
QUEEN MARY UNIVERSITY OF LONDON

PHD THESIS

A Compositional Vector Space Model of
Ellipsis and Anaphora

Author:
Gijs Jasper WIJNHOLDS

Supervisors:
Dr. Merhnoosh SADRZADEH

Prof. Dr. Edmund ROBINSON

Independent Assessor:
Dr. Paulo Oliva

Co-supervisor:
Prof. Dr. Michael MOORTGAT

Submitted in partial fulfillment of the requirements of the Degree of Doctor of Philosophy

Theory Group
School of Electronic Engineering and Computer Science

July 28, 2020

http://www.qmul.ac.uk
http://theory.eecs.qmul.ac.uk
http://eecs.qmul.ac.uk

3

Date: July 28, 2020

Details of collaboration and publications: all original work described in this thesis
was done in collaboration with Mehrnoosh Sadrzadeh. Section 3.3 arose from a col-
laboration with Michael Moortgat and Section 3.4 from a collaboration with Michael
Moortgat and Mehrnoosh Sadrzadeh. The work described in Chapter 5 arose from
a collaboration with Mehrnoosh Sadrzadeh and Stephen Clark.

Statement of Originality

I, Gijs Jasper WIJNHOLDS, confirm that the research included within this thesis is my
own work or that where it has been carried out in collaboration with, or supported
by others, that this is duly acknowledged below and my contribution indicated. Pre-
viously published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and
does not to the best of my knowledge break any UK law, infringe any third party?s
copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check
the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a
degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or infor-
mation derived from it may be published without the prior written consent of the
author.

Signed:

5

Abstract

Gijs Jasper WIJNHOLDS

A Compositional Vector Space Model of Ellipsis and Anaphora

This thesis discusses research in compositional distributional semantics: if words
are defined by their use in language and represented as high-dimensional vectors
reflecting their co-occurrence behaviour in textual corpora, how should words be
composed to produce a similar numerical representation for sentences, paragraphs
and documents? Neural methods learn a task-dependent composition by generalis-
ing over large datasets, whereas type-driven approaches stipulate that composition
is given by a functional view on words, leaving open the question of what those
functions should do, concretely.

We take on the type-driven approach to compositional distributional semantics
and focus on the categorical framework of Coecke, Grefenstette, and Sadrzadeh
[CGS13], which models composition as an interpretation of syntactic structures as
linear maps on vector spaces using the language of category theory, as well as the
two-step approach of Muskens and Sadrzadeh [MS16], where syntactic structures
map to lambda logical forms that are instantiated by a concrete composition model.
We develop the theory behind these approaches to cover phenomena not dealt with
in previous work, evaluate the models in sentence-level tasks, and implement a ten-
sor learning method that generalises to arbitrary sentences.

This thesis reports three main contributions. The first, theoretical in nature, dis-
cusses the ability of categorical and lambda-based models of compositional distri-
butional semantics to model ellipsis, anaphora, and parasitic gaps; phenomena that
challenge the linearity of previous compositional models. Secondly, we perform an
evaluation study on verb phrase ellipsis where we introduce three novel sentence
evaluation datasets and compare algebraic, neural, and tensor-based composition
models to show that models that resolve ellipsis achieve higher correlation with hu-
mans. Finally, we generalise the skipgram model [Mik+13] to a tensor-based setting
and implement it for transitive verbs, showing that neural methods to learn tensor
representations for words can outperform previous tensor-based methods on com-
positional tasks.

7

Acknowledgements

First of all, I with to express my gratitude towards my first and foremost supervisor,
Mehrnoosh Sadrzadeh. For all your help, discussions, support, and so much more,
thanks a lot. Next, I wish to thank Edmund Robinson for all his support in his alter-
nating role as second, first, second, and first, supervisor for my PhD. Then, thanks
to Paulo Oliva for serving as independent assessor. Furthermore, thanks to Michael
Moortgat for all the fruitful interactions, from informal chats to collaborations. A
special thanks goes out in advance to Mark Steedman and Massimo Poesio for ex-
amining this manuscript and for (undoubtedly!) sharpening my pen.

From the academic community, I am grateful for interacting with (in no particu-
lar order): Glyn Morrill, Matt Purver, Julian Hough, Shalom Lappin, Ruth Kemp-
son, Martha Lewis, Arash Eshghi, Bob Coecke, Stergios Chatzikyriakidis, Chris-
tine Howes, Giuseppe Greco, Aleksandre Maskharashvili, Konstantinos Kogkalidis,
Adriana Correia, Vladislav Maraev, Vidya Somashekar, Bill Noble, Ross Duncan,
Jules Hedges, Richard Moot, Alexander Kurz, Erlinde Meertens, and many others!

Thanks to all from the QMUL Computational Linguistics Lab, especially: Sophie
Chesney and Alexandra Ume for jointly experiencing the trauma of assisting too
many students with all their NLP assignments, and Carlos Ruiz Mendariz for teach-
ing me about ELMo and BERT while enduring a vegan burger. Thanks also to all my
fellow PhD students/postdocs in the Theory Group: Andrew Lewis-Smith, Thomas
Cuvillier, Yu-Yang Lin, Emily Donovan, Jack Lik Hon Crawford, Arthur Passos de
Rezende. A special thanks goes to Melissa Yeo for making sure that my PhD went
as smoothly as possible, but also for taking me to the Buddhist Center. Be water, my
friend. Moreover, I’d like to thank June Coster for the innumerous cups of coffee, and
to Edward Hoskins for his cheerfulness and excellent mime.

To the following people, thank you for the music: Delia Fano Yela, Alessia Milo, Ke-
unwoo Choi, Giulio Moro, Chris Harte and Peter Harrison, Shalom Lappin, Stergios
Chatzikyriakidis, Rasmus Blanck, Simon Dobnik, Staffan Larsson, Andrew Lewis-
Smith, and Julian Hough.

In addition, I’d like to thank a number of people in London that uplifted my
time in London in one way or another. Thanks to Katherine Geier for being my first
friend in London and taking me out of my university setting all those times. Thanks
to Abed Qaddoumi for being my first new friend in London and being so much fun.
Thanks to An Liang and Haiyang Zhong for all the photos, the hot pot, the plants.

8

Thanks to all others in London for all the pub nights, lunches, dinners, music
shows, and birthday parties: Jonathan Young, Eddie Wade, Emmanouil Chourdakis,
Beici Liang, Hazar Emre Tez, Marco Martinez Ramirez, Adán Benito Temprano,
Gala de Vallejo Pérez, Adib Mehrabi, Will Wilkinson, Alo Allik, Florian Thalmann,
Michael McLoughlin, Dan Stowell, Yvonne Blokland, Dave Ronan, Dave Moffat, So-
phie Skach, Giulio Moro, Juliana Jaramillo.

Thanks to my friends in the Netherlands: Jeroen de Vos and Lily Knox, Ruben
Dieleman, Sander Hetebrij, Rob Klabbers, Bram de Rijk, Annemiek Schellenbach
and Iryn Bijker, Sanne Brinkhorst.

Thanks to Natalia Fano Yela, for welcoming and hosting us in Stockholm, and
welcoming us back after an outing to the airport. Thanks to Fernando and Isabel for
welcoming me in their home.

Finally, I wish to thank my mother, Margreet, and my father, Ger, for all their sup-
port. A thanks to my brother, Mart, for his affection, and for grinding my ears in
London on several occasions.

And last, a big thanks to Delia: for all the avenues and adventures, for all the music
and theatre, for all the food and the films, for all the laughter and for all the love.

This research was mainly supported by a QMUL Principal Studentship and the
School of Electronic Engineering and Computer Science at Queen Mary University
of London.

9

List of Publications

Below is the list of publications that were submitted and/or published during the
course of this PhD.

[MW17] Michael Moortgat and Gijs Wijnholds. “Lexical and Derivational Mean-
ing in Vector-Based Models of Relativisation”. In: Proceedings of the 21st
Amsterdam Colloquium. 2017.

[SMW19] Mehrnoosh Sadrzadeh, Michael Moortgat, and Gijs Wijnholds. “A Frobe-
nius Algebraic Analysis for Parasitic Gaps”. In: Workshop on Semantic
Spaces at the Intersection of NLP, Physics, and Cognitive Science. 2019.

[Wij17] Gijs Jasper Wijnholds. “Coherent diagrammatic reasoning in composi-
tional distributional semantics”. In: International Workshop on Logic, Lan-
guage, Information, and Computation. Springer. 2017, pp. 371–386.

[Wij19] Gijs Wijnholds. “A proof-theoretic approach to scope ambiguity in com-
positional vector space models”. In: Journal of Language Modelling 6.2
(2019), pp. 261–286.

[WS18] Gijs Wijnholds and Mehrnoosh Sadrzadeh. “Classical Copying versus
Quantum Entanglement in Natural Language: The Case of VP-ellipsis”.
In: EPTCS 283, 2018, pp. 103-119 (2018), pp. 103–119. DOI: 10.4204/
EPTCS.283.8.

[WS19a] Gijs Wijnholds and Mehrnoosh Sadrzadeh. “A Type-Driven Vector Se-
mantics for Ellipsis with Anaphora using Lambek Calculus with Lim-
ited Contraction”. In: Journal of Logic, Language and Information (2019).

[WS19b] Gijs Wijnholds and Mehrnoosh Sadrzadeh. “Evaluating Composition
Models for Verb Phrase Elliptical Sentence Embeddings”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). Association for Computational Linguistics, 2019.

[WSC19] Gijs Wijnholds, Mehrnoosh Sadrzadeh, and Stephen Clark. “Represen-
tation Learning for Type-Driven Composition”. In: Preprint. 2019.

http://dx.doi.org/10.4204/EPTCS.283.8
http://dx.doi.org/10.4204/EPTCS.283.8

11

Contents

Introduction 15

I Background 21

1 Distributional Semantics: From Word to Sentence 23
1.1 Word Embeddings: Implementing the Distributional Hypothesis . . . 24

1.1.1 Count-Based Word Embeddings 24
1.1.2 Neural Word Embeddings . 24
1.1.3 Evaluating Word Embeddings 25

1.2 What is Compositionality? . 26
1.3 Type-Driven Approaches to Composition 28

1.3.1 Learning the Content of Word Tensors 30
1.4 Neural Approaches to Composition . 32

1.4.1 Sentence Encoders . 32
1.4.2 Contextualised Embeddings . 35

1.5 Evaluating Sentence Embeddings . 36
1.6 This Thesis in Context . 37

2 Categorical Distributional Semantics 39
2.1 Categorical Composition . 40

2.1.1 Monoidal Categories . 40
2.1.2 Closing the ⌦ . 42
2.1.3 Pregroups as an autonomous category 45
2.1.4 Lambek Calculus as a Biclosed Monoidal Category 46
2.1.5 Formal Semantics for the Lambek Calculus 47
2.1.6 Vector Spaces as a Semantic Category 50
2.1.7 Proofs and Pictures . 53

II Theory 59

3 Ellipsis, Anaphora, and Parasitic Gaps 61
3.1 Two Types of Ellipsis . 63
3.2 Categorical Distributional Semantics with Lambek Calculus and Modal-

ities . 65
3.3 Lexicon versus Derivation in Pronoun Relativisation 67

12

Formal Semantics for Relative Pronouns 68
Frobenius semantics for pronoun relativisation 69

3.3.1 Dutch Pronoun Relativisation . 75
3.3.2 Discussion . 77

3.4 Parasitic Gaps . 79
3.4.1 Deriving Parasitic Gaps . 80
3.4.2 Frobenius Semantics for Parasitic Gaps 81
3.4.3 Discussion . 85

3.5 Verb Phrase Ellipsis and Anaphora . 87
3.5.1 A Proof System for Controlled Copying 89
3.5.2 Relation to related approaches 90
3.5.3 Deriving Ellipsis with Anaphora 92

Structural Ambiguity . 93
3.5.4 Frobenius Semantics for Ellipsis with Anaphora 99
3.5.5 Lambdas and Tensors for Ellipsis 103

3.6 Conclusion . 108

III Practice 111

4 Evaluation: Composition Models for Verb Phrase Ellipsis 113
4.1 Evaluating Composition Models . 114
4.2 Evaluation Datasets for Verb Phrase Elliptical Sentences 118

4.2.1 Dataset descriptions . 121
4.3 Composition Models for Verb Phrase Elliptical Sentence Embeddings . 124

4.3.1 Embedding Verb Phrase Elliptical Sentences 124
4.3.2 Training Vectors and Tensors . 128

4.4 Evaluation Results and Analysis . 129
4.5 Conclusion . 138

5 Lexical Semantics: Neural Tensor Embeddings 139
5.1 Representing Words as Tensors . 141
5.2 Neural Verb Tensor Embeddings . 144
5.3 Evaluation . 147
5.4 Results . 150
5.5 Conclusion . 155

IV Further Down 157

6 Conclusion & Future Work 159
6.1 Summary . 159
6.2 Further Down . 160

13

Bibliography 163

A Evaluation Results (All Models) 177
A.1 Results on transitive sentence datasets 177
A.2 Results on verb phrase elliptical phrase datasets 179
A.3 Results for sentence encoders and contextualised embeddings 184

B Evaluation Results for Neural Verb Tensors 187
B.1 Results for Neural Tensor Clustering . 187
B.2 Results for Composition Models . 189

B.2.1 Baseline results . 189
B.2.2 Fusion results . 192

15

Introduction

In order to make computers understand human language, they will need efficient al-
gorithms that can process vast and diverse quantities of related linguistic data. More-
over, they will need good computational representations to make sense of that data.
At first sight, it may seem that a well prepared, large, and rich dictionary may be
enough for a computer to understand language. This would solve one major prob-
lem in the understanding of language, as such a dictionary would contain all the
words of a language that the machine is trying to learn. But word meaning is not a
static thing, and it is not intrinsic: new words appear and existing words change in
meaning. When humans encounter new words they are able to make an educated
guess about their meaning based on context. The question is how computers can
learn to do the same thing.

Automatic word sense understanding and acquisition in context is one of the
underlying principles of distributional semantics: words with similar meaning will
occur in similar contexts. A major asset of this idea is that it allows for efficient
implementation; numerous techniques exist for representing words in context, effec-
tively encoding words as vectors in such a way that the distributional principle is
preserved under some similarity metric [Mik+13; LG14; PSM14; Boj+17]. This sub-
sequently allows for computer systems to use these word embeddings to address a
natural language processing task such as question answering, paraphrase detection,
or natural language inference.

But language is also compositional: although any dictionary of any language spo-
ken on Earth will necessarily be finite, humans are capable of understanding phrases
or sentences that they have never seen or heard before. Research in formal linguis-
tics has delivered mathematically elegant models of compositional semantics, where
the meaning of a sentence is computed as a transformation of syntactic structure, ap-
plied to the individual, denotational semantics of constituent words [Mon70a]. The
presence of such mathematically rigorous models of compositional semantics has
led to the main question underlying compositional distributional semantics: if we have
efficient numerical encodings of word meaning, how can we compose these into
meaningful numerical representations of larger units of text?

Over the last ten years, a number of different approaches arose that tried to an-
swer this question. Formal approaches to distributional semantics aim to transfer

16 Contents

the compositionality principle from formal semantics to the world of word embed-
dings. Specifically, given a sequence of words w1...wn, an interpretation � of the in-
dividual words as embeddings, and an associated grammatical structure G, a formal
compositional distributional semantic model defines a transformation F that derives
the meaning of the word sequence as a mapping from syntax to a compositional
semantics:

F (G)
�
�(w1) ... �(wn)

�

An example of such a model comes from the work of Coecke, Sadrzadeh, and Clark
[CSC10] and Coecke, Grefenstette, and Sadrzadeh [CGS13], who instantiate a model
using a type-driven approach. Words are assigned types and a grammar logic as-
signs syntactic structure to sequences of words, after which a homomorphic passage
maps the syntactic structure of a sentence to (multi-)linear maps that act on the con-
stituent word representations. Not all type-driven grammar are logics; for example,
Combinatory Categorial Grammar [Ste00] systems are typically presented as calculi
containing rules for changing or combining types. However, in the framework of
Coecke, Sadrzadeh, and Clark [CSC10] and Coecke, Grefenstette, and Sadrzadeh
[CGS13] category theory is used as the underlying tool to unify mathematical struc-
tures, where it is paramount to be able to show that the grammar is both sound and
complete with respect to a particular category.

The formal approach is in contrast with neural compositional approaches. These
approaches define a sentence embedding as the result of training a neural network
on a specific task that computes a vector representation from the vector representa-
tion of the words in the sentence. In some cases this representation is a weighted
sum of the word vectors of a sentence [ALM19; Cer+18]:

N(w1...wn) = ↵1
�!w1 + ... + ↵n

�!wn

where the weights ↵i are the weights of a neural network trained using machine
learning techniques.

The formal and the neural viewpoint come with their own merits and drawbacks:
neural approaches easily generalise to arbitrary sentences, paragraphs, and text, at
the drawback of limited interpretability of the models and limited explanatory power.
On the other hand, the formal approach explicitly starts from linguistic theory —
thereby providing an explanation about the compositional process — but it imposes
syntactic structure on the embedding of sentences, which comes at the cost of extra
processing requirements and limited scalability.

In this thesis, we are interested in studying the relevance of linguistic knowledge for
sentence embeddings, and therefore we focus on the theoretical and experimental as-
pects of a type-driven framework in the style of Coecke, Grefenstette, and Sadrzadeh
[CGS13]. In general we are interested in discourse, which is a large domain, there-
fore the particular phenomenon we focus on is ellipsis (with anaphora). Informally,

Contents 17

we speak of ellipsis when part of the meaning of a phrase is missing from its syn-
tactic realisation. In many cases, such as verb phrase ellipsis, this missing semantic
element can actually be recovered from syntactic context, making such cases suitable
for a formal modelling in a compositional distributional setting. Consider for exam-
ple the phrase “Hannah sings and Ben does too”; it is clear that what Ben is doing
involves his vocal chords, though this is not explicitly given. Things get even worse
when we introduce anaphora, as in “Hannah sings her song and Ben does too”: now,
besides from the verb phrase being implicit, we are not even sure what song Ben is
singing.

Ellipsis forms an interesting test case for compositional distributional semantics
for two main reasons. First, it violates the assumption that a one on one relation
exists between the meaning of a sentence and its physical realisation, an assumption
that typically underlies both neural models as well as the categorical framework of
Coecke, Grefenstette, and Sadrzadeh [CGS13]. Secondly, from an experimental per-
spective ellipsis is interesting because it allows us to contrast models that perform
the necessary analysis to resolve ellipsis (i.e. recover the implicit semantic informa-
tion) with models that take a ‘what you see is what you get’ approach. For example,
rather than simply adding the vectors for the words in “Hannah sings and Ben does
too”, we may instead do this for the vectors of the resolved sentence “Hannah sings
and Ben does too”. The same holds for neural approaches to composition, which
can moreover be compared with type-driven models.

The use of Frobenius Algebras in the categorical framework has been shown
in modelling of pronoun relativisation and coordination [SCC13; SCC14; Kar16;
MW17], where syntactic material needs to be moved into a different position in a
sentence in order to make sense of its meaning. The role of Frobenius Algebras is to
model function words like relative pronouns and coordinators, allowing their inter-
pretations to be able to merge information in a way akin to the use of set intersection
in formal semantics. The same approach approach has also been applied to the case
of quantifiers [HS19; Sad16; Wij19]. However, this theoretical work is still limited to
cases where all semantic information is explicitly given. Thus, the theoretical con-
tribution of this thesis is to extend the categorical framework in a principled and
general way to deal with ellipsis, anaphora, and to other phenomena related to wh-
movement, such as parasitic gapping. We do this by defining a novel compositional
distributional model, based on a limited form of contraction as an addition to the
Lambek Calculus of Lambek [Lam58] to allow for the controlled recovery of implicit
semantic information.

Experimental work evaluating compositional distributional models of meaning
has considered sentence-level tasks that test the disambiguation of verbs in context
and sentence similarity [GS15; KS13; KS14; Mil+14]. Here, the issue of scalability
really shines through, as the datasets involved in this evaluation are limited to tran-
sitive sentences of the form subject verb object and a variant in which subjects and
objects are modified by adjectival phrases. Our contribution is the introduction of

18 Contents

three new datasets that serve both as test beds for distributional models of verb
phrase ellipsis, as well as being larger than the beforementioned datasets, both in
the number of datapoints and the length of the sentences that are modelled. For ex-
ample, one of the introduced datasets contains phrases of the form subject verb object
and subject⇤ does too, and has twice as many sentence pairs as the transitive sentence
dataset it is based on.

Finally, one main assumption behind the tensor-based modelling is that words
be represented as tensors of various orders, depending on their grammatical func-
tion. For example, where nouns are represented as vectors, adjectives are consid-
ered to be matrices. Such an adjective matrix is the physical representation of a
linear map transforming a noun vector into a vector representing the compound
adjective-noun combination. This idea extends to the case of transitive verbs, that
get a cube representation, which function now as bilinear maps that transform both
a subject and an object vector to a vector giving their compound representation. The
assumption of a type-driven tensorial word representation is one of the technical
distinctions between the formal and the neural approaches. Although Milajevs et al.
[Mil+14] experiments with prescribed formulas for creating verb matrices, and pre-
vious work has been done to learn the content of adjective and verb representations
[BZ10; Gre+13; PRC14; MC15], these approaches do not all form a general model for
learning any word with any grammatical role, and most approaches suffer from data
sparsity issues.

Thus, our third and final contribution in this thesis is to reformulate the well
known skipgram model of Mikolov et al. [Mik+13] to a general tensor-based set-
ting. Although this was partly investigated by Maillard and Clark [MC15] for the
case of adjectives, we discovered that a different notion of context is needed to treat
arbitrary words, and so we generalise the model accordingly. We then give an im-
plementation of several different representations for the case of verbs. Our results
show that correlation with human judgments improves over previous approaches
when the proposed method is used.

This thesis is structured as follows: in Chapter 1 we start off with a discussion of the
general background of compositional distributional semantics, from the viewpoint
of state of the art deep neural network techniques as well as linguistics oriented
formal approaches to composition of distributional word representations. Then, in
Chapter 2 we zoom in on the categorical framework of Coecke, Grefenstette, and
Sadrzadeh [CGS13], and define a functorial passage from the syntax of the Lambek
Calculus to the semantics of vector spaces and linear maps. We also briefly discuss
the concept of diagrammatic reasoning, as this simplifies many of the mathematics
underlying the framework.

Then come the main contributions of the thesis. First, we discuss the theoreti-
cal motivations of a compositional vector space model for ellipsis and anaphora in

Contents 19

Chapter 3, where we investigate the extent to which we can encapsulate the non-
linearity of ellipsis in the lexical semantics of the models, to move on to a general
setting in which the reuse of information is allowed in a structured way. Chapter
4 then introduces our second contribution, which is the introduction of three new
datasets that allow us to test a variety of different concrete composition models for
ellipsis, and a comprehensive evaluation of such models. Then we move to the sep-
arate albeit related issue of learning tensor representations for words in Chapter 5.
We define a general machine learning architecture for learning dependency-based
tensor representations for words, that then can be used in a type-driven composi-
tion model. We implement this architecture for the case of transitive verbs and show
how the proposed representation achieves new state of the art results on the datasets
that have been introduced to test formal compositional distributional models.

21

Part I

Background

23

Chapter 1

Distributional Semantics: From
Word to Sentence

Chapter Abstract

In this chapter, we discuss compositional distributional models of meaning. We
start with an overview of distributional semantics on the word-level and its com-
monly used implementations, then we continue to define compositional models, and
their amply different implementations. We conclude by situating this thesis in the
context of this highly active field of research.

Distributional semantics is a field of research within computational linguistics
that provides an easily implementable algorithm with an empirically verifiable out-
put for representing word meanings and degrees of semantic similarity thereof.
This semantics is rooted in the distributional hypothesis, investigated by Harris
[Har54], and popularised by Firth [Fir57] using the phrase “a word is characterized
by the company it keeps". More precisely, according to the distributional hypothesis,
“words that occur in the same contexts tend to have similar meanings” [Pan05].

This idea has been made concrete by gathering the co-occurrence statistics of
context and target words in large text corpora and using that as a basis for devel-
oping vector representations for word meanings. A notion of similarity based on
the cosine of the angle between vectors allows one to compare degrees of word sim-
ilarity in the vector space models where these word vectors embed. Such models
have been shown to perform well in a variety of natural language processing (NLP)
tasks, such as semantic priming [LB96] and word sense disambiguation [Sch98]. The
underlying philosophy has gained attention in cognitive science as well [Len08].

A lot of work has been done to improve the basic co-occurrence based word em-
beddings, ranging from using machine learning to predict a word’s context rather
than directly computing it [Mik+13], optimising for ratios of co-occurrences rather
than the co-occurrences themselves [PSM14], and encoding morphological informa-
tion below the word level [Boj+17].

24 Chapter 1. Distributional Semantics: From Word to Sentence

1.1 Word Embeddings: Implementing the Distributional Hy-
pothesis

1.1.1 Count-Based Word Embeddings

One way of approximation a word’s context is in a count-based model. Here, the
context is taken to be a linear window and the corpus is traversed to collect raw
co-occurrence counts as depicted below for the focus word wi, context window of 3:

w1... wi�3wi�2wi�1wiwi+1wi+2wi+3| {z }
context window

...wn

Then, a weighting scheme is applied to smooth the raw frequencies in the mean-
ing representation. Examples include point-wise mutual information (PMI) and its
positive variant (PPMI), and local mutual information (LMI). More discussion on
count-based vector space models can be found in Turney and Pantel [TP10], and a
systematic study of the parameters of count-based word embeddings is given by
Kiela and Clark [KC14].

1.1.2 Neural Word Embeddings

Skipgram The skipgram model with negative sampling [Mik+13] generates word
embeddings by optimising a logistic regression objective in which target vectors
should have high inner product with context vectors for positive contexts (as ob-
served from a linear context window around a target word), and low inner product
with negatively sampled contexts. Given a target word n and a set of positive con-
texts C, a set of negative contexts C is sampled from a unigram distribution raised to
some power (often 3/4, after [LGD15]). The number k of negative contexts per posi-
tive one is a parameter of the model, and typically ranges between 5 and 20. Context
words are subsampled to decrease the difference between very frequent and very
infrequent words. Initially, both target vectors n and context vectors c are randomly
intialised, and during training the model updates both target and context vectors to
maximise the objective function

X

c2C

log �(n · c) +
X

c2C

log �(�n · c) (1.1)

which formalises the desired properties of the resulting vectors. These vectors are
sometimes also referred to as word2vec, after the software package that implements
the skipgram model1.
Dependency Skipgram The count-based and skipgram models above rely on a lin-
ear context window to provide contextual information: setting aside the subsampling

1github.com/tmikolov/word2vec

https://github.com/tmikolov/word2vec

1.1. Word Embeddings: Implementing the Distributional Hypothesis 25

done for skipgram, in both models the context is given by a certain number of con-
text words around a focus word. Levy and Goldberg [LG14] propose a dependency-
based context: given a target word w with modifiers m1...mn and head h, the context
of w is given as (m1, l1), ...(mn, ln), (h, l�1

h
) where li is a dependency label associated

with a modifier, l�1
h

encodes the inverse dependency of the target w on the head h.
These word-dependency pairs now form the context, in the exact same skipgram
objective as above.

GLoVe The intuition behind GloVe [PSM14] is that co-occurrence information is
needed to learn word embeddings, but that the ratio of co-occurrence probabilities is
in fact more informative of word similarity. The GloVe model therefore learns word
embeddings by minimising the least-squares objective between the dot product of
two word embeddings and the log-probability of the words’ co-occurrences. Writing
Xi,j for the co-occurrence probability of words i, j, and �!wi for the associated word
vector, the GloVe learning model minimises the function

VX

i,j=1

f(Xi,j)
⇣
�!wi

T�!wj + bi + bj � log Xi,j

⌘2

where f(Xi,j) is a smoothing function2.

FastText The FastText vectors [Boj+17] use again the skipgram model described
above Word2Vec, but now considers subword information. Rather than training vec-
tors for words, vectors are trained for n-grams of characters. The final word vector
will then be the sum of its constituent n-gram vectors. The idea is that the incor-
poration of subword information may improve the quality of the embeddings, in
particular for morphologically rich languages.

1.1.3 Evaluating Word Embeddings

As word embeddings provide concrete implementations of the distributional hy-
pothesis, and with different implementations available, whether one type of em-
bedding is ‘better’ than another depends on the type of task they are used for. To
evaluate the quality of embeddings a notion of similarity needs to be defined, and
human similarity judgments need to be available.

The most commonly used similarity measure is cosine similarity, which mea-
sures the angle between two vectors in a space:

cos(a,b) =
a · b

|a||b|

2In the original paper, the authors discuss using an alternative vector w̃j , which may reduce over-
fitting.

26 Chapter 1. Distributional Semantics: From Word to Sentence

Values range between -1 and 1, so usually these are rescaled to give a value between
0 and 1, 0 meaning full dissimilarity and 1 meaning full similarity.

Given a vector space of word embeddings, we can now compute similarity re-
sults for any pair of words for which embeddings are available. In order to ground
these similarities in human cognition, a way to evaluate the quality of these em-
beddings is to measure the correlation between model similarity and an aggregate
of human similarity judgments. A standard correlation measure here is the Spear-
man correlation coefficient ⇢, which expresses whether a monotonic relation exists
between the computed similarities of the model and the (average) similarity judg-
ments made by humans.

One of the first such datasets was created by Rubenstein and Goodenough [RG65],
which contains 65 word pairs that were rated by 15 annotators for similarity, though
the aim was to capture synonymity of words. The MC30 dataset [MC91] contains
30 noun pairs, that were supposed to capture semantic similarity. A much larger
dataset is WordSim-353 [Fin+01], containing 353 noun pairs. A specialised dataset
for verbs is VerbSim [YP06], that contains similarity judgments for 130 pairs of verbs.
Thanks to crowdsourcing tools, even larger datasets could be constructed: a re-
cent large similarity datasets is MEN [Bru+12], a 3000 word pair dataset containing
nouns, adjectives, and verbs. In addition, SimLex-999 contains 999 pairs of nouns,
adjectives and verbs. Finally, in 2016, the SimVerb dataset was developed, which
contains 3500 verb pairs. Many other word similarity datasets exist, but we list here
the ones that are relevant for the purposes of this thesis:

Name Reference # of Pairs Categories

RG [RG65] 65 nouns
MC30 [MC91] 30 nouns
WordSim353 [Fin+01] 353 nouns
VerbSim [YP06] 130 verbs
MEN [Bru+12] 3000 nouns, adjectives, verbs
SimLex [HRK15] 999 nouns, adjectives, verbs
SimVerb [Ger+16] 3500 verbs

1.2 What is Compositionality?

Although the notion of similarity is intuitive and works well at the word level, it is
less productive to consider phrases and full sentences to be similar whenever they
occur in a similar context. Firstly, we know that language is compositional, since
the number of potential sentences humans can produce are larger than the amount
a single human ever produces. Secondly, data sparsity issues arise when treating
sentences as individual expressions and computing direct co-occurrence statistics
for them. So the non-trivial task of producing vector representations for phrases and
sentences is the main challenge of compositional distributional semantics.

1.2. What is Compositionality? 27

Current approaches to composition of word embeddings can be roughly be clas-
sified as algebraic, neural, and formal. The algebraic approach defines a vectorial
representation of arbitrary text as the result of summing or multiplying the indi-
vidual word vectors; the idea of adding vectors together for composition was al-
ready worked out by Kintsch [Kin01] in the context of Latent Semantic Analysis
[LD97]. Mitchell and Lapata [ML08; ML10] introduce multiple novel similarity
datasets based on aggregate human similarity judgments for two-word combina-
tions and experiment with additive and multiplicative models, as well as a dilation
model. An example of the algebraic approach to general sentence embeddings is
the work of [ALM19], that effectively computes a compressed weighted average of
the individual word embeddings. The neural approach relies heavily on machine
learning to learn vectorial representations for sentences, or to learn a generic sen-
tence encoder that will embed any sentence. The approach of [Soc+13] uses a Recur-
sive Neural Network to learn to classify the sentiment of a sentence, by computing
the composition function that composes word vectors together into embeddings for
larger phrases. More recent approaches use various deep neural networks to learn
general sentence encoders [Con+17; Cer+18].

Both the algebraic and neural models are very general, in that they can create em-
beddings for arbitrary sentences. Unfortunately, they are mostly not very concerned
with linguistic/grammatical information. Moreover, they often rely on task-specific
data for training.

A structured attempt at providing a formal model of compositional distribu-
tional semantics has been presented in [CSC10]; these models start from the obser-
vation that vector spaces share the same structure as Lambek’s most recent gram-
mar formalism, pregroup grammar [Lam99], and interpret its derivations in terms
of vector spaces and linear maps. What follows is an architecture that is familiar
from logical formal semantics in Montague style [Mon70a], where the judgments of
a grammar translate to a consistent semantic operation (read linear map) that acts on
the individual word vectors to produce some vector in the sentence space. A num-
ber of subsequent investigations have shown that a similar interpretation is pos-
sible for other typelogical grammars, such as Lambek’s original syntactic calculus
[CGS13], Lambek-Grishin grammars [Wij14], and Combinatory Categorial Gram-
mar [MCG14].

These formal models have a clear linguistic motivation, in that they follow di-
rectly the grammatical structure of sentences, but at the expense of not being easily
generalisable.

One major issue for distributional semantics and especially compositional ap-
proaches therein is to find a suitable representation for function words. Without
the power of formal semantics to assign constant meanings or to allow set-theoretic
operations, distributional semantics does not have much to say about the meaning
of logical words such as ‘and’, ‘despite’ and pronouns like ‘his’, ‘which’, ‘that’, let
alone quantificational constituents (‘all’, ‘some’, ‘more than half’). All of these words

28 Chapter 1. Distributional Semantics: From Word to Sentence

have in common that they intuitively do not bear a contextual meaning: a function
word may co-occur with any content word and so its distribution does not reveal
much about its meaning, unless perhaps the notion of meaning is taken to be con-
versational3. To overcome this issue, Sadrzadeh, Clark, and Coecke [SCC13] rely
on Frobenius algebras4 to formalise the notion of combining and dispatching of infor-
mation. This approach has seen applications to relative pronouns [SCC13; SCC14],
coordination [Kar16], and to a lesser extent to some limited forms of ellipsis [KPS16].
In each of these, the Frobenius algebras allow one to use element wise multiplication
of arbitrary tensors, corresponding to the usual intersective interpretation one finds
in formal semantics [DSP91]. A treatment of quantification was also given using the
bialgebraic nature of vector spaces over powersets of elements [HS19; Sad16].

In the next sections, we review the type-driven and the neural approach.

1.3 Type-Driven Approaches to Composition

In its most general form, a type-driven model of composition in distributional se-
mantics relies on the assignment of (some form of) types to words that specify, in con-
junction with some (form of) grammar, how words are to be composed into greater
structures. An interpretation of these two ingredients then leads to a definition of
semantic composition:

Definition 1 Given a sequence of words w1...wn with associated types t1...tn, some gram-
matical structure G, and an type-respecting interpretation of words � and an interpretation
of grammatical structures F , the compositional meaning of w1...wn will be

F (G)
�
�(w1) ... �(wn)

�

This view is taken in the work of Montague [Mon70a; Mon73], who formulates a
type-theoretic interpretation where words are to be interpreted as set-theoretic con-
structions, though the principle of composition stays the same, whether we work
with sets or vector spaces.

Taking the type-driven view means having a very general framework for compo-
sitional distributional semantics, which comes with certain assumptions. A schematic
of the framework is displayed in Figure 1.1. First, one has to commit to some form
of syntax, which comprises the types and grammatical structures of the definition
above. The types and grammar put constraints on the semantic representation of
words, and of derivational structures, as type and grammar interpretations � and
F have to interpret types and structures respectively. The final phrase representa-
tion thus depends on (a) types, (b) grammatical structure, and (c) their respective
interpretation.

3The work of Kruszewski et al. [Kru+16] gives a distributional semantic account of conversational
negation.

4A notion we will introduce formally in Chapter 2.

1.3. Type-Driven Approaches to Composition 29

SYNTAX

LEXICAL
SEMANTICS

DERIVATIONAL
SEMANTICS

PHRASE
SEMANTICS

EVALUATION

Type
Respect

Structure
Respect

Lexical
Content

Composition

FIGURE 1.1: The general approach of type-driven compositional distributional semantics.
Grammar puts constraints on the structure of lexical items, and the order of composition.
Derivational and lexical semantics together lead to concrete phrase semantics which then
are evaluated on a variety of tasks (e.g. sentence similarity, disambiguation, paraphrasing).

Algebraic Models A very simple way of implementing a type-driven compositional
distributional semantics is to use an algebraic model: here, one assumes that the
lexical content of any word is given by the same type of distributional representation,
i.e. a vector, and that a single linear algebraic operation interprets the function of the
grammatical structure on the meaning of a phrase. For example, an additive model
assigns meaning to a sentence by element wise sum of all the vectors of the words in
that sentence. Similarly, one defines a multiplicative model by taking element wise
multiplication. Another option is a weighted sum. We list these models in Table 1.1,
and refer to Mitchell and Lapata [ML08; ML10] for the first experimental studies on
algebraic models of composition in a distributional setting.

Model Sentence Embedding

Additive w1...wn
�!w1 + ... +�!wn

Multiplicative w1...wn
�!w1 � ...��!wn

Weighted Sum w1...wn ↵1
�!w1 + ... + ↵n

�!wn

TABLE 1.1: Algebraic models of composition
for distributional semantics.

Tensor-Based Models A next step in implementing a type-driven models comes
from the tensor-based approach [CSC10; BZ10; PB+14]: here, one assumes that the
type or grammatical category of a word dictates its tensor rank, promoting words
with complex types to multi-linear maps, analogous to a set-theoretic semantics
where words with complex types are assigned to functions in a function space given
by their type. Then, composition becomes tensor contraction, which is simply the
application of a multi-linear map to its arguments. For example, a transitive verb

30 Chapter 1. Distributional Semantics: From Word to Sentence

may be assigned the syntactic type (np\s)/np, meaning it composes with the object
of the verb, and afterwards with the subject of the verb to form a sentence. Its se-
mantic representation then will be a cube V which may be applied to any pair of
subject and object vectors using tensor contraction, to give back a vector. If we write
down the entries of V as Vijk and the entries of a subject vector�!s as sl and those for
an object vector �!o as om, then we write for the application:

�!s T
⇥ V ⇥�!o =

X

ijk

siVijkok

Here, the unification of indices shows that we are multiplying those elements in the
first dimension of the cube with those of the subject vector in an element wise fash-
ion, and the same for the object vector, which leaves us with a vector for the subject-
verb-object combination. In concrete experiments, this particular way of compos-
ing tensors is only one of the implementations, and we will call any method that
uses different rank tensors for its individual word representations a tensor-based
model. For example, Milajevs et al. [Mil+14] consolidates and evaluates a number of
composition models that were tested before in the literature on tensor-based models
[GS11a; Gre+13; GS15; KS13; KSP13; KS14], which we list in Table 1.2. The crucial
extra operation used here is the outer product between vectors. Given vectors �!a
with entries ai and

�!
b with entries bj , their outer product will be given by

�!a ⌦
�!
b =

X

ij

aibj

That is, from such two vectors we create a matrix with entries given by the possible
ways of multiplying one element from �!a with one element from

�!
b . This operation

generalised to higher-order tensors, which we will discuss in further detail in Chap-
ter 2. Interestingly, all of these tensor-based models assume a transitive verb to be
represented by a matrix, which is both a theoretical simplification of the pure tensor-
based setting (as the sentence space is neglected), as well as a practical compromise
as this representation leads to impressive experimental results.

1.3.1 Learning the Content of Word Tensors

Taking on a type-driven view amounts to saying that the grammatical type of a word
has a direct influence on its semantic representation, so that the latter is a combina-
tion of lexical semantics and syntactic information, more specifically that the repre-
sentation of a sentence ought to follow the building blocks of sentence structure. In
a tensor-based model, word representations can be arbitrary rank tensors. As we
cover a tensor learning architecture and its evaluation in this thesis we review here
some of the related work on learning tensor representations for words.

1.3. Type-Driven Approaches to Composition 31

Name Acronym Formula

Relational REL verb� (
��!
subj ⌦

�!
obj)

Kronecker KRON (
��!
verb⌦

��!
verb)� (

��!
subj ⌦

�!
obj)

Copy Subject CS
��!
subj � (verb⇥

�!
obj)

Copy Object CO
�!
obj � (verb

T

⇥
��!
subj)

Frobenius Additive FA
��!
subj � (verb⇥

�!
obj) +

�!
obj � (verb

T

⇥
��!
subj)

Frobenius Multiplicative FM
��!
subj � (verb⇥

�!
obj)�

�!
obj � (verb

T

⇥
��!
subj)

Frobenius Outer FO
��!
subj � (verb⇥

�!
obj)⌦

�!
obj � (verb

T

⇥
��!
subj)

TABLE 1.2: Table of all tensor-based composition models for transitive sentences
(subj verb obj) that were evaluated by Milajevs et al. [Mil+14].

Although there are quite a few established methods around that learn distribu-
tional and distributed vector embeddings at the word level, the number of tech-
niques that are used to obtain high-rank tensors are limited.

Adjectives For adjectives, matrices can be learned by regression to approximate
holistic adjective-noun phrase vectors [BZ10], and more recently, by lifting the skip-
gram model of Mikolov et al. [Mik+13] to learn a transformation between fixed vec-
tors for nouns and adjective-noun combinations [MC15].

Verbs For verbs, the relational model of Grefenstette and Sadrzadeh [GS11a] takes
the sum of the outer products of the vectors for observed subjects and objects of
a given transitive verb. Later work follows the learning method of Baroni et al.
and applies a multi-step regression algorithm to learn a verb cube by first approxi-
mating a holistic subject-verb vector, and subsequently a holistic verb-object matrix
[Gre+13]. A different approach is the plausibility model of Polajnar, Rimell, and
Clark [PRC14], in which a verb matrix or cube is learnt to optimise a model that dis-
tinguishes between observed subject-verb-object triples (plausible) and generated
triples (implausible).

All in all, the status of type-driven compositional distributional models seems to be
this: these models derive their strength from an elegant theory, and the presence of
an explanation of how the meaning of sentences should be derived. On the other
hand, there is a limited number of efficient techniques for estimating the content of
the tensors involved, resulting in a lack of scalability.

32 Chapter 1. Distributional Semantics: From Word to Sentence

1.4 Neural Approaches to Composition

An approach that is seemingly orthogonal to that of type-driven composition, is the
purely neural approach. In such a scenario, one treats again the type of word repre-
sentations to be fixed, assigning a vector to each word. Then, an objective function
is optimised that maps multiple word vectors onto a sentence vector. Such models
are sentence encoders. A different style of models learns to assign vectors to words,
depending on the other words they occur with in a sentence, using a language mod-
elling approach. Here, context is incorporated both in the vector representations
themselves, as a language model computes the probability of a word occurring given
the previously encountered words, and in the overarching sentence representation:
the particular vector assigned to each word is a function from all other words in the
sentence. We review both approaches here.

1.4.1 Sentence Encoders

Skip-Thoughts The skip-thoughts models of Kiros et al. [Kir+15] uses an encoder-
decoder model to learn arbitrary sentence representations in an unsupervised man-
ner. The model essentially lifts the idea behind most word embeddings to the sen-
tence level: given a sentence, its context is given by preceding and following sen-
tences.

The skip-thoughts model consists of three components: a sentence encoder (a
recurrent neural network) for a target sentence, and two conditional decoders, one
for decoding the previous sentence and one for decoding the next sentence. Given a
triple of sentences (si�1, si, si+1), the encoder produces a hidden state vector vi for
the target sentence, and the two decoders use this as a condition for trying to gen-
erate the previous and following sentences si�1, si+1. The decoders are essentially
language models, as for each timestep, they are given the actual (previous) words in
the sentence that they are trying to produce. For example, if the target sentence is I
could see the cat on the steps with representation v, and the previous sentence would
be I got back home, then at the second timestep the backward decoder is trying to
predict the word back, given v and the sequence I got.

From a high-level perspective, the skip-thoughts model lifts the distributional
hypothesis to the level of sentences: sentences that co-occur with similar sentences
tend to have similar meaning.

InferSent This model learns sentence representations using a supervised natural
language inference task. Essentially, the proposal of the authors [Con+17] is to learn
a general encoder for arbitrary sentences, by connecting the sentence encoding vec-
tor to a three-way classification problem on a natural language inference task.

Although the authors compare various different deep neural network models,
their published model is based on a bi-directional LSTM with max pooling. The
overall architecture is highlighted in Figure 1.2. The general purpose encoder is

1.4. Neural Approaches to Composition 33

embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u � v|, u � v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u � v; and
(iii) absolute element-wise difference |u� v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures
A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =

����!
LSTM(w1, . . . , wT) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling
For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t 2 [1, . . . , T], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

�!
ht =

����!
LSTMt(w1, . . . , wT)

 �
ht =

 ����
LSTMt(w1, . . . , wT)

ht = [
�!
ht ,
 �
ht]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pool-
ing) (Collobert and Weston, 2008) or by consider-
ing the average of the representations (mean pool-
ing).

The movie was great

 �
h1

 �
h2

 �
h3

 �
h4

�!
h4

�!
h3

�!
h2

�!
h1

w1 w2 w3 w4

x

x
x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.

embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u � v|, u � v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u � v; and
(iii) absolute element-wise difference |u� v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures
A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =

����!
LSTM(w1, . . . , wT) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling
For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t 2 [1, . . . , T], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

�!
ht =

����!
LSTMt(w1, . . . , wT)

 �
ht =

 ����
LSTMt(w1, . . . , wT)

ht = [
�!
ht ,
 �
ht]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pool-
ing) (Collobert and Weston, 2008) or by consider-
ing the average of the representations (mean pool-
ing).

The movie was great

 �
h1

 �
h2

 �
h3

 �
h4

�!
h4

�!
h3

�!
h2

�!
h1

w1 w2 w3 w4

x

x
x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.

FIGURE 1.2: Figures from [Con+17] explaining the system’s architecture: the sentence en-
coder uses a bidirectional LSTM, and applies a max pooling attention mechanism (left). The
supervised task is natural language inference: the encoder gives a vector for premise and
for hypothesis, and their concatenation, absolute element wise difference, and element wise
multiplication are passed through a feed-forward three-way classifier (contradiction, neu-

tral, entailment).

trained on the Stanford Natural Language Inference dataset of Bowman et al. [Bow+15],
but is consequently evaluated on multiple tasks.

Universal Sentence Encoder A multi-task learning version of InferSent is Google’s
Universal Sentence Encoder [Cer+18], which uses two different model architectures
(Transformer and Deep Averaging Network) and trains both a Skip-Thought objec-
tive, and the SNLI supervised task, in addition to a number of additional classifica-
tion tasks, such as sentiment analysis and semantic textual similarity.

The Transformer model was introduced in [Vas+17], and uses static input with
an attention mechanism rather than the dynamic recursive neural networks, as dis-
played in Figure 1.3. The attention mechanism takes a word vector (the query) as
input and the vector representations for all other words in the sentence (the keys
and the values) and produces an output vector that represents the relevant contex-
tual information for the given word in the sentence. In this way, there is no need to
rely on a recursive mechanism in the way an LSTM would do.

Deep averaging networks [Iyy+15] were introduced and shown to outperform
neural network models that explicitly try to model compositionality (e.g. by recurs-
ing over a tree). The architecture is fairly straightforward and displayed in Figure
1.4: first, the embeddings for the words in a sentence are averaged, the result of
which is passed through two non-linear feedforward layers, and finally a softmax
classification is applied.

34 Chapter 1. Distributional Semantics: From Word to Sentence

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

FIGURE 1.3: Figure from [Vas+17], explaining the attention mechanism used.

Predator
c1

is
c2

a
c3

masterpiece
c4

z1 = f(W

�
c3

c4

�
+ b)

z2 = f(W

�
c2

z1

�
+ b)

z3 = f(W

�
c1

z2

�
+ b)

softmax

softmax

softmax

RecNN

Predator
c1

is
c2

a
c3

masterpiece
c4

av =
4P

i=1

ci
4

h1 = f(W1 · av + b1)

h2 = f(W2 · h1 + b2)

softmax

DAN

Figure 1: On the left, a RecNN is given an input sentence for sentiment classification. Softmax layers
are placed above every internal node to avoid vanishing gradient issues. On the right is a two-layer DAN
taking the same input. While the RecNN has to compute a nonlinear representation (purple vectors) for
every node in the parse tree of its input, this DAN only computes two nonlinear layers for every possible
input.

functions: the compositionality or the nonlineari-
ties? Socher et al. (2013b) report that removing the
nonlinearities from their RecNN models drops per-
formance on the Stanford Sentiment Treebank by
over 5% absolute accuracy. Most unordered func-
tions are linear mappings between bag-of-words
features and output labels, so might they suffer
from the same issue? To isolate the effects of syn-
tactic composition from the nonlinear transforma-
tions that are crucial to RecNN performance, we
investigate how well a deep version of the NBOW
model performs on tasks that have recently been
dominated by syntactically-aware models.

3 Deep Averaging Networks

The intuition behind deep feed-forward neural net-
works is that each layer learns a more abstract rep-
resentation of the input than the previous one (Ben-
gio et al., 2013). We can apply this concept to the
NBOW model discussed in Section 2.1 with the ex-
pectation that each layer will increasingly magnify
small but meaningful differences in the word em-
bedding average. To be more concrete, take s1 as
the sentence “I really loved Rosamund Pike’s per-
formance in the movie Gone Girl” and generate s2

and s3 by replacing “loved” with “liked” and then
again by “despised”. The vector averages of these
three sentences are almost identical, but the aver-
ages associated with the synonymous sentences s1

and s2 are slightly more similar to each other than
they are to s3’s average.

Could adding depth to NBOW make small such
distinctions as this one more apparent? In Equa-

tion 1, we compute z, the vector representation for
input text X , by averaging the word vectors vw2X .
Instead of directly passing this representation to an
output layer, we can further transform z by adding
more layers before applying the softmax. Suppose
we have n layers, z1...n. We compute each layer

zi = g(zi�1) = f(Wi · zi�1 + bi) (5)

and feed the final layer’s representation, zn, to a
softmax layer for prediction (Figure 1, right).

This model, which we call a deep averaging net-
work (DAN), is still unordered, but its depth allows
it to capture subtle variations in the input better
than the standard NBOW model. Furthermore, com-
puting each layer requires just a single matrix multi-
plication, so the complexity scales with the number
of layers rather than the number of nodes in a parse
tree. In practice, we find no significant difference
between the training time of a DAN and that of the
shallow NBOW model.

3.1 Word Dropout Improves Robustness
Dropout regularizes neural networks by randomly
setting hidden and/or input units to zero with some
probability p (Hinton et al., 2012; Srivastava et
al., 2014). Given a neural network with n units,
dropout prevents overfitting by creating an ensem-
ble of 2n different networks that share parameters,
where each network consists of some combination
of dropped and undropped units. Instead of drop-
ping units, a natural extension for the DAN model is
to randomly drop word tokens’ entire word embed-
dings from the vector average. Using this method,

1683

FIGURE 1.4: Figure from [Iyy+15], explaining a deep averaging network architecture. The
input vectors for all words are linearly averaged, after which two extra layers manipulate

this average by means of the softmax classification objective of the network.

1.4. Neural Approaches to Composition 35

1.4.2 Contextualised Embeddings

Contextualised embeddings provide a middle ground between word embeddings
and sentence encodings: given a word in a sentence, these models give back an em-
bedding that depends on the context of all other words in the sentence. By merging
the different embeddings for the words in the sentence, one can then give back a
sentence vector for further processing. We highlight two popular models, that are
based on the task of language modelling.

ELMo The “Embeddings from Language Models" from Peters et al. [Pet+18] works
in two steps: first, there is an unsupervised stage where a bidirectional neural lan-
guage model based on LSTMs is trained on large amounts of textual data, using a
multi-layer LSTM. The second step is task-specific and learns how to combine the
internal layers of the model to provide embeddings that perform well on the given
task.

A language model tries to predict the next word in a sequence based on previous
words, computing the probability

p(wk|w1, ..., wk�1)

For a full sequence, the probability of that sequences is given by the product of
intermediate steps:

p(w1, ..., wn) =
nY

k=1

p(wk|w1, ..., wk�1)

The language model that ELMo uses is bidirectional: while one LSTM models
a forward language model, another LSTM models the backward language model,
the two sharing the initial embeddings for each word (input layer) and the softmax
classifier that predict the next (or previous) word (output layer). The schema is laid
out in Figure 1.5.

The supervised training then is based on the hidden layers of the biLSTM. As Fig-
ure 1.5 shows, the model has two hidden layers for each LSTM. Given some training
task (say a classification task), one uses the pretrained ELMo model, but learns a
linear combination of the hidden vector representations of the words in a sequence
to output a final word vector representation, that is then used in the task at hand.

BERT The “Bidirectional Encoder Representation from Transformers" of Devlin et al.
[Dev+19] also use a language modelling approach, just like ELMo, but base them-
selves on the Transformer architecture of Vaswani et al. [Vas+17], in which not a
recursive neural network is used, but rather a sequence to sequence model with a
self-attention mechanism. The major issue the authors addressed with BERT was
the problem of jointly learning left-to-right and right-to-left encoders, as doing so al-
lows the model to predict the missing word using the attention mechanism itself. So

36 Chapter 1. Distributional Semantics: From Word to Sentence

FIGURE 1.5: Figure from [Pet+18], explaining the ELMo pretraining step. Where the forward
language model learns to predict the embedding for the next word given the previous word
embedding, the backward language model works the other way around. After pretraining,
the model gives three layers of both forward and backward looking embeddings, that need

to be mixed into a sentence embedding.

the authors replace the language modelling object by a “masked language model",
in which an arbitrary word of a sequence is masked and the model needs to predict
it. The model can be fine-tuned on a task by additional training, this time replacing
the input and output with task-specific training instances.

1.5 Evaluating Sentence Embeddings

Because sentence embeddings are relevant for many natural language processing
applications, there are a number of different types of datasets for the evaluation of
such embeddings. On the one hand, there are large-scale datasets that try to address
general textual similarity or natural language inference. Examples of textual similar-
ity are the Semantic Textual Similarity datasets (STS), collected over the course of
five years during the shared tasks of the *SEM conferences between 2012 and 2016,
and the SICK dataset introduced by Marelli et al. [Mar+14]. For natural language
inference, the most prominent datasets are the Stanford Natural Language Inference
dataset [Bow+15], with its multigenre variant MNLI [WNB18] and its crosslingual
version XNLI [Con+18].

Although these datasets are used to test many state of the art models, they are
often not focussed enough to properly assess the compositional approaches that we
are interested in. Moreover, given that they may contain general arbitrary length
sentences makes it difficult to evaluate the effect of particular composition choices.
Finally, it is not yet clear to what extent the datasets facilitate the development of
properly generalising models [TC19].

1.6. This Thesis in Context 37

The datasets that we focus on in this thesis come from the work of Mitchell and
Lapata [ML08; ML10], and Sadrzadeh and colleagues [GS11a; KSP13; KS13], de-
scribing intransitive sentences and transitive sentence, respectively. As we define a
compositional vector space model of ellipsis with anaphora, we also introduce ex-
tended datasets with verb phrase elliptical sentences [WS19a; WS19b]. We list all the
datasets that we use in this thesis in the table below:

Name Reference # of Pairs Categories

ML2008 [ML08] 200 SV
ML2010 [ML10] 200 SV & VO
GS2011 [GS11a] 200 SVO
KS2013 [KSP13] 100 SVO
KS2014 [KS13] 108 SVO
MLELLDIS [WS19a] 240 VP-Elliptical SV
ELLDIS [WS19b] 400 VP-Elliptical SVO
ELLSIM [WS19b] 432 VP-Elliptical SVO

Neural models For evaluation we also make use of pretrained sentence encoders
and contextualised embedding models. We list here the implementations used:

Name Link

Skip-Thoughts github.com/ryankiros/skip-thoughts

Doc2Vec github.com/jhlau/doc2vec

InferSent github.com/facebookresearch/InferSent

Universal Sentence Encoder tfhub.dev/google/universal-sentence-encoder/2

ELMo tfhub.dev/google/elmo/2

BERT github.com/imgarylai/bert-embedding

1.6 This Thesis in Context

This thesis was born out of a motivation to investigate the significance of linguistic
knowledge in a distributional setting. While the tensor-based modellings explicitly
allow the grammatical structure of text to guide the distributional interpretation of
the composition of word embeddings, at the time the research of this thesis was
done, many deep neural network approaches were developed, that don’t explicitly
incorporate linguistic knowledge, but rather assume that this knowledge somehow
emerges from simple textual properties such as co-occurrences, language models, and
so on. Hence, this thesis developed itself almost as a piece of comparative research:
what can type-driven models offer that neural approaches can’t? On the theoretical
side, we argue that they offer explanatory power over purely neural models: gram-
mar explains the structure of a sentence, the principle of compositionality explains
how the meaning of a sentence must depend on both the meaning of individual ex-
pressions and the way they are (syntactically) put together. On the technical side,

https://github.com/ryankiros/skip-thoughts
https://github.com/jhlau/doc2vec
https://github.com/facebookresearch/InferSent
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/elmo/2
https://github.com/imgarylai/bert-embedding

38 Chapter 1. Distributional Semantics: From Word to Sentence

however, type-driven models have a disadvantage over neural approaches in that
they have not been shown to scale up. Hence, the topic of this thesis is about ex-
tending the existing models in theory as well as in practice. And in the latter point,
the last two chapters of this thesis — each constituting a separate study during the
course of this PhD — offer a comparative experimental perspective: implementing
a type-driven model and contrasting it with neural approaches to sentence embed-
dings, which models are more in line with human judgments of sentence similarity?

39

Chapter 2

Categorical Distributional
Semantics

Chapter Abstract

This chapter lays the foundations of compositional distributional semantics in a
type-driven framework, as briefly discussed in Chapter 1. We define the relevant
categories that are used in the categorically driven composition model of Coecke,
Sadrzadeh, and Clark [CSC10], and expand slightly to include related work on
extending this model to Lambek Calculus [CGS13]. We briefly discuss Montague
style formal semantics, and string diagrammatic languages for Lambek Calculus
[Wij17].

The central challenge in this thesis is that of compositionality in the context of
distributional semantics: if we have good distributional representations for words,
what constitutes a good distributional representation of a sentence? As discussed
in the previous chapter, the methods that learn distributional word representations
generally do not lift well to the sentence level, as there are simply too many possible
ways of composing words into larger phrases, making it infeasible to learn sentence
representations.

Compositional semantics is concerned not with word level meaning representa-
tion, but with how to compose the meaning of individual words into the meaning
of sentences. It is often attributed to Gottlob Frege, and formalised in the language
of universal algebra by Montague [Mon70b], that the meaning of a sentence may
be described as a function of its individual word meanings and the way they are
combined:

F (G)
�
�(w1) ... �(wn)

�

Here, G is some grammatical structure, F a structure preserving map passing from
syntactic to semantic structure, and � a semantic map assigning the meaning repre-
sentations of individual words. The biggest issue of type-theoretic formal semantics
is that individual word meaning are described in holistic terms, using predefined
set-theoretic models of the world. So the big innovation caused by distributional

40 Chapter 2. Categorical Distributional Semantics

models of word meaning quite naturally led researchers to combine the comple-
mentary strengths of both worlds: take the crisp compositional semantics from the
world of types, and insert the lexical content of word embeddings.

In this chapter we describe two ways of achieving such a compositional distri-
butional model: first, we review the work done by Coecke, Sadrzadeh, and Clark
[CSC10] and others [CGS13; SCC13; GS11a; KS14; Kar16] on a categorical model
of composition for distributional semantics, and then we briefly review the work
of Muskens and Sadrzadeh [MS16; MS17] where not category theory, but lambda
calculus plays the role of mediator between syntax and semantics.

2.1 Categorical Composition

The work of Coecke, Sadrzadeh, and Clark [CSC10] uses category theory to unify
the seemingly unrelated structures underlying grammar and distributional repre-
sentations. Although a tour into these references might daunt the reader slightly,
the main point of the approach is this: finite dimensional vector spaces and linear
maps between them, the mathematical structure used in distributional semantics,
can be seen as an example of a compact closed category. Lambek’s pregroup gram-
mar [Lam99] can also be seen as an example of a compact closed same category.
This means that we can related the syntactic structures we get from a grammar, to
the operations on vector representations of word meaning. In later work, Coecke,
Grefenstette, and Sadrzadeh [CGS13] show how also the Lambek Calculus can be
treated as a category and the authors consider the categorical version of Montague’s
homomorphic formulation of compositionality to describe a functorial passage from
the Lambek Calculus to finite-dimensional vector spaces.

Here we work out the formal prerequisites to understand this approach. But
to be able to define the relevant formalisms we need to first establish some basic
categorical notions.

2.1.1 Monoidal Categories

First, a category C consists of a collection of objects Ob(C), denoted by A, B etc.,
and a collection of arrows Ar(C), denoted by f, g etc. Each arrow has a domain
and codomain, for which we colloquially write f : A ! B. Moreover, we can write
HomC(A, B) to denote all the arrows with the same domain and codomain. The
defining arrows of any category are identity arrows, and the presence of composi-
tion. That is, for every object A there is an arrow idA : A ! A, and for every two
arrows f : A! B and g : B ! C there is a composite arrow g �f : A! C. These ar-
rows need to satisfy some basic equations, expressing the redundancy of composing
with an identity arrow, and associativity of arrow composition:

f � idA = f = idB � f for f : A! B,

h � (g � f) = (h � g) � f for f : A! B, g : B ! C, h : C ! D.

2.1. Categorical Composition 41

A functor is a mapping between categories F : C ! D that assigns to each object A

in Ob(C) an object F (A) in Ob(D) and to each arrow f : A ! B in Ar(C) an arrow
F (f) : F (A)! F (B) in Ar(D) such that identities and composition are preserved:

1. F (g � f) = F (g) � F (f),

2. F (idA) = idF (A).

Functors are the categorical analogue of a homomorphism, i.e. a structure-preserving
map. Functors that have two arguments are called bifunctors and have the following
restrictions:

• Identities should be preserved, so F (id(A,B)) = idF (A,B),

• Composition should be preserved, so F (k � g, h � f) = F (k, h) � F (g, f).

Finally, a natural isomorphism is a map that abstract away over objects, while re-
specting a notion of isomorphims: first, a natural transformation is a collection of
maps ✓A : F (A) ! G(A) between functors F, G such that for any such map either
applying the natural transformation or the functor first will give the same map:

F (A) G(A)

F (B) G(B)

✓A

F (f) G(f)

✓B

The categories that will be relevant for this thesis are mostly monoidal, that is to
say, they are endowed with a bifunctor ⌦ : C ⇥ C ! C, and a unit object I , with
natural isomorphisms ↵A,B,C : (A ⌦ B) ⌦ C ! A ⌦ (B ⌦ C), �A : I ⌦ A ! A and
⇢A : A⌦ I ! A, such that the diagrams below commute:

(A⌦ (B ⌦ C))⌦D A⌦ ((B ⌦ C)⌦D)

((A⌦B)⌦ C)⌦D A⌦ (B ⌦ (C ⌦D))

(A⌦B)⌦ (C ⌦D)

↵A,B⌦C,D

idA ⌦ ↵B,C,D↵A,B,C ⌦ idD

↵A⌦B,C,D ↵A,B,C⌦D

(A⌦ I)⌦B A⌦ (I ⌦B)

A⌦B

↵A,I,B

⇢A ⌦ idB idA ⌦ �B

42 Chapter 2. Categorical Distributional Semantics

2.1.2 Closing the ⌦

The linguistic structures that we will talk about use a monoidal bifunctor⌦ to model
concatenation or merging of information, whereas in vector spaces the operation ⌦
interprets this merging by the tensor product between vector spaces. Both pregroup
grammar and Lambek Calculus, the formalisms of interest in this chapter, have their
own type of closure with respect to the ⌦.

Compact Closed Categories First, we define closure by duality, which leads us to
autonomous and compact closed categories. An autonomous category is a monoidal
category (C,⌦, ↵, I, �, ⇢) such that for every object A in Ob(C) there exist objects Al

and Ar (called left and right adjoints) and for every A there exist morphisms

Al
⌦A

✏l

��! I
⌘l

��! A⌦Al A⌦Ar ✏r

��! I
⌘r

��! Ar
⌦A

which respect the following commuting diagrams:

(A⌦Al)⌦A A⌦ (Al
⌦A)

I ⌦A A⌦ I

A A

↵A,Al,A

idA ⌦ ✏
l⌘

l
⌦ idA

⇢A�
�1
A

idA

Al
⌦ (A⌦Al) (Al

⌦A)⌦Al

Al
⌦ I I ⌦Al

Al Al

↵
�1
Al,A,Al

✏
l
⌦ idAlidAl ⌦ ⌘

l

�A⇢
�1
Al

idAl

A⌦ (Ar
⌦A) (A⌦Ar)⌦A

A⌦ I I ⌦A

A A

↵
�1
A,Ar,A

✏
r

⌦ idAidA ⌦ ⌘
r

�A⇢
�1
A

idA

(Ar
⌦A)⌦Ar Ar

⌦ (A⌦Ar)

I ⌦Ar Ar
⌦ I

Ar Ar

↵Ar,A,Ar

idAr ⌦ ✏
r⌘

r
⌦ idAr

⇢Ar�
�1
Ar

idAr

In the case that the monoidal category is also symmetric, the left and right dual ob-
jects collapse into one dual object (up to isomorphism) and we speak of a compact
closed category and denote the dual of A by A⇤.

Biclosed Monoidal Categories The second way of closing the category is by di-
rectly closing the bifunctor ⌦, rather than through dual objects. We call a monoidal
category (C,⌦, ↵, I, �, ⇢) left closed if it has a bifunctor): C

op
⇥ C ! C (i.e. con-

travariant in its first argument, covariant in its second argument) together with a

2.1. Categorical Composition 43

natural isomorphism specified by �A,B,C : HomC(A ⌦ B, C) ! HomC(B, A) C).
Similarly, a right closed monoidal category is obtained in the presence of a bifunc-
tor (: C ⇥ C

op
! C and a natural isomorphism �A,B,C : HomC(A ⌦ B, C) !

HomC(A, C (B). Of course, a biclosed monoidal category is one which is both
left and right closed. Symmetric monoidal categories with either closure induce a
biclosed structure.

Frobenius Algebras Subsequent work on modelling natural language meaning in a
categorical model by Sadrzadeh, Clark, and Coecke [SCC13; SCC14] have used ad-
ditional structure that is available in the category of finite dimensional vector spaces
(which we will define below), called a Frobenius algebra. This structure delivers
operations that can be used to expand vectors into matrices, or to compress matrices
in vectors, which is used to model relative pronouns. Formally, a Frobenius algebra
in a symmetric monoidal category (C,⌦, I) is a tuple (X, �, ◆, µ, ⇣) where, for X an
object of C, the first triple below is an internal comonoid and the second one is an
internal monoid.

(X, �, ◆) (X, µ, ⇣)

This means that we have a coassociative map � and and its counit ◆:

� : X ! X ⌦X ◆ : X ! I

and an associative map µ and its unit ⇣:

µ : X ⌦X ! X ⇣ : I ! X

as morphisms of our category C. Being an internal monoid means that the following
equations are satisfied:

(X ⌦X)⌦X X ⌦ (X ⌦X)

X ⌦X X ⌦X

X

↵

↵
�1

µX ⌦ idX idX ⌦ µX

µX µX

I ⌦X X ⌦X X ⌦ I

X

⇣X ⌦ idX idX ⌦ ⇣X

�X
µX ⇢X

whereas for the internal comonoid, the arrows are simply reversed:

44 Chapter 2. Categorical Distributional Semantics

(X ⌦X)⌦X X ⌦ (X ⌦X)

X ⌦X X ⌦X

X

↵

↵
�1

�X ⌦ idX idX ⌦ �X

�X �X

I ⌦X X ⌦X X ⌦ I

X

◆X ⌦ idX idX ⌦ ◆X

�
�1
X

�X ⇢
�1
X

The � and µ morphisms satisfy the Frobenius condition given below

(µ⌦ idX) � (idX ⌦�) = � � µ = (idX ⌦ µ) � (�⌦ idX)

Informally, the comultiplication � expands the information contained in one object
into two objects; the multiplication µ combines the information of two objects into
one. The Frobenius condition then states that combining of information followed by
an expansion of information, is compatible with expanding one half of the original,
granted that one combines the obtained extra object with the original. It is moreover
important to define the properties of a special and commutative Frobenius Algebras:
in the case of a commutative Frobenius Algebra we have that

� �� = � and µ � � = µ

so that the Frobenius expansion and combining are insensitive to the ordering of
information. In the case of a special Frobenius Algebra we moreover have that

µ �� = id

which tells us that combining information that itself was expanded, doesn’t have
any effect. Finally, it is important to note that the tensor product of a symmetric
Frobenius Algebra is itself a symmetric Frobenius Algebra, where the structure car-
ries over from the original algebras:

�A⌦B := �A ⌦�B

µA⌦B := (µA ⌦ µB) � idA ⌦ �B,A ⌦ idB

We define the concrete operations of a Frobenius Algebra below in Section 2.1.6.

2.1. Categorical Composition 45

2.1.3 Pregroups as an autonomous category

We start out with discussing Lambek’s pregroup grammar [Lam99], and will see
how it naturally forms an autonomous category. As with typelogical grammar, in
pregroup grammar words are associated types and sequences of words are deemed
grammatical when their associated sequence of types leads one to derive a distin-
guished (sentence) type. Formally, a pregroup is a partially ordered monoid (A, 1, ·,

) with, for every element x, a left and right adjoint xl,xr that satisfy

xl
· x  1  x · xl x · xr

 1  xr
· x

From this, one derives

1l = 1 = 1r xlr = x = xrl (x · y)l = yl
· xl (x · y)r = yr

· xr

In order to construct a sentence, one associates types to words. As an example,
consider “Bill sings and Hannah dances”. Assuming basic types np (noun phrase)
and s (sentence), we get the type assignment with reduction of Figure 2.1.

Bill sings and Hannah dances
np npr

· s sr
· s · sl np npr

· s 

s sr
· s · sl s 

s

FIGURE 2.1: A pregroup derivation of “Bill sings and Hannah
dances”.

Pregroups are algebraic structures, and they naturally form an autonomous cate-
gory: for a pregroup (A, 1, ·,), the objects of the category Preg are the elements in
A, its monoidal tensor is ·, and its unit is 1. An arrow between objects f : A ! B

exists whenever there is a reduction A  B. The conditions on the dualising objects
are now given by reductions of the sort

a  a · 1  a · ar
· a  1 · a  a

Note that in the original formulation, this category is posetal, having at most one
arrow between two objects. But, as noted in Kartsaklis [Kar15], this is not wanted
in general as multiple reductions may be possible, leading to different semantics. It
is solved by reformulating the categorification of pregroups in the language of free
2-categories [PL07]. For our purposes it suffices to simply note that multiple arrows
between the same objects may exist, and that all the equations of a compact closed
category are easily satisfied.

46 Chapter 2. Categorical Distributional Semantics

2.1.4 Lambek Calculus as a Biclosed Monoidal Category

Most of the work in this thesis works with extensions of the Lambek Calculus,
whether in its original associative formulation of Lambek [Lam58] or its nonasso-
ciative refinement [Lam61]. We present it here as a ‘deductive system’ after Lambek
[Lam68], where one defines axioms and inference rules. The reason to do so is that
this style of presentation directly corresponds to the presentation style commonly
used in category theory.

The core component of the (nonassociative) Lambek Calculus is given in Figure
3.1. It starts as the most basic deductive system with an axiom scheme (the identity
arrow on types) and composition (of arrows). Next, the inference rules defining
the scheme between the concatenation connective ⌦ and its residuals \ and / are
given. The monotonicity rules of Figure 2.3 are derived rules of inference. To define

1A : A �! A
f : A �! B g : B �! C

g � f : A �! C

f : A⌦B �! C

Bf : A �! C/B

f : A⌦B �! C

Cf : B �! A\C

g : A �! C/B

B
�1g : A⌦B �! C

g : B �! A\C

C
�1g : A⌦B �! C

FIGURE 2.2: Lambek’s nonassociative calculus of [Lam61], presented as a deductive system.

f : A! C g : B ! D
f ⌦ g : A⌦B ! C ⌦D

⌦
f : A! C g : B ! D

g/f : B/C ! D/A
/

f : A! C g : B ! D

f\g : C\B ! A\D
\

f ⌦ g := B�1((BC�1 ((C1C⌦D) � g)) � f)
g/f := B(g � (C�1((CB�1 1B\C) � f)))
f\g := C(g � (B�1((BC�1 1C\B) � f)))

FIGURE 2.3: Monotonicity rules, their derivation, and application and coapplication laws.

Lambek’s original system L we add two arrows

↵A,B,C : (A⌦B)⌦ C ! A⌦ (B ⌦ C)

↵�1
A,B,C

: A⌦ (B ⌦ C)! (A⌦B)⌦ C

Deriving Sentences Just like with pregroup grammar, words are assigned types, this
time from a set of basic types and the connectives ⌦, \, /. We can recast the example
from the previous section with Lambek types:

Bill sings and Hannah dances
np np\s (s\s)/s np np\s ` s

2.1. Categorical Composition 47

However, contrary to pregroups, the Lambek Calculus is a typelogical grammar.
That is, a sequence of words w1, ..., wn is grammatical when the associated sequence
of types t(w1), ..., t(wn) induces a proof of t(w1) ⌦ ... ⌦ t(wn) ! s. For the example
above we obtain the proof in Figure 2.4.

np! np 1np s! s 1s

np\s! np\s
\

np⌦ np\s! s
C

�1
s! s 1s

s\s! (np⌦ np\s)\s
\

np! np 1np s! s 1s

np\s! np\s
\

np⌦ np\s! s
C

�1

(s\s)/s! ((np⌦ np\s)\s)/(np⌦ np\s)
/

(s\s)/s⌦ (np⌦ np\s)! (np⌦ np\s)\s
B

�1

(np⌦ np\s)⌦ ((s\s)/s⌦ (np⌦ np\s))! s
C

�1

FIGURE 2.4: A proof of grammaticality for “Bill sings and Hannah dances”.

Closure for Lambek Calculus The (associative) Lambek Calculus, in its deductive
systems presentation, can be shown to form an instance of a biclosed monoidal cate-
gory. Its objects are types that are built from a set of basic types and the connectives
⌦, \, /. For the arrows, one defines an equivalence relation over proofs in which the
categorical laws for a biclosed monoidal category are stipulated. That is, composing
with an identity proof is vacuous, applying a residuation rule followed by its inverse
gives you back the original arrow, and the monotonicity rules respect the bifunctor
laws. For a full discussion we refer the reader to Lambek’s work [Lam68; Lam88].

From Lambek to Lambek A natural question to ask is what the relation is that holds
between the Lambek Calculus and pregroup grammars. The answer on the level
of types and reductions/deductions is that pregroup reductions can be seen as the
image of derivations in the Lambek Calculus, under a translation of syntactic types
to pregroup types:

dpe = p dA⌦Be = dAe · dBe dA\Be = dAer · dBe dB/Ae = dBe · dAel

Buszkowski [Bus01] shows that under this translation, pregroups can be seen as a
special case of Lambek Calculus. This idea will reflect in the following sections,
where we show, after giving a truth-conditional semantics, how finite dimensional
spaces form a compact closed category, and how derivations in pregroup grammars
and Lambek Calculus can both be interpreted as linear maps over vector spaces.

2.1.5 Formal Semantics for the Lambek Calculus

Before defining vector spaces as a possible semantics for Lambek and pregroup
grammars, we briefly discuss formal semantics based on simply typed lambda cal-
culi. The Curry-Howard correspondence is a well-known correspondence that states

48 Chapter 2. Categorical Distributional Semantics

that proofs in intuitionistic logic canonically correspond to programs in a simply
typed lambda calculus1. Later on, in their book on categorical logic, Lambek and
Scott [LS88] extended this correspondence to include category theory. Next to the
proofs-as-programs connection between intuitionistic logic and (typed) lambda cal-
culus, the added interpretation is that these programs form the defining instances
of a Cartesian closed category. As the Lambek calculus is an intuitionistic system,
it therefore allows for the formulation of an accompanying lambda calculus, which
would be sensitive to the directionality of function application. Although a strict cor-
respondence can be formulated (see for example [Wan90]), one often weakens the
requirements of a strict correspondence and uses a standard formulation of typed
linear lambda calculus, akin to the system introduced by Montague [Mon70a].
Typed Lambda Calculus We start out by giving a formal definition of typed lambda
calculus (in the style of Church [Chu40]), which will serve as the abstract formal
semantics for Lambek grammars.

Definition 2 Given a countably infinite set of variables V = {x, y, z...} , terms of � are as
in the below grammar:

M, N := V | �x.M | M N | hM, Ni | ⇡1(M) | ⇡2(M)

Terms obey the standard ↵-, ⌘- and �-conversion rules:

Definition 3 For terms of � we define three conversion relations:

1. ↵-conversion: for any term M we have

M =↵ M [x 7! y]

provided that y is a fresh variable, i.e. it does not occur in M .

2. ⌘-conversion: for terms M we have

�x.M x =⌘ M (x does not occur in M)

h⇡1(M), ⇡2(M)i =⌘ M

3. �-conversion: for terms M we define

(�x.M) N !� M [x 7! N]

⇡1(hM, Ni) !� M

⇡2(hM, Ni) !� N

We moreover write M ⇣� N whenever M converts to N in multiple steps.
1For an extensive review on this topic see the book of Sørensen and Urzyczyn [SU06].

2.1. Categorical Composition 49

Interpreting Lambek Calculus In order to give an interpretation of derivations in
a Lambek grammar in formal semantics, we define a set De, the domain of entities,
and the set Dt for the domain of truth values. Out of these, and with the construc-
tions of the typed lambda calculus, we can form functions DA!B from DA to DB , as
well as pairs DA ⇥DB using the standard set-theoretic Cartesian product.

We can now give an interpretation of types and proofs of the Lambek Calculus
in typed linear lambda calculus. A usual interpretation of basic types np, n, s is to
assign bnpc = e, bnc = e! t, bsc = t. Then, on complex types we have

bA⌦Bc = bAc ⇥ bBc bA/Bc = bA\Bc = bAc ! bBc

For the proofs, we can interpret identity and composition straightforwardly by �x.x

and �x.N (M x) for M and N the terms of the subproofs, respectively. The binary
residuation rules correspond to application and abstraction depending on the direc-
tion in which the rule is applied:

bBMc = �x y.M hx, yi bCMc = �y x.M hx, yi

bB
�1Nc = �hx, yi.(N x) y bC

�1Nc = �hx, yi.(N y) x

The derived monotonicity rules get the interpretation below:

bM ⌦Nc = �hx, yi.hM x, N yi

bM\Nc = �f x.N (f (M x))

bM/Nc = �f x.M (f (N x))

The associativity rules behave as an identity since associativity is implicit in lambda
terms:

b↵(M)c = �hx, y, zi.M hx, y, zi b↵�1(M)c = �hx, y, zi.M hx, y, zi

As an example, the proof from Figure 2.4 with proof term

C
�1
B

�1 /(\(C�1
\(1np, 1s), 1s),C

�1
\(1np, 1s))

is now interpreted as an abstract term

�hx, y, z, u, vi.z (u v)(xy)

given some suitable lexical specification of the meaning of the words in the sen-
tence, the final meaning will be obtained by substituting these in, in the place of the
variables. Assuming that the terms bill,hannah denote single entities (in De) and
the constants for the verbs sing,dance denote characteristic functions from De to
Dt, therefore characterising a set of entities, and the interpretation of ‘and’ is a map

50 Chapter 2. Categorical Distributional Semantics

�Qt.�P t.P ^ Q, we apply the abstract term to these constants and get a concrete
meaning term

(sing bill) ^ (dance hannah)

The formal semantic modelling lends itself to clear logical reasoning thanks to its
toolset of logical connectives and corresponding set-theoretic operations. However,
it is not clear how to obtain the crisp entries of the actual sets that will form the con-
tent of the lexical semantics. In that sense vector space semantics offers the benefit
of being able to learn the content of words directly from corpus data. However, we
include the formal semantics review here as we will make use of a hybrid lambda
vector modelling in Chapter 3. In the next section, we discuss the categorical formu-
lation of vector space semantics for pregroup and Lambek grammars.

2.1.6 Vector Spaces as a Semantic Category

Finite dimensional vector spaces and linear maps between them can be considered
a category, which we refer to as FVect. In this category, the objects are vector spaces,
and the arrows are linear maps. We consider the tensor product between vector
spaces, ⌦, as the monoidal bifunctor of FVect, with the field of the real numbers R
as its unit I ; identity maps, composition and tensor product are defined as usual.

Compact Closure of FVect Since any vector space A has a dual space A⇤, FVect
forms a compact closed category, with the ✏, ⌘ maps instantiated with the concrete
maps below, respectively taking inner products and producing identity tensors. Since
bases of vector spaces are fixed in concrete models, there is a canonical way of defin-
ing a basis for a dual space, so that V ⇤ ⇠= V . In concrete models we may therefore
collapse the adjoints completely, leading to the following concrete definition:

✏V : V ⌦ V ! R given by
P
ij

vij(~ei ⌦ ~ej) 7!
P
i

vii

⌘V : R! V ⌦ V given by � 7!
P
i

�(~ei ⌦ ~ei)

Interpreting Pregroup Grammar Given that Preg forms an autonomous category
and FVect forms a compact closed category, their shared structure allows one to
interpret derivations of a pregroup grammar in terms of linear maps over vector
spaces [CSC10; Kar15] by means of a functorial passage. On the type level, we have
some interpretation of basic types into basic vector spaces (dne = dnpe = N ,dse = S),
concatenation is interpreted as tensor product (da · be = dae ⌦ dbe), both left and
right adjoints for a type are interpreted by the dual space, which in concrete models
collapses to the same space (dal

e = dar
e = dae). Then, both contraction rules of

pregroups become inner products in FVect, whereas the expansions are instantiated
by the ⌘ maps.

The running example “Bill sings and Hannah dances” can now be given an in-
terpretation: given vectors for each of the words,

�!
bill,
�����!
hannah 2 N, sings, dances 2

2.1. Categorical Composition 51

N ⌦ S, and 2 S ⌦ S ⌦ S, the derivation of Figure 2.1 is given as

(idS⌦ ✏S)� (✏N ⌦ ✏S⌦ idS⌦ idS⌦ ✏N ⌦ idS) : N ⌦N ⌦S⌦S⌦S⌦S⌦N ⌦N ⌦S ! S

Concretely, this will link together the subject dimensions of the verb vectors with
respective subjects, to then let the coordinator ‘and’ merge the result into a single
sentence space:

�
and⇥2 (dances⇥1

�����!
hannah)

�
⇥1 (sings⇥1

�!
bill)

Interpreting Lambek Calculus In later work on categorical distributional semantics,
Coecke, Grefenstette, and Sadrzadeh [CGS13] consider the Lambek Calculus as an
alternative to pregroup grammar, interpreting Lambek types as vector spaces and
the deduction rules as linear maps. At the type level, the interpretation functor d·e
assigns a vector space to the atomic types of L, the binary type-forming operators
are interpreted as

dA⌦Be = dAe ⌦ dBe dA/Be = dAe ⌦ dBe⇤ dA\Be = dAe⇤ ⌦ dBe

Interpretation: proofs From the linear maps interpreting the premises of the L infer-
ence rules, we want to compute the linear map interpreting the conclusion. Identity
and composition are immediate: d1Ae = 1dAe, dg � fe = dge � dfe. For the residua-
tion inferences, from the map dfe : dAe ⌦ dBe �! dCe interpreting the premise, we
obtain

dBfe = dAe
1dAe ⌦ ⌘dBe

���������! dAe ⌦ dBe ⌦ dBe⇤
dfe ⌦ 1dBe⇤
���������! dCe ⌦ dBe⇤

dCfe = dBe
⌘dAe ⌦ 1dBe

���������! dAe⇤ ⌦ dAe ⌦ dBe
1dAe⇤ ⌦ dfe
���������! dAe⇤ ⌦ dCe

For the inverses, from maps dge : dAe �! dC/Be, dhe : dBe �! dA\Ce for the
premises, we obtain

dB
�1ge = dAe ⌦ dBe

dge ⌦ 1dBe

��������! dCe ⌦ dBe⇤ ⌦ dBe
1dCe ⌦ ✏dBe

���������! dCe

dC
�1he = dAe ⌦ dBe

1dAe ⌦ dhe
��������! dAe ⌦ dAe⇤ ⌦ dCe

✏dAe ⌦ 1dCe

���������! dCe

For monotonicity, the case of parallel composition is immediate: df ⌦ge = dfe⌦dge.
For the \, / cases, from dfe : dAe �! dBe and dge : dCe �! dDe, we obtain

52 Chapter 2. Categorical Distributional Semantics

df/ge = df\ge =

dAe ⌦ dDe⇤ dBe⇤ ⌦ dCe

dBe ⌦ dCe⇤ ⌦ dCe ⌦ dDe⇤ dBe⇤ ⌦ dAe ⌦ dAe⇤ ⌦ dDe

dBe ⌦ dCe⇤ ⌦ dDe ⌦ dDe⇤ dBe⇤ ⌦ dBe ⌦ dAe⇤ ⌦ dDe

dBe ⌦ dCe⇤ dAe⇤ ⌦ dDe

dfe ⌦ ⌘dCe ⌦ 1dDe⇤

1dBe⌦dCe⇤ ⌦ dge ⌦ 1dDe⇤

1dBe⌦dCe⇤ ⌦ ✏dDe

1dBe⇤ ⌦ ⌘dAe ⌦ dge

1dBe⇤ ⌦ dfe ⌦ 1dAe⇤⌦dDe

✏dBe ⌦ 1dAe⇤⌦dDe

Interpretation for the associativity rules is obtained via the standard associativity
maps of FVect: d↵fe = f � ↵ and d↵�1fe = f � ↵�1.

The proof in Figure 2.4 can now be interpreted as a linear map. The proof itself is
encoded by the term

C
�1
B

�1 /(\(C�1
\(1np, 1s), 1s),C

�1
\(1np, 1s))

which translates to exactly the same linear map as in the pregroup case, i.e. we end
up with

�
and⇥2 (dances⇥1

�����!
hannah)

�
⇥1 (sings⇥1

�!
bill)

This is not surprising, as the interpretation of L is preserved under the transla-
tion to pregroup reductions given above.

Frobenius Algebras for Vector Spaces As mentioned in the section above, the cate-
gory FVect also possesses more structure, namely that of Frobenius Algebras. Every
vector space V contains such an algebra (V, �, µ, ◆, ⇣). The map � takes a vector and
places its values on the diagonal of a square matrix, whereas µ extracts the diagonal
from a square matrix. The ◆ and ⇣ maps respectively sum the coefficients of a vector
or introduce a vector with the value 1 for all of its coefficients. All maps are given
below:

�V : V ! V ⌦ V given by
P
i

vi~ei 7!
P
i

vi(~ei ⌦ ~ei)

◆V : V ! R given by
P
i

vi~ei 7!
P
i

vi

µV : V ⌦ V ! V given by
P
ij

vij(~ei ⌦ ~ej) 7!
P
i

vii~ei

⇣V : R! V given by � 7!
P
i

�~ei

2.1. Categorical Composition 53

This technically defines a special commutative Frobenius Algebra: embedding a vec-
tor on the diagonal of a matrix is insensitive to symmetry, as the resulting matrix is
diagonal. Moreover, putting a vector on the diagonal of a matrix and then extract-
ing this diagonal returns the original vector. Frobenius algebras have been used to
deal with relative pronouns [SCC13; SCC14] and with coordination [Kar16]. In the
concrete example of “Bill sings and Hannah dances”, the semantic type of the coor-
dinator ‘and’ will be S ⌦ S ⌦ S, and one uses the µS map to effectuate the element
wise product between both conjuncts. That is, with this instantiation, the effect of
the computation

�
and⇥2 (dances⇥1

�����!
hannah)

�
⇥1 (sings⇥1

�!
bill)

will be
(dances⇥1

�����!
hannah)� (sings⇥1

�!
bill) (2.1)

reflecting the conjunctive interpretation of ‘and’, by sharing the weights associated
with the coordinated subclauses.

In the following section we will look at ways to make the algebraic presentation
more accessible through the use of string diagrams.

2.1.7 Proofs and Pictures

To support a clear exposition of the essential reasoning happening in syntax and
semantics in the categorical framework one often relies on string diagrams: graphical
representations of the objects and arrows in a category that are sound and complete
with respect to the category they describe. This then means that we can picture
words and the relation that holds between them in the syntax (as well as in the
semantics) in a much more intuitive way than we would in the case of, say, a sequent
calculus. In the case of vector spaces it means that it is not necessary to look at
detailed equations in order to understand how vectors, matrices and higher-order
tensors are combined to produce a sentence representations.

Coecke, Sadrzadeh, and Clark [CSC10] make extensive use of string diagrams for
compact closed categories, whereas Sadrzadeh, Clark, and Coecke [SCC13] include
also the graphical representations for Frobenius Algebras. In the work of Wijnholds
[Wij17], a graphical language for biclosed magmatic categories2 is developed to rea-
son about proofs of the Lambek Calculus. We outline both languages below.

String Diagrams for Compact Closed Categories and Frobenius Algebras

In general, string diagrams form graphical representations of arrows in a given cat-
egory. We draw from top to bottom, and represent the arrows of a category as boxes
that connect wires together. Specific structures, like compact closure, and Frobenius

2These are essentially monoidal categories but without a unit object or associativity.

54 Chapter 2. Categorical Distributional Semantics

Algebras, are then depicted as special constructions on these boxes and wires. Draw-
ing from top to bottom, we represent the objects and arrows of a general category
as

Object Morphism Identity Composition
A

A

f : A! B

f

A

B

idA : A! A

A

g � f

f

g

A

B

C

and those of a monoidal category with

Tensor Unit Morphism Tensor
A⌦B

A B

I f : A1 ⌦ ...⌦An ! B1 ⌦ ...⌦Bm

...

f

...

A1 An

B1 Bm

f ⌦ g

f g

A

C

B

D

We can see that the monoidal bifunctor ⌦ is depicted by juxtaposing arrows, or by
having multiple incoming and outgoing wires. For compact closed categories, the
graphical language is one of cups and caps. Recall that we have a reduction arrow
✏ : V ⌦ V ! I that ‘cancels out’ two elements, and an expansion ⌘ : I ! V ⌦ V

that ‘introduces’ two elements. These are drawn as connecting two objects either as
a cup in the case of ✏ or as a cap in the case of ⌘:

✏ : V ⌦ V ! I ⌘ : I ! V ⌦ V

V V

V V

The defining equations of a compact closed category now are visually testified by

V V

V

V

V

=

V

V

=

V

V

V V V

Frobenius Diagrams Given that Frobenius algebras are defined on individual ob-
jects, we represent this graphically by having internal nodes for an object.

2.1. Categorical Composition 55

� : A! A⌦A ◆ : A! I µ : A⌦A! A ⇣ : I ! A

A A

A
A

A A

A
A

The Frobenius condition can now be drawn as

A A

AA A

A A

AA

A A

A

= =

As derivations in Preg and FVect have the same structure (save for symmetry), we
can use the compact closed category diagrams together with the Frobenius algebras
to directly capture both syntactic and semantic structure. Drawing triangles for lex-
ical entries, the graphical representation of Equation 2.1 is as follows:

SSS N SN

dancesHannahandBill

N SN

sings

Here, we can capture both the derivational aspect of a sentence representation (the
wiring below the types) and the lexical representations (the triangles/arrows above
the types) in a single diagram. Some diagrams may originally contain constructions
that may be simplified, for example by using the visual equations above. When a
diagram is fully simplified into a normal form, like the diagram above, we can read
off the simplest algebraic form of Equation 2.1:

(dances⇥1
�����!
hannah)� (sings⇥1

�!
bill) (2.2)

Throughout this thesis we will use these diagrams to represent the meaning of
sentences in a vector based model.

String Diagrams for Lambek Calculus

Wijnholds [Wij17] takes a different approach to string diagrams by considering cate-
gorical proof nets: graphical representations of the deductions in the Lambek Calculus
that also satisfy the categorical axioms of a biclosed monoidal category. In short, one
extends the language of string diagrams with links for each connective in the calcu-
lus (top: destructor links, bottom: constructor links):

56 Chapter 2. Categorical Distributional Semantics

⌦

A⌦B

A B
\

A\B

A B
/

B/A

B A

⌦

A B

A⌦B

\

A B

A\B

/
B A

B/A

These have the property that a destructor link attached to a constructor link is the
same as an identity, whereas the inverse attachment is the same as having two loose
arrows. Closure of the category is then given by mixing the ⌦ links with their resid-
ual links:

BA

A⌦B

A C

A\C

⌦

N1

\

A⌦B

A B

A\C

A C

⌦

N2

\

and

A

A⌦B B

C

C/B

⌦

N1

/

A⌦B

A

C/B B

D

⌦

N1

/

Indeed, Wijnholds [Wij17] shows that this graphical language can be defined in a
fully inductive manner, bypassing the need for correctness criteria that one would
have in the case of proof nets. Throughout this thesis, we will make informal use of
this language, where we drop the links for ⌦ whenever possible; this does not au-
tomatically give a graphical language for monoidal biclosed categories as it has not
been shown to be complete, but it gives a good intuition of the flow of information
in a proof. For example, the proof of Figure 2.4 may be graphically presented as in
Figure 2.5.

Moreover, the diagrams of this form can be fairly easily seen to be translatable to
the diagrams of a compact closed category. As we interpret all the connectives using
the tensor product of vector spaces, applications become tensor contractions, we can
unfold any type into a juxtaposed depiction of wires, where the application nodes for
\, / are interpreted using cups, as shown in Figure 2.6. In the symmetric situation of
the co-application rule, we interpret it using caps.

2.1. Categorical Composition 57

(s\s)/s

/

np np\s
Bill sings and

\

\

s

\

Hannah dances
np\snp

FIGURE 2.5: Information flow for the derivation in Figure 2.4.

A A\B

\

B

A A B

B

B

/

A AAA\B

B

B

FIGURE 2.6: Translation of the Lambek diagrams for left/right appli-
cation to string diagrams of a compact closed category.

59

Part II

Theory

61

Chapter 3

Ellipsis, Anaphora, and Parasitic
Gaps

Chapter Abstract

The categorical model described in Chapter 2 provides a direct interpretation of type-
logical grammar into vector spaces and linear maps using the language of category
theory. In this chapter, we give a number of extensions of the categorical model, that
handle relative pronouns, parasitic gapping, and verb phrase ellipsis with anaphora.
We also introduce an alternative modelling for verb phrase ellipsis using the frame-
work of Muskens and Sadrzadeh [MS17]. We highlight the pros and cons of both
approaches, part of which rests on evaluating which we discuss in Chapter 4. Ma-
terial is drawn from Moortgat and Wijnholds [MW17], Wijnholds and Sadrzadeh
[WS18; WS19a], and Sadrzadeh, Moortgat, and Wijnholds [SMW19].

As discussed in Chapter 2, the categorical view on compositionality in distribu-
tional models of language relies on a direct mapping from syntax to semantics. In
the pregroup case of Coecke, Sadrzadeh, and Clark [CSC10], the structure of the
grammar is (nearly) the same as the vector semantics, as pregroup grammar in-
stantiates an autonomous category, where finite-dimensional vector spaces are an
instance of a compact closed category. In subsequent work of Coecke, Grefenstette,
and Sadrzadeh [CGS13] it was shown that the connection between syntax and vec-
tor space semantics could be made through a functorial passage, and so it becomes
possible to treat the Lambek Calculus [Lam58] as a grammatical underpinning for
composition in vector spaces.

The abundance of work in typelogical grammar, however, already indicates that
the task of modelling natural language syntax was not at an end when Lambek in-
troduced his first grammar formalism; the work of Steedman [Ste00], Morrill and
Merenciano Saladrigas [MMS96], and Moortgat [Moo97] highlights three prominent
strands of typelogical grammar. All of these systems present improvements of the
Lambek calculus that can treat a variety of linguistic phenomena that are not possi-
ble to address with the core Lambek Calculus, or would give undesired semantics.

62 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

Incorporating the variety of different extensions of the Lambek Calculus and
merging them within the categorical framework of compositional distributional mod-
els poses several challenges; there is the treatment of Combinatory Categorial Gram-
mar in a distributional model by Maillard, Clark, and Grefenstette [MCG14], of
which parts are also reported in the PhD thesis of Edward Grefenstette [Gre13],
for the symmetric system of Moortgat [Moo09] there is the treatment of Wijnholds
[Wij14]. The displacement calculus of Morrill, Valentín, and Fadda [MVF11] has
not been treated before; the fact that this calculus separates syntax and semantics
by means of compiling in structural rules [Val14] makes it more difficult to find a
faithful interpretation for the displacement connectives that govern the syntax of
discontinuity in this system. In a multimodal Lambek grammar [Moo96] this prob-
lem is not present, as every (non context free) syntactic mechanism is treated by
pure structural rules, allowing the grammar to be presented in the style of a deduc-
tive system [Lam68]. In such a system, one separates logical rules, which describe
only the behaviour of the connectives of the logic, from structural rules, which de-
scribe the non-logical behaviour of the structures that the logic operates on. Taking
this approach, the transition to vector space semantics is made easier, as a deductive
system describes the skeletal structure of the interpreting semantic category, and
we only need to find suitable operations that adhere to the structural rules of the
grammar. Structural rules also make the connection between semantic operations
more intuitive: to find a syntactic counterpart of the Frobenius Algebras used by
Sadrzadeh, Clark, and Coecke [SCC13], one defines a structural rule that is akin to
the rule of contraction one finds in classical logic. This type of argument is present
in the approach of Wijnholds [Wij14], and we continue along those lines here, using
a variation of the Lambek Calculus with control modalities of [Moo96]. The control
modalities refer to a pair of unary operations that facilitate a controlled version of
structural reasoning, where the application of structural rules may be licensed only
on structures that involve the modalities [KM97].

In this chapter we focus on three instances of ellipsis, a linguistic phenomenon
in which an overt syntactic element provides the semantic content for one or more
syntactic elements in a sentence that are not physically realised. This very broad
definition informally refers to a case in which a part of a sentence is missing, but can
be recovered from the context of the sentence it occurs in.

We start off with a description of ellipsis and the particular cases of gapping
with relative pronouns, parasitic gapping, and ellipsis with anaphora. We continue
by presenting the Lambek Calculus with control modalities [Moo96] including its
interpretation in vector spaces. We then review the use of Frobenius Algebras of
previous work [SCC13; SCC14] and how they neatly combine with the modalities
to give an account of pronoun relativisation in English and Dutch (material from
Moortgat and Wijnholds [MW17]). Then, we extend the lexical approach to copy-
ing behaviour using Frobenius Algebras to the case of parasitic gapping (material
from Sadrzadeh, Moortgat, and Wijnholds [SMW19]). Finally, we argue that the

3.1. Two Types of Ellipsis 63

case of verb phrase ellipsis with anaphora does not lend itself very well for a lexical
copying approach. We propose a modification of the modal Lambek Calculus with
a controlled form of contraction, and give an analysis of verb phrase ellipsis with
anaphora. For this we develop both a categorical and a lambda-based interpreta-
tion (material from Wijnholds and Sadrzadeh [WS18] and Wijnholds and Sadrzadeh
[WS19a]).

3.1 Two Types of Ellipsis

Ellipsis in general is the phenomenon of omission, and we will loosely define it as
the phenomenon in which an overt syntactic element provides the semantic content
for one or more syntactic elements in a sentence that are not physically realised. In
other words, we say that a phrase is elliptical whenever is has missing parts, that
can be however be recovered within the context of the phrase.

Ellipsis is a very broad phenomenon and can be classified into several types (see
[Mer01] for more elaborate discussion). In this chapter we focus on two broad types
of ellipsis: the case of (parasitic) gapping, and the case of verb phrase ellipsis with
anaphora. The case of gapping is directly relevant for a compositional distributional
analysis as the work of Sadrzadeh, Clark, and Coecke [SCC13] models pronoun rel-
ativisation in English, which is a type of gapping. As we will see in this chapter,
gapping has a natural extension into a parasitic variant, which we model in a very
similar way as has been done for relative pronouns. On the other hand, verb phrase
ellipsis is very pervasive in natural language (see [BS11] for a corpus investigation),
but poses a different challenge: where the cases of gapping presented below always
come with a relative pronoun and/or a coordinator, the examples of verb phrase el-
lipsis above show that it is the auxiliary verb that mediates the elided content.

Some examples of gapping with relative pronouns are given in Equation 3.1, where
examples (a) and (b) respectively have an object- and subject-relative reading. A
more complex variant is parasitic gapping, given in example (c). Here, there is a
gap that is dependent on another, primary gap. A more general case of gapping is
example (d) that does not contain a relative pronoun, but just the coordinator ‘and’.

a papers that Bob rejected (immediately) (obj rel)
b animals who eat humans (ravenously) (subj rel)
c papers that reviewers rejected without reading (carefully)
d Mary ate potatoes and John salad

(3.1)
In both examples (a) and (b), there is the relative pronoun that has a clear role in
the construction of the relative clause. In example, (c), there additionally is the other

64 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

functional word ‘without’, that can serve as a mediator for the second, parasitic, gap.
In example (d), the gap is not to be filled by a noun phrase, but by the single verb.

Verb phrase ellipsis — as the name suggests — covers cases in which the elided
element is a verb phrase, but has the requirement that an auxiliary verb is present,
indicating the location of the elided verb phrase. This is one of the aspects that
distinguishes verb phrase ellipsis from the gapping examples above. The below
examples are all instances of verb phrase ellipsis, where the location of the elided
verb phrase is marked by an auxiliary verb. In examples (e) and (f) there is an explicit
coordinator present, but example (g) shows that this need not be the case. In all cases,
the examples are ideally in bidirectional entailment with their resolved variants. For
example, sentence (e) should entail the sentence “Alice drinks and Bob drinks” and
vice versa.

e Alice drinks and Bob does too
f Kim wears a hat but Sandy does not
g John slept, Mary did too

(3.2)

A more complicated example of verb phrase ellipsis is one where in addition to the
verb phrase ellipsis site there is also an anaphora present. Such an example induces
an ambiguity, as in the example of Equation 3.3, where the ambiguous phrase (h)
has two readings (i) and (j).

h “Gary loves his code and Bill does too” (ambiguous)
i “Gary loves Gary’s code and Bill loves Gary’s code” (strict)
j “Gary loves Gary’s code and Bill loves Bill’s code” (sloppy)

(3.3)

The case of ellipsis traditionally has been approached both as a syntactic problem
within categorial grammars [KL17; Jäg06; Jäg98; MMS96; Hen95] as well as a se-
mantic problem by directly appealing to their lambda calculi term logics [DSP91;
Kem+15]. The research within categorial grammar either suggests that elliptic phe-
nomena should be treated using a specific controlled form of copying of information
at the antecedent and moving it to the site of ellipsis, e..g in [Jäg98; MMS96], or by
maintaining a non-directional functional type (meaning that it is not sensitive to
where its argument occurs, before or after it), which is backward/forward looking,
e.g. in [KL17; Jäg06]. The first proposal can also be implemented using different
modal Lambek Calculi, e.g. that developed in [Moo97] and the second one using
Displacement Calculus [MV10]; Abstract Categorial Grammars of [Mus03; Gro01],
which allow for a separation of syntax and semantics within a categorial grammar
and allow for freedom of copying and movement at the semantic side, can also be
employed.

Modelling ellipsis in a compositional distributional model poses a number of
challenges: first, in the process of create phrase meaning from individual word
meanings, one has to associate analytical lexical specifications to functional words
such as coordinators, relative pronouns, and ellipsis markers (in the case of verb

3.2. Categorical Distributional Semantics with Lambek Calculus and Modalities 65

phrase ellipsis), since they should not be addressed distributionally (lexical seman-
tics). The second challenge is that the semantic representations we wish to obtain
are non-linear: in the case of relative pronouns, the semantic information of the head
noun should be reused to serve as the subject of the verb phrase in the body of the
relative clause; when a parasitic gap is present, an additional reuse should be li-
censed; in the case of verb phrase ellipsis, the main verb phrase needs to be made
available to the auxiliary verb in order to complete the final semantics. Somehow
a model needs to account for how these non-linearities are obtained (derivational
semantics).

As argued in the introduction to this chapter, for a compositional distributional
modelling we want to start with a system that makes a clear separation between
logical and structural rules, as this allows a neat interface with vector semantics in
a categorical setting. Therefore, we use the Lambek Calculus with control modali-
ties of Moortgat [Moo96]. Given the freedom to define new structural rules while
keeping the base system intact, we will use (variants of) this system throughout this
chapter. For relative pronouns, we use the original system with leftward or right-
ward extraction rules to model pronoun relativisation in English and Dutch. We
extend this setting to the case of parasitic gaps by relying on lexical polymorphism
of the coordinator ‘without’. Then, we introduce a variant of the proof system that
does have access to a controlled form of contraction, which allows us to copy in
syntax, a mechanism we can then use to model verb phrase ellipsis with anaphora.

3.2 Categorical Distributional Semantics with Lambek Cal-
culus and Modalities

We start out with the definition of NL⌃, the multimodal extension of the Lambek
Calculus [Moo96]. Similar to Chapter 2, we present this system in a ‘deductive sys-
tems‘ format, where one defines axioms and inference rules. The reason to do so
is that this style of presentation directly corresponds to the presentation style com-
monly used in category theory.

The base component of NL⌃ is the nonassociative Lambek Calculus, already de-
fined in Section 2.1.4. The philosopy behind unary modalities as an addition to the
nonassociative Lambek Calculus is that of structural control: full blown associativ-
ity or commutativity in the grammar logic would overgenerate, i.e. render all kinds
of ungrammatical sentences grammatical; but many natural language phenomena
do require some form of restructuring of linguistic resources before semantic anal-
ysis proceeds: besides the examples of ellipsis given in the previous section, cases
of long-distance dependencies warrant the exchange of information between non-
adjacent positions. The unary modalities allow one to control the behaviour of the
grammar by licensing or blocking certain applications of structural rules. The math-
ematical details have been worked out by Kurtonina and Moortgat [KM97], where

66 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

1A : A �! A
f : A �! B g : B �! C

g � f : A �! C

f : ⌃A �! B
Of : A �! ⇤B

f : A⌦B �! C

Bf : A �! C/B

f : A⌦B �! C

Cf : B �! A\C

g : A �! ⇤B

O
�1g : ⌃A �! B

g : A �! C/B

B
�1g : A⌦B �! C

g : B �! A\C

C
�1g : A⌦B �! C

↵l

⇧ : ⌃A⌦ (B ⌦ C) �! (⌃A⌦B)⌦ C ↵r

⇧ : (A⌦B)⌦ ⌃C �! A⌦ (B ⌦ ⌃C)

�l

⇧ : ⌃A⌦ (B ⌦ C) �! B ⌦ (⌃A⌦ C) �r

⇧ : (A⌦B)⌦ ⌃C �! (A⌦ ⌃C)⌦B

FIGURE 3.1: The logic NL⌃, presented as a deductive system.

f : A �! B
⌃f : ⌃A �! ⌃B

f : A �! B
⇤f : ⇤A �! ⇤B

f : A �! B g : C �! D

f/g : A/D �! B/C

f : A �! B g : C �! D

f\g : B\C �! A\D

f : (⌃A⌦B)⌦ C �! D

b↵l
⇧f : ⌃A⌦ (B ⌦ C) �! D

f : A⌦ (B ⌦ ⌃C) �! D

b↵r
⇧f : (A⌦B)⌦ ⌃C �! D

f : B ⌦ (A⌦ ⌃C) �! D

b�l
⇧f : ⌃A⌦ (B ⌦ C) �! D

f : (A⌦ ⌃C)⌦B �! D

b�r
⇧f : (A⌦B)⌦ ⌃C �! D

FIGURE 3.2: Monotonicity rules, and structural rules in rule form.

the modalities allow one to embed the associative Lambek Calculus in the nonasso-
ciative variant, given the presence of modalities allowing to control the associativity.
Vice versa, the nonassociative Lambek Calculus can be embedded in the associative
calculus, by decorating formulas in such a way that associativity cannot be applied.
In this chapter we assume the first variant where the modalities allow to control spe-
cific structural behaviour desirable for linguistic applications. Formally, one adds
two unary connectives ⌃,⇤, which exhibit a residuation, or, categorically speaking,
a adjunction where ⌃A ! B iff A ! ⇤B. We present the full calculus in Figure 3.1,
with derived monotonicity rules and rule form of the structural rules displayed in
Figure 3.2.

Interpretating the modalities The modalities of the system NL⌃ exhibit only a syn-
tactic role when decorating formulas: they either license or block structural control.
Hence, it is not surprising that the interpretation of the modalities is vacuous on the
level of types. That is, we have d⌃Ae = d⇤Ae = dAe, while leaving the binary type-
forming operators as in Section 2.1.6. On the level of proofs, the interpretation of the
monotonicity rules for ⌃,⇤ become identities: d⌃fe = d⇤fe = dfe. We moreover

3.3. Lexicon versus Derivation in Pronoun Relativisation 67

need to give an interpretation of the structural rules in a compact closed category.
As defined in Chapter 2, a compact closed category is symmetric monoidal. Hence
we can interpret the structural rules from 3.1 using the associator and the symme-
try maps of the compact closed category. For the controlled associativity maps, this
means simply a rebracketing:

db↵r
⇧fe = (dAe ⌦ dBe)⌦ dCe

↵
��! dAe ⌦ (dBe ⌦ dCe)

dfe
���! dDe

db↵l
⇧fe = dAe ⌦ (dBe ⌦ dCe)

↵�1

���! (dAe ⌦ dBe)⌦ dCe
dfe
���! dDe

For the controlled commutativity, we rely on bracketing as well as reordering of
elements:

db�r
⇧fe = db�l

⇧fe =

(dAe ⌦ dBe)⌦ dCe dAe ⌦ (dBe ⌦ dCe)

dAe ⌦ (dBe ⌦ dCe) (dAe ⌦ dBe)⌦ dCe

dAe ⌦ (dCe ⌦ dBe) (dBe ⌦ dAe)⌦ dCe

(dAe ⌦ dCe)⌦ dBe dBe ⌦ (dAe ⌦ dCe)

dDe dDe

↵

1dAe ⌦ �dBe,dCe

↵�1

dfe

↵�1

�dAe,dBe ⌦ 1dCe

↵

dfe

This is the basic system that allows us to model pronoun relativisation in an SVO
language like English (using the rightward extraction rules) and a SOV language
like Dutch (using the leftward extraction rules). In the next section we show how we
can derive such cases using NL⌃, and how we can give a concrete vector semantics
which is in exact agreement with the modelling of Sadrzadeh, Clark, and Coecke
[SCC13].

3.3 Lexicon versus Derivation in Pronoun Relativisation

We demonstrate the application of the system NL⌃ on the case of relative pronouns
in English and Dutch. In prior work, Sadrzadeh, Clark, and Coecke [SCC13] show
that Frobenius Algebras have applications for pronoun relativisation in English: the

68 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

meanings of ‘who’ and ‘whom’ serve as discriminators between a subject- or object-
relative reading in English, as the examples below show:

a humans who eat animals (subject rel)
b humans whom animals eat (object rel)

(3.4)

Before proceeding to explain the Frobenius Algebra approach, and our incarna-
tion using the system NL⌃, we review a formal semantics account of relative pro-
nouns. Later on, we will discuss the similarities and contrasts with the vector se-
mantics account that we present below.

Formal Semantics for Relative Pronouns

In the formal semantics account, the interpretation homomorphism sends syntac-
tic types to their semantic counterparts. Syntactic types are built from atoms, for
example s, np, n for sentences, noun phrases and common nouns; assuming seman-
tic atoms e, t and function types built from them, one can set bsc = t, bnpc = e,
bnc = e! t, and bA/Bc = bB\Ac = bBc ! bAc, like in Section 2.1.5. Each semantic
type A is assigned an interpretation domain DA, with De = E, for some non-empty
set E (the discussion domain), Dt = {0, 1} (truth values), and DA!B functions from
DA to DB .

In this setup, a syntactic derivation A1, . . . An) B is interpreted by means of a
linear lambda term M of type dBe, with parameters xi of type dAie— linearity re-
sulting from the fact that the syntactic source doesn’t provide the copying/deletion
operations associated with the structural rules of Contraction and Weakening.

The proof term M is an instruction for meaning assembly that abstracts from
lexical semantics. In (3.5) below, one finds the proof terms for English subject (a) and
object (b) relativisation. The parameter w stands for the head noun, f for the verb, y

and z for its object and subject arguments; parameter x for the relative pronoun has
type (e! t)! (e! t)! e! t.

(a) n, (n\n)/(np\s), (np\s)/np, np) n (xwho �ze.(f e!e!t ye ze) we!t)

(b) n, (n\n)/(s/np), np, (np\s)/np) n (xwho �ye.(f e!e!t ye ze) we!t)
(3.5)

To obtain the interpretation of “humans who eat animals” vs “humans who(m) ani-
mals eat”, one substitutes lexical meanings for the parameters of the proof terms. In
the case of the open class items ‘humans’, ‘eat’, ‘animals’, these will be non-logical
constants with an interpretation depending on the model. For the relative pronoun,
we substitute an interpretation independent of the model, expressed in terms of the
logical constant ^, leading to the final interpretations of (3.7), after normalisation.

xwho := �xe!t�ye!t�ze.((x z) ^ ((y z)) (3.6)

3.3. Lexicon versus Derivation in Pronoun Relativisation 69

(a) �x.((HUMAN x) ^ (EAT ANIMAL x))

(b) �x.((HUMAN x) ^ (EAT x ANIMAL))
(3.7)

Notice that the lexical meaning recipe for the relative pronoun goes beyond linearity:
to express the set intersection interpretation, the bound z variable is copied over the
conjuncts of ^. By encapsulating this copying operation in the lexical semantics, one
avoids compromising the derivational semantics.

Frobenius semantics for pronoun relativisation

To treat the cases of subject-relative and object-relative pronoun interpretations, the
Frobenius copying map � and the deletion map ◆ are used in the lexical meaning of
the relative pronouns ‘who’ and ‘whom’. The pregroup type for the subject-relative
pronoun ‘who’ is defined as nr

·n ·sl
·np with mapping to the semantic type N⌦N⌦

S ⌦N . The semantic effect of the relative pronoun here is to merge the information
contained in the head noun (humans) with the body of the relative clause by means
of the merging map µ. Since the body of the relative clause constitutes a verb phrase
and not a noun, the sentence dimension of the verb phrase is summed over by means
of the ◆ map. So, the formal description of the map for ‘who’ is

(idN ⌦ µN ⌦ ◆S ⌦ idN) � (⌘N ⌦ ⌘N)

The definition of the object-relative pronoun ‘whom’ proceeds in the same way, ex-
cept that the pregroup type is different since the noun and verb in the body of the
relative clause are now swapped: the syntactic type is nr

·n ·npll
· sl which translates

to the semantic type N ⌦N ⌦N ⌦ S. The map for this pronoun is then given by

(idN ⌦ µN ⌦ idN ⌦ ◆S) � (⌘N ⌦ ⌘N)

These formal maps can be graphically depicted in the string diagrammatic language
we introduced in Section 2.1.7, where the µ map is indicated by a white circle with
three outgoing wires, and the ◆ map by a white circle with a single outgoing wire:

SNN N NNN S
who whom

Here, the pregroup types may be seen as a translation of Lambek types (n\n)/(np\s)

(who) and (n\n)/(s/np) (whom), and so the diagrams above state that a matrix in the
space S ⌦ N or N ⌦ S (a verb phrase) will be projected down into a noun space,
after which the resulting vector (rightmost N) is multiplied (the white dot in the
diagrams) with the vector of a noun (leftmost N) to give a vector (middle N) that is
the coordination of the head noun with the relative clause. Concretely, this gives the

70 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

below algebraic realisation of the subject- and object relative clauses.

a
�����!
humans� ◆S(eat⇥

�����!
animals) (subject rel)

b
�����!
humans� ◆S(

�����!
animals>

⇥ eat) (object rel)
(3.8)

Using the diagrams for the relative pronouns above, one can model the subject rela-
tive reading with the diagram in Figure 3.3, and the object relative reading with the
diagram in Figure 3.4.

SNN NN N S N N

FIGURE 3.3: The semantic information flow of a subject relative clause.

N NN SNN SN N

FIGURE 3.4: The semantic information flow of an object relative clause.

The absence of any form of commutativity in pregroups results in the inability to
reorder any type information. As a result, the analysis given above is not robust
against non-peripheral cases of pronoun relativisation. A prime example of this is the
case of an adverbial modification: humans whom animals eat ravenously. Here, the
usual typing for the adverb, (np\s)\(np\s) needs access to the verb phrase which
is only eligible for combining until it has itself been combined with the relative pro-
noun first. To mend this and give a fully derivational semantics for relative pronouns
in English, we make use of the English version of NL⌃, which uses the rightward ex-
traction rules. This system allows for a controlled version of commutativity, that
interacts properly with the type of the relative pronoun. We show how one can use
NL⌃ types for the relative pronoun, how we can derive proofs for the cases above,
and how types and proofs translate to give exactly the diagrams in Figures 3.3 and
3.4. For these cases, the proof system allows reasoning about a hypothetical noun
phrase that takes the place of the subject (or object) of the main verb in the rela-
tive clause, to be consumed by the representation of the relative pronoun, linking it
back to the head noun. For more involved examples where the hypothetical noun

3.3. Lexicon versus Derivation in Pronoun Relativisation 71

phrase actually occurs not at the end but within the subclause, the (commutativity)
extraction rules are needed.

First, we define the NL⌃ types with their pregroup translation in Figure 3.5 for
the case of English relative pronouns. For the head noun and noun phrase in the
relative clause body we assume the standard typings n and np, the verb is repre-
sented by the type (np\s)/np. The adverb ‘ravenously’ is assigned the higher-order
type (np\s)\(np\s): given a verb phrase, it will act as a modifier of that verb phrase,
hence on the level of types it acts as an identity map. As the Lambek type encodes
a higher-order function, its translation to pregroup types switches the order of the
basic types, with an iterated right adjoint on the leftmost np type reflecting the fact
that the adverb is a verb phrase modifier. The typing for the relative pronouns in-

Word Lambek type pregroup type

humans n n
who (n\n)/(⌃⇤np\s) nr

· n · sl
· np

whom (n\n)/(s/⌃⇤np) nr
· n · npll

· sl

animals np np
eat (np\s)/np npr

· s · npl

ravenously (np\s)\(np\s) sr
· nprr

· npr
· s

FIGURE 3.5: A lexicon in NL⌃ for pronoun relativisation in English,
with pregroup translation.

volves the unary control modalities: the type ⌃⇤np\s (resp. s/⌃⇤np) expresses a
verb phrase where the noun phrase component may occur in any rightward posi-
tion. In other words, the typing for the relative pronouns encodes the fact that an
incomplete relative clause body is expected in order to complete the full relative
clause. The direction of the missing head noun is dictated by the fact that ‘who’ is
a subject-relative pronoun and ‘whom’ is an object-relative pronoun. The pregroup
image of the types correspond to the semantic interpretation in the diagrams given
in Sadrzadeh, Clark, and Coecke [SCC13], here in Figures 3.3 and 3.4.
The derivations for the subject relative and object relative cases are shown in Figures
3.6 and 3.7. In the subject relative case, the transitive verb can be combined with
its object to form the body of the relative clause, which is now missing the head
noun of the full phrase. By the fact that there is a proof of ⌃⇤np ! np the relative
pronoun can consume the verb phrase of the body of the relative clause, to then
be combined with the head noun. The object relative case is different, as the non-
associative nature of the types does not allow the main verb to be combined with the
subject in the body of the relative clause, which is why here the use of the rightward
controlled associativity postulate comes in to rebracket and let the derivation go
through. The controlled symmetry is needed when the location of the hypothetical
noun phrase (signified by ⌃⇤np) is not fully peripheral, as in “men that animals eat
ravenously”. For this, we give the derivation in Figure 3.8.

72 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

n! n 1n n! n 1n

n\n! n\n
\

np! np 1np

⇤np! ⇤np ⇤

⌃⇤np! np O
�1

s! s 1s

np\s! ⌃⇤np\s
\

(n\n)/(⌃⇤np\s)! (n\n)/(np\s)
/

((n\n)/(⌃⇤np\s))⌦ (np\s)! n\n
B

�1
np! np 1np

(np\s)! ((n\n)/(⌃⇤np\s))\(n\n)
C

(np\s)/np! (((n\n)/(⌃⇤np\s))\(n\n))/np
/

((np\s)/np)⌦ np! ((n\n)/(⌃⇤np\s))\(n\n)
B

�1

((n\n)/(⌃⇤np\s))⌦ (((np\s)/np)⌦ np)! n\n
C

�1

n
humans

⌦ (((n\n)/(⌃⇤np\s))
who

⌦ (((np\s)/np)
eat

⌦ np
animals

))! n
C

�1

FIGURE 3.6: Derivation for “humans who eat animals”.

n! n 1n n! n 1n

n\n! n\n
\

np! np 1np s! s 1s

np\s! np\s
\

np! np 1np

⇤np! ⇤np ⇤

⌃⇤np! np O
�1

(np\s)/np! (np\s)/⌃⇤np
/

(np\s)/np⌦ ⌃⇤np! np\s
B

�1

np⌦ ((np\s)/np⌦ ⌃⇤np)! s
C

�1

(np⌦ (np\s)/np)⌦ ⌃⇤np! s
b↵r

⇧

np⌦ (np\s)/np! s/⌃⇤np
B

(n\n)/(s/⌃⇤np)! (n\n)/(np⌦ ((np\s)/np))
/

((n\n)/(s/⌃⇤np))⌦ (np⌦ ((np\s)/np))! n\n
B

�1

n
humans

⌦ (((n\n)/(s/⌃⇤np)
whom

)⌦ (np
animals

⌦ ((np\s)/np
eat

)))! n
C

�1

FIGURE 3.7: Derivation for “humans whom animals eat”.

n! n 1n n! n 1n

n\n! n\n
\

np! np 1np s! s 1s

np\s! np\s
\

np! np 1np

⇤np! ⇤np ⇤

⌃⇤np! np O
�1

(np\s)/np! (np\s)/⌃⇤np
/

(np\s)/np⌦ ⌃⇤np! np\s
B

�1
np! np 1np s! s 1s

np\s! np\s
\

(np\s)\(np\s)! ((np\s)/np⌦ ⌃⇤np)\(np\s)
\

((np\s)/np⌦ ⌃⇤np)⌦ (np\s)\(np\s)! np\s
C

�1

((np\s)/np⌦ (np\s)\(np\s))⌦ ⌃⇤np! np\s
b�r

⇧

np⌦ (((np\s)/np⌦ (np\s)\(np\s))⌦ ⌃⇤np)! s
C

�1

(np⌦ ((np\s)/np⌦ (np\s)\(np\s)))⌦ ⌃⇤np! s
b↵r

⇧

np⌦ ((np\s)/np⌦ (np\s)\(np\s))! s/⌃⇤np
B

(n\n)/(s/⌃⇤np)! (n\n)/(np⌦ ((np\s)/np⌦ (np\s)\(np\s)))
/

((n\n)/(s/⌃⇤np))⌦ (np⌦ (((np\s)/np)⌦ (np\s)\(np\s)))! n\n
B

�1

n
humans

⌦ ((n\n)/(s/⌃⇤np)
whom

⌦ (np
animals

⌦ ((np\s)/np
eat

)⌦ (np\s)\(np\s)
ravenously

)))! n
C

�1

FIGURE 3.8: Derivation for “humans whom animals eat ravenously”.

3.3. Lexicon versus Derivation in Pronoun Relativisation 73

(n
p\

s)
/n

p
n
p

/

n
(n

\
n
)/

(s
/⌃
⇤

n
p)

/

hu
m

an
s

w
ho

m
an

im
al

s
ea

t

\

/

s

\

⌃⇤

N
N

N
S

N
N

N
S

N

ea
t

w
ho

m
hu

m
an

s
an

im
al

s

hu
m

an
s

an
im

al
s

N

\

N
(n

\
n
)/

(⌃
⇤

n
p\

s)
an

im
al

s

/

⇤

ea
t

S
N

N
w

ho
N

ea
t

s

w
ho

(n
p\

s)
/n

p
n
p

⌃

\

hu
m

an
s

\

/

N
N

S
n

FI
G

U
R

E
3.

9:
Sy

nt
ac

tic
an

d
se

m
an

tic
in

fo
rm

at
io

n
flo

w
fo

r
a

su
bj

ec
t

re
la

tiv
e

re
ad

in
g

(a
bo

ve
)

an
d

an
ob

je
ct

re
la

tiv
e

re
ad

in
g

(b
el

ow
)

in
En

gl
is

h.

74 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

(n
p\

s)
/n

p
n
p

/

n
(n

\
n
)/

(s
/⌃
⇤

n
p)

/

hu
m

an
s

w
ho

m
an

im
al

s
ea

t

\

/

s

⌃⇤

ra
ve

no
us

ly
(n

p\
s)

\
(n

p\
s)

\

\

S
N

S
N

N
hu

m
an

s
N

an
im

al
s

N
N

N
w

ho
m

ea
t

ra
ve

no
us

ly
S

N
N

S

FI
G

U
R

E
3.

10
:S

yn
ta

ct
ic

an
d

se
m

an
tic

in
fo

rm
at

io
n

flo
w

fo
r

a
no

n-
pe

ri
ph

er
al

ob
je

ct
re

la
tiv

e
re

ad
in

g
in

En
gl

is
h.

3.3. Lexicon versus Derivation in Pronoun Relativisation 75

We wish to represent these derivations in some graphical notation to clarify the flow
of information. For this, we use the diagrammatic notation introduced in Section
2.1.7, as it provides a coherent graphical language for the categorical formulation of
the calculus we use [Wij17]. Here we give the diagrams toegether with their trans-
lation to the string diagrams of a compact closed category. For the simple relative
pronoun cases they are given in Figure 3.9, where the translated string diagrams in
fact coincide with those in Figures 3.3 and 3.4 after ‘plugging in’ the lexical specifica-
tion of the constituent words. For the more complex example involving an adverbal
modification the diagrams are given in Figure 3.10. In the diagram in Figure 3.9
we can see how the hypothetical argument may be introduced by preceding the np

arrow by a ⌃ and a ⇤ link, in the top figure it occupies the subject position, in the
bottom it takes object position; after introducing the hypothetical noun phrase we
use a constructor link for \ to ‘construct’ the expected type for the relative pronoun.
In the case of the gap being followed by an adjective, where one requires restructur-
ing of the hypothetical noun phrase, the fact that the ⌃⇤np arrow is present allows
us to reroute its wire to a rightmost position where it will again be used to construct
the desired type s/⌃⇤np.

3.3.1 Dutch Pronoun Relativisation

We now demonstrate the application of NL⌃ to the case of Dutch. Being a verb final
language, the situation of pronoun relativisation for Dutch is different to English:
relative clauses are now ambiguous between a subject and an object relativisation
reading. This is shown in the phrase below, which is ambiguous between the two
distinct meanings in a and b above (repeated here):

a humans who eat animals (subject rel)
b humans whom animals eat (object rel)
c mensen die dieren eten (ambiguous)

(3.9)

For Dutch, then, the goal is to find a single type assignment for the relative pronoun
‘die’ that allows for simultaneous derivation of both reading a and b. Assigning
similar types to the nouns and verbs, n for ‘mensen’, np for ‘dieren’, and np\(np\s)

for the verb ‘eten’, reflecting the verb final nature of the verb usage in a pronoun
relative clause. The single type assignment for ‘die’ is the same as for the relative
pronoun ‘that’ in English: (n\n)/(⌃⇤np\s). The inherent ambiguity of a typical
pronoun relative clause like the one in c is now encoded by means of derivational
ambiguity, multiple proofs for the same surface form, though with the two different
readings as a result.

76 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

The derivations agree on the initial steps

n �! n n �! n
n\n �! n\n

\

...
np ⌦ (np\(np\s)) �! ⌃⇤np\s

(n\n)/(⌃⇤np\s) �! (n\n)/(np ⌦ (np\(np\s)))
/

((n\n)/(⌃⇤np\s))⌦ (np ⌦ (np\(np\s))) �! n\n .�1

n ⌦ (((n\n)/(⌃⇤np\s))⌦ (np ⌦ (np\(np\s)))) �! n /�1
(3.10)

but then diverge in how the relative clause body is derived:

np �! np

np �! np

⇤np �! ⇤np
⇤

⌃⇤np �! np
O

�1
s �! s

np\s �! ⌃⇤np\s
\

np\(np\s) �! np\(⌃⇤np\s)
\

np ⌦ (np\(np\s)) �! ⌃⇤np\s
/�1

np �! np

⇤np �! ⇤np
⇤

⌃⇤np �! np
O

�1
np �! np s �! s

np\s �! np\s
\

np\(np\s) �! ⌃⇤np\(np\s)
\

⌃⇤np ⌦ (np\(np\s)) �! np\s
/�1

np ⌦ (⌃⇤np ⌦ (np\(np\s))) �! s
/�1

⌃⇤np ⌦ (np ⌦ (np\(np\s))) �! s
b�l

⇧

np ⌦ (np\(np\s)) �! ⌃⇤np\s
/

(3.11)
In the derivation on the left, the ⌃⇤np hypothesis is linked to the subject argument
of the verb; in the derivation on the right to the object argument, reached via the b�l

⇧

reordering step. We show the information flow diagrams and mapping to a compact
closed setting for these derivations in Figure 3.12.

The derivational ambiguity of (3.11) gives rise to two ways of obtaining a vector
v 2 N, as displayed in Figure 3.12. They differ in whether the index of the ⌃⇤np hy-
pothesis in the relative pronoun type, contracts with index for the subject argument
of the verb (3.9a) or with the direct object index o (3.9b). Filling in the lexical speci-
fication of [SCC13], it leads to exactly the two desired readings. The subject relative
reading is expressed by

SNN NN N S N N

mensen eten dieren

whereas the object relative reading is expressed by the following diagram:

N NN SNN SN N

mensen etendieren

3.3. Lexicon versus Derivation in Pronoun Relativisation 77

The algebraic versions of the images above are given in Equations 3.12 and 3.13.

(3.9a) = mensen�

h⇣ X

S

eten

⌘T

dieren

i
(3.12)

(3.9b) = mensen�

h⇣ X

S

eten

⌘
dieren

i
(3.13)

3.3.2 Discussion

We briefly discuss the analogy between the formal semantics account of the previ-
ous section and the vector semantics modelling we presented before. As suggested
in the previous section, the formal semantics approach to pronoun relativisation en-
capsulates the non-linear behaviour of the relative pronoun by means of a non-linear
lexical lambda term, which uses the same variable twice. This allows for the syntac-
tic engine to stay linear, thereby keeping its complexity low.

In the vector semantics version of pronoun relativisation, exactly the same ap-
proach is taken, which we illustrate in Figure 3.11. Although the proof system re-
quires movement of information (as seen in the bottom information flow diagram
of Figure 3.12), there is no duplication involved in the derivational aspect of the
diagram. This is illustrated in the compact closed category diagrams of Figure
3.12, which only contain wires that link together information, and no expansions
or merges of information via Frobenius operations. The non-linearity comes in only
through the lexicon, where Frobenius operations µ and ◆ are used to respectively
model the merging effect of the relative pronoun, and the pushing down of the verb
phrase into a noun space.

N NN SNN SN N

mensen etendierenLexicon �!

�!Derivation

FIGURE 3.11: The division of labour between lexicon and derivation in
pronoun relativisation illustrated. The top part indicates the lexical spec-
ification of the semantic elements to be combined, with a non-linearity
given by the Frobenius operations in the relative pronoun. The bottom

part shows the derivational semantics, which is entirely linear.

In this respect, the formal semantics account makes the same design choice regard-
ing the division of labour between derivational and lexical semantics as the distri-
butional account, where the extra expressivity of the Frobenius operations is called
upon for specifying the lexical meaning recipe for the relative pronoun.

78 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

n
p\

(n
p\

s)
n
p

\

n
(n

\
n
)/

(⌃
⇤

n
p\

s)

/

m
en

se
n

di
e

di
er

en
et

en

\

\

\

s

⌃⇤

di
e

(n
\
n
)/

(⌃
⇤

n
p\

s)

⌃

et
en

\

\

m
en

se
n

/

n
p\

(n
p\

s)

s

⇤

n
p

n

\

\

di
er

en

N
N

et
en

m
en

se
n

N
N

di
er

en
N

Ndi
e S

S
N

di
er

en
m

en
se

n
S

di
e

N
N

N
N

N
S

N
N

et
en

FI
G

U
R

E
3.

12
:I

nf
or

m
at

io
n

flo
w

an
d

C
C

C
di

ag
ra

m
s

fo
r

su
bj

ec
t(

ab
ov

e)
an

d
ob

je
ct

(b
el

ow
)r

el
at

iv
e

re
ad

in
gs

in
D

ut
ch

.

3.4. Parasitic Gaps 79

In the concrete vector modelling, we showed the the Frobenius µ map instan-
tiates element wise multiplication. Whereas in the formal semantics account, set
intersection is made possible by reusing a variable z to conjoin two predicates, in the
case of the concrete vector modelling a similar merging effect is achieved by using
element wise multiplication of the head noun with the conflated verb phrase in the
relative clause body.

In the following section, we depart from this strategy of a linear derivational se-
mantics and a non-linear lexical semantics. We consider verb ellipsis with anaphora
and introduce a proof system that allows for a duplication of information, which
then allows us to duplicate information in the derivational semantics as a result of
translation (the now non-linear) proofs to linear maps with Frobenius Algebras.

3.4 Parasitic Gaps

When covering larger fragments of language, one may wonder how far we can ex-
tend the approach outlined above to cover more complex phenomena, where linear
derivations are combined with complex lexical specifications that allow one to use
the Frobenius operations to multiply and merge, insert and delete information. Al-
though we will argue later on that the general phenomena of ellipsis may not always
be treated using this methodology but rather should rely on a copying mechanism
in the grammar (as is also argued for by Morrill and Valentín [MV15] and Morrill
and Valentín [MV16]), the particular case of parasitic gapping can be largely treated
by clever syntactic typing and lexical meaning assignment. We show how common
forms of parasitic gaps can be given a vector semantics.

As the name suggests, a parasitic gap is felicitous only in the presence of a pri-
mary gap. We expand on the examples introduced in Section 3.1 and give the exam-
ples in (3.14) to illustrate the relevant gap patterns with relative clause constructions.

The case of object relativisation in (a) has a single gap (indicated by) for the
unexpressed direct object of rejected. The relative clause in (d) has two gaps: the
primary one is for the object of rejected as in (a); the secondary, parasitic gap (marked
by the rightmost) is the unexpressed object of reading. The parasitic gap occurs
here in a phrase that by itself would be an island for extraction, compare (d) with the
ungrammatical (c).

a papers that Bob rejected (immediately)
b Bob left without closing the window
c ⇤window that Bob left without closing
d papers that reviewers rejected without reading (carefully)

(3.14)

For more examples and linguistic analysis, we refer the reader to [CP01]. Here, we
build on the previous section: using the grammar logic NL⌃ with the rightward ex-
traction rules for English, we propose a type assignment to treat the examples above
relying on type polymorphism for the coordinating words ‘and’ and ‘without’.

80 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

3.4.1 Deriving Parasitic Gaps

For the case of non-subject relativisation (3.14a), the procedure is exactly the same
as in Section 3.3: the relative pronoun ‘that’ is typed as a functor that produces a
noun modifier n\n in combination with a sentence that contains an unexpressed np

hypothesis (“Bob rejected immediately”). The gap subtype is modally decorated
as ⌃⇤np. The ⌃ marking allows it to cross phrase boundaries on its way to the
phrase-internal position adjacent to the transitive verb ‘rejected’. At that point, the
licensing ⌃ has done its work, and can be cleaned up thanks to ⌃⇤np ! np, which
provides the np object required by ‘rejected’.

The gap-less example (3.14b) provides the motivation for the basic type assign-
ment to without as a functor combining with a non-finite gerund clause gp to produce
a verb-phrase modifier iv\iv. In order to block the ungrammatical (3.14c), we follow
[Mor12] and lock the iv\iv result type with ⇤; the matching ⌃ needed to unlock it
effectively demarcates the modifier phrase without closing the window as an island,
making it inaccessible for the ↵r

⇧, �
r
⇧ extraction postulates.

To account for the double use of the gap in (3.14d) we replace syntactic copy-
ing via controlled contraction by lexical polymorphism: without is treated as as a
polymorphic item on a par with coordinators and, but. These chameleon words are
associated with a type schema that allows them to adapt to their syntactic context.
For the conjunction and, the schematic form is (X\X)/X ; from a basic instantiation
X = s for sentence conjunction, one then obtains derived instantiations X = np\s

(verb phrase conjunction), X = (np\s)/np (transitive verb conjunction), etc, with a
predictable interpretation derived from the basic conjunction in type s. Similarly, for
without, we have the polymorphic schema

without ::⇤(X\X)/Z

with basic instantiation X = iv, Z = gp. Uniformly dividing the subtypes iv and gp

by ⌃⇤np produces the derived instantiations X = iv/⌃⇤np and Z = gp/⌃⇤np for
the parasitic gapping example (3.14d). We summarise the type assignments in the
lexicon below.

Word Lambek type

papers n
that (n\n)/(s/⌃⇤np)
Bob np

rejected (np\s)/np
reading gp/np

immediately, carefully iv\iv
withoutb,c ⇤(iv\iv)/gp
withoutd ⇤((iv/⌃⇤np)\(iv/⌃⇤np))/(gp/⌃⇤np)

With the syntactic typing in hand, we can derive the examples in 3.14. The derivation

3.4. Parasitic Gaps 81

for the non-subject relativisation is already given in Figure 3.8, the derivation for the
double parasitic gap in 3.14d is given in Figure 3.13. In the same way we did in
Section 3.3, we can depict the proof of Figure 3.13 using the diagrammatic language
for the Lambek Calculus with modalities. This representation is given in Figure 3.14.

3.4.2 Frobenius Semantics for Parasitic Gaps

To concretise the vectorial semantics of parasitic gaps, we define an interpretation
d·e that sends syntactic types and derivations to the corresponding components of
the Compact Closed Category of FVect, along the lines of Section 3.3. However, for
the analysis above we use three basic types, which are mapped as below:

dnpe = dne = N ,
dse = S,
dgpe = N⇤

⌦ S,

Notice that gp is mapped to N⇤
⌦ S, making the understood subject of the gerund

semantically recoverable. With X = iv/⌃⇤np and Z = gp/⌃⇤np, the syntactic
derivation of (d)

papers that reviewers rejected without reading
n (n\n)/(s/⌃⇤np) np (np\s)/np (⇤(X\X))/Z gp/np ` n

is graphically depicted in Figure 3.14. The typing for without ensures that we insert
the appropriate missing hypotheses in direct object positions of rejected and reading,
which is attested by the ⌃,⇤ links in the diagram. After creating the adjunct phrase
without reading, the additional⇤ decoration forces the adjunct to be demarcated with
a ⌃, which would block derivations of the ungrammatical example in (3.14c). Then,
composition with the subject reviewers is done with the resulting type providing the
np hypothesis that is given in the primary gap type for that.

Semantically, the interpretation will map to the following contractions in the in-
terpreting CCC (red: dthate, blue: dwithoute):

papers that reviewers rejected without reading

N N⇤ N N S⇤ N N⇤ S N⇤ N S⇤ N N⇤ S N⇤ N S⇤ N N⇤ S N⇤

82 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

n
�
!

n
n
�
!

n

n
\
n
�
!

n
\
n

\

n
p
�
!

n
p

s
�
!

s

n
p
\
s
�
!

n
p
\
s

\

n
p
�
!

n
p

⇤
n
p
`
⇤

n
p
⇤

⌃
⇤

n
p
`

n
p
O

�
1

(n
p
\
s)

/n
p
�
!

(n
p
\
s)

/⌃
⇤

n
p

/

n
p
�
!

n
p

s
�
!

s

n
p
\
s
�
!

n
p
\
s

\

n
p
�
!

n
p

⇤
n
p
`
⇤

n
p
⇤

⌃
⇤

n
p
`
⌃
⇤

n
p
⌃

(n
p
\
s)

/⌃
⇤

n
p
�
!

(n
p
\
s)

/⌃
⇤

n
p

/

((
n
p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
)
�
!

((
n
p
\
s)

/n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
)

\

⇤
((

(n
p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))
`
⇤

((
(n

p
\
s)

/n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))
⇤

gp
�
!

gp

n
p
�
!

n
p

⇤
n
p
`
⇤

n
p
⇤

⌃
⇤

n
p
`

n
p
O

�
1

gp
/n

p
�
!

gp
/⌃
⇤

n
p

/

(g
p
/n

p
)
⌦
⌃
⇤

n
p
�
!

gp
.�

1

gp
�
!

gp

gp
\
gp
�
!

((
gp

/n
p
)
⌦
⌃
⇤

n
p
)\

gp
\

((
gp

/n
p
)
⌦
⌃
⇤

n
p
)
⌦

(g
p
\
gp

)
�
!

gp
/�

1

(g
p
/n

p
)
⌦
⌃
⇤

n
p
�
!

gp
/(

gp
\
gp

)
.

(g
p
/n

p
)
⌦

(g
p
\
gp

)
`

gp
/⌃
⇤

n
p

b�r ⇧

⇤
((

(n
p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
)
�
!
⇤

((
(n

p
\
s)

/n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
(g

p
/n

p
)
⌦

(g
p
\
gp

))
/

(⇤
((

(n
p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
�
!
⇤

((
(n

p
\
s)

/n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

.�
1

⌃
((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
)
`

((
n
p
\
s)

/n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
)
O

�
1

((
n
p
\
s)

/n
p
)
⌦
⌃

((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
)
�
!

(n
p
\
s)

/⌃
⇤

n
p

/�
1

((
(n

p
\
s)

/n
p
)
⌦
⌃

((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
))
⌦
⌃
⇤

n
p
�
!

n
p
\
s

.�
1

n
p
⌦

((
(n

p
\
s)

/n
p
)
⌦
⌃

((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
))
`

s/
⌃
⇤

n
p

b↵r ⇧

(n
\
n
)/

(s
/⌃
⇤

n
p
)
�
!

(n
\
n
)/

(n
p
⌦

((
(n

p
\
s)

/n
p
)
⌦
⌃

((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
))

)
/

((
n
\
n
)/

(s
/⌃
⇤

n
p
))
⌦

(n
p
⌦

((
(n

p
\
s)

/n
p
)
⌦
⌃

((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
))

)
�
!

n
\
n

.�
1

n
⌦

((
(n

\
n
)/

(s
/⌃
⇤

n
p
))
⌦

(n
p
⌦

((
(n

p
\
s)

/n
p
)
⌦
⌃

((
⇤

((
(n

p
\
s)

/⌃
⇤

n
p
)\

((
n
p
\
s)

/⌃
⇤

n
p
))

/(
gp

/⌃
⇤

n
p
))
⌦

((
gp

/n
p
)
⌦

(g
p
\
gp

))
))

))
�
!

n
/�

1

FI
G

U
R

E
3.

13
:“

pa
pe

rs
th

at
re

vi
ew

er
s

re
je

ct
ed

w
ith

ou
tr

ea
di

ng
ca

re
fu

lly
”

3.4. Parasitic Gaps 83

(n
p\

s)
/n

p
n
p

/

n
(n

\
n
)/

(s
/⌃
⇤

n
p)

/

pa
pe

rs
th

at
re

vi
ew

er
s

re
je

ct
ed

\

/

n

⌃⇤

w
ith

ou
t

⇤
((

(n
p\

s)
/⌃
⇤

n
p)

\
((

n
p\

s)
/⌃
⇤

n
p)

)/
(g

p/
⌃
⇤

n
p)

gp
/n

p

re
ad

in
g

/

⇤

/ /

⇤ ⌃
\

/

\

/

FI
G

U
R

E
3.

14
:I

nf
or

m
at

io
n

flo
w

fo
r

th
e

do
ub

le
pa

ra
si

tic
ga

p.

84 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

p
a

p
e

rs

N
S

N

re
je

c
te

d

N
N

re
a

d
in

g

N
S

re
v
ie

w
e

rs

N
N

N
S

N
S

N
N

N
N

S

th
a

t

N
S

N

w
it
h

o
u

t

FI
G

U
R

E
3.

15
:S

em
an

tic
in

fo
rm

at
io

n
flo

w
fo

r
th

e
do

ub
le

pa
ra

si
tic

ga
p,

no
ti

n
no

rm
al

fo
rm

ye
t.

3.4. Parasitic Gaps 85

For the lexical meaning we take the following approach: the diagram for that is as
developed in [SCC13]. The diagram for without now coordinates the understood the
three subjects and object, as well as the sentence types. Both diagrams are depicted
below.

that without

NNN S

N N S⇤ NN⇤N N⇤S⇤ S

Combining the derivational semantics of the string diagram above with the lexical
specifications of that and without, we obtain the complete CCC diagram in Figure
3.15, which, after simplifying the wiring, gives the normal form below:

N S N NN

Reviewers Rejected Papers Not-Reading

S N

N

N

The above diagrams are morphisms of a symmetric compact closed category with
Frobenius algebras and can be written down in that language e.g. as done in [SCC13;
MW17]. Here, we provide the closed linear algebraic form of the above normal form.
For Rejected and Not-Reading the rank 3 tensors interpreting rejected and (without)
reading, and ◆ the unit of the Frobenius coalgebra, this is

����!
Papers� (◆S ⌦ idN)

��������!
ReviewersT

⇥ (Rejected�Not-Reading)
�

This says that we take the element wise multiplication of both cubes, and contract
them with the subject Reviewers; then, we collapse the resulting matrix into a vector
and intersect this with the head noun Papers.

3.4.3 Discussion

The concrete modelling presented above will produce a sentence representation that
is analogous to the usual formal semantics account: where we use element wise mul-
tiplication, in formal semantics the coordinator is modelled using set intersection.
Thinking of both of these operations as a merging operation, the example above is
analogous to selecting those papers that were both rejected and not reviewed, by
reviewers.

86 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

The main difference with formal semantics, however, is that both common nouns
and proper noun phrases are mapped onto a single vector space (a set-theoretic ac-
count represents common nouns as functions from entities to truth values), and as
a result the way to extract a noun is to merge the information encoded in the sen-
tence dimension by means of the ◆. Although this map provides a concrete example
of how to handle relative pronouns, one may argue that conflating information is
not the desired behaviour for the relative pronoun. As a first step towards a gen-
eral model, we give the general normal form, given some modelling of the relative
pronoun, in Figure 3.16.

N S N NN

Reviewers Rejected PapersNot-Reading

S N

N

Verb to Adjective
N ⌦ S) N ⌦N

N

FIGURE 3.16: General normal form for a sentence with a parasitic
gap; the relative pronoun is now a general map that transforms a verb

phrase (N ⌦ S) into an adjective (N ⌦N).

Given the syntactic type of the relative pronoun ((n\n)/(s/⌃⇤np)), under our
type translation the relative pronoun effectively is some map from a verb phrase
(N ⌦ S) to an adjective modifying a (common) noun (N ⌦N). With this generalisa-
tion, we are not bound anymore to a specific implementation of the relative pronoun,
although the proposed account for now gives a workable account for experimenta-
tion.

We suggest here, that a data-driven approach may lend itself for modelling the
relative pronoun, as it essentially binds a verb phrase to its adjectival form. For ex-
ample, a verb phrase can occur in adjectival form, e.g. “papers that Bob rejected" vs
“rejected (by Bob) papers”. In such cases, we would expect to get the same meaning
representation, which crucially relies on being able to project either an adjective onto
a verb phrase or vice versa.

3.5. Verb Phrase Ellipsis and Anaphora 87

3.5 Verb Phrase Ellipsis and Anaphora

We turn now to the third type of ellipsis we wish to model in a compositional dis-
tributional setting: verb phrase ellipsis with anaphora. As discussed in Section 3.1,
verb phrase ellipsis is distinct from (parasitic) gapping in the sense that there is al-
ways an auxiliary verb present to mark the location of the elided verb phrase, but
not always a relative pronoun or a coordinator. This is even more so in the pres-
ence of anaphora, where a resolution needs to take place that is fully induced by
the anaphora itself, independent of any coordinating element earlier in the sentence.
Moreover, in the presence of anaphora, verb phrase elliptical phrases may induce an
ambiguity between strict and sloppy readings, besides from the fact that the anaphor
also needs to be resolved.

We remind the reader of the relevant examples of verb phrase ellipsis in Equa-
tions 3.15 and 3.16. In example (a) the elided verb phrase is marked by the auxiliary
verb, and it is ideally in bidirectional entailment with 3.15(b), i.e. (a) entails (b) and
(b) entails (a).

a Alice drinks and Bob does too
b Alice drinks and Bob drinks

(3.15)

In the presence of anaphora, a verb phrase elliptical phrase induces an ambiguity,
where the ambiguous phrase 3.16(a) has two readings 3.16(b) and 3.16(c).

a “Gary loves his code and Bill does too” (ambiguous)
b “Gary loves Gary’s code and Bill loves Gary’s code” (strict)
c “Gary loves Gary’s code and Bill loves Bill’s code” (sloppy)

(3.16)

In a formal semantics account, the first example could be analysed with the auxiliary
verb as an identity function on the main verb of the sentence and an intersective
meaning for the coordinator. Somehow the parts need to be appropriately combined
to produce the reading (b) for sentence (a):

does too : �x.x

and : �x.�y.(x ^ y)
should give drinks(alice) ^ drinks(bill)

The second example would assume the same meaning for the coordinator and aux-
iliary but now the possessive pronoun “his” gets a more complicated term:
�x.�y.owns(x, y). The analysis then somehow should derive two readings:

loves(gary, x) ^ owns(gary, x) ^ loves(bill, x) (strict)

loves(gary, x) ^ owns(gary, x) ^ loves(bill, y) ^ owns(bill, y) (sloppy)

In the case of pronoun relativisation the relative pronoun carries a complex logi-
cal type that facilitates controlled reasoning about how to treat the apparently mis-
placed head noun. For parasitic gapping, there is moreover a coordinator present
that can encode controlled access to copying of the semantic content of overt syntac-
tic elements. Contrary to the cases of pronouns relativisation and parasitic gapping,

88 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

in the case of verb phrase ellipsis there is the ellipsis marker that can carry a modally
decorated type. This is because the antecedent to be recovered is not a distinct word
without meaning; it is a contentful verb phrase. So rather than annotate a relative
pronoun or a coordinator with a modal type that allows for long-distance dependen-
cies to be respected, we want to assign a type to the ellipsis marker in such a way
that this allows the duplication of the antecedent verb phrase and the movement of
this copy into the correct position in the sentence. In this way, we avoid the issue of
overloading the lexicon that may arise when opting for lexical polymorphism. The
copying approach is schematically depicted in Figure 3.17.

ANT VP MARKER

Bob drinks a beer

drinks a beer drinks a beer

and Alice (((((does too

FIGURE 3.17: General strategy for ‘copying and movement’ for verb phrase ellipsis,
shown for “Bob drinks a beer and Alice does too”. The antecedent has to be copied,

and the copy has to be moved (rightward) into correct position in the sentence.

Verb phrase ellipsis, and especially verb phrase ellipsis with anaphora, does not
lend itself to the type of lexical modelling used before; contrary to the approach
advocated above for parasitic gapping and pronoun relativisation, the presence of
ellipsis is typically indicated by an ellipsis marker, which signals a request for access
to the semantic content occurring elsewhere in the phrase, but not necessarily to be
obtained via coordination. For anaphora we argue that the same kind of request is
posed, where the anaphora should elicit access to an element occurring elsewhere
(typically to its left), and hence this should be modelled in the specification of its
type, but it’s access requirements modelled in the derivation itself. For this reason,
we to opt for the use of a controlled contraction rule to facilitate syntactic ‘copy-
ing’ for the modelling of verb phrase ellipsis with anaphora distributionally. This
‘copying’ should not be understood as an overt process; rather, the contraction rule
allows duplicate uses of the same information to be merged together as will become
apparent in our analysis below.

Another motivation for the use of a controlled contraction comes from the fact
that previous work shows that the kind of non-linear behaviour we wish to model
can be done distributionally by means of the Frobenius expansion map, with sig-
nature A ! A ⌦ A. Thus, the plan is to switch from the non-associative Lambek
Calculus with extraction postulates NL⌃ to a similar extension to the associative

3.5. Verb Phrase Ellipsis and Anaphora 89

Lambek Calculus. We define custom control postulates that — similar to the mul-
timodal system used above — allow for ⌃ decorated formulas to be extracted into
a position adjoining their undecorated counterpart. But in addition we allow the
⌃ decorated formula to be contracted with their undecorated neighbour type. By
means of lexical specification in the ellipsis marker, we then license the introduction
of such ⌃ formulas.

The approach we introduce is not entirely unprecented; Jäger [Jäg98] introduces
a similar logic for verb phrase ellipsis, and we will show that our approach is a sim-
pler, unary implementation of essentially the same system. However, our approach
is much more suited for implementation in a compositional distributional model.

3.5.1 A Proof System for Controlled Copying

Similar to the previous sections, our starting point is the (associative) Lambek Cal-
culus, enhanced with control modalities ⌃,⇤ which form a residuated pair. Again,
the modalities have a purely syntactical role: instead of directly allowing the copy-
ing of resources, the system is designed such that a type that is labelled with a ⌃
can be contracted. This prevents the overgeneration of a general contraction rule,
but license the multiple use of the (meaning of) words that respect the type that is
decorated with ⌃. The residuated ⇤ modality allows for the system to operate on
the subtype of a ⌃ decorated type without losing track of the latter’s position. The
full proof system is given in Figure 3.18.

1A : A �! A
f : A �! B g : B �! C

g � f : A �! C

f : ⌃A �! B
Of : A �! ⇤B

f : A⌦B �! C

Bf : A �! C/B

f : A⌦B �! C

Cf : B �! A\C

g : A �! ⇤B

O
�1g : ⌃A �! B

g : A �! C/B

B
�1g : A⌦B �! C

g : B �! A\C

C
�1g : A⌦B �! C

f : (A⌦B)⌦ C �! D

d↵�1(f) : A⌦ (B ⌦ C) �! D

f : A⌦ (B ⌦ C) �! D

b↵(f) : (A⌦B)⌦ C �! D

f : ⌃A⌦A �! B
bC(f) : A �! B

f : A⌦ (⌃B ⌦ C) �! D

cM(f) : (⌃B ⌦A)⌦ C �! D

f : ⌃A⌦ (⌃B ⌦ C) �! D

bS(f) : ⌃B ⌦ (⌃A⌦ C) �! D

FIGURE 3.18: LF . Residuation rules and structural postulates for controlled copy-
ing and moving (rule form). The names of the rules are given by the term symbols

in the conclusion of each rule.

90 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

Combining ⌃ with a \ or / creates the behaviour wanted for ellipsis: an ellipsis
marker will generally be annotated with a type ⌃A\B, where the expected ⌃A typi-
cally does not occur in the given sequence of types to be proven. Rather, this ‘missing
copy’ is inserted and by means of the structural rules extracted to the left until it ap-
pears beside a an undecorated witness of type A. If we read such a derivation the
other way around, from bottom to top, it has the effect that the candidate for ellipsis
gets copied and its content is reused as an argument for the ellipsis marker. This is
expressed in Figure 3.19.

W1 ... Wi ANT Wi+1... Wj AUX Wj+1...Wn

C1 ... Ci A

⌃A A

Ci+1... Cj ⌃A ⌃A\B Cj+1...Cn

FIGURE 3.19: General strategy for ellipsis resolution in L⌃,F. The
antecedent is copied, and the ⌃ decorated copy is moved directly left

of the marker which consumes the copy.

To this end, the modalities license access to (limited forms of) contraction and
commutativity, through the use of structural rules (see Figure 3.18). The structural
rules can also be stipulated in equivalent axiomatic form, but for the purpose of
parsing it is more useful to consider rule form. We want to have a system that enjoys
decidability: though this is not a straightforward property in the presence of just
contraction1, our system becomes decidable easily if we put a bound on the number
of contractions in a proof.

3.5.2 Relation to related approaches

The system LF as we defined it above is closely related to the multimodal system
LA introduced by Jäger [Jäg98] to deal with ellipsis. In this subsection we show
how our system in fact can be derived from Jäger’s system by means of a translation.
The system LA introduces a second triple of connectives ⇠, ,!, -, with the same
residuation behaviour as ⌦, \, /. In addition, three structural rules are defined that
govern the structural behaviour of copying and movement. The non-Lambek part
of the system is given in Figure 3.20, and we give a translation from LA to LF

and show that this translation preserves all theorem of the Jäger’s original system,
but using only a pair of unary control modalities. The fact that we translate from
a residuated triple of binary connectives to a adjoint pair of unary connectives also
means that a full equivalence theorem is harder to achieve. We refer the reader to to

1See the discussion in Katalin Bimbó’s monograph [Bim14] and the results of [SO96; CH16].

3.5. Verb Phrase Ellipsis and Anaphora 91

Section 5.3 of the dissertation of Versmissen [Ver96] for an interesting discussion on
this.

f : A ⇠ B �! C
I f : A �! C - B

f : A ⇠ B �! C
J f : B �! A ,! C

g : A �! C - B

I
�1 g : A ⇠ B �! C

g : B �! A ,! C

J
�1 g : A ⇠ B �! C

f : A ⇠ A �! B
bC(f) : A �! B

f : A⌦ (B ⇠ C) �! D

dIM(f) : (B ⇠ A)⌦ C �! D

f : A ⇠ (B ⇠ C) �! D

bP (f) : B ⇠ (A ⇠ C) �! D

FIGURE 3.20: Extending L to LA: logical rules (top) and structural rules (bottom, rule form).

First, we translate the formulas of LA to formulas of LF : basic types are unchanged,
as well as the Lambek connectives ⌦, \, /:

p� = p (A⌦B)� = A�
⌦B� (A/B)� = A�/B� (A\B)� = A�

\B�

The extra residuated triple, however, is now interpreted using the unary modalities:

(A ⇠ B)� = ⌃A⌦B (A ,! B)� = ⌃A�
\B� (A - B)� = ⇤(A�/B�)

With the given translation, we can show that the system LF is a translation of LA ,
i.e. all deductions of the latter are deductions of LF :

Theorem 1 LA ` A! B only if LF ` A�
! B�.

Proof 1 By induction on the length of derivations in LA . As the translation directly con-
verts the structural rules of LA to those of LF , and the Lambek connectives remain identical
under translation, we only have to consider the logical rules for ⇠, ,!, -.

1. For I and I�1 we show

...
⌃A⌦B �! C

IH

⌃A �! C/B
B

A �! ⇤(C/B)
O

...
A �! ⇤(C/B)

IH

⌃A �! C/B O
�1

⌃A⌦B �! C B
�1

2. For J and J we have

...
⌃A⌦B �! C

IH

B �! ⌃A\C
C

...
B �! ⌃A\C

IH

⌃A⌦B �! C C
�1

92 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

3.5.3 Deriving Ellipsis with Anaphora

We have argued above and opted for a mechanism by which the verb phrase, in
an elliptical phrase like “Alice drinks and Bob does too”, is used twice; the proof
system handles this by means of the structural rules of controlled contraction and
movement. Figure 3.21 shows the derivation for the phrase — skipping trivial ap-
plications of associativity — with the copy of the verb phrase highlighted in red. Its
graphical representation is shown in Figure 3.22. The derivation follows the general
pattern depicted in Figure 3.19, with the auxiliary verb “does too” marking the el-
lipsis site and therefore typed ⌃(np\s)\(np\s); requiring a copied verb phrase from
somewhere to its left, it will return a verb phrase. Reading from bottom to top, first
a contraction is applied to copy the verb phrase, marking the copy with a control
modality. Then, the copy of the verb phrase is structurally moved rightward until it
is in the right position to interact with the auxiliary ellipsis marker. It is not hard to
see, then, that this allows the meaning of the verb phrase to be multiplied, have the
copied version interact with the auxiliary to give the meaning of the whole phrase in
a similar way as the meaning of the expanded phrase “Alice drinks and Bob drinks”
would be computed.

np �! np s �! s

np\s �! np\s
\

np ⌦ np\s �! s /�1
s �! s

s\s �! (np ⌦ np\s)\s
\

np �! np s �! s

np\s �! np\s
\

⌃(np\s) �! ⌃(np\s)
⌃

np �! np s �! s

np\s �! np\s
\

⌃(np\s)\(np\s) �! ⌃(np\s)\(np\s)
\

⌃(np\s)⌦ ⌃(np\s)\(np\s) �! np\s
C

�1

np ⌦ (⌃(np\s)⌦ ⌃(np\s)\(np\s)) �! s /�1

(s\s)/s �! ((np ⌦ np\s)\s)/(np ⌦ (⌃(np\s)⌦ ⌃(np\s)\(np\s)))
/

(s\s)/s ⌦ (np ⌦ (⌃(np\s)⌦ ⌃(np\s)\(np\s))) �! (np ⌦ np\s)\s
B

�1

(np ⌦ np\s)⌦ ((s\s)/s ⌦ (np ⌦ (⌃(np\s)⌦ ⌃(np\s)\(np\s)))) �! s
C

�1

(np ⌦ np\s)⌦ ((s\s)/s ⌦ (⌃(np\s)⌦ (np ⌦ ⌃(np\s)\(np\s)))) �! s M

(np ⌦ np\s)⌦ (⌃(np\s)⌦ ((s\s)/s ⌦ (np ⌦ ⌃(np\s)\(np\s)))) �! s M

(np ⌦ (⌃(np\s)⌦ np\s))⌦ ((s\s)/s ⌦ (np ⌦ ⌃(np\s)\(np\s))) �! s M

(np ⌦ np\s)⌦ ((s\s)/s ⌦ (np ⌦ ⌃(np\s)\(np\s))) �! s C

FIGURE 3.21: Short hand derivation for “Alice drinks and Bob does-
too”. The copied verb and its subformulas are highlighted in red.

3.5. Verb Phrase Ellipsis and Anaphora 93

⌃(np\s)\(np\s)np(s\s)/s

/

np np\s

C

Alice drinks and Bob does-too

\

\

s

\

\

⌃(np\s) np\s

FIGURE 3.22: Syntactic Information flow for the derivation in Figure 3.21.

Structural Ambiguity

More complicated cases of ellipsis contain anaphora, and allow an interaction that
leads to strict and sloppy readings. The example from Equation 3.3a, “Gary loves
his code and Bill does too”, is analysed in given proof system by allowing a choice
of resolution: for the strict reading, in which both Gary and Bill love Gary’s code,
we first resolve the anaphora ‘his’ with the (only possible) antecedent ‘Gary’. For
a sloppy reading, in which each loves their own code, the ellipsis is resolved first,
forcing the unresolved verb phrase “loves his code” to be copied and moved over
to the place preceding the auxiliary verb marker. Then, the two separate anaphors
are resolved with their closest antecedent to obtain the final interpretation. Because
of the length of the actual derivations, they are split across four figures: Figures
3.23 and 3.24 shows the derivations of the subclause “Gary loves his code”, either
directly resolving with ‘Gary’ (3.23) or leaving the anaphor unresolved (3.24). The
main derivations then use these subproofs to configure everything together into the
strict (3.25) or sloppy (3.26) reading.

For the strict reading we show the information flow diagram in Figure 3.27, in
which the two applications of the controlled contraction rule are indicated by a C

node. Essentially, the noun phrase type for ‘Gary’ gets copied and resolved with the
anaphor ‘his’, witnessed by the leftmost C node in the diagram. After forming a
verb phrase of the correct type np\s, this type gets copied and the ⌃ decorated copy
is moved over to be consumed by the auxiliary ‘does too’, the repeated application
of the movement rule signified by the wire that crosses over the elements left of the
auxiliary verb. For the sloppy case, the diagrammatic representation is in Figure

94 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

3.28. Here the situation is more complex: the full type for the (underived) verb
phrase (np\s)/np⌦⌃np\(np/n)⌦ n is copied and the copy is moved over to the left
of the auxiliary. Then, we have two parallel anaphor resolution steps, respectively
resolving with ‘Gary’ on the left side of the diagram, and with ‘Bill’ on the right side.

The approach here is in line with proposals of Jacobson [Jac99] and Jaë [Jäg06].
Where Jacobson uses a combinator to effectuate a copying mechanism in the syntax,
Jaëger’s proposal introduces an extra implication connective | that is governed by
a rule that compresses the use of modus ponens and contraction in a single rule
application. Here, we separate the laws governing contraction and the swapping of
formulas (permutation), and moreover leave the elicitation of this behaviour to the
lexical specification of the anaphor.

np �! np
⌃np �! ⌃np

⌃

np �! np s �! s

np\s �! np\s
\

np �! np

(np\s)/np �! (np\s)/np
/

(np\s)/np ⌦ np �! np\s
B

�1

np �! ((np\s)/np)\(np\s)
C

n �! n

np/n �! (((np\s)/np)\(np\s))/n
/

⌃np\(np/n) �! ⌃np\((((np\s)/np)\(np\s))/n)
\

⌃np⌦ ⌃np\(np/n) �! (((np\s)/np)\(np\s))/n
C

�1

(⌃np⌦ ⌃np\(np/n))⌦ n �! ((np\s)/np)\(np\s)
B

�1

(np\s)/np⌦ ((⌃np⌦ ⌃np\(np/n))⌦ n) �! np\s
C

�1

np⌦ ((np\s)/np⌦ ((⌃np⌦ ⌃np\(np/n))⌦ n)) �! s
C

�1

FIGURE 3.23: Derivation of “Gary loves his code” where the anaphor is resolved
with antecedent ‘Gary’.

np �! np
⌃np �! ⌃np

⌃

n �! n

np �! np s �! s

np\s �! np\s
\

np �! np

(np\s)/np �! (np\s)/np
/

(np\s)/np ⌦ np �! np\s
B

�1

np �! ((np\s)/np)\(np\s)
C

np/n �! (((np\s)/np)\(np\s))/n
/

⌃np\(np/n) �! ⌃np\((((np\s)/np)\(np\s))/n)
\

⌃np ⌦ ⌃np\(np/n) �! (((np\s)/np)\(np\s))/n
C

�1

(⌃np ⌦ ⌃np\(np/n))⌦ n �! ((np\s)/np)\(np\s)
B

�1

(np\s)/np ⌦ ((⌃np ⌦ ⌃np\(np/n))⌦ n) �! np\s
C

�1

np ⌦ ((np\s)/np ⌦ ((⌃np ⌦ ⌃np\(np/n))⌦ n)) �! s
C

�1

np ⌦ (⌃np ⌦ ((np\s)/np ⌦ (⌃np\(np/n)⌦ n))) �! s M

(⌃np ⌦ np)⌦ ((np\s)/np ⌦ (⌃np\(np/n)⌦ n)) �! s M

np ⌦ ((np\s)/np ⌦ (⌃np\(np/n)⌦ n)) �! s C

FIGURE 3.24: Derivation of “Gary loves his code” where the anaphor is unresolved.

3.5. Verb Phrase Ellipsis and Anaphora 95

. . . .
G

a
r
y

n
p
⌦

(
lo

v
e
s

(n
p\

s)
/n

p
⌦

((
G

a
r
y

⌃
n
p
⌦

h
i
s

⌃
n
p\

(n
p/

n
))
⌦

c
o
d
e

n
))
�
!

s
s
�
!

s

s\
s
�
!

(n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)\
s

\

. . . .
B

i
ll

n
p
⌦

(
lo

v
e
s

(n
p\

s)
/n

p
⌦

((
G

a
r
y

⌃
n
p
⌦

h
i
s

⌃
n
p\

(n
p/

n
))
⌦

c
o
d
e

n
))
�
!

s

(n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
)
�
!

n
p\

s
C

⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
�
!
⌃

(n
p\

s)
⌃

n
p
�
!

n
p

s
�
!

s

n
p
\
s
�
!

n
p
\
s

\

⌃
(n

p
\
s)

\
(n

p
\
s)
�
!
⌃

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

\
(n

p
\
s)

\

⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)
�
!

n
p
\
s
C

�
1

n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

)
�
!

s
/�

1

(s
\
s)

/s
�
!

((
n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)\
s)

/(
n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
/

(s
\
s)

/s
⌦

(n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
�
!

(n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)\
s
B

�
1

(n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
)
�
!

s
C

�
1

(n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
)
�
!

s
M

(n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
)
�
!

s
M

(n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

))
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
�
!

s
M

(n
p
⌦

((
n
p\

s)
/n

p
⌦

((
⌃

n
p
⌦
⌃

n
p\

(n
p/

n
))
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
�
!

s
C

(n
p
⌦

(⌃
n
p
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

))
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p\

s)
\
(n

p\
s)

))
�
!

s
M

((
⌃

n
p
⌦

n
p
)
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p\

s)
\
(n

p\
s)

))
�
!

s
M

(n
p
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p\

s)
\
(n

p\
s)

))
�
!

s
C

FI
G

U
R

E
3.

25
:S

ym
bo

lic
pr

oo
ff

or
th

e
st

ri
ct

re
ad

in
g

of
“G

ar
y

lo
ve

s
hi

s
co

de
an

d
Bi

ll
do

es
to

o”
.

96 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

. . . .
G

a
r
y

n
p
⌦

(
lo

v
e
s

(n
p\

s)
/n

p
⌦

(
h
i
s

⌃
n
p\

(n
p/

n
)
⌦

c
o
d
e

n
))
�
!

s
s
�
!

s

s\
s
�
!

(n
p
⌦

((
n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))

)\
s

\

. . . .
B

i
ll

n
p
⌦

(
lo

v
e
s

(n
p\

s)
/n

p
⌦

(
h
i
s

⌃
n
p\

(n
p/

n
)
⌦

c
o
d
e

n
))
�
!

s

(n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
)
�
!

n
p\

s
C

⌃
(l

ov
es

(n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))
�
!
⌃

(n
p\

s)
⌃

n
p
�
!

n
p

s
�
!

s

n
p
\
s
�
!

n
p
\
s

\

⌃
(n

p
\
s)

\
(n

p
\
s)
�
!
⌃

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

\
(n

p
\
s)

\

⌃
((

n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)
�
!

n
p
\
s
C

�
1

n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

)
�
!

s
/�

1

(s
\
s)

/s
�
!

((
n
p
⌦

((
n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))

)\
s)

/(
n
p
⌦

(⌃
((

n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
/

(s
\
s)

/s
⌦

(n
p
⌦

(⌃
((

n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
�
!

(n
p
⌦

((
n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))

)\
s
B

�
1

(n
p
⌦

((
n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(n
p
⌦

(⌃
((

n
p
\
s)

/n
p
⌦

(⌃
n
p
\
(n

p
/n

)
⌦

n
))
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
)
�
!

s
C

�
1

(n
p
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(⌃
((

n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
)
�
!

s
M

(n
p
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

)
⌦

(⌃
((

n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
)
�
!

s
M

(n
p
⌦

(⌃
((

n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

))
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
�
!

s
M

(n
p
⌦

((
n
p\

s)
/n

p
⌦

(⌃
n
p\

(n
p/

n
)
⌦

n
))

)
⌦

((
s\

s)
/s
⌦

(n
p
⌦
⌃

(n
p
\
s)

\
(n

p
\
s)

))
�
!

s
C

FI
G

U
R

E
3.

26
:S

ym
bo

lic
pr

oo
ff

or
th

e
sl

op
py

re
ad

in
g

of
“G

ar
y

lo
ve

s
hi

s
co

de
an

d
Bi

ll
do

es
to

o”
.

3.5. Verb Phrase Ellipsis and Anaphora 97

⌃
(n

p\
s)

\
(n

p\
s)

n
p

(s
\
s)

/s

/

n
p

(n
p\

s)
/n

p

/

G
ar

y
lo

ve
s

an
d

Bi
ll

do
es

-t
oo

\

s

\

\

hi
s

⌃
n
p\

(n
p/

n
)

co
de n

/

\
C

n
p

⌃
n
p

C

⌃
(n

p\
s)

n
p\

s

\

FI
G

U
R

E
3.

27
:S

yn
ta

ct
ic

in
fo

rm
at

io
n

flo
w

fo
r

th
e

st
ri

ct
re

ad
in

g
of

“B
ill

lo
ve

s
hi

s
co

de
an

d
G

ar
y

do
es

to
o”

.

98 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

⌃
(n

p\
s)

\
(n

p\
s)

(s
\
s)

/s

/

n
p

(n
p\

s)
/n

p

/

G
ar

y
lo

ve
s

an
d

do
es

-t
oo

\

s

\

\

hi
s

⌃
n
p\

(n
p/

n
)

co
de n

/

\
C

n
p

⌃
n
p

\

⌦

C

n
p

/

hi
s

n
p

lo
ve

s

⌃

\

co
de

/
⌃

n
p

⌦ \
C

n
(n

p\
s)

/n
p

n
p

Bi
ll

⌃
n
p\

(n
p/

n
)

⌃

lo
ve

s
hi

s
co

de

FI
G

U
R

E
3.

28
:S

yn
ta

ct
ic

in
fo

rm
at

io
n

flo
w

fo
r

th
e

sl
op

py
re

ad
in

g
of

“B
ill

lo
ve

s
hi

s
co

de
an

d
G

ar
y

do
es

to
o”

.

3.5. Verb Phrase Ellipsis and Anaphora 99

3.5.4 Frobenius Semantics for Ellipsis with Anaphora

In order to give the vectorial semantics for the derivations for ellipsis with anaphora
above, we proceed in the same fashion as for the case of relative pronouns and par-
asitic gaps, largely taking over the type and proof interpretation defined in section
3.2. The only extra step we need to take is to give an interpretation to the alterna-
tive structural rules that we proposed. Interpretation for the associativity structural
rules is immediate via the standard associativity of FVect: dd↵�1(f)e = dfe �↵�1 and
dd↵�1(f)e = ↵ � dfe. For the other structural rules, we additionally use the symmetry
maps of FVect as well as the diagonal Frobenius map �:

d bC(f)e = dAe
�dAe

����! dAe ⌦ dAe
dfe
���! dBe

dcM(f)e = (dBe ⌦ dAe)⌦ dCe
�dBe,dAe ⌦ 1dCe

������������! (dAe ⌦ dBe)⌦ dCe
↵
��!

dBe ⌦ (dAe ⌦ dCe)
dfe
���! dDe

dbS(f)e = dBe ⌦ (dAe ⌦ dCe)
↵�1

���! (dBe ⌦ dAe)⌦ dCe
�dBe,dAe ⌦ 1dCe

������������!

(dAe ⌦ dBe)⌦ dCe
dfe � ↵
������! D

It is important to note how the copying rule, interpreted by precomposition with the
Frobenius � map, acts recursively on complex types, as many examples of ellipsis
involve copying complex types rather than simple types. As noted in Section 2.1, the
Frobenius � map distributes over the tensor product, as the concrete maps in FVect
are symmetric, i.e. we have �A⌦B = �A⌦�B . Given that all types are interpreted as
tensor products of vector spaces, the copying of resources essentially decomposes to
the level of basic vector spaces. For example, copying a verb phrase of type np\s, in
the Lambek diagrammatic representation of Section 2.1.7 represented by a C node,
will be translation to a string diagram as a decomposed application of Frobenius
maps:

N ⌦ S N

VPVP

S

N ⌦ S N ⌦ S N NS S

=

This gives us all the ingredients to translate the information flow diagram of Figure
3.22 to get the interpretation for “Alice drinks and Bob does too”. Assigning to
the coordinator ‘and’ an intersective meaning by means of the Frobenius combining
operation µ, and translating the

100 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

N

Bob

S

and

S S S SN N

does-too

N N

drinksAlice

S

FIGURE 3.29: Semantic information flow for simple verb phrase el-
lipsis.

Note that we stuck to the translation from Lambek types into pregroup types, thereby
introducing a number of crossing wires in the diagram. This reflects the commuta-
tivity applications in the proof system that allow for the correct interpretation to be
derived.

Given the equations that hold for compact closed categories and Frobenius Al-
gebras, which in our case are special and commutative, we can simplify the diagram
to a normal form. This is presented in Figure 3.30.

N

Bob

N N

drinksAlice

S

FIGURE 3.30: Information flow for strict ellipsis.

First, the Frobenius � map creates to objects in the space S, which then are
merged together again by means of the coordinator ‘and’. By speciality this then
reduces to a single wire. Then, yanking the wire that connects ‘Bob’ to a copy of the
N component of the verb phrase, we can turn around the Frobenius � map and get
the Frobenius µ map which expresses elementwise multiplication. The final normal
form expresses the linear algebraic formula

drink ⇥ (
��!
alice�

�!
bob)

which may be seen as computing a meaning that corresponds to “Alice and Bob both

3.5. Verb Phrase Ellipsis and Anaphora 101

drink”.

Structural Ambiguities and Meaning Collapse To interpret the derivations for the
strict and sloppy readings of “Gary likes his code and Bill does too” in Figures 3.25
and 3.26, we keep the lexical meaning of the coordinator ‘and’ to be expressed by
element wise multiplication, using the Frobenius map µ, as the vector analogue of
the intersective formal semantics term �xtyt.x ^ y. For the anaphor ‘his’, a formal
semantics account would assign a term �xeP e!t.own(x, P). Since we assign the
same vector space to both common nouns and noun phrases, we can model this in a
natural way using again the Frobenius µ map. Finally, the auxiliary verb functions
as an identity on the main verb. Its lambda term would simply by �P e!t.P , in
vectorial terms we use a rewiring using caps. Putting this together, the two different
proofs lead to the two seemingly different diagrams in Figures 3.31 and 3.32, which
also seemingly diverge. However, rewriting the diagrams leads in both cases to the
normal form diagram in Figure 3.33, which gives the algebraic interpretation below,
where the element wise multiplication of all nouns in the sentence are passed on as
an argument to both the subject and the object position of the verb, by means of the
Frobenius µ map.

(likes⇥ µ(��!gary �
��!
code�

�!
bill)1)⇥ µ(��!gary �

��!
code�

�!
bill)2

N

Gary

NN N

his

N

code

S

and

S S S SN N

does-too

N N

likesBill

S N

FIGURE 3.31: Semantic information flow for strict ellipsis.

This result shows that interpreting the copy rule as a Frobenius map, in combina-
tion with a direct vectorial analogue of the lexical semantics of the anaphor ‘his’, the
coordinator ‘and’, and the auxiliary ‘does too’, not only leads to an nonsensical inter-
pretation of complex cases of ellipsis, but moreover to the identification of strict and
sloppy identities. The main problem is that the copying with Frobenius Algebras is

102 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

N N S N N

Bill likes Gary

NN N

his

N

code

S

and

S S S SN N

does-too

FIGURE 3.32: Semantic information flow for sloppy ellipsis.

Gary

N

code

NN N

likesBill

S N

FIGURE 3.33: Normal form diagram for strict ellipsis.

effectuated by a non-cartesian linear map in which the material that was copied, is
entangled.

We argue that taking a direct interpretation in the category FVect may not be a
suitable way of representing these cases which require a cartesian way of copying
material. The main Frobenius map that is used for relative pronouns by [SCC13;
MW17] expresses element wise multiplication, but its dual map copies a vector by
placing its values on the diagonal of a square matrix. In terms of a type signature
this indeed multiplies the vector space on which the map is performed, but does
not allow for the actual vector to be used in a non-entangled way. In fact, there is
no linear map that can copy arbitrary vectors in the cartesian sense [Abr09; Jac11].
To see this for a concrete example, consider the phrase “Alice loves herself” with

3.5. Verb Phrase Ellipsis and Anaphora 103

tensors alice =
P
i

ai~vi, and loves =
P
jkl

cjkl(~vj ⌦ ~sk ⌦ ~vl). The interpretation of a

classical semantics (left) differs from the result of using Frobenius algebras (right):

Classical Frobenius

aliceilovesijkalicek =
P
ijk

aicijkak~sj aliceilovesiji =
P
ij

aiaiciji~sj

In order to get around the problem and be able to copy semantic material in the
intended cartesian way, one has no choice but to move away from a strict linear
algebraic setting. We do so in the next section, by interpreting proofs in a simply
typed lambda calculus — category-theoretically speaking the internal language of a
cartesian closed category [LS88] — in which terms can now model embeddings: the
meaning of a sentence is a program with non-linear access to word embeddings.

3.5.5 Lambdas and Tensors for Ellipsis

In order to allow classical copying behaviour in a compositional distributional model,
we decompose the categorical model of [CGS13] into a two-step architecture: deriva-
tions and are now mapped onto terms of a non-linear simply typed lambda calculus
�NL. The second stage of the interpretation process replaces the assumed lexical
constants for words by their lexical semantics, finally resulting in a term of a lambda
calculus that models vectors and linear maps, denoted �FVecFrob . In a picture:

Source
L⌃,F

Intermediate
�NL

Target
�FVecFrob

b·c H(·)

We model this by moving to a setting of simply typed lambda calculus, which cat-
egorically speaking is the internal language of a cartesian closed category: the equiv-
alence classes of reductions of simply typed lambda terms correspond to the mor-
phisms of a cartesian closed category freely generated by the terms of the calculus
[LS88]. Rather than mapping types to vector spaces and proofs to linear maps, we
now map types to types of a typed lambda calculus system, with proofs mapped
onto terms of this calculus. The terms were already defined in Section 2.1.5, but we
repeat the formulation of the terms of the typed lambda calculus with products here:

Definition 4 Given a countably infinite set of variables V = {x, y, z...}, terms of � are as
in the below grammar:

M, N := V | �x.M | M N | hM, Ni | ⇡1(M) | ⇡2(M)

For the basic types, we set

bnpc = e bnc = e! t bsc

104 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

We can then give extend the interpretation of types and proofs from Section 2.1.5 to
include the control modalities. The interpretation of the Lambek connectives remain
unchanged and the control modalities are again semantically vacuous, hence we
define on complex types

bA⌦Bc = bAc ⇥ bBc bA/Bc = bA\Bc = bAc ! bBc b⌃Ac = b⇤Ac = bAc

For the proofs, we can interpret identity and composition straightforwardly by �x.x

and �x.N (M x) for M and N the terms of the subproofs, respectively. The binary
residuation rules correspond to application and abstraction depending on the direc-
tion in which the rule is applied, whereas unary residuation does not change the
terms at all:

bBMc = �x y.M hx, yi bCMc = �y x.M hx, yi bOMc = M

bB
�1Nc = �hx, yi.(N x) y bC

�1Nc = �hx, yi.(N y) x bO
�1Nc = N

The derived monotonicity rules get the interpretation below:

bM ⌦Nc = �hx, yi.hM x, N yi

bM\Nc = �f x.N (f (M x))

bM/Nc = �f x.M (f (N x))

The associativity rules behave as an identity since associativity is implicit in lambda
terms.

bb↵l
⇧(M)c = �hx, y, zi.M hx, y, zi bb↵r

⇧(M)c = �hx, y, zi.M hx, y, zi

The non-linear behaviour enters with the interpretation for the structural rules for
movement and copying:

b bC(M)c = �x.M hx, xi

bcM(M)c = �hy, x, zi.M hx, y, zi

bbS(M)c = �hy, x, zi.M hx, y, zi

Abstract Proof Terms for Ellipsis The interpretation above allows us to give an
abstract meaning representation for the proofs involving ellipsis and anaphora, in
which each word is representation by some constant, that later on can refer to a con-
crete meaning. For the sample derivation of Figure 3.21, the logical phase computes
only reductions; the subproof of the type

(np ⌦ np\s)⌦ ((s\s)/s ⌦ (np ⌦ (⌃(np\s)⌦ ⌃(np\s)\(np\s)))) �! s

3.5. Verb Phrase Ellipsis and Anaphora 105

gives an abstract term

�hsubj1,verb,coord,subj2,verb
⇤,auxi.(coord ((aux verb⇤) subj2))(verb subj1)

and the structural phase repositions the copy verb⇤ next to the verb, after which the con-
traction rule identifies the variables associated with them, unifying verb and verb⇤:

�hsubj1,verb,coord,subj2,auxi.(coord ((aux verb) subj2))(verb subj1)

We get the final abstract proof term for the proof in Figure 3.21 by applying the term above to
the constants for the words in the sentence:

(and ((dt drinks) bob))(drinks alice) : s (3.17)

For the cases of strict and sloppy readings of ellipsis and anaphora, the difference in order
of the ellipsis versus anaphor resolution is reflected in the two different abstract meaning
terms below:

(and ((dt (loves ((his gary) code))) bill)) ((loves ((his gary) code)) gary) (strict)

(and ((dt (�t.(loves ((his t) code)) t)) bill)) ((loves ((his gary) code)) gary) (sloppy)

In order to give a concrete vector semantics for these abstract proof terms, we need to encode
vectors and their operations using lambda calculus.

Modelling Vector Semantics Vectors can be seen as functions from natural numbers to the
values in the underlying field, allowing us to represent them naturally as lambda terms. For
any dimensionality n, we assume a basic type In, representing a finite index set (in concrete
models the number of index types will be finite). The underlying field, in our case the real
numbers R, is given by the type R.

The type of a vector in Rn is now V n = In ! R, the type of an n⇥m matrix is Mn⇥m =

In ! Im ! R. In general, we may represent an arbitrary tensor with dimensions n, m, ..., p

by Tn⇥m...⇥p = In ! Im ! ... ! Ip ! R. We will leave out the superscripts denoting
dimensionality when they are either irrelevant or understood from the context.

By reference to index notation for linear algebra, we write v i as vi whenever it is under-
stood that i is of type I . We moreover assume constants for the basic operations of a vector
space: 0 : R, 1 : R, + : R ! R ! R, · : R ! R ! R with their standard interpretation.
Standard operations can now be expressed:

Name Symbol Lambda term

Matrix transposition ·
T �mij.mji : M !M

Matrix multiplication ⇥1 �mvi.
P
j

mij · vj : M ! V ! V

Cube multiplication ⇥2 �cvij.
P
k

cijk · vk : C ! V !M

Element wise multiplication � �uvi.ui · vi : V ! V ! V

106 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

All of these operations, except for addition, are instances of the multilinear algebraic oper-
ation of tensor contraction applicable to any two tensors of arbitrary rank as long as they
share at least one index. The tensor contraction between them is formed by applying the
following formula:

X

i1,...,in+k

Ai1i2···inBinin+1···in+k 2W ⌦ · · ·⌦W| {z }
n+k�1

For
X

i1,...,in

Ai1i2···in 2W ⌦ · · ·⌦W| {z }
n

and
X

in,...,in+k

Binin+1···in+k 2W ⌦ · · ·⌦W| {z }
k+1

Element wise multiplication between two vectors, or matrices, or tensors of the same rank
is also an instance of tensor contraction, where one of the arguments of the multiplication
is raised to a tensor of a higher rank, with the argument in its diagonal and its other entries
padded with zero. For an instance of this see [Kar16] where coordination is treated in a
DisCoCat model, and the where the author shows how the linear algebraic closed form of
element wise multiplication arises as a result of a tensor contraction.

To obtain a concrete model for a phrase, we homomorphically replace the abstract mean-
ing term of a proof by a concrete tensor mapping. Since we map lambda terms to lambda
terms, we only need to specify how constants c are mapped to tensors. This will automati-
cally induce a type-respecting term homomorphism H. A general map that sends constants
to a contraction friendly model is presented in Table 3.1.

w �(w) H(w) T (w)

cn n cn V

adj n/n �v.(adj⇥1 v) V V

adv (np\s)\(np\s) �m.(adv⇥3 m) HM

itv np\s �v.(itv⇥1 v) V V

tv (np\s)/np �uv.(tv⇥2 u)⇥1 v V V V

coord (s\s)/s �P.�Q.P �Q V V V

TABLE 3.1: Translation that sends abstract terms to a tensor-based
model using matrix and cube multiplication as the main operations;
here an in the two other proceeding tables the atomic types are np

and s.

The composition defined in Table 3.1 is in a sense external to the term calculus itself; using
the abstract mechanism of function application, we can specify any linear map as an internal
operation in the semantic lexicon. For the adjectival phrase we use matrix multiplication,
and for an adverbial modifier we model it using a hypercube contraction, for the coordinator
we can insert the element wise multiplication.

The translation of the proof term of Figure 3.21 under Table 3.1 becomes as follows:

(and ((dt drinks) bob))(drinks alice) : s

3.5. Verb Phrase Ellipsis and Anaphora 107

Substituting the concrete terms we get the following �-reduced version:

⇣� (drinks⇥1 alice)� (drinks⇥1 bob)

As another alternative, we can instantiate the proof terms in a multiplicative-additive model.
This is a model where the sentences are obtained by adding their individual word embed-
dings and the overall result is obtained by multiplying the two sentence vectors. This model
is presented in Table 3.2, according to which we obtain the following semantics for our ex-
ample sentence above:

⇣� (drinks + alice)� (drinks + bob)

Another alternative is Table 3.3, which provides the same terms with a Kronecker -based
tensor semantics, originally used by [GS11a] to model transitive sentences.

w �(w) H(w) T (w)

cn n cn V

adj np/n �v.(adj + v) V V

adv (np\s)\(np\s) �m.(adv + m) V V

itv np\s �v.(itv + v) V V

tv (np\s)/np �uv.(tv + u + v) V V V

coord (s\s)/s �P.Q.(P �Q) V V V

TABLE 3.2: Translation that sends abstract terms to a multiplicative-
additive model.

We symbolise the semantics of the basic elliptical phrase that comes out of any of these
models for our example sentence as follows:

M(sub1,verb) ? M(sub2, N(verb))

where M is a general term for an intransitive sentence, N is a term that modifies the verb
tensor through the auxiliary verb, and ? is an operation that expresses the coordination of
the two subclauses. For a transitive sentence version, the above changes to the following:

M(subj1,verb,obj1) ? M(subj2, N(verb),obj1)

Such a description is very general, and in fact allows us to derive almost all compositional
vector models that have been empirically evaluated in the literature (see e.g., [Mil+14]). This
flexibility is necessary for ellipsis because it can model the Cartesian behaviour that is un-
available in a categorical modelling of vectors and linear maps. Some models can, however,
only be incorporated by changing the lexical formulas associated to the individual words.
The proposal of Kartsaklis et al [KPS16] is one such example. They use the coordinator to a
heavy extent and their typing and vector/tensor assignments result in the following lambda

108 Chapter 3. Ellipsis, Anaphora, and Parasitic Gaps

semantics for the phrase “Alice drinks and Bob does too”:

drinks⇥1 (alice� bob)

The above is obtained by assigning an identity linear map to the auxiliary phrase ‘does too’
and then assigning a complex linear map to the coordinator ‘and’ tailored in a way that it
guarantees the derivation of the final meaning. In our framework, we would need to take
a similar approach, and we need to modify M to essentially return the verb-subject pair, N

would be the identity, and and has to be defined with the tailored to purpose term below,
which takes two pairs of subjects and verbs, but discards one copy of the verb to mimic the
model of Kartsaklis et al [KPS16]:

and �hs, vi.�ht, wi.v ⇥1 (s� t)

w �(w) H(w) T (w)

cn n cn V

adj np/n �v.(adj� v) V V

adv (np\s)\(np\s) �m.(adv�m) V V

itv np\s �v.(itv� v) V V

tv (np\s)/np �uv.(tv� (v ⌦ u)) V V M

coord (s\s)/s �P.�Q.(P �Q) V V V

TABLE 3.3: Translation that sends abstract terms to a Kronecker
model. We abuse the notation to denote the element wise multipli-
cation of two matrices with the same symbol, i.e. �, as the element

wise multiplication of two vectors.

All in all, we can reasonably derive a large class of compositional functions that can be
experimented with in a variety of tasks. If we assume a tensor-based compositional model
that uses tensor contraction to obtain the meaning of a sentence, we get the two different
meanings for the strict and sloppy readings as follows:

1. ((loves⇥2 (gary� code))⇥1 gary)� ((loves⇥2 (gary� code))⇥1 bob) (strict)

2. ((loves⇥2 (gary� code))⇥1 gary)� ((loves⇥2 (bob� code))⇥1 bob) (sloppy)

3.6 Conclusion

This chapter presented the first main line of contributions of this thesis. We extended the
categorical compositional framework of Coecke, Sadrzadeh, and Clark [CSC10] and Coecke,
Grefenstette, and Sadrzadeh [CGS13] and introduced a vector semantic interpretation for an
extension of the Lambek Calculus with unary modalities. We then reviewed how existing
such systems can be used to model pronoun relativisation in English and in Dutch. Then,
we extended the previous setting where all the copying behaviour is encoded in the lexicon,
to the case of parasitic gaps.

3.6. Conclusion 109

Finally, we adapted the existing system of Moortgat [Moo96] with a different set of struc-
tural rules to allow for a controlled form of copying and movement of linguistic material,
and gave two different semantics for this proof system. The first strictly follows the cat-
egorical compositional framework of Coecke, Sadrzadeh, and Clark [CSC10] and Coecke,
Grefenstette, and Sadrzadeh [CGS13] but gave undesired results in the case of ellipsis com-
bined with anaphora, as strict and sloppy readings of the same sentence would generate
the exact same vector semantics. The second semantics was based on the work of Muskens
and Sadrzadeh [MS17], and used the simply typed lambda calculus, allowing for cartesian
copying and thereby restoring the desired meaning representations for ambiguous elliptical
phrases.

The developed theory of this chapter gives two different accounts for different types of
ellipsis: the approach in which the proof system is kept linear and all instances of copying
need to be lexically encoded preserves a decidable proof system, but has the downside of
overloading the lexicon and the need to annotate parts of a phrase with modalities in order
before the proof theoretic analysis proceeds. The other approach, in which a limited form
of copying is allowed in the proof system avoids lexical polymorphism and extra parsing
requirements, but does lead to a potentially undecidable system, as a number of relevant
and recent results suggest [KKS16; KKS17; KKS19].

Given that we can now instantiate the developed vector models, there is the opportu-
nity to validate different theoretical approaches on concrete experimental tasks. This is the
approach of the next chapter of this thesis, where we continue with ellipsis from a practical
viewpoint: we evaluate the models developed thus far, introducing three novel datasets to
do so.

111

Part III

Practice

113

Chapter 4

Evaluation: Composition Models
for Verb Phrase Ellipsis

Chapter Abstract

In this chapter we discuss the results of empirically validating compositional distributional
models of meaning on verb phrase ellipsis. We start by introducing the general approach
taken before in evaluating word and sentence similarity, and then introduce three new
datasets and carry out a number of experiments. The core contributing material is mainly
based on [WS19b] but some of the evaluation results and background come from [WS19a]
and [WS18] (all in collaboration with Mehrnoosh Sadrzadeh).

There is a long standing tradition of evaluating the similarity between words and sen-
tences, as we already hinted at in Chapter 1. On the word level, datasets that allow one to
compare a model’s performance against human similarity judgments have been developed
as far back as the 1960’s with Rubenstein and Goodenough’s dataset [RG65], and larger and
more complex datasets followed [MC91; Fin+01; YP06; Bru+12; HRK15; Ger+16].

On the sentence level, two important datasets arose from the work of Mitchell and La-
pata [ML08; ML10], who were one of the first to systematically experiment with composing
word embeddings. This was followed by the work of Sadrzadeh and colleagues to develop
datasets for more complex sentences [GS11a; KSP13; KS13]. Later, with the introduction
of advanced neural network models for sentence embeddings, large-scale datasets were in-
troduced that measure not just similarity between sentences, but textual entailment, and
natural language inference. Prime examples of these arbitrary length sentence comparison
datasets are the SICK dataset (Sentence Involving Compositional Knowledge) introduced by
Marelli et al. [Mar+14], the Stanford Natural Language Inference dataset (SNLI) introduced
by Bowman et al. [Bow+15] and its follow up datasets MNLI (multigenre) [WNB18] and
XNLI (crosslinguistic) [Con+18].

The phenomena of ellipsis, pronoun relativisation and parasitic gaps all fall in between
these datasets: the datasets of Mitchell and Lapata, as well as the datasets introduced by
Grefenstette, Kartsaklis and Sadrzadeh cover intransitive and transitive sentences without
complex constructions such as verb phrase ellipsis or parasitic gapping. On the other hand,
the large-scale inference datasets that contain arbitrary length sentence pairs are too general
to properly evaluate models for the phenomena of interest to this thesis, and barely contain
examples of ellipsis and anaphora in the first place. For the case of relative pronouns there
is the RELPRON dataset, introduced by Rimell and colleagues [Rim+16]. The authors show
there that the tensor-based modelling for pronoun relativisation in English is not able to

114 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

outperform a simple additive model. Models for pronoun relativisation and ellipsis as we
outlined them in Chapter 3 both involve the movement of semantic information, but the
main difference with ellipsis is that in the latter case, there is semantic information that
is not explicitly available in a phrase. We modelled ellipsis by means of copying semantic
information, but evaluating these models poses a different challenge than relative pronouns:
not only do we need to test which way of modelling the ellipsis is the most suitable in an
experimental setting, but we also need to design a study in such a way that it allows one to
test whether resolving ellipsis is useful in the first place.

So the core problem that this chapter addresses, is the empirical evaluation of the mod-
els that we developed in Chapter 3 to deal with ellipsis. In such sentences, there is a part
of a sentence missing, that often can be recovered from context. In the case of verb phrase
ellipsis, this context is a verb phrase, usually marked by an auxiliary verb. Taking inspira-
tion from such phenomena, and building on previous datasets that task disambiguation in
context and sentence similarity, we introduce three novel datasets for verb phrase elliptical
constructions. These datasets now serve a dual purpose: on the one hand they provide larger
datasets than were available before to compare concrete models on general disambiguation
and similarity tasks, but in addition they allow us to compare models that perform linguistic
analysis to resolve ellipsis with naive models that linearly encode the surface form sentence
that is given. Because these datasets are based on those constructed by Mitchell and Lapata,
and by Sadrzadeh and colleagues, we first discuss these tasks in this chapter, recomputing
performance based on the concrete models that we use on the ellipsis datasets.

The models we developed in Chapter 3 for ellipsis come in two flavours: first, there is the
purely categorical approach, which we referred to as giving the Frobenius semantics of ellipsis
as the syntactic copying mechanism is interpreted by a Frobenius Algebra. Secondly, we
defined the looser lambda-based modelling, that allows in fact to derive any of the concrete
compositional models that were evaluated before, e.g. by Milajevs et al. [Mil+14]. We give an
overview of those models and show how we can connect the theoretical models to concrete
composition operations for evaluation.

This chapter is structured as follows: first, we discuss existing datasets for similarity
on the word level, and move to resources for disambiguation and similarity of sentences.
We then illustrate how we can concretely construct sentence embeddings for verb phrase
elliptical sentences. Then, we introduce four new datasets, two of which are given new
annotations using the Amazon Mechanical Turk crowdsourcing platform. We compare the
interannotator agreement for these datasets to argue that introducing verb phrase ellipsis
should help a human to more easily judge verb disambiguation in context. In the next section
we discuss the concrete vector spaces that we create, and concrete encoding models, based
either on the tensor-based models that we developed in the previous chapter or on state of
the art sentence encoder models from the NLP literature. We give results on all the datasets
discussed, and proceed to investigate what the results tell us about our embedding models
and different choices of embedding verb phrase elliptical sentences. Finally, we conclude
with some directions for future research.

4.1 Evaluating Composition Models

We start our discussion of related work on evaluating embeddings on the sentence level,
specifically in the setting of tensor-based models, which is the focus of this thesis.

4.1. Evaluating Composition Models 115

Intransitive sentences The first datasets that investigated compositionality of distributional
models were introduced by Mitchell and Lapata [ML08; ML10]. The first dataset, which we
call ML2008, is a verb disambiguation dataset. It contains pairs where the subject of both
sentences is the same but the verb differs:

export booms vs. export prospers
export booms vs. export thunders

The idea is that a verb like ‘boom’ could be ambiguous between ‘prosper’ and ‘thunder’,
and that the subject of the verb ought to be relevant for an unambiguous interpretation of
the verb. Here, having ‘export’ as a subject, the verb is more likely to mean ‘prosper’, but
if it the subject is replaced by ‘gun’, the more likely interpretation changes to ‘thunder’.
The dataset contains a total of 120 intransitive sentences, generated by considering 15 verbs
and two landmark interpretations for each of them, and combining those verb triples with
four different nouns, two for each landmark interpretation. The authors marked in each
case the more likely interpretation with HIGH, and the less likely interpretation with LOW,
then had humans annotate all the sentence pairs for similarity ratings. The HIGH and LOW
marks then served as a check to see whether human annotators would indeed assign higher
similarity to HIGH cases, and lower similarity to LOW cases.

The second dataset that Mitchell and Lapata introduced, was also a dataset containing
pairs of two word phrases, with a mixture of noun-noun compounds, adjective-noun combi-
nations, and verb-object sentences. Here we refer to this dataset as ML2010, and work with
the part of the dataset that contains verb-object sentences, as we are evaluating verb phrase
ellipsis. In contrast to the ML2008 dataset, these intransitive sentence pairs now share no
lexical overlap because the dataset is meant to test for similarity. For example, the dataset
contains sentence pairs like

consider matter vs. discuss issue
like people vs. increase number

The ML2010 contains 108 distinct sentence pairs. These were now unmarked, but annotated
by humans with similarity judgments. The aggregated average judgments then form the
basis for evaluation of this dataset.

Transitive sentences Grefenstette and Sadrzadeh [GS11a] introduced a dataset that followed
the same approach as Mitchell and Lapata for the ML2008 dataset (verb disambiguation),
but considered transitive verbs rather than intransitive ones, i.e. verbs that go with both a
subject and an object. This dataset we call GS2011. Similar to ML2008, the GS2011 verb
disambiguation dataset contains 10 verbs, each with two possible interpretations. For each
verb v and its two interpretations v1 and v2, the dataset contains human similarity judgments
for 10 subject-object combinations. For instance, for the verb meet – ambiguous between visit
and satisfy – the dataset contains the pairs below:

system meet requirements vs. system satisfy requirements
system meet requirements vs. system visit requirements

As with the ML2008 dataset, the more likely interpretation is marked as HIGH whereas the
unlikely interpretation is marked LOW, in order to verify the authors’ intuition against the
annotators’ judgments.

Kartsaklis, Sadrzadeh, and Pulman [KSP13] introduce another verb disambiguation dataset,
which we refer to as KS2013 (though it was actually produced by Grefenstette and Sadrzadeh).

116 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

The KS2013 dataset is a modified version of the GS2011 dataset: first, the GS2011 was ex-
tended with adjectives to go with the subject and object of each sentence in previous work
[GS15]. Then, Kartsaklis, Sadrzadeh, and Pulman [KSP13] took out ten verbs and replaced
them with genuinely ambiguous verbs, based on the study of Pickering and Frisson [PF01].
This dataset contains a total of 194 transitive sentence pairs. A different dataset was con-
structed by Kartsaklis and Sadrzadeh [KS13] as an extension of the ML2010 dataset. Because
this dataset was re-annotated by crowdsourced annotators for a later publication [KS14], we
refer to this dataset as KS2014. It contains 108 transitive sentence pairs annotated with hu-
man similarity judgments. We show two such examples below:

government use power vs. authority exercise influence
pupil achieve end vs. gentleman close eye

As opposed to the GS2011 dataset, and similar to the ML2010 dataset, subjects and objects
of each sentence pair are not the same, so several different contexts get compared to one
another. In this sense, the KS2014 dataset aims to investigate the role of content of individ-
ual words versus the role of composition, as the similarity of sentences might be predictable
from the contribution of individual words rather than the specific way of composing them.

Inter-annotator agreement An important aspect of any similarity dataset is the inter-annotator
agreement: the ratings given by individual annotators are necessarily subjective, but most im-
portantly, multiple annotators may not agree in their judgment. An often taken approach is
to produce a final dataset that contains the average human judgments, but also supplying
the inter-annotator agreement as the average pairwise correlation between two annotators,
or even the average correlation of a single annotator against the average judgment of all
other annotators [HRK15]. The inter-annotator agreement gives an upper bound on the per-
formance of a model: it should perform at least as good as the average of the annotators, but
when it outperforms the inter-annotator agreement by a large margin, it may indicate that
either the model is overfitting on the dataset, or that the dataset may be too simplistic.

Here, we choose to report the average correlation of a single annotator against the aver-
age of all judgments, for two reasons. As Hill, Reichart, and Korhonen [HRK15] note, this
is more fair since the average of all annotators is used as the gold standard against which
a model is compared. Moreover, it is more robust against missing data points: in large
datasets, a given annotator may have judged a disjoint part of the total dataset with respect
to some other annotator. However, taking subsets of the dataset to compare individual anno-
tators does not reflect well the inter-annotator agreement as Spearman’s ⇢ is not distributive,
i.e. the average between the Spearman’s ⇢ of two subsets is not the same as the Spearman’s
⇢ on the full dataset. So, we opt for comparing an individual annotator with the average of
all other judgments on those datapoints that the annotator has judged.

Table 4.1 shows the inter-annotator agreement for the sentence pair datasets discussed
above, when computed by the mean spearman correlation between an individual annotator
and the average of all other annotators.

Modelling Intransitive and Transitive Sentences To concretely model sentence embeddings
for the verb phrase elliptical sentence datasets we described above, we draw inspiration
from the literature on formally modelling ellipsis, the work described in Chapter 3, and
previous evaluation studies in the context of tensor-based models [ML08; ML10; GS11a;
GS11b; KS13; KSP13; Mil+14].

4.1. Evaluating Composition Models 117

Name IAA 1 vs. all Source

ML2008 0.66 recomputed
ML2010 0.711 recomputed (only verb-object sentences)
GS2011 0.739 recomputed
KS2013 0.575 recomputed (forgetting the adjectives)
KS2014 0.754 recomputed

TABLE 4.1: Inter-annotator agreement scores, by taking the average
correlation between single annotators versus the average score of all

other annotators.

On the level of intransitive sentences, the overview article of Grefenstette and Sadrzadeh
[GS15] lists a number of concrete composition models that were tested by Mitchell and La-
pata [ML08] and Grefenstette and Sadrzadeh [GS11a]. Grefenstette and Sadrzadeh experi-
ment with the unsupervised methods of Mitchell and Lapata [ML08], that is, these models
perform an unweighted addition or multiplication. Moreover, they compare these with a
verb only baseline, in which the vector for an intransitive sentence is given by the vector for
the verb in that sentence, and with a categorical model, in which the verb is represented as
a matrix, that applies to its subject (resp. object) vector. Although the datasets contain both
subject-verb and verb-object combinations, for the sake of simple presentation we present
the composition models for subject-verb combinations in Table 4.2.

Name Sentence Formula

Verb only subj verb
��!
verb

Additive subj verb
��!
subj +

��!
verb

Multiplicative subj verb
��!
subj �

��!
verb

Categorical subj verb
��!
subj>

⇥ verb

TABLE 4.2: Table of compositional models that were evaluated for in-
transitive sentences by Mitchell and Lapata [ML08] and Grefenstette

and Sadrzadeh [GS11a].

The first baseline model takes just the verb vector and ‘forgets’ the subject. The two
other baseline models either add (+) or point-wise multiply (�) the vectors for the subject
and verb. In the categorical model, we use a verb matrix, denoted by verb, which may take
several forms as outlined below. This matrix is backward applied to the subject vector:

��!
subj> ⇥ verb =

⇣
s1 s2... sn

⌘
⇥

0

BBBB@

v11 . . . v1n

v21 . . . v2n

...
. . .

...
vn1 . . . vnn

1

CCCCA
=

0

BBBB@

v11s1 + . . . + vn1sn

v12s1 + . . . + vn2sn

...
v1ns1 + . . . + vnnsn

1

CCCCA

For transitive sentences, several models were tested throughout the literature. Grefen-
stette and Sadrzadeh [GS11b] experiment — besides the additive and multiplicative models
— with a categorical and a Kronecker model, which respectively multiply two different ma-
trices with a matrix given by the subject and object vectors in a transitive sentence. In the

118 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

case of the Relational model, the verb matrix represents an average of the relations between
subject and object vectors, their relation being expressed by the outer product ⌦. This re-
lational matrix is obtained by taking the sum of the outer product of all subject and object
vectors that occurred with the verb in a corpus:

verb =
X

i

���!
subji ⌦

��!
obji

Consequently, the relational models how well this verb approximation fits with the given
subject and object in a transitive sentence by point-wise multiplying their features. The
Kronecker model swaps the verb representation for one that is uniquely derived from the
verb vector by means of the outer product:

gverb =
��!
verb⌦

��!
verb

Besides the fact that the Kronecker model is easy to implement, it also has a theoretical
motivation (as discussed in Grefenstette and Sadrzadeh [GS15]). The expressed model is
equal to taking the outer product of two separate applications of the verb vector:

(
��!
verb⌦

��!
verb)� (

��!
subj ⌦

�!
obj) = (

��!
verb�

��!
subj)⌦ (

��!
verb�

�!
obj)

The fact that the dot product between two outer products is the multiplication of the dot
products between operands

(�!a ⌦
�!
b) · (�!c ⌦

�!
d) = (�!a ·

�!c)(
�!
b ·
�!
d)

then motivates the Kronecker model as a test between the verb representations ability to
combine with the subject and object separately, then merging the result.

Kartsaklis, Sadrzadeh, and Pulman [KSP12] and Kartsaklis and Sadrzadeh [KS14] add to
this a number of models based on the use of the Frobenius algebra operation � that expands
information. The first two such models use the Frobenius � map to expand one dimension
of the verb matrix to embed the verb as a cube, that can then be contracted with the subject
and object vector to produce a sentence vector. Because the � essentially places a vector
on the diagonal of a matrix, the concrete models that come out multiply the subject (resp.
object) vector with the result of applying the verb matrix to the object (resp. subject) vector,
hence the appropriate names Copy Subject and Copy Object. These two models can then be
combined using addition, multiplication, or outer product to give the Frobenius Additive,
Frobenius Multiplicative and Frobenius Outer models. All of these models were evaluated
by Milajevs et al. [Mil+14], which focussed on the use of different word embedding tech-
niques with which to combine these compositional models. We summarise the models in
Table 4.3.

4.2 Evaluation Datasets for Verb Phrase Elliptical Sentences

Ellipsis poses an interesting test bed for evaluating compositional distributional models,
since it is a phenomenon in which the semantic representation does not directly correspond
to the textual form of the phrase we are trying to analyse. In terms of concrete evaluation,
our main aim therefore is to create a task that allows us to test whether models that resolve
the ellipsis — i.e. which recover the implicit semantic content of the elliptical site — will

4.2. Evaluation Datasets for Verb Phrase Elliptical Sentences 119

Name Abbreviation Formula

Verb Only VO
��!
verb/verb

Additive ADD
��!
subj +

��!
verb +

�!
obj

Multiplicative MULT
��!
subj +

��!
verb +

�!
obj

Relational RE · verb� (
��!
subj ⌦

�!
obj)

Kronecker RE e· (
��!
verb⌦

��!
verb)� (

��!
subj ⌦

�!
obj)

Copy Subject CS
��!
subj � (verb⇥

�!
obj)

Copy Object CO
�!
obj � (verb

T
⇥
��!
subj)

Frobenius Additive FA CS(
��!
subj, verb,

�!
obj) + CO(

��!
subj, verb,

�!
obj)

Frobenius Multiplicative FM CS(
��!
subj, verb,

�!
obj)�CO(

��!
subj, verb,

�!
obj)

Frobenius Outer FO CS(
��!
subj, verb,

�!
obj)⌦CO(

��!
subj, verb,

�!
obj)

TABLE 4.3: Table of all compositional models that were evaluated by Milajevs et al. [Mil+14].

perform higher on said task than models that have an ellipsis resolution step. Besides from
this main motivation, we choose verb phrase elliptical sentences that extend the intransitive
and transitive sentences from the ML2008, GS2011, and KS2014 datasets, in order to create
a structured dataset that can be related to those originating datasets.

To demonstrate the intuition behind our dataset design, consider the sentence “the man
runs”, which is ambiguous between “the man races” and “the man stands (for election)”.
The sentence itself does not have enough context to help disambiguate the verb, but after
adding a case of ellipsis such as “the man runs, the dog too”, the ambiguity will be greatly
decreased. An example of a transitive sentence is “the man draws the sword”, which is
ambiguous between “the man pulls the sword” and “the man depicts the sword”. Again, the
current sentential context in which the ambiguous verb occurs may not easily disambiguate
its meaning, but after adding the extra context “the soldier does too”, the disambiguating
effect of the context is much stronger.

We can make this intuition data-driven by considering the following vector space built
from (hypothetical) raw co-occurrence counts of several nouns and verbs with respect to a
set of context words. The co-occurrence matrix is given in Table 4.4; each row of the table
represents a word embedding in the vector space spanned by the column words.
By computing vectors for the sentences mentioned above we can then work out the cosine
similarity scores between their vector representations. For sentence triples generated by an
ambiguous verb and its two landmark interpretations, we can then see how well different
models disambiguate the verb. Following the models in Table 4.5 above, we show how
this works for the concrete sentence “the man runs” with the extension of ‘governer’ and
‘athlete’ respectively. The idea is that the representation of “the man runs and the governor
does too” will be closer to that of “the man stands and the governor does too”, whereas the
representation of “the man runs and the athlete does too” will be closer to that of “the man
races and the athlete does too”. The cosine similarity scores for each model are presented in
Table 4.6. The original representation of “the man runs” is more similar to “the man races”

120 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

human painting army weapon marathon election

man 2 3 4 2 4 4
painter 3 8 1 3 1 1
warrior 4 1 2 9 1 0
sword 2 3 9 2 0 0
picture 1 20 0 1 1 1

governor 7 1 1 3 1 9
athlete 6 2 0 1 9 1

draw 4 10 9 11 2 3
pull 7 2 10 15 1 1

depict 3 15 2 2 1 2

run 4 0 2 1 8 7
race 8 0 0 3 10 3

stand 5 1 0 1 2 11

TABLE 4.4: (Hypothetical) co-occurrence counts for several nouns and
verbs.

Model Name Formula

Multiplicative �
��!
subj �

��!
verb�

���!
subj⇤

�
��!
verb

Multiplicative + (
��!
subj �

��!
verb) + (

���!
subj⇤

�
��!
verb)

Additive � (
��!
subj +

��!
verb)� (

���!
subj⇤ +

��!
verb)

Additive +
��!
subj +

��!
verb +

���!
subj⇤ +

��!
verb

Kronecker �
��!
subj>

⇥ (
��!
verb⌦

��!
verb)�

���!
subj⇤>

⇥ (
��!
verb⌦

��!
verb)

Kronecker +
��!
subj>

⇥ (
��!
verb⌦

��!
verb) +

���!
subj⇤>

⇥ (
��!
verb⌦

��!
verb)

Categorical �
��!
subj>

⇥ verb�
���!
subj⇤>

⇥ verb

Categorical +
��!
subj>

⇥ verb +
���!
subj⇤>

⇥ verb

TABLE 4.5: Composition models for intransitive elliptical sentences.

by a difference of 0.10. However, for all models except the fully additive model, we see that
adding the extra subject increases the difference between similarity scores, thereby making
it easier to distinguish the correct interpretation. The most discriminative model is the fully
multiplicative one, which treats the conjunctive coordinator as multiplication.
For the transitive case, we compare the sentences “the man draws the sword” and “the man
draws the picture” with their landmark interpretations in which the verb ‘draw’ is replaced
by either ‘pull’ or ‘depict’. All of these are extended with the contexts ‘warrior’ and ‘painter’,
and we compute the result of four of the mixed transitive models outlined above for the el-
liptical case: two are the same additive models that just sum all the vectors in a (sub)clause
and either sum or multiply vectors for the subclauses for the elliptical variant, and two mod-
els use the Kronecker representation detailed above. The concrete cosine similarity scores are
displayed in Table 4.7.
In this case, neither of the additive models seem to be effective: for the original phrases they

4.2. Evaluation Datasets for Verb Phrase Elliptical Sentences 121

Multiplicative Multiplicative Additive Additive
� + � +

race stand race stand race stand race stand

man run .88 .78 .88 .78 .94 .92 .94 .92
man run, governor does too .47 .99 .80 .94 .82 .89 .95 .93
man run, athlete does too .99 .36 .96 .71 .94 .71 .95 .92

TABLE 4.6: Cosine similarity scores between representations involving the intransi-
tive verb ‘run’. Column race: the representation of the corresponding row sentence

but with ‘race’ instead of ‘run’, similarly for stand.

Kronecker Kronecker Additive Additive
� + � +

pull depict pull depict pull depict pull depict

man draw sword .83 .50 .83 .50 .96 .93 .96 .93
man draw sword, warrior does too .98 .07 .92 .44 .94 .76 .96 .93
man draw sword, painter does too .37 .28 .69 .59 .89 .80 .96 .93

man draw picture .82 .74 .82 .74 .97 .95 .97 .95
man draw picture, warrior does too .98 .25 .91 .65 .92 .97 .97 .95
man draw picture, painter does too .37 .95 .68 .88 .96 .98 .97 .96

TABLE 4.7: Cosine similarity scores between sentence representations using several
models. Column pull: the representation of the corresponding row sentence but with

‘pull’ instead of ‘draw’, similarly for depict.

already give very high similarity scores, and those do not change greatly after adding the
extra context. For the Kronecker models, we see that the best discriminatory model is the
one that multiplies the vectors for the subclauses. For both the examples with “draw pic-
ture” and “draw sword”, the interpretation of the verb as ‘pull’ is deemed more likely than
‘depict’ under the Kronecker model on the original transitive sentences. After adding the
extra subject, the Kronecker model clearly improves the disambiguation result. For the first
phrase, where a sword is drawn, the addition of ‘warrior’ greatly improves the similarity
with ‘pull’ and accordingly decreases the similarity with ‘depict’, though for the addition of
‘painter’ this is not the case. The representation for ‘painter’ is in itself already closer to that
of ‘depict’ (cosine similarity of 0.97) than it is to that of ‘pull’ (cosine similarity of 0.52), so
adding ‘painter’ to the sentence makes it harder to be certain about ‘pull’ as a likely interpre-
tation of ‘draw’. We see in fact that the difference between the two sentence interpretations
has become smaller.

For the second phrase, in which a picture is drawn, the original ambiguity is bigger, but
adding the context provides us with the appropriate disambiguating scores. As with the first
phrase, we also experience the difficulty in disambiguation: a human may deem “man draw
picture, warrior does too” to be more similar to “man depict picture, warrior does too” since
pulling a picture is not a very sensible action. However, because the vector for ‘warrior’ is
closer to that for ‘pull’ (cosine similarity of 0.94) than it is to ‘depict’ (cosine similarity of
0.31) the model will favour the interpretation in which the picture is pulled.

4.2.1 Dataset descriptions

In order to create large scale datasets, we concretely extend the verb disambiguation datasets
ML2008 and GS2011, as well as the sentence similarity dataset KS2014.

122 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

First dataset: MLELLDIS

For the first dataset, we took the ML2008 verb disambiguation dataset, and extended it as fol-
lows: for a given subject/verb combination and its two interpretations, we chose a new sub-
ject among the 100 most frequently occurring verb subjects in a corpus1, but picked one that
was significantly more frequent with the more likely unambiguous verb (the one marked
HIGH). For example, the word “economy” occurs with “boom” but it occurs significantly
more often with “prosper” then it does with “thunder”. And similarly, “cannon” occurs
with “boom” and “thunder” but not so often with “prosper”. We then format the pairs from
the ML2008 dataset using the new subject and the elliptical setting. For the examples above,
we then got

Landmark export boom and economy does too gun boom and cannon does too

HIGH export prosper and economy does too gun thunder and cannon does too
LOW export thunder and economy does too gun prosper and cannon does too

In total, we added two new subjects to each sentence pair, producing a dataset of 240 entries.
We used the human similarity judgments of the original ML2008 dataset to see whether the
addition of disambiguating context, combined with our ellipsis model, will be able to better
distinguish verb meaning. We did not re-annotate this dataset with new similarity judg-
ments, but rather provide the dataset as an initial study for investigating verb phrase ellip-
tical sentence embeddings. Since we reuse the original annotations of ML2008, computing
the inter-annotator agreement for this dataset is not very sensible: it would simply be the
same as for the original dataset since each original sentence pair will now have two elliptical
entries with the same annotation.

Second dataset: ELLDIS

The second dataset is based on the transitive verb disambiguation dataset GS2011, but fol-
lows the same process as for the intransitive case above. For a given subject-verb-object
combination and two landmark verbs that give a possible interpretation of the original verb,
we selected a new subject from the list of most frequent subjects of the landmark verb2 that
was the more likely interpretation (HIGH) of the original, ensuring that it is was signifi-
cantly more frequent than for the alternative, unlikely (LOW) landmark verb. By doing so
we strengthened the disambiguating effect of the context for each verb. The final check was
for the selected subject to make sense in the resulting elliptical phrase. For each combination
and new subject considered, we added two elliptical sentence pairs, one for each of the two
landmark verbs. For example, for the verb triple (draw, depict, attract), and original sentence
pairs

man draw sword vs. man depict sword
man draw sword vs. man attract sword

we selected the new subject artist and added the two pairs below:

man draw sword and artist does too vs. man depict sword and artist does too
man draw sword and artist does too vs. man attract sword and artist does too

1In our case, this was the combined UKWaC and Wackypedia corpus, availabe at wacky.sslmit.
unibo.it

2As found in the combined ukWaC+WackyPedia corpus.

http://wacky.sslmit.unibo.it
http://wacky.sslmit.unibo.it

4.2. Evaluation Datasets for Verb Phrase Elliptical Sentences 123

We selected two new subjects for each combination, and in this way we obtained a dataset
of roughly 400 entries. New human judgments were collected through Amazon Mechanical
Turk, by prepending the to each noun and putting the phrase in the past tense. As with the
original dataset, participants were asked to judge the similarity between sentence pairs using
a discrete number between 1 and 7; 1 for highly dissimilar, 7 for highly similar. By inserting
gold standard pairs of identical sentences we checked if participants were trustworthy. We
collected 25 judgments per sentence pair but excluded participants that annotated less than
20 entries of the total dataset. We ended up with 55 different participants who ranked more
than 20 entries of the total dataset, to give a final amount of ca. 9200 annotations. As an
example, the verb show was a very hard case to disambiguate in the GS2011 dataset: child
show sign had an average score of 2.5 with both child picture sign and child express sign. In
the new dataset, with the extra subject patient, it got much clearer that the verb had to be
interpreted as express with an average score of 5.869, versus 4.875 for picture. The inter-
annotator agreement in 1 vs. all format is 0.584 for the ELLDIS dataset. This is significantly
lower than for the GS2011 dataset, showing that there is in fact less agreement than for
GS2011. This would intuitively contradict our intuition that adding more context makes
it easier to disambiguate the verb, but a proper comparison between the two datasets is
impossible in the current situation as the annotators for the GS2011 dataset were most likely
not the same as for the ELLDIS dataset. Moreover, due to the size of our dataset we could
not present the whole dataset in one go to the annotators, so we rather split it into batches
of ca. 100 entries. It was then up to the annotators to choose how many items they would
annotate, effectively making any inter-annotator agreement score be more unreliable than
for smaller datasets.

Third dataset: ELLSIM

Our third dataset differs from the two above, in that it does not test verb disambiguation,
but general sentence similarity. It is an extension of the KS2014 dataset described above.
We extend this dataset to cover verb phrase ellipsis by following a similar procedure as for
GS2011. For each subject-verb-object transitive sentence in the dataset, we selected a new
subject s⇤ from a list of most frequent subjects of the verb3 and built elliptical entries in such
a way that the meaning of the original transitive sentence got changed as little as possible
and that the resulting elliptical phrase made sense. We then considered every transitive
sentence pair in the dataset and added the new respective subjects to both sentences. For
example, for the pair

school encourage child vs. employee leave company

we selected parent and student to get the new pair

school encourage child and parent does too
vs.

employee leave company and student does too

We chose two subjects for every original sentence, generating four possibilities for each sen-
tence pair, and a new dataset of 432 entries. This dataset was also annotated using Amazon
Mechanical Turk, after putting each verb in the past tense and prepending the to each noun
in the dataset. Gold standard pairs of identical sentences were inserted to validate trust-
worthiness of participants. The final dataset contains ca. 9800 annotations by 42 different

3Again taken from the UKWaC+Wackypedia corpus.

124 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

participants. Interestingly, we obtain a very low inter-annotator agreement using the 1 vs.
all scheme discussed above: for ELLSIM this score is 0.425. Again, we can’t truly compare
this score to the IAA score for KS2014, as the annotators were different, and the size of the
dataset forces us to present the dataset in batches to the annotators. As an effect of the batch-
ing we obtain less overlap between the judgments given by any two individual annotators.

4.3 Composition Models for Verb Phrase Elliptical Sentence
Embeddings

We now turn to describe concrete composition models for the verb phrase ellipsis tasks that
we described above, as well as detailing the vector spaces that we built to experiment with
them.

4.3.1 Embedding Verb Phrase Elliptical Sentences

In order to experiment with verb phrase elliptical sentences, we adhere to a three-way clas-
sification of concrete composition mechanism for creating sentence embeddings. First, there
are the simple algebraic models, which take all word representations to be vectors and add
or multiply these word vectors to get a single sentence vector. The work of Mitchell and La-
pata [ML08; ML10] experiments with these models. Second, there are tensor-based models,
which differ in that they represent complex words as tensor of different orders: for exam-
ple, Baroni and Zamparelli [BZ10] represent adjectives as matrices which, applied to a word
vector produce a vector representation of the compound adjective-noun combination. The
account of Coecke, Sadrzadeh, and Clark [CSC10] and others [CGS13; Cla15] generalises
this to higher-order tensors, e.g. cubes for transitive verbs and hypercubes for ditransitive
verbs. The benefit of a type-driven approach over the simple models is that they respect the
grammatical structure of sentences: the meaning of “man bites dog” is distinct from that
of “dog bites man” whereas in an additive/multiplicative model they would be identical.
Moreover, the use of higher order tensors allows one to encapsulate the multifaceted infor-
mation that complex words such as verbs contain, in a single representation. That is, a verb
representation now allows the vectors for its associated subjects and/or objects to be up-
dated in context. The trade-off is that the tensors themselves have to be learnt; where Baroni
and Zamparelli [BZ10] apply regression learning to learn the content of adjective matrices,
for transitive verbs there have been several approaches using multi-step regression learning
[Gre+13], relational learning [GS11a], or a combination of co-occurrence information with
machine learning techniques [PFC14; PRC14; FPC15]. In the next chapter we dive deeper
into the problem of representation learning in a tensor-based setting. The third class of com-
positional models, which we refer to as neural composition, again takes the individual word
meanings to be represented as vectors, but instead of presupposing an algebraic formula
that ought to capture the sentence meaning as a vector, this operation is trained by pass-
ing through the word vectors through a neural network that optimised for a particular task.
Examples are Skip-Thought Vectors [Kir+15], the Distributed Bag of Words model [LM14],
InferSent [Con+17], and Universal Sentence Encoder [Cer+18], all discussed in Chapter 1 of
this thesis. Where Skip-Thoughts lift the skipgram model for word vectors to the level of
sentences, where the optimisation goal is to predict what is the correct next sentence em-
bedding, given a constructed embedding for a current sentence, InferSent and Universal

4.3. Composition Models for Verb Phrase Elliptical Sentence Embeddings 125

Sentence Encoder are rather trained by fine-tuning a constructed sentence embedding such
that it performs well on a number of natural language inference tasks.

To model verb phrase elliptical sentences, we have a number of additional composition
choices at our disposal. For the experiments with the three ellipsis datasets MLELLDIS,
ELLDIS, and ELLSIM we have two main goals in mind: primarily, we want to verify that
resolving ellipsis contributes to the performance of a compositional model. For this purpose
we contrast non-linear models, i.e. models that resolve the ellipsis (and thus use the verb and
object resources twice) with linear models, which do not resolve the ellipsis (and thus only
use the verb and object once). Our second goal is to investigate whether amongst the models
that resolve the ellipsis, the ones that did so in a tensor-based way, i.e. using tensors instead
of vectors to represent the verbs, perform better than additive and multiplicative models,
and how these compare to neural composition models. Hence, for the non-neural methods
we consider four classes of models: first we have linear vector models and non-linear vector
models, which constitute two classes of baseline models that do or do not resolve ellipsis
as part of their modelling. Second, we have tensor-based models, which derive from the
lambda-based modelling of section 3.5.5, and linear Frobenius models, given by the Frobe-
nius style modelling of section 3.5.4. Although the latter Frobenius style models of ellipsis
produce theoretically unwanted results (as discussed in Chapter 3), this is in the case of
complex ambiguous sentences, whereas our datasets don’t contain such cases. Therefore,
we include the results of such models too.

Linear Vector Models: In the first class of composition models every resource is used exactly
once, following the pattern �!w1 ? �!w2... ? �!wn for any sequence of words w1w2...wn. For an
elliptical phrase “subj verb obj and subj⇤ does too” it will thus compute the vector

��!
subj ?

��!
verb ?

�!
obj ?

��!
and ?

���!
subj⇤ ?

��!
does ?

�!
too

where ? denotes either addition or multiplication. This is a natural extension of the models
ADD and MULT above.

Non-Linear Vector Models: We contrast the linear vector models with their non-linear coun-
terpart. Here, the assumption is that ellipsis is resolved but models do not respect word
order, i.e. the models for the meaning of the subclause is still additive or multiplicative. The
meaning of “subj verb obj and subj⇤ does too” now is

��!
subj ?

��!
verb ?

�!
obj r

���!
subj⇤ ?

��!
verb ?

�!
obj

where both ? and r are placeholders that denote either addition of multiplication. We dif-
ferentiate between ? and r because we assume that the combination of the two subclauses
may be modelled differently from the composition inside the subclauses themselves. Hence,
this leads to four different models, given by the choice of addition or multiplication for ?

and r. For example, we may choose ? = +,r = � to get the concrete sentence meaning
below:

��!
subj +

��!
verb +

�!
obj �

���!
subj⇤ +

��!
verb +

�!
obj

Tensor-Based Models: As shown in Chapter 3, vectors, tensors, and their basic operations
can be emulated using a lambda calculus with constants for the relevant operations, following
Muskens and Sadrzadeh [MS16]. The derivational mechanism produces an abstract lambda

126 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

term for a verb phrase elliptical sentence, which then is substituted with a composition op-
eration of choice. In Chapter 3 we already gave different instantiations of such models to get
a tensor-based, a multiplicative-additive, and a Kronecker model.

For a verb phrase elliptical phrase like “Dogs chase cats and children do too” we obtain
the following abstract lambda term:

chase(cats, dogs) ^ chase(children, dogs)

and we will generally replace the nouns by simple vectors, leaving only the meaning of the
verb and the coordination (^) variable. The concrete models for transitive sentences that
were evaluated by Milajevs et al. [Mil+14] can all be derived by varying the verb instantia-
tion. For example, we can obtain the Copy Object (CO), Frobenius Additive (FA), Frobenius
Multiplicative (FM) and Frobenius Outer (FO) instantiations of the verb:

CO : �os.o� (verb⇥> s)

FA : �os.s� (verb⇥ o) + o� (verb⇥> s)

FM : �os.s� (verb⇥ o)� o� (verb⇥> s)

FO : �os.s� (verb⇥ o)⌦ o� (verb⇥> s)

The vector semantics of the extensions of transitive sentences with verb phrase ellipsis
are obtained by taking each of the above as the semantics of each conjunct of the lambda
logical form and interpreting the conjunction constant ^ as either sum or multiplication.
We denote the effect of a transitive models from Table 4.8 with T (

��!
subj, verb,

�!
obj) for some

verb representation of the verb and vector representations of the subject and object. For
example, for some verb representation gverb (this will refer to the Kronecker model in the
section below), we will write

CO e· (
��!
subj, verb,

�!
obj) =

�!
obj � (gverb⇥> ��!subj)

The tensor-based models are assumed to resolve ellipsis and, given a transitive sentence
model T from Table 4.8, the tensor-based meaning of “subj verb obj and subj⇤ does too” is

T (
��!
subj, verb,

�!
obj) r T (

���!
subj⇤, verb,

�!
obj)

where r interprets the conjunction of the two subclauses. For the verb matrix we used
either the relational verb or the Kronecker verb, and for r we tried both addition and mul-
tiplication. As an ablation study, we also include results for a model which simply adds or
multiplies the second subject, as it may be that just this new subject is informative enough
to model the full sentence properly.

Linear Frobenius Models: We use the linear Frobenius models, that are tensor-based but
follow the theoretical categorical model that we developed in Chapter 3 (and that are also
discussed by Kartsaklis, Purver, and Sadrzadeh [KPS16]). In such models, the verb phrase is
not copied but is rather applied to a mixture of the two subjects in the sentence. Concretely,
for a sentence “subj verb obj and subj⇤ does too”, rather than having two complete subclauses
that we mix in together using a transitive model T , we instead have a general formula

T (
��!
subj �

���!
subj⇤, verb,

�!
obj)

4.3. Composition Models for Verb Phrase Elliptical Sentence Embeddings 127

Name Abbreviation Formula

Verb Only VO
��!
verb/verb

Additive ADD
��!
subj +

��!
verb +

�!
obj

Multiplicative MULT
��!
subj +

��!
verb +

�!
obj

Relational RE · verb� (
��!
subj ⌦

�!
obj)

Kronecker RE e· (
��!
verb⌦

��!
verb)� (

��!
subj ⌦

�!
obj)

Copy Subject CS
��!
subj � (verb⇥

�!
obj)

Copy Object CO
�!
obj � (verb

T
⇥
��!
subj)

Frobenius Additive FA CS(
��!
subj, verb,

�!
obj) + CO(

��!
subj, verb,

�!
obj)

Frobenius Multiplicative FM CS(
��!
subj, verb,

�!
obj)�CO(

��!
subj, verb,

�!
obj)

Frobenius Outer FO CS(
��!
subj, verb,

�!
obj)⌦CO(

��!
subj, verb,

�!
obj)

TABLE 4.8: Table of all compositional models that were evaluated by Milajevs et al. [Mil+14].

Sentence Encoder Models: To compare the mentioned compositional models with state of
the art neural baselines, we carried out our experiments with a four types of holistic sentence
encoders, that take arbitrary text as input and produce an embedding. To properly compare
with the compositional models above, we gave three different inputs to the encoders: a
baseline encoding (Base), a resolved encoding (Res), and an encoding without functional
words (Abl), all as below:

Base: “subj verb obj and subj⇤ does too”
Res: “subj verb obj and subj⇤ verb obj”
Abl: “subj verb obj subj⇤”

We used six concrete pretrained encoders, available online: 4800-dimensional embeddings
from the Skip-Thought model4, 300-dimensional embeddings from two Doc2Vec imple-
mentations [LB16]5, 4096-dimensional embeddings from two InferSent encoders6, and 512-
dimensional embeddings from Universal Sentence Encoder7.

Contextualised Embeddings: We also include results of a comparison with contextualised
representation models ELMo and BERT. We classify them separately from the sentence en-
coders above, as they are in between word and sentence embeddings. Rather than a single
sentence vector, ELMo and BERT models return vectors for each word in a sentence whose
values depend on all words occurring in the sentence. For this, we use a pretrained ELMo
model provided by Google8, and two pretrained BERT models available on Github9. Rather
than getting a single vector for a sentence, these models return a vector for each word in the

4github.com/ryankiros/skip-thoughts
5github.com/jhlau/doc2vec
6github.com/facebookresearch/InferSent
7tfhub.dev/google/universal-sentence-encoder
8tfhub.dev/google/elmo/2
9github.com/imgarylai/bert-embedding

https://github.com/ryankiros/skip-thoughts
https://github.com/jhlau/doc2vec
https://github.com/facebookresearch/InferSent
https://tfhub.dev/google/universal-sentence-encoder/2
https://tfhub.dev/google/elmo/2
https://github.com/imgarylai/bert-embedding

128 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

sentence. We use the same models as for the sentence encoders above (Base, Res, Abl) and
take the mean of the word vectors to compute a sentence vector.

Name Abbreviation Formula

Verb Only VO
��!
verb/verb

Additive ADD
��!
subj +

��!
verb +

�!
obj +

��!
and +

���!
subj⇤ +

��!
does +

�!
too

Multiplicative MULT
��!
subj �

��!
verb�

�!
obj �

��!
and�

���!
subj⇤ �

��!
does�

�!
too

Additive Non-Linear ADDNL
��!
subj +

��!
verb +

�!
obj +

���!
subj⇤ +

��!
verb +

�!
obj

Multiplicative Non-Linear MULTNL
��!
subj �

��!
verb�

�!
obj �

���!
subj⇤ �

��!
verb�

�!
obj

Tensor-Based TEN T (
��!
subj, verb,

�!
obj) ? T (

���!
subj⇤, verb,

�!
obj)

Frobenius FROB T (
��!
subj ?

���!
subj⇤, verb,

�!
obj)

Sentence Encoder Base SEB E(subj verb obj and subj⇤ does too)

Sentence Encoder Resolved SER E(subj verb obj and subj⇤ verb obj)

Sentence Encoder Ablate SEA E(subj verb obj subj⇤)

Contextualised Base CEB mean(E(subj verb obj and subj⇤ does too))

Contextualised Resolved CER mean(E(subj verb obj and subj⇤ verb obj))

Contextualised Ablate CEA mean(E(subj verb obj subj⇤))

TABLE 4.9: Composition models for transitive elliptical sentences that we evaluated.

All the concrete models that we are evaluate are summarised in Table 4.9.

4.3.2 Training Vectors and Tensors

As an input to the composition models, we train multiple vector spaces and verb matrices,
where the choice of learning technique drastically changes the word representation and the
way they ought to be composed into a sentence vector. Thus, in order to provide a compre-
hensive study with robust results, we use four different vector spaces: a count based vector
space, and newly trained Word2Vec, GloVe, and FastText spaces, as detailed below. None of
the spaces is taken off the shelf, but rather they are all trained on the same corpus, which is
the combined UKWaC and Wackypedia corpus10.

Count-Based: We used the combined ukWaC and Wackypedia corpora11 to extract raw co-
occurrence counts, using as a basis the 2000 most frequently occurring tokens (after exclud-
ing the 50 most frequent ones). When extracting counts, we disregarded a list of stopwords
that do not contribute to the content of the vectors. We used a context window of 5 around
the focus word, and PPMI as weighting scheme. These settings were use in the original
KS2013 dataset [KS13].

10wacky.sslmit.unibo.it
11wacky.sslmit.unibo.it

http://wacky.sslmit.unibo.it
http://wacky.sslmit.unibo.it

4.4. Evaluation Results and Analysis 129

Word2Vec: The Word2Vec embeddings we used were trained with the continuous bag of
words model of [Mik+13] (CBOW). We trained this model on the combined and lemma-
tised ukWaC and Wackypedia corpora, using the implementation for Python available in
the gensim package12, with a minimum word frequency of 50, a window of 5, dimensional-
ity 300, and 5 training iterations.

GloVe: The GloVe model [PSM14] considers the ratio of co-occurrence probabilities by min-
imising the least-squares objective between the dot product of two word embeddings and
the log-probability of the words’ co-occurrence. We trained a GloVe space on the combined
and lemmatised ukWaC and Wackypedia corpora, using the code provided by the original
authors13. Similar to the Word2Vec settings above, we trained 300 dimensional vectors with
a minimum word frequency of 50 and a window of 5, but we trained with 15 iterations.

FastText: The FastText vectors are like Word2Vec, except the word vector takes into account
subword information: words are represented as n-grams, for which vectors are trained. The
final word vector will then be the sum of its constituent n-gram vectors [Boj+17]. We trained
a FastText space with the same settings as the Word2Vec space (CBOW, minimum word fre-
quency 50, dimensions 300, window 5, with 5 iterations), again using gensim.

Verb Matrices In order to work with tensor-based models we had to represent verbs as ma-
trices rather than as vectors. We generated verb tensors using two methods that have been
used previously in the literature [GS11a; KS14].

Relational: For each verb, its corresponding matrix is obtained by summing over the tensor
product of the respective subject and object vectors of the verb (subjects and objects collected
from the corpus):

verb =
X

i

subji ⌦ obji

Kronecker: For each verb, its corresponding matrix is obtained by taking the tensor product
of the verb vector with itself:

gverb =
��!
verb⌦

��!
verb

In the case of the count based space, we trained verb matrices of dimensions 2000 ⇥ 2000,
for the neural word embeddings the matrices had dimensions 300 ⇥ 300. The reason to
choose a higher dimension for the count based embeddings is that they are generally sparser
than neural word embeddings, hence it is fairer to compare higher-dimensional count based
vectors and tensors with the denser neural embeddings.

4.4 Evaluation Results and Analysis

We now discuss the results of our embeddings for verb phrase elliptical sentences as per the
datasets that we introduced. First, we validate the models that we described above on word
and sentence tasks, before moving on to the results for the ellipsis datasets.

Results for word similarity First of all we validate the quality of the trained word spaces
by evaluating on a number of the word similarity tasks described in Section 4.1. The results

12radimrehurek.com/gensim
13nlp.stanford.edu/projects/glove

https://radimrehurek.com/gensim
https://nlp.stanford.edu/projects/glove

130 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

are displayed in Table 4.10, for the spaces described in the previous section. These serve as
a minimal baseline: the word embeddings we use ought to obtain a reasonably high perfor-
mance on these datasets at the very latest, since we are interested mainly in the composition
of high quality word embeddings. The results in Table 4.10 show that indeed the spaces that

RG WS353 MC SL999 MEN

Count 0.608 0.358 0.546 0.259 0.553
Word2Vec 0.823 0.698 0.768 0.403 0.781
GloVe 0.831 0.618 0.738 0.390 0.773
FastText 0.772 0.546 0.696 0.402 0.768

SoTA 0.769 0.706 0.832 0.406 0.798

TABLE 4.10: Spearman ⇢ scores on word similarity tasks. SoTA: State
of the art scores using GloVe vectors as reported by Dobó and Csirik

[DC19].

we train are of high quality compared to reported state of the art scores with similar vector
space models. Here, we give the state of the art score for the GloVe vectors of Pennington,
Socher, and Manning [PSM14] as reported by Dobó and Csirik [DC19]. at The word2vec
space achieves the highest performance on all datasets except the RG dataset. Note that the
lowest performance is on the SimLex-999 dataset, which is also the most challenging word
embedding dataset discussed here, with a reported state of the art correlation score of 0.406

for GloVe vectors (though other, more complex models are able to achieve a correlation as
high as 0.76)14.

Results for intransitive sentence tasks Next, we look at how well the trained models per-
form on the ML2008 and ML2010 datasets, containing intransitive sentences of the form subj
verb and verb object. Table 4.11 shows the Spearman ⇢ correlation scores on the verb dis-
ambiguation dataset ML2008, whereas the results for the sentence similarity task ML2010
are presented in Table 4.12. In each table, the top two rows show the results for a non-
compositional verb only baseline, either by considering the verb vector or the verb tensor,
followed by arithmetic composition and order-sensitive composition models. For each dif-
ferent vector training method, the highest score is highlighted in bold.

ML2008 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.078 0.153 0.329 0.095
Verb Only Tensor 0.067 -0.035 0.033 0.036

Additive 0.081 0.220 0.293 0.116
Multiplicative 0.177 0.199 0.100 0.189

Kronecker 0.076 0.165 0.379 0.067
Categorical 0.045 0.121 0.103 0.163

TABLE 4.11: Spearman ⇢ correlation scores on the ML2008 dataset.

14See fh295.github.io/simlex.html

https://fh295.github.io/simlex.html

4.4. Evaluation Results and Analysis 131

ML2010 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.498 0.585 0.448 0.653
Verb Only Tensor 0.411 0.605 0.506 0.564

Additive 0.613 0.646 0.597 0.670
Multiplicative 0.645 0.516 0.344 0.643

Kronecker 0.498 0.589 0.449 0.630
Categorical 0.369 0.488 0.422 0.493

TABLE 4.12: Spearman ⇢ correlation scores on the ML2010 dataset.

In the case of the ML2008 and ML2010 datasets, the results show that moving from an order-
insensitive arithmetic model to a grammatically informed tensor-based model generally de-
creases performance. For ML2008, we attribute this to the fact that the tensor representations
in themselves (Verb Only Tensor) already show a lower correlation compared to the verb
vectors on the verb-only part of the dataset, which will then permeates the results for com-
positional models. Moreover, there is only one word available as the context of the verb,
making it harder for compositional models to beat the simpler models. For ML2010, the ten-
sors in themselves work quite well, but categorical composition underperforms the additive
and multiplicative baseline. Again, here there is only one word available as context to the
verb, possibly defeating the purpose of using a complex composition model.

Results for transitive sentence tasks The scores of our models on the GS2011, KS2013, and
KS2014 datasets are in Tables 4.13, 4.14, and 4.15 respectively. In each table, the highest score
per vector space is highlighted in bold, and to be succinct we report only the two highest
scoring tensor-based models, with the model specification beside the correlation score as per
the model descriptions in the previous section. The full results for all composition models
are included in Appendix A.

GS2011 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.273 0.210 0.302 0.212
Verb Only Tensor 0.167 0.342 0.241 0.292

Additive 0.291 0.255 0.248 0.140
Multiplicative 0.431 0.204 0.217 0.193

Best Tensor 0.454 CO e· 0.353 FA · 0.252 CO · 0.353 FO ·

2nd Best Tensor 0.447 FM e· 0.343 RE · 0.295 FA · 0.339 CO ·

TABLE 4.13: Spearman ⇢ correlation scores on the GS2011 dataset, with the highest
score for each space in bold and in a box, the second highest result in bold. Results

are against an inter-annotator agreement score of 0.739.

For the GS2011 dataset, the highest result is achieved for the Frobenius Additive model
on the word2vec vectors, using the relational matrix. Across the board, here the tensor-
based models outperform arithmetic baselines for all of the spaces. We argue that now, since
there is more context available in each sentence, the use of tensor-based composition models
starts to pay off, especially since the verb tensor representations were built by considering

132 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

KS2013 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.108 0.199 0.132 0.112
Verb Only Tensor 0.093 0.100 0.065 0.040

Additive 0.104 0.210 0.174 0.117
Multiplicative 0.279 0.334 0.110 0.302

Best Tensor 0.322 FM e· 0.415 FA e· 0.140 FA e· 0.368 FA e·
2nd Best Tensor 0.258 CO e· 0.408 CS e· 0.123 FO e· 0.334 CS e·

TABLE 4.14: Spearman ⇢ correlation scores on the KS2013 dataset, with the highest
score for each space in bold and in a box, the second highest result in bold. Results

are against an inter-annotator agreement score of 0.575.

both subjects and objects of the verb. In the case of KS2013 we see a similar pattern for all
spaces, except for GloVe vectors, where the additive baseline gives the highest result. On
the last dataset we experiment with, KS2014, the conclusion is converse: the additive mod-
els give the highest result on all spaces but the count based space. That the neural word
embedding models all show a similar pattern, opposing the count based model, is due to
sparsity of count based vectors versus density of neural word embeddings: once we add
together sparse vectors we end up with a more general vector that therefore is less specific,
whereas multiplying sparse vectors actually produces a more specific vector. It must be
noted, though, that the additive model score is above the interannotator agreement score,
thereby exceeding the supposed upper bound for the dataset. On the other hand, the best
tensor model is equidistant from the interannotator agreement, but from below.

KS2014 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.521 0.665 0.535 0.705
Verb Only Tensor 0.456 0.617 0.504 0.563

Additive 0.677 0.763 0.719 0.764
Multiplicative 0.719 0.528 0.283 0.587

Best Tensor 0.745 FM e· 0.623 RE · 0.427 FO · 0.641 FO ·

2nd Best Tensor 0.739 FO e· 0.578 RE e· 0.418 RE · 0.637 RE ·

TABLE 4.15: Spearman ⇢ correlation scores on the KS2014 dataset, with the highest
score for each space in bold and in a box, the second highest result in bold. Results

are against an inter-annotator agreement score of 0.754.

Results for ellipsis datasets We now move on the present new results for the datasets we
introduced for modelling verb phrase ellipsis. We would expect in the results that models
that resolve ellipsis perform better at our tasks than models which don’t, i.e. linear vector
models are expected to have a lower score than non-linear vector models and the grammar-
sensitive tensor-based models.

Verb Disambiguation 1 (MLELLDIS): For the elliptical extension of the ML2008 verb dis-
ambiguation dataset, we find the correlation scores in Table 4.16. These results validate

4.4. Evaluation Results and Analysis 133

MLELLDIS Count Based Word2Vec GloVe FastText

Verb Only Vector 0.078 0.153 0.329 0.095
Verb Only Tensor 0.067 -0.035 0.033 0.036

Additive 0.040 0.179 0.249 0.142
Multiplicative 0.206 0.081 0.003 0.103

Multiplicative � 0.391 0.085 0.017 0.124
Multiplicative + 0.179 0.236 0.055 0.156
Additive � 0.172 0.195 0.078 0.201
Additive + 0.078 0.229 0.336 0.170

Kronecker � 0.128 0.136 0.294 0.133
Kronecker + 0.076 0.207 0.366 0.085
Categorical � 0.060 0.143 0.008 0.190
Categorical + 0.047 0.177 0.092 0.211

TABLE 4.16: Spearman ⇢ correlation scores on the MLELLDS dataset,
with the highest score for each space in bold and in a box, the second

highest result in bold.

our intuition that models that resolve ellipsis (from MultMult to CatSum) can outperform
the models that don’t resolve it. As the highest results for the count based space and the
word2vec space are for arithmetic models, but for GloVe and FastText they are obtained
by a tensor-based model, this shows that at least resolving ellipsis is important for distri-
butional semantics, but that order sensitivity is not a necessary ingredient to achieve high
performance. Although the correlation score on MLELLDIS is improved for the count based
space comparatively to the results of Table 4.11, this isn’t true for all of the spaces. Moreover,
since we reused the annotations of the ML2008 dataset, these results may not be grounded
in proper human similarity judgment as the original participants were not confronted with
the verb phrase elliptical variations of the sentence pairs in the ML2008 dataset.

Verb Disambiguation 2 (ELLDIS): Table 4.17 shows the results of the linear, non-linear and
tensor-based models for this task, compared against a baseline in which only the verb vector
or verb matrix is compared.

Our first observation is that generally, the highest performing models were tensor-based.
The highest found correlation score was 0.539 in the count based space for a tensor-based
model (CO e+: the Copy Object model, with addition for the coordinator ‘and’, using the
Kronecker matrix), with the Frobenius Additive model giving the second best result of 0.526
(FA e+: the Frobenius Additive model, with addition for the coordinator ‘and’, using the Kro-
necker matrix). For the neural spaces, the highest performing models were mostly tensor-
based as well; they were always the Frobenius Additive (FA+) model and the Frobenius
Outer (FO+) model, using the relational tensor and addition for the coordinator, except in
the case of GloVe, where the Copy Object Sum (COS+: the additive variation on the Copy
Object model, using addition for coordination, and the relational verb matrix) model was
the second best. The only exception to this observation is the GloVe space, for which the
baseline Vector Only model in fact has a higher correlation than any other model on that
space.
Our second observation is that the non-linear variants of the additive and multiplicative

134 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

ELLDIS Count Based Word2Vec GloVe FastText

Verb Only Vector 0.436 0.241 0.445 0.229
Verb Only Tensor 0.330 0.438 0.394 0.388

Add. Linear 0.442 0.273 0.305 0.141
Mult. Linear 0.325 -0.012 0.182 0.293

Add. Non-Linear 0.445 0.328 0.326 0.140
Mult. Non-Linear 0.503 0.209 0.245 0.044

Best Tensor 0.539 CO e+ 0.462 FA + 0.373 COS+ 0.494 FO+

2nd Best Tensor 0.526 FA e+ 0.454 FO+ 0.369 FA+ 0.465 FA +

Best Frobenius 0.539 CO e� 0.462 FA + 0.397 FA� 0.497 FO+

2nd Best Frobenius 0.527 FO e� 0.460 FO+ 0.369 FA + 0.465 FA +

TABLE 4.17: Spearman ⇢ scores for the ellipsis disambiguation experiment ELLDIS.
We contrast verb only, additive and multiplicative baselines with the two best

tensor-based models per space, as well as the two best linear frobenius models.

models (which resolve ellipsis but in a naive way) show an increased performance over the
linear models (which do not resolve ellipsis). All of this holds for all the four vector spaces,
except for the FastText space where the linear multiplicative model achieves significantly
higher correlation (0.293) than its non-linear counterpart (0.044).

Overall, these results suggests that a logical resolving of ellipsis and further grammatical
sensitivity benefits the performance of composition.

One interesting fact about our results is that the best compositional methods across the
board were those that interpret the coordinator ‘and’ as addition; in set-theoretic semantics
one interprets this coordinator as set intersection, which corresponds to multiplication rather
than addition in a vectorial setting. We suggest that the feature intersection approach using
multiplication leads to sparsity in the resulting vectorial representation, which then has a
negative effect on the overall result. This would explain the case of FastText, since those vec-
tors take into account subword information one would expect them to be more fine-grained
and therefore conflate more of their features under multiplication. The choice of verb matrix
was however mixed: for the count-based models the Kronecker matrix worked best, for the
neural embeddings it was best to use the relational matrix.

Sentence Similarity (ELLSIM): For the extension of the KS2014 sentence similarity dataset,
the results are shown in Table 4.18. We again wanted to see if resolving ellipsis benefits the
compositional process. This was in general true, although we observed a different pattern
to the previous experiment.

In all cases, except for the FastText space, we saw that non-linear models in fact perform
better than their linear counterparts. But this time the best tensor-based models only out-
performed addition for the count-based space: the best models scored 0.7410 and 0.7370 (re-
spectively for the FO and FA models above, Kronecker matrix,r = �). Both Word2Vec and
GloVe worked best with a non-linear additive model, with Word2Vec achieving the overall
highest correlation score of 0.7617, and GloVe achieving 0.7103. For FastText, the highest

4.4. Evaluation Results and Analysis 135

ELLSIM Count Based Word2Vec GloVe FastText

Verb Only Vector 0.457 0.583 0.435 0.647
Verb Only Tensor 0.395 0.566 0.443 0.534

Add. Linear 0.700 0.726 0.696 0.741
Mult. Linear 0.633 0.130 0.367 0.199

Add. Non-Linear 0.681 0.762 0.710 0.739
Mult. Non-Linear 0.723 0.355 0.244 0.450

Best Tensor 0.741 FO e� 0.706 RE + 0.491 FA + 0.699 FO +

2nd Best Tensor 0.737 FA e� 0.671 FO+ 0.482 FO+ 0.688 CO�

Best Frobenius 0.732 FM e� 0.706 RE + 0.491 FA + 0.702 FO +

2nd Best Frobenius 0.730 FA e� 0.668 FO + 0.486 FO+ 0.682 RE +

TABLE 4.18: Spearman ⇢ scores for the ellipsis similarity experiment.
We contrast verb only, additive and multiplicative baselines with the
two best tensor-based models per space, as well as the two best linear

frobenius models.

score of 0.7408 was achieved by linear addition. What is more, the multiplicative model did
not benefit from a non-linear approach in the case of GloVe (from 0.3666 to 0.2439), and the
additive model had a similar decline in performance for the count-based space (from 0.7000
to 0.6808) and FastText (0.7408 to 0.7387). We can see that for the neural word embeddings
the additive models work best, with all of them seeing a drop in performance for the tensor-
based models. Again, the best count-based models use the Kronecker matrix whereas the
neural models benefit the most from using the relational matrix. However, this time the best
count-based models used multiplication for coordination, the neural models preferring ad-
dition.

Sentence Encoders and Contextualised Embeddings: We compare the results of the above
compositional models with the results of modelling the datasets with sentence encoders and
contextualised embeddings. In the former case, a sentence is simply passed through an en-
coder which returns a single vector. In the case of contextualised embeddings the system
returns vectors for each word in a sentence; these are averaged to produce a final sentence
vector. We give the results on all datasets the sentence encoders discussed above in Table
4.19, whereas the results for the contextualised embeddings from ELMo and BERT are in
Table 4.20.

Comparison to ML2008-KS2014 Our first observation, comparing the results of sentence
encoders and contextualised embeddings with our sentence experiment baselines (ML2008
through KS2014), is that none of the results outperform the best scoring compositional meth-
ods: on the ML2008 dataset, the highest score of 0.220 is obtained by the 4096-dimensional
InferSent encodings (IS2), whereas the mean ELMo vectors achieve a 0.166 correlation, com-
pared to a correlation of 0.379 for the Kronecker model using the GloVe vectors and tensors
in Table 4.11. For ML2010, the highest compositional score was 0.670, obtained by a purely
additive model on the FastText vectors, which is not matched by the highest encoder score

136 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

D2V1 D2V2 ST IS1 IS2 IS3 IS4 USE

ML2008 0.139 0.192 0.078 0.181 0.220 0.149 0.169 0.039
ML2010 0.512 0.447 0.494 0.631 0.492 0.636 0.405 0.325
GS2011 0.098 0.102 -0.157 0.297 0.320 0.324 0.213 0.094
KS2013 0.193 0.212 0.051 0.172 0.032 0.176 -0.021 0.210
KS2014 0.692 0.705 0.546 0.784 0.676 0.720 0.586 0.539

MLELLDISlin 0.090 0.233 0.232 0.199 0.224 0.108 0.135 0.105
MLELLDISres 0.089 0.216 0.167 0.228 0.269 0.144 0.156 0.154
MLELLDISabl 0.095 0.242 0.159 0.215 0.226 0.141 0.169 0.109

ELLDISlin 0.199 0.227 -0.193 0.347 0.384 0.330 0.344 0.269
ELLDISres 0.231 0.253 -0.172 0.344 0.337 0.293 0.248 0.277
ELLDISabl 0.195 0.259 -0.130 0.353 0.357 0.300 0.291 0.240

ELLSIMlin 0.593 0.622 0.585 0.779 0.701 0.748 0.641 0.647
ELLSIMres 0.698 0.692 0.604 0.803 0.749 0.768 0.687 0.680
ELLSIMabl 0.652 0.655 0.471 0.782 0.730 0.749 0.682 0.640

TABLE 4.19: Spearman ⇢ scores for sentence encoders on all datasets. D2V1:
Doc2Vec1, D2V2: Doc2Vec 2, ST: Skip-Thought, IS1: InferSent 1 (4096), IS2: In-
ferSent 2 (4096), IS3: InferSent 1 (300), IS4: InferSent 2 (300), USE: Universal Sen-

tence Encoder.

of 0.636 (using 300-dimensional InferSent vectors) and the ELMo score of 0.539. For GS2011
we see a similar pattern, with a 300-dimensional InferSent model scoring 0.324 versus the
0.292 achieved by the BERT Large model, both of which are surpassed by a tensor-based
model on the word2vec space which achieves a correlation score of 0.353. On KS2013 the
best tensor-based model scored 0.415, versus a score of 0.212 from a Doc2Vec model, and
0.349 for BERT Large. Only on KS2014 we see the highest correlation being achieved by a
sentence encoder: where the highest performing compositional model is a purely additive
model with a correlation of 0.763, and this still outperforms the ELMo vectors which achieve
0.728 correlation, they are all outperformed by a 4096-dimensional InferSent model which
achieves a correlation score of 0.784.

Comparison to MLELLDIS, ELLDIS, and ELLSIM We now note the difference between the
neural composition models and the tensor-based composition models. Firstly, on MLELLDIS,
the tensor-based modelling achieved a maximal correlation of 0.391 in a count based model,
which is in contrast with the results achieved by sentence encoders (0.269 for a 4096-dimensional
InferSent model) and contextualised embeddings (0.373 by BERT Small). This may be due to
the fact that the dataset has the same annotations as ML2008, hence its results carrying over
from the original intransitive sentence dataset. However, as noted before, while the tensor-
based modelling generally shows that resolving the ellipsis is beneficial to the performance
of the composition models, this is a bit less obvious for the neural composition methods:
Although the InferSent and Universal Sentence Encoder models do show an increased per-
formance when the ellipsis is resolved, this doesn’t hold for the Doc2Vec and Skipthoughts
models.

4.4. Evaluation Results and Analysis 137

ELMo BERT Small BERT Large

ML2008 0.166 0.105 0.030
ML2010v 0.539 0.216 0.356
GS2011 0.108 0.187 0.292
KS2013 0.243 0.232 0.349
KS2014 0.728 0.520 0.616

MLELLDISlin 0.193 0.373 0.315
MLELLDISres 0.182 0.103 0.342
MLELLDISabl 0.123 0.089 0.193

ELLDISlin 0.232 0.360 0.368
ELLDISres 0.210 0.216 0.274
ELLDISabl 0.207 0.197 0.365

ELLSIMlin 0.734 0.595 0.580
ELLSIMres 0.779 0.631 0.647
ELLSIMabl 0.703 0.560 0.582

TABLE 4.20: Spearman ⇢ scores for contextualised embeddings on all datasets.
While ELMo performs very well on the smaller datasets, it is outperformed by
BERT on the elliptical datasets, although for the latter there is no improvement by

moving to the BERT Large model.

For ELLDIS, the sentence encoder results of Table 4.19 show the same trend that suggests
that resolving ellipsis improves the quality of the embeddings: with the exception of the In-
ferSent encoders, the resolved models gave a higher correlation than their linear baseline.
However, none of the encoder models come near the results achieved using the composi-
tional models. Since the verb disambiguation dataset contains pairs of sentence that only
differ in the verb, the task becomes very much grammar-oriented, and so we argue that the
tensor-based models work better since they explicitly emphasise syntactic structure.

The sentence encoders worked a lot better in the ELLSIM similarity task, with all non-
linear resolved models outperforming the baseline model, and the InferSent model even
outperforming non-linear addition on a Word2Vec space. We argue this is the case for two
reasons: first, the similarity dataset is more diffuse than the verb disambiguation dataset
since sentence pairs now differ for every word in the sentence, giving more opportunity to
exploit semantic similarity rather than syntactic similarity. Second, the embeddings from
the sentence encoder are larger (4096), allowing them to effectively store more information
to benefit the similarity score.

138 Chapter 4. Evaluation: Composition Models for Verb Phrase Ellipsis

4.5 Conclusion

This chapter introduced the second main contribution of this thesis. We introduced three
new datasets in order to evaluate the models we developed in Chapter 3 for the case of verb
phrase ellipsis. Then, we trained four vector spaces using different training techniques, and
compared the performance of a large variety of composition models on the datasets from
previous work and the newly introduced ellipsis dataset. We specifically compared linear
models that don’t resolve ellipsis with models that do perform the ellipsis resolution step.
Moreover, we contrasted the results of these type-driven composition models against state
of the art sentence encoders, and contextualised embeddings.

First we noted how tensor-based compositional models underperformed additive base-
lines on the intransitive sentence datasets ML2008 and ML2010, as only one word (respec-
tively the subject or object of the verb) is available as context in these datasets. In the case of
transitive sentence datasets GS2011 and KS2013 we saw that tensor-based models showed
the highest correlation scores. We argued that in the setting of transitive sentences using
the composition models with tensor representations benefit performance, and even more so
because the verb representations are constructed by considering both subjects and objects of
the verbs.

With the verb phrase ellipsis experiments, we primarily wanted to show that resolving
ellipsis improves performance. Indeed, non-linear models almost always performed better
than linear ones in both a verb disambiguation and a sentence similarity task. On a second
note, the highest performance on the verb disambiguation task was given by a grammar-
driven, tensor-based model in a count-based vector space, whereas for the similarity task,
the highest performance was achieved by the InferSent sentence encoder, followed by a non-
linear additive model on a Word2Vec space. Although the neural word embeddings and sen-
tence encoders were largely outperformed on the disambiguation dataset that places more
emphasis on syntactic structure than on semantic similarity, they generally performed better
in the sentence similarity case, where the distinction between syntactic and semantic simi-
larity is more diffuse. However, sentence encoders generally still performed better than the
state of the art contextualised embedding models ELMo and BERT.

Although this does not give conclusive evidence for one particular model being better
than another, we do get two main overall conclusions: first, performing an ellipsis resolution
step is generally important when constructing vector representations of sentences. Second,
in a disambiguation task it is better to use a tensor-based model that can encode the relational
information of verbs, though the added benefit of such a model gets lost in a similarity task.

This conclusion, however, may depend on the particular choice of verb representation,
which so far was either a combination of vectors for the subjects and objects of a verb, or
given by the outer product of a verb vector with itself. In the next chapter, we dive deeper
in the topic of representation learning, and show how we can adapt the (neural) skipgram
technique for learning higher order tensor representations, which we then evaluate on the
verb disambiguation and sentence similarity datasets discussed so far.

139

Chapter 5

Lexical Semantics: Neural Tensor
Embeddings

Chapter Abstract

The experimental work in Chapter 4 introduced a number of new datasets for evaluating
compositional distributional semantics. One core component of type-driven compositional
distributional semantics, however, is the lexical representation of words in a tensorial form.
This chapter contains the third major contribution of this thesis: we introduce a generali-
sation of both the skipgram model for noun vectors and the tensor-based skipgram model of
Maillard and Clark [MC15], that allows us to train and test a variety of different verb repre-
sentations. We show how a decomposed matrix representation for a transitive verb achieves
the highest performance compared to vector and cube representations and compared to pre-
viously used methods. This model then paves the way for generalisation to neural tensor
embeddings, the main topic for future work of this thesis. The content of this chapter in-
cludes text from a to-be submitted paper [WSC19] (joint work with Mehrnoosh Sadrzadeh
and Stephen Clark).

Where Chapter 3 lays the theoretical foundation for reasoning about ellipsis and anaphora
in a compositional distributional model of meaning, and Chapter 4 provides the experimen-
tal component to test these models, in this chapter we approach the modelling from the point
of view of lexical semantics. An essential assumption of type-driven approaches to composi-
tional distributional semantics, such as the categorial framework of Coecke, Sadrzadeh, and
Clark [CSC10] and Coecke, Grefenstette, and Sadrzadeh [CGS13], the functional approxima-
tion approach of Baroni, Bernardi, and Zamparelli [BBZ14], and the CCG-tensor contraction
approach of Maillard, Clark, and Grefenstette [MCG14], is that the shape of embeddings
for words that have functional types, such as adjectives and verbs, should be higher order,
reflecting the idea that they represent functions which modify their respective arguments.
Therefore, we need to address the issue of learning such representations.

This is not a new problem, however. In previous work on evaluating compositional
distributional models, multiple proposals were given and implemented. Already in the
previous chapter on evaluation we mentioned two analytical approaches to obtaining the
content of verb tensors, either by taking the outer product of a verb vector representation
(the Kronecker model, [GS11a]) or by taking the sum of the outer products of the vectors
for observed subjects and objects of a given transitive verb (the Relational model, [GS11a]).
Besides from these approaches, a number of other approaches have been proposed to learn
the contents of tensor representations.

140 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

For adjectives, matrices have been learned by regression to approximate holistic adjective-
noun phrase vectors [BZ10], and more recently, by lifting the skipgram model of Mikolov et
al. [Mik+13] to learn a transformation between fixed vectors for nouns and adjective-noun
combinations [MC15].

For verbs, besides from the analytical representations there is the work of Grefenstette
et al. [Gre+13], which lifts the regression learning method of Baroni and Zamparelli [BZ10]
and applies a multi-step regression algorithm to learn a cube representation of a verb by first
approximating a holistic subject-verb vector, and subsequently a holistic verb-object matrix.
A different approach is the plausibility model of Polajnar, Rimell, and Clark [PRC14], based
on the model of Clark [Cla13], in which a verb matrix or cube is learnt by optimising a model
that distinguishes between observed subject-verb-object triples (plausible) and randomly
generated unobserved triples (implausible).

A major issue that these representations suffer from, is data sparsity: for the multi-step
regression approach of Grefenstette et al. [Gre+13] one looks first for subject-verb occur-
rences in a corpus, and then one needs all the subject-verb-object occurrences in the corpus.
Given that such occurrences are very sparsely available, and that a cube representation will
contain a lot of parameters over which to perform a regression optimisation algorithm, there
is simply not enough data to train a qualitative tensor representation, leading to a then de-
cent correlation score of 0.32 [Gre+13] on the GS2011 dataset, which by now has been sur-
passed already by the analytical approaches that we apply in Chapter 4. For the plausibility
model and other models developed by Polajnar [PRC14; PFC14; Pol16] the same problem
seems to persist.

On the other hand, since previous work on tensor representation learning was done,
there have been many advances in deep neural network approaches to learning sentence
representations, albeit in a uniformly vectorial way. There are sentence encoder models
and contextualised embeddings that were already discussed in the background section in
Chapter 1, but there are also the tree-structured Recursive Neural Networks [Soc+13] and
their improved stack and lifted versions, e.g. [CWB18], which learn a composition operator
based on the structures of sentences. These models, however, still uniformly represent each
word as a tensor of the same order, regardless of grammatical types. That is, either every
word in a sentence is represented as a vector (most approaches), or every word is represented
as a matrix (in [CWB18]).

To attempt to bridge the gap between tensor-based compositional distributional models
on the one hand, that allow for a transparent explicit incorporation of syntactic information
into semantic representations, and neural approaches like sentence encoders and contextu-
alised embeddings, we address the topic of lexical tensor representations in this chapter. We
generalise the skipgram model with negative sampling of Mikolov et al. [Mik+13] to learn
arbitrary tensor representations for words that have complex (or functional) types, based on
the dependency information that is available for them. In a nutshell, given a word with a
number of dependencies, its tensor representation transforms the vectors of a certain num-
ber of its dependencies to predict the remaining dependencies as a context. For instance,
a transitive verb with two dependencies – a subject and an object – has two tensor repre-
sentations, one of which transforms its object vectors to predict its subject context vectors,
and another that predicts the object context vectors from its subject vectors. This approach
allows us to learn tensors of higher ranks, as well as consider different possibilities for the
context of the result of applying that tensor. This effectively helps us address the sparsity
issues that some of the above mentioned approaches have. Moreover, working with a tensor
that has a rank lower than the one dictated by a strict type-driven approach provides us with

5.1. Representing Words as Tensors 141

a tuple of representations that can be independently applied and then further merged when
composing sentence embeddings1.

We formulate our tensor skipgram model in full generality, show how it reduces to the
regular vector skipgram model, as well as the adjective matrix skipgram model of Maillard
and Clark [MC15]. To test this general formulation of a tensor-skipgram model, we instan-
tiate our model to learn a set of different tensor representations for transitive verbs, as these
form a major component of the datasets that we discuss in this thesis. We evaluate these
verb tensors on verb similarity and compositional sentence similarity and disambiguation
tasks and show that in nearly all cases, the newly introduced and learned neural verb matrix
embeddings outperform all of the other models. We moreover include a comparison with
sentence encoders (Doc2Vec [LM14], SkipThoughts [Kir+15], InferSent [Con+17], Universal
Sentence Encoder [Cer+18]) and state of the art contextualised embeddings given by ELMo
[Pet+18] and BERT [Dev+19].

This chapter is structured as follows: first, we highlight a number of the related ap-
proaches to tensor representation learning that we briefly discussed above, to then illustrate
and formulate the general tensor-skipgram model, and our verb-specific training methods.
We then describe the concrete composition models and experimental setup that we use to
evaluate the verb representations, and give the results on all the compositional datasets that
we also evaluated on in Chapter 4, to end up with future directions to learn arbitrary tensor
representations.

5.1 Representing Words as Tensors

We highlight previous approaches to learning tensor representations, and display their strengths
and advantages. As mentioned in the previous chapter on evaluation, one of the first to
experiment with composition models of distributional word representations were Mitchell
& Lapata, who experimented with a number of algebraic models of composition [ML08;
ML10]. However, the tensor-based approach gained attraction around the same time, with
the work of Coecke, Sadrzadeh, and Clark [CSC10] and Baroni and Zamparelli [BZ10], in
which functional words are represented not as vectors, but as higher order tensor represen-
tations.

Analytical Representations As an initial approach to representing verbs as tensors, Grefen-
stette and Sadrzadeh [GS11a] introduce two analytical methods (i.e. not by optimising a
machine learning objective) for obtaining tensor representations. The first is the Kronecker
representation which simply lifts a vector for a verb to a matrix by taking its outer product
with itself:

verb =
��!
verb⌦

��!
verb

The second representation that was experimented with by Grefenstette and Sadrzadeh [GS11a]
but also by Kartsaklis, Sadrzadeh, and Pulman [KSP13] and Milajevs et al. [Mil+14], is the
Relational model, which uses dependency information about a words to construct its tensor
representation. For a given word w that is connected to k sets of words w1, ..., wn via a fixed
set of dependencies d1, ..., dn, the tensor representation of w becomes

W =
X

i

�
�!w1 ⌦

�!w2 ⌦ ...⌦�!wn

�
i

1This is similar to the regression approach of Paperno and Baroni [PB+14].

142 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

That is, the word is represented by the summation over the tensor product between its de-
pendency argument vectors. In the case of an adjective, this would give a vector

adj =
X

i

���!nouni

over all the possible nouns that were modified by the adjective, whereas transitive verbs get
represented by a matrix

verb =
X

i

(
��!
subji ⌦

�!
obji)

Regression Methods In Baroni and Zamparelli [BZ10], it is argued that adjectives, being
functional words, should be learned generalisations that (linearly) map a noun vector to
its modified adjective-noun combination. To this end, the authors use a linear regression
method, as follows: for a given adjective, create the holistic adjective-noun vectors by ob-
serving the co-occurrence statistics for adjective-noun word combinations. Assuming that
noun vectors are available for all the nouns that were observed in combination with the ad-
jective, the adjective matrix is now estimated using a standard linear regression technique to
approximate

A⇥�!n =
�!
An

As experimentally verified [BZ10], this generally gives a suitable estimation of the adjective
as a linear map.

For verbs, Grefenstette et al. [Gre+13] generalise the regression method for adjectives to
the case of transitive verbs, using a multistep regression approach. The first step is to learn
a matrix using linear regression that generalises over subjects versus verb phrases, i.e. given
holistic subject-verb-object combinations, a verb-object matrix is learnt:

��!
subjT

⇥ verb obj =
���������!
subj verb obj

In the next regression step, the matrices that have been learnt in the previous step form the
input over which to approximate a cube representation for the verb. That is, the verb-object
matrices of the first regression step are approximated by a cube that transforms object vectors
into the relevant verb-object matrix:

verb⇥
�!
obj = verb obj

In Grefenstette et al. [Gre+13] this approach is shown to lead to an improvement of results on
the GS2011 dataset, with a correlation score of 0.32 for the regression model with a dimen-
sionality reduction technique applied. However, in general, this model is very data-intensive
as a cube needs to be trained to generalise over previously trained matrices; if not enough
data is available, the method can’t produce high quality tensors.

Plausibility Models As an alternative approach, Polajnar, Rimell, and Clark [PRC14] pro-
poses to modify the structure of the sentence space for training verb representations. Rather
than approaching a holistic vector for a subject-verb-object combination, the model proposes
a plausibility space, in which a combination of words will either be plausible or implausible.
Concretely, this allows one to apply a logistic regression model as follows: given a depen-
dency parsed corpus, gather all the subject-verb-object combinations in that corpus. These
form the plausible triples. Now, either fully random or based on noun frequency bins, gen-
erate unobserved subject-verb-object triples, these are the implausible triples. Now, the verb

5.1. Representing Words as Tensors 143

will be a matrix, that approximates a function that maps plausible subject and object vec-
tors to 1, whereas it maps implausible subject and object vectors to 0. So the basic objective
function that needs to optimised is

1

N

X

i

ti log �(
��!
subjT

i
⇥ verb⇥

�!
obji)

with N the number of (positive and negative) training examples, and ti either 1 or 0, accord-
ing to the plausibility of the subject and object. Although the plausibility model is reported
to gain performance over analytical methods (in Polajnar, Rimell, and Clark [PRC14], the re-
sults are 0.35 on the GS2011 dataset, 0.33 on the KS2014 dataset), it’s main strength appears
to be in handling disambiguation (as the result on the sentence similarity dataset KS2014
is significantly below that of a simple additive model). Moreover, this method would not
easily generalise to arbitrary tensor representations.

Adjective Skipgram Maillard and Clark [MC15] take a different approach to learning a
tensor representation, by adapting the skipgram model with negative sampling [Mik+13]
to approximate matrices for adjectives. First, the skipgram model with negative sampling
[Mik+13] generates word embeddings by optimising a logistic regression objective in which
target vectors should have high inner product with context vectors for positive contexts (as
observed from a linear context window around a target word), and low inner product with
negatively sampled contexts. Given a target word n and a set of positive contexts C, a set
of negative contexts C is sampled from a unigram distribution raised to some power (here:
3/4, after [LGD15]). The number k of negative contexts per positive one is a parameter of
the model, here we consider k = 10. Context words are subsampled to decrease the differ-
ence between very frequent and very infrequent words. Initially, both target vectors n and
context vectors c are randomly intialised, and during training the model updates both target
and context vectors to maximise the objective function

X

c2C

log �(n · c) +
X

c2C

log �(�n · c) (5.1)

To modify the skipgram model for the case of adjectives, Maillard and Clark [MC15] build
a matrix representation into the model: a given adjective is represented as a matrix that,
applied to a noun vector, predicts the context for the given adjective-noun combination. For
a given adjective matrix A, the model now lifts the objective function of skipgram to

X

c2C

log �(An · c) +
X

c2C

log �(�An · c) (5.2)

As an adjective-noun combination itself is a noun, the context matrix is fixed and taken from
a pretrained noun skipgram model.

A need for compact representations Most of the methods described above suffer from data
sparsity issues: representing a verb as a cube means that the number of parameters of the
tensor to be trained rises drastically; and this problem is barely mitigated by the amount of
training data one has available: even in a large corpus the number of occurrences of verbs
with their arguments is a lot lower than the number of word occurrences. So one of the
desiderata of a tensor representation of words is that they be as low-dimensional as possible,
without giving up on the core philosophy of representing words as functions. Where the

144 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

analytical methods did not suffer from data issues, their performance differs from dataset
to dataset, i.e. they are not robust, and they depend too much on the particular data that
was used to construct them. The skipgram modelling that Maillard and Clark [MC15] use
is more robust, but covers only the limited case of adjectives, which allows the authors to
restrict themselves to a one-faceted extension of the original skipgram model, as the notion
of context does not need to be adapted. In the general case this simplification does not hold:
already for verbs one can’t argue that the context of a verb combined with a subject and and
object will be the same as the context of a noun, so we need to change the notion of context
in the case of verbs. Thus, our plan is to start from the skipgram model as it has shown to
be robust and efficiently trainable for noun vectors and adjective matrices, but to generalise
the model to represent arbitrary words as tensors in a structured way. We then perform an
evaluation to test our model for the case of verbs, first of all on a number of verb similarity
datasets, and consequently on all the datasets that we evaluated on in the previous chapter.
The results of this study then pave the way for a new generation of tensor-based models,
which we hope to implement in future work.

5.2 Neural Verb Tensor Embeddings

We generalise the skipgram model in two ways, to learn tensor representations of arbitrary
words. First, we change the notion of context from a linear context window to contexts fol-
lowing a dependency tree, which is reminiscent of the dependency based word embeddings
of Levy and Goldberg [LG14], which also uses dependency relations to generalise skipgram,
but unlike their embeddings we do not incorporate the dependency labels themselves in
our training model, but rather let the architecture of the model depend on these. The second
modification is exactly to change the architecture according to the dependency relations of
a word: for a given word w, the words d1, ..., dn that modify w with the specified (fixed)
dependency labels l1, ..., ln, determine the shape of the tensor that is being trained for w,
as well as providing the context words for training. In addition, we may impose a specific
tensor shape to the model of a given word, leading to three different types of models which
we formally define below.

Full Tensor Skipgram For a given word W with dependency arguments d1, d2, ..., dn (as
described above), a full tensor model trains a rank n tensor representation with the following
objective function:

X

c2C

log �(Wd1...dn · c) +
X

c2C

log �(�Wd1...dn · c) (5.3)

When W is an adjective, the objective function of the full tensor skipgram model instantiates
the adjective skipgram model of Maillard and Clark [MC15], since an adjective has only one
dependency argument d1:

X

c2C

log �(Wd1 · c) +
X

c2C

log �(�Wd1 · c) (5.4)

When W is a noun, the objective function of the full tensor skipgram model reduces to the
regular skipgram model with negative sampling since nouns do not have any dependency
arguments:

5.2. Neural Verb Tensor Embeddings 145

X

c2C

log �(W · c) +
X

c2C

log �(�Wd1...dn · c) (5.5)

Partial Tensor Skipgram The full tensor skipgram model above assumes that an appropri-
ate notion of context is available after contracting the target tensor with all the vectors for its
dependency arguments. Indeed, for adjectives this is the case as the adjective-noun combina-
tion is again a noun and so the linear context window can be carried over from the definition
of the original skipgram model. This does not hold for arbitrary words, e.g., in the case of
verbs the verb-subject-object combination is not a noun or a verb, but a sentence. To remedy
this issue, we define a partial model in which one dependency is left out of the composition
and used as context. Now, for a word W with dependency arguments d1, d2, ..., dn, we train
a tensor that is of rank n � 1, providing a decomposition of the tensor of W into n separate
lower rank tensors, one for each dependency. For an arbitrary dependency di, the objective
function becomes as follows

X

di2C

log �(Wd1...di�1di+1...dn · di) +
X

di2C

log �(�Wd1...di�1di+1...dn · di) (5.6)

Lower Rank Tensor Skipgram If we decrease the rank of the tensor even more, we parame-
terise over the contexts as well as over the dependency arguments, leading to a choice of the
dependencies to include in the context. Formally speaking, a rank n� i tensor is learnt with
the objective function as below:

X

d1...di2C

log �(Wdi+1...dn ·P+{d1, ...,di})+
X

d1...di2C

log �(Wdi+1...dn ·P+{d1, ...,di}) (5.7)

where P+{d1, ...,di} means we choose some positive subset of the available dependency ar-
guments as context. These models are exemplified in the following paragraphs for the case
of transitive verbs.

Verb Skipgram We instantiate our tensor skipgram model on transitive verbs. These have
as dependencies both a subject and an object. We summarise all trained models by rank of
the tensor and choice of context in Table 5.1, and give a detailed explanation below.

Representation Rank Context

va vector linear window

vs/vo/vb vector objects/subjects/both

V
S

a /V
O

a matrix full sentence

V
S

o /V
O

s matrix objects/subjects

V a cube full sentence

TABLE 5.1: Our verb representations, ranging from vectors to cubes,
with general or restricted context. va denotes a standard skipgram
vector, with sub- and negative sampling. For the full sentence con-
texts, the arguments that are transformed by the representation are

excluded from the context.

146 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

The full rank tensor model of Equation 5.3 for a transitive verb results in learning a rank 3
tensor, i.e. a cube. Given a verb V , we denote its first argument d1, i.e. its subject, by s, and
its second argument d2, i.e. its object, by o. The full objective function of this model is as
follows: X

c2C

log �(V os · c) +
X

c2C

log �(�V os · c) (5.8)

As all dependency arguments are transformed, the notion of context reduces to some context
window, which we choose to let range over the full sentence, as the arguments themselves
may occur at any position in the sentence in which the verb occurred. This model gives
representation V a from Table 5.1.

Next, we instantiate the partial model of Equation 5.6, and train a subject matrix V
S and

an object matrix V
O. In the former case, the matrix tries to predict the object of the verb,

given a fixed subject vector, as in Equation 5.9, where O refers to the set of contexts, which
are objects. In the latter case, we train a matrix that predicts the subject of the verb, given the
fixed object vector (Equation 5.10, contexts are subjects in S).

X

o2O

log �(V s · o) +
X

o2O

log �(�V s · o) (5.9)

X

s2S

log �(s · V o) +
X

s2S

log �(s ·�V o) (5.10)

These models we refer to as V
S

o
and V

O

s
in Table 5.1, respectively. To see if this decomposition

in combination with a dependency based context produces a sensible model, we compare
these with V

S

a
and V

O

a
, which still transform the subject (resp. object) vector, but predict a

full sentential context rather than a single dependency.
Last, we instantiate Equation 5.7 to produce vector representations for the verb. Given

that there are two dependencies, the different choice of context leads to three models vs, vo,
vb that respectively take only subjects, only objects, or both arguments as context. We com-
pare these to va, which is the original skipgram model with a linear context window.

Implementation Details We implemented all models in Python, using the tensorflow

package [Aba+16]2. Vectors were 100-dimensional; matrices and cubes were shaped accord-
ingly. The dependency information was extracted from a dependency parsed corpus3 con-
taining ca. 130M sentences, on which the initial regular noun vectors were also trained. In
the case of matrices and cubes with full context (V a, V a), a pair of networks was trained
separately for each verb, sharing the context matrix from the noun skipgram model. For the
matrices with subject (resp. object) context, we trained a pair of networks with an embed-
ding layer encoding all verbs. In these networks, the context matrix consists of all possible
object (resp. subject) context vectors. Here we considered both a fixed context matrix (from
the noun skipgram model) and a trainable context matrix and found that the trainable con-
text matrix gave the best results4, so we work with the latter. Negative samples were drawn
from the distribution over possible objects (resp. subjects) of all verbs in the case of the
partial tensor models. We considered k = 10 negative samples per subject (resp. object).

2Code and models will be made available online.
3We used the UKWaCkypedia corpus, available from wacky.sslmit.unibo.it
4We argue that this is because contexts in the noun skipgram model are more general as they serve

as contexts to many different target words.

http://wacky.sslmit.unibo.it

5.3. Evaluation 147

5.3 Evaluation

We now discuss the evaluation of the new representations that we learn on a number of sim-
ilarity and compositional tasks. The main goal here is to see which of the different types of
representation that we learn, works best in a number of tasks. As a second goal, we want to
see if these representations outperform a non-neural baseline, for which we use the analyti-
cal models that we experimented with in the previous chapter. Finally, we want to establish
whether the hybrid neural tensor-based setting is capable of achieving similar results to state
of the art sentence encoders and contextualised embeddings. As we train verb representa-
tions, we evaluate on three types of tasks: verb similarity, verb disambiguation – where the
goal is to distinguish a verb’s meaning given a sentential context – and compositional sen-
tence similarity. Below we discuss all tasks, composition models and similarity metrics that
we experimented with, including a short reference to the sentence encoders and contextu-
alised embeddings that we compare our approach with.

Verb Similarity For verb similarity, we consider the verb only partitions of a number of word
similarity datasets, as well as datasets aimed at evaluating verb similarity in itself. First of all,
we consider those pairs of words from the MEN [Bru+12] and SimLex-999 [HRK15] datasets
that were labelled as verbs, obtaining 22 and 222 verb similarity pairs, respectively. Next to
these partial datasets, we considered VerbSim [YP06], a dataset of 130 verb pairs, and the
more recent SimVerb-3500 dataset [Ger+16], containing 3500 verb pairs. For the latter, we
independently evaluate on the development set (500 pairs) and the test set (3000 pairs).

Compositional Tasks We consider the seven compositional tasks that we also evaluated on
in Chapter 4: first, the two intransitive sentence datasets ML2008 and ML2010 introduced
by Mitchell and Lapata [ML08; ML10], the first aiming at disambiguating the verb of each
sentence, the second evaluating general sentence similarity. Next we consider the transitive
variants of these datasets: the transitive verb disambiguation datasets of Grefenstette and
Sadrzadeh [GS11a] (GS2011) and Kartsaklis and Sadrzadeh [KS13] (KS2013), and the tran-
sitive sentence similarity dataset of Kartsaklis, Sadrzadeh, and Pulman [KSP13] (KS2014).
Finally, we also evaluate on the verb phrase elliptical disambiguation (ELLDIS) and similar-
ity (ELLSIM) tasks introduced in the previous chapter.

Non-Neural Baseline Models We compare our neural verb representations (Table 5.1) with
the two non-neural verb representation methods from the type-driven literature [GS11a],
already mentioned in the introduction of this chapter, but reiterated below. On the left is the
Kronecker representation, on the right is the relational representation:

V Kron = va ⌦ va V Rel =
X

i

si ⌦ oi

Fusion We consider two ways of fusing our neural verb matrices into a single representa-
tion, middle and late fusion representations after Bruni, Tran, and Baroni [BTB14]. Middle
fusion takes a weighted average of the two verb representations, using the result to com-
pute similarity scores. Late fusion uses each representations to compute separate similarity
scores and then averages the results. Given a weighted average M↵(A, B) = ↵A + (1� ↵)B

for ↵ 2 [0..1], and V1, V2 verbs, the middle and late fusion operations are defined as follows:

sim(M↵(V S

1 , V O

1), M↵(V S

2 , V O

2)) (5.11)

148 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

M↵(sim(V S

1 , V S

2), sim(V O

1 , V O

2)) (5.12)

The same fusion operations are used in the compositional tasks, where either the verb matri-
ces are averaged before composition, or the cosine scores are averaged after. Our values for
↵ are 0.1 increments ranging from 0 (only the subject matrix) to 1 (only the object matrix).

Clustering In their article introducing the adjective skipgram model, Maillard and Clark
[MC15] argue that “cosine similarity, while suitable for vectors, does not capture any infor-
mation about the function of matrices as linear maps". This argument holds for generalisa-
tions of matrices to higher order tensors, such as cubes and tesseracts. The functions of these
tensors are multilinear maps, e.g. bilinear for cubes and trilinear for tesseracts. Thus, follow-
ing Maillard and Clark, we postulate that a suitable measure of similarity for two functions
should be related to how similarly they transform their arguments. We say two words W, W 0

with tensor representations W,W0 and arguments d1, · · · , dn are similar whenever Wd1...dn

is similar to W0
d1...dn, for the vector di of every argument that they have transformed in the

corpus. The degree of similarity between W and W 0 is obtained by taking the median of the
degrees of similarities of their applications on the arguments. Since going through all the
instantiations of the arguments is expensive, we cluster the most frequent argument vectors
and work with the similarity between the two transformations applied to the centroids of
each cluster. The resulting similarity function is defined as follows, for D the set of tuples of
cluster centroids:

tensorsim : med
hd1,...,dni2D

cos(Wd1...dn,W0
d1...dn) (5.13)

In the case of cube embeddings for transitive verbs, this definition is equivalent to consid-
ering the most frequent subjects and objects of the verb, clustering them separately, then
applying the cube to the centroid vectors and take the median. The metrics that we use for
the different representations from Table 5.1 are given in Table 5.2.

Metric Formula

vecsim cos(a,b) =
a · b

|a||b|

matsimS med
s2S

cos(V 1s, V 2s)

matsimO med
o2O

cos(V 1o, V 2o)

cubesim med
hs,oi2A

cos(V1os,V2os)

TABLE 5.2: Similarity metrics on vectors, matrices and cubes, based
on clustering centroids.

Composition Models Similar to the evaluation study in Chapter 4, we define a number of
composition models to test on the datasets involving sentences. For the current study, we
consider three baseline models: either a non-compositional model involving just the verb
representation (with clustering applied in the cases of matrix and cube representations), or
a compositional baseline, which are the arithmetic models of [ML10], which given a sen-
tence w1w2...wn produces the addition or multiplication of its word vectors. Furthermore,
the compositional models based on the non-neural verb representations are also considered.

5.3. Evaluation 149

The results for these will be different from those in Chapter 4, as the underlying word vectors
are different, i.e. 100-dimensional skipgram vectors. Then, we evaluate composition models
for the different neural verb representations, where the main new models take a verb ma-
trix/cube representation, compose it with vectors of its subject and object, and compute a
final sentence representation via middle or late fusion. Composition in these models is (a
variant of) tensor contraction, as used for example in [MCG14; KSP13; Mil+14].

Intransitive Models The datasets ML2008 and ML2010, respectively, contain pairs of subject-
verb, and verb-object phrases. Next to the arithmetic baseline that adds the vectors, we apply
middle and late fusion on the separate subject-verb and verb-object matrices, with as a spe-
cial case an unmixed model for the case where a single matrix verb embedding is available.
The specification of these fusion models for subject-verb and verb-object phrases are in the
table below:

Phrase subj verb verb obj

Middle M↵(V
S

, V
O

) s M↵(V
S

, V
O

) o

Late M↵(V
S

s, V
O

s) M↵(V
S

o, V
O

o)

Transitive Models To model a transitive sentence of the form subj verb obj, we compare verb-
only and arithmetic baselines with tensor-based models as below:

Model type Formula

Middle T (s, M↵(V
S
, V

O
),o)

Late M↵(T (s, V
S
,o), T (s, V

O
,o))

Two M↵(Ts(s, V
S
,o), To(s, V

O
,o))

Cube Vos

TABLE 5.3: Composition models for transitive sentences. T rep-
resents any standard tensor-based composition model for transitive
sentences, Ts is subject-directed composition, To is object-directed
composition. When ↵ = 0 or ↵ = 1, the models reduce to the case

of using one of the two verb matrix embeddings.

However, note that here we define a new class of models (Two), where we apply a separate
model for the V

S matrix with the subject vector, and a distinct model for the V
O matrix with

the object vector, that then get fused to give a final representation. Concretely, this leads
to three new composition models, Copy Argument, Copy Argument Sum and Categorical
Argument, described below:

Model Formula

CA M↵

�
s
T V

S
� o, V

O
o� s

�

CAS M↵

�
s
T V

S
+ o, V

O
o + s

�

CATA M↵

�
s
T V

S
, V

O
o
�

150 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

Sentence Encoders and Contextualised Representations Similar to the previous chapter,
we include also the results of state of the art sentence encoders and contextualised repre-
sentations, to allow for a comparison with our proposed modelling. In the case of sen-
tence encoders, we take a number of different pretrained models and directly encode the
sentences in the datasets of interest, where for the verb phrase elliptical datasets we re-
port also the resolved sentence encodings. We consider the same encoders used in Chapter
4: Doc2vec [LB16], Skipthoughts [Kir+15], InferSent [Con+17], and Universal Sentence En-
coder [Cer+18]. For the case of contextualised embeddings, we take pretrained models for
ELMo [Pet+18] and BERT [Dev+19]5 to give a contextualised representation for the words in
a sentence, then take the mean of these to give a sentence embedding.

5.4 Results

In this section we present the experimental results on the tasks described in section 5.3, com-
paring the various different verb representations.

Verb Similarity The correlation results on verb similarity tasks are displayed in Table 5.4.
The first two columns are Spearman’s ⇢ between the original skipgram verb vectors and
the vectors trained on subjects and objects as context using the similarity metrics of Table
5.2. For the matrix and cube representations, we report the best scores of the subject-verb or
verb-object matrices, using the matrix similarity metric from Table 5.2 and the parameterised
middle/late fusion, and refer the reader to Appendix B. Finally, for the cubes the reported
score is the highest obtained by the different verb argument clustering configurations, again
with the full results tables in Appendix B.

va vs/o/b V a V s/o Va

MENv 0.282 0.248 0.500 0.589 0.035
SimLexv 0.046 0.272 0.163 0.340 0.024
VerbSim 0.338 0.563 0.085 0.550 -0.076
SimVerbd 0.224 0.249 -0.023 0.291 -0.012
SimVerbt 0.183 0.197 0.019 0.240 -0.025

TABLE 5.4: Spearman ⇢ correlation on verb similarity datasets. The
subscript v indicates that we are looking at the partial verb-only
dataset. For SimVerb we distinguish between the development
SimVerbd and test set SimVerbd. We compare standard skipgram
vectors va with specific context vectors vs/o/b, matrices with full sen-
tence context V a, our model that predicts one dependency argument

V s/o, and cubes with a full sentence context Va.

For the case of verb vectors, the general skipgram model is outperformed by the vectors
trained on the verb arguments as context, and in fact these show the highest performance
on the VerbSim dataset. That the matrix and cube representations with the full sentence as

5For ELMo, we used Google’s module at https://tfhub.dev/google/elmo/2, for BERT
we used the python bert_embedding package from https://github.com/imgarylai/
bert-embedding.

https://tfhub.dev/google/elmo/2
https://github.com/imgarylai/bert-embedding
https://github.com/imgarylai/bert-embedding

5.4. Results 151

context perform rather poorly, and in many cases worse than the vector representations, il-
lustrates that the choice of context is too general for these higher-order representations. On
four out of the five tasks, however, our proposed method of training matrices with a re-
stricted notion of context, outperforms all other models, most significantly so for the 3000
entry test subset of the SimVerb dataset where we observed an increase from 0.183 to 0.240.

Neural Tensor Clustering Table 5.5 shows the correlation scores on the verbs of the com-
positional tasks discussed in the previous section. In this experiment, we are performing
the sentence disambiguation and similarity tasks by only using the verbs of the sentences.
In each case, we first apply the verb tensors to their subject and object clusters, use middle
or late fusion where appropriate, compute their degrees of similarity, and use this degree
for disambiguation or a straight similarity calculation. The implementation configurations
are the same as in the verb similarity tasks. We observe the same pattern in the results: re-

va vs/o/b V a V s/o Va

ML2008 0.067 0.055 0.161 0.124 0.178
ML2010v 0.396 0.528 -0.004 0.638 0.003
GS2011 0.226 0.331 0.369 0.399 -0.028
KS2013a 0.184 0.100 0.062 0.218 0.003
KS2013b 0.445 0.638 -0.055 0.695 -0.025
ELLDIS 0.341 0.389 0.386 0.516 0.047
ELLSIM 0.370 0.577 0.022 0.643 0.011

TABLE 5.5: Spearman ⇢ correlation for verbs of compositional tasks.
Each score is a maximum score out of possible clusters and fusion
weights. We again compare standard skipgram vectors va with spe-
cific context vectors vs/o/b, matrices with full sentence context V a, our
model that predicts one dependency argument V s/o, and cubes with

a full sentence context Va.

training of the verb vectors slightly improves the performance. This is against the erratic
performance of the full context matrix representations and the very poor performance of the
cube representations (on all but the ML2008 dataset). Again, our proposed matrix repre-
sentations with a restricted context significantly outperforms the other methods. However,
note that these results again are the highest of a parameter sweep over the cluster and fusion
settings of the representations, with full results in Appendix B.

Compositional Models The most interesting results come from the compositional tasks.
These compose a representation for each sentence of the dataset by taking into account the
representations of all of the words within that sentence, rather than by only working with
individual word representations, as was done in the previous two tasks. The results in Table
5.6 show three baseline models on the left, and the three tensor skipgram representations
that we trained, on the right. First, there is the arithmetic baseline C(+,�) where we com-
pose either by adding or point-wise multiplying all the vectors in a sentence. Then, there are
two non-neural baseline models for which we compose by using either the Kronecker verb
matrix, C(V Kron), or the relational matrix C(V Rel), in one of the composition models de-
scribed above. We do the same for the two neural matrix representations on the right: first,

152 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

there is the matrix that is trained by predicting a full sentence context after transforming
either the verb’s subject or object (C(V a)), whereas our proposed representations is the verb
matrix that transforms one of its arguments (subject/object) and predicts the other argument
as context (C(V s/o)). Finally, we compare to the cube model, in which a cube is trained by
transforming both subject and object vectors, and predicting the remainder of the sentence
as context (C(Va)).

Baseline Neural
C(+,�) C(V Kron) C(V Rel) C(V a) C(V s/o) C(Va)

ML2008 0.171 0.082 0.192 -0.045 0.188 —
ML2010v 0.541 0.402 0.511 0.000 0.550 —
GS2011 0.187 0.205 0.323 0.247 0.536 -0.021
KS2013 0.181 0.281 0.188 0.203 0.372 -0.043
KS2013b 0.672 0.530 0.511 0.542 0.753 0.064
ELLDIS 0.308 0.304 0.368 0.221 0.559 0.030
ELLSIM 0.671 0.522 0.646 0.532 0.759 0.093

TABLE 5.6: Spearman ⇢ scores on compositional tasks. C(+,�) denotes
arithmetic models, whereas the other rows represent the best score for a
compositional model with the different verb representations (C(V Kron):
Kronecker matrix, C(V Rel): Relational matrix, C(V a): Skipgram matrix
with sentence context, C(V s/o): Skipgram matrix with argument as con-

text, C(Va): Skipgram cube with sentence context).

The results table shows that the neurally trained verb matrices with full sentences as context
don’t significantly improve performance compared to the non-neural compositional base-
lines, and in the case of disambiguation they are inferior. This shows that the choice of
context matters a lot: here, the full sentence is taken as a context, but this is not discrimina-
tory enough to achieve high correlation, whereas for instance the Relational matrix directly
encodes subject and object information, allowing it to be more robust on the compositional
tasks.

Similarly to the verb similarity results, the cubes show a very poor performance, which
we argue is due to data sparsity. Even though the cubes implicitly model properties of ar-
guments of the verbs, their representation is too sparse to effectively model anything. More-
over, as with the verb matrices V a, they consider the full sentence as context since there is no
straightforward other way of defining this. Our proposed matrix model remedies both the
sparsity problem and the choice of context, and outperforms all the other representations,
save on the ML2008 dataset.

Sentence Encoders and Contextualised Representations We compare the results of our pro-
posed neural tensor embeddings with sentence encoder models in Table 5.7, and with the
ELMo and BERT embeddings in Table 5.8.
Where we see a pattern similar to our study in Chapter 4 for the sentence encoders, namely
that the tensor-based models work well on disambiguation tasks, but alternative sentence
encoding methods work better on similarity tasks, we find that our embeddings generally
outperform the contextualised encodings (ELMO, BERT) on all tasks. Although it is still an
open question to what extent such language models are able to encode syntactic information,
they definitely do not encode dependency information explicitly as in our proposal, which

5.4. Results 153

C(V s/o) D2V1 D2V2 ST IS1 IS2 IS3 IS4 USE

ML2008 0.188 0.139 0.192 0.078 0.181 0.220 0.149 0.169 0.039
ML2010 0.550 0.512 0.447 0.494 0.631 0.492 0.636 0.405 0.325
GS2011 0.536 0.098 0.102 -0.157 0.297 0.320 0.324 0.213 0.094
KS2013 0.372 0.193 0.212 0.051 0.172 0.032 0.176 -0.021 0.210
KS2014 0.753 0.692 0.705 0.546 0.784 0.676 0.720 0.586 0.539

MLELLDISlin — 0.090 0.233 0.232 0.199 0.224 0.108 0.135 0.105
MLELLDISres 0.221 0.089 0.216 0.167 0.228 0.269 0.144 0.156 0.154
MLELLDISabl — 0.095 0.242 0.159 0.215 0.226 0.141 0.169 0.109

ELLDISlin — 0.199 0.227 -0.193 0.347 0.384 0.330 0.344 0.269
ELLDISres 0.559 0.231 0.253 -0.172 0.344 0.337 0.293 0.248 0.277
ELLDISabl — 0.195 0.259 -0.130 0.353 0.357 0.300 0.291 0.240

ELLSIMlin — 0.593 0.622 0.585 0.779 0.701 0.748 0.641 0.647
ELLSIMres 0.760 0.698 0.692 0.604 0.803 0.749 0.768 0.687 0.680
ELLSIMabl — 0.652 0.655 0.471 0.782 0.730 0.749 0.682 0.640

TABLE 5.7: Spearman ⇢ scores on compositional tasks, with state of the art sentence en-
coders. D2V1: Doc2Vec1, D2V2: Doc2Vec 2, ST: Skip-Thought, IS1: InferSent 1 (4096), IS2:
InferSent 2 (4096), IS3: InferSent 1 (300), IS4: InferSent 2 (300), USE: Universal Sentence

Encoder.

could explain the beneficial performance of our representations on the evaluation tasks that
tend to contain relatively short sentences with a focus on syntactic awareness. We see this
reflected in the fact that the contextualised embeddings of ELMO perform best on the ELL-
SIM dataset, granted that the ellipsis is resolved first.

The influence of the fusion parameter One interesting aspect of our proposed matrix model
is that two separate matrices are trained, that each optimise the prediction of one of the
verbs dependency arguments (subject/object), given the other argument. When composing
a sentence embeddings, we then have a choice of setting the parameter ↵ to fuse together the
matrices, or their respective compositions. To see what is the effect of this parameter, we look
at the influence of the value of alpha — 0 for the pure subject-verb matrix, 1 for the pure verb-
object matrix, weighted sum of both in between — on the performance on the compositional
tasks. For each dataset, we show the average effect across all tested composition models,
showing this effect both for middle and late fusion. Table 5.9 displays the effect of the ↵

parameter on the intransitive sentence datasets ML2008 and ML2010.
In the case of ML2008 there is a preference for the subject-verb matrix (objects as contexts),
and it is the other way around for ML2010. Performance goes down once the matrices are
mixed in middle fusion (the light green line), whereas generally the late fusion boosts per-
formance (the dark green line), illustrating the important of the choice between middle and
late fusion.

Table 5.10 shows the effect of ↵ on all other datasets. As a general pattern, on these
datasets the choice of middle versus late fusion has significance (with generally later fusion
being the better choice) though the effect of ↵ is the same regardless of the fusion type, except
on the GS2011 dataset. What is most notable is that for both GS2011 and ELLDIS, which
contain the same verbs, there is a preference for the subject-verb matrix, with the peaks of
the graphs for values of ↵ lower than 0.5, whereas the verb-object matrix is more important

154 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

C(V s/o) ELMo BERT Small BERT Large

ML2008 0.188 0.166 0.105 0.030
ML2010v 0.550 0.539 0.216 0.356
GS2011 0.536 0.108 0.187 0.292
KS2013 0.372 0.243 0.232 0.349
KS2014 0.753 0.728 0.520 0.616

MLELLDISlin — 0.193 0.373 0.315
MLELLDISres 0.221 0.182 0.103 0.342
MLELLDISabl — 0.123 0.089 0.193

ELLDISlin — 0.232 0.360 0.368
ELLDISres 0.559 0.210 0.216 0.274
ELLDISabl — 0.207 0.197 0.365

ELLSIMlin — 0.734 0.595 0.580
ELLSIMres 0.759 0.779 0.631 0.647
ELLSIMabl — 0.703 0.560 0.582

TABLE 5.8: Spearman ⇢ scores on compositional tasks, with state of the
art contextualised embeddings. For BERT, we use the small and large ver-
sions, for the small version we use both uncased and cased book corpus.

TABLE 5.9: The effect of the ↵ fusion parameter on middle and late fusion for in-
transitive sentence datasets.

in the other datasets. The explicit results for all values of ↵ and per composition operator
are listed in Appendix B.

5.5. Conclusion 155

TABLE 5.10: The effect of the ↵ fusion parameter on middle and late fusion for
datasets GS2011, KS2013, KS2014, MLELLDIS, ELLDIS, and ELLSIM.

5.5 Conclusion

Type-driven compositional distributional semantics has shown that the symbolic formal se-
mantic structure of a sentence can be transformed into a vectorial form, by representing the
words therein as tensors whose ranks depend on their grammatical roles: nouns are repre-
sented as vectors, matrices as adjectives, transitive verbs as cubes and so on. Tensors are
multilinear maps and thus the type-driven distributional models offer a canonical form of
composing them: via tensor contraction. The tensors, however, are high dimensional, and it
is not clear how they should be learned.

In this final contribution chapter of this thesis, we generalised the widely used skipgram
model to learn neural tensor embeddings for words with any number of dependencies. The
role of a word tensor is to transform the embeddings of its dependencies and train a skip-
gram objective to predict context vectors for the results of these transformations. The notion
of context can vary here: we worked with full sentence contexts as well as restricted ver-
sions thereof, where a tensor is applied to some of its dependencies and the results are used

156 Chapter 5. Lexical Semantics: Neural Tensor Embeddings

to predict the rest. Our model reduces to the original noun skipgram model when no depen-
dencies are involved, and covers the adjective-noun skipgram model of Maillard and Clark
[MC15], where there is only one dependency.

We implemented our model on transitive verbs, learning cubes for them in a full sentence
context, and matrix and vector approximations in a restricted subject and object context. In
the approximated cases, the learned verb-subject matrix is applied to the subject vectors to
predict the object context vectors, and the verb-object matrix is applied to the object vectors
to predict the subject context vectors.

We experimented on word similarity, sentence similarity and verb disambiguation tasks.
For verb similarity, we considered the verb-only fragments of MEN and SimLex-999, the 130
element VerbSim dataset [YP06], and the SimVerb-3500 dataset of Gerz et al. [Ger+16]. Our
neural matrix embeddings provided the best results in all of the tasks, beating the full rank
tensors as well as the baseline vectors – both with the general and restricted contexts. We fur-
ther tested our models on the intransitive sentence similarity dataset of Mitchell and Lapata
[ML10] and its transitive extension [KSP13], as well as to the intransitive sentence disam-
biguation dataset of Mitchell and Lapata [ML08] and its transitive extensions [GS11a; KS13].
The results have the same pattern: the neural matrix approximations of verbs outperform
their neural cube representations, their non-neural matrix representations, the additive and
multiplicative models, and the verb-only vector and tensor baselines. We inspected the ef-
fect of fusion on task performance, and saw that some tasks benefitted more from a focus on
the objects-as-contexts verb matrices, whereas other tasks preferred the subjects-as-context
verb matrices.

Given the full generality of the model and the promising initial experimental results, the
tensor skipgram model paves the way for a new generation of type-driven distributional
semantic models. In the disambiguation and similarity tasks that we evaluated on in this
study, we found that the best models of verbs were those that used a specific context — the
subject or object — which came from a dependency parsed corpus. Although this is not a
pure tensor-based model as it uses two matrix approximations of the verb, this model strikes
a balance between feasibility of training on the one hand and specificity of the encoded
information on the other hand. In future work, we aim to expand this model in two ways:
first, we wish to investigate more of the properties of the representations to gain a better
insight of what is really encoded in the representations themselves — as opposed to the more
task-centric view we held here. Second, we would like to develop these representations for
any word in a dependency parsed sentence, which would then allow us to evaluate not just
on focussed tasks but also on more general natural language understanding tasks, such as
natural language inference, or question answering.

157

Part IV

Further Down

159

Chapter 6

Conclusion & Future Work

This thesis presented the result of a three years’ investigation into compositional distribu-
tional models. We summarise here the main contributions of the thesis and end with some
directions for future endeavours.

6.1 Summary

Where we started off by giving the general background of word embeddings and their com-
positionality in Chapter 1, in Chapter 2 we delved deeper into a particular, type-driven,
approach to composition, which started off with the work of Coecke, Sadrzadeh, and Clark
[CSC10] and Coecke, Grefenstette, and Sadrzadeh [CGS13], describing in the language of
category theory how to interpret the grammatical structure of a sentence as a multi-linear
transformation applied to the embeddings of the individual words in a sentence.

The models developed along these lines have been experimented with extensively [GS15;
KSP13; Mil+14], but all assume that there is a one-on-one relation between the text of a sen-
tence and its meaning. Thus, the challenge we addressed in this thesis, is that of finding a
compositional distributional model that is robust against cases in which the meaning of a
sentence is not explicitly given by its surface form; the test case for this was ellipsis with
anaphora. To solve this challenge, we developed the theory for a compositional vector space
model of ellipsis and anaphora, relying on a unimodal extension of the Lambek Calculus to
provide a grammatical model for ellipsis and anaphora, in Chapter 3. This model could then
deal with the recovering of implicit semantic content (as one finds in examples of ellipsis), by
means of a limited form of contraction in the grammar logic. We discussed how this model
uses different structural rules to accommodate different linguistic phenomena, and as such
can be ported to deal with pronoun relativisation as well. That the theory does not always
suit the implementation was shown by the fact that a model that directly maps types to vec-
tor spaces and proofs to (multi-)linear maps will give unwanted predictions in the presence
of ambiguous elliptical phrases: different interpretations of an ambiguous sentence were
shown to coincide in meaning. To amend this, we relaxed the model to a setting in which a
non-linear term calculus interprets our grammar logic with controlled contraction. We then
show how the structural ambiguity puzzle can be solved on the level of semantics.

In order to give experimental support for the models that deal with ellipsis and anaphora,
we introduced in Chapter 4 three new datasets that allow one to contrast concrete distribu-
tional models that do not resolve ellipsis, i.e. the what-you-see-is-what-you-get approach,
with models that perform linguistic analysis to give the intended meaning of a sentence.

160 Chapter 6. Conclusion & Future Work

Using these new tasks, we showed that indeed resolving verb phrase ellipsis gives a posi-
tive boost to the correlation of a model with human judgments. Moreover, the experiments
showed that state of the art neural sentence embeddings are not always the optimal choice
when assessing sentence comprehension.

Finally, in Chapter 5 we address the issue of lexical semantics in a tensor-based model:
although some methods have been around to concretely derive the content of word tensors,
most of these approaches either suffer from data sparsity issues or from overparameterised
training models. To amend this, we formulated a generalisation of the well-known skip-
gram model [Mik+13] to describe a class of models that may be implemented for any word
of any grammatical type. We instantiated this model on the case of transitive verbs, and
evaluated on all the compositional distributional tasks that we had considered so far. The
results indicated that our matrix decomposition model, which trains two separate matrices
per verb, always outperformed previous analytical approaches to verb representation, and
mostly outperformed neural sentence encoders and contextualised embeddings.

6.2 Further Down

The work in this thesis offers a number of potential future research directions, both on the
level of theory and on the level of experimentation.

On the theoretical side, this thesis gives a theoretical extension of the categorical frame-
work of Coecke, Grefenstette, and Sadrzadeh [CGS13] by making use of the Lambek Calcu-
lus with the structural control modalities of [Moo96]. A number of issues with our proposal
remain open. First of all, we worked with a controlled form of contraction. However, the
results of Kanovich, Kuznetsov, and Scedrov [KKS16; KKS17] show that even a controlled
form of contraction may lead to undecidability of the employed grammar logic. Although
the possibility of undecidability does not directly impede concrete experimentation with the
models, it does beg further investigation on the formal properties of the proposed theoretical
model. One possible solution is to bound the number of applications of the contraction rule
to get a light version of the logic that by its bound becomes decidable. Another theoretical
issue was that the direct interpretation of types and proofs as vector spaces and multi-linear
maps was not able to distinguish the strict and sloppy readings of verb phrase ellipsis. Al-
though we mended this by modelling the vector semantics with a lambda calculus as an
intermediary language, a current approach to solve this issue without relying on lambdas,
is to replace vector spaces with Fock spaces: these are spaces which offer a choice between
any number of tensor products of a given vector space. One can then extract the relevant
number of copies of a vector space whenever the grammar logic wills it.

On the experimental side, one of the limits of the type-driven approach to composition
of distributional representation is scalability: while neural approaches are able to encode
arbitrary sentences, the type-driven approach lacks this flexibility for two reasons. First,
unbounded parsing remains a challenge in the typelogical approach; second, the tensor-
based approach relies on high quality tensor representations for words, and methods to
learn these have been theoretically established — especially in the last chapter of this thesis
— but haven’t been implemented on full scale yet. Thus, one potential avenue for research
is to make use of systems that have learned how to assign types to words in a typelogical
grammar.

6.2. Further Down 161

Work on extracting categorial lexicons form structured data is abundant: there is the
unification algorithm of Buszkowski and Penn [BP90], extensions [BR01], and the thesis of
Kanazawa [Kan95]. In addition, there is the CCGBank [HS07], which contains CCG deriva-
tions for the dependency trees in the Penn Treebank. On top of the CCGBank, parsers and su-
pertaggers have been developed [XAC15; LLZ16]. On the multimodal front, Moot [Moo15]
describes a typelogical treebank for French and Moot [Moo18] a language-independent chart
parsing method. One promising new direction that interacts well with the approach advo-
cated in this thesis, uses self-attention neural networks to create a system that can, after
training, map raw text to word types [KMD19].

Next to extracting grammatical types, the other main avenue for research is to expand
the implementation that we gave in Chapter 5 of a tensor-based skipgram model to scale
up to longer sentences, and be able to evaluate these representations on large datasets such
as the Stanford Natural Language Inference datasets (SNLI, [Bow+15]) and it’s multi-genre
and crosslingual incarnations (MNLI, [WNB18], XNLI, [Con+18]).

Finally, another potential line of research is to extract a large scale tensor-based model
from current state of the art contextualised embeddings like ELMo [Pet+18] and BERT [Dev+19].
Such models assume that the embedding of a word is a vector that is a function of all other
words in the sentence the word occurs in. This parameterisation naturally allows one to
model some words as a higher order tensor that, by the fact that it encodes a multilinear
map, contextualises itself in its arguments. For example, in the adjective-noun case, the vec-
tor for the adjectivally modified noun depends on the vector for the noun and the effect of
the adjective matrix on it.

Then, to end: although the contributions of this thesis provide support for the relevance of
type-driven models in a world that appears to be focused on neural methods, many ques-
tions arise. It is my hope that future research in this field may improve our understanding
of the relevance of linguistic knowledge in semantic representations.

163

Bibliography

[Aba+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, et al. “Tensorflow: A system for large-scale machine learning”. In:
12th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 16). 2016, pp. 265–283.

[Abr09] Samson Abramsky. “No-cloning in categorical quantum mechanics”. In:
Semantic Techniques in Quantum Computation (2009), pp. 1–28.

[ALM19] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A simple but tough-to-
beat baseline for sentence embeddings”. In: 5th International Conference
on Learning Representations, ICLR 2017. 2019.

[BBZ14] Marco Baroni, Raffaela Bernardi, and Roberto Zamparelli. “Frege in space:
A program of compositional distributional semantics”. In: LiLT (Linguis-
tic Issues in Language Technology) 9 (2014).

[Bim14] Katalin Bimbó. Proof theory: Sequent calculi and related formalisms. CRC
Press, 2014.

[Boj+17] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
“Enriching word vectors with subword information”. In: Transactions of
the Association of Computational Linguistics 5.1 (2017), pp. 135–146. URL:
https://www.aclweb.org/anthology/Q17-1010.

[Bow+15] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher
D Manning. “A large annotated corpus for learning natural language
inference”. In: Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. 2015, pp. 632–642.

[BP90] Wojciech Buszkowski and Gerald Penn. “Categorial grammars deter-
mined from linguistic data by unification”. In: Studia Logica 49.4 (1990),
pp. 431–454.

[BR01] Roberto Bonato and Christian Retoré. “Learning rigid lambek grammars
and minimalist grammars from structured sentences”. In: Third workshop
on learning language in logic, Strasbourg. 2001, pp. 23–34.

[Bru+12] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. “Dis-
tributional semantics in technicolor”. In: Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Long Papers-Volume

https://www.aclweb.org/anthology/Q17-1010

164 BIBLIOGRAPHY

1. Association for Computational Linguistics. 2012, pp. 136–145. URL:
https://www.aclweb.org/anthology/P12-1015.

[BS11] Johan Bos and Jennifer Spenader. “An annotated corpus for the analysis
of VP ellipsis”. In: Language Resources and Evaluation 45.4 (2011), pp. 463–
494.

[BTB14] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. “Multimodal distribu-
tional semantics”. In: Journal of Artificial Intelligence Research 49 (2014),
pp. 1–47.

[Bus01] Wojciech Buszkowski. “Lambek grammars based on pregroups”. In: In-
ternational Conference on Logical Aspects of Computational Linguistics. Springer.
2001, pp. 95–109.

[BZ10] Marco Baroni and Roberto Zamparelli. “Nouns are vectors, adjectives
are matrices: Representing adjective-noun constructions in semantic space”.
In: Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics. 2010, pp. 1183–
1193. URL: https://www.aclweb.org/anthology/D10-1115.

[Cer+18] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni
St John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris
Tar, et al. “Universal sentence encoder”. In: arXiv preprint arXiv:1803.11175
(2018). URL: https://arxiv.org/pdf/1803.11175.pdf.

[CGS13] Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh. “Lam-
bek vs. Lambek: Functorial vector space semantics and string diagrams
for Lambek calculus”. In: Annals of pure and applied logic 164.11 (2013),
pp. 1079–1100.

[CH16] Karel Chvalovskỳ and Rostislav Horčík. “Full lambek calculus with con-
traction is undecidable”. In: The Journal of Symbolic Logic 81.2 (2016),
pp. 524–540.

[Chu40] Alonzo Church. “A formulation of the simple theory of types”. In: The
Journal of Symbolic Logic 5.2 (1940), pp. 56–68.

[Cla13] Stephen Clark. “Type-driven syntax and semantics for composing mean-
ing vectors”. In: Quantum Physics and Linguistics: A Compositional, Dia-
grammatic Discourse (2013), pp. 359–377.

[Cla15] Stephen Clark. “Vector Space Models of Lexical Meaning”. In: The Hand-
book of Contemporary Semantic Theory. John Wiley & Sons, Ltd, 2015.
Chap. 16, pp. 493–522. ISBN: 9781118882139. DOI: 10.1002/9781118882139.
ch16. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/9781118882139.ch16. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/9781118882139.ch16.

https://www.aclweb.org/anthology/P12-1015
https://www.aclweb.org/anthology/D10-1115
https://arxiv.org/pdf/1803.11175.pdf
http://dx.doi.org/10.1002/9781118882139.ch16
http://dx.doi.org/10.1002/9781118882139.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118882139.ch16
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118882139.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118882139.ch16
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118882139.ch16

BIBLIOGRAPHY 165

[Con+17] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and An-
toine Bordes. “Supervised Learning of Universal Sentence Represen-
tations from Natural Language Inference Data”. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing. 2017,
pp. 670–680.

[Con+18] Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel
Bowman, Holger Schwenk, and Veselin Stoyanov. “XNLI: Evaluating
Cross-lingual Sentence Representations”. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing. Brussels, Bel-
gium: Association for Computational Linguistics, 2018, pp. 2475–2485.
DOI: 10.18653/v1/D18-1269. URL: https://www.aclweb.org/
anthology/D18-1269.

[CP01] Peter W Culicover and Paul M Postal. Parasitic gaps: A history. MIT Press,
2001.

[CSC10] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. “Mathematical
foundations for a compositional distributional model of meaning”. In:
Linguistic Analysis 36.1 (2010), pp. 345–384.

[CWB18] WooJin Chung, Sheng-Fu Wang, and Samuel R. Bowman. “The Lifted
Matrix-Space Model for Semantic Composition”. In: Proceedings of the
22nd Conference on Computational Natural Language Learning. 2018, pp. 508–
518.

[DC19] András Dobó and János Csirik. “A comprehensive study of the param-
eters in the creation and comparison of feature vectors in distributional
semantic models”. In: Journal of Quantitative Linguistics (2019), pp. 1–28.

[Dev+19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for language un-
derstanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). 2019.

[DSP91] Mary Dalrymple, Stuart M Shieber, and Fernando CN Pereira. “Ellipsis
and higher-order unification”. In: Linguistics and philosophy 14.4 (1991),
pp. 399–452.

[Fin+01] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. “Placing search in context:
The concept revisited”. In: Proceedings of the 10th international conference
on World Wide Web. ACM. 2001, pp. 406–414.

[Fir57] John R Firth. “A synopsis of linguistic theory, 1930-1955”. In: Studies in
linguistic analysis (1957).

http://dx.doi.org/10.18653/v1/D18-1269
https://www.aclweb.org/anthology/D18-1269
https://www.aclweb.org/anthology/D18-1269

166 BIBLIOGRAPHY

[FPC15] Daniel Fried, Tamara Polajnar, and Stephen Clark. “Low-rank tensors
for verbs in compositional distributional semantics”. In: Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers). Vol. 2. 2015, pp. 731–736.

[Ger+16] Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen.
“SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity”. In: Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing. 2016, pp. 2173–2182.

[Gre+13] Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh
Sadrzadeh, and Marco Baroni. “Multi-step regression learning for com-
positional distributional semantics”. In: Proceedings of the 10th Interna-
tional Conference on Computational Semantics (IWCS 2013). 2013.

[Gre13] Edward Grefenstette. “Category-Theoretic Quantitative Compositional
Distributional Models of Natural Language Semantics”. PhD thesis. Ox-
ford, UK: University of Oxford, 2013. URL: http://arxiv.org/abs/
1311.1539.

[Gro01] Philippe de Groote. “Towards Abstract Categorial Grammars”. In: Pro-
ceedings of the 39th Annual Meeting on Association for Computational Lin-
guistics. ACL ’01. Toulouse, France: Association for Computational Lin-
guistics, 2001, pp. 252–259.

[GS11a] Edward Grefenstette and Mehrnoosh Sadrzadeh. “Experimental sup-
port for a categorical compositional distributional model of meaning”.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics. 2011, pp. 1394–
1404.

[GS11b] Edward Grefenstette and Mehrnoosh Sadrzadeh. “Experimenting with
transitive verbs in a discocat”. In: Proceedings of the GEMS 2011 Work-
shop on GEometrical Models of Natural Language Semantics. Association for
Computational Linguistics. 2011, pp. 62–66.

[GS15] Edward Grefenstette and Mehrnoosh Sadrzadeh. “Concrete models and
empirical evaluations for the categorical compositional distributional
model of meaning”. In: Computational Linguistics 41.1 (2015), pp. 71–118.

[Har54] Zellig S Harris. “Distributional structure”. In: Word 10.2-3 (1954), pp. 146–
162.

[Hen95] P. Hendriks. Comparatives and Categorial Grammar. Groningen disserta-
tions in linguistics. Grodil, 1995. URL: https://books.google.co.
uk/books?id=FeNUuAAACAAJ.

http://arxiv.org/abs/1311.1539
http://arxiv.org/abs/1311.1539
https://books.google.co.uk/books?id=FeNUuAAACAAJ
https://books.google.co.uk/books?id=FeNUuAAACAAJ

BIBLIOGRAPHY 167

[HRK15] Felix Hill, Roi Reichart, and Anna Korhonen. “Simlex-999: Evaluating
semantic models with (genuine) similarity estimation”. In: Computational
Linguistics 41.4 (2015), pp. 665–695.

[HS07] Julia Hockenmaier and Mark Steedman. “CCGbank: a corpus of CCG
derivations and dependency structures extracted from the Penn Tree-
bank”. In: Computational Linguistics 33.3 (2007), pp. 355–396.

[HS19] Jules Hedges and Mehrnoosh Sadrzadeh. “A Generalised Quantifier The-
ory of Natural Language in Categorical Compositional Distributional
Semantics with Bialgebras”. In: Mathematical Structures in Computer Sci-
ence 29.6 (2019), pp. 783–809.

[Iyy+15] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé
III. “Deep unordered composition rivals syntactic methods for text clas-
sification”. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers). Vol. 1. 2015, pp. 1681–
1691.

[Jac11] Bart Jacobs. “Bases as coalgebras”. In: International Conference on Algebra
and Coalgebra in Computer Science. Springer. 2011, pp. 237–252.

[Jac99] Pauline Jacobson. “Towards a variable-free semantics”. In: Linguistics
and philosophy 22.2 (1999), pp. 117–185.

[Jäg06] Gerhard Jäger. Anaphora and type logical grammar. Vol. 24. Springer Sci-
ence & Business Media, 2006.

[Jäg98] Gerhard Jäger. “A Multi-Modal Analysis of Anaphora and Ellipsis”. In:
University of Pennsylvania Working Papers in Linguistics 5.2 (1998), p. 2.

[Kan95] Makoto Kanazawa. “Learnable Classes of Categorial Grammars”. PhD
thesis. Stanford University, 1995.

[Kar15] Dimitri Kartsaklis. “Compositional Distributional Semantics with Com-
pact Closed Categories and Frobenius Algebras”. PhD thesis. University
of Oxford, 2015.

[Kar16] Dimitri Kartsaklis. “Coordination in categorical compositional distribu-
tional semantics”. In: arXiv preprint arXiv:1606.01515 (2016).

[KC14] Douwe Kiela and Stephen Clark. “A systematic study of semantic vector
space model parameters”. In: Proceedings of the 2nd Workshop on Contin-
uous Vector Space Models and their Compositionality (CVSC). 2014, pp. 21–
30.

[Kem+15] Ruth Kempson, Ronnie Cann, Eleni Gregoromichelaki Arasheshghi, and
Matthew Purver. “Ellipsis”. In: Chapter 4 of The Handbook of Contemporary
Semantic Theory 3 (2015), p. 114.

168 BIBLIOGRAPHY

[Kin01] Walter Kintsch. “Predication”. In: Cognitive science 25.2 (2001), pp. 173–
202.

[Kir+15] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel
Urtasun, Antonio Torralba, and Sanja Fidler. “Skip-thought vectors”. In:
Advances in neural information processing systems. 2015, pp. 3294–3302.

[KKS16] Max Kanovich, Stepan Kuznetsov, and Andre Scedrov. “Undecidability
of the Lambek calculus with a relevant modality”. In: International Con-
ference on Formal Grammar. Springer. 2016, pp. 240–256.

[KKS17] Max Kanovich, Stepan Kuznetsov, and Andre Scedrov. “Undecidability
of the Lambek calculus with subexponential and bracket modalities”. In:
International Symposium on Fundamentals of Computation Theory. Springer.
2017, pp. 326–340.

[KKS19] Max Kanovich, Stepan Kuznetsov, and Andre Scedrov. “Undecidability
of a Newly Proposed Calculus for CatLog3”. In: International Conference
on Formal Grammar. Springer. 2019, pp. 67–83.

[KL17] Yusuke Kubota and Robert Levine. “Pseudogapping as Pseudo-VP-Ellipsis”.
In: Linguistic Inquiry 48.2 (2017), pp. 213–257.

[KM97] Natasha Kurtonina and Michael Moortgat. “Structural control”. In: Spec-
ifying syntactic structures (1997), pp. 75–113.

[KMD19] Konstantinos Kogkalidis, Michael Moortgat, and Tejaswini Deoskar. “Con-
structive Type-Logical Supertagging with Self-Attention Networks”. In:
4th Workshop on Representation Learning for NLP, ACL (2019).

[KPS16] Dimitri Kartsaklis, Matthew Purver, and Mehrnoosh Sadrzadeh. “Verb
Phrase Ellipsis using Frobenius Algebras in Categorical Compositional
Distributional Semantics”. In: DSALT Workshop, European Summer School
on Logic, Language and Information (2016).

[Kru+16] Germán Kruszewski, Denis Paperno, Raffaella Bernardi, and Marco Ba-
roni. “There is no logical negation here, but there are alternatives: Mod-
eling conversational negation with distributional semantics”. In: Com-
putational Linguistics 42.4 (2016), pp. 637–660.

[KS13] Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. “Prior disambiguation of
word tensors for constructing sentence vectors”. In: Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing. 2013,
pp. 1590–1601.

[KS14] Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. “A Study of Entangle-
ment in a Categorical Framework of Natural Language”. In: Proceedings
of the 11th Workshop on Quantum Physics and Logic (QPL). Kyoto ‚Japan.
2014.

BIBLIOGRAPHY 169

[KSP12] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen Pulman. “A Uni-
fied Sentence Space for Categorical Distributional- Compositional Se-
mantics: Theory and Experiments”. In: Proceedings of 24th International
Conference on Computational Linguistics (COLING): Posters. Mumbai ‚In-
dia. 2012.

[KSP13] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen Pulman. “Sepa-
rating Disambiguation from Composition in Distributional Semantics”.
In: Proceedings of the Seventeenth Conference on Computational Natural Lan-
guage Learning. Sofia, Bulgaria: Association for Computational Linguis-
tics, Aug. 2013, pp. 114–123. URL: https : / / www . aclweb . org /
anthology/W13-3513.

[Lam58] Joachim Lambek. “The mathematics of sentence structure”. In: The Amer-
ican Mathematical Monthly 65.3 (1958), pp. 154–170.

[Lam61] Joachim Lambek. “On the calculus of syntactic types”. In: Structure of
language and its mathematical aspects 166 (1961), p. C178.

[Lam68] Joachim Lambek. “Deductive systems and categories”. In: Theory of Com-
puting Systems 2.4 (1968), pp. 287–318.

[Lam88] Joachim Lambek. “Categorial and categorical grammars”. In: Categorial
grammars and natural language structures. Springer, 1988, pp. 297–317.

[Lam99] Joachim Lambek. “Type grammar revisited”. In: International Conference
on Logical Aspects of Computational Linguistics. Springer. 1999, pp. 1–27.

[LB16] Jey Han Lau and Timothy Baldwin. “An Empirical Evaluation of doc2vec
with Practical Insights into Document Embedding Generation”. In: Pro-
ceedings of the 1st Workshop on Representation Learning for NLP. 2016, pp. 78–
86. DOI: 10.18653/v1/W16-1609. URL: https://www.aclweb.
org/anthology/W16-1609.

[LB96] Kevin Lund and Curt Burgess. “Producing high-dimensional semantic
spaces from lexical co-occurrence”. In: Behavior research methods, instru-
ments, & computers 28.2 (1996), pp. 203–208.

[LD97] Thomas K Landauer and Susan T Dumais. “A solution to Plato’s prob-
lem: The latent semantic analysis theory of acquisition, induction, and
representation of knowledge.” In: Psychological review 104.2 (1997), p. 211.

[Len08] Alessandro Lenci. “Distributional semantics in linguistic and cognitive
research”. In: Italian journal of linguistics 20.1 (2008), pp. 1–31.

[LG14] Omer Levy and Yoav Goldberg. “Dependency-based word embeddings”.
In: Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Vol. 2. 2014, pp. 302–308.

https://www.aclweb.org/anthology/W13-3513
https://www.aclweb.org/anthology/W13-3513
http://dx.doi.org/10.18653/v1/W16-1609
https://www.aclweb.org/anthology/W16-1609
https://www.aclweb.org/anthology/W16-1609

170 BIBLIOGRAPHY

[LGD15] Omer Levy, Yoav Goldberg, and Ido Dagan. “Improving distributional
similarity with lessons learned from word embeddings”. In: Transactions
of the Association for Computational Linguistics 3 (2015), pp. 211–225.

[LLZ16] Mike Lewis, Kenton Lee, and Luke Zettlemoyer. “Lstm ccg parsing”. In:
Proceedings of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies. 2016,
pp. 221–231.

[LM14] Quoc Le and Tomas Mikolov. “Distributed representations of sentences
and documents”. In: International Conference on Machine Learning. 2014,
pp. 1188–1196.

[LS88] Joachim Lambek and Philip J Scott. Introduction to higher-order categorical
logic. Vol. 7. Cambridge University Press, 1988.

[Mar+14] Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella
Bernardi, and Roberto Zamparelli. “A SICK cure for the evaluation of
compositional distributional semantic models”. In: Proceedings of the Ninth
International Conference on Language Resources and Evaluation (LREC-2014).
Reykjavik, Iceland: European Languages Resources Association (ELRA),
May 2014, pp. 216–223. URL: http://www.lrec-conf.org/proceedings/
lrec2014/pdf/363_Paper.pdf.

[MC15] Jean Maillard and Stephen Clark. “Learning adjective meanings with a
tensor-based skip-gram model”. In: Proceedings of the Nineteenth Confer-
ence on Computational Natural Language Learning. 2015, pp. 327–331.

[MC91] George A Miller and Walter G Charles. “Contextual correlates of seman-
tic similarity”. In: Language and cognitive processes 6.1 (1991), pp. 1–28.

[MCG14] Jean Maillard, Stephen Clark, and Edward Grefenstette. “A type-driven
tensor-based semantics for CCG”. In: Proceedings of the EACL 2014 Type
Theory and Natural Language Semantics Workshop. 2014, pp. 46–54.

[Mer01] Jason Merchant. The syntax of silence: Sluicing, islands, and the theory of
ellipsis. Oxford University Press on Demand, 2001.

[Mik+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
“Distributed representations of words and phrases and their compo-
sitionality”. In: Advances in neural information processing systems. 2013,
pp. 3111–3119.

[Mil+14] Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Matthew
Purver. “Evaluating neural word representations in tensor-based com-
positional settings”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 2014, pp. 708–719. URL:
https://www.aclweb.org/anthology/D14-1079.

[ML08] Jeff Mitchell and Mirella Lapata. “Vector-based models of semantic com-
position”. In: proceedings of ACL-08: HLT (2008), pp. 236–244.

http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://www.aclweb.org/anthology/D14-1079

BIBLIOGRAPHY 171

[ML10] Jeff Mitchell and Mirella Lapata. “Composition in distributional models
of semantics”. In: Cognitive science 34.8 (2010), pp. 1388–1429.

[MMS96] Glyn Morrill and Josep-Maria Merenciano Saladrigas. “Generalising dis-
continuity”. In: TAL. Traitement automatique des langues 37.2 (1996), pp. 119–
143.

[Mon70a] Richard Montague. “English as a formal language”. In: Linguaggi nella
Società e nella Tecnica (1970), pp. 189–224.

[Mon70b] Richard Montague. “Universal grammar”. In: Theoria 36.3 (1970), pp. 373–
398.

[Mon73] Richard Montague. “The proper treatment of quantification in ordinary
English”. In: Approaches to natural language. Springer, 1973, pp. 221–242.

[Moo09] Michael Moortgat. “Symmetric categorial grammar”. In: Journal of Philo-
sophical Logic 38.6 (2009), pp. 681–710.

[Moo15] Richard Moot. “A type-logical treebank for french”. In: Journal of Lan-
guage Modelling 3.1 (2015), pp. 229–264.

[Moo18] Richard Moot. “Chart Parsing Multimodal Grammars”. In: arXiv preprint
arXiv:1804.02286 (2018).

[Moo96] Michael Moortgat. “Multimodal linguistic inference”. In: Journal of Logic,
Language and Information 5.3-4 (1996), pp. 349–385.

[Moo97] Michael Moortgat. “Categorial type logics”. In: Handbook of logic and lan-
guage. Ed. by Johan van Benthem and Alice ter Meulen. Amsterdam: El-
sevier, 1997, pp. 93–177. ISBN: 978-0-444-81714-3. DOI: https://doi.
org/10.1016/B978-044481714-3/50005-9. URL: http://www.
sciencedirect.com/science/article/pii/B9780444817143500059.

[Mor12] Glyn V Morrill. Type logical grammar: Categorial logic of signs. Springer
Science & Business Media, 2012.

[MS16] Reinhard Muskens and Mehrnoosh Sadrzadeh. “Context Update for Lamb-
das and Vectors”. In: International Conference on Logical Aspects of Compu-
tational Linguistics. Springer. 2016, pp. 247–254.

[MS17] Reinhard Muskens and Mehrnoosh Sadrzadeh. “Lambdas, Vectors, and
Word Meaning in Context”. In: Proceedings of the 21st Amsterdam Collo-
quium. 2017, pp. 65–74. URL: https://semanticsarchive.net/
Archive/jZiM2FhZ/AC2017-Proceedings.pdf.

[Mus03] Reinhard Muskens. “Language, Lambdas, and Logic”. In: Resource-Sensitivity,
Binding and Anaphora. Dordrecht: Springer Netherlands, 2003, pp. 23–54.

[MV10] Glyn Morrill and Oriol Valentın. “On calculus of displacement”. In: Pro-
ceedings of the 10th International Workshop on Tree Adjoining Grammars and
Related Formalisms. 2010, pp. 45–52.

http://dx.doi.org/https://doi.org/10.1016/B978-044481714-3/50005-9
http://dx.doi.org/https://doi.org/10.1016/B978-044481714-3/50005-9
http://www.sciencedirect.com/science/article/pii/B9780444817143500059
http://www.sciencedirect.com/science/article/pii/B9780444817143500059
https://semanticsarchive.net/Archive/jZiM2FhZ/AC2017-Proceedings.pdf
https://semanticsarchive.net/Archive/jZiM2FhZ/AC2017-Proceedings.pdf

172 BIBLIOGRAPHY

[MV15] Glyn Morrill and Oriol Valentín. “Computational Coverage of TLG: Non-
linearity”. In: Proceedings of NLCS’15. Third Workshop on Natural Language
and Computer Science. Vol. 32. EasyChair Publications. 2015, pp. 51–63.

[MV16] Glyn Morrill and Oriol Valentín. “On the Logic of Expansion in Natural
Language”. In: Logical Aspects of Computational Linguistics. Celebrating 20
Years of LACL (1996–2016) 9th International Conference, LACL 2016, Nancy,
France, December 5-7, 2016, Proceedings 9. Springer. 2016, pp. 228–246.

[MVF11] Glyn Morrill, Oriol Valentín, and Mario Fadda. “The displacement cal-
culus”. In: Journal of Logic, Language and Information 20.1 (2011), pp. 1–
48.

[MW17] Michael Moortgat and Gijs Wijnholds. “Lexical and Derivational Mean-
ing in Vector-Based Models of Relativisation”. In: Proceedings of the 21st
Amsterdam Colloquium. 2017.

[Pan05] Patrick Pantel. “Inducing ontological co-occurrence vectors”. In: Pro-
ceedings of the 43rd Annual Meeting on Association for Computational Lin-
guistics. Association for Computational Linguistics. 2005, pp. 125–132.

[PB+14] Denis Paperno, Marco Baroni, et al. “A practical and linguistically-motivated
approach to compositional distributional semantics”. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Vol. 1. 2014, pp. 90–99.

[Pet+18] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. “Deep Contextualized
Word Representations”. In: Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). 2018, pp. 2227–2237.

[PF01] Martin J Pickering and Steven Frisson. “Processing ambiguous verbs:
Evidence from eye movements.” In: Journal of Experimental Psychology:
Learning, Memory, and Cognition 27.2 (2001), p. 556.

[PFC14] Tamara Polajnar, Luana Fagarasan, and Stephen Clark. “Reducing di-
mensions of tensors in type-driven distributional semantics”. In: Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 2014, pp. 1036–1046.

[PL07] Anne Preller and Joachim Lambek. “Free compact 2-categories”. In: Math-
ematical Structures in Computer Science 17.2 (2007), pp. 309–340.

[Pol16] Tamara Polajnar. “Collaborative Training of Tensors for Compositional
Distributional Semantics”. In: arXiv preprint arXiv:1607.02310 (2016).

[PRC14] Tamara Polajnar, Laura Rimell, and Stephen Clark. “Using sentence plau-
sibility to learn the semantics of transitive verbs”. In: arXiv preprint arXiv:1411.7942
(2014).

BIBLIOGRAPHY 173

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP). 2014,
pp. 1532–1543.

[RG65] Herbert Rubenstein and John B Goodenough. “Contextual correlates of
synonymy”. In: Communications of the ACM 8.10 (1965), pp. 627–633.

[Rim+16] Laura Rimell, Jean Maillard, Tamara Polajnar, and Stephen Clark. “Rel-
pron: A relative clause evaluation data set for compositional distribu-
tional semantics”. In: Computational Linguistics 42.4 (2016), pp. 661–701.

[Sad16] Mehrnoosh Sadrzadeh. “Quantifier Scope in Categorical Compositional
Distributional Semantics”. In: arXiv preprint arXiv:1608.01404 (2016).

[SCC13] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. “The Frobenius
anatomy of word meanings I: subject and object relative pronouns”. In:
Journal of Logic and Computation 23.6 (2013), pp. 1293–1317.

[SCC14] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. “The Frobenius
anatomy of word meanings II: possessive relative pronouns”. In: Journal
of Logic and Computation (2014), exu027.

[Sch98] Hinrich Schütze. “Automatic word sense discrimination”. In: Computa-
tional linguistics 24.1 (1998), pp. 97–123.

[SMW19] Mehrnoosh Sadrzadeh, Michael Moortgat, and Gijs Wijnholds. “A Frobe-
nius Algebraic Analysis for Parasitic Gaps”. In: Workshop on Semantic
Spaces at the Intersection of NLP, Physics, and Cognitive Science. 2019.

[SO96] Bayu Surarso and Horoakira Ono. “Cut elimination in noncommutative
substructural logics”. In: Reports on Mathematical Logic 30 (1996), pp. 13–
29.

[Soc+13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D
Manning, Andrew Ng, and Christopher Potts. “Recursive deep models
for semantic compositionality over a sentiment treebank”. In: Proceed-
ings of the 2013 conference on empirical methods in natural language process-
ing. 2013, pp. 1631–1642.

[Ste00] Mark Steedman. The syntactic process. MIT Press, 2000.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
isomorphism. Vol. 149. Elsevier, 2006.

[TC19] Aarne Talman and Stergios Chatzikyriakidis. “Testing the generaliza-
tion power of neural network models across NLI benchmarks”. In: Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP. 2019, pp. 85–94.

174 BIBLIOGRAPHY

[TP10] Peter D Turney and Patrick Pantel. “From frequency to meaning: Vector
space models of semantics”. In: Journal of artificial intelligence research 37
(2010), pp. 141–188.

[Val14] Oriol Valentín. “The hidden structural rules of the discontinuous Lam-
bek calculus”. In: Categories and Types in Logic, Language, and Physics.
Springer, 2014, pp. 402–420.

[Vas+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Atten-
tion is all you need”. In: Advances in neural information processing systems.
2017, pp. 5998–6008.

[Ver96] Jacobus Antonius Gerardus Versmissen. “Grammatical composition: modes,
models, modalities: logical and linguistic aspects of multimodal catego-
rial grammars”. PhD thesis. 1996.

[Wan90] Heinrich Wansing. “Formulas-as-types for a hierarchy of sublogics of
intuitionistic propositional logic”. In: Workshop on Nonclassical Logics and
Information Processing. Springer. 1990, pp. 125–145.

[Wij14] Gijs Wijnholds. “Categorical foundations for extended compositional
distributional models of meaning”. In: MSc. thesis (2014).

[Wij17] Gijs Jasper Wijnholds. “Coherent diagrammatic reasoning in composi-
tional distributional semantics”. In: International Workshop on Logic, Lan-
guage, Information, and Computation. Springer. 2017, pp. 371–386.

[Wij19] Gijs Wijnholds. “A proof-theoretic approach to scope ambiguity in com-
positional vector space models”. In: Journal of Language Modelling 6.2
(2019), pp. 261–286.

[WNB18] Adina Williams, Nikita Nangia, and Samuel R Bowman. “A broad-coverage
challenge corpus for sentence understanding through inference”. In: Pro-
ceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). 2018, pp. 1112–1122.

[WS18] Gijs Wijnholds and Mehrnoosh Sadrzadeh. “Classical Copying versus
Quantum Entanglement in Natural Language: The Case of VP-ellipsis”.
In: EPTCS 283, 2018, pp. 103-119 (2018), pp. 103–119. DOI: 10.4204/
EPTCS.283.8.

[WS19a] Gijs Wijnholds and Mehrnoosh Sadrzadeh. “A Type-Driven Vector Se-
mantics for Ellipsis with Anaphora using Lambek Calculus with Lim-
ited Contraction”. In: Journal of Logic, Language and Information (2019).

http://dx.doi.org/10.4204/EPTCS.283.8
http://dx.doi.org/10.4204/EPTCS.283.8

BIBLIOGRAPHY 175

[WS19b] Gijs Wijnholds and Mehrnoosh Sadrzadeh. “Evaluating Composition
Models for Verb Phrase Elliptical Sentence Embeddings”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). Association for Computational Linguistics, 2019.

[WSC19] Gijs Wijnholds, Mehrnoosh Sadrzadeh, and Stephen Clark. “Represen-
tation Learning for Type-Driven Composition”. In: Preprint. 2019.

[XAC15] Wenduan Xu, Michael Auli, and Stephen Clark. “CCG supertagging
with a recurrent neural network”. In: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers).
2015, pp. 250–255.

[YP06] Dongqiang Yang and David Martin Powers. “Verb similarity on the tax-
onomy of WordNet”. In: Proceedings of the Third International WordNet
Conference GWC 2006, South Jeju Island, Korea. Ed. by C. Fellbaum P. So-
jka K.-S. Choi and P. Vossen. Masaryk University, 2006, pp. 121–128.

177

Appendix A

Evaluation Results (All Models)

This appendix accompanies Chapter 4 and contains tables with all the evaluation results for
multiple datasets.

A.1 Results on transitive sentence datasets

GS2011 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.273 0.210 0.302 0.212
Verb Only Tensor 0.167 0.342 0.241 0.292

Additive 0.291 0.255 0.248 0.140
Multiplicative 0.431 0.204 0.217 0.193

Relational 0.222 0.343 0.252 0.323
Copy Subject · 0.149 0.302 0.217 0.292
Copy Object · 0.244 0.326 0.315 0.339
Frobenius Add · 0.220 0.353 0.295 0.330
Frobenius Mult · 0.217 0.285 0.102 0.271
Frobenius Outer · 0.216 0.334 0.298 0.353

Relational e· 0.392 0.202 0.257 0.188
Copy Subject e· 0.313 0.308 0.217 0.258
Copy Object e· 0.454 -0.010 0.225 0.205
Frobenius Add e· 0.403 0.192 0.258 0.227
Frobenius Mult e· 0.447 0.066 0.189 0.121
Frobenius Outer e· 0.392 0.069 0.262 0.187

TABLE A.1: Spearman ⇢ correlation scores on the GS2011 dataset,
with the highest score for each space in bold and in a box, the second
highest result in bold. Results are against an inter-annotator agree-

ment score of 0.739.

178 Appendix A. Evaluation Results (All Models)

KS2013 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.108 0.199 0.132 0.112
Verb Only Tensor 0.093 0.100 0.065 0.040

Additive 0.104 0.210 0.174 0.117
Multiplicative 0.279 0.334 0.110 0.302

Relational · 0.126 0.188 0.052 0.129
Copy Subject · 0.047 0.223 0.041 0.125
Copy Object · 0.145 0.279 0.042 0.238
Frobenius Add · 0.152 0.295 0.055 0.211
Frobenius Mult · 0.131 0.187 0.011 0.169
Frobenius Outer · 0.129 0.305 0.040 0.186

Relational e· 0.215 0.314 0.105 0.268
Copy Subject e· 0.171 0.408 0.113 0.334
Copy Object e· 0.258 0.343 0.123 0.290
Frobenius Add e· 0.227 0.415 0.140 0.368
Frobenius Mult e· 0.322 0.182 0.102 0.218
Frobenius Outer e· 0.215 0.327 0.114 0.232

TABLE A.2: Spearman ⇢ correlation scores on the KS2013 dataset,
with the highest score for each space in bold and in a box, the second
highest result in bold. Results are against an inter-annotator agree-

ment score of 0.575.

KS2014 Count Based Word2Vec GloVe FastText

Verb Only Vector 0.521 0.665 0.535 0.705
Verb Only Tensor 0.456 0.617 0.504 0.563

Additive 0.677 0.763 0.719 0.764
Multiplicative 0.719 0.528 0.283 0.587

Relational · 0.721 0.623 0.418 0.637
Copy Subject · 0.588 0.468 0.329 0.509
Copy Object · 0.672 0.499 0.405 0.593
Frobenius Add · 0.694 0.508 0.405 0.563
Frobenius Mult · 0.696 0.459 0.325 0.616
Frobenius Outer · 0.718 0.537 0.427 0.641

Relational e· 0.739 0.578 0.278 0.634
Copy Subject e· 0.670 0.481 0.208 0.569
Copy Object e· 0.715 0.270 0.267 0.316
Frobenius Add e· 0.726 0.440 0.278 0.542
Frobenius Mult e· 0.745 0.173 0.259 0.308
Frobenius Outer e· 0.739 0.189 0.278 0.339

TABLE A.3: Spearman ⇢ correlation scores on the KS2014 dataset,
with the highest score for each space in bold and in a box, the second
highest result in bold. Results are against an inter-annotator agree-

ment score of 0.754.

A.2. Results on verb phrase elliptical phrase datasets 179

A.2 Results on verb phrase elliptical phrase datasets

MLELLDIS Count Based Word2Vec GloVe FastText

Verb Only Vector 0.078 0.153 0.329 0.095
Verb Only Tensor 0.067 -0.035 0.033 0.036

Additive 0.040 0.179 0.249 0.142
Multiplicative 0.206 0.081 0.003 0.103

Multiplicative � 0.391 0.085 0.017 0.124
Multiplicative + 0.179 0.236 0.055 0.156
Additive � 0.172 0.195 0.078 0.201
Additive + 0.078 0.229 0.336 0.170
Kronecker � 0.128 0.136 0.294 0.133
Kronecker + 0.076 0.207 0.366 0.085
Categorical � 0.060 0.143 0.008 0.190
Categorical + 0.047 0.177 0.092 0.211
FROB Kron 0.076 -0.001 0.032 0.091
FROB Cat 0.056 -0.084 0.004 0.071

TABLE A.4: Spearman ⇢ correlation scores on the MLELLDIS dataset,
with the highest score for each space in bold and in a box, the second
highest result in bold. Results are against an inter-annotator agree-

ment score of 0.66.

180 Appendix A. Evaluation Results (All Models)

ELLDIS Count Based Word2Vec GloVe FastText

Verb Only Vector 0.436 0.241 0.445 0.229
Verb Only Tensor 0.329 0.438 0.394 0.388

Additive 0.442 0.273 0.305 0.141
Additive Ablate 0.445 0.309 0.309 0.135
Multiplicative 0.325 -0.012 0.182 0.293
Multiplicative Ablate 0.524 0.278 0.286 0.136

Additive Non-Linear 0.445 0.328 0.326 0.140
Multiplicative Non-Linear 0.503 0.209 0.245 0.044

Relational� 0.380 0.362 0.153 0.356
Copy Subject� 0.309 0.336 0.182 0.383
Copy Object� 0.348 0.353 0.174 0.350
Copy Subject Sum� 0.302 0.392 0.267 0.396
Copy Object Sum� 0.265 0.357 0.331 0.368
Frobenius Add� 0.364 0.393 0.195 0.389
Frobenius Mult� 0.315 0.270 0.126 0.235
Frobenius Outer� 0.367 0.371 0.208 0.429

Relational+ 0.372 0.427 0.334 0.438
Copy Subject+ 0.316 0.401 0.299 0.442
Copy Object+ 0.336 0.443 0.358 0.432
Copy Subject Sum+ 0.303 0.396 0.361 0.420
Copy Object Sum+ 0.268 0.429 0.373 0.400
Frobenius Add+ 0.365 0.462 0.369 0.465
Frobenius Mult+ 0.354 0.400 0.121 0.374
Frobenius Outer+ 0.366 0.454 0.345 0.494

Relational e� 0.511 0.168 0.242 0.072
Copy Subject e� 0.457 0.151 0.230 0.065
Copy Object e� 0.518 -0.008 0.230 0.181
Copy Subject Sum e� 0.419 0.194 0.150 0.206
Copy Object Sum e� 0.420 0.050 0.174 0.208
Frobenius Add e� 0.521 0.132 0.261 0.180
Frobenius Mult e� 0.373 0.015 0.228 0.167
Frobenius Outer e� 0.511 0.019 0.247 0.179

Relational e+ 0.523 0.252 0.337 0.229
Copy Subject e+ 0.491 0.320 0.322 0.291
Copy Object e+ 0.539 0.244 0.335 0.180
Copy Subject Sum e+ 0.433 0.300 0.392 0.280
Copy Object Sum e+ 0.431 0.275 0.423 0.169
Frobenius Add e+ 0.526 0.323 0.348 0.264
Frobenius Mult e+ 0.518 0.158 0.237 0.197
Frobenius Outer e+ 0.521 0.209 0.326 0.266

TABLE A.5: Spearman ⇢ scores for baseline and non-linear composi-
tion models on the ELLDIS dataset, with the highest score for each
space in bold and in a box, the second highest result in bold. Results

are against an inter-annotator agreement score of 0.584.

A.2. Results on verb phrase elliptical phrase datasets 181

ELLDIS Count Based Word2Vec GloVe FastText

FROB Relational� 0.386 0.406 0.341 0.426
FROB Copy Subject� 0.321 0.348 0.252 0.424
FROB Copy Object� 0.340 0.249 0.326 0.324
FROB Frobenius Add� 0.367 0.361 0.397 0.448
FROB Frob. Mult� 0.368 0.217 0.139 0.281
FROB Frobenius Outer� 0.379 0.289 0.347 0.383

FROB Relational+ 0.372 0.427 0.334 0.438
FROB Copy Subject+ 0.316 0.401 0.299 0.442
FROB Copy Object+ 0.336 0.443 0.358 0.432
FROB Frobenius Add+ 0.365 0.462 0.369 0.465
FROB Frobenius Mult+ 0.356 0.418 0.139 0.373
FROB Frobenius Out+ 0.368 0.460 0.363 0.497

FROB Relational e� 0.527 0.245 0.342 0.238
FROB Copy Subject e� 0.492 0.310 0.294 0.294
FROB Copy Object e� 0.539 0.015 0.335 0.076
FROB Frobenius Add e� 0.526 0.271 0.417 0.255
FROB Frobenius Mult e� 0.486 0.021 0.249 0.062
FROB Frobenius Outer e� 0.527 0.031 0.343 0.123

FROB Relational e+ 0.523 0.252 0.337 0.229
FROB Copy Subject e+ 0.491 0.320 0.322 0.291
FROB Copy Object e+ 0.538 0.244 0.335 0.180
FROB Frobenius Add e+ 0.526 0.323 0.348 0.264
FROB Frobenius Mult e+ 0.520 0.172 0.246 0.128
FROB Frobenius Outer e+ 0.523 0.217 0.338 0.239

TABLE A.6: Spearman ⇢ scores for linear Frobenius models on the
ELLDIS dataset.

182 Appendix A. Evaluation Results (All Models)

ELLSIM Count Based Word2Vec GloVe FastText

Verb Only Vector 0.457 0.583 0.435 0.647
Verb Only Tensor 0.394 0.566 0.443 0.534

Additive 0.700 0.726 0.696 0.741
Additive Ablate 0.680 0.745 0.696 0.734
Multiplicative 0.633 0.130 0.367 0.199
Multiplicative Ablate 0.712 0.320 0.309 0.462

Additive Non-Linear 0.681 0.762 0.710 0.739
Multiplicative Non-Linear 0.723 0.355 0.244 0.450

Relational� 0.709 0.668 0.345 0.635
Copy Subject� 0.590 0.524 0.364 0.496
Copy Object� 0.659 0.661 0.213 0.688
Copy Subject Sum� 0.358 0.589 0.397 0.611
Copy Object Sum� 0.414 0.597 0.418 0.614
Frobenius Add� 0.706 0.665 0.371 0.626
Frobenius Mult� 0.662 0.433 0.298 0.463
Frobenius Outer� 0.708 0.620 0.357 0.671

Relational+ 0.725 0.706 0.476 0.682
Copy Subject+ 0.597 0.604 0.417 0.600
Copy Object+ 0.675 0.616 0.403 0.636
Copy Subject Sum+ 0.362 0.590 0.466 0.583
Copy Object Sum+ 0.398 0.653 0.454 0.592
Frobenius Add+ 0.717 0.627 0.491 0.631
Frobenius Mult+ 0.711 0.633 0.360 0.639
Frobenius Outer+ 0.726 0.671 0.482 0.699

Relational e� 0.741 0.439 0.245 0.552
Copy Subject e� 0.685 0.332 0.316 0.421
Copy Object e� 0.706 0.263 0.166 0.402
Copy Subject Sum e� 0.514 0.384 0.164 0.511
Copy Object Sum e� 0.514 0.217 0.164 0.317
Frobenius Add e� 0.737 0.358 0.290 0.497
Frobenius Mult e� 0.721 0.074 0.262 0.399
Frobenius Outer e� 0.741 0.165 0.245 0.440

Relational e+ 0.720 0.623 0.281 0.652
Copy Subject e+ 0.669 0.542 0.249 0.597
Copy Object e+ 0.693 0.353 0.225 0.511
Copy Subject Sum e+ 0.457 0.584 0.451 0.640
Copy Object Sum e+ 0.457 0.380 0.483 0.530
Frobenius Add e+ 0.714 0.517 0.302 0.581
Frobenius Mult e+ 0.732 0.315 0.286 0.497
Frobenius Outer e+ 0.721 0.399 0.277 0.515

TABLE A.7: Spearman ⇢ scores for baseline and non-linear composi-
tion models on the ELLSIM dataset, with the highest score for each
space in bold and in a box, the second highest result in bold. Results

are against an inter-annotator agreement score of 0.425.

A.2. Results on verb phrase elliptical phrase datasets 183

ELLSIM Count Based Word2Vec GloVe FastText

FROB Relational� 0.692 0.645 0.447 0.624
FROB Copy Subject� 0.592 0.528 0.349 0.486
FROB Copy Object� 0.676 0.071 0.384 0.286
FROB Frobenius Add� 0.694 0.514 0.409 0.482
FROB Frobenius Mult� 0.690 0.096 0.338 0.281
FROB Frobenius Outer� 0.692 0.060 0.450 0.329

FROB Relational+ 0.725 0.706 0.476 0.682
FROB Copy Subject+ 0.597 0.604 0.417 0.600
FROB Copy Object+ 0.675 0.616 0.403 0.636
FROB Frobenius Add+ 0.717 0.627 0.491 0.631
FROB Frobenius Mult+ 0.710 0.633 0.361 0.647
FROB Frobenius Outer+ 0.724 0.668 0.486 0.702

FROB Relational e� 0.728 0.472 0.316 0.554
FROB Copy Subject e� 0.658 0.424 0.318 0.484
FROB Copy Object e� 0.693 -0.003 0.238 0.036
FROB Frobenius Add e� 0.730 0.390 0.358 0.463
FROB Frobenius Mult e� 0.732 0.012 0.333 0.054
FROB Frobenius Outer e� 0.728 -0.007 0.315 0.124

FROB Relational e+ 0.720 0.623 0.281 0.652
FROB Copy Subject e+ 0.669 0.542 0.249 0.597
FROB Copy Object e+ 0.693 0.353 0.225 0.511
FROB Frobenius Add e+ 0.714 0.517 0.302 0.581
FROB Frobenius Mult e+ 0.732 0.318 0.276 0.482
FROB Frobenius Outer e+ 0.720 0.376 0.281 0.519

TABLE A.8: Spearman ⇢ scores for linear Frobenius models on the
ELLSIM dataset.

184 Appendix A. Evaluation Results (All Models)

A.3 Results for sentence encoders and contextualised embed-
dings

D2V1 D2V2 ST IS1 IS2 IS3 IS4 USE

ML2008 0.139 0.192 0.078 0.181 0.220 0.149 0.169 0.039
ML2010 0.512 0.447 0.494 0.631 0.492 0.636 0.405 0.325

GS2011 0.098 0.102 -0.157 0.297 0.320 0.324 0.213 0.094
KS2013 0.193 0.212 0.051 0.172 0.032 0.176 -0.021 0.210
KS2014 0.692 0.705 0.546 0.784 0.676 0.720 0.586 0.539

MLELLDISlin 0.090 0.233 0.232 0.199 0.224 0.108 0.135 0.105
MLELLDISres 0.089 0.216 0.167 0.228 0.269 0.144 0.156 0.154
MLELLDISabl 0.095 0.242 0.159 0.215 0.226 0.141 0.169 0.109

ELLDISlin 0.199 0.227 -0.193 0.347 0.384 0.330 0.344 0.269
ELLDISres 0.231 0.253 -0.172 0.344 0.337 0.293 0.248 0.277
ELLDISabl 0.195 0.259 -0.130 0.353 0.357 0.300 0.291 0.240

ELLSIMlin 0.593 0.622 0.585 0.779 0.701 0.748 0.641 0.647
ELLSIMres 0.698 0.692 0.604 0.803 0.749 0.768 0.687 0.680
ELLSIMabl 0.652 0.655 0.471 0.782 0.730 0.749 0.682 0.640

TABLE A.9: Spearman ⇢ scores for sentence encoders on all datasets. D2V1:
Doc2Vec1, D2V2: Doc2Vec 2, ST: Skip-Thought, IS1: InferSent 1 (4096), IS2: In-
ferSent 2 (4096), IS3: InferSent 1 (300), IS4: InferSent 2 (300),USE: Universal Sen-

tence Encoder.

A.3. Results for sentence encoders and contextualised embeddings 185

ELMo BERT Small BERT Large

ML2008 0.166 0.105 0.030
ML2010v 0.539 0.216 0.356

GS2011 0.108 0.187 0.292
KS2013 0.243 0.232 0.349
KS2014 0.728 0.520 0.616

MLELLDISlin 0.193 0.373 0.315
MLELLDISres 0.182 0.103 0.342
MLELLDISabl 0.123 0.089 0.193

ELLDISlin 0.232 0.360 0.368
ELLDISres 0.210 0.216 0.274
ELLDISabl 0.207 0.197 0.365

ELLSIMlin 0.734 0.595 0.580
ELLSIMres 0.779 0.631 0.647
ELLSIMabl 0.703 0.560 0.582

TABLE A.10: Spearman ⇢ scores for contextualised embeddings on all datasets.
While ELMo performs very well on the smaller datasets, it is outperformed by
BERT on the elliptical datasets, although for the latter there is no improvement by

moving to the BERT Large model.

187

Appendix B

Evaluation Results for Neural Verb
Tensors

This appendix accompanies Chapter 5 and contains tables with all the evaluation results for
multiple datasets.

B.1 Results for Neural Tensor Clustering

Linear Context Window Subject and Object

MEN 0.282 0.294
SimLex-999 0.046 0.276
SimVerbd 0.224 0.275
SimVerbt 0.183 0.247
VerbSim 0.338 0.493
ML2008 0.067 0.088
ML2010 0.396 0.557
GS2011 0.226 0.302
KS2013 0.184 0.080
KS2014 0.445 0.664
ELLDIS 0.341 0.381
ELLSIM 0.370 0.584

TABLE B.1: Performance of vectors that take both subject and object
of the verb as context, as opposed to taking a linear context window

as context.

188 Appendix B. Evaluation Results for Neural Verb Tensors

Mid Fusion / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MEN 0.157 0.176 0.208 0.206 0.302 0.356 0.383 0.411 0.418 0.392 0.371
SimLex-999 0.347 0.356 0.357 0.348 0.335 0.317 0.299 0.281 0.271 0.263 0.260
SimVerbd 0.243 0.240 0.241 0.248 0.258 0.268 0.275 0.281 0.286 0.292 0.297
SimVerbt 0.235 0.234 0.234 0.237 0.243 0.248 0.253 0.256 0.259 0.261 0.263
VerbSim 0.409 0.414 0.416 0.427 0.435 0.447 0.467 0.480 0.500 0.501 0.501
ML2008 0.103 0.107 0.099 0.092 0.090 0.060 0.042 0.051 0.046 0.043 0.054
ML2010 0.429 0.416 0.413 0.400 0.405 0.426 0.465 0.494 0.527 0.547 0.556
GS2011 0.187 0.204 0.213 0.257 0.300 0.327 0.349 0.381 0.368 0.341 0.341
KS2013 0.181 0.167 0.151 0.092 0.079 0.085 0.068 0.070 0.071 0.077 0.105
KS2014 0.514 0.497 0.489 0.478 0.498 0.529 0.567 0.595 0.633 0.655 0.664
ELLDIS 0.298 0.322 0.339 0.405 0.439 0.447 0.441 0.456 0.439 0.393 0.393
ELLSIM 0.422 0.406 0.400 0.395 0.417 0.449 0.488 0.519 0.557 0.576 0.587

TABLE B.2: Results for Middle Fusion of subject/object vectors on all datasets. The results
show that the vectors with just the object as context perform the best in most cases.

Late Fusion / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MEN 0.157 0.155 0.198 0.245 0.263 0.304 0.320 0.349 0.351 0.368 0.371
SimLex-999 0.347 0.348 0.348 0.345 0.341 0.338 0.329 0.314 0.299 0.278 0.260
SimVerbd 0.243 0.256 0.266 0.275 0.284 0.292 0.298 0.300 0.300 0.299 0.297
SimVerbt 0.235 0.243 0.251 0.258 0.263 0.267 0.269 0.269 0.269 0.267 0.263
VerbSim 0.409 0.426 0.441 0.455 0.466 0.474 0.489 0.489 0.495 0.499 0.501
ML2008 0.103 0.091 0.098 0.098 0.073 0.069 0.077 0.061 0.058 0.067 0.054
ML2010 0.429 0.451 0.469 0.482 0.505 0.516 0.526 0.537 0.548 0.553 0.556
GS2011 0.187 0.210 0.220 0.228 0.239 0.256 0.285 0.320 0.314 0.344 0.341
KS2013 0.181 0.177 0.175 0.149 0.138 0.124 0.121 0.109 0.085 0.081 0.105
KS2014 0.514 0.542 0.567 0.585 0.612 0.625 0.637 0.646 0.658 0.660 0.664
ELLDIS 0.298 0.325 0.331 0.341 0.351 0.367 0.375 0.403 0.388 0.408 0.393
ELLSIM 0.422 0.449 0.471 0.488 0.514 0.532 0.549 0.561 0.577 0.580 0.587

TABLE B.3: Results for Late Fusion of subject/object vectors on all datasets. The results
show that the vectors with just the object as context perform the best in most cases.

Middle Fusion / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MEN 0.527 0.557 0.552 0.544 0.514 0.506 0.538 0.525 0.496 0.479 0.478
SimLex-999 0.337 0.340 0.337 0.324 0.312 0.298 0.277 0.252 0.232 0.219 0.210
SimVerbd 0.279 0.283 0.288 0.291 0.284 0.274 0.262 0.245 0.234 0.231 0.225
SimVerbt 0.217 0.219 0.223 0.227 0.230 0.230 0.226 0.219 0.213 0.210 0.209
VerbSim (130) 0.426 0.436 0.441 0.463 0.494 0.521 0.550 0.545 0.535 0.511 0.498
ML2008 0.109 0.098 0.099 0.094 0.081 0.059 0.069 0.075 0.070 0.104 0.124
ML2010 0.575 0.562 0.573 0.588 0.589 0.569 0.567 0.568 0.569 0.577 0.578
GS2011 0.256 0.262 0.267 0.285 0.323 0.373 0.367 0.368 0.387 0.365 0.371
KS2013 0.195 0.181 0.178 0.171 0.160 0.159 0.195 0.187 0.182 0.195 0.199
KS2014 0.546 0.532 0.541 0.561 0.590 0.606 0.628 0.637 0.653 0.671 0.688
ELLDIS 0.435 0.425 0.435 0.466 0.450 0.457 0.422 0.391 0.389 0.396 0.385
ELLSIM 0.508 0.499 0.479 0.495 0.523 0.546 0.569 0.583 0.598 0.621 0.639

TABLE B.4: Results for Middle Fusion of the subject/object verb matrices. The results show
the highest performance per fusion value of ↵, but considering clusters of either nouns,
subject, or objects, with cluster centroids taken from the 500, 1000, or 2000 most frequent

words, with the number of centroids ranging from 2 to 10.

B.2. Results for Composition Models 189

Late Fusion / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MEN 0.527 0.581 0.563 0.576 0.585 0.562 0.560 0.589 0.563 0.514 0.478
SimLex-999 0.337 0.332 0.325 0.314 0.301 0.287 0.275 0.263 0.247 0.226 0.210
SimVerb (Dev) 0.279 0.281 0.284 0.283 0.279 0.275 0.268 0.259 0.248 0.237 0.225
SimVerb (Test) 0.217 0.225 0.232 0.237 0.240 0.240 0.239 0.234 0.228 0.219 0.209
VerbSim (130) 0.426 0.448 0.473 0.493 0.511 0.512 0.518 0.520 0.516 0.507 0.498
ML2008 0.109 0.112 0.117 0.117 0.105 0.089 0.100 0.110 0.111 0.113 0.124
ML2010 0.575 0.589 0.616 0.627 0.638 0.632 0.633 0.621 0.610 0.593 0.578
GS2011 0.256 0.288 0.283 0.320 0.352 0.366 0.377 0.388 0.392 0.399 0.371
KS2013 0.195 0.181 0.193 0.186 0.196 0.201 0.218 0.205 0.195 0.188 0.199
KS2014 0.546 0.574 0.618 0.644 0.666 0.683 0.694 0.695 0.692 0.693 0.688
ELLDIS 0.435 0.459 0.471 0.501 0.516 0.467 0.472 0.463 0.454 0.449 0.385
ELLSIM 0.508 0.531 0.551 0.579 0.602 0.614 0.625 0.630 0.640 0.643 0.639

TABLE B.5: Results for Late Fusion of the subject/object verb matrices. The results
show the highest performance per fusion value of ↵, but considering clusters of
either nouns, subject, or objects, with cluster centroids taken from the 500, 1000, or

2000 most frequent words, with the number of centroids ranging from 2 to 10.

B.2 Results for Composition Models

B.2.1 Baseline results

ML2008 ML2010

Verb Only Vector 0.067 0.396
Verb Only Tensor -0.028 0.390

Additive 0.107 0.541
Multiplicative 0.171 0.468

Kronecker 0.076 0.403
Categorical 0.192 0.511

TABLE B.6: Results for composition models on intransitive datasets ML2008 and ML2010.

190 Appendix B. Evaluation Results for Neural Verb Tensors

GS2011 KS2013 KS2014

Verb Only Vector 0.226 0.184 0.445
Verb Only Tensor 0.203 0.151 0.452

Additive 0.187 0.181 0.672
Multiplicative 0.110 0.136 0.394

Relational · 0.248 0.150 0.493
Copy Subject · 0.200 0.160 0.432
Copy Object · 0.323 0.183 0.501
Frobenius Add · 0.279 0.188 0.511
Frobenius Mult · 0.175 0.081 0.405
Frobenius Outer · 0.272 0.181 0.452

Relational e· 0.199 0.209 0.530
Copy Subject e· 0.205 0.210 0.390
Copy Object e· 0.059 0.270 0.140
Frobenius Add e· 0.185 0.281 0.389
Frobenius Mult e· -0.031 0.061 0.042
Frobenius Outer e· 0.107 0.210 0.057

TABLE B.7: Results for composition models on transitive sentence datasets GS2011, KS2013,
and KS2014.

MLELLDIS

Verb Only Vector 0.067
Verb Only Tensor -0.028

Additive 0.085
Multiplicative 0.005

Multiplicative � 0.070
Multiplicative + 0.163
Additive � 0.090
Additive + 0.101
Kronecker � 0.111
Kronecker + 0.130
Categorical � 0.154
Categorical + 0.204

TABLE B.8: Results for composition models on the intransitive elliptical dataset MLELLDIS.

B.2. Results for Composition Models 191

ELLDIS ELLSIM

Verb Only Kronecker 0.341 0.372
Verb Only Tensor 0.266 0.426

Additive 0.241 0.651
Additive Ablate 0.286 0.671
AdditiveNL 0.308 0.671
Multiplicative 0.153 0.180
Multiplicative Ablate 0.064 0.428
MultiplicativeNL -0.031 0.404

Relational� 0.170 0.499
Copy Subject� 0.129 0.496
Copy Object� 0.257 0.523
Copy Subject Sum� 0.255 0.496
Copy Object Sum� 0.345 0.547
Frobenius Add� 0.192 0.534
Frobenius Mult� 0.098 0.453
Frobenius Outer� 0.257 0.520

Relational+ 0.318 0.645
Copy Subject+ 0.241 0.583
Copy Object+ 0.368 0.587
Copy Subject Sum+ 0.312 0.480
Copy Object Sum+ 0.362 0.542
Frobenius Add+ 0.321 0.646
Frobenius Mult+ 0.125 0.516
Frobenius Outer+ 0.309 0.628

Relational e� -0.010 0.463
Copy Subject e� -0.014 0.383
Copy Object e� -0.109 0.191
Frobenius Add e� 0.040 0.404
Frobenius Mult e� -0.104 0.052
Frobenius Outer e� -0.088 0.126

Relational e+ 0.298 0.522
Copy Subject Sum Kron 0.292 0.442
Copy Object Sum Kron 0.247 0.314
Frobenius Add e+ 0.304 0.466
Frobenius Mult e+ 0.050 0.201
Frobenius Outer e+ 0.246 0.286

TABLE B.9: Results for composition models on the transitive elliptical datasets ELLDIS and
ELLSIM.

192 Appendix B. Evaluation Results for Neural Verb Tensors

B.2.2 Fusion results

Categorical 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ML2008 (Mid) 0.174 0.177 0.174 0.175 0.161 0.163 0.163 0.166 0.166 0.177 0.183
ML2008 (Late) 0.174 0.180 0.177 0.180 0.180 0.180 0.183 0.188 0.186 0.186 0.183

ML2010 (Mid) 0.516 0.507 0.509 0.505 0.511 0.515 0.502 0.500 0.495 0.498 0.496
ML2010 (Late) 0.516 0.531 0.549 0.550 0.547 0.549 0.543 0.532 0.518 0.512 0.496

TABLE B.10: The effect of the ↵ Fusion parameter on Middle and Late Fusion of the Cat-
egorical composition model for the ML2008 and ML2010 datasets using the subject/object
verb matrices. The results show that late fusion generally has a more dramatic effect on

performance.

GS2011 Middle / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational 0.239 0.233 0.232 0.237 0.241 0.253 0.258 0.267 0.273 0.277 0.281
Frobenius Outer 0.348 0.355 0.368 0.364 0.368 0.357 0.341 0.329 0.331 0.336 0.345
Frobenius Mult 0.070 0.088 0.114 0.136 0.141 0.165 0.182 0.160 0.129 0.130 0.132
Frobenius Add 0.370 0.383 0.388 0.389 0.384 0.374 0.367 0.370 0.374 0.381 0.382
Copy Subject 0.427 0.424 0.420 0.400 0.380 0.354 0.347 0.335 0.331 0.337 0.344
Copy Object 0.175 0.183 0.204 0.235 0.262 0.289 0.314 0.326 0.341 0.355 0.361
Copy Argument Sum 0.303 0.319 0.333 0.342 0.349 0.335 0.315 0.308 0.305 0.301 0.299
Copy Argument 0.427 0.431 0.440 0.431 0.429 0.408 0.389 0.377 0.368 0.362 0.361
Copy Argument Inverse Sum 0.229 0.229 0.228 0.243 0.266 0.275 0.273 0.269 0.265 0.271 0.280
Copy Argument Inverse 0.175 0.171 0.181 0.219 0.267 0.288 0.314 0.331 0.335 0.338 0.344
Cat Argument 0.533 0.533 0.528 0.515 0.489 0.459 0.427 0.402 0.389 0.382 0.382
Cat Argument Inverse 0.263 0.265 0.277 0.302 0.330 0.350 0.363 0.377 0.390 0.401 0.409

TABLE B.11: The effect of the ↵ Fusion parameter on Middle Fusion of the composition
models for the GS2011 dataset using the subject/object verb matrices.

B.2. Results for Composition Models 193

GS2011 Late / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational 0.239 0.261 0.274 0.274 0.275 0.282 0.286 0.286 0.284 0.282 0.281
Copy Subject 0.427 0.445 0.459 0.465 0.465 0.452 0.434 0.416 0.394 0.369 0.344
Copy Object 0.175 0.207 0.244 0.279 0.305 0.331 0.350 0.364 0.361 0.363 0.361
Frobenius Outer 0.348 0.378 0.398 0.409 0.411 0.409 0.406 0.397 0.384 0.364 0.345
Frobenius Mult 0.070 0.092 0.112 0.131 0.150 0.161 0.159 0.150 0.147 0.139 0.132
Frobenius Add 0.370 0.401 0.427 0.442 0.449 0.451 0.445 0.430 0.413 0.399 0.382
Copy Argument Sum 0.303 0.329 0.357 0.375 0.383 0.378 0.362 0.353 0.337 0.315 0.299
Copy Argument 0.427 0.449 0.467 0.474 0.477 0.467 0.450 0.429 0.411 0.384 0.361
Copy Argument Inverse Sum 0.229 0.252 0.287 0.311 0.334 0.344 0.352 0.345 0.325 0.303 0.280
Copy Argument Inverse 0.175 0.203 0.241 0.279 0.312 0.328 0.343 0.350 0.348 0.344 0.344
Cat Argument 0.533 0.534 0.536 0.528 0.512 0.494 0.470 0.448 0.427 0.402 0.382
Cat Argument Inverse 0.263 0.306 0.347 0.380 0.407 0.427 0.428 0.429 0.418 0.418 0.409

TABLE B.12: The effect of the ↵ Fusion parameter on Late Fusion of the composition models
for the GS2011 dataset using the subject/object verb matrices.

KS2013 Mid / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational 0.051 0.052 0.055 0.063 0.065 0.073 0.078 0.080 0.077 0.070 0.065
Frobenius Outer 0.146 0.153 0.162 0.184 0.223 0.246 0.260 0.278 0.274 0.260 0.255
Frobenius Mult 0.045 0.069 0.090 0.067 0.049 0.028 0.036 0.083 0.137 0.165 0.187
Frobenius Add 0.173 0.183 0.200 0.212 0.228 0.249 0.269 0.283 0.288 0.287 0.278
Copy Subject 0.210 0.210 0.206 0.208 0.217 0.223 0.235 0.254 0.269 0.277 0.272
Copy Object 0.130 0.136 0.153 0.175 0.200 0.230 0.245 0.241 0.228 0.221 0.211
Copy Argument Sum 0.088 0.092 0.097 0.110 0.122 0.120 0.109 0.097 0.084 0.077 0.068
Copy Argument 0.210 0.209 0.199 0.197 0.195 0.202 0.205 0.211 0.207 0.210 0.211
Copy Argument Inverse Sum 0.088 0.087 0.089 0.102 0.107 0.106 0.092 0.073 0.064 0.056 0.053
Copy Argument Inverse 0.130 0.144 0.170 0.205 0.236 0.263 0.280 0.294 0.298 0.285 0.272
Cat Argument 0.363 0.364 0.370 0.372 0.365 0.356 0.339 0.316 0.290 0.260 0.226
Cat Argument Inverse 0.250 0.265 0.276 0.285 0.296 0.296 0.283 0.275 0.269 0.261 0.252

TABLE B.13: The effect of the ↵ Fusion parameter on Middle Fusion of the composition
models for the KS2013 dataset using the subject/object verb matrices.

KS2013 Late / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational 0.051 0.052 0.060 0.062 0.066 0.064 0.068 0.072 0.072 0.064 0.065
Frobenius Outer 0.146 0.161 0.179 0.197 0.213 0.226 0.237 0.256 0.263 0.262 0.255
Frobenius Mult 0.045 0.063 0.079 0.096 0.126 0.151 0.166 0.172 0.177 0.183 0.187
Frobenius Add 0.173 0.197 0.222 0.244 0.258 0.272 0.280 0.287 0.285 0.287 0.278
Copy Subject 0.210 0.232 0.249 0.267 0.285 0.298 0.305 0.304 0.296 0.285 0.272
Copy Object 0.130 0.146 0.163 0.183 0.192 0.206 0.211 0.215 0.217 0.217 0.211
Copy Argument Sum 0.088 0.102 0.115 0.117 0.118 0.119 0.117 0.101 0.091 0.079 0.068
Copy Argument 0.210 0.227 0.239 0.247 0.258 0.260 0.254 0.245 0.233 0.223 0.211
Copy Argument Inverse Sum 0.088 0.092 0.105 0.111 0.115 0.114 0.119 0.107 0.090 0.072 0.053
Copy Argument Inverse 0.130 0.153 0.177 0.199 0.222 0.244 0.254 0.268 0.271 0.274 0.272
Cat Argument 0.363 0.369 0.365 0.361 0.347 0.334 0.317 0.299 0.278 0.255 0.226
Cat Argument Inverse 0.250 0.262 0.272 0.275 0.282 0.291 0.288 0.286 0.273 0.263 0.252

TABLE B.14: The effect of the ↵ Fusion parameter on Late Fusion of the composition models
for the KS2013 dataset using the subject/object verb matrices.

194 Appendix B. Evaluation Results for Neural Verb Tensors

KS2014 Mid / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational 0.454 0.473 0.512 0.547 0.567 0.586 0.592 0.585 0.581 0.574 0.567
Frobenius Outer 0.181 0.209 0.244 0.280 0.314 0.371 0.413 0.447 0.462 0.482 0.476
Frobenius Mult 0.021 0.014 0.085 0.180 0.246 0.249 0.240 0.285 0.328 0.324 0.304
Frobenius Add 0.461 0.473 0.503 0.548 0.596 0.622 0.623 0.606 0.583 0.559 0.528
Copy Subject 0.240 0.259 0.277 0.292 0.304 0.322 0.340 0.361 0.368 0.384 0.384
Copy Object 0.355 0.366 0.418 0.484 0.545 0.585 0.594 0.601 0.592 0.568 0.558
Copy Argument Sum 0.636 0.645 0.656 0.668 0.673 0.684 0.687 0.676 0.679 0.689 0.688
Copy Argument 0.240 0.271 0.331 0.393 0.455 0.517 0.552 0.563 0.565 0.558 0.558
Copy Argument Inverse Sum 0.648 0.655 0.660 0.664 0.669 0.672 0.667 0.664 0.664 0.651 0.641
Copy Argument Inverse 0.355 0.385 0.440 0.480 0.515 0.519 0.497 0.464 0.436 0.406 0.384
Cat Argument 0.606 0.598 0.610 0.637 0.677 0.716 0.729 0.737 0.723 0.717 0.718
Cat Argument Inverse 0.488 0.514 0.549 0.595 0.637 0.671 0.670 0.669 0.658 0.651 0.645

TABLE B.15: The effect of the ↵ Fusion parameter on Middle Fusion of the composition
models for the KS2014 dataset using the subject/object verb matrices.

KS2014 Late / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational 0.454 0.494 0.518 0.542 0.561 0.570 0.576 0.583 0.584 0.580 0.567
Frobenius Outer 0.181 0.230 0.291 0.325 0.348 0.382 0.405 0.427 0.455 0.471 0.476
Frobenius Mult 0.021 0.077 0.142 0.194 0.239 0.273 0.297 0.308 0.311 0.306 0.304
Frobenius Add 0.461 0.485 0.509 0.534 0.553 0.559 0.566 0.556 0.552 0.543 0.528
Copy Subject 0.240 0.268 0.275 0.299 0.305 0.329 0.360 0.378 0.389 0.391 0.384
Copy Object 0.355 0.408 0.456 0.495 0.540 0.565 0.572 0.582 0.580 0.571 0.558
Copy Argument Sum 0.636 0.670 0.695 0.713 0.730 0.734 0.735 0.732 0.722 0.707 0.688
Copy Argument 0.240 0.302 0.364 0.440 0.487 0.528 0.550 0.567 0.569 0.571 0.558
Copy Argument Inverse Sum 0.648 0.668 0.691 0.709 0.718 0.716 0.713 0.707 0.688 0.666 0.641
Copy Argument Inverse 0.355 0.390 0.426 0.457 0.477 0.485 0.480 0.463 0.438 0.415 0.384
Cat Argument 0.606 0.650 0.686 0.709 0.727 0.749 0.752 0.753 0.746 0.731 0.718
Cat Argument Inverse 0.488 0.538 0.594 0.631 0.664 0.689 0.691 0.690 0.681 0.659 0.645

TABLE B.16: The effect of the ↵ Fusion parameter on Late Fusion of the composition models
for the KS2014 dataset using the subject/object verb matrices.

MLELLDIS 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Categorical (Mid) � 0.088 0.088 0.105 0.112 0.118 0.121 0.130 0.125 0.124 0.116 0.106
Categorical (Late) � 0.088 0.093 0.101 0.110 0.113 0.120 0.116 0.116 0.111 0.110 0.106
Categorical (Mid) + 0.174 0.177 0.180 0.184 0.190 0.189 0.195 0.201 0.208 0.214 0.221
Categorical (Late) + 0.174 0.179 0.184 0.190 0.198 0.206 0.210 0.214 0.217 0.221 0.221

TABLE B.17: The effect of the ↵ Fusion parameter on Middle and Late Fusion of the compo-
sition models for the MLELLDIS dataset using the subject/object verb matrices.

B.2. Results for Composition Models 195

ELLDIS Middle / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational � 0.131 0.132 0.136 0.116 0.141 0.196 0.226 0.232 0.228 0.224 0.221
Copy Subject � 0.081 0.092 0.114 0.147 0.172 0.186 0.184 0.147 0.104 0.076 0.076
Copy Object � 0.105 0.119 0.137 0.161 0.166 0.168 0.173 0.169 0.168 0.180 0.192
Copy Subject Sum � 0.304 0.297 0.292 0.293 0.299 0.305 0.300 0.290 0.284 0.284 0.284
Copy Object Sum � 0.199 0.199 0.200 0.201 0.203 0.194 0.189 0.189 0.194 0.203 0.210

Frobenius Add � 0.106 0.134 0.167 0.198 0.201 0.200 0.202 0.198 0.181 0.163 0.159
Frobenius Mult � 0.100 0.139 0.157 0.163 0.180 0.192 0.178 0.142 0.073 0.046 0.058
Frobenius Outer � 0.139 0.147 0.172 0.199 0.206 0.215 0.225 0.198 0.173 0.157 0.166

Cat Argument � 0.324 0.320 0.306 0.295 0.289 0.292 0.293 0.289 0.278 0.268 0.265
Copy Argument � 0.081 0.079 0.103 0.126 0.136 0.147 0.159 0.172 0.181 0.188 0.192
Copy Argument Sum � 0.304 0.309 0.314 0.306 0.296 0.279 0.258 0.236 0.224 0.216 0.210

Relational + 0.342 0.321 0.305 0.296 0.293 0.289 0.291 0.293 0.297 0.300 0.305
Copy Subject + 0.450 0.443 0.428 0.405 0.375 0.351 0.325 0.303 0.290 0.284 0.286
Copy Object + 0.402 0.404 0.405 0.401 0.391 0.375 0.357 0.347 0.341 0.342 0.349
Copy Subject Sum + 0.393 0.377 0.364 0.357 0.349 0.344 0.334 0.329 0.325 0.332 0.342
Copy Object Sum + 0.282 0.276 0.276 0.282 0.284 0.285 0.279 0.270 0.268 0.267 0.269

Frobenius Add + 0.464 0.464 0.461 0.451 0.423 0.389 0.363 0.349 0.342 0.340 0.341
Frobenius Mult + 0.167 0.200 0.235 0.241 0.216 0.186 0.165 0.134 0.107 0.107 0.121
Frobenius Outer + 0.468 0.467 0.462 0.449 0.420 0.381 0.338 0.311 0.305 0.309 0.322

Cat Argument + 0.558 0.551 0.540 0.526 0.500 0.466 0.433 0.413 0.398 0.395 0.392
Copy Argument + 0.450 0.453 0.454 0.442 0.422 0.400 0.378 0.365 0.356 0.350 0.349
Copy Argument Sum + 0.393 0.398 0.400 0.396 0.388 0.355 0.328 0.296 0.277 0.269 0.269

TABLE B.18: The effect of the ↵ Fusion parameter on Middle Fusion of the composition
models for the ELLDIS dataset using the subject/object verb matrices.

ELLDIS Late / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational � 0.131 0.150 0.168 0.185 0.198 0.208 0.216 0.221 0.228 0.227 0.221
Copy Subject � 0.081 0.087 0.094 0.100 0.106 0.110 0.106 0.099 0.092 0.085 0.076
Copy Object � 0.105 0.121 0.138 0.154 0.166 0.177 0.182 0.189 0.192 0.192 0.192
Copy Subject Sum � 0.304 0.316 0.329 0.339 0.341 0.346 0.346 0.337 0.323 0.305 0.284
Copy Object Sum � 0.199 0.220 0.239 0.253 0.261 0.263 0.258 0.249 0.235 0.222 0.210

Frobenius Add � 0.106 0.121 0.134 0.148 0.155 0.160 0.163 0.161 0.162 0.161 0.159
Frobenius Mult � 0.100 0.110 0.111 0.115 0.115 0.116 0.113 0.101 0.090 0.075 0.058
Frobenius Outer � 0.139 0.150 0.161 0.170 0.178 0.183 0.184 0.182 0.178 0.172 0.166

Cat Argument � 0.324 0.329 0.325 0.317 0.307 0.299 0.293 0.287 0.279 0.271 0.265
Copy Argument � 0.081 0.100 0.122 0.140 0.161 0.171 0.180 0.190 0.192 0.192 0.192
Copy Argument Sum � 0.304 0.315 0.326 0.335 0.340 0.331 0.312 0.288 0.264 0.237 0.210

Relational + 0.342 0.355 0.360 0.352 0.342 0.342 0.337 0.328 0.320 0.313 0.305
Copy Subject + 0.450 0.469 0.477 0.471 0.458 0.441 0.416 0.383 0.350 0.316 0.286
Copy Object + 0.402 0.424 0.441 0.452 0.456 0.450 0.434 0.414 0.390 0.371 0.349
Copy Subject Sum + 0.393 0.403 0.410 0.412 0.413 0.409 0.403 0.390 0.377 0.360 0.342
Copy Object Sum + 0.282 0.295 0.307 0.315 0.316 0.316 0.309 0.299 0.290 0.280 0.269

Frobenius Add + 0.464 0.485 0.498 0.504 0.501 0.488 0.463 0.432 0.401 0.373 0.341
Frobenius Mult + 0.167 0.176 0.184 0.190 0.193 0.182 0.169 0.157 0.140 0.132 0.121
Frobenius Outer + 0.468 0.477 0.481 0.476 0.463 0.445 0.425 0.399 0.373 0.346 0.322

Cat Argument + 0.558 0.557 0.559 0.546 0.527 0.505 0.481 0.457 0.434 0.412 0.392
Copy Argument + 0.450 0.471 0.484 0.490 0.486 0.476 0.456 0.429 0.401 0.374 0.349
Copy Argument Sum + 0.393 0.409 0.420 0.428 0.424 0.403 0.383 0.360 0.330 0.299 0.269

TABLE B.19: The effect of the ↵ Fusion parameter on Late Fusion of the composition models
for the ELLDIS dataset using the subject/object verb matrices.

196 Appendix B. Evaluation Results for Neural Verb Tensors

ELLSIM Mid / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational � 0.405 0.416 0.439 0.484 0.519 0.525 0.521 0.518 0.516 0.517 0.516
Copy Subject � 0.071 0.085 0.120 0.145 0.143 0.114 0.094 0.108 0.144 0.158 0.162
Copy Object � 0.204 0.240 0.276 0.283 0.264 0.240 0.240 0.257 0.274 0.285 0.292
Copy Subject Sum � 0.272 0.273 0.274 0.277 0.282 0.299 0.326 0.361 0.399 0.432 0.454
Copy Object Sum � 0.378 0.381 0.387 0.399 0.414 0.436 0.458 0.475 0.488 0.495 0.500

Frobenius Add � 0.252 0.273 0.308 0.329 0.336 0.331 0.326 0.351 0.368 0.373 0.384
Frobenius Mult � -0.035 -0.018 0.016 0.107 0.141 0.147 0.156 0.199 0.223 0.247 0.254
Frobenius Outer � 0.115 0.116 0.128 0.148 0.151 0.134 0.129 0.148 0.184 0.185 0.177

Cat Argument � 0.237 0.253 0.262 0.278 0.296 0.318 0.334 0.350 0.369 0.390 0.412
Copy Argument � 0.071 0.182 0.261 0.312 0.331 0.336 0.331 0.324 0.315 0.308 0.292
Copy Argument Sum � 0.272 0.323 0.383 0.444 0.488 0.504 0.502 0.502 0.502 0.502 0.500

Relational + 0.605 0.608 0.615 0.615 0.616 0.615 0.613 0.613 0.613 0.613 0.613
Copy Subject + 0.297 0.305 0.326 0.355 0.390 0.426 0.452 0.459 0.460 0.458 0.454
Copy Object + 0.416 0.427 0.452 0.490 0.515 0.537 0.546 0.543 0.536 0.535 0.533
Copy Subject Sum + 0.640 0.637 0.636 0.635 0.636 0.637 0.648 0.658 0.668 0.678 0.688
Copy Object Sum + 0.647 0.647 0.649 0.652 0.660 0.670 0.679 0.690 0.696 0.704 0.710

Frobenius Add + 0.468 0.485 0.519 0.559 0.595 0.610 0.612 0.605 0.595 0.587 0.588
Frobenius Mult + 0.260 0.256 0.268 0.263 0.257 0.257 0.288 0.322 0.355 0.386 0.402
Frobenius Outer + 0.340 0.358 0.381 0.396 0.405 0.416 0.425 0.413 0.402 0.404 0.408

Cat Argument + 0.587 0.583 0.594 0.616 0.654 0.685 0.702 0.707 0.708 0.708 0.708
Copy Argument + 0.297 0.319 0.367 0.427 0.480 0.511 0.523 0.526 0.527 0.531 0.533
Copy Argument Sum + 0.640 0.650 0.665 0.686 0.707 0.718 0.721 0.719 0.717 0.714 0.710

TABLE B.20: The effect of the ↵ Fusion parameter on Middle Fusion of the composition
models for the ELLSIM dataset using the subject/object verb matrices.

ELLSIM Late / ↵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Relational � 0.405 0.432 0.454 0.471 0.491 0.508 0.520 0.527 0.530 0.524 0.516
Copy Subject � 0.071 0.091 0.112 0.138 0.165 0.178 0.183 0.181 0.180 0.174 0.162
Copy Object � 0.204 0.233 0.266 0.298 0.324 0.335 0.337 0.332 0.323 0.309 0.292
Copy Subject Sum � 0.272 0.309 0.344 0.379 0.414 0.443 0.461 0.473 0.472 0.465 0.454
Copy Object Sum � 0.378 0.409 0.437 0.464 0.486 0.503 0.515 0.519 0.519 0.512 0.500

Frobenius Add � 0.252 0.294 0.322 0.347 0.369 0.387 0.397 0.402 0.400 0.394 0.384
Frobenius Mult � -0.035 0.035 0.077 0.123 0.162 0.181 0.203 0.215 0.231 0.247 0.254
Frobenius Outer � 0.115 0.178 0.186 0.192 0.203 0.209 0.213 0.211 0.206 0.195 0.177

Cat Argument � 0.237 0.279 0.315 0.348 0.383 0.402 0.413 0.415 0.415 0.415 0.412
Copy Argument � 0.071 0.126 0.185 0.245 0.290 0.314 0.327 0.330 0.324 0.311 0.292
Copy Argument Sum � 0.272 0.316 0.367 0.420 0.465 0.498 0.520 0.529 0.525 0.514 0.500

Relational + 0.605 0.627 0.644 0.657 0.662 0.664 0.661 0.658 0.650 0.633 0.613
Copy Subject + 0.297 0.329 0.365 0.399 0.427 0.452 0.467 0.474 0.472 0.464 0.454
Copy Object + 0.416 0.460 0.501 0.540 0.569 0.591 0.596 0.590 0.572 0.552 0.533
Copy Subject Sum + 0.640 0.658 0.674 0.686 0.694 0.700 0.705 0.704 0.702 0.696 0.688
Copy Object Sum + 0.647 0.666 0.684 0.695 0.704 0.710 0.717 0.719 0.719 0.714 0.710

Frobenius Add + 0.468 0.513 0.553 0.586 0.611 0.630 0.637 0.633 0.623 0.608 0.588
Frobenius Mult + 0.260 0.313 0.353 0.382 0.397 0.407 0.413 0.418 0.416 0.412 0.402
Frobenius Outer + 0.340 0.428 0.467 0.478 0.477 0.475 0.468 0.458 0.445 0.427 0.408

Cat Argument + 0.587 0.626 0.666 0.689 0.711 0.729 0.738 0.740 0.734 0.726 0.708
Copy Argument + 0.297 0.356 0.418 0.478 0.524 0.554 0.569 0.572 0.564 0.550 0.533
Copy Argument Sum + 0.640 0.676 0.705 0.730 0.748 0.758 0.759 0.757 0.749 0.731 0.710

TABLE B.21: The effect of the ↵ Fusion parameter on Late Fusion of the composition models
for the ELLSIM dataset using the subject/object verb matrices.

	Introduction
	I Background
	Distributional Semantics: From Word to Sentence
	Word Embeddings: Implementing the Distributional Hypothesis
	Count-Based Word Embeddings
	Neural Word Embeddings
	Evaluating Word Embeddings

	What is Compositionality?
	Type-Driven Approaches to Composition
	Learning the Content of Word Tensors

	Neural Approaches to Composition
	Sentence Encoders
	Contextualised Embeddings

	Evaluating Sentence Embeddings
	This Thesis in Context

	Categorical Distributional Semantics
	Categorical Composition
	Monoidal Categories
	Closing the
	Pregroups as an autonomous category
	Lambek Calculus as a Biclosed Monoidal Category
	Formal Semantics for the Lambek Calculus
	Vector Spaces as a Semantic Category
	Proofs and Pictures

	II Theory
	Ellipsis, Anaphora, and Parasitic Gaps
	Two Types of Ellipsis
	Categorical Distributional Semantics with Lambek Calculus and Modalities
	Lexicon versus Derivation in Pronoun Relativisation
	Formal Semantics for Relative Pronouns
	Frobenius semantics for pronoun relativisation

	Dutch Pronoun Relativisation
	Discussion

	Parasitic Gaps
	Deriving Parasitic Gaps
	Frobenius Semantics for Parasitic Gaps
	Discussion

	Verb Phrase Ellipsis and Anaphora
	A Proof System for Controlled Copying
	Relation to related approaches
	Deriving Ellipsis with Anaphora
	Structural Ambiguity

	Frobenius Semantics for Ellipsis with Anaphora
	Lambdas and Tensors for Ellipsis

	Conclusion

	III Practice
	Evaluation: Composition Models for Verb Phrase Ellipsis
	Evaluating Composition Models
	Evaluation Datasets for Verb Phrase Elliptical Sentences
	Dataset descriptions

	Composition Models for Verb Phrase Elliptical Sentence Embeddings
	Embedding Verb Phrase Elliptical Sentences
	Training Vectors and Tensors

	Evaluation Results and Analysis
	Conclusion

	Lexical Semantics: Neural Tensor Embeddings
	Representing Words as Tensors
	Neural Verb Tensor Embeddings
	Evaluation
	Results
	Conclusion

	IV Further Down
	Conclusion & Future Work
	Summary
	Further Down

	Bibliography
	Evaluation Results (All Models)
	Results on transitive sentence datasets
	Results on verb phrase elliptical phrase datasets
	Results for sentence encoders and contextualised embeddings

	Evaluation Results for Neural Verb Tensors
	Results for Neural Tensor Clustering
	Results for Composition Models
	Baseline results
	Fusion results

