50 cm−1,
respectively). These two channels were chosen for monitoring
purposes and are spectrally closer to their neighbours than the
other temperature-sounding channels (0.25 cm−1 compared with
0.5 cm−1); hence they are strongly correlated because of the
apodisation applied to IASI data. In the WV-sensitive channels
there is some significant correlation structure. However, there
does not appear to be any consistent correlation between channels
with similar properties. This can be seen more clearly in Figure 6
which provides a close-up of the error correlation structure for the
WV-sensitive channels. There are a few small blocks of correlation
structure corresponding to channels very close together on the
spectrum (Figure 1), but the majority of correlation structure
appears incoherent.

We can conclude that, when the IASI observations are analysed
using 1D-Var statistics, the errors lack any consistent correlation,
with the exception of a small number of neighbouring channels
sensitive to WV. Figure 4 showed the closeness of the derived
error variances to the instrument noise, suggesting that this plus
some forward model error was the main contributor to the overall
observation error in 1D-Var. We can therefore surmise that these
error sources are largely independent of IASI channel choice.

Figure 6. Diagnosed observation-error correlation matrix for WV-sensitive
channels used in 1D-Var (Table 1 gives corresponding IASI channel numbers).
The wavenumber of the channels is given on the top axis and the colour bar
indicates correlation value. Correlations displaying a value of greater than 1 are a
result of rounding error, and represent a value very close to 1.

Figure 7. Operational error variances (K2) (black line), diagnosed error
variances (red line) and the first off-diagonal covariance (blue line),
Hollingsworth–Lönnberg diagnosed error variances (red dashed line) and
instrument noise (green line).

3.2. 4D-Var assimilation

We now calculate the observation-error covariances using the
analysis innovations derived from the 4D-Var assimilation of
IASI data.

Figure 7 shows the observation-error variances used in
4D-Var (black line), the instrument noise (green line), the error
variances (red line) and first off-diagonal (blue line) from the
symmetrised matrix diagnosed using the Desroziers method,
Rsym = 1

2 (R + RT), and the error variances diagnosed using
the modified Hollingsworth–Lönnberg method as described
in Section 2.4 (red dashed line). The values out of range
are for channels where the operation-error variance is 4.0.
For all channels the diagnosed error variances from the
Desroziers method are significantly smaller than those being
used operationally, implying that the error variances are heavily
overestimated. However, the size of the first off-diagonal
covariance value indicates why this overestimation is necessary.
For the majority of the window and WV channels used in the
4D-Var assimilation, the first off-diagonal covariance value is very
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Figure 8. Diagnosed observation-error correlation matrix for the 139 channels
used in 4D-Var. The wavenumber of the channels is given on the top axis and the
colour bar indicates the correlation value.

close in size to the diagonal variance value; therefore ignoring this
value and other off-diagonal elements will result in the incorrect
overweighting of the observations in the analysis. We conclude
that it is necessary to inflate the error variances if the large
off-diagonal covariances are ignored.

Interestingly, the diagnosed error variances are significantly
larger than the instrument noise for surface and WV-sensitive
channels; for some WV-sensitive channels, the instrument noise
is less than a fifth of the total error variance. We can conclude that
instrument noise is not the main source of error in these channels
when IASI observations are assimilated in 4D-Var. For much of
the temperature-sounding channels, the instrument noise appears
to make up the main contribution to the diagnosed error, as with
the 1D-Var results.

Comparing the error variances diagnosed with the Desroziers
technique with those derived using the Hollingsworth–Lönnberg
method, we observe that the latter method produces very
similar error variances for the temperature-sounding channels,
and slightly smaller error variances for the window and WV
channels. Although the Hollingsworth–Lönnberg variances are
smaller in these latter channels, the magnitudes are comparable
with those derived using the Desroziers technique and are
much smaller than those currently being used. The results
vary slightly from those found in Bormann et al. (2010) where
the Hollingsworth–Lönnberg method produced slightly larger
error variances than the Desroziers technique. This is potentially
due to the different observation separations used to calculate
the innovation covariances. However, the similarities in the
magnitude of the diagnosed errors compared to those used
operationally gives us confidence in the robustness of the
Desroziers results.

Figure 8 shows the diagnosed observation-error correlations
for the 139 channels used in the 4D-Var retrieval. There are four
significant block structures of correlation centred around the
diagonal: the first is for the window channels, and the latter three
for channels sensitive to WV in different parts of the spectrum.
These four groups of channels are easily identifiable on the typical
IASI spectrum shown in Figure 2. The block error structure
suggests strongly correlated errors within the window and WV
channels in similar parts of the spectrum.

Figure 9 shows a closer look at the three blocks of WV-sensitive
channels. Many of the most strongly correlated channels have
error correlations larger than 0.75. We also observe that not all
WV channels are highly correlated; it is channels in similar parts
of the spectrum (i.e. long-wave and short-wave) and with similar
sensitivity to WV that are the most strongly correlated. Finally,
bands of strong correlation are also visible surrounding the first,
and largest, block structure in Figure 8. These bands are for

Figure 9. Diagnosed observation-error correlation matrix for WV-sensitive
channels used in 4D-Var (Table 1 gives corresponding IASI channel numbers).
The wavenumber of the channels is given on the top axis and the colour bar
indicates the correlation value.

Figure 10. Diagnosed observation-error correlation matrix for the temperature-
sounding channels used in 4D-Var (Table 1 gives corresponding IASI channel
numbers). The wavenumber of the channels is given on the top axis and the
colour bar indicates the correlation value.

channels in the temperature-sounding part of the spectrum with
a higher than average sensitivity to WV.

Although correlations are largest in those channels highly
sensitive to WV or surface properties, a weaker level of correlation
is also present in the channels used in temperature sounding.
Figure 10 shows two fainter blocks of correlation centred on the
diagonal for the upper temperature-sounding channels (indexed
channels 0–50), in addition to bands of correlations for the
WV-sensitive lower temperature sounding channels (indexed
channels 51–86). Many channels within these two blocks are
spectrally close to each other, and therefore we would expect
some level of error correlation structure. The differences in
measurements between these channels can be used to capture
fine-scale information on humidity and temperature profiles; it
is therefore desirable to include even a weak level of correlation
structure in an attempt to lower the operational error variances
and hence retain more information.

The results from 4D-Var are similar to those found in Bormann
et al. (2010). For channels strongly sensitive to the surface
or WV, observation errors larger than the instrument noise,
but considerably smaller than the operational error variances,
were diagnosed using the Desroziers method amongst others.
Strong interchannel error correlations were also present between
these channels, which were not seen to the same extent in the
temperature-sounding band.
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3.3. Comparison of 1D-Var and 4D-Var results

As described in Section 2.2, IASI observations in the Met Office
system are initially processed in a 1D-Var retrieval before their
use in the forecast model using a 4D-Var assimilation method.
We are interested in how the observation-error covariances vary
with these two procedures.

When IASI observations are processed in 1D-Var, we expect the
observation errors to be largely made up of forward model error
and instrument noise, with some vertical error of representation.
The diagnosed observation-error variances were shown to be very
close to the instrument noise for most of the channels used,
implying that most of the error comes from this source, with
a small contribution from the forward model error and vertical
errors of representation (Figure 4).

In a 4D-Var assimilation, errors of representation in the
horizontal also contribute to the observation-error covariance
matrix. When the IASI observations are processed in the 4D-Var
retrieval, the diagnosed observation-error variances were much
larger than the instrument noise in channels sensitive to surface
properties and WV (Figure 7). This suggests that instrument noise
is no longer the main contributing factor to the errors in these
channels, as in 1D-Var. The remaining error can be attributed to
horizontal errors of representation, which contribute in a 4D-Var
analysis but not in a 1D-Var retrieval, minus those errors caused by
inconsistency between the 1D-Var and 4D-Var experimentation.
These include (i) different observation sample sizes, (ii) different
skin temperature specification, and (iii) different background
errors.

Considering the potential error sources, firstly, the smaller
observation sample size used in calculating the 4D-Var diagnostics
was supported by additional experiments, so we expect this not
to be a significant contributor to any error differences. Secondly,
in 1D-Var, skin temperature is included in the state vector
for retrieval, while in 4D-Var it is not and a fixed value is
used. One of the functions of the 1D-Var retrieval is to estimate
accurately variables not modifiable in 4D-Var; this avoids a poorly
specified skin temperature value being used in 4D-Var and causing
the misinterpretation of atmospheric information for surface-
sensitive channels. Hence, the retrieval of skin temperature in
1D-Var has the potential to affect the error diagnostics for
surface-sensitive channels in 4D-Var.

Finally, provided an accurate value of skin temperature is given,
the different background errors used in 1D-Var and 4D-Var will
likely contribute to any error differences not attributable to
horizontal errors of representation. The 4D-Var error diagnostics
may benefit from the different correlation structure in the
assumed observation and background errors for this assimilation
method; the former are assumed to be spatially uncorrelated
and the latter are assumed to include spatial correlations. Indeed
a difference in correlation length-scale between the two types
of errors was shown to improve error variance diagnosis in
Desroziers et al. (2009). However, in the 1D-Var retrieval, spatial
error correlations are not present by design, so there is no
difference in observation- and background-error correlation
length-scales to be utilised. We do not attempt here to quantify the
impact of skin temperature and background-error specification,
but we recognise their potential contribution to the differences in
the observation errors diagnosed in the two systems.

Comparing the derived error variances with those used
operationally, we observe that the overestimation of the
operational error variances in 4D-Var was much larger than
that seen in the 1D-Var results. In 1D-Var the overestimation was
approximately double the diagnosed error variances (Figure 4),
while in 4D-Var the overestimation is up to 8 times the diagnosed
error variance for the WV-sensitive channels (Figure 7).

The observation errors calculated from the 1D-Var statistics
were shown to contain little consistent strong correlation
(Figure 5), with the exception of a handful of spectrally close
WV-sensitive channels. However, when statistics from 4D-Var

were used in error diagnostics, strong correlations were diagnosed
for channels sensitive to WV and surface properties (Figure 8).
Many of the strongly correlated channels had correlations larger
than 0.75; the error correlations in 1D-Var were rarely at this
level.

However, not all the WV-sensitive channels used in the 4D-Var
assimilation had highly correlated errors; it was channels with
similar spectral properties and sensitivity to WV that were the
most strongly correlated. This again is different to the 1D-Var
results, where there was little consistency of correlation within the
long-wave and short-wave WV channels. For the temperature-
sounding channels, as with the WV-sensitive channels, the
consistency and level of error correlation structure is far greater in
the 4D-Var results than in those derived from 1D-Var statistics.

4. Summary and conclusions

In order to model successfully observation-error correlations, an
accurate knowledge of the true correlation structure is needed.
This structure varies with observation type and, as shown here,
assimilation system. In this article we present the initial results
from using a post-analysis diagnostic derived from variational
data assimilation theory to calculate IASI observation-error
correlations when the data are used in the 1D-Var and 4D-Var
assimilation systems at the Met Office.

The need for an accurate specification of error correlation
structure when assimilating high-resolution satellite data has
become increasingly important in recent years. A number of
methods exist for quantifying error correlations, and have been
applied for different data types and operational frameworks.
In this article we use the Desroziers technique of error
approximation, and compare the diagnosed error variances and
correlations with those used in the current operational system.

When IASI observations are analysed in the Met Office 1D-Var
retrieval system, the diagnosed error variances are approximately
half the size of the current operational error variances and are very
close in size to the instrument noise. The errors also contain little
consistent strong correlation, with the exception of a handful of
neighbouring WV-sensitive channels. We conclude that current
operational errors are being overestimated, and that uncorrelated
instrument noise is the main contributor to the observation error.

When the IASI observations are processed in the Met Office
4D-Var retrieval system, we again found that the observation
errors were being overestimated operationally. However, using
this assimilation system resulted in an overestimation of up to
eight times in channels highly sensitive to WV. The diagnosed
errors were noticeably larger than the instrument noise for surface
and WV-sensitive channels, suggesting that other error sources
had a significant contribution. Because horizontal errors of
representation are expected in 4D-Var processing but not in
1D-Var processing, these are a likely contributor to the additional
error; errors from pre-processing and the specification of the
background-error covariances may also contribute.

Also, the diagnosed errors from 4D-Var were found to contain
significant correlation structure. The findings can be broken
down into three main features: (i) a strong consistent block
correlation structure in the WV- and surface-sensitive channels,
(ii) bands of correlation in the temperature-sounding channels
sensitive to WV, and (iii) a weaker but still significant level of
block correlation structure in the upper temperature-sounding
channels. The results were similar to those found by Bormann
et al. (2010), who identified large and spatially correlated errors
in surface and WV-sensitive channels. We can conclude that,
in the 4D-Var assimilation system, observation errors are again
being overestimated, and strong correlations within the WV- and
surface-sensitive channels are being ignored.

Finally, there were several differences in the diagnosed errors
from the 1D-Var and 4D-Var statistics. These can be summarised
as:
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• the source of the observation error was predominantly
instrument noise in 1D-Var, while in 4D-Var additional
sources of error, including horizontal errors of representa-
tion, made a significant contribution;

• the overestimation of the error variances was much larger
in 4D-Var for many of the channels used;

• the error correlation structure is much stronger and
more consistent between channels with similar spectral
properties in 4D-Var.

We can conclude that the assimilation method used to process
the observations has a significant impact on the size and structure
of the observation-error correlations diagnosed.

We have been able to draw some interesting conclusions
from the findings above, but it is important to note that the
Desroziers diagnostic is not unflawed. The lack of symmetry
in the diagnosed error covariance and correlation matrices
is a visual indicator that some of the assumptions used in
the derivation of the diagnostic have been violated. We are
knowingly using an incorrect observation-error covariance matrix
in both assimilation systems, and we suspect that the operational
background-error covariance matrices used are also different to
the truth. This is expected to lead to asymmetry.

Other potential issues are channel selection choice and
observation sampling. The work above was undertaken when
there was a fixed IASI channel selection for 1D-Var and 4D-Var;
currently the channel selection choice is adaptive and dependent
on additional quality control related to cloudy fields of view.
This does not affect the use of the diagnostic nor the substance
of the results presented here; it requires only a modification of
the application. Also, the statistics used in the calculation of
the covariance matrices were taken from a global sample, and
hence local effects could be masked. But it is not proposed that
we use these exact diagnosed error structures in the Met Office
assimilation system; instead that they provide the motivation and
framework for future investigations.

When the work in this article was undertaken, the operational
treatment of interchannel IASI observation errors at the Met
Office was to assume independent interchannel errors in both
1D-Var and 4D-Var. The findings from this work challenge the
validity of this assumption. Motivated by these results, Weston
(2011) describes the work at the Met Office currently under
way on using error covariances diagnosed using the Desroziers
method in the 4D-Var assimilation system. One important
question being addressed is whether it is possible to include all
diagnosed correlation structure, or whether an approximation to
the derived structure is necessary for computational purposes. It
is expected that a better understanding, and hence representation,
of the observation-error structures in 1D-Var and 4D-Var will
improve the use of IASI data in the Met Office processing
systems.
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Rabier F, Fourrié N, Chafai D, Prunet P. 2002. Channel selection methods for
Infrared Atmospheric Sounding Interferometer radiances. Q. J. R. Meteorol.
Soc. 128: 1011–1027.

Rabier F, Bouchard A, Faccani C, Fourrié N, Gerard E, Guidard V,
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