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Abstract 

 Growing applications of non-homogenous media in engineering structures require the 

application of powerful computational tools. A novel hybrid Meshless Displacement 

Discontinuity Method (MDDM) for cracked Reissner's plate in Functionally Graded Materials 

(FGMs) is presented in this paper. The fundamental solutions of slope and deflection 

discontinuity for an isotropic homogenous media are chosen as a part of general solutions to 

create the gaps between the crack surfaces. The governing equation is satisfied by using the 

meshless methods such as the Meshless Local Petrov-Galerkin (MLPG) and the Point 

Collocation Method (PCM) with Lagrange series interpolation and mapping technique. The 

Stress Intensity Factors (SIFs) are evaluated analytically with the Chebyshev polynomials. The 

accuracy is verified by comparison of numerical and analytical results. 
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1. Introduction 

 Plate and shells are main components in aerospace structures. There are two major theories 

of plates and shells in engineering, namely the Kirchhoff thin plate theory and the Reissner 

moderately thick plate theory. The application of the Finite Element Method (FEM) to the 

Kirchhoff plate and Reissner plate was reported by Zienkiewicz and Taylor [1]. More recent 

researches on the fracture analysis of plates and shells can be found in [2][3][4]. The application 

of the Boundary Element Method (BEM) to the plate was first proposed by Jaswon et al [5], 

based on the bi-harmonic analysis with two unknown boundary values i.e. the deflection and 

normal slope. The derivation of the boundary integral equation and the fundamental solution for 

the Reissner's plate theory was reported by Vander Weeën [6]. Karam and Telles [7] have 

shown that the Reissner's plate model can be applied to the Kirchhoff thin plate too. Rashed et 

al [8,9] derived the traction integral equation for the Reissner's plate theory to solve the 

boundary value problems. Dirgantara and Aliabadi [10,11,12] extended the application of dual 

BEM to the fracture analysis of Reissner's plate successfully. Fracture analysis of curved 

stiffened panels, crack growth analysis for multi-layered airframe structures and non-linear 

large deformation analysis of Reissner's plate by Boundary Element Method were reported by 

Wen et al [13,14,15]. Recent developments in boundary element method for plate bending 

analysis can be found in the book by Aliabadi [16].   

Recently, the meshless methods such as Element-free Galerkin method and Point 

collocation method were developed and have attracted huge attention for solving boundary 

value problems. The Diffuse element method was reported by Nayroles et al [17], the Element-

free Galerkin method and the reproducing kernel particle methods were proposed by Belyschko 

et al [18] and Liu et al [19]. Atluri and his colleagues presented a set of meshless methods, 

named as Meshless Local Petrov-Galerkin formulations (MLPG), for solving partial differential 

equations [20,21 and 22] with the Moving-Least Square (MLS) approximation. The MLPG was 

reported to provide a rational basis for constructing meshless methods with greater applicability. 

In addition, the Local integral equation method with the MLS and polynomial radial function 

was proposed by Sladek et al [23,24,25]. A comprehensive review of the meshless methods can 

be found in Atluri [24] and Liu [26]. 

 It is well known that the Method of Fundamental Solutions (MFS) is a simple and efficient 

technique to solve the partial differential equations numerically. However, there are just a few 
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works on modeling linear elastic fracture mechanics problems using the MFS. The Green’s 

function approach including the adopted numerical Green’s function (NGF) avoids boundary 

elements over the crack surfaces, since the fundamental solution removes boundary integration 

there. Guimarães and Telles [27,28] developed the numerical Green’s function formulation used 

as the fundamental solution for Reissner’s plate for stress intensity factor computations. Sladek 

et al [29,30,31] developed a meshless method based on the local Petrov-Galerkin weak-form to 

solve thermal problems of orthotropic thick plates with material properties continuously varying 

through the plate thickness. Wen and Hon [32] extended meshless method to nonlinear analysis 

of the Reissner’s plate.  

Regarding the functionally graded materials, it is clear that the mechanical properties of the 

material vary with the coordinates. It leads to significant difficulty in obtaining solutions of the 

complex partial differential equations in anisotropic and non-homogeneous media. Although 

FEM, BEM and meshless methods can be applied to find the numerical solutions, they have 

different difficulties. The main issue for the FEM is the accuracy due to the discontinuity of the 

stresses between elements. The availability of the fundamental solution is essential for the BEM 

and the convergence by using the meshless methods needs more attention in computations.  

 For 2D/3D elasticity, the dual boundary element method with a single region technique for 

the crack growth analysis was demonstrated by Portela et al [33] and by Mi and Aliabadi [34]. 

Displacement Discontinuity Method (DDM) was reported by Crouch [35]. Wen et al [36,37] 

extended the DDM to fracture static/dynamic 2D/3D problems successfully. The hybrid 

MDDM is a novel investigation of the Stress Intensity Factor (SIFs) at the tip for the Reissner's 

plate theory for non-homogenous media. The motivation of the MDDM proposed recently by Li 

et al [38] inherits the advantages from the boundary element method and meshless method. The 

general solution consists of two parts: (a) a solution with an embedded crack in an infinite plate 

of isotropic homogenous material; (b) a solution for a finite non-homogenous material without 

crack. The first one is obtained by using boundary integral equation method (displacement 

discontinuity), in order to create the gap between crack surfaces and the second part is 

determined by the meshless method, in order to consider the governing equation in the domain. 

For the first solution, the problem is transformed to solve a set of singular integral equations 

with hyper and strong singularities. Highly accurate numerical solutions can be obtained by 

using the Chebyshev polynomials. An analytical treatment enables us to achieve the closed 
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form solutions of SIFs at the tip in functionally graded materials. In this paper, the formulations 

with the MDDM for the cracked Reissner plate theory of FGM are firstly derived with 

distributed dislocation of the slopes and deflection on the crack surface (discontinuous field in 

infinite plate) and the nodal displacements in the field and on the boundary as well (continuous 

field). Finally, several numerical examples are presented to illustrate the applicability of the 

MDDM and the comparative analysis has been carried out for the cracked FGM plates with 

different approaches.  

2. Embedded crack in infinite homogenous plate 

 In linear elasticity, functionally graded materials are designed to exhibit a particular spatial 

variation of their properties. It will be assumed in-plane gradation of Young’s modulus ( )E x , in 

this paper. For both homogenous and non-homogenous materials, the stress resultant-strain 

relationship for plate bending are given by Reissner [39] 
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where 3 2( ) /12(1 )D E h  x is the bending stiffness of the plate, ( )E x  is Young's modulus,   

is  Poisson ratio and defined as a constant, M  are the bending and twisting moments per unit 

length, Q  is the shearing force per unit length, 2(1 ) / 2C D     is the shear stiffness, 

10 / h   is shear factor, h denotes the thickness of the plate, w  is the slope, 
3w  is the out-

of-plane deflection normal to the middle surface of the plate,   is the Kronecker delta and 

Latin indices vary from 1 to 2. Bearing in mind the definition of the bending stress-couples 

M , shear stress-resultants Q and supposing the quadratic distribution of shear stresses as 

well as boundary conditions on the plate surfaces, one can write the following relationships   
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with 33 / 2q    being the transversal loading on the plate surfaces 3 / 2x h  .   

 The equations of equilibrium can be written as  
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 , 0M Q        and    , 0Q q                   (3) 

in which q denotes the pressure load on the plate. Differentiations of Eq.(1) yield   
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Substituting Eq.(4) into the equilibrium equations (3), we have 
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Considering homogenous media and applying the reciprocal theorem, we obtain the integral 

representations of slopes and deflection [8,10] by   . 
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where ( )jp x  are the generalized tractions defined as 
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on the boundary contour   of the domain   in the mid-plane of the plate. Furthermore, n  are 

components of the unit outward normal vector on  , x  and 'x  are the source and field points 

respectively, ( )C x  is a geometric coefficient at x , which equals to either ij or 0.5 ij  for either 

an internal point or a point on a smooth part of the boundary, *( , ')ijW x x  and *( , ')ijP x x  are 

displacement and traction fundamental solutions [6] in an infinite domain and can be written, 

for plane stress circumstance, as 
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and 
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where 
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      Consider an embedded straight crack in an infinite plate with generalized traction over the 

crack boundary ( ) ( )i ip p  x x , the superscripts   and   indicate the upper and lower faces 

of the crack. Writing the integrals only over boundary ( )c

   , the classical and hyper-

singular formulations in an infinite sheet, derived from Eq.(6) without pressure load ( 0)q  , are 

simplified as 
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where ( ) ( ) ( )i c i c i cw w   x x x  ( 1,2,3i  ) is defined as a displacement discontinuity. Then, the 

stress resultants at the domain point in the case of homogenous material can be evaluated from 

Eqs. (10)-(11) as 
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 Multiplying Eqs (15) and (16) by outward normal ( )n

x , we obtain generalized tractions 
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on the lower crack surface 
x as  
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3. Displacement discontinuity method for Reissner's plate 

       Consider a straight crack of length 2a  in a isotropic homogenous plate, as shown in Figure 

1 (in this case 1 2( ) 0,  ( ) 1n n  x x on c

     x with 1 2( , ) ( , 0)x x x   ), therefore, the 

integral equation (17) can be rewritten as 
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= 

= 
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  Figure 1. Embedded crack in an infinite plate subjected to bending moment 
0M . 

 

 For mode I (opening) fracture, the integral equation above gives 
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* *

121 1 123 3

* *

321 1 323 3

( )
( , ) ( ) ( , ) ( ) ,

( )
( , ) ( ) ( , ) ( ) ,

a

a

a

a

T x
P x P x d

D

Q x
P x P x d

D

      

      





    

    





               (24) 

where ( )M x , ( )T x  and ( )Q x  are applied bending, twisting moments and shear force on the 

crack surface, respectively. Because of the singularity )( 2/1rO  of the stress resultants at the 

crack tips ax   [40], the displacement discontinuity of the crack can be approximated as 

     2 2

,

0

( ) ( / )
L

k k l l

l

a c U a   


   ,   a a   ,                (25) 

where ,k lc represents the coefficient for different fracture modes, )/( axUk  are the Chebyshev 

polynomials of the second kind as 

     
sin[( 1)arccos( / )]

( / )
sin[arccos( / )]

l

l a
U a

a







 .                        (26) 

Considering the integral formula given by Kaya and Erdogan
28

, we have 

-a 

x1 

x2 

0M  

+a 

= 

= 

= 
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 

2 2

2

( / )
( 1) ( / )

a

l
l

a

a U a
d l U x a

x

 
 




  


                  (27) 

and 

 
2 2

1

( / )
( / )

a

l
l

a

a U a
d T x a

x

 
 







 

 ,                  (28) 

where ( )nT x  are the Chebyshev polynomials of the first kind. Taking the integral equation (23) 

at collocation points 

 ( ) (2 1)
/ cos ,   0,1,2,...,

2( 1)

m m
x a m L

L



 


,                  (29) 

we obtain 

( )
( ) ( ) 2 2

2, 222 2

0

( )
( 1) ( / ) ( , ) ( / ) ,  0,1,..., ,

a mL
m m

l l l

l a

M x
c l U x a g E x a U a d m L

D
    

 

 
       
 

   

                             (30) 

where 

 ( ) * ( ) 222
2 222 ( ) 2
( , ) ( , )

( )

m m

m

g
E x P x

x
 


 


.                  (31) 

It is clear that there is a weak singularity (ln )O r  in 
2( , )E x  , thus a coordinate transformation 

is required to cancel the weak singularity with ' x   . Therefore, Eq.(30) provides a set of 

linear algebraic equations to determine 1L  unknown coefficients 2,lc . From the definition of 

stress intensity factor at the crack tip, we have 

 
3

2
I

0

( )( )
( ) lim

48 2

b

r

aE a h
K a

r






  ,                   (32) 

in which ( )E a  indicates Young's modulus at the crack tips. Considering Eq.(25), we can 

obtain the stress intensity factors directly with the slope discontinuity 2  by 

 
3

I 2,

0

( )
( ) ( 1)

48

L
b

l l

l

E a h
K a c U a




   ,                  (33) 

where ( 1) 1lU l    and ( 1) ( 1) ( 1)l

lU l    . Considering the twist moment and shear force in 

Eq.(24), the integral kernels of hyper and strong singularities from Eq.(24) are obtained 

= 

_ 
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 * 2 2
2 2

( , ) ( , )
( , )= ( , )

( )

i k i k
i k ik

g x f x
P x E x

x x

 
 

 
 

 
,                 (34) 

where ( , )ikE x   is of weak singularity of (ln )O r . Therefore, the coupled integral equations are 

written as 

 

( ) ( ) ( ) 2 2

1, 121 1 121 11

0

( ) ( ) ( ) 2 2

3, 123 1 123 13

0

( )

( 1) ( / ) ( / ) ( , ) ( / )

( 1) ( / ) ( / ) ( , ) ( / )

( )
,                     

aL
m m m

l l l l

l a

aL
m m m

l l l l

l a

m

c l U x a g T x a f E x a U a d

c l U x a g T x a f E x a U a d

T x

D

     

     



 



 

 
     
 

 
      

 

 

 

 

  0,1,..., .m L

 

                             (35) 

 

( ) ( ) ( ) 2 2

1, 321 1 321 31

0

( ) ( ) ( ) 2 2

3, 323 1 323 33

0

( )

( 1) ( / ) ( / ) ( , ) ( / )

( 1) ( / ) ( / ) ( , ) ( / )

( )
,                     

aL
m m m

l l l l

l a

aL
m m m

l l l l

l a

m

c l U x a g T x a f E x a U a d

c l U x a g T x a f E x a U a d

Q x

D

     

     



 



 

 
     
 

 
      

 

 

 

 

  0,1,..., .m L

 

                             (36) 

Similarly to mode I, the mixed mode fractures under twisting moment and shear force can be 

solved numerically. The mixed mode stress intensity factors are obtained by 

 
3

II 1,

0

( )
( ) ( 1)

48

L
b

l l

l

E a h
K a c U a




                      (37) 

and 

 III 3,

0

5 ( )
( ) ( 1)

24(1+ )

L
b

l l

l

E a h
K a c U a

 


   .                  (38) 

 It is worth noting that the singular stresses vary along the thickness of the plate (coordinate 

3x ). The stress intensity factors above can be related to the stress intensity factors through the 

following relationships: 

 

2

3 3 3
I I II II III III3 3

12 12 23
,    ,    1 .

2

b b bx x x
K K K K K K

h h h h

  
     

   

             (39) 
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 Example 1. Embedded crack under various loads 

 We assume that a crack embedded in an infinite homogenous plate is subjected to uniform 

bending moment 
0M , twist moment 

0T  and shear force 
0Q , respectively. Firstly, the uniform 

bending moment 
0M  is considered and the numerical results of normalized stress intensity 

factor ( )

I 0/bK M a is shown in Figure 2 versus the normalized plate thickness 0 ( / 10 )h a  . 

The maximum number of the Chebyshev polynomials is only one free parameter L in the 

numerical computational process. The convergence of the numerical result is shown in Table 1. 

The solution from the handbook [41] gives 0 0/ 0.79bK M a  . The relative error is less than 

0.5% when the maximum number 3L  . For the constant twisting moment 
0T  acting on the 

crack surface, the normalized stress intensity factors II 0/bK T a and 
III 0(1 )bK a   

0/T a versus the parameter 
0  are shown in Figure 3(a) and (b) respectively, with the 

maximum number of the Chebyshev polynomials 10L  . Finally, consider a constant shear 

force 
0Q  on the crack surfaces, the normalized stress intensity factors II 0/bK Q a a and 

III

bK  

0 0(1 ) / Q a   are presented in Figure 4(a) and (b) respectively. 

 

      Table 1. Convergence observation when 
0 =0.5, 0.25   . 

L  0  1  2  3  4  

I 0/bK M a  0.6723  0.7746  0.7931  0.7940  0.7940  
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Figure 2. Normalized stress resultant intensity factor I 0/bK M a  under a bending moment 

0M . 

                     

 

0  

K
Ib

/(
T

0
√

π
a
) 

0   
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0  

K
Ib

/(
M

0
√

π
a
) 

0   
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Figure 3. Normalized stress resultant intensity factors under a twist moment 
0T : (a) II 0/bK T a ; 

(b) III 0 0(1 ) /bK a T a   . 
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K
b

II
I(

1
+

ν)
λ 0

a
/(

T
0
√

π
a
) 
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/(
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0
a
√

π
a
) 

0   

0.25   

0.5   

(b) 

(a) 



Hybrid meshless/displacement discontinuity method for FGM Reissner's plate with cracks                           Zheng, Sladek, Sladek, Wang, Wen 

 - 15 - 

                         

 

     Figure 4. Normalized stress resultant intensity factor under a shear force 
0Q : (a) 

II 0/bK Q a a ;  (b) III 0 0(1 ) /bK Q a   .. 

4. Hybrid method for crack in FGM plate 

Simple examples in chapter 3 have shown the accuracy obtained for the stress intensity 

factors by DDM with the Chebyshev polynomials in homogeneous body. However, that 

approach is not applicable to the continuously non-homogenous media due to the absence of 

explicit expressions of fundamental solutions (integral kernels). It is known that the crack tip 

behaviour in continuously non-homogeneous media has the same characteristics as in 

homogeneous ones with the only need to take into account the material coefficients at the crack 

tip [42]. In order to utilize the DDM formulation with the Chebyshev polynomials, also in the 

case of FGM, the general solutions of the displacements in non-homogeneous media are 

decomposed into two parts, as follows 

* m

i i iw w w  ,                              (40) 

0  

0   

0.25   

0.5   

K
b

II
I(

1
+

ν)
λ 0

/(
Q

0
√

π
a
) 

(b) 
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where the superscripts "*" and "m" represent the solutions given by the DDM (described in 

chapter 3) and the meshless methods, respectively. Then, the bending and twisting moments, 

and shear forces become 

 * mM M M    ,   * mQ Q Q    .                   (41) 

in which M

 , Q

  and mM , mQ  are defined by (1) with replacing iw  by iw  and m
iw , 

respectively, and taking 3 2( ) ( ) /12(1 )D E h  x x , 2( ) ( )(1 ) / 2C D   x x . Then, according 

to Eq. (5), the solutions for homogeneous plate M

 , Q

  satisfy the equations 

 

,

0
M

D Q
D










 

   
 

.  

,

0
Q

C q
C






 

  
 

                                                                           (42a) 

Furthermore, the governing Eqs. (3) yield 

 ,

,

0
M M

D D Q
D D

 

 



 
   

 
 ,  ,

,

0
Q Q

C C q
C C

 




 
   

 
.          (42b) 

Hence and from (41)-(42), assuming 0q  , one obtains 

 ,

,

0

m

m
M M

D D Q
D D

 

 



 
    

 
,    ,

,

0
mQ Q

C C q
C C

 




 
   

 
          (42c) 

or in view of (41) and the definitions of M

 , Q

  and mM , mQ , these equations become 

 
   

   

, , , *

3,

, *

, 3,

(1 ) (1 )
0

2 2

0

m m

m m m

m m m

Dw Dw D
C w w M M

D

D
C w w Q Q q

D

    

   



    

  
     

    

                                 (43) 

where we have utilized the relationship , ,( ) / ( ) ( ) / ( )C C D D x x x x . Applying the governing 

equations (43) to the problem with a straight crack in infinite medium and making use of the 

integral representation of the bending stress-couples ( )M

 x and shear stress-resultants 

( )Q

 x according to Eqs (15) and (16), using the Chebyshev polynomials for approximation of 

displacement discontinuities ( )k   by (25), one can re-cast the governing equations (43) into 

the form  
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 

 

,

, , 3,

* 2 2

, ,

0

, * 2 2

, 3, , 3 ,

0

( )( )
(1 ) ( ) (1 ) ( ) ( ) ( ) ( ) ( )

2 ( )

( ) ( , ) ( ) 0

( )
( ) ( ) ( ) ( , ) ( ) 0

( )

m m m m m

aL

k k l l

l a

aL
m m m

k k l l

l a

DD
w w C w w M

D

D P c a U d

D
C w w Q D P c a U d q

D



      

 



     

 

   

   

 

 

        

  

     

 

 

xx
x x x x x x

x

x x

x
x x x x

x

           (44) 

Two kinds of boundary conditions are considered as follows 

(1) Displacement boundary condition on w : 

 * ( )  ,  ( 1,2,3) ,  m

k k k ww w w k   x x ,                 (45) 

where kw  indicate the slopes and deflection specified on the displacement boundary w  .  

 (2) Traction boundary condition on p : 

 *( ) ( )mM M n p     x    and   *

3( ) ( )mQ Q n p    x ,   px ,                   (46) 

where kp  are the moments and shear force specified on the traction boundary p . The integrals 

in Eq. (44) are regular as the integral kernels are regular as long as cx  . However, when the 

source point is located on the crack surface, i.e. 
cx , the traction boundary conditions 

become 

 2 2 22
2, 222 2

0

( ) ( )
( 1) ( / ) ( , ) ( / )

a mL

l l l

l a

M x M x
c l U x a g E x a U a d

D D
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 

 
       
 

         (47) 

 

2 2

1, 121 1 121 11

0

2 2

3, 123 1 123 13

0

12

( 1) ( / ) ( / ) ( , ) ( / )

( 1) ( / ) ( / ) ( , ) ( / )

( ) ( )
,

aL

l l m l m m l

l a
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l l l l
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m

c l U x a g T x a f E x a U a d

c l U x a g T x a f E x a U a d

M x T x

D D

     

     



 



 

 
     
 

 
      

 

  

 

   (48) 
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( 1) ( / ) ( / ) ( , ) ( / )

aL

l l m l m m l

l a

c l U x a g T x a f E x a U a d     

 

 
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 
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2 2

3, 323 1 323 33

0

2

( 1) ( / ) ( / ) ( , ) ( / )

( ) ( )
. 

aL

l l l l

l a

m

c l U x a g T x a f E x a U a d

Q x Q x

D D

     

 

 
      

 

  

 
        (49) 

Thus, the task is to solve the boundary value problem for the partial differential equations with 

variable coefficients, in order to get “meshless” displacements.  

5. Meshless approaches for FGMs 

Two meshless approaches will be presented: (i) the Point Collocation Method as a strong 

meshless formulation of the boundary value problem; (ii) MLPG (Meshless Local Petrov-

Galerkin method) as a local weak formulation. In both approaches, we employ the polynomial 

interpolation of “meshless” field variables within a finite block, using the standard Lagrange 

finite elements [43-45].   

5.1. Hybrid MDDM with Point Collocation Method (PCM) 

Considering a block shown in Figure 5, we have a quadratic block with area Ω in physical 

domain mapped into a square in the intrinsic space, by using quadratic shape functions with 8 

seeds. Then the coordinate transform (mapping) can be written as 

8
( )

1 2

1

( , ) k

k

k

x N x  


 ,                      (50) 

where 
1 2( , )kN    is the shape function, ( ) ( )

1 2( , )k kx x  are the coordinates of the seed k. For the first 

order partial differentials of function 1 2( , )f x x  , one has  

11 12 21 22

1 1 2 2 1 2

1 1
,    

f f f f f f

x J x J
   

   

        
      

        
,            (51) 

where  

2 2 1 1
11 12 21 22

2 1 2 1

, , ,
x x x x

   
   

   
     
   

, 12211122  J .          (52) 

Consider a set of two dimensional uniformly distributed nodes shown in Figure 5(a), 

( )

1 1i    12( 1) /( 1)i L  , 11,2,...,i L  and ( )

2 21 2( 1) /( 1)j j L      , 21,2,...,j L , in which 

1L  and 2L  are the number of nodes distributed along 1  and 2  axes respectively. The number 
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of nodes in total is 
1 2mL L L  . To interpolate any continuous function 

1 2( , )f x x with Lagrange 

series, one has 

1 21 2 ( ) ( )
( )1 1 2 2

1 2 ( ) ( ) ( ) ( )
1 1 1 11 1 2 2

( ) ( )
( , )

( ) ( )

L LL L m n
ij

i m j n
i j m n

m i n j

f x x f
   

      
 

 


 
  ,              (53) 

where the superscript ( ij ) indicates the global number of node 
1( 1)ij j L i   . Then, the first 

order partial differential is determined easily by 

1 2
2 ( )1

1 2 2 1

1 1 1 2

( )( )1
( ) ( ) ,

L L
j iji

j i

i j

GFf
G F f

x J
 




   

  

 
  

   
             (54) 

 

 

 

 

 

 

 

 

 

 

 

where   and J are given in Eq.(52). Changing ( )ijf with  
( )

/
ij

f x   in Eq.(54), any higher 

order partial differentials at collocation points can be obtained in terms of the nodal values of 

function f . Substituting those first order and second order partial derivatives into the governing 

equations in Eqs (44, 47, 48, 49) and boundary conditions, we obtain the linear algebraic 

equations with unknown nodal slopes ( )ijw , deflection ( )

3

ijw , and coefficients ,k lc . By solving 

those linear algebraic equations, we receive all unknown coefficients and displacements in the  

analyzed domain, which can be used to determine mixed modes stress intensity factors from 

Eqs (33), (37) and (38) respectively.  

Figure 5. Mapping and node distribution: (a) physical quadratic block; (b) square domain 

in intrinsic space with 8 seeds.      mapping seeds;       node. 

(a)                                                                       (b) 
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3.3. Hybrid MDDM with MLPG 

Consider a flat FGM plate with the neutral plane of the plate 
3 0x  , on which the normal 

bending stress is zero and the governing equations (3) can be written in weak form as  

    , ,0,    0,
i i
s s

M Q ud Q q ud    

 

                       (55) 

where u  is a test function, which is different from zero in the local integral domain. By the 

divergence theorem, Eq. (55) can be rewritten as 

 , 0
i i
s s

M n ud M u Q u d    

 

        ,  , 0
i i
s s

Q n ud Q u qu d   

 

                (56) 

where n  is the component of normal outward to the boundary i

s  of the local integral domain 

i

s . The simplest choice of the test function is selected as a unit step function in the local 

integral domain as follows  

1 at ,
( )

0              at .             

i

s

i

s

u
 

 


x
x

x
                                       (57) 

Then, the governing equations in Eq. (56) become 

 0
i i
s s

M n d Q d  

 

     ,   0
i i
s s

Q n d qd 

 

    .              (58) 

Considering the identity 

 , ,( )x Q Q x Q                              (59) 

and governing equation (3), we have 

 ,( )Q x Q x q      .                     (60). 

Then, we obtained the domain integral 

 
i i i
s s s

Q d x Q n d x qd    

  

      .                   (61) 

Therefore, the integration in Eq. (58) can be simplified as 

   0
i i
s s

M x Q n d qx d    

 

      .                  (62) 

If the pressure load is constant, i.e. 
0q q , we have 
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   ( )

0
i
s

i i

sM x Q n d q x    



    ,                    (63) 

 0
i
s

i

sQ n d q 



   ,                        (64) 

in which ( ) ( )

1 2( , )i ix x  indicates the centroid of the local integral domain i

s . It is worth to point 

out that the stress resultants M  and Q are given by Eq. (41) with M

 , Q

 being known 

from the DDM formulation with the Chebyshev polynomials, while 

 

 

, , ,

3,

(1 ) 2
,

2 1

,

m m m m

m m m

D
M w w w

Q C w w

       

  

 




  
   

 

 

               (65) 

where the bending stiffness ( )D D x  for non-homogenous media and displacements 

1 2 3( , , )m m mw w w  are approximated by the Lagrange series interpolation from Eq.(53) in terms of 

the nodal values. 

For the sake of simplicity, the local integral domain is selected as a circle of radius 
0r  

centered at ( ) ( )

1 2( , )i j   which corresponds to the point ( )ij
x in the physical domain, where 

0r  is 

free parameter in MLPG. A point on the local integral boundary 1 2'( , )s sS    shown in Figure 6, 

is  

( )

0

s i r n       ,  1 2cos sinn                                       (66) 

and its coordinates  in the physical domain are 

8
( )

1 2

1

( , )s s s k

k

k

x N x  


 .                     (67) 

Apparently, the different segments of global coordinates  

8
( )

1 0 1 1 1 2 0

1 1 2

8
( )

2 0 2 2 1 2 0

1 1

sin cos ( , ) ,

( , )
sin cos ( , ) ,

s k s sl l

k

s k s sl l

k

N N
dx r d x g r d

N N
dx r d x g r d

     
 

 
     

 





  
    

  

  
    

  





          (68) 

correspond to differentials 0=  sd r d    along the circle 'i

s with tangent vector 

1 2sin cos           . Thus, the integration segment is  
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                                (a)                                                                        (b) 

Figure 6. Local integral domain and its boundary: (a) circle in normalized coordinate; (b) 

physical local integral domain. 

 

 2 2 2 2

1 2 1 2 0( ) ( ) ( ) ( ) 's sds dx dx g g r d J d                    (69) 

and the tangential at point 
1 2( , )s sS x x  on the boundary 

0/( ) /st dx r d g g     ,  
2 2

1 2( ) ( )g g g                 (70) 

Therefore, the components of the normal outward to the boundary in Eqs (63), (64) are given as 

  
1 2n t , 

2 1n t                                                 (71) 

Finally, the weak form of the governing equations, Eqs (63), (64), can be written as 

  
2

* *

0

0

'm m i i

sM M x Q Q n J d q x



           
  ,   

2

*

0

0

'm i

sQ Q n J d q



      ,      (72) 

in which the bending stiffness D  is variable along the boundary i

s . Considering Eqs (15), (16) 

for DDM and Eq. (65) for 
mM , mQ  together with meshless polynomial interpolation, we 

obtained the linear algebraic equations from Eq. (72) in terms of the coefficients of the 

Chebyshev polynomials and nodal displacements. The meshless approach is applicable also to 

the homogeneous plate. Then, the fundamental solutions of the moments and shear forces in Eq. 

(72) disappear and the weak form governing equations become 

  
2

0

0

'm m i i

sM x Q n J d q x



       ,  

2

0

0

'm i

sQ n J d q



                 (73) 

i

s  

ds 

 

x(ij) 
i

s  

x2 

 

x1 

 

i

s

'
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η2 

η1 
 

ds' 
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where mM  and mQ  represent now the whole bending stress-couples and shear stress-resultants 

respectively. Because all integral functions in Eqs (72) and (73) are regular in the domain 

except the crack surface, hence, any standard integral algorithm is valid. To employ the MLPG, 

the main advantage is that the first order partial derivatives of displacement 
,kw   are required 

only in Eqs (72) and (73) in the computation process for homogenous and non-homogenous 

materials.  

6. Numerical examples 

 In order to demonstrate the efficiency and accuracy of the hybrid MDDM with either PCM 

or MLPG, a rectangular plate of 2 2H W containing a central crack of length 2a  and a 

rectangular plate of 2H W containing an edge crack of length a  are under investigation. Both 

homogenous and non-homogenous materials are considered. Without specifications in each 

example, the default values are listed in Table 2. Nodal distributions in the normalized square 

domain 1 21 ( , ) 1     are chosen as 

 ( )

1 1

1

( 1)
cos ,   1,2,...,

( 1)

i i
i L

L





 


  and  ( )

2 2

2

( 1)
cos ,   1,2,...,

( 1)

j j
j L

L





 


,        (74) 

and the dimensionless radius of the local integral domain in MLPG 
0r  is chosen as 

11/ 4( 1)L  . 

The numerical results show that the selection of the radius 
0r  has very limited influence.  

                                  Table 2. Default setting 

0E  1 Young's modulus 

  0.3 Poisson Ratio 

/h a 0.2 Normalized thickness 

/H a  2 Normalized height  

/W a  2 Normalized width 

cN  10 Chebyshev number 

1L  20 Node number 

2L  20 Node number 
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Example 2. A simply supported square plate with a centre crack 

 A simply supported square plate with a center crack of length 2a , height 2H and width 2W 

subjected to a uniformly distributed pressure load 
0q  is considered first, as shown in Figure 7. 

Three different ratios of width and thickness are considered, i.e. /W h  2, 6 and 10. This 

simplified panel in homogenous media was observed by Sosa and Eishen [42] and Dirgantara 

[11]. Figure 8 shows the normalized bending stress resultant intensity factors against the 

normalized crack length /a W . As it can be seen, the results by hybrid MDDM (MLPG) are in 

excellent agreement with those presented by Sosa and Eischen [42]. In addition, the difference 

between the results by the hybrid MDDM (PCM) and the dual BEM reported by Dirgantara [10] 

is very small. To show the convergence and accuracy of the hybrid MDDM, the values of the 

normalized bending stress resultant intensity factors for nodal density ( )mL  when / 2W h   and 

/ 0.5a W   are found in Table 3. From Table 4, it is seen that, when 
1 2 5L L  , the difference 

between the results of the PCM and MLPG is about 0.1 percent. Furthermore, we noticed that 

there is no difference between those results with different values of radius 
0r  shown in Table 4. 

 

 

 

 

 

 

 

 

                                      (a)                                                                      (b)      

Figure 7. Simply supported square plate with center crack: (a) horizontal crack; (b) slant 

crack. 
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               Table 3. Normalized SIF 2

0/( )b

IK q W a  

1 2,L L  PCM MLPG 

5,5 0.1174 0.1138 

11,11 0.1153 0.1116 

15,15 0.1143 0.1116 

 

                     

        Figure 8. Normalized stress resultant intensity factor 2

I 0/bK q W a  under uniform 

pressure load 
0q . 

             Table 4. Convergence investigation with local integral size 

0 /(0.1 )r a  0.5 0.25 0.125 0.0625 

2

0/( )b

IK q W a  0.1116 0.1116 0.1116 0.1116 

Example 3. A square FGM plate with a centre crack 

 The same configuration of the plate with a uniform pressure load 
0q  as in Example 2, but 

non-homogenous media is being investigated now. Firstly, we consider a square plate with 

either four simply supported edges or clamped edges with normalized thickness / 1/ 3h a   and 

width / 2W a  . Young’s modulus is graded horizontally as 0 1( )E E f x , where 1( ) 1f x    
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2 2

1 1( 1) /x W  , 
1 0/wE E  and 

wE E  
1( )x W . The values of the normalized stress resultant 

intensity factors for various ratios 
1  with different supports are given by the curves in Figures 

9 and 10 respectively. In order to compare other numerical methods, the finite block method 

developed by Wen et al [36,37] is considered as reference. Due to the symmetry of the problem, 

a quarter plate is modeled with two blocks only. The COD technique and Singular Stress 

Method (SSM) are employed to calculate the stress resultant intensity factors. A good 

agreement can be observed between those approaches.  

 

                    

 Figure 9. Normalized stress resultant intensity factors 2

I 0/( )bK q W a  for a simply 

supported plate subjected to uniform pressure load with 
0q  by different approaches: MDDM 

(PCM): hybrid MDDM and point collocation; MDDM (MLPG): hybrid MDDM and meshless 

local Petro-Galerkin; FBM (COD): crack opening displacement; FBM (SSM): singular stress 

method.  

Secondly, we consider Young’s modulus varying with 0 1 2( , )E E f x x , where 1 2( , )f x x   

1 1 2 2/ / /x a x a
e
 

, 1 0ln( / )WE E  and 2 0ln( / )HE E  , 1 2( , 0)WE E x W x   , 1( 0,HE E x   

2 )x H  and thickness / 0.2 10h a  . Normalized stress resultant intensity factors are given by 
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the curves in Figures 11(a) and 11(b) respectively, versus the ratios 
1  and 

2  and different 

constraints. The comparisons with the finite block method using COD are shown in the same 

figures and the average relative error is in 3%.  

  

                     

 Figure 10. Normalized stress resultant intensity factors 2

I 0/( )bK q W a  for a clamped plate 

subjected to uniform pressure load with 
0q  by different approaches.   

Finally, a square plate with a slant center crack is analyzed. Young’s modulus is graded as 

1 1 /

0

x a
E E e


 , where 

1 0ln( / )WE E   and thickness / 0.2 10h a   and / 2W a  . The variation 

of the normalized stress resultant intensity factors by the hybrid MDDM (MLPG) is shown in 

Figures 12(a) and 12(b) against the slant angle   and 
1 . In addition, we noticed that the 

absolute values of mode II and mode III stress resultant intensity factors are too small to be 

presented. 
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Figure 11. Normalized stress resultant intensity factor 2

I 0/bK q W a  subjected to uniform 

pressure load: (a) simply supported edges; (b) clamped edges. 
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Figure 12. Normalized stress resultant intensity factor 2

I 0/bK q W a  with slant centre crack 

subjected to uniform pressure load: (a) simply supported edges; (b) clamped edges. 
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Example 4. A rectangular FGM plate with an edge crack 

 Consider a rectangular plate of width W and height 2H containing an edge crack of length a 

under uniform pressure load 
0q , as shown in Figure 13, and ratios / 1H W  , / 0.1h W  . 

Young’s modulus is graded as 
0 1( )E E f x , where 1 1 /

1( ) x Wf x e , 
1 0ln( / )wE E   and 

wE E  

1( )x W . We have the results of the normalized stress resultant intensity factors by MDDM 

(MLPG) shown in Figure 14 against the crack length /a W and material parameter 
1 . Again, 

the results by the finite block method are presented in Figure 15 for comparison. Seeing from 

Figure 15, we found that the results by MDDM (MLPG) and FBM are in a good agreement with 

two blocks used in FBM. The error is bigger if the crack length is too small ( / 0.1a W  ) or is 

too large ( / 0.9a W  ). 

 

 

 

 

 

 

 

 

 

 

 

 

   

       Figure 13. Rectangular plate with edge crack. 
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Figure 14. Normalized stress resultant intensity factor 2

I 0/bK q W a  with four simply 

supported edges. 

 

                   

       Figure 15. Comparison with the results by FBM when 1 0.25  . 
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7. Conclusion 

 A hybrid meshless displacement discontinuity method is formulated to the bending of the 

FGM Reissner's plate with cracks in this paper. It is the first attempt to solve the crack problems 

in the continuous non-homogeneous plate structures. The key point is that the fundamental 

solution for a homogenous body is employed to generate the displacement discontinuity on the 

crack surface. In the MLPG, a unit step function is utilized as the test function in the local 

weak-form of governing equations with Lagrange polynomials interpolation. The advantages of 

the boundary element method and meshless approaches are inherited in the hybrid MDDM, to 

deal with the fracture problems. By introducing the Chebyshev polynomials in the hyper-

singular integral equations, the analytical solution of the stress intensity factors can be obtained 

with high accuracy. Several numerical examples demonstrate the accuracy and efficiency of the 

present hybrid meshless displacement discontinuity method via tests in the case of 

homogeneous media. The following is the summary of the hybrid meshless displacement 

discontinuity method applied to Reissner’s plate(1) The fundamental solutions found in the case 

of homogenous media are useful also for non-homogenous media; 

(2) Highly accurate solution can be obtained by the meshless approaches, as all components of 

stress and displacement are continuous on the interface between each two blocks; 

(3) Numerical solutions exhibit convergence with increasing the number of the Chebyshev 

polynomials in DDM as well as the node density used by MLPG; 

(4) Crack propagations can be solved easily without re-meshing.  
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