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Purpose of review  

Hematopoietic stem cells (HSCs) and progenitors are tasked with maintaining 

hematopoietic homeostasis in the face of numerous insults and challenges, including 

infection, inflammation and exsanguination. HSCs possess the remarkable ability to 

reconstitute the entire hematopoietic system of an organism whose own hematopoietic 

system has been ablated. This ability is exploited routinely in the clinic via HSC 

transplantation (HSCT). Here, we focus on the physiological and molecular bottlenecks 

overcome by HSCs during transplantation. 

 

Recent findings 

Upon transplantation, HSCs need to encounter a damaged bone marrow (BM) niche, 

characterized molecularly by increases in oxygen concentrations and an altered cytokine 

milieu. New mechanisms and pathways have been recently implicated during HSCT, 

including transplanted HSC-dependent secretion of conditioning molecules that facilitate 

engraftment and pathways that protect HSCs from perturbed organelle homeostasis. 

 

Summary  

Better understanding the molecular processes HSCs employ to withstand the stress of 

transplant will illuminate novel targets for further improving conditioning regimens and 

engraftment during HSCT.  
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INTRODUCTION 

HSCs are defined functionally by their ability to reconstitute hematopoiesis when 

transplanted into an organism whose own hematopoietic system has been ablated by 

irradiation, chemotherapy or disease. To preserve stemness and genome integrity, HSCs 

are quiescent and, in murine models, rarely divide during an individual’s lifetime unless 

challenged by insults that stimulate them to proliferate and differentiate (*1). To 

reconstitute an ablated hematopoietic system, transplanted HSCs must overcome many 

damaging insults, such as oxidative stress and migration through a bone marrow niche 

physically damaged by conditioning, resulting in metabolic changes and exit from 

quiescence in HSCs. Despite all this, HSCT is a clinical success and is employed >50,000 

times worldwide each year to treat hematologic disease and cancer patients (2). 

Unfortunately, still about one-third of autologous or allogeneic transplant recipients will 

die for reasons other than primary disease relapse, such as infection, organ failure and 

Graft vs. Host Disease (GvHD) (3). A greater understanding of the molecular bottlenecks 

that stifle HSC function could illuminate novel therapeutic targets to improve clinical 

HSCT outcomes. Here, we will focus on reviewing our current understanding of the 

physical and molecular bottlenecks HSC must overcome during transplant to achieve 

stable engraftment and hematopoietic reconstitution. 
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A damaged niche  

HSCT patients are usually pre-conditioned by chemotherapy and/or radiotherapy.  The 

HSC BM niche is complex and multifaceted, with adipocytes, endothelial cells, 

megakaryocytes, heterogeneous stromal cells, macrophages, osteoblasts, and sympathetic 

nerves all implicated as functional contributors during homeostasis (4, 5). Transplant pre-

conditioning disrupts some key components of the HSC BM niche, transforming it from a 

“BM homeostatic niche (h-Niche)” into what can be thought of as an acute “BM 

reconstituting niche (r-Niche)”. For example, although osteoblasts appear minimally 

perturbed by conditioning (4), the sinusoidal vascular network is severely disrupted, 

becomes leaky, displays changes in morphology and structure, and swells (Figure 1). 

Genetic alterations of BM vascular endothelium integrity negatively impact HSC 

function (6**), highlighting the importance of intact vasculature for HSCs. The damaged 

vasculature takes weeks to recover and donor-derived hematopoietic cells, via the 

VEGF/VEGFR2 axis, have been implicated as participants in its recovery (4, 7). Gross 

changes in the levels and locations of cytokines critical to the viability and distribution of 

HSCs, such as SDF-1 (the Stromal Cell Derived Factor-1; also known as CXC 

chemokine ligand 12, CXCL12), VEGF, IGF-1, PDGF-BB, and TPO, have also been 

observed after conditioning (4, 5, 8). Changing CXCL12 levels following irradiation and 

the break-down of the sinusoidal vasculature results in redistribution of BM 

megakaryocytes from sinusoidal vessels to the endosteal surface; contributing to the 

distinct architecture of the r-Niche (4, 5, 9). Indeed, megakaryocytes facilitate BM injury 

recovery by producing FGF, which also stimulates HSC proliferation via the FGFR and 

up-regulation of NFκB and CXCR4, (the CXCL12 receptor and a master regulator of 
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HSC trafficking and niche retention) (10) (Figure 1). Conditioning regimens are also 

toxic to the nervous system, especially in children (11). During homeostasis, Schwann 

cell-derived TGF supports the integrity of the HSC pool (12, 13). Damage to BM glia 

by conditioning could deregulate HSC stores. Conditioning also alters the BM 

extracellular matrix in ways that functionally feedback on HSCs. Irradiation induces 

endothelial E-SELECTIN production via NFκB activation and TENASCIN-C production 

by stromal cells and endothelium (14, 15) (Figure 1). Both of these molecules stimulate 

HSC homing, E-SELECTIN via E-SELECTIN-LIGAND-1 (ESL-1), which is expressed 

by HSCs, and TENASCIN C via INTEGRIN α9 (16). TENASCIN C/INTEGRIN α9 

engagement can trigger HSCs to enter the cell-cycle by up-regulating CyclinD1 and 

CyclinE1 and down-regulating cyclin-dependent kinase inhibitors (p57(Kip2), p21(Cip1), 

p16(Ink4a) (14).  

 

During inflammation or vascular damage, adenosine triphosphate (ATP), uridine 

triphosphate (UTP) and possibly other nucleotides are released into the extracellular 

environment (17). Most blood cells respond to nucleotides via purinergic P2 receptors 

(17). P2Y14 is highly expressed by both human and mouse HSPCs (18*, 19). P2y14-/- 

HSCs display hyper-radiosensitivity due to their inability to regulate ROS levels that 

accumulate and induce senescence through p38 hyper-activation (19). Moreover, 

knockdown of P2y14 in murine HSC comprises their engraftment (18*). These data 

suggest that P2Y14, and potentially additional purinergic receptors, might function as 

critical sensors of tissue damage by detecting elevated nucleotides in the r-Niche and 

promoting HSC survival by controlling increasing ROS levels post-transplant (Figure 1).  
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These studies and others establish that the r-Niche is physically and molecularly distinct 

from the h-Niche (20). Moreover, they suggest that the recovery of the r-Niche, and 

successful HSC engraftment, depends, in part, on transplanted hematopoietic cells, 

including HSPCs.  

 

Functional HSC must home to the reconstituting niche (r-Niche) 

To effectively reconstitute hematopoiesis, transplanted HSCs must both find their way to 

the BM and stably establish themselves within the r-Niche. HSC BM homing following 

transplant is rapid (hours to 1-2 days) and requires rolling, anchorage to the BM 

sinusoids, trans-endothelial migration and stable interaction with niche components (8, 

21). CXCL12 is critically required for HSC migration from the fetal liver to the BM 

during embryogenesis (22). Antibody blocking of CXCR4 (by AMD-3100) or elevated 

CXCL12 plasma levels can mobilize HSPCs from the BM to the periphery (13, 23). 

CXCL12 is critical for BM HSC homing during transplant, where it is expressed by 

osteoblasts and endothelium  (4, 24, 25). CXCL12 levels increase in the r-Niche after 

conditioning, which attracts HSCs and facilitates their stable engraftment (4, 8) (Figure 

1). Since many BM proteinases, such as Matrix Metalloproteinases 2/9 (MMP2 and 

MMP9), can cleave CXCL12 and negatively affect its activity as a chemo-attractant, it 

would be of interest to study their levels in a r-Niche. Modulating the activity of these 

proteinases could benefit current HSCT protocols  (21, 26). Other chemo-attractants have 

also been implicated in directing the migration and mobilization of HSCs, including 

CCL2, CCL5, CXCL10, IL-8, SCF, LTD4, sphingosin-1-phosphate and ceramide-1 

phosphate (21, 26-29).  
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Notably, conditioning by irradiation or cyclophosphamide results in elevated cleavage of 

COMPLEMENT COMPONENT3 (C3) into C3a and iC3b in PB and BM (30). HSC 

express C3aR and CR3 (also known as CD11b/CD18 or Mac-1), which are receptors for 

C3 cleavage fragments (30). C3a sensitizes human and mouse HSCs to CXCL12 

gradients by promoting CXCR4 incorporation into membrane lipid rafts, while iC3b 

deposited on damaged BM stroma increases HSC adhesion to niche components via 

interaction with CR3 (30) (Figure 1). Importantly, C3-/- mice are more sensitive to G-CSF 

mobilization (30). Although these mice have normal steady-state hematopoiesis, they 

display a delay in hematopoietic recovery when subjected to sub-lethal irradiation or 

HSC transplantation. C3-/- HSCs function normally when transplanted into C3+/+ 

recipients, indicating that this phenotype results from a defect in the BM niche (30). 

Thus, cleaved C3 is important for BM regeneration and reconstitution following 

conditioning and may be an essential component of the r-Niche (30). 

 

Both mouse and human HSC have also been shown to express multiple molecules that 

critically regulate their ability to physically engage r-Niche cells (such as the sinusoidal 

endothelium).  For example, blocking or genetic loss of integrins, such as 4, 91, 

and 47, inhibit robust HSC engraftment (21, 31, 32). HSC rolling on the endothelium, 

necessary for extravasation into the BM space, is regulated by interactions with 

endothelial P and L-SECTININs (33). Antibody blocking of CD44 also blocks HSC 

engraftment (34). More recently, CYTOHESIN-1 and JAM-B/JAM-C interactions have 

also been implicated in HSC niche engagement (35, 36), as have factors that likely 
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regulate to the ability to HSCs to physically move through the vasculature and BM, such 

as ARHGEF5, a Rho guanine nucleotide exchange factor important for podosome 

formation (37) (Figure 1). Not surprisingly, knockdown of Arhgef5 in murine HSPCs 

significantly impairs their transplantation (18*). Further, conditioning regimens can 

impact how HSC physically engage the r-Niche. For example, BM endothelium up-

regulates MAdCAM-1, an 4 ligand, in response to total body irradiation (31).  

Blocking MAdCAM-1 in this context is highly detrimental to HSC engraftment (31). 

 

HSC-directed niche conditioning facilitates engraftment  

Evidence is accumulating that transplanted HSCs can themselves act on the r-Niche in 

ways that promote their own engraftment (Figure 1). For example, knockdown of 

secreted factors or molecules that regulate the biogenesis of secreted factors (e.g. Fstl1, 

Crispld1) in mouse HSPCs reduces their transplantation (18*). Although the mechanisms 

here are unknown, FSTL1 is a negative regulator BMP signaling that has been implicated 

in vasculature remodeling and ischemic cardiomyocyte regeneration (38, 39). HSCs 

express putative “niche-conditioning” molecules implicated in HSC quiescence, such as 

RNase ANGIOGENIN, IL-8 and EMBIGEN (40**). HSCs also express ESL-1, a 

regulator of HSC proliferative homeostasis via repression of TGF production by HSCs 

and other hematopoietic cells. ESL-1-deficient HSCs produce more TGFβ, which 

conditions the niche to induce quiescence in wild type co-transplanted HSCs (41*). 

Degrading enzymes, such as MMPs, are important for efficient HSC homing (8). Up-

regulation of MMP-2, MMP-9 and MT1-MMP facilitates HSCT and BM homing by 

promoting extravasation via degradation of extra-cellular matrix components, enhancing 
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migration towards CXCL12, and by releasing soluble Kit ligand from BM stroma (42). 

As mentioned, transplanted hematopoietic cells promote vasculature recovery after severe 

irradiation (43).  Conversely, transplanted hematopoietic cells can also negatively 

influence r-Niche recovery: donor-derived angiopoietin-1 (ANGPT-1) slows vasculature 

recovery after irradiation, likely by negatively regulating endothelial cell proliferation 

(7). Thus, a better understanding of the reciprocal interactions between incoming HSCs 

and the r-Niche could illuminate novel strategies for improving engraftment. 

 

Oxidative stress and changing metabolic needs 

Steady-state HSCs are largely quiescent, depend on glycolysis for energy production, 

and, consequently, display low levels of radical oxygen species (ROS) (44-*46). The h-

Niche is irrigated with a heterogeneous network of arterioles, which carry 

oxygenated blood and are most abundant near the endosteum, and sinusoids, which 

carry less oxygenated blood and are abundant in the central BM (20, 47-49). This 

creates an oxygen gradient in the BM, from ≈4% O2 near the endosteum to ≈2% in 

the central marrow (50, 51). However, the distribution of HSCs throughout the BM 

suggests that HSC maintain a hypoxic profile regardless of their location and 

external O2 tension (24, 47, 48, 50-52). Although it is formally possible that super-

low O2 levels might exist in tight regions proximal to HSCs (50).  

 

Transplant pre-conditioning, and the resulting cell damage, elevates BM O2 levels 

(51) (Figure 1). Transplanted HSPCs distribute throughout this landscape of elevated 

oxygen (51). Under low oxygen, HIF-1 is active and transcriptionally promotes 
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glycolysis. As O2 levels rise, HIF-1 is targeted for degradation, promoting a shift in 

HSC metabolism from glycolysis to oxidative phosphorylation (OXPHOS), which further 

increases internal ROS levels (44, 45). Increased ROS impairs HSC self-renewal, 

quiescence, and promotes their mobilization from the bone marrow (53, 54). Indeed, 

purified ROSLow HSCs display superior repopulating activity relative to ROSHigh HSCs 

(44). HSCs also become exposed to supra-physiologic levels of oxygen during their 

isolation and handling prior to transplant (55**). Inhibition of ROS accumulation by anti-

oxidants such as N-acetyl-L-cysteine (NAC) or via manipulation of signaling pathways 

linked to ROS accumulation (p38 MAPK, the miR-212/132 cluster (Mirc19) or SIRT3 

overexpression) rescues HSC function and transplantation (54, 56-58). Thus, HSC must 

engage molecular pathways to resolve these insults in order to achieve stable engraftment 

and hematopoietic repopulation. Indeed, a failure to transition from glycolysis into 

OXPHOS blocks HSC differentiation (59, **60), indicating that is required for effective 

hematopoietic reconstitution. Further, constitutive mTOR activation, a master sensor of 

cellular metabolic needs, is detrimental to HSC quiescence and serial repopulation, which 

appears to be in part explained by elevated ROS (61, 62). Moreover, the PML-PPARδ 

pathway for fatty acid oxidation regulates asymmetric versus symmetric HSC division 

and disruption of this pathway leads HSC exhaustion (53). 

 

SIRT1, a deacetylase that globally coordinates metabolic changes in response to nutrient 

levels, is also required for optimal HSC transplantation (63). SIRT1 functions upstream 

of FOXO3 in HSCs to modulate changing intracellular ROS levels (**60, 63) (Figure 1). 

Indeed, FOXO factors are well known critical regulators of HSC ROS, both during 
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homeostasis and transplantation (**60, 64). While FoxO-deficient bone marrow lacks 

long-term engraftment, in vivo treatment with NAC reverts this phenotype (65). 

Similarly, Foxa3-/- HSCs display high ROS post-transplant and compromised serial 

transplantation (18*). A SIRT1-related enzyme, SIRT3, is also required for optimal HSC 

transplantation, but only in aged HSC (58). SIRT3 regulates the acetylation of 

mitochondrial proteins (65). Thus, to effectively repopulate, transplanted HSCs must 

affect a balance between their shifting metabolic needs and the detrimental effects of 

elevated ROS on their self-renewal and differentiation. 

 

Epigenetic regulators 

Recently, several studies have illuminated single cell heterogeneity within the HSC pool 

and suggested a model where HSC function is transplantable and imprinted by specific 

epigenetic patterns, such as DNA methylation, hydroxymethylation, and histone 

modification (66, *67, 68). Transplantation may perturb the HSC epigenetic landscape. 

For example, as HSCs switch from glycolysis to OXPHOS during transplant, increasing 

α-ketoglutarate and decreasing succinate may activate histone demethylases and trigger 

differentiation (65). The compromised differentiation potential, enhanced self-renewal, 

and sensitization to apoptosis of HSC deficient in Dnmt1 or Dnmt3a demonstrates that 

DNA methylation levels can significantly impact HSC function (69, 70). Active DNA de-

methylation also perturbs HSC transplantation. TET family proteins hydroxylate 5-

methylcytosine to 5-hydroxymethylcytosine, which is then deaminated by AID/APOBEC 

proteins before processed into cytosine by BER glycosylases. Tet2-/- mice display 

increased HSC numbers and increased HSC repopulating activity (71). In contrast, Aid-/- 
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mice display expansion of myeloid cells and anemia due to reduced erythroid 

progenitors, but display normal HSC self-renewal (72). Histone modification patterns 

also appear important for HSC transplantation. Loss of EED, which methylates H3K27 as 

part of the Polycomb Repressive Complex 2, results in HSC exhaustion (66, 73). In 

contrast, Ezh2 overexpression perpetuates HSC serial transplantation (74). HSCs also 

display bivalent domains that contain H3K4me3 and H3K27me3 (75). To what extent the 

epigenetic landscape of HSC is altered by transplantation remains an open question. 

 

Transplant challenges organelle homeostasis  

Recent data suggests that transplanted HSCs must cope with perturbations in organelle 

homeostasis. For example, the essential autophagy gene, Atg7, is required for HSC 

repopulation (76). Further, as transplanted HSC exit quiescence and increase oxidative 

phosphorylation, mitochondria numbers increase (44, 55**, 77). This activates 

mitochondrial pathways regulating oxidative stress, such as SIRT1, a deacetylase that 

targets FOXO transcription factors in HSCs (**60). Loss of SIRT7, a regulator of the 

mitochondrial unfolded protein response, result in reduced repopulating activity, 

reflecting the dependence of transplanted HSCs on this pathway (**78).  

 

Oxidative stress, accumulating mis-folded proteins, or calcium disequilibrium can induce 

endoplasmic reticulum (ER) stress (79). Glucose-regulated protein 78 (GPR78), an ER 

chaperone, regulates and inactivates multiple ER stress sensors (80). Gpr78-deficient 

mice show a loss in HSCs (81). The ER unfolded protein response (UPR) is resolved by 

inhibition of translation, activation of ubiquitin-dependent degradation of mis-folded 



 14 

proteins or by increased ER biogenesis (79). Indeed, overexpression of ERDJ4 (a 

canonical UPR chaperone) in human HSCs enhances their repopulating activity, 

indicating that ERDJ4 protects against transplant-induced ER stress (82) (Figure 1). 

Further, human HSPCs display higher expression of PERK pathway members and 

decreased expression of IRE1, suggesting that HSCs depend on this ER stress response 

pathway (82). 

 

Conclusion  

Classic pre-transplant conditioning triggers a plethora of cellular responses that 

cumulatively select for the small population of bone marrow cells we know as 

transplantable HSCs. These cellular responses likely exist to counteract environmental 

insults to the hematopoietic system (e.g. infection, exsanguination, starvation, etc…) by 

allowing HSC division and activation while safeguarding genome integrity and stemness. 

Although the molecular mechanisms behind many of these responses have been recently 

illuminated, we are still far from fully understanding HSC engraftment. Indeed, numerous 

novel alternative conditioning methods reveal that HSCT does not depend on complete 

bone marrow ablation (e.g. dietary Valine depletion, anti-c-Kit or CD45 antibodies, 

CD45-saporin, inhibition of stromal cell heparan sulfate synthesis and E-SELECTIN 

antagonists (**83,84). These new methods hold the promise of alleviating the non-

hematopoietic toxicity associated with classic conditioning regimens, which will be 

especially important for children and young adults. Further, each likely imposes unique 

molecular pressures on transplanted HSCs. Further study of these alternative conditioning 
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regimens will yield new insight into additional molecular bottlenecks that stifle 

transplanted HSC. 

 

KEY POINTS 

• Transplant conditioning regimens induce dramatic changes in the HSC bone 

marrow niche. 

• Transplanted HSCs are subject to significant metabolic changes, perturbed 

organelle homeostasis, and elevated ROS levels. 

• HSCs autonomously condition their new home to facilitate engraftment. 
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Figure 1. Summary of molecular alterations driven by classical pre-transplant 

conditioning regimens in HSCs and the bone marrow niche 

 

Here, we present a schematic to highlight some of the gross physical and molecular 

changes that occur in the bone marrow niche and within HSCs. For simplicity, not every 

known cellular component of the niche is pictured. In the niche, C3 is cleaved to C3b and 

C3a, which interact with HSC CR3 and C3aR receptors and stimulate homing by 

increasing, among other things, CXCR4. Megakaryocytes, which are attracted to the 

endosteum from sinusoidal vessels by increasing endosteal-CXCL12, also upregulate 

CXCR4 on HSCs via increased secretion of FGF. Schwann cells and stromal cells release 

TENASCIN C, which stimulates HSC migration and adhesion. Endothelial cells 

upregulate E-SELECTIN, CXCL12 and SCF. Sinusoidal vessels are damaged and leaky, 
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resulting in an increase in O2 partial pressure (p02) and BM ROS levels. This contributes 

to H1F-1α degradation in HSCs, promoting their transition from glycolysis to oxidative 

respiration (OXPHOS), which further increases intracellular ROS levels. FOXOs, 

FOXA3, and signaling downstream of P2Y14 help HSCs cope with rising ROS levels. 

SIRT1 activates FOXOs. SIRT7 inhibits the increase in the mitochondrial unfolded 

protein response (UPR). Increased ROS stimulates HSC division and an ER-UPR. PERK 

and ERDJ14 counteract this effect in transplanted HSCs. Free nucleotide levels rise in the 

BM and are sensed by purinergic receptors, like P2Y14, which regulates ROS. Increasing 

intracellular α-Ketoglutarate (α-KG) promotes HSC differentiation via Histone 

demethylation (Figure 1). PRC2 complex counteracts this effect by promoting Histone 

methylation. Transplanted HSCs condition the reconstituting niche by secreting FSTL1 

and extracellular matrix components (via Crispld1) and (very likely) additional factors 

(e.g. IL-8) (Figure 1). Transplanted hematopoietic cells facilitate recovery of the 

conditioned niche. Figure Key: the bone marrow space is depicted on a dark gray 

background, the HSC intracellular space is light gray, and the HSC nucleus is dark gray. 

Major cell types are labeled in white font, major changes in the bone marrow space are 

labeled in white font, and major changes in the HSC are labeled in black font.  
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