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Abstract

For a separable finite diffuse measure space M and an orthonormal basis {ϕn} of L2(M)

consisting of bounded functions ϕn ∈ L∞(M), we find a measurable subset E ⊂ M of arbi-

trarily small complement |M \ E| < ε, such that every measurable function f ∈ L1(M) has

an approximant g ∈ L1(M) with g = f on E and the Fourier series of g converges to g, and

a few further properties. The subset E is universal in the sense that it does not depend on

the function f to be approximated. Further in the paper this result is adapted to the case

of M = G/H being a homogeneous space of an infinite compact second countable Hausdorff

group. As a useful illustration the case of n-spheres with spherical harmonics is discussed. The

construction of the subset E and approximant g is sketched briefly at the end of the paper.

Introduction

In the present paper we work with finite measure spaces (M,Σ, µ). For efficiency of nomenclature

we will write M = (M,Σ, µ) and |A| = |A|µ = µ(A) for every A ∈ Σ, where the σ-algebra Σ and

the measure µ are clear from the context. Consider a separable finite measure space (M,Σ, µ).

Separability here simply means that all spaces Lp(M) for 1 ≤ p < ∞ are separable. Let {ϕn}∞n=1

be an orthonormal basis of L2(M) with ϕn ∈ L∞(M) for all n ∈ N. For a function f ∈ L1(M) we
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denote its Fourier components by

Yn(x; f) = cn(f)ϕn(x), cn(f) = (f, ϕn)2 =

∫
M
f(x)ϕ∗n(x)dµ(x), ∀n ∈ N,

where ϕ∗n denotes the complex conjugate of ϕn. The possibly divergent Fourier series of f will be

∞∑
n=1

Yn(x; f).

Note that already for the trigonometric system on the interval there exists an integrable function of

which the Fourier series diverges in L1 ([1], Chapter VIII, §22). We will often make use of Fourier

polynomials and orthogonal series of the form

Q(x) =
∑
n

Yn(x) =
∑
n

cnϕn(x), cn ∈ C, (1)

without reference to a particular function for which these may be the Fourier components. Denote

by

σ(f) = {n ∈ N cn(f) 6= 0} , f ∈ L1(M), (2)

the spectrum of a function f .

Before stating our main theorem let us recall the notion of diffuseness for a measure space.

Definition 1 In a measure space (M,Σ, µ), a measurable subset A ∈ Σ is called an atom if |A| > 0

and for every B ∈ Σ with B ⊆ A either |B| = |A| or |B| = 0. The measure space (M,Σ, µ) is

called diffuse or non-atomic if it has no atoms.

The main result of this paper is the following

Theorem 1 LetM be a separable finite diffuse measure space, and let {ϕn}∞n=1 be an orthonormal

system in L2(M) consisting of bounded functions ϕn ∈ L∞(M), n ∈ N. For every ε, δ > 0 there

exists a measurable subset E ∈ Σ with measure |E| > |M| − δ and with the following property; for

each function f ∈ L1(M) with ‖f‖1 > 0 there exists an approximating function g ∈ L1(M) that

satisfies:

1. ‖f − g‖1 < ε,

2. f = g on E,
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3. the Fourier series of g converges in L1(M),

4. we have

sup
m

∥∥∥∥∥
m∑
n=1

Yn(g)

∥∥∥∥∥
1

< 2 min {‖f‖1, ‖g‖1} .

Luzin proved that every almost everywhere finite function f on [0, 1] can be modified on a subset of

arbitrarily small positive measure so that it becomes continuous. Further results in this direction

were obtained by Menshov and others. See [15], [16], [11], [17], [19], [18], [14], [13], [4], [5], [6], [7],

[8], [10], [9] for earlier results in this direction for classical orthonormal systems. Let us note that

if M is not diffuse (i.e., it has atoms) then Statement 4 of this theorem may not hold with any

coefficient on the right hand side. This is illustrated in the next

Example 1 For every natural N ∈ N, let (M,Σ, µ) = (N2, 2
N2 , P ) be the probability space with

orthonormal basis {ϕ1, ϕ2} of L2(M), where

N2 = {1, 2}, P ({1}) =
3

16N2 − 1
, ϕ1 =

(
2N,

1

2

)
.

Take δ = 1/35 and f = (1, 0). Then |E| > 1− δ forces E =M, and therefore f = g on E implies

f = g on M. Now

‖Y1(g)‖1 = ‖Y1(f)‖1 = |c1(f)|‖ϕ1‖1 =
3N [(8N + 3)2 − 25]

4(16N2 − 1)
> N‖f‖1 =

3N

16N2 − 1
.

Theorem 1 is equivalent to the following theorem, which can be obtained by repeatedly applying

Theorem 1 with fixed f ∈ L1(M) and εm = 1
m , δm = 1

m , m = 1, 2, . . ..

Theorem 2 LetM be a separable finite diffuse measure space, and let {ϕn}∞n=1 be an orthonormal

system in L2(M) consisting of bounded functions ϕn ∈ L∞(M), n ∈ N. There exists an increasing

sequence of subsets {Em}∞m=1, Em ⊂ Em+1 ⊂ M, with lim
m→∞

|Em| = |M|, such that for every

integrable function f ∈ L1(M) with ‖f‖1 > 0 there exists a sequence of approximating functions

{gm}∞m=1, gm ∈ L1(M), so that the following statements hold:

1. gm −−−−→
m→∞

f in L1(M),

2. f = gm on Em, ∀m ∈ N,

3. the Fourier series of gm converges in L1(M), ∀m ∈ N,
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4. we have

sup
N

∥∥∥∥∥
N∑
n=1

Yn(gm)

∥∥∥∥∥
1

< 2 min {‖f‖1, ‖gm‖1} , ∀m ∈ N.

Remark 1 Not for every orthonormal system {ϕn}∞n=1 does an arbitrary integrable function f ∈

L1(M) have an orthogonal series
∑∞
n=1 Yn of the form (1) that converges to f in L1(M), and if

that happens then
∑∞
n=1 Yn is necessarily the Fourier series of f , i.e., Yn = Yn(f).

For instance, in case of spherical harmonics this is guaranteed only in L2(S2) [2]. However, the

following weaker statement is a corollary of Theorem 2 and holds true for all integrable functions.

Corollary 1 Under the assumptions of Theorem 2, there exists an increasing sequence of subsets

{Em}∞m=1, Em ⊂ Em+1 ⊂ M, such that lim
m→∞

|Em| = |M| with the following property. For

any fixed integrable function f ∈ L1(M) with ‖f‖1 > 0 and for every natural number m ∈ N

there is an orthogonal series
∑∞
n=1 Y

(m)
n of which the restriction

∑∞
n=1 Y

(m)
n |Em to the subset Em

converges to the restriction f |Em in L1(Em). In L1(M) the series
∑∞
n=1 Y

(m)
n converges to a

function gm ∈ L1(M). The sequence of these functions {gm}∞m=1 converges to f in L1(M).

The general case

Theorem 1 is true for every finite separable diffuse measure spaceM, but it will be more convenient

to reduce the problem to that for a smaller class of measure spaces and then to prove the theorem for

that class. First let us show that Theorem 1 is invariant under isomorphisms of measure algebras.

For that purpose we will reformulate Theorem 1 in a way that makes no reference to the actual

measure space M but only to its measure algebra B(M). We note that if we replace the set E

produced by Theorem 1 by another measurable set E′ ∈ Σ such that the symmetric difference is

null, |E 4 E′| = 0, then all statements of the theorem remain valid with E′ instead of E. This

brings us to the following equivalent formulation of Theorem 1.

Theorem 3 LetM be a finite separable diffuse measure space, and let {ϕn}∞n=1 be an orthonormal

system in L2(M) consisting of bounded functions ϕn ∈ L∞(M), n ∈ N. For every ε, δ > 0 there

exists a function χE ∈ L∞(M) with χ2
E = χE and ‖χE‖1 > |M | − δ, with the following properties;

for each function f ∈ L1(M) with ‖f‖1 > 0 there exists an approximating function g ∈ L1(M) that

satisfies:
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1. ‖f − g‖1 < ε,

2. (f − g)χE = 0,

3. the Fourier series of g converges in L1(M),

4. we have

sup
m

∥∥∥∥∥
m∑
n=1

Yn(g)

∥∥∥∥∥
1

< 2 min {‖f‖1, ‖g‖1} .

In this form the theorem relies only upon spaces Lp(M), p = 1, 2,∞, which can be constructed

purely out of the measure algebra B(M) with no recourse to the underlying measure space M.

In particular, if two measure spaces have isomorphic measure algebras then the statements of

Theorem 1 on these two spaces are equivalent.

Remark 2 It is known in measure theory that every finite separable diffuse measure space M

satisfies

B(M) ' B ([0, a]) ,

where a > 0 is a positive real number.

Thus, without loss of generality, we can restrict ourselves to measure spaces M = [0, a]. The next

reduction comes from the following observation.

Remark 3 If Theorem 3 is true for the finite separable measure space (M, µ) then it is true also

for (M, λµ) for every λ > 0.

Indeed, for every p ∈ [1,∞] the operator Tp f
.
= λ−

1
p f defines an isometric isomorphism

Tp : Lp(M, µ)→ Lp(M, λµ). It is now straightforward to check that if the statements of Theorem 3

hold on (M, µ) with data {ϕn}∞n=1, ε, δ, χE , f , g, then they hold on (M, λµ) with data {T2 ϕn}∞n=1,

ε, λδ, T∞ χE , T1 f , T1 g.

Thus we established that without loss of generality we are allowed to prove the theorem just

for the unit interval M = [0, 1]. In fact, in the next sections we will prove Theorem 1 on separable

cylindric probability spaces, i.e., separable probability spaces of the formM = [0, 1]⊗N , where N

is another probability space. The unit interval is trivially cylindric, [0, 1] ' [0, 1]⊗ {1}, and it may

seem an unnecessary effort to prove the theorem for a cylindric space instead of [0, 1]. But note

that the result cited in Remark 2 is very abstract and the produced isomorphisms are in general

far from being geometrically natural. Our proof of Theorem 1 is constructive, and the construction

5



of the set E highly depends on the cylindric structure. If the space at hand has a natural cylindric

structure then this approach gives a geometrically more sensible set E than what we would expect

had we identified the cylinder with the unit interval through a wild measure algebra isomorphism.

The particular case

In this section we will prove the main theorem for the particular case where M = (M,Σ, µ) is a

separable cylindric probability space

M = [0, 1]⊗N . (3)

Here N = (N ,Σ0, ν) is any separable probability space. We will write M3 x = (t, y) ∈ [0, 1]×N .

The core lemmata

First let us state a variant of Féjér’s lemma.

Lemma 1 Let a, b ∈ R, a < b. For every f ∈ L1[a, b] and g ∈ L∞(R), g being (b− a)-periodic,

lim
λ→+∞

∫ b

a

f(t)g(λt)dt =
1

b− a

∫ b

a

f(t)dt

∫ b

a

g(t)dt.

This lemma is given in [1, page 77] with [a, b] = [−π, π], but the proof for arbitrary a and b follows

with only trivial modifications.

We proceed to our first critical lemma.

Lemma 2 Let ∆ = [a, b]×∆0 ∈ Σ with [a, b] ⊂ [0, 1] and ∆0 ∈ Σ0, 0 6= γ ∈ R, ε, δ ∈ (0, 1) and

N ∈ N be given. Then there exists a function g ∈ L∞(M), a measurable set Σ 3 E ⊂ ∆ and a

Fourier polynomial of the form

Q(x) =

M∑
n=N

Yn(x), N ≤M ∈ N,

such that

1. |E| > |∆|(1− δ),

2. g(x) = γ for x ∈ E and g(x) = 0 for x /∈ ∆,

3. |γ||∆| < ‖g‖1 < 2|γ||∆|,
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4. ‖Q− g‖1 < ε,

5. and

max
N≤m≤M

∥∥∥∥∥
m∑

n=N

Yn

∥∥∥∥∥
1

≤
|γ|
√
|∆|(1 + δ)√
δ

.

Proof: Set

δ∗
.
=

δ

1 + δ
∈
(

0,
1

2

)
. (4)

Define the 1-periodic function I : R→ R by setting

I(t) = 1− 1

δ∗
χ[0,δ∗)(t) =

1 if t ∈ [δ∗, 1),

1− 1
δ∗

if t ∈ [0, δ∗)

, (5)

for t ∈ [0, 1) and continuing periodically. Then obviously

∫ 1

0

I(t)dt = 0. (6)

By Féjér’s lemma

lim
s→+∞

∫
∆

I(st)ϕ∗n(t, y)dtdy = lim
s→+∞

∫ b

a

I(st)

∫
∆0

ϕ∗n(t, y)dydt

= lim
s→+∞

∫ 1

0

I(st)

[
χ[a,b](t)

∫
∆0

ϕ∗n(t, y)dy

]
dt =

∫ 1

0

I(t)dt

∫
∆

ϕ∗n(x)dx = 0. (7)

Choose a natural number s0 ∈ N sufficiently large so that

s0 >
(1− δ∗)2

δ2
∗(b− a)

and

∣∣∣∣∫
∆

I(s0t)ϕ
∗
n(t, y)dtdy

∣∣∣∣ < ε

2N |γ|
, 1 ≤ n ≤ N. (8)

Set

g(x)
.
= γI(s0t)χ∆(x), E

.
= {x ∈ ∆ g(x) = γ} . (9)

Then it can be seen that

|E| ≥ |∆| bs0(b− a)c(1− δ∗)
s0(b− a)

> |∆|(1− δ∗)
(

1− 1

s0(b− a)

)
> |∆|(1− δ), (10)

where the first inequality of formula (8) and then formula (4) were used in the last step. Clearly,
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g ∈ L∞(M) and thus we have proven Statements 1 and 2. Next we note using (4) that

∫
∆

|I(s0t)|dx =

∫
E

dx+

∫
∆\E

∣∣∣∣1− 1

δ∗

∣∣∣∣ dx = |E|+ 1

δ
(|∆| − |E|), (11)

and then by (1− δ)|∆| < |E| < |∆| we find that

|∆| < |E|+ 1

δ
(|∆| − |E|) < 2|∆|, (12)

which together entail

|∆| <
∫

∆

|I(s0t)|dx < 2|∆|. (13)

Similarly,

∫
∆

|I(s0t)|2dx =

∫
E

dx+

∫
∆\E

(
1− 1

δ∗

)2

dx = |E|+ 1

δ2
(|∆| − |E|) <

(
1 +

1

δ

)
|∆|. (14)

Formulae (9) and (13) imply that

|γ||∆| < ‖g‖1 =

∫
M
|g(x)|dx = |γ|

∫
∆

|I(s0t)|dx < 2|γ||∆|, (15)

which proves Statement 3. In a similar fashion we obtain

‖g‖22 =

∫
M
|g(x)|2dx = γ2

∫
∆

|I(s0t)|2dx <
(

1 +
1

δ

)
γ2|∆|. (16)

We have g ∈ L∞(M) ⊂ L2(M), and therefore the Fourier series
∑
Yn(g) converges to g in L2(M).

Thus we can choose the natural number M ∈ N so large that

∥∥∥∥∥
M∑
n=1

Yn(g)− g

∥∥∥∥∥
2

<
ε

2
. (17)

Further, from formula (8) we estimate the magnitude of the first N Fourier coefficients of g as

|cn(g)| =
∣∣∣∣∫
M
g(x)ϕ∗n(x)dx

∣∣∣∣ = |γ|
∣∣∣∣∫

∆

I(s0t)ϕ
∗
n(x)dx

∣∣∣∣ < ε

2N
, 1 ≤ n ≤ N. (18)

8



Finally, set

Q(x)
.
=

M∑
n=N

Yn(x; g), ∀x ∈M. (19)

In order to prove Statement 4 we write

‖Q− g‖1 ≤ ‖Q− g‖2 =

∥∥∥∥∥
M∑
n=N

Yn(g)− g

∥∥∥∥∥
2

≤

∥∥∥∥∥
M∑
n=1

Yn(g)− g

∥∥∥∥∥
2

+

∥∥∥∥∥
N−1∑
n=1

Yn(g)

∥∥∥∥∥
2

≤

∥∥∥∥∥
M∑
n=1

Yn(g)− g

∥∥∥∥∥
2

+

N−1∑
n=1

|cn(g)|‖ϕn‖2 < ε, (20)

where formulae (17) and (18) were used in the last step along with the normalization ‖ϕn‖2 = 1.

Using the pairwise orthogonality of the Fourier components Yn(g) and formula (16) we can obtain

the coarse estimate∥∥∥∥∥
m∑

n=N

Yn(g)

∥∥∥∥∥
2

2

=

m∑
n=N

‖Yn(g)‖22 ≤
∞∑
n=1

‖Yn(g)‖22 = ‖g‖22 <
(

1 +
1

δ

)
γ2|∆|, (21)

which immediately yields∥∥∥∥∥
m∑

n=N

Yn(g)

∥∥∥∥∥
1

≤

∥∥∥∥∥
m∑

n=N

Yn(g)

∥∥∥∥∥
2

<
|γ|
√
|∆|(1 + δ)√
δ

, m > N, (22)

thus proving Statement 5. Note that the inequality ‖.‖1 ≤ ‖.‖2 used above hold thanks to the

convenient assumption that we are in a probability space. �

Lemma 3 Let f ∈ L1(M), ε, δ ∈ (0, 1), N0 ∈ N. Then ∃E ∈ Σ, g ∈ L∞(M) and

Q(x) =

N∑
n=N0

Yn(x), N ∈ N,

such that

1. |E| > 1− δ,

2. x ∈ E implies g(x) = f(x),

3. 1
3‖f‖1 < ‖g‖1 < 3‖f‖1,

4. ‖g −Q‖1 < ε,
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5. and

sup
N0≤m≤N

∥∥∥∥∥
m∑

n=N0

Yn

∥∥∥∥∥
1

< 3‖f‖1.

Proof: For every measurable partition of N

N =

ν̃0⊔
i=1

∆̃i, ∆̃i ∈ Σ0, i 6= j ⇒
∣∣∣∆̃i ∩ ∆̃j

∣∣∣ = 0, ∀i, j = 1, . . . ν̃0, ν̃0 ∈ N, (23)

and every partition 0 = x0 < x1 < . . . < xν̄0 = 1, ν̄0 ∈ N, of the unit interval, the product partition

∆k = [xl−1, xl]× ∆̃i, k = ν̄0 · i+ l − 1 = 1, . . . , ν0
.
= ν̄0 · ν̃0, l = 1, . . . , ν̄0, i = 1, . . . , ν̃0, (24)

is a measurable partition of M with the property that

max
1≤k≤ν0

|∆k| ≤ max
1≤l≤ν̄0

|xl − xl−1|. (25)

For every product partition {∆k}ν0k=1 as above and every tuple of real numbers {γk}ν0k=1 consider

the step function

Λ(x) =

ν0∑
k=1

γkχ∆k
(x), ∀x ∈M. (26)

By the assumption of separability of M we know that step functions of the form (26) subordinate

to product partitions are dense in all spaces Lp(M) for 1 ≤ p < ∞. Choose a product partition

and a subordinate step function such that

‖Λ− f‖1 < min

{
1

2
ε,

1

3
‖f‖1

}
. (27)

Note that the numbers γk are not assumed to be distinct, thus we can refine the given partition

without changing γk and the function Λ(x). We use the property (25) to refine the product partition

{∆k}ν0k=1 until it satisfies

144γ2
k|∆k|(1 + δ) < δ‖f‖21, k = 1, . . . , ν0. (28)
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Now we apply Lemma 2 iteratively with

∆← ∆k, γ ← γk, ε← 1

2ν0+2
min {ε, ‖f‖1} , δ ← δ, N ← Nk−1 (29)

for k = 1, . . . , ν0, obtaining at each k a function gk ∈ L∞(M), a set Σ 3 Ek ⊂ ∆k, a number

Nk−1 ≤ Nk ∈ N and a Fourier polynomial

Qk(x) =

Nk−1∑
n=Nk−1

Yn(x) (30)

with the following properties:

1◦. |Ek| > |∆k|(1− δ),

2◦. gk(x) = γk for x ∈ Ek and gk(x) = 0 for x /∈ ∆k,

3◦. |γk||∆k| < ‖gk‖1 < 2|γk||∆k|,

4◦. ‖Qk − gk‖1 < 1
2ν0+2 min{ε, ‖f‖1},

5◦. and

max
Nk−1≤m<Nk

∥∥∥∥∥∥
m∑

n=Nk−1

Yn

∥∥∥∥∥∥
1

≤
|γk|
√
|∆k|(1 + δ)√

δ
.

Set

E
.
=

ν0⋃
k=1

Ek, g(x)
.
= f(x)−

[
Λ(x)−

ν0∑
k=1

gk(x)

]
, (31)

N
.
= Nν0 − 1, Q(x)

.
=

ν0∑
k=1

Qk(x) =

N∑
n=N0

Yn(x), ∀x ∈M. (32)

First we check that from (26), (1◦), (2◦) and (31) it follows that

|E| =
ν0∑
k=1

|Ek| >
ν0∑
k=1

|∆k| (1− δ) = 1− δ, (33)

x ∈ E =⇒ x ∈ Ek =⇒ Λ(x) = γk = gk(x), gl(x) = 0, l 6= k =⇒ g(x) = f(x), (34)

so that Statements 1 and 2 are proven. Next we observe using (4◦), (27), (31) and (32) that

‖Q− g‖1 =

∥∥∥∥∥
ν0∑
k=1

[Qk − gk] + [f − Λ]

∥∥∥∥∥
1

≤
ν0∑
k=1

‖Qk − gk‖1 + ‖f − Λ‖1 < ε, (35)
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which proves Statement 4. Further, from (26), (27), (2◦) and (3◦) we deduce that

‖g‖1 ≤
ν0∑
k=1

‖gk‖1 + ‖f − Λ‖1 ≤ 2

ν0∑
k=1

|γk||∆k|+ ‖f − Λ‖1

= 2‖Λ‖1 + ‖f − Λ‖1 ≤ 3‖f − Λ‖1 + 2‖f‖1 < 3‖f‖1. (36)

Moreover, the same formulae also imply

‖g‖1 +
1

3
‖f‖1 > ‖g‖1 + ‖f − Λ‖1 ≥ ‖g − f + Λ‖1

=

ν2
0∑

k=1

‖gk‖1 >
ν2
0∑

k=1

|γk||∆k| = ‖Λ‖1 ≥
∣∣‖Λ− f‖1 − ‖f‖1∣∣ > 2

3
‖f‖1, (37)

i.e., ‖f‖1 < 3‖g‖1, thus proving Statement 3. In order to prove Statement 5 let us fix an N0 ≤ m ≤

N . Then there is a 1 ≤ k0 ≤ ν0 such that Nk0−1 ≤ m < Nk0 , and thus by (30) and (32) we have

m∑
n=N0

Yn(x) =

k0−1∑
k=1

Qk(x) +

m∑
Nk0−1

Yn(x). (38)

Finally we use this along with formulae (3◦), (4◦), (5◦) and (28) to obtain

∥∥∥∥∥
m∑

n=N0

Yn(x)

∥∥∥∥∥
1

≤
k0−1∑
k=1

‖Qk − gk‖1 +

k0−1∑
k=1

‖gk‖1 +

∥∥∥∥∥∥
m∑

k=Nk0−1

Yn

∥∥∥∥∥∥
1

<
1

4
‖f‖1 + 2‖Λ‖1 +

|γk0 |
√
|∆k0 |(1 + δ)√

δ
< 3‖f‖1, (39)

and this completes the proof. �

Lemma 4 Let {Rk}∞k=1 be any fixed ordering of the set of all Fourier polynomials with rational

coefficients into a sequence. Then for every f ∈ L1(M) and sequence {bs}∞s=1 of positive numbers

bs > 0 there exists subsequence {Rks}∞s=0 such that

1. ‖Rk0 − f‖1 ≤ 1
2‖f‖1

2. ‖Rks‖1 < bs for s ≥ 1

3.
∑∞
s=0Rks = f in L1(M).

Proof: Let us first convince ourselves that Fourier polynomials with rational coefficients are dense
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in L1(M). Indeed, by the assumption of separability, step functions are dense in L1(M), but they

all belong also to the separable Hilbert space L2(M). On the other hand, Fourier polynomials

are clearly dense in L2(M). And finally, an arbitrary Fourier polynomial can be approximated

in L2(M) by a Fourier polynomial with rational coefficients (this amounts to approximating the

Fourier coefficients by rational numbers). A three-epsilon argument together with ‖.‖1 ≤ ‖.‖2 then

yields the assertion.

Using the denseness of {Rk}∞k=1 let us choose a natural number k0 ∈ N such that

‖Rk0 − f‖1 ≤
1

2
min {‖f‖1, b1} . (40)

Then we can choose further natural numbers ks ∈ N iteratively as follows. For every s ∈ N, again

by using the denseness argument, choose a number ks so that ks > ks−1 and

∥∥∥∥∥f −
s∑
r=0

Rkr

∥∥∥∥∥
1

=

∥∥∥∥∥Rks −
(
f −

s−1∑
r=0

Rkr

)∥∥∥∥∥
1

<
1

2
min

{
bs, bs+1,

1

s

}
, ∀s ∈ N. (41)

Statements 1 and 3 are clearly satisfied. For Statement 2 we have

‖Rks‖1 =

∥∥∥∥∥Rks −
(
f −

s−1∑
r=0

Rkr

)
+

(
f −

s−1∑
r=0

Rkr

)∥∥∥∥∥
1

≤

∥∥∥∥∥Rks −
(
f −

s−1∑
r=0

Rkr

)∥∥∥∥∥
1

+

∥∥∥∥∥f −
s−1∑
r=0

Rkr

∥∥∥∥∥
1

<
1

2
bs +

1

2
bs = bs, ∀s ∈ N. (42)

Lemma is proven. �

The main theorem

Here we will prove Theorem 1 for the particular case of (M,Σ, µ) being a separable cylindric

probability space as in (3).

Proof: Recall that ε, δ > 0 and f ∈ L1(M) with ‖f‖1 > 0 are given. Denote

ε0
.
= min {ε, ‖f‖1} . (43)

Let {Rk}∞k=1 be any ordering of the set of all Fourier polynomials with rational coefficients into a

13



sequence. Iteratively applying Lemma 3 with

f ← Rk, ε← ε0
2k+7

, δ ← δ

2k
, N0 ← Nk−1 (44)

for k = 1, 2, . . . we obtain for each k ∈ N a subset Ẽk ∈ Σ, a function g̃k ∈ L∞(M), a number

Nk−1 ≤ Nk ∈ N (set N0 = 0) and a Fourier polynomial

Q̃k(x) =

Nk−1∑
n=Nk−1

Ỹn(x) (45)

with the following properties:

1†. |Ẽk| > 1− δ
2k

,

2†. x ∈ Ẽk implies g̃k(x) = Rk(x),

3†. 1
3‖Rk‖1 < ‖g̃k‖1 < 3‖Rk‖1,

4†. ‖g̃k − Q̃k‖1 < ε02−k−7,

5†. and

sup
Nk−1≤m<Nk

∥∥∥∥∥∥
m∑

n=Nk−1

Ỹn

∥∥∥∥∥∥
1

< 3‖Rk‖1.

Define the desired set E as

E
.
=

∞⋂
k=1

Ẽk. (46)

Observe from (1†) that

|E| = 1− |M \ E| ≥ 1−
∞∑
s=1

|M \ Ẽk| > 1−
∞∑
k=1

δ

2k
= 1− δ. (47)

Note that E is universal, i.e., independent of f .

Let {Rks}∞s=0 be the subsequence of Fourier polynomials provided by Lemma 4 applied with

f ← f, bs ←
ε0

2s+6
. (48)

It satisfies

1◦. ‖Rk0 − f‖1 ≤ 1
2‖f‖1,

2◦. ‖Rks‖1 < ε02−s−6 for s ≥ 1,

14



3◦.
∑∞
s=0Rks = f in L1(M).

We want to use mathematical induction in order to define a sequence of natural numbers

1 < ν1 < ν2 < . . . and a sequence of functions {gs}∞s=1, gs ∈ L1(M), such that for all s ∈ N we have

1∗. x ∈ Ẽνs implies gs(x) = Rks(x),

2∗. ‖gs‖1 < ε02−s−2,

3∗. ∥∥∥∥∥∥
s∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

<
ε0

2s+6
,

4∗.

max
Nνs−1≤m<Nνs

∥∥∥∥∥∥
m∑

n=Nνs−1

Ỹn

∥∥∥∥∥∥
1

<
ε0
2s
.

Assume that for some s ∈ N, the choice of 1 < ν1 < ν2 < . . . < νs−1 and g1, g2, . . . , gs−1 satisfying

(3∗) has been already made (for s = 1 this is trivially correct). Remember that by σ(h) we have

denoted the {ϕn}-spectrum of a function h ∈ L1(M), i.e., the support of its Fourier series. Using the

denseness of {Rk}∞k=1 (see Lemma 4) choose a natural number νs ∈ N such thatNν1−1 > maxσ(Rk0)

and νs > νs−1 for s > 1, and∥∥∥∥∥∥Rνs −
Rks − s−1∑

j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

<
ε0

2s+7
. (49)

Then by (2◦) and (3∗) we have for all s ∈ N that∥∥∥∥∥∥Rks −
s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

≤ ‖Rks‖1 +

∥∥∥∥∥∥
s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

<
3 ε0
2s+6

, (50)

which combined with (49) implies

‖Rνs‖1 ≤

∥∥∥∥∥∥Rνs −
Rks − s−1∑

j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥Rks −
s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

<
7 ε0
2s+7

. (51)

Set

gs(x)
.
= Rks(x) + g̃νs(x)−Rνs(x). (52)
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Condition (1∗) is easily satisfied thanks to (2†) with k = νs. For condition (2∗) we write

‖gs‖1 = ‖Rks + g̃νs −Rνs‖1

≤

∥∥∥∥∥∥Rνs −Rks +

s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

+ ‖g̃νs‖1 <
ε0

2s+2
, (53)

where we used (49), (3†), (3∗|s−1) and (51) in the last step. To show that condition (3∗) is satisfied

we observe that∥∥∥∥∥∥
s∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥Q̃νs − gs +

s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥Q̃νs −Rks − g̃νs +Rνs +

s−1∑
j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

≤
∥∥∥Q̃νs − g̃νs∥∥∥

1
+

∥∥∥∥∥∥Rνs −
Rks − s−1∑

j=1

[Q̃νj − gj ]

∥∥∥∥∥∥
1

<
ε0

2s+6
, (54)

where (4†), (49) and νs > s were used in the second inequality. Finally we satisfy condition (4∗)

using (5†) and (51),

max
Nνs−1≤m<Nνs

∥∥∥∥∥∥
m∑

n=Nνs−1

Ỹn

∥∥∥∥∥∥
1

< 3‖Rνs‖1 <
ε0
2s
. (55)

The iteration is thus complete, and by mathematical induction we construct the sequences {νs}∞s=1

and {gs}∞s=1 satisfying conditions (1∗) through (4∗) for all s ∈ N. Define

g(x)
.
= Rk0(x) +

∞∑
s=1

gs(x), ∀x ∈M. (56)

From (53) it follows that
∞∑
s=1

‖gs‖1 <
13 ε0
64

<∞, (57)

thus g ∈ L1(M). The construction is now complete, and it remains to verify the statements of the

theorem.

To prove Statement 2 of the theorem we note that x ∈ E means x ∈ Ẽνs , and hence by (2†)
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gs(x) = Rks(x) for all s ∈ N. It then follows from (3◦) that

g(x) = Rk0(x) +

∞∑
s=1

gs(x) =

∞∑
s=0

Rks(x) = f(x), ∀x ∈ E. (58)

Let {Yn}∞n=1 be the series of Yn = cnϕn such that

Nνs−1∑
n=1

Yn = Rk0 +

s∑
j=1

Q̃νj , ∀s ∈ N. (59)

Let m ∈ N, and let r ∈ N be the largest natural number such that Nνr−1 ≤ m (if m < Nν1−1 set

r = 1). Set m∗
.
= min{m,Nνr − 1}. Then by (56), (3∗), (4∗) and (53) we get

∥∥∥∥∥
m∑
n=1

Yn − g

∥∥∥∥∥
1

=

∥∥∥∥∥
m∗∑
n=1

Yn − g

∥∥∥∥∥
1

=

∥∥∥∥∥∥
r−1∑
j=1

Q̃νj +

m∗∑
n=Nνr−1

Ỹn −
r−1∑
j=1

gj −
∞∑
j=r

gj

∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥
r−1∑
j=1

[
Q̃νj − gj

]∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
m∗∑

n=Nνr−1

Ỹn

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
∞∑
j=r

gj

∥∥∥∥∥∥
1

<
23 ε0
2r+4

. (60)

Now as m → ∞ obviously r → ∞ as well, thus making the above expression vanish, which proves

that
∑
Yn is the Fourier series of g, i.e., Yn = Yn(g), and it converges to g as required in Statement

3. Further, from (2◦), (3◦), (56) and (57) we have that

‖f − g‖1 =

∥∥∥∥∥
∞∑
s=1

Rks −
∞∑
s=1

gs

∥∥∥∥∥
1

≤
∞∑
s=1

‖Rks‖1 +

∞∑
s=1

‖gs‖1 <
7 ε0
32

, (61)

which in view of (43) proves Statement 1. Finally, using (60) and (61) we establish that∥∥∥∥∥
m∑
n=1

Yn

∥∥∥∥∥
1

≤

∥∥∥∥∥
m∑
n=1

Yn − g

∥∥∥∥∥
1

+ ‖f − g‖1 + ‖f‖1 <
15 ε0
16

+ ‖f‖1 < 2‖f‖1, (62)

but also ∥∥∥∥∥
m∑
n=1

Yn

∥∥∥∥∥
1

≤

∥∥∥∥∥
m∑
n=1

Yn − g

∥∥∥∥∥
1

+ ‖g‖1 <
23

32
‖f‖1 + ‖g‖1. (63)

Note that by (61)

‖f‖1 ≤ ‖g‖1 + ‖f − g‖1 < ‖g‖1 +
7

32
‖f‖1, (64)
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and therefore 25‖f‖1 < 32‖g‖1. This together with (63) yields∥∥∥∥∥
m∑
n=1

Yn

∥∥∥∥∥
1

<
23

25
‖g‖1 + ‖g‖1 < 2‖g‖1, (65)

which establishes Statement 4. The proof of the theorem is accomplished. �

Compact groups

Let G be a compact Hausdorff topological group, Σ the Borel σ-algebra and dµ(x) = dx the

normalized Haar measure. Then µ is diffuse if and only if G is infinite, which we will assume here.

Now by [12, Theorem 28.2] we have that dimL2(G) = w(G), therefore (G,Σ, µ) is separable if and

only if G is second countable. This will also be assumed in what follows. This implies in particular,

through Peter-Weyl theorem, that the dual Ĝ is countable. For a detailed exposition of harmonic

analysis on compact groups consult, e.g., [20] or [3].

For every irreducible unitary representation ρ ∈ Ĝ (or rather [ρ] ∈ Ĝ), let Hρ be the representa-

tion Hilbert space of dimension dimHρ
.
= dρ ∈ N. Choose an arbitrary orthonormal basis {eρi }

dρ
i=1

of Hρ, and denote

ϕρ,i,j(x)
.
=
√
dρ(ρ(x)eρj , e

ρ
i ), ∀x ∈ G, i, j = 1, . . . , dρ, ∀ρ ∈ Ĝ. (66)

By the Peter-Weyl theorem {ϕρ,i,j} is an orthonormal basis in L2(G). Moreover, since ρ(x) is

unitary for all x ∈ G, we get

|ϕρ,i,j(x)| =
√
dρ |(ρ(x)eρj , e

ρ
i )| ≤

√
dρ ‖ρ(x)eρj‖‖e

ρ
i ‖ ≤

√
dρ, (67)

so that ϕρ,i,j ∈ L∞(G). Therefore, if we put an arbitrary (total) order on Ĝ then Theorem 1 is

directly applicable to (G,Σ, µ) with {ϕρ,i,j}.

But the arbitrary choice of the bases {eρi }
dρ
i=1 is artificial from the viewpoint of the group G.

The more natural construction is the operator valued Fourier transform,

f̂(ρ) =

∫
G

f(x)ρ∗(x)dx, ∀f ∈ L1(G), (68)
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and the corresponding block Fourier series

∑
ρ∈Ĝ

dρ tr
[
f̂(ρ)ρ(x)

]
=
∑
ρ∈Ĝ

dρ∑
i,j=1

Yρ,i,j(x, f),

Yρ,i,j(x, f) = cρ,i,j(f)ϕρ,i,j(x), cρ,i,j(f) = (f, ϕρ,i,j)2. (69)

More generally, if we work on a homogeneous space M ' G/H of a compact group G as above

with (closed) isotropy subgroup H ⊂ G, then we define multiplicities

dHρ = mult(1, ρ H), ∀ρ ∈ Ĝ (70)

(this reduces to dHρ = dρ if H = {1} as before). Moreover, we restrict to

Ĝ/H =
{
ρ ∈ Ĝ dHρ > 0

}
. (71)

A point x ∈ G/H is a coset x = xH, x ∈ G. If dh is the normalized Haar measure on H then there

is a unique normalized left G-invariant measure µ on G/H (the pullback of dx through the quotient

map) such that ∫
G

f(x)dx =

∫
G/H

(∫
H

f(xh)dh

)
dµ(x), ∀f ∈ C(G). (72)

Denote

PH
.
=

∫
H

ρ(h)dh, ρ(x)
.
= ρ(x)PH , ∀ρ ∈ Ĝ/H, ∀x = xH ∈ G/H. (73)

Note that dHρ = dimPHHρ. Let {eρi }
dρ
i=1 be an orthonormal basis in Hρ as before, and choose

an orthonormal basis {eρα}
dHρ
α=1 in PHHρ. Now the Fourier transform of a function f ∈ L1(G/H)

becomes

f̂(ρ) =

∫
G/H

f(x)ρ∗(x)dµ(x), ∀ρ ∈ Ĝ/H, (74)

and the corresponding block Fourier series is

∑
ρ∈Ĝ/H

dρ tr
[
f̂(ρ)ρ(x)

]
=

∑
ρ∈Ĝ/H

dρ∑
i=1

dHρ∑
α=1

Yρ,i,α(x; f), (75)

Yρ,i,α(x; f) = cρ,i,α(f)ϕρ,i,α(x), cρ,i,α(f) = (f, ϕρ,i,α)2, ϕρ,i,α(x) =
√
dρ(ρ(x)eρα, e

ρ
i ). (76)
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If the homogeneous space G/H is infinite then the invariant measure µ is diffuse. Applying Theorem

1 to (G/H,ΣH , µ) (ΣH is the Borel σ-algebra on G/H) and the system {ϕρ,i,α} with Ĝ/H ordered

arbitrarily, we obtain the following modification.

Theorem 4 Let M = G/H be an infinite homogeneous space of a compact second countable Haus-

dorff group G with closed isotropy subgroup H ⊂ G. For every ε, δ > 0 there exists a measurable

subset E ∈ ΣH with measure |E| > 1 − δ and with the following property; for each function

f ∈ L1(G/H) with ‖f‖1 > 0 there exists an approximating function g ∈ L1(G/H) that satisfies:

1. ‖f − g‖1 < ε,

2. f = g on E,

3. the block Fourier series (75) of g converges in L1(G/H),

4. we have

sup
ρ∈Ĝ/H

∥∥∥∥∥∥
∑
%≤ρ

d% tr [ĝ(%)%(x)]

∥∥∥∥∥∥
1

< 2 min {‖f‖1, ‖g‖1} .

Note that E depends on the chosen order in Ĝ/H.

As discussed before, the proof of the above theorem becomes more constructive and transparent

if we have a natural cylindric structure in G/H. Then the proof based on the cylindric structure

becomes directly applicable (without intermediate measurable transformations), and each step in

the proof retains its original interpretation in terms of cylindrical coordinates. To this avail, below

we will establish a natural Borel almost isomorphism of measure spaces between G/H and the

cylindric space K × K\G/H for certain infinite closed subgroups K ⊂ G, which will provide an

obvious identification of all spaces Lp(G/H) and Lp(K ×K\G/H). Note that since K is infinite

and compact, the probability space (K, dk) is isomorphic to the unit interval.

Definition 2 A measurable map between two measure spaces ϕ : (Ω1, µ1)→ (Ω2, µ2) is an almost

isomorphism of measure spaces if there exist full measure subspaces X ⊂ Ω1 and Y ⊂ Ω2, |Ω1\X| =

|Ω2 \ Y | = 0, such that the restriction of ϕ is an isomorphism of measure spaces ϕ|X : (X,µ1) →

(Y, µ2).

If K ⊂ G is a closed subgroup of G then denote by G/H(K) ⊂ G/H the set of those points

x ∈ G/H with a non-trivial stabilizer within K,

G/H(K) = {x ∈ G/H ∃1 6= k ∈ K s.t. kx = x} . (77)
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Let us now fix an infinite closed subgroup K ⊂ G, and let q : G/H → K\G/H be the natural

quotient map. Then the pullback measure ν = µ ◦q−1 = q∗ µ is the natural probability measure on

K\G/H. Provided that the subset G/H(K) in G/H is µ-null, we obtain a natural product structure

in the following way.

Proposition 1 If
∣∣G/H(K)

∣∣
µ

= 0 then there exists a Borel almost isomorphism ϕ : K×K\G/H →

G/H such that

ϕ(k′k,Kx) = k′ϕ(k,Kx), q (ϕ(k,Kx)) = Kx, ∀k, k′ ∈ K, ∀Kx ∈ K\G/H. (78)

Proof: Both G/H and K\G/H are compact Hausdorff second countable, hence metrizable by

Urysohn’s metrization theorem. The canonical quotient map q : G/H → K\G/H is a continuous

surjection between compact metrizable spaces. By Federer-Morse theorem there exists a Borel

subset Z ⊂ G/H such that the restriction q |Z : Z → K\G/H is a Borel isomorphism. Let

W
.
= Z \ G/H(K) and X = q(W ), so that q |W : W → X is a Borel isomorphism. Define

ϕ : K ×X → G/H by setting

ϕ(k,Kx)
.
= k · q |−1

W (Kx), ∀k ∈ K, ∀Kx ∈ X. (79)

ϕ is Borel bi-measurable, since it is the composition of bi-measurable maps (k, x) 7→ k ·x and q |−1
W .

The properties (78) are easily implied by the definition of ϕ. The map ϕ is also injective. Indeed,

if ϕ(k1,Kx1) = ϕ(k2,Kx2) then

q(ϕ(k1,Kx1)) = Kx1 = q(ϕ(k2,Kx2)) = Kx2, (80)

and

ϕ(k1,Kx1) = k1ϕ(1,Kx1) = ϕ(k2,Kx2) = k2ϕ(1,Kx1), (81)

so that k−1
2 k1ϕ(1,Kx1) = ϕ(1,Kx1). If k1 6= k2 then ϕ(1,Kx1) has a non-trivial stabilizer, that

is, ϕ(1,Kx1) ∈ G/H(K). But ϕ(1,Kx1) = q |−1
W (Kx1) ∈ W and W ∩ G/H(K) = ∅, which is a

contradiction. Thus k1 = k2 and the injectivity is proven. Denoting Y
.
= ϕ(X) ⊂ G/H we see that

ϕ : X → Y is a Borel isomorphism.
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For every f ∈ C(G/H), by measure disintegration theorem, we have

∫
G/H

f(x)dµ(x) =

∫
K\G/H

dν(Kx)

∫
K

f(kx)dk. (82)

Let χX and χY be the indicator functions of the subsets X and Y , respectively. Since K · Y ⊂ Y

we have that χY (x) = χX(Kx). It follows that

∫
Y

f(x)dµ(x) =

∫
G/H

f(x)χY (x)dµ(x) =

∫
K\G/H

dν(Kx)

∫
K

f(kx)χY (kx)dk =∫
K\G/H

χX(Kx)dν(Kx)

∫
K

f(kx)dk =

∫
X

dν(Kx)

∫
K

f(ϕ(k,Kx))dk, (83)

which shows that ϕ : (X, dk ⊗ ν)→ (Y, µ) is a measure space isomorphism.

Finally, let us note that K ·Z = G/H. Indeed, for every x ∈ G/H we have that z = q |−1
Z (q(x)) ∈

Z, and since q(x) = q(z) we have that ∃k ∈ K such that kz = x. On the other hand, it is easy to

see that the subset G/H(K) ⊂ G/H is left K-invariant, for if x ∈ G/H(K) with kx ∈ K such that

kxx = x then for every k ∈ K it follows that kyy = y, where y = kx and ky = k0kxk
−1
0 , which

means that y ∈ G/H(K). Therefore

|G/H \ Y |µ = |K · Z \K ·W |µ = |K · (Z \W )|µ ≤
∣∣∣K ·G/H(K)

∣∣∣
µ

=
∣∣∣G/H(K)

∣∣∣
µ

= 0, (84)

so that |Y |µ = |X|dk⊗ν = 1. This completes the proof. �

Spheres

As an instructive illustration of the above constructions we will consider spheres Sd, 2 ≤ d ∈ N,

with their Euclidean (Lebesgue) probability measures (surface area normalized to one). For d = 2

the Statements 2 and 3 of Theorem 1 were obtained in [4].

The sphere Sd can be considered as the homogeneous space G/H with G = SO(d + 1) and

H = SO(d). Harmonic analysis in these homogeneous spaces is a classical subject widely available

in the literature (see e.g. [21]). The dual space Ĝ/H consists of irreducible representations by

harmonic polynomials of fixed degree ρ ∈ N0, and it is conveniently ordered according to that
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degree, ρ ∈ Ĝ/H ' N0. The dimension of the representation ρ is

dρ = dimHρ =

(
d+ ρ

d

)
−
(
d+ ρ− 2

d

)
, ∀ρ ∈ N0, (85)

whereas the multiplicities are all dHρ = 1. We choose standard spherical coordinates x = (θ1, . . . , θd−1, φ),

where θj ∈ [0, π], j = 1, . . . , d − 1, and φ ∈ [0, 2π). The orthonormal system {ϕρ,i,α} in this case

consists of spherical harmonics

ϕρ,i,α(x) = Y iρ (θ1, . . . , θd−1, φ), ∀ρ ∈ N0, i = 1, . . . , dρ. (86)

The block Fourier series of a function f ∈ L1(Sd) is

∞∑
ρ=1

dρ∑
i=1

f̂(ρ; i)Y iρ (θ1, . . . , θd−1, φ), (87)

f̂(ρ; i) =

∫ 2π

0

∫ π

0

. . .

∫ π

0

f(θ1, . . . , θd−1, φ)Ȳ iρ (θ1, . . . , θd−1, φ)dµ(θ1, . . . , θd−1, φ), (88)

dµ(θ1, . . . , θd−1, φ) =
Γ(d+1

2 )

2π
d+1
2

sind−1(θ1)dθ1 . . . sin(θd−1)dθd−1dφ. (89)

A natural cylindric structure is obtained by choosing K = SO(2), the circle subgroup responsible

for rotation in the longitudinal variable φ. The subset G/H(K) here contains only the two poles -

θj = 0, j = 1, . . . , d−1, and θj = π, j = 1, . . . , d−1, respectively. Thus indeed
∣∣G/H(K)

∣∣
µ

= 0, and

Proposition 1 applies. The section Z ⊂ G/H appearing in the proof of Proposition 1 can be chosen

to correspond to the meridian φ = 0 in S, which is Borel isomorphic to SO(2)\SO(d + 1)/SO(d)

through the quotient map q. In this way we have the almost isomorphism

ϕ : SO(2)× SO(2)\SO(d+ 1)/SO(d)→ Sd (90)

given by ϕ(φ, (θ1, . . . , θd−1)) = (θ1, . . . , θd−1, φ), i.e., simply by separation of the variable φ. As a

final step we parameterize SO(2) = S1 by t = φ/2π to obtain an almost isomorphism

[0, 1]× SO(2)\SO(d+ 1)/SO(d)→ Sd. (91)

This is the cylindric structure used implicitly in [4].
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Construction of E and g

The proof of the main theorem above is constructive, although the construction of the set E and

of the approximating function g may be hard to follow due to the complexity of the proof. In this

last section we will very briefly sketch that construction step by step.

• Choose an arbitrary ordering {Rk}∞k=1 of all Fourier polynomials with rational coefficients.

• For every k ∈ N, choose a partition {∆l(k)}ν0(k)
l=1 of the cylindric measure spaceM = [0, 1]×N

of the form ∆l(k) = [al(k), bl(k)] × ∆̃l(k) such that the measures |∆l(k)| are small enough,

as well as a subordinate real step function Λ(k) =
∑ν0(k)
l=1 γl(k)χ∆l(k) (χX is the indicator

function of the subset X), such that ‖Λ(k)−Rk‖1 is sufficiently small.

• For every k ∈ N, choose a number δ∗(k) ∈ (0, 1
2 ) so that {δ∗(k)}∞k=1 decays sufficiently rapidly.

Define the periodic step function

I(t) = 1− 1

δ∗(k)
χ[0,δ∗(k))(t mod 1),

and the measurable function ĝkl ∈ L∞(M) by

ĝkl (x) = γl(k)I(s0(k)t)χ∆l(k)(x), ∀x ∈M,

where the positive number s0(k) is sufficiently large. Define the measurable subsets Êl(k) ⊂

∆l(k) by

Êl(k) =
{
x ∈ ∆l(k) ĝkl (x) = γl(k)

}
.

Define inductively the natural numbers N̂l(k), l = 0, . . . , ν0(k) and Fourier polynomials

Q̂kl , l = 1, . . . , ν0(k), by setting N̂0(1) = 1, N̂0(k) = N̂ν0(k)(k − 1) for k > 1, and Q̂kl =∑N̂l(k)−1

n=N̂l−1(k)
Yn(ĝkl ) ( here {Yn(g)}∞n=1 is the Fourier series of the function g ∈ L2(M)), so

that the quantities ∥∥∥∥∥∥
N̂l(k)−1∑
n=1

Yn(ĝkl )− ĝkl

∥∥∥∥∥∥
2

are sufficiently small.

• For every k ∈ N, define the natural numbers Nk = N̂ν0(k) − 1, measurable subsets Ẽk =
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⋃ν0(k)
l=1 Êl(k), and measurable functions g̃k ∈ L∞(M) by

g̃k = Rk − Λ(k) +

ν0(k)∑
l=1

ĝkl ,

as well as Fourier polynomials

Q̃k =

ν0(k)∑
l=1

Q̂kl =

Nk−1∑
n=Nk−1

Ỹn.

• Set

E =

∞⋂
k=1

Ẽk.

• Choose by Lemma 4 a subsequence {Rks}∞s=0 such that ‖Rks‖1 decay sufficiently rapidly, and∑∞
s=0Rks = f in L1(M).

• Define inductively the sequence of natural numbers {νs}∞s=1, νs > νs−1 for s > 1, and mea-

surable functions gs ∈ L∞(M) by choosing ν1 so that Nν1−1 > maxσ(Rk0) and∥∥∥∥∥∥Rνs −Rks +

s−1∑
j=1

[
Q̃νj − gj

]∥∥∥∥∥∥
1

is sufficiently small, and setting gs = Rks + g̃νs −Rνs .

• Finally, set

g = Rk0 +

∞∑
s=1

gs.
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