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Abstract 

Myeloma is a complex, incurable bone marrow malignancy of plasma cells with a diverse 

clinical course.  Existing data suggests that abnormalities in T cell function and PD1 expression 

are present in myeloma and that immune subversion may be playing a role in progression of 

the disease. I hypothesise that characterisation of the cellular immunological landscape in 

myeloma will identify distinct functional populations which may offer therapeutic targets to 

restore immunological control of the disease. 

Mass cytometry is a novel, single cell analysis technique which enables simultaneous 

assessment of more than 30 cell surface and intracellular antigens by utilising metal tagged 

antibody probes. Using this technology and an algorithmic based data analysis approach 

alongside traditional data analysis techniques I explored the bone marrow microenvironment 

in 9 control, 18 NDMM and 9 RRMM samples. RRMM samples were drawn from patients 

receiving dual targeting of CD38 and PDL1. 

In NDMM I demonstrate that immune microenvironment changes include defects in antigen 

presenting populations, effector and helper lymphocyte populations and NK cells. These 

changes are present before treatment has been initiated and have prognostic significance. 

These functional defects are associated with upregulation of PD1 and PDL1 expression across 

multiple lineages. 

In the RRMM setting treatment targeting PDL1 and CD38 results in early functional cytotoxicity 

and cytokine production signals. 

Defective immunological responses correlate with poor clinical outcome and there is potential 

to restore immune function, providing a strong argument for considering multi-lineage 

immunological damage to represent a form of symptomatic myeloma. 

 

 

 

 

 

 

 

 



4 
 

Acknowledgements 

The work presented in this thesis would not have been possible without the support and 

assistance of a number of people. 

First I would like to thank my primary supervisor Professor John Gribben for giving me the 

support and freedom to pursue my interests in myeloma and create this project. His advice 

and mentorship has helped me to become a better clinician as well as researcher. I am also 

grateful for the opportunity to attend international meetings and conferences. I would also like 

to thank my secondary supervisor Professor Jamie Cavenagh for his support and advice.  

There are many individuals within the Barts Cancer Institute who have provided invaluable 

help in finding my feet in the lab, planning experiments and troubleshooting problems. 

Particular thanks go to Joe Taylor, Robin Sanderson, Ed Truelove, James Aires and Jennifer Ball 

who have supported me through the highs and lows of this work and tolerated my own 

particular brand of humour. 

I wish to thank the staff of the BCI Flow Core who assisted with the mass cytometry aspects of 

this work. Particular thanks go to Dr Becki Pike and Steve Lim who helped to get the project off 

the ground. 

Thanks also to Dr Sameena Iqbal and the BCI tissue bank for access to the clinical samples that 

were so vital to this work. I am also indebted to the patients who allowed their blood and bone 

marrow to be used for clinical research. 

This work was funded by the London Clinic Charity to whom I am very grateful for enabling me 

to carry out this project. Additional funding and access to clinical trial samples was provided by 

Celgene. 

Finally I would like to thank Professor Guy Pratt for encouraging me to pursue my research 

dreams.  

 

 

 

 

 

 



5 
 

Table of contents 

Statement of originality ................................................................................................................ 0 

Collaborations ............................................................................................................................... 2 

Meeting Abstracts ......................................................................................................................... 2 

Abstract ......................................................................................................................................... 3 

Acknowledgements ....................................................................................................................... 4 

Table of contents .......................................................................................................................... 5 

List of figures ............................................................................................................................... 11 

List of tables ................................................................................................................................ 15 

Abbreviations .............................................................................................................................. 16 

Note regarding terminology ....................................................................................................... 19 

1. The immune surveillance model of malignancy .................................................................... 20 

1.1 Immune surveillance and immune dysregulation ................................................................ 20 

1.1.1 Concept of immune surveillance and immune dysregulation in malignancy .................... 20 

1.1.2 The body of evidence in support of the immune surveillance model ............................... 21 

1.2 Clinical importance of myeloma ........................................................................................... 23 

1.2.1 Definition, epidemiology and diagnostic criteria ............................................................... 23 

1.2.2 Clinical features .................................................................................................................. 24 

1.2.3 Treatment strategies and their limitations ........................................................................ 24 

1.3 Immune dysregulation in myeloma ...................................................................................... 27 

1.3.1 The immune surveillance model and myeloma ................................................................. 27 

1.3.2 Immunological therapies and their role in myeloma......................................................... 31 

1.3.2.1 Monoclonal antibodies ................................................................................................... 31 

1.3.2.2 Immune checkpoint regulation ....................................................................................... 32 

1.3.2.3 Cellular therapies ............................................................................................................ 33 

1.2.3.4 Allogenic transplantation ................................................................................................ 34 

1.3.3 Immune regulatory targets of therapeutic interest .......................................................... 35 

1.4 Knowledge can be drawn from other diseases ..................................................................... 36 

1.4.1 Malignant melanoma ....................................................................................................... 366 

1.4.2 Chronic lymphocytic leukaemia ......................................................................................... 36 

1.5 Knowledge gaps and rationale for project ............................................................................ 36 

1.6 Hypothesis ............................................................................................................................. 37 

1.7 Aims....................................................................................................................................... 37 

2: Mass Cytometry ..................................................................................................................... 38 

2.1 The role of mass cytometry for single cell profiling of biological samples ........................... 38 

2.2 The technology ...................................................................................................................... 39 

2.3 Sample preparation workflow .............................................................................................. 40 

2.3.1 Antibodies .......................................................................................................................... 41 



6 
 

2.3.2 Controls .............................................................................................................................. 41 

2.4 Established research use ....................................................................................................... 42 

2.5 Key strengths......................................................................................................................... 43 

2.5.1 Technical advantages ......................................................................................................... 43 

2.5.2 Data strengths .................................................................................................................... 43 

2.6 Potential pitfalls .................................................................................................................... 43 

2.6.1 Resources ........................................................................................................................... 43 

2.6.2 Technical issues .................................................................................................................. 44 

2.6.3 Blessed with the curse of multidimensional data 150 ......................................................... 45 

2.7 Data analysis pathways ......................................................................................................... 45 

2.7.1 SPADE ................................................................................................................................. 46 

2.7.2 viSNE .................................................................................................................................. 46 

2.7.3 CITRUS ................................................................................................................................ 46 

2.7.4 PHENOGRAPH .................................................................................................................... 47 

2.7.5 Other visualisation techniques .......................................................................................... 47 

2.8 The future ............................................................................................................................. 47 

2.9 Summary points .................................................................................................................... 48 

3. General materials and methods ............................................................................................ 49 

3.1 Biological samples ................................................................................................................. 49 

3.1.1 Ethics .................................................................................................................................. 49 

3.1.2 Isolation and cryopreservation of PBMCs .......................................................................... 49 

3.1.3 Clinical sample identification and storage ......................................................................... 50 

3.1.4 Sample thaw procedure ..................................................................................................... 50 

3.2 Lanthanide labelling of antibodies ........................................................................................ 50 

3.2.1 Metal loading of polymer................................................................................................... 51 

3.2.2 Buffer exchange and partial reduction of antibody ........................................................... 51 

3.2.3 Antibody conjugation with metal loaded polymer ............................................................ 52 

3.2.4 Validation of conjugated antibodies .................................................................................. 52 

3.2.5 Titration of conjugated antibodies .................................................................................... 55 

3.3 Sample stimulation ............................................................................................................... 56 

3.3.1 CD3 and CD28 .................................................................................................................... 56 

3.3.1.1 Tube based stimulation................................................................................................... 56 

3.3.1.2 Plate based stimulation .................................................................................................. 56 

3.3.2 PMA .................................................................................................................................... 57 

3.3.3 Protein transport inhibition ............................................................................................... 57 

3.4 Sample preparation and data acquisition: Mass cytometry ................................................. 57 

3.4.1 Panel design and optimisation ........................................................................................... 57 

3.4.1.1 Panel design .................................................................................................................... 57 

3.4.1.2 Selection of antibody targets .......................................................................................... 58 



7 
 

3.4.1.3 Optimisation of staining protocol ................................................................................... 59 

3.4.1.4 Determining threshold of detection ............................................................................... 61 

3.4.2 Cell surface staining ........................................................................................................... 62 

3.4.3 Intracellular and intranuclear staining ............................................................................... 62 

3.4.4 Fixation and intercalation .................................................................................................. 62 

3.4.5 Data acquisition ................................................................................................................. 62 

3.4.6 Data analysis ...................................................................................................................... 63 

3.5 General statistical analysis .................................................................................................... 64 

3.6 General reagents ................................................................................................................... 65 

3.6.1 Purchased reagents ............................................................................................................ 65 

3.6.2 Reagents made in house .................................................................................................... 65 

4. Preface to chapters four to nine ............................................................................................ 66 

4.1 Patient demographics ........................................................................................................... 66 

4.2 Specific methodology ............................................................................................................ 67 

4.2.1 Statistical analysis .............................................................................................................. 67 

5. Phenotypic and functional assessment of CD3+CD8+ T cells and subsets in newly 
diagnosed and multiple myeloma ................................................................................. 68 

5.1 CD8+ lymphocytes and the immune response to malignancy ............................................. 68 

5.2 Aim ........................................................................................................................................ 70 

5.3 Specific methodology ............................................................................................................ 70 

5.4 Results ................................................................................................................................... 71 

5.4.1 The proportion of CD8 positive cells is well preserved in NDMM however there is a 
reduction in the proportion of resting CD8 CM cells...................................................... 71 

5.4.2 Stimulation with CD3 and CD28 restores CM cell proportions and results in an expansion 
in NDMM effector population proportions .................................................................... 71 

5.4.3 CD8 populations in NDMM strongly up-regulate Ki67 expression in response to 
stimulation with CD3 and CD28 ...................................................................................... 73 

5.4.4 CD8 subsets in NDMM are able to produce cytokines in response to appropriate 
stimulation, however an aberrant pattern of expression across subsets was seen for 

TGF, IL2 and IL10 .......................................................................................................... 74 

5.4.5 Multi-cytokine producing CD8 subsets are present in NDMM .......................................... 77 

5.4.6 CD8 populations in NDMM express markers of degranulation which are most prominent 
on effector populations and are upregulated following stimulation with CD3 and CD28
 ........................................................................................................................................ 80 

5.4.7 DNAM1 , NKG2D, 2B4  and PD1  are present at detectable levels on resting CD8 cells in 
NDMM which may offer therapeutic opportunities....................................................... 82 

5.4.8 Expression of DNAM1 on resting NDMM CD8 population is reduced in comparison to 
control samples .............................................................................................................. 84 

5.4.9 PD1 expression is increased in stimulated CD8 cells in NDMM when compared to controls
 ........................................................................................................................................ 88 

5.4.10 PD1high CD8 T cells are increased in NDMM and have an aberrant functional phenotype
 ........................................................................................................................................ 88 



8 
 

5.4.11 Dual checkpoint receptor expressing populations have distinct functional phenotypes 95 

5.5 Summary of results ............................................................................................................. 100 

5.6 Discussion ............................................................................................................................ 100 

5.7 Relevance of work ............................................................................................................... 101 

6. Natural killer cell phenotype and function in NDMM ........................................................ 102 

6.1 Natural killer cells and the recognition of tumour cells ...................................................... 102 

6.2 Aims..................................................................................................................................... 105 

6.3 Specific methodology .......................................................................................................... 105 

6.4 Results ................................................................................................................................. 106 

6.4.1 The NK cell population in NDMM is shifted toward a less mature, CD56bright phenotype106 

6.4.2 NK cells in NDMM have lower expression of Ki67, with the CD56dim population being least 
proliferative .................................................................................................................. 107 

6.4.3 Granzyme and perforin expression is more intense in the NDMM NK56dim subset but is 
not accompanied by a rise in CD107a .......................................................................... 108 

6.4.4 Loss of intracellular IFN and IL10 is seen in NDMM NK cell populations ...................... 110 

6.4.5 TIM3 expression is reduced in NK cells from NDMM and may represent loss of NK cell 
activation ...................................................................................................................... 113 

6.4.6 Receptors and ligands of the PD1 pathway are upregulated on NK cells from NDMM .. 114 

6.4.7 NK cell activating receptors are expressed at normal levels in NDMM........................... 115 

6.5 Summary of results ............................................................................................................. 116 

6.6 Discussion ............................................................................................................................ 117 

6.7 Relevance of work ............................................................................................................... 119 

7. The phenotype and function of CD4+ lymphocytes in NDMM ........................................... 120 

7.1 CD4 lymphocytes and the coordinated immune response ................................................ 120 

7.2 Aim ...................................................................................................................................... 122 

7.3 Specific methodology .......................................................................................................... 122 

7.4 Results ................................................................................................................................. 123 

7.4.1 There are no numerical differences between CD4 subsets in control and NDMM bone 
marrow ......................................................................................................................... 123 

7.4.2 CD4+ lymphocytes in NDMM are poorly proliferative, express PDL1 and generate TGF 
and perforin .................................................................................................................. 124 

7.4.3 The T regulatory population in NDMM has a more immune suppressive phenotype 
compared to control samples ....................................................................................... 127 

7.4.4. Naïve CD4 cells in NDMM are poorly proliferative and express PDL1............................ 130 

7.4.5 The memory CD4 subset in NDMM has a pro-tumour cytokine profile .......................... 132 

7.4.6 The effector CD4 population has a pro-tumour phenotype ............................................ 133 

7.5 Summary of results ............................................................................................................. 133 

7.6 Discussion ............................................................................................................................ 135 

7.7 Relevance of work ............................................................................................................... 135 

8. Plasma cell and the non-myeloma B cell population phenotype and function ................. 136 

8.1 Plasma cells and the non-myeloma B cell population ........................................................ 136 



9 
 

8.2 Aim ...................................................................................................................................... 136 

8.3 Specific methodology .......................................................................................................... 137 

8.3.1 Identification of plasma cells ........................................................................................... 137 

8.4 Results ................................................................................................................................. 137 

8.4.1 The non malignant B cell compartment is less proliferative in NDMM and expresses 
higher levels of IL2 ........................................................................................................ 137 

8.4.2 NDMM plasma cell populations as detected by mass cytometry vary widely in size 
between individuals ...................................................................................................... 139 

8.4.3 Plasma cell populations in NDMM express PDL1, LAG3 and 2B4 and produce TGF ..... 141 

8.4.5 High plasma cell TGF expression is associated with co-expression of immune checkpoint 
ligands and decreased CD8 subset cytotoxicity............................................................ 144 

8.5 Summary of results ............................................................................................................. 147 

8.6 Discussion ............................................................................................................................ 147 

8.7 Relevance of work ............................................................................................................... 148 

9. Identifying a global bone marrow signature of multiple myeloma ................................... 149 

9.1 Myeloma and global signatures of disease ......................................................................... 149 

9.2 Aim ...................................................................................................................................... 149 

9.3 Specific methodology .......................................................................................................... 149 

9.3.1 CIRTUS algorithm ............................................................................................................. 149 

9.4 Results ................................................................................................................................. 152 

9.4.1 Identification of cell populations ..................................................................................... 152 

9.4.2 Dendritic cell populations are lost in NDMM and a shift towards tolerogenic activity is 
seen  .............................................................................................................................. 154 

9.4.3 CD8 lymphocytes have distinct cytotoxic and cytokine producing populations with shifts 
towards a pro-tumour cytokine environment (Figure 9.5) .......................................... 156 

9.4.4 CD4 lymphocytes with distinct memory and effector phenotype can be identified, with a 
shift towards a regulatory phenotype (Figure 9.6 and 9.7) .......................................... 159 

9.4.5 Natural killer cells have a cytotoxic phenotype and cluster closely to cytotoxic CD8 
lymphocytes (Figure 9.8) .............................................................................................. 162 

9.4.6 B cells are seen in both control and NDMM and cluster in a distinct locations from plasma 
cells (Figure 9.9) ............................................................................................................ 163 

9.4.7 Plasma cells from NDMM have a proliferative phenotype with expression of immune 
regulatory ligands and immune suppressive cytokines (Figure 9.10) .......................... 164 

9.4.8 Immunological fingerprint in NDMM and links with immune surveillance model .......... 166 

9.4.9 Patterns of population expression and association with survival ................................... 167 

9.5 Summary of results ............................................................................................................. 169 

9.6 Discussion ............................................................................................................................ 169 

9.7 Relevance of work ............................................................................................................... 170 

10. Targeting immune checkpoint regulators in relapsed refractory myeloma .................... 171 

10.1 Acknowledgements ........................................................................................................... 171 

10.2 Durvalumab and daratumumab to target the immunological microenvironment in RRMM
 ...................................................................................................................................... 171 



10 
 

10.3 Aim .................................................................................................................................... 173 

10.4 Specific methodology ........................................................................................................ 173 

10.4.1 Clinical samples and study design .................................................................................. 173 

10.4.2 Entry and exclusion criteria ........................................................................................... 174 

10.4.3 Mass cytometry panel .................................................................................................... 175 

10.4.4 Optimising and troubleshooting mass cytometry panel ............................................... 177 

10.4.5 Sample preparation ....................................................................................................... 177 

10.4.6 Data analysis strategies.................................................................................................. 179 

10.5 Results ............................................................................................................................... 182 

10.5.1 CD8 and CD4 lymphocyte numbers rise following treatment with Daratumumab and 
Durvalumab .................................................................................................................. 182 

10.5.2.1 Population phenotype as identified by CITRUS .......................................................... 183 

10.5.2.2 Functional changes following treatment as identified by CITRUS .............................. 191 

10.5.3 Analysis from viSNe based gating .................................................................................. 198 

10.5.3.1 CD8 populations have an activation signature consistent with a cytotoxic response 
following treatment with Daratumumab and Durvalumab ......................................... 198 

10.5.3.2 T regulatory subsets are less proliferative following treatment with Durvalumab and 
dartumumab ................................................................................................................. 200 

10.5.3.3 NK cells show a loss of cytotoxic activity following treatment with daratumab and 
durvalumab ................................................................................................................... 200 

10.5.3.4 B cell populations have a profound reduction in Ki67 expression which is accompanied 
by a rise in pro-tumour cytokines ................................................................................. 200 

10.6 Summary of results ........................................................................................................... 204 

10.7 Discussion.......................................................................................................................... 204 

10.8 Relevance of work ............................................................................................................. 205 

11. General discussion and conclusions .................................................................................. 206 

11.1 Future work ....................................................................................................................... 208 

12 References ........................................................................................................................... 209 

 

 

 

 

 

 

 

 



11 
 

List of figures 

Figure 1.1: The immune surveillance model of malignancy........................................................21 

Figure 1.2: Standard myeloma treatment pathway....................................................................26 

Figure 1.3: The immune surveillance model in myeloma............................................................28 

Figure 2.1: Spectral overlap.........................................................................................................38 

Figure 2.2: Antibody structure....................................................................................................39 

Figure 2.3: Mass cytometry workflow.........................................................................................40 

Figure 2.4: Mass cytometry publications....................................................................................42 

Figure 3.1: Antibody validation using known positive and negative controls.............................53 

Figure 3.2: Antibody validation by comparison to commercially conjugated antibody..............53 

Figure 3.3: Validation of subsequent antibody conjugations......................................................54 

Figure 3.4: Determining optimal antibody concentration...........................................................55 

Figure 3.5: Mass cytometry panel design....................................................................................58 

Figure 3.6: Determining thresholds of detection........................................................................61 

Figure 3.7: Gating strategy to identify live, singlet events..........................................................63 

Figure 5.1: T cell anergy and exhaustion.....................................................................................69 

Figure 5.2: CD8 gating strategy...................................................................................................70 

Figure 5.3: Frequency of CD8 populations..................................................................................72 

Figure 5.4: Proliferation of CD8 populations...............................................................................73 

Figure 5.5: Cytokine expression across CD8 subsets in control and NDMM...............................76 

Figure 5.6: Multiple cytokine producing CD8 subsets.................................................................78 

Figure 5.7: Pro and anti-tumour cytokine producing CD8 populations.......................................79 

Figure 5.8: CD8 expression of markers of cytotoxicity................................................................81 

Figure 5.9: Expression of cell surface receptors by CD8 lymphocytes........................................83 

Figure 5.10: Cell surface receptor expression across CD8 subsets..............................................85 

Figure 5.11: PD1 expressing CD8 populations.............................................................................89 

Figure 5.12: Proliferation and cytotoxicity in PD1 subsets..........................................................90 

Figure 5.13: Co-receptor expression on PD1 subsets..................................................................92 

Figure 5.14: Cytokine expression by PD1 subsets.......................................................................93 

Figure 5.15: Immune checkpoint receptor expression by PD1 subsets.......................................94 

Figure 5.16: Population size in dual checkpoint receptor expressing CD8 populations..............96 



12 
 

Figure 5.17: CD8 dual checkpoint expressing phenotype and function......................................97 

Figure 5.18: Patterns of marker expression by dual checkpoint receptor CD8 populations.......99 

Figure 6.1: Routes to NK cell activation.....................................................................................103 

Figure 6.2: NK cell gating strategy.............................................................................................106 

Figure 6.3: NK cell populations..................................................................................................107 

Figure 6.4: Proliferation in NK cell populations.........................................................................108 

Figure 6.5: NK cell cytotoxicity..................................................................................................109 

Figure 6.6: Correlation of degranulation markers with survival................................................110 

Figure 6.7: Cytokine expression by NK cells..............................................................................111 

Figure 6.8: Multiple cytokine producing NK cell populations....................................................112 

Figure 6.9: NK cell expression of activation markers.................................................................114 

Figure 6.10: PD1 and PDL1 expression by NK cell subsets........................................................115 

Figure 6.11: NK cell receptor expression...................................................................................116 

Figure 7.1: CD4 T cell subsets and plasticity..............................................................................120  

Figure 7.2: CD4 gating strategy.................................................................................................123 

Figure 7.3:  CD4 event counts....................................................................................................124 

Figure 7.4: CD4+ lymphocytes in NDMM express PDL1 and generate TGF and perforin .......125 

Figure 7.5: CD4+ lymphocytes in NDMM are poorly proliferative............................................126  

Figure 7.6: The T regulatory population in NDMM has a more immune suppressive phenotype 

compared to control samples...................................................................................................128 

Figure 7.7: Naïve CD4 cells in NDMM are poorly proliferative and express PDL1....................131 

Figure 7.8: The memory CD4 subset in NDMM has a pro-tumour cytokine profile..................132 

Figure 7.9:  CD4 effector populations have a pro-tumour phenotype......................................134 

Figure 8.1: The non malignant B cell compartment is less proliferative in NDMM and expresses 

higher levels of IL2.....................................................................................................................138 

Figure 8.2: Myeloma plasma cell populations as detected by mass cytometry vary widely in size 

between individuals..................................................................................................................139 

Figure 8.3: Plasma cells in NDMM demonstrate a range of patterns of distribution................140 

Figure 8.4: Variations in plasma cell expression of PDL1 are seen within the plasma cell 

gate............................................................................................................................................141 



13 
 

Figure 8.5: Plasma cell populations in NDMM express PDL1, LAG3 and 2B4 and produce 

TGF..........................................................................................................................................143

8.6: High plasma cell TGF expression is associated with co-expression of immune checkpoint 

ligands ......................................................................................................................................145 

Figure 8.7: High plasma cell PDL1 expression is associated with decreased CD8 subset 

cytotoxicity................................................................................................................................146  

Figure 9.1: The CITRUS algorithm was run three times in parallel on the same data set to 

confirm findings were reproducible..........................................................................................151 

Figure 9.2: Populations identified by CITRUS analysis...............................................................153 

Figure 9.3: Nodes identified by CITRUS with significant abundance difference between control 

and NDMM................................................................................................................................154 

Figure 9.4: Two distinct dendritic cell populations are identified by CITRUS which are less 

abundant in NDMM...................................................................................................................155 

Figure 9.5: CD8 populations as identified by CITRUS................................................................157 

Figure 9.6: CD4 lymphocyte populations identified by CITRUS.................................................160 

Figure 9.7: CD4 regulatory population......................................................................................161 

Figure 9.8: Natural killer cells have a cytotoxic phenotype.......................................................162 

Figure 9.9: B cell populations....................................................................................................163 

Figure 9.10: Plasma cells from NDMM have a proliferative phenotype with expression of 

immune regulatory ligands and immune suppressive cytokines when compared to healthy B 

cell populations.........................................................................................................................165 

Figure 9.11: The immunological fingerprint in NDMM and links with immune surveillance 

model........................................................................................................................................166 

Figure 9.12: Patterns of population expression are association with survival..........................168 

Figure 10.1: Mechanisms of action of daratumumab and durvalumab....................................172  

Figure 10.2: MEDI4736-MM03 trial design...............................................................................174 

Figure 10.3: Aberrant BCMA expression due to spillover from granzyme channel..................178 

Figure 10.4: Identification of cell populations using viSNE.......................................................180 

Figure 10.5: Identification of cell populations using CITRUS.....................................................181 

Figure 10.6: Event count by viSNE before treatment and on cycle 2, day 15 of treatment with 

daratumumab and durvalumab ...............................................................................................182 

Figure 10.7: Event counts by CITRUS before treatment and on cycle 2, day 15 of treatment with 

daratumumab and durvalumab ...............................................................................................183 



14 
 

Figure 10.8: Marker expression by NK cell populations identified by CITRUS pre treatment and 

on cycle 2, day 15 of treatment with durvalumab and daratumumab.....................................185 

Figure 10.9: Marker expression by DC cell populations identified by CITRUS pre treatment and 

on cycle 2, day 15 of treatment with durvalumab and daratumumab.....................................186 

Figure 10.10: Marker expression by B cells identified by CITRUS pre treatment and on cycle 2, 

day 15 of treatment with durvalumab and daratumumab.......................................................187 

Figure 10.11: Marker expression by CD8 cells identified by CITRUS pre treatment and on cycle 

2, day 15 of treatment with durvalumab and daratumumab...................................................188 

Figure 10.12: Marker expression by CD4 cells identified by CITRUS pre treatment and on cycle 

2, day 15 of treatment with durvalumab and daratumumab...................................................189 

Figure 10.13: Marker expression by plasma cells identified by CITRUS pre treatment and on 

cycle 2, day 15 of treatment with durvalumab and daratumumab..........................................190 

Figure 10.14: Functional changes on NK cells following treatment with daratumumab and 

durvalumab as assessed by CITRUS analysis.............................................................................192 

Figure 10.15: Functional changes on DC cells following treatment with daratumumab and 

durvalumab as assessed by CITRUS analysis.............................................................................193 

Figure 10.16: Functional changes on B cells following treatment with daratumumab and 

durvalumab as assessed by CITRUS analysis.............................................................................194 

Figure 10.17: Functional changes on CD8 cells following treatment with daratumumab and 

durvalumab as assessed by CITRUS analysis.............................................................................195 

Figure 10.18: Functional changes on CD4 cells following treatment with daratumumab and 

durvalumab as assessed by CITRUS analysis.............................................................................196 

Figure 10.19: Functional changes on plasma cells following treatment with daratumumab and 

durvalumab as assessed by CITRUS analysis.............................................................................197 

Figure 10.20: Functional changes on CD8 cells following treatment with daratumumab and 

durvalumab as assessed by viSNE analysis................................................................................199 

Figure 10.21: Functional changes on CD4 cells following treatment with daratumumab and 

durvalumab as assessed by viSNE analysis................................................................................201 

Figure 10.22: Functional changes on NK cells following treatment with daratumumab and 

durvalumab as assessed by viSNE analysis................................................................................202 

Figure 10.23: Functional changes on B cells following treatment with daratumumab and 

durvalumab as assessed by viSNE analysis................................................................................203 

 

 

 



15 
 

List of tables 

Table 1.1: Diagnostic criteria for myeloma and smouldering myeloma......................................23 

Table 3.1: Antibody clones selected for in-house conjugations..................................................51 

Table 3.2: Positive and negative controls for antibody titration.................................................54 

Table 3.3: Antibodies selected for mass cytometry panel..........................................................59 

Table 3.4 Phenotypes used to identify cell populations..............................................................64 

Table 3.5: Purchased reagents....................................................................................................65 

Table 3.6: Reagents made in house.............................................................................................65 

Table 4.1: Patient demographics.................................................................................................66 

Table 6.1: NK cell receptors and ligands....................................................................................104 

Table 7.1: CD4 subsets..............................................................................................................121 

Table 9.1: Phenotype of populations identified by CITRUS.......................................................152 

Table 10.1: Entry and exclusion criteria for MEDI4736-MM-003..............................................175 

Table 10.2 Mass cytometry panel.............................................................................................176 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Abbreviations 

AML  Acute myeloid leukaemia 

ANOVA  Analysis of variance 

BCI  Barts Cancer Institute 

BCMA  B cell maturation antigen 

BITE  Bi-specific T cell engager 

BMMCs  Bone marrow mononuclear cells 

C2D15  Cycle 2, day 15 

CAR-T  Chimeric antigen receptor T cell 

CDF  Cancer Drugs Fund 

CI  Confidence interval 

CITRUS  Cluster identification, characterisation and regression 

CLL  Chronic lymphocytic leukaemia 

CM  Central memory 

CR  Complete response 

CRAB  Hypercalcaemia, renal dysfunction, anaemia, bone pain 

CFSE  Carboxyfluorescein succinimidyl ester 

CT / PET-CT Computed tomography / Positron emission computed tomography 

CTD  Cyclophosphamide, thalidomide, dexamethasone 

CTLA4  Cytotoxic T lymphocyte associated protein 4 

CyTOF  Cytometry time of flight 

DC  Dendritic cell 

DLBCL  Diffuse large B cell lymphoma 

DNA  Deoxyribonucleic acid 

DNAM1  DNAX accessory molecule 1 

DMSO  Dimethyl sufoxide 



17 
 

DVD  Daratumumab, bortezomib, dexamethasone 

EBMT  European society blood and bone marrow transplantation 

EBV  Epstein Barr virus 

ECOG  Eastern cooperative oncology group score 

EMRA  Terminally differentiated effector memory cell re-expressing CD45RA 

FBS  Fetal bovine serum 

FCS  Flow cytometry standard 

FDA  US food and drug administration 

FoxP3  Forkhead box P3 

Gnz  Granzyme 

GvHD  Graft versus host disease 

HA  Health authority 

HIV  Human immunodeficiency virus  

HLA  Human leukocyte antigen 

HR  Hazard ratio 

IFN  Interferon gamma 

Ig  Immunoglobulin 

IGH  Immunoglobulin heavy gene 

IL 2-35  Interleukin 2-35 

IMiDs  Immune-modulatory drugs 

IMS  Isopropanolol and methanol 

Ir  Iridium 

KIR  Killer cell immunoglobulin like receptor 

KLRG1  Killer cell lectin like receptor G1 

LAG3  Lymphocyte activating gene 3 

LIR1  Leukocyte immunoglobulin like receptor 1 



18 
 

MGUS  Monoclonal gammopathy of uncertain significance 

MHC  Major histocompatibility complex 

MICA/B  MHC class1 polypeptide related sequence A/B 

MM  Multiple myeloma 

MMO  Metal minus one 

MMM  Metal minus many 

MPT  Melphalan, prednisolone, thalidomide 

MSI  Mean signal intensity 

MUC1  Mucin 1 cell surface associated  

MW  Mann-Whitney 

NDMM  Newly diagnosed multiple myeloma 

NHS  National health service 

NICE  National institute clinical excellence 

NK  Natural killer 

PBS  Phosphate buffered saline 

PBMCs  Peripheral blood mononuclear cells 

PCA  Principle component analysis 

PD1  Programmed cell death protein 1 

PDL1/2  Programmed cell death ligand 1/2 

Perf  Perforin 

PI  Proteasome inhibitor 

PR  Partial response 

RORt  RAR related orphan receptor gamma 

RPMI  Roswell Park Memorial Institute medium 

RRMM  Relapsed refractory multiple myeloma 

SAM  Significance analysis microarrays 



19 
 

SLAMF7 Signalling lymphocytic activation molecule 7 

SPADE  Spanning-tree progression analysis of density normalised events 

TCEP  tris(2-carboxyethy)phosphine 

TCR  T cell receptor 

TGF  Transforming growth factor beta   

TH 1/2/17 T helper 1/2/17 

TIM3  T cell immunoglobulin and mucin domain 3 

TNF  Tissue necrosis factor alpha 

TRAIL  TNF related apoptosis inducing ligand 

Treg  T regulatory cell 

ULPB1  UL16 binding protein 1 

VCD  Velcade, cyclophosphamide, dexamethasone 

VDT  Velcade, dexamethasone, thalidomide 
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1. The immune surveillance model of malignancy 

1.1 Immune surveillance and immune dysregulation 

1.1.1 Concept of immune surveillance and immune dysregulation in malignancy 

The role of the immune system in recognising and destroying malignant cells was first 

proposed in 1909 by Paul Ehrlich 1. In light of increasing evidence from murine models, in vitro 

analysis of human tumours and observations of human cancer behaviour this original model 

was incorporated into the three E’s model of immune-editing 1, recognising the fact that when 

elimination of the malignant cells fails, the immune system continues to influence tumour 

growth and development. In this model the interaction between the immune system and the 

malignant cell are described be three phases; elimination, equilibrium and escape (Figure 1.1). 

Stage 1: Elimination 1. Elimination incorporates the classic immune-surveillance model and 

proposes that malignant cells are initially recognised and targeted by cells of the innate 

immune system. This initial response releases tumour antigens which recruit and drive the 

maturation of dendritic cells which are then able to prime and recruit antigen specific T cells. 

These tumour specific cells have direct cytotoxicity against the malignant cells. If this response 

is effective then the tumour clone will be eliminated. This is also known as the cancer-

immunity cycle 2. 

Stage 2: Equilibrium 1. In situations where the tumour clone is not effectively eliminated a 

balance can be formed between tumour and immune cells. This equilibrium maintains the 

malignant population at macroscopically undetectable levels and may last for many years. 

Continued immunological response against the malignant cells will inevitably exert a Darwinian 

selective pressure which will drive the emergence of poorly immunogenic clones, in a process 

known as immune-selection 3.  This has been elegantly demonstrated in murine tumour 

transfer models where tumours from mice without an intact immune system are more 

immunogenic when transferred to wild type mice than those from mice with an intact immune 

system 4. 

 

Stage 3: Escape. As the malignant cells become increasingly non-immunogenic they are able to 

proliferate unchecked by the immune system and clinically detectable disease becomes 

apparent. In addition to immune-selection a number of immune-subversion mechanisms 

contributing to tumour escape have been described including alterations in effector cells signal 

transduction 5, the release of tumour derived soluble factors such as MICA 1 which may 

function as a decoy molecule, modifications in tumour expression of MHC class I 6, expression 

of immunoregulatory ligands such as CD274 (Programmed death-ligand 1 (PD-L1) also known 
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as B7 homolog 1 (B7-H1) 7 and induction of immune regulatory cells 8. In addition prolonged 

exposure of cytotoxic T cells to antigen which is not effectively cleared may result in a down 

regulation of cytotoxic activity as part of an evolutionary response to limit tissue damage 9.  

 

 

 

1.1.2 The body of evidence in support of the immune surveillance model 

Observational support of the immune-editing concept includes the link between aging, with its 

associated decline in immune function, and malignancy 10 and the increased prevalence of 

cancer in individuals with congenital 11 or acquired 12 immunodeficiency syndromes or 

receiving immunosuppressing drugs 13. Plasma cell disorders including MGUS 14 and myeloma 

12 are reported at higher rates in individuals who are immunocompromised due to HIV. These 

observations all suggest that when the immune system is compromised risk of malignancy 

rises. These associations have become increasingly apparent as life expectancy has improved.  

 

In the Rag 2-/- mouse model of immunodeficiency, which lack mature lymphocytes, an 

increased rate of both spontaneous tumours (12/12 Rag2-/- v. 0/11 wild type) and carcinogen 
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induced tumours (RAG2-/- 30/52, wild type 11/57 p=<0.0001) are observed 4. In genetic models 

of malignancy, perforin deficient mice develop more cases of lymphoma than wild type 

controls (perf-/- 9/12 v. wildtype 1/16 p=0.0091) 15. These mouse models demonstrate the 

importance of a functioning, cytotoxic immune system in resisting malignant transformation. 

 

In human malignancy associations have been reported between the presence of tumour 

infiltrating lymphocytes in histological specimens and improved survival in breast 16, 

oesophageal 17 and small cell lung 18 cancer. NK cell tumour infiltration has also been 

associated with improved prognosis in breast 19, gastric 20 and lung 21 cancer. 

CD4+ T regulatory cells have also been implicated in the development of malignancy. While the 

usual role of T regulatory cells is to suppress cytotoxicity against self antigen and thereby 

prevent autoimmunity, in the context of malignancy this can result in suppression of immune 

surveillance. Histological infiltration of tumour with T regulatory cells is associated with a poor 

prognosis in a range of malignancies including diffuse large B cell lymphoma (DLBCL) 22, breast 

cancer 23, ovarian cancer 24, hepatocellular carcinoma 25 and non-small  cell lung cancer 26. 

Poorly functional T cells in malignancy are often described as either exhausted or anergic. 

Anergy occurs when a T cell receptor (TCR) signal is received in the absence of a co-stimulatory 

signal and may occur early in tumour development if a T cell recognises a tumour associated 

antigen but does not receive a supportive co-stimulatory signal 27. In contrast, T cell exhaustion 

is a reversible state of progressive loss of effector functions which is associated with prolonged 

antigen exposure and inflammation 27. In exhaustion, typically a hierarchical loss of function is 

described with loss of IL2 production occurring early and failure in IFN release a late feature 

28. Exhausted T cells become “addicted” to their antigen and require continued stimulation of 

the TCR for survival 29. They express high levels of CD279 – programmed cell death protein 1 

(PD1) on the cell surface in addition to other immune inhibitory molecules such as CD223 - 

lymphocyte activation 3 gene (LAG3) 29. In haematological malignancies, exhausted phenotype 

T cells have been reported by our group 30. In murine models, infusion of chronic lymphocytic 

leukaemia cells results in an exhausted phenotype 31 whereas addition of anti-PDL1 

monoclonal antibody prevents development of disease (McClanahan et al., 2015).  

The role of immune-editing in tumour development in haematological malignancy is a growing 

area of interest, both as a mechanism for understanding tumour development and growth 

kinetics but also as a source of therapeutic targets. Diseases such as multiple myeloma, which 

have a clearly defined pre malignant phase and remain currently incurable, may benefit from 

these therapeutic approaches. 
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1.2 Clinical importance of myeloma 

1.2.1 Definition, epidemiology and diagnostic criteria 

Multiple myeloma is a mature B cell neoplasm arising from plasma cells 33. The malignant cells 

are thought to arise from long lived, post germinal centre plasma cells which have undergone 

both class switching and somatic hypermutation33. The plasma cells are described as clonal 

because they all produce the same immunoglobulin molecule. 

The International Myeloma Working Groups diagnostic criteria for the diagnosis of 

symptomatic and asymptomatic myeloma have recently been updated to include key 

biomarkers in addition to clinical features 34. The diagnostic criteria are summarised in table 

1.1. These new criteria represent a departure from traditional management strategies as 

asymptomatic patients with biomarkers suggesting high risk of disease progression within 24 

months are now considered symptomatic and eligible for treatment. 

Multiple myeloma Smouldering multiple myeloma 

Clonal bone marrow plasma cells >10% or biopsy 

proven extramedullary plasmacytoma and any one 

or more myeloma defining events. 

 

Myeloma defining events: 

Evidence of end organ damage attributable to 

plasma cell disorder.  

1. Hypercalcaemia >2.75 mmol 

2. Creatinine clearance <40ml/min 

3. Anaemia <100 g/L 

4. Bone lesion, 1 or more on Xray, CT or 

PET CT 

Any one or more biomarker: 

1. Clonal bone marrow plasma percentage 

>60% 

2. Involved: uninvolved light chain ratio >100 

3. More than one focal lesion on MRI 

 

Both criteria: 

1. Serum monoclonal protein >30g/L or 

urinary monoclonal protein >500mg per 

24 hours and/or clonal bone marrow 

plasma cells 10-60% 

2. Absence of myeloma defining events or 

amyloidosis 

Table 1.1: Diagnostic criteria for myeloma and smouldering myeloma. Adapted from IMWG 

diagnostic criteria 34. 
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The terms smouldering myeloma and asymptomatic myeloma are used interchangeably.  

1.2.2 Clinical features 

While the malignant plasma cell in myeloma is predominantly confined to the bone marrow, 

the clinical features of the condition are diverse. The “CRAB” criteria of hypercalcaemia, renal 

impairment, anaemia and bone pain are used to define symptomatic disease, however clinical 

features are not restricted to these findings. 

Monoclonal immunoglobulin, also referred to as paraprotein, or immunoglobulin light chains 

secreted by the malignant clone can usually be detected in either the peripheral blood or in 

urine. This circulating disease biomarker is frequently identified in asymptomatic patients as 

part of a routine health screen or during the investigation of non-specific symptoms. Non-

secretory myeloma is a rare and difficult to diagnose entity with malignant plasma cells within 

the bone marrow compartment but no detectable serological biomarker.  

The monoclonal paraprotein can cause renal impairment by disrupting the normal filtration of 

the kidney and becoming deposited within glomeruli. At high levels paraprotein increases the 

viscosity of the blood leading to confusion, bruising and organ ischaemia. In some 

circumstances the paraprotein can act as a paraneoplastic autoantibody, particularly targeting 

myelin and leading to peripheral neuropathy. 

Malignant plasma cells interact with and disrupt normal cellular mechanisms within the bone 

marrow microenvironment. This includes disrupting the balance between osteoclasts, which 

resorb bone, and osteoblasts, which lay down new bone, resulting in the formation of lytic 

regions. These characteristic lytic lesions can result in pathological fractures and bone pain and 

can often be detected on radiological imaging. The calcium released by bone destruction leads 

to hypercalcaemia, with its associated clinical features, often worsening renal impairment and 

pain. 

Physical infiltration of plasma cells into the bone marrow niche leads to the suppression of 

healthy haematopoetic cells resulting in anaemia, thrombocytopaenia and increased 

susceptibility to infection. In addition normal immune cell function is compromised, further 

increasing the infection risk. Patients with MGUS have a two fold increased risk of developing 

an infection over a 5 year period 35while individuals with myeloma have a seven fold increased 

risk of bacterial infections and 10 fold increased risk of viral infections 36. 

1.2.3 Treatment strategies and their limitations 

To date myeloma remains a controllable but not curable haematological malignancy. Median 

life expectancy in the UK is 5 years 37. The progression of the disease is characterised by 
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shorter responses to treatment with escalation of clinical symptoms, particularly pain and 

infection, with associated debilitation. This coincides with the evolution of diverse subclones 

with unique genetic hallmarks, with the eventual dominance of a chemotherapy resistant 

clone 38. Current guidelines recommend that treatment is only started once patients fulfil the 

criteria for symptomatic disease. Historically, treating asymptomatic myeloma has not been 

shown to improve overall survival and risks exposing the patient to unnecessary toxicity risks 

39, however with novel treatments, evidence is emerging that treating high risk asymptomatic 

patients early may delay disease progression and improve overall survival, with an acceptable 

toxicity profile 40. This has not yet become incorporated into standard UK practice. Recent 

redefinitions of symptomatic disease, however, has broadened the number of patients eligible 

to receive treatment. 

Current therapeutic strategies for myeloma are focused on combined modality treatment. For 

those patients with sufficient physical fitness initial induction treatment is consolidated by a 

melphalan conditioned autologous stem cell transplant. The use of autologous transplant is 

designed to induce a prolonged period of treatment free remission. When high dose 

melphalan autograft (melphalan dose 140mg/m2) was first compared to alkylator based 

conventional treatment , five year survival improved from 12% with standard treatment to 

52% following autograft 41.  

The role of allogenic stem cell transplantation in myeloma is less certain but is sometimes used 

for young fit patients. When tandem autografts were compared to autograft followed by HLA 

matched sibling allografts in patients with newly diagnosed myeloma, the allograft group had 

longer event free survival (35 v. 29 months) and overall survival (80 v. 54 months) than the 

tandem autograft group, with a grade 4 GvHD rate of 4% 42. EBMT registry data from the mid-

nineties however reported a transplant related mortality of 47% with a relapse rate of 45% at 

60 months 43 and allogeneic transplant is currently reserved for a small subset of individuals. 

For frail or elderly patients the goal is disease control with minimal toxicity. Multi agent 

therapeutic combinations are used and are commonly continued until the time of progression 

when a change in agents is introduced. 

The optimal combination and order of use of therapeutic agents remains uncertain and clinical 

practice is largely restricted by access to drugs. In the UK, treatment options are governed by 

the National Institute of Clinical Excellence (NICE). Current NICE technical appraisals (as of May 

2019) allow the use of bortezomib and dexamethasone with or without thalidomide, followed 

by a melphalan autograft, for transplant eligible patients 44. Transplant ineligible patients can 

receive thalidomide with an alkylator and steroid or, if this is contraindicated, bortezomib with 
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an alkylator and steroid (NICE, 2011). In the relapsed setting the situation is more complex as 

patients can access both NICE approved regimens and drugs funded via the Cancer Drugs Fund 

(CDF). Options at first relapse include bortezomib monotherapy ( NICE, 2007) or 

daratumumab, bortezomib and dexamthasone (NICE, 2019). For second relapse and beyond a 

range of agents can be considered provided stringent eligibility criteria are met, with 

restrictions in their use dependent on which previous treatments have been used. Options 

include ixazomib, lenalidomide and dexamethasone (NICE, 2018), pomalidomide (NICE, 2017), 

lenalidomide (NICE, 2009), carfilzomib (NICE, 2017) and panobinostat (NICE), 2016). 

Daratumumab monotherapy is available fourth line (NICE, 2018a) in patients who have not 

previously been exposed to daratumumab. The use of bendamustine can also be considered 

via the CDF. Additionally a large portfolio of national and company sponsored clinical trials are 

available. 

 

 

Transplant 
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Transplant 
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At 
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Figure 1.2: Standard myeloma treatment pathway in UK. Symptomatic patients are offered 

treatment based on transplant eligibility and according to treatment pathway approved by NICE 

and CDF. VDT = bortezomib, dexamethasone, thalidomide, MPT = melphalan, prednisolone, 

thalidomide, CDT = cyclophosphamide, dexamethasone, thalidomide, VCD = bortezomib, 

cyclophosphamide, dexamethasone, DVD = daratumumab, bortezomib, dexamethasone 
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Clinical trials have evaluated the role of maintenance therapy following autograft but 

consensus on this strategy has not been reached and trials are ongoing. In two separate meta-

analysis of randomised controlled trials using lenalidomide post autograft 5455a significant 

improvement in progression free survival (HR 0.49 95% CI 0.4-0.58 p<0.001) and OS (HR 0.77 

95% CI 0.62-0.95 p=0.013) was observed, however significant toxicity was seen including a two 

fold increase in second malignancies 54. 

1.3 Immune dysregulation in myeloma 

1.3.1 The immune surveillance model and myeloma 

Myeloma is an unusual malignancy because it has a well described pre malignant phase 

(MGUS) with an easily observable biomarker in the form of clonal immunoglobulin produced 

by malignant plasma cells. The stages of the immunoediting model can be correlated with the 

clinical stages of MGUS and myeloma progression. In addition to the original three E’s, I 

propose a fourth stage, Evolution, which describes the emergence of drug and immunological 

resistant clones in response to ongoing selective pressures in the setting of an incurable 

malignancy (Figure 1.3). 

1. Elimination: Clonal plasma cells are eliminated and no detectable disease is present 

2. Equilibrium: MGUS. Clonal plasma cells are present but do not cause clinical disease. 

Continued immunological selection eventually leads to an increase in clonal plasma 

cells numbers until the diagnostic criteria for asymptomatic myeloma are reached. The 

rate of progression from MGUS to myeloma is 1% per year 56.  

3. Escape: Loss of immunological control allows MGUS to progress to asymptomatic and 

then symptomatic myeloma. At this stage treatment is normally indicated. The 

disease, however, continues to follow a relapsing and remitting course in response to 

various therapeutic agents. Cytotoxic cells are expected to show progressive 

dysfunction with increasing markers of exhaustion. 

4. Evolution: Continued clonal selection, via both immunological and therapeutic 

mechanisms 38, lead to increasingly drug and immune system resistant disease until 

current therapeutic options are exhausted. Cytotoxic T cells are expected to express 

anergic or exhausted phenotypes. 
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This model may also explain the diverse clinical course seen in individuals with myeloma, some 

of whom survive for many years with little or no treatment while others present with a rapidly 

progressive and treatment resistant disease. It is likely that those with slowly progressing 

disease are able to exert stronger immunological control over the malignant clone than those 

with more aggressive disease. In support of this theory, bone marrow derived T cells from 

patients with MGUS have been shown to produce more IFN in response to autologous plasma 

cell pulsed dendritic cells than those from patients with myeloma, demonstrating that 

cytotoxic T cells in MGUS are able to recognise and respond to the presence of malignant 

plasma cells but loose this feature as the disease progresses 57. 

It is known that many of the cytogenetic changes associated with myeloma can be detected in 

plasma cells from patients with MGUS, suggesting that these recognised mutations are not 

sufficient to explain disease progression 58. Within these cytogenetic groups however there 

remains heterogeneity with a shifting balance of genetic subclones seen as treatment 

progresses 38 suggesting that there is a role for accumulating genetic mutations in tumour 

escape and evolution.  These genetic subclones may occur in response to immunological 

selective pressures as well as therapeutic pressures and may provide immune-evasion 

mechanisms. 

In order to have an effective T cell response in myeloma the malignant plasma cells must 

express an antigen which can be recognised as foreign or abnormal by adaptive immune cells. 

Potential immune targets include;  

1. Neoepitopes, formed by tumour specific DNA mutations arising from genetic instability 

resulting in novel amino acid sequences in expressed proteins 59.  

2. Cancer testis antigen, proteins normally expressed on germline tissues which can 

become re-expressed when malignant cells revert to a more primitive phenotype 60. As 
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cancer testis antigens are normally only expressed in immunologically privileged 

tissues, their expression at other sites can be immunogenic. 

3. Idiotype antibodies arising from somatic mutations in the hypervariable region of the 

immunoglobulin variable domains 61. In myeloma the monoclonal immunoglobulin 

characteristic of the disease forms the idiotype antibody. In normal plasma cell 

development B cells undergo somatic hypermutation in order to produce antibody 

with increasingly high antigen affinity, this continues in progeny cells. In the context of 

myeloma and other B cell malignancies this may lead to increased genomic instability 

and production of immunogenic proteins.  

It is recognised that malignant plasma cells continue to express HLA class I and will therefore 

have the potential to display abnormal antigen to immune cells 62. In order for expression of 

any of these potentially immunogenic proteins to be effective, however, they must be 

accompanied by an additional immune stimulating signal such as proinflammatory cytokines, 

to prevent immunological tolerance from developing 2. Inherent immune suppression within 

the tumour microenvironment may prevent immune activation in response to these antigens 

from occurring and may explain why malignant cells are able to proliferate despite expressing 

immunological targets. 

In myeloma, the peripheral blood cytokine environment is shifted towards a pro-tumour 

profile with increased IL17 and IL10 and decreased IFN. These changes are not restored to 

normal following treatment 63. This pro tumour microenvironment may decrease dendritic cell 

numbers which in turn results in reduced antigen presenting capacity and therefore less 

opportunity for T cell activation. This will lead to a reduced response to immunogenic tumour 

derived peptides. 

To date, much of the work investigating T cell dysfunction in myeloma has been carried out on 

peripheral blood and has been based on numeric assessment and a small panel of phenotypic 

markers. In some reports higher numbers of activated, suppressor and helper cells were seen 

in MGUS and myeloma compared to healthy controls 64,  and higher lymphocyte numbers are 

positively correlated with improved survival 65. Assessments of T cell cytotoxicity by chromium 

release assays demonstrated that T cell activity is reduced in myeloma compared to MGUS or 

healthy controls while good prognostic risk myeloma had T cell function similar to that of 

MGUS 66. Together these findings support the hypothesis that T cell activity influences disease 

progression. This has been echoed by further studies of long term myeloma survivors which 

have identified both lower T regulatory cell numbers and the presence of non-anergic 

expanded T cell clones 67.  The T cell expansions have the phenotype of cytotoxic T cells and 

remain stable over many months 68–70. These expanded T cell clones are likely to be 
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successfully maintaining the malignant clone in equilibrium, resulting in a better clinical 

outcome. 

If myeloma follows the proposed immune editing model then it would be expected that 

immune checkpoint regulatory pathways are playing an important role in the disease. The best 

characterised immune checkpoint pathway in myeloma is the PD1 axis. PD1 expression is 

increased on both NK and T cells in myeloma 71–73 with up to 20% of myeloma T cells 

expressing PD1 in comparison with 6% of healthy T cells 72.  Other immune regulatory 

checkpoints are also recognised but their role in myeloma has not been fully investigated. 

There is increasing evidence to suggest that within the PD1 expressing T cell populations there 

are distinct subsets with different functional capabilities. In murine chronic infection models 

two CD8+ PD1+ subsets have been defined. PD1high cells have higher proliferation but lower 

cytotoxicity than PD1low subsets 74. This suggests that immune checkpoint receptor expression 

is highly complex with subtle functional differences between subpopulations  and that 

exhausted T cells may retain more functional activity than previously thought. This will have 

implications for successful therapeutic targeting of these pathways.  

The fact that malignant plasma cells have high PDL1 expression which is upregulated in 

response to IFN adds more weight to the importance of immune checkpoint pathways in 

myeloma 7. Malignant plasma cells also secrete a range of immune regulatory molecules 

including MUC1 75. 

T regulatory cell numbers are increased in both peripheral blood and bone marrow from 

patients with myeloma when compared to healthy controls and MGUS 76–78 and higher 

numbers are associated with shorter survival 79,80. This is in keeping with the suggestion that 

the tumour microenvironment can have an influence on the immune response. Interestingly, 

treatment with immune modifying drugs (IMiDs) appears to lead to an increase in T regulatory 

numbers 78,81, perhaps in a tissue protecting attempt to limit cytotoxic damage. 

The accumulating evidence that immunological control has a key role to play in the evolution 

from MGUS to myeloma raises the possibility of targeting aspects of both the innate and 

adaptive immune system in an effort to control malignant cell escape and restore equilibrium 

or elimination. This would require the identification of appropriate combinations of molecular 

targets expressed by immune cells in myeloma as well as understanding which mechanisms 

are responsible for immunological escape in this disease. 
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1.3.2 Immunological therapies and their role in myeloma 

Specific therapies targeting the immunological control of malignant plasma cells are being 

explored but have not been fully established and are either used in the setting of clinical trials 

or in a small subset of fit patients with poor risk disease. Given the growing body of evidence 

that immunological control is important in this disease numerous pre-clinical and early phase 

clinical trials are ongoing.  

Immunological therapies for the management of haematological malignancy can be 

considered in four broad categories. 

1. Monoclonal antibodies targeting plasma cells 

2. Immune checkpoint regulation including PD1 and CD152 - cytotoxic T-lymphocyte-

associated protein 4 (CTLA4) inhibitors 

3. Cellular based therapies including CAR-Ts and vaccination strategies 

4. Allogenic haematopoetic stem cell transplantation 

1.3.2.1 Monoclonal antibodies 

The transformation of B cell lymphoma treatment brought about by the introduction of the 

anti CD20 monoclonal antibody Rituximab 82 has led to great interest in the use of monoclonal 

antibodies for the treatment of other haematological malignancies. In the field of myeloma, 

antibodies targeting CD38  83,84 and SLAMF7 85 have been developed and demonstrated 

efficacy in the setting of relapsed refractory myeloma. These clinical studies led to the clinical 

approval of daratumumab , the first approved anti-CD38 mAb. 

CD38 is highly expressed on malignant plasma cells but is also expressed across a wide range of 

haematological cells including the immune regulatory subset. Daratumumab  is a human IgG1 

monoclonal antibody targeting CD38, [Janssen] and has also been shown to have beneficial off 

target effects by reducing T regulatory numbers and allowing expansion of cytotoxic and 

helper T cell responses 86. The targeting of a widely expressed antigen does, however, have 

some detrimental effects. In the case of anti-CD38 antibodies this includes antibody coating of 

red blood cells resulting in a positive antibody screen when attempting to source allogeneic 

blood for transfusion 87.  

SLAMF7 (also called CS1) is expressed on plasma and NK cells. Elotuzumab [Humanised IgG1 

monoclonal antibody targeting SLAMF7, Bristol-Myers Squibb] induces NK cell activation and 

antibody-dependant cell mediated cytotoxicity and has been shown to have a progression free 

survival benefit when used in combination with Lenalidomide and dexamethasone 85. 
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Bi-alleic (BITE) antibodies have been developed as a means of enhancing cytotoxic killing of 

malignant cells by ensuring their proximity. BITE antibodies consist of two FAB regions, one 

against a cytotoxic cell target and another against a malignant cell target. In myeloma BITE 

antibodies against CD3/ B cell maturation antigen (BCMA) 88,89 and CD3/CD38 90 have shown in-

vitro activity with lysis similar to that seen with CAR-T cells against the same targets. 

1.3.2.2 Immune checkpoint regulation 

The recognition of a role for malignant cells in down regulating immune surveillance 

mechanisms has renewed interest in targeting this pathway to treat haematological 

malignancy. In the context of the mature B cell neoplasm CLL exhausted T cells expressing the 

immune checkpoint inhibitor PD1 have been characterised 30 and drugs targeting the PD1 axis 

are being investigated in a range of haematological malignancies 91–93. 

The role of PD1 inhibitors has been explored in mouse myeloma models which demonstrated a 

benefit for PD1 inhibition in combination with low dose radiation 94. In vitro cell culture assays 

have also demonstrated improved T cell activity 72,95 and NK cell activity 73. The addition of 

Lenalidomide to PD1 pathway inhibition further enhanced the anti-myeloma effect 73 

suggesting a role for immune checkpoint regulators in combination with current therapeutic 

combinations. 

In early phase clinical trials, single agent use of the anti-PD1 antibody nivolumab did not show 

significant activity in myeloma, with best response in 27 patients being stable disease with a 

median response of 10 weeks (range 1.6 to 126 weeks) 93. When PD1 blockade was used in 

combination with lenalidomide and dexamethasone, however, clinical responses were seen 96 

with 76% overall response rate after median follow up of 287 days. This phase one data 

includes individuals with IMiD refractory disease and demonstrates a higher response rate 

than might be expected in the relapsed refractory cohort.  In the absence of randomised 

controlled trials however, it is unclear whether the response seen can be attributed to the PD1 

blockade. Similar responses have been reported when the anti-PD1 antibody pembrolizumab 

and pomalidomide are used together 97. The lack of single agent response but an effective 

response in combination with an IMiD is not well understood, but may relate to the 

immunosuppressive microenvironment in myeloma 93.  It is possible that a PD1 inhibitor alone 

is unsuccessful in the context of myeloma because it is only targeting a selective subset of T 

cells. The addition of an IMiD may enhance effectiveness by providing a more generalised T 

cell activation signal thereby overcoming additional inhibitory signals from the 

immunosuppressive tumour microenvironment. This observation highlights the importance of 

understanding the role of functional T cell subsets in order to optimise treatment strategies. 
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The combination of Pembrolizumab with IMiDs was explored in the phase 3 Keynote 18398 

(Pomalidomide and Dexamethasone +/- Pembrolizumab) and Keynote18599 (Lenalidomide and 

Dexamethasone +/- Pembrolizumab) studies. The FDA paused both of these studies earlier due 

to excess deaths in the Pembrolizumab plus IMiD arms which also demonstrated increased 

toxicity compared to the control arms. The reasons for this increased mortality and toxicity is 

not fully understood but may relate to the T cell activation effects described above. 

There is a concern that treating cells with PD1 inhibitors may lead to an increase in expression 

of other immune regulatory molecules such as CD366 - T-cell immunoglobulin and mucin-

domain containing-3 (TIM3) or LAG3, with the danger that the response to checkpoint 

inhibition is only transient. In mice models the use of dual immune checkpoint inhibitors has 

synergistic effects and resulted in improved survival 100 and this is a potential mechanism to 

prevent drug resistance. The degree to which this occurs in myeloma is currently unknown, 

and a detailed understanding of the combinations of immune checkpoint regulators being 

expressed by different key cellular subpopulations will be vital as these immunological 

treatment strategies become established. 

1.3.2.3 Cellular therapies 

The presence of tumour specific antigens on malignant plasma cells raises the possibility of 

using targeted biological treatments directed towards these. The roles of dendritic cell 

vaccination, CAR-T (chimeric antigen receptor T cells) and expanded or modified NK cells have 

been investigated, both in mouse models and human clinical trials.  

CAR-T cells targeting NKG2D 101, BCMA 102, SLAMF7 103 and CD38 104 have demonstrated 

efficacy against myeloma cell lines, while BCMA 102 and SLAMF7 105 are effective in murine 

models of myeloma. In a human proof of principle clinical trial autologous CAR-T’s against 

BCMA were found to be effective at producing clinical responses at high cell doses but this was 

accompanied by cytokine release syndrome and prolonged cytopaenias 106.  

NK cells derived from patients  107,108, allogenic donors 107 or umbilical cord blood 109 can be 

expanded ex-vivo using cytokine cocktails or antigen feeder cells and infused as a cellular 

therapy alongside conventional myeloma treatment or with immunosuppressive therapy. 

Alternatively NK cells can be modified so that they express chimeric antigen receptors, in a 

process similar to the generation of CAR-T cells. 

CAR-NK cells expressing the chimeric CS1 (SLAMF7) receptor have shown efficacy in mice 

models and against patient derived myeloma cells in vitro 103. Ex-vivo expanded NK cells 

demonstrate lysis of in-vitro plasma cells 108–110 and in murine models 109 however clinical 
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efficacy has been less remarkable. When five patients received autologous ex-vivo expanded 

NK cells in a proof of principle study alongside standard myeloma treatment two patients 

achieved stable disease 108. Phase one trials with umbilical cord blood derived NK cells are 

ongoing. 

Experience of dendritic cell vaccination to prime an immunological reaction against specific 

tumour derived peptides has been drawn from malignant melanoma. In myeloma a range of 

different targets have been employed including MUC1 111, BCMA 112 and Idiotype 113,114 

antibody. Clinical responses in phase I trials have been disappointing with stable or slowly 

progressive disease frequently the best reported outcome 114,115. In the post autograft setting 

however plasma cell-dendritic cell fusion vaccinations were able to convert a PR to CR or nCR 

in 24% of patients 116. 

The role of cellular therapies in routine myeloma care has not been established, with mixed 

clinical response and costs making their use challenging. To date, these agents remain 

experimental and are not licensed for use.   

1.2.3.4 Allogenic transplantation 

Allogenic haematopoetic stem cell transplantation is a well established treatment for 

sufficiently fit patients, primarily in the setting of relapsed or high risk acute leukaemia or 

lymphoma. The aim of the treatment is to establish a non-host immune system with 

functioning immune surveillance (graft versus leukaemia effect) but with minimal activity 

against the host (graft versus host disease). It has previously been explored as a treatment 

strategy in myeloma, however as discussed in section 1.2.3, results were originally 

disappointing 43 and a large number of patients were not sufficiently fit to be candidates. There 

is renewed interest in this technique, however, particularly in the younger age group as a small 

number of patients appear to achieve durable remission following transplantation. As survival 

curves plateau it is possible that a small number of patients may have in fact achieved a cure. 

In one recent long term follow up of patients who underwent tandem autograft- reduced 

intensity allograft the progression free survival was 41% at 10 years 117. 

An important benefit of all of these strategies is the potential to reinstate tumour immune 

surveillance and long term remission. While monoclonal antibodies and immune checkpoint 

inhibitors are likely to require prolonged treatment courses in order to achieve this, stable 

cellular therapies and allogenic transplantation have the potential to provide long term, 

treatment free remission. If treatment free remission can be induced with an acceptable 

toxicity profile then this has patient quality of life implications, in addition to cost savings and 

reduced morbidity. 
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Selecting the appropriate treatment strategy for the stage of a patient’s disease will be crucial. 

Targeting the disease at an early time point before immune surveillance mechanisms become 

completely exhausted may only require the use of an immune checkpoint regulator, while a 

multiply relapsed patient may benefit from a combined approach with monoclonal antibodies, 

immune checkpoint regulations and cellular therapies in order to debulk the disease and 

restore immune function. 

To optimise the use of immunological therapies it is vital to understand which therapies or 

therapeutic combination are best used for which patients and in what context. To this end the 

identification of novel biomarkers may help to identify which patient cohorts are most likely to 

benefit from a particular treatment, it is also essential to understand what immune 

dysregulation mechanisms are occurring in myeloma, at which disease time point they occur 

and whether resistance to treatment occurs. 

1.3.3 Immune regulatory targets of therapeutic interest 

A range of immune regulatory targets are of potential therapeutic interest. 

1. Immune checkpoint regulators:  TIM3 (CD336) 118, LAG3 (CD223) 119, PD1 (CD279)120, 

PDL1 (CD274) 120, CTLA4 (CD152) 121. These receptors can all be expressed on CD8 T 

cells, as well as other immunological cells, where they play a role in down regulating 

cytotoxic response 

2. Immune co-receptors: OX40 (CD134) 122, NKG2D (CD314) 123, DNAM1 (CD226) 124. 

These receptors, expressed on both CD8 T cells and NK cells, have a role as activating 

co-receptors, supporting positive signals received via the T cell receptor. Targeting 

these receptors in poorly responsive cells should lead to an antigen dependent 

increase in T cell activity. 

3. Context dependent receptors: The T cell receptor 2B4 (CD244) is particularly 

interesting because its activity is context dependent 125. In the presence of intracellular 

SAP, 2B4 signalling is cell activating. In the absence of SAP, 2B4 signalling down 

regulates the T cell response. This may make targeting the molecule for therapeutic 

purposes more challenging.  

Examination of a broad range of immune regulatory targets requires embracing emerging 

technologies such as mass cytometry which permit multiple targets to be measured 

simultaneously. Understanding the pattern of receptor expression across different functional 

subsets and identifying which receptors are expressed together on the cell groups will be key 

to developing targeted therapeutic strategies 
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1.4 Knowledge can be drawn from other diseases 

1.4.1 Malignant melanoma 

Much of the early therapeutic interest in targeting immune surveillance was in the context of 

malignant melanoma.  The immune checkpoint inhibitor ipilimumab, which targets CTLA4, was 

the first treatment to show a survival benefit in advanced melanoma 126. Subsequently 

nivolumab, which targets PD1, and the combination of ipilimumab with nivolumab have been 

approved for use in advanced stage disease with superior responses to ipilimumab alone 126. 

This groundbreaking research in melanoma is vital because, in addition to demonstrating proof 

of principle for immune checkpoint inhibition in advanced, previously untreatable 

malignancies, it also highlighted the diverse patterns of response and toxicities associated with 

the treatment.  

As treatment with immune checkpoint inhibitors has become standard of care in melanoma 

the emergence of therapy resistant disease via induction of immune-evasion mechanisms has 

become an increasing problem 127. It is likely that combined or multi-modality treatment 

strategies will be necessary to overcome the emerging resistance. Similar mechanisms are 

expected to come into play in myeloma. 

1.4.2 Chronic lymphocytic leukaemia 

Within haematological malignancies the role of T cell exhaustion in CLL has been well 

characterised. CD8 T cells from patients with CLL have been shown to have functional defects 

of immune synapse formation due to cytoskeleton abnormalities 128, inducible down-

regulation in T cell expression of genes involved in vesicle transport, regulation of the 

cytoskeleton and cytotoxicity 129, increased expression of PD1, loss of proliferative capacity and 

cytotoxicity but increased production of IFNand TNF 30. Of note the immune synapse 

formation defects could be repaired with the addition of Lenalidomide 128. In murine TCL1 

model of CLL, the development of CLL corresponds with the development of a T cell exhaustion 

phenotype 31,130, furthermore blockade of PDL1 has been shown to prevent leukaemia 

engraftment and restore function of cytotoxic cells 32. 

 Since CLL is another chronic B cell malignancy with a recognised pre malignant phase it is likely 

that findings in CLL will be of relevance in myeloma with the beneficial effects of Lenalidomide 

being of particular interest as this is in established part of myeloma treatment. 

1.5 Knowledge gaps and rationale for project 

While the treatment options for myeloma have improved dramatically in the last 10 years with 

a correlated improvement in median survival, the disease remains incurable and treatment 
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resistance inevitably develops. The accumulating evidence that immune editing is an active 

selection force in myeloma and that immune subversion may be correlated with outcome 

makes this a key area for study and drug development. While there is some evidence to 

suggest abnormalities in T cell function and PD1 expression are present in myeloma, the 

functional potential of T cell subclones expressing varied markers of exhaustion and their 

potential as a therapeutic target has not been investigated. We can extrapolate the potential 

benefit of dual modality immune checkpoint blockade from other malignancies but need to 

determine its role in the field of plasma cell neoplasms. 

This key avenue of research has the potential to transform myeloma care. Restoration of 

immune surveillance at the point of progression from MGUS to myeloma may avoid or delay 

the need for cytotoxic therapy, while restoration after autologous stem cell transplantation 

could be used to maintain a prolonged remission or MGUS like state. 

1.6 Hypothesis 

Characterisation of the cellular immunological landscape in myeloma will identify distinct 

functional populations which may offer therapeutic targets to restore immunological control 

of the disease 

1.7 Aims 

1. To interrogate the immune microenvironment in myeloma using single cell 

profiling techniques to establish activity of the major T cell and NK cell 

populations. There will be particular focus on: 

 

a. Patterns of expression of stimulatory and inhibitory receptors 

b. Functional activity 

 

2. To integrate immunological subset information with clinical characteristics to 

establish patterns of immunological response and potential predictive biomarkers 

 

3. To target immune subversion mechanisms in order to determine whether 

immunological surveillance can be restored 
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2: Mass Cytometry 

2.1 The role of mass cytometry for single cell profiling of biological samples 

Analysis of protein expression at a single cell level is a key way to explore the tumour 

microenvironment in haematological malignancies. This has been traditionally performed 

using flow cytometry which utilises fluorescent antibody tags to identify cellular targets. 

Antibody panels incorporating 10 fluorochromes are frequently employed and more complex 

panels can be developed by taking advantage of mutually exclusive antigens.  

Flow cytometry has the advantage of being well established and relatively cheap to perform 

with a wide range of pre-conjugated antibodies available. If desired the sample can be retained 

following analysis to allow further work and specific cell populations of interest can be isolated 

from the sample. The technique has a number of disadvantages, however, including the need 

for compensation controls due to spectral overlap 131  which also restricts the number of 

antibodies which can be used per panel. Spectral overlap refers to the broad emission spectra 

associated with some fluorochromes with the result that the fluorescence from one antibody 

may be detected in a region expected to measure another antibody within the panel (Figure 

2.1). 

 

If multiple antigens of interest are to be studied by flow cytometry it is necessary to run 

multiple parallel panels with antibody redundancy, which may not be feasible if only small 

clinical samples are available. Baseline fluorescence may also make it difficult to discriminate 

small populations with accuracy. 

Mass cytometry is a novel single cell profiling technique which utilises ultra-pure metal 

antibody tags in place of the fluorescent tags used in flow cytometry. This section will describe 
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this rapidly developing technology and discuss its role in interrogating the tumour 

microenvironment in plasma cell disorders. 

2.2 The technology 

Mass cytometry technology was developed in order to address some of the issue highlighted 

with flow cytometry and increase the number of antigens which could be assessed within a 

single panel. The technique combines features of flow cytometry with mass spectroscopy to 

allow multi-parameter single cell analysis. 

In mass cytometry antibodies are attached to isotopically pure metals via a branching or linear 

polymer backbone (Figure 2.2). Most antibody clones used for flow cytometry are suitable for 

use in mass cytometry and it is possible to metal tag suitably pure antibody which have not 

been previously used for flow cytometry. It is not a requirement that the metals are antibody 

bound in order to be detected by a mass cytometer, leading to a range of novel techniques 

including the use of gold nanoparticles 132. 

 

Cells which have been labelled with pure metal isotope tagged antibodies and re-suspended in 

water with a low metal content are then passed through a nebuliser to create a stream of 

droplets, each containing a single, labelled cell. Each droplet passes through a plasma coil 

which vaporises the cell, resulting in a cloud of cellular debris and metal isotopes. This cloud 

passes through a filter which removes cellular debris and applies a charge to the metal 

isotopes. Finally the purified cloud of ionised isotopes passes into a time of flight chamber, 

allowing the atomic weight of the tags to be determined (Figure 2.3) 133,134. 
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2.3 Sample preparation workflow 

The mass cytometry sample preparation workflow is similar to that used in flow cytometry. 

Samples are stimulated as desired, resuspended in appropriate buffers for viability and cell 

surface antibody staining, before being fixed and permeabilised for intracellular and nuclear 

antigen staining. Fluidigm, the company who distribute mass cytometry machine and reagents, 
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recommend the use of reagents particularly designed for mass cytometry in order to minimise 

the risk of heavy metal contamination. 

2.3.1 Antibodies 

The metal tags currently available are largely drawn from the lanthanide series as these have 

sufficient purity with low biological abundance 135. The number of available metals continues 

to expand as new sources of pure metals are developed. At the time this panel was developed 

it was possible to incorporate 36 different markers into a single antibody panel. In addition 

separate markers are available for viability and cell identification via DNA intercalation. 

Metal tagged antibodies can be targeted to a range of both phenotypic and functional markers 

both intracellularly and on the cell surface.  

2.3.2 Controls 

High purity metal isotopes have minimal spectral overlap when measured by mass cytometry. 

This removes the need for compensation controls which are routinely employed in flow 

cytometry, where fluorochrome overspill between channels can cause significant distortion of 

results if not corrected 136. Attempts have been made to apply compensation to mass 

cytometry panels to further minimise cross talk, however the complexity of the panels makes 

this difficult without providing significant improvement in data. Recently mass cytometry 

compensation tools have been designed with the aim of allowing the use of less isotopically 

pure metal with higher levels of spill over, these tools, however, remain in the early stages of 

development 137. 

EQ normalisation beads are used in each sample analysed in order to detect and compensate 

for signal decay, which is an inevitable consequence of the aging of mass spectroscopy 

detectors138. A normalisation algorithm, using the EQ beads as a standard, corrects signal 

within each .fcs file prior to further analysis. This ensures that direct comparisons can be made 

between samples analysed at different time points. 

Isotype controls are not routinely used in mass cytometry as their value is unclear. The 

function of isotype controls are to determine the level of non-specific staining occurring with 

any given antibody 139. For isotype controls to be effective they must match the antibody being 

assessed in terms of antibody class as well as tag 131. In mass cytometry it is logistically very 

difficult to obtain appropriate isotype controls for every antibody in the panel.  

Metal-minus-one (MMO) and metal-minus-many (MMM) controls can be used to help 

establish positive population cut off points when the resolution is unclear 140. They are not 

required when discrete populations can be distinguished. 
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Biological controls should be implemented in the same way as in flow cytometry protocols.  

2.4 Established research use 

Since its development in 2002 and its commercial introduction in 2008, mass cytometry has 

been used to generate data from primarily immunological samples and in HIV research. More 

recently mass cytometry has started to be applied in haematological research, particularly in 

studying the clonal evolution of AML and the role of progenitor like cells in AML 141. In the last 

three years there has been a dramatic increase in the number of research papers utilising the 

technology (Figure 2.4). While many of these early papers dealt with technical aspects of mass 

cytometry, increasingly it is being used as a research tool alongside other techniques including 

gene expression profiling and functional assays. 

 

In the field of myeloma research, mass cytometry has been used to characterise a bortezomib 

resistant cell line 142 and identify a novel expanded memory B cell population 143.  Furthermore 

a recent conference abstract has described using mass cytometry to study the effect of 

Daratumumab on immune activity 144. 
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2.5 Key strengths 

2.5.1 Technical advantages 

The key advantage of mass cytometry is that a single panel can be designed which includes up 

to 40 different cell surface and intracellular parameters, vastly increasing the amount of 

information which can be obtained from small biological samples.  This includes signalling 

pathways 134, functional markers 145 as well as viability 134 and cell identification 134.  

This can be achieved because the high purity metal isotope antibody tags have minimal 

spectral overlap and low biological abundance 135, meaning that there is low risk of background 

signal. As more metals are isolated at sufficient purity it is predicted that the number of 

available tags per panel may reach 100. 

When designing a mass cytometry panel it is still necessary to avoid crosstalk of a high 

frequency antigen into a low frequency antigen channel. This can be achieved using the 

Fluidigm panel designer to ensure that there is less than 0.5% cross talk between each 

channel.  

2.5.2 Data strengths 

The data produced by mass cytometry can be used for hypothesis generation as well as 

hypothesis testing. The multi-parameter data produced can be analysed by a range of 

algorithmic based techniques, such as SPADE146 and viSNE 147 which use spatial modelling to 

group cells with a similar phenotypes together. This can lead to the identification of novel and 

unexpected populations or can lead to the discovery of novel functional behaviour in 

established populations. Populations of interest can then be interrogated further using 

traditional data analysis techniques. 

2.6 Potential pitfalls 

Difficulties with mass cytometry are largely related to resources. There are also some technical 

issues which can affect data quality if not recognised and anticipated. 

2.6.1 Resources 

A commonly discussed concern regarding mass cytometry is one of cost. As this is a relatively 

new technique, there are only a limited number of companies producing mass cytometry 

compatible reagents. An antibody for mass cytometry costs 3-5 times that of the equivalent 

antibody for flow cytometry. In addition the machine can only be operated by specialist core 

facilities staff, meaning that machine time costs more than flow cytometry. 



44 
 

Sample acquisition times are significantly longer for mass cytometry compared to flow 

cytometry. The optimal flow rate for sample analysis is 500ul/660 seconds with a cell 

concentration of 2.5 – 5 x105/ml. This is primarily to ensure that the sample is aerosolised with 

one cell per droplet to reduce the incidence of doublets. This significantly limits the number of 

samples which can be processed in a day and greatly increases the costs of machine use. The 

problem is compounded by cell loss during processing and data acquisition which results in 

only approximately 30% of cells in the initial sample being available for data analysis 148. It is 

therefore necessary to run the sample for longer in order to collect sufficient events for 

analysis. The introduction of an automated supersampler attachment which removes the need 

to inject aliquots of sample directly into the machine sample loops has streamlined the sample 

introduction process and reduced cell loss occurring due to settling within sample loops and 

sample loop switch over. 

2.6.2 Technical issues  

Mass cytometry is sensitive to heavy metal contamination of samples. Particular sources of 

contamination include barium in water or dust which can contaminate glassware, and lead, tin, 

mercury, iodine and barium in some commercially available buffers. It is therefore 

recommended that samples are stored and processed using plastic containers and with low 

metal reagents.  

Signal decay is a recognised problem with mass spectroscopy as the inevitable consequence of 

aging detectors. This can prevent direct comparison of samples analysed at different time 

points. To reduce this problem standardised EQ normalisation beads are used in each sample 

in order to detect and compensate for signal decay 138. 

Although fluorescence spill over does not occur in mass cytometry, crosstalk can occur 

between channels in certain circumstances. There are three potential sources of crosstalk: 

149,150. 

1. Abundance sensitivity: Identification of metal isotopes occurs using time of flight 

detection. Slight variations in the starting position and velocity of identical ions can 

result in broadened mass peak with signal detected in the mass +1 and mass -1 

channels. The degree of spill over depends on instrument set up with daily tuning 

required to ensure that spill over into adjacent channels is less than 2%. 

2. Oxide formation: As metal ions are vaporised by the plasma, metal oxides can form 

which are detected in the mass +16 channel. The tendency to oxidise varies between 

metals with lanthanum, cerium, praseodymium and neodymium having 2-3% spill over 
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into their mass +16 channel while europium has less than 0.1% spillover. The rate of 

oxidation is largely determined by the plasma flame temperature of the machine. 

3. Isotopic purity: Naturally occurring elements are not isotopically pure and must be 

enriched in order to be suitable for use in mass cytometry. Most metals used in mass 

cytometry have a purity of greater than 98% but any residual alternative isotopes can 

cause cross talk into other channels. This is predictable and is taken into account when 

designing a mass cytometry panel to ensure that low abundance antigens are not 

labelled with antibodies which are susceptible to cross talk from isotopically impure 

metals. 

Finally, sample loss is the inevitable consequence of this technique as the sample is vaporised. 

It is therefore not possible to perform cell sorting or further experimental work. It is also not 

currently possible to perform proliferation assays as these depend on fluorescent dyes, 

however cell surface Ki67 expression can be used as a surrogate marker and has been shown 

to correlate with CFSE proliferation studies 151. 

2.6.3 Blessed with the curse of multidimensional data 152 

The size of a mass cytometry panel allows much more in depth sample interrogation with all 

functional and phenotypic markers being recorded across all cell types. While this raises the 

possibility of identifying novel populations, the complexity of data creates a challenge when it 

comes to analysis and interpretation. As the number of parameters are increased the number 

of dimensions across which data can be compared rises exponentially.  In order to use 

traditional two dimensional plots to compare all parameters within a 40 parameter panel it 

would be necessary to review 780 plots, the same panel would contain over a trillion possible 

multi-parameter combinations 152. This makes it necessary to use multidimensional data 

analysis algorithms and the input of bioinformaticians is crucial to most mass cytometry 

research. 

2.7 Data analysis pathways 

In order to optimise the analysis of mass cytometry data and overcome the “curse of 

multidimensionality”, it is necessary to employ a data analysis pipeline which includes 

dimensionality reducing algorithms alongside traditional gating strategies.  

Initial data clean up steps include the exclusion of EQ beads and the identification of singlet, 

live cell events. This is best done with traditional two dimensional scatterplot analysis. An 

intensity signal of greater than 101 is considered the cut off for positivity as this excludes low 

level crosstalk 140. A range of different algorithms can then be applied to the data. 
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2.7.1 SPADE 

Spanning-tree Progression Analysis of Density-normalised Events (SPADE) 146 was developed at 

Stanford University specifically for the analysis of multi-parameter cytometry data sets. It 

employs an unsupervised approach to visualise multi-parameter data in a hierarchical 

clustered tree. The SPADE algorithm uses four computational models; density dependant 

down sampling, agglomerative clustering to identify cells with similar phenotypes, minimum 

spanning tree construction, up-sampling to map each cell in the data set to the tree 146. Once 

the tree has been visualised different colours can be used to visualise the markers. 

SPADE does not require user defined cell types which means that unexpected cell groups may 

be identified. It can also be used to identify rare populations since the density dependant 

down sampling prevents the most abundant cell types from dominating the analysis 146. It 

does, however, present data as clusters of similar cells, meaning that single cell resolution is 

lost 147. Each cluster can be interrogated further, using traditional gating strategies or an 

alternative multi-dimensional technique such as viSNE. 

2.7.2 viSNE 

viSNE is based on the t-Distributed Stochastic Neighbour Embedding algorithm (t-SNE) and has 

been designed to provide single cell visualisation of multi-parameter data 147 . The algorithm 

places individual cells on a map according to similar phenotypes across multiple dimensions. 

Cells are initially placed within a multi-dimensional cloud before a distance matrix is calculated 

between each pair of cells. This matrix is then transformed to a similarity matrix which can be 

plotted in two dimensions147. As with SPADE, a coloured overlay can then be used to assess the 

expression of various different markers. Gates can be applied to regions of the map to enable 

further data analysis. 

2.7.3 CITRUS 

Cluster Identification, Characterisation and Regression (CITRUS) was developed in order to 

identify subpopulations of cells which are associated with a pre-defined endpoint such as 

treatment status 153. This is a different approach from viSNE and SPADE which are primarily 

designed to identify cell populations rather than to correlate specific populations with key 

endpoints. 

CITRUS uses unsupervised clustering to identify phenotypically similar cells before applying 

supervised learning algorithms to identify subsets of clusters which are predictive of the pre-

defined endpoints 153. Cells from multiple samples are first combined and clustered in a semi-

unsupervised manner, descriptive statistics characterising each cluster are extracted on a per-
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sample basis, extracted cluster features are used alongside user-specified endpoints to train a 

supervised model, internal cross-validation evaluates model fit and finally model features are 

plotted as a function of endpoints of interest and clusters phenotypes are determined by the 

density plots of markers used for clustering 153. In practical terms this means that CITRUS is 

ideal for comparing groups of samples, such as control and disease, or pre and post treatment. 

2.7.4 PHENOGRAPH 

Phenograph is a data driven, unsupervised, non-parametric approach which creates a nearest 

neighbour graph of interconnected nodes with similar phenotypes 141.  The graph is then 

partitioned into phenotypically coherent subpopulations using algorithms drawn from social 

networking. A tSNE based algorithm is then used to create a map to allow data visualisation in 

a similar way to viSNE. 

2.7.5 Other visualisation techniques 

A range of other visualisation techniques including principle component analysis (PCA) and 

heatmaps can be applied to mass cytometry data, as well as statistical techniques including 

significance analysis of microarrays (SAM). 

2.8 The future 

As mass cytometry technology continues to evolve the range of techniques available to 

researchers also expands. In addition to improvements to the mass cytometry machine, which 

is now onto its third generation, imaging mass cytometry now allows spatial information to be 

integrated with single cell profiling. This is anticipated to provide crucial information regarding 

the location of key distinct immunological subsets within the tumour microenvironment. 

The numbers of publications incorporating mass cytometry has increased dramatically in 

recent years, in 2012 there were 13 publications per year citing mass cytometry, in 2015, when 

this project began, there were 44 and in 2017 the number had risen to 131 (PubMed Literature 

search Jan 2018). As mass cytometry becomes an increasingly well established technology the 

number of centres investing in its use has also increased. There are currently more than eight 

centres using mass cytometry at academic institutions in the UK alone compared with only 

three when this project started. This is leading to expanded networking and an increasing pool 

of expertise as well as paving the way for the development of novel applications. 

Additionally an increasing number of companies are producing mass cytometry compatible 

reagents and antibodies resulting in increased catalogue of pre-conjugated antibodies as well 

as introducing price competition. 
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2.9 Summary points 

1. Mass cytometry uses isotopically pure metal tagged antibodies to label cellular 

proteins, enabling 40 parameters to be assessed simultaneously within a single 

antibody panel with minimal spectral overlap 

2. Potential technical limitations can be overcome with careful panel design, regular 

machine tuning and the use of appropriate controls 

3. Algorithm based data analysis tools aid the interrogation of multi-dimensional data 

and can be used to identify novel populations 

4. Continued developments are expanding the range of applications available to 

reasearchers 
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3. General materials and methods 

3.1 Biological samples 

3.1.1 Ethics 

Ethical approval to obtain and study clinical samples was provided by the Health Research 

Authority NRES Committee (Reference 10/H0704/65) and East London and the City HA Local 

Research Ethics Committee (Reference 05/Q0605/140). All samples were obtained after 

receiving ethical approval and signed informed consent. 

3.1.2 Isolation and cryopreservation of PBMCs 

Healthy peripheral blood mononuclear cells were obtained in the form of leukocyte cones 

from the NHS Blood and Transplant. These are leukocyte rich blood generated as a result of 

platelet apheresis donation by healthy donors.  

Mononuclear cells were isolated by density gradient separation. Cells were processed in a 

Class II biosafety cabinet. Each leukocyte cone was diluted to 150ml with sterile phosphate 

buffered saline. 30mls of diluted buffy coat were layered onto 15mls of LymphoprepTM 

(Fresenius-Kabi) in 50ml sterile conical tubes. Cell fraction separation was performed by 

centrifuging for 35 minutes at room temperature at 1500rpm with no break using an Allegra X-

15R centrifuge (Beckman Coulter). The peripheral blood mononuclear cell layer was carefully 

removed by gentle pipetting, transferred to a fresh sterile 50ml conical tube and diluted with 

20ml of sterile PBS. Samples were spun at 1200rpm for 10 minutes at room temperature with 

full break settings. Supernatant was discarded and cell pellets resuspended and pooled before 

being diluted with 30mls sterile PBS and spun at 1800 rpm for 10 minutes at room 

temperature. Red cells were lysed by incubation with 5ml of red cell lysis buffer dilution (1 in 

10 dilution of red cell lysis concentrate buffer (Biolegend) in sterile water) for 5 minutes. 

Following incubation samples were diluted with 40mls sterile PBS and centrifuged at 1800 rpm 

for 10 minutes at room temperature. Cell number and viability was assessed using automated 

Vi-Cell XR haemocytometer (Beckman Coulter) at a 1 in 5 dilution. 

Cells were suspended in freezing media (90% foetal bovine serum (FBS, Life Tech) and 10% 

dimethyl sulfoxide (DMSO, Sigma Aldrich)) at a concentration of 20x106 per ml and 

immediately placed on ice before slow transfer of 1ml aliquots to cryovials. Vials were 

transferred to -80 oC freezer overnight in a controlled rate cooler (Mr. Frosty) before transfer 

to liquid nitrogen tank for long term storage. 
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3.1.3 Clinical sample identification and storage  

All myeloma and MGUS tissue samples within the Bart’s Cancer Institute Tissue Bank were 

identified. From this list all samples from time of first diagnosis were identified and clinical 

data relating to these samples was obtained via the Bart’s Cancer Institute data managers. 

Healthy bone marrow samples obtained after informed consent from individuals undergoing 

elective hip replacement were provided by Dr. John Riches and stored in liquid nitrogen until 

sample analysis. Further non myeloma control bone marrow samples from individuals with 

stage 1, non-bone marrow involved DLBCL patients were identified within the Bart’s Cancer 

Institute Tissue Bank. 

Myeloma patient samples and healthy bone marrow samples were collected, prepared and 

stored in liquid nitrogen by the Bart’s Cancer Institute Tissue Bank. Samples were retrieved 

from long term storage and transferred to liquid nitrogen tanks within the laboratory area 

prior to analysis. 

3.1.4 Sample thaw procedure 

Cells were retrieved from liquid nitrogen storage and transported on dry ice. Thawing took 

place in pre heated waterbath at 37 oC. As soon as thawing occurred sample was transferred to 

Class II biosafety cabinet, and the outside of the vial was disinfected with 70% IMS. Cells were 

gently resuspended drop wise with 1ml of sterile, warmed FBS before being transferred to 

10mls of pre warmed complete culture media. Cells were centrifuged at 500g for 5 minutes at 

room temperature. Cell number and viability was assessed using an automated Vi-Cell XR 

haemocytometer (Beckman Coulter) at 1 in 5 dilution, or a LUNA-FLTM counter (Logo 

Biosciences). 

3.2 Lanthanide labelling of antibodies 

Where possible commercially available and validated antibody-lanthanide conjugates were 

purchased. When this was not possible, suitable antibodies were conjugated and validated in-

house using appropriate, protein free buffer, purified antibodies. 

MaxPar ready antibodies (BioLegend) were selected when available as these are validated for 

use by mass cytometry and are carrier protein free with optimised concentration. When these 

were not available for the markers of interest, highly purified, carrier free antibodies were 

used (BioLegend). 
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Target Clone Isotype Source Metal for 

conjugation 

2B4 Cl.7 Mouse IgG1k Biolegend (non MaxPar ready) 164Dy 

CD38 HIT2 Mouse IgG1k Biolegend MaxPar ready 161Dy 

IL2 MQ1.17H2 Rat IgG2a Biolegend MaxPar ready 148Nd 

IL10 JES3-9D7 Rat 1gG1k Biolegend MaxPar ready 141Pr 

Ki67 Ki67 Mouse IgG1k Biolegend MaxPar ready 153Eu 

PD1 EH.12.2H7 Mouse IgG1k Biolegend MaxPar ready 172Yb 

PDL1 29E.2AS Mouse IgG2k Biolegend MaxPar ready 143Nd 

TIM3 F38-ZE2 Mouse IgGk Biolegend MaxPar ready 156Gd 

Table 3.1: Antibody clones selected for in-house conjugation 

Antibodies were prepared following the Fluidigm antibody labelling protocol. Initially when 

using MaxPar ready antibodies the buffer exchange steps were omitted, as advised by the 

manufacturer, however subsequently this step was reintroduced as it was found to improve 

antibody yield. 

Filter tip pipettes were used throughout to prevent cross-contamination.  X8 polymer antibody 

labelling kits containing x8 polymer, lanthanide metal solution, W-buffer, C-buffer, R-buffer 

were purchased from Fluidigm and stored as per manufacturer’s instructions. Pre conjugation 

antibody concentration was verified by measuring absorbance at 280nm using a NanoDrop 

1000 Spectrophotometer (Thermo Fisher Scientific). 

3.2.1 Metal loading of polymer 

Polymer tubes were pulsed for 10 seconds in an Eppendorf Microcentrifuge 5415 C (Brinkman 

Instruments). Polymer was resuspended with 95ul L-Buffer (Fluidigm) and mixed thoroughly by 

pipetting before adding 5ul of lanthanide solution (Fluidigm) and incubating at 37oC in a 

waterbath for 40 minutes. 100ul of metal loader polymer was then added to 200ul of L-Buffer 

in a 3kDa 500ul V bottomed filter (Merck Millipore) and centrifuged at 12,000g for 25minutes 

at room temperature in Eppendorf Microcentrifuge 5415 C (Brinkman Instruments). 300ul C-

buffer (Fluidigm) was added to the 3kDa filter containing the metal loaded polymer and 

centrifuged at 12,000g for 30 minutes at room temperature. 

3.2.2 Buffer exchange and partial reduction of antibody 

At the same time as polymer preparation, 100ug purified antibody was added to 300ul R-

buffer (Fluidigm) in 50kDa 500ul V bottomed filter (Merck Millipore) and centrifuged at 

12,000g for 10 minutes at room temperature using. Flow through was discarded. 4 mM TCEP 
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(Tris(2-carboxyethyl)phosphonium chloride) solution was prepared by diluting 0.5M TCEP stock 

(Life Technologies) in R-buffer (Fluidigm). 100ul of 4nM TCEP dilution was added to 50kDa filter 

containing purified antibody and incubated at 37 oC  for 30 minutes in waterbath. 300ul of C-

buffer (Fluidigm) was then added to the filter which was centrifuged at 12,000g for 10 minutes 

at room temperature. Flow through was discarded and a further 400ul of C-buffer was added 

and sample was centrifuged for 10 minutes at room temperature at 12,000g.  

This step was timed to finish at the same time as polymer preparation. 

3.2.3 Antibody conjugation with metal loaded polymer 

Metal loaded polymer was re-suspended with 60ul c-buffer and mixed thoroughly by pipetting 

before being transferred to partially reduced antibody and mixed thoroughly by pipetting. 

Antibody-polymer-metal sample was incubated for 60-120 minutes in a 37 oC waterbath. 

Following incubation, 200ul W-buffer was added to the conjugation mixture and centrifuged at 

12, 000g for 8 minutes at room temperature. The wash was repeated five further times using 

400ul of W-buffer each time. After the final wash, 50ul W-buffer was used to pipette sample 

and rinse walls of filter. Filter was then inverted over a fresh collection tube and centrifuged at 

1000g for 2 minutes. The wash was repeated with a  further 50ul W-buffer. 

Antibody yield was determined using nanodrop against a W-buffer blank (Fluidigm). Antibody 

was diluted to a final concentration of 0.5 mg/ml in antibody stabilisation buffer (Candor) 

supplemented with 0.05% sodium azide (Sigma).  

3.2.4 Validation of conjugated antibodies 

The antibodies selected for conjugation had all been previously commercially validated for use 

in flow cytometry. In order to ensure that the conjugation process had been successful and 

had not damaged the antibody binding site it was necessary to validate each antibody for mass 

cytometry.  
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Antibodies were validated using known positive and negative populations (Figure 3.1) and, 

where available, were compared to a commercially available mass cytometry antibody of the 

same antibody clone but with a different metal tag (Figure3.2). 
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Subsequent runs of antibody production were validated against the positive and negative 

populations and against previously validated antibody conjugates (Figure 3.3). 

 

Target Metal for 

conjugation 

Positive 

population 

Negative 

population 

MSI on positive 

population 

MSI on negative 

population 

TIM3 156Gd Stimulated CD4 Unstimulated CD4 13.09 1.79 

PD1 172Yb Stimulated Tregs Unstimulated Tregs 68.1 5.51 

PDL1 143Nd Stimulated CD8 

EM 

Unstimulated CD8 

EM 

16.06 4.73 

IL2 148Nd Unstimulated 

CD8 EM 

Stimulated CD8 EM 10.32 2.78 

IL10 141Pr Stimulated B cells Unstimulated B 

cells 

11.62 3.52 

Ki67 153Eu Stimulated CD4 Unstimulated CD4 924.03 7.3 

2B4 164Dy Stimulated CD8 

EM 

Unstimulated CD8 

EM 

12.33 3.22 

CD38 161Dy Unstimulated B 

cells 

Unstimulated CD8 62.09 23.16 

Table 3.2: Positive and negative controls for antibody titration and validation 
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3.2.5 Titration of conjugated antibodies 

Antibodies were titrated across a range of concentrations between 0.25ul and 2ul per 1-

3x10*6 cells. Mean signal intensity (MSI) was then plotted for each concentration to 

determine the minimum antibody required for adequate signal intensity. The stain index was 

calculated using the following formula: 

(MSI positive population – MSI negative population)/2xSD negative population 

A higher stain index indicates a better ability to distinguish between two populations. Optimal 

antibody concentration was determined on the basis of both MSI and stain index (Figure 3.4). 

For most antibodies a volume of 0.75ul was optimum, granzyme had a particularly strong 

signal and a concentration of 0.5ul was selected.  
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3.3 Sample stimulation 

3.3.1 CD3 and CD28 

Modifications to CD3 and CD28 stimulation were made for tube based versus plate based 

stimulation. 

3.3.1.1 Tube based stimulation 

Tightly covered polypropylene FACS tubes were incubated overnight with CD3 (clone OKT3, 

functional purified, e-biosciences) diluted 1 in 100 in sterile PBS. Control tubes were incubated 

with 100ul sterile PBS. The antibody solution was then removed and tubes were washed twice 

with sterile PBS before being blocked with complete culture media for 15 minutes. 

Cells were thawed, rested overnight and re-suspended at a concentration of 3x106 per ml. 

200ul of cells were added to each tube and CD28 (clone CD28.2, functional purified, e-

biosciences) was added at a concentration of 2ug per ml.  

Cells were incubated in a humidified Galaxy 48S incubator (Ependorff) incubator for 72 hours 

at 37oC with 5% CO2. 

Protein transport inhibitor (2ul/ml, e-biosciences) and metal tagged CD107a (2ul/ml, Fluidigm) 

were added for the final 4 hours of the stimulation. 

3.3.1.2 Plate based stimulation 

Wells in a 96 well, U bottomed plate were coated with 50ul of a CD3 (clone OKT3, functional 

purified, e-biosciences)/ PBS 1 in 100 dilution. The plate was wrapped tightly in parafilm and 

stored overnight at 4OC. The antibody solution was then removed, wells were washed twice 

with PBS and blocked with complete culture media. 

Cells were thawed, rested overnight and re-suspended at a concentration of 1x106 per ml. 

100ul of cells were added to each tube and CD28 (clone CD28.2, functional purified, e-

biosciences) was added at a concentration of 2ug per ml.  

Cells were incubated for 72 hours at 37oC with 5% CO2. 

Protein transport inhibitor (2ul/ml, e-biosciences) and metal tagged CD107a (2ul/ml, Fluidigm) 

were added for the final 4 hours of the stimulation. 
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3.3.2 PMA 

Cell stimulation cocktail containing PMA and Ionomycin (e-biosciences) was used at a 

concentration of 2ul per 1x106 cells. Samples were stimulated for 4-5 hours in a humidified 

Eppendorf incubator at 37oC with 5% CO2. 

3.3.3 Protein transport inhibition 

When intracellular cytokine or cytotoxic granule formation was being measured following 

stimulation, protein transport inhibitor cocktail (e-biosciences) was added for the final four 

hours of incubation at a concentration of 2ul/ml. 

3.4 Sample preparation and data acquisition: Mass cytometry 

To optimise signal, CD107a antibody was added to samples during incubation at the same time 

as protein transport inhibitor. All other antibodies were used according to either cell surface 

staining or intracellular staining protocols. Cell staining protocols were adapted from those 

published by Fluidigm, and optimised to reduce cell loss while maintaining staining intensity. 

All in-house conjugated antibodies were titrated to determine optimal staining concentration. 

Commercially available antibodies were only titrated if found to have a particularly high or low 

staining intensity during initial optimisation work. 

To avoid heavy metal contamination mass cytometry ready reagents were used where 

possible. MilliQ water was used in place of MaxPar water when necessary. All reagents were 

stored in plastic not glass and sample analysis was carried out in polypropylene or polystyrene 

tubes. Cell loss during sample staining was found to be reduced by the use of 5ml 

polypropylene tubes (Falcon). 

Antibody mastermixes were prepared such that a final volume of 50ul was added to each 

sample containing a cell concentration between 1x10*6 and 3x10*6. Mastermixes for cell 

surface staining were prepared in cell surface buffer (Fluidigm). Mastermixes for intracellular 

staining were prepared in nuclear antigen staining perm (Fluidigm). 

3.4.1 Panel design and optimisation 

3.4.1.1 Panel design  

Designing a mass cytometry panel is complex due to the number of parameters involved. 

While spectral overlap or crosstalk is less of a problem than in flow cytometry is still necessary 

to plan a panel to avoid crosstalk of a high frequency antigen into a low frequency antigen 

channel 149. The panel used for this work was optimised to ensure that there was <0.5% cross 
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talk between each channel using the MaxPAR panel designer which uses isotopic purity data, 

oxide formation tendency and antigen expression density information to calculate an optimum 

panel which minimises crosstalk (Figure 3.5). 

 

3.4.1.2 Selection of antibody targets 

When designing the antibody panel consideration was given to being able to identify the key 

cellular subsets of interest while being able to exclude potentially confounding cell types. It 

was particularly important to be able to exclude plasma cell from analysis as malignant plasma 

cells can aberrantly express a number of cell surface markers traditionally associated with 

other cell types, including CD56 154. 

Antibodies against nine immune regulatory receptors were included in order to identify 

potential therapeutic targets as well as to allow further characterisation of T cell subsets. Each 
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of these markers have previously been reported to be expressed by cytotoxic lymphocytes and 

to have a role in either immune tumour surveillance or the inhibition of the immune anti-

tumour response. 

Functional markers were selected to allow assessment of degranulation, cytokine production 

and proliferation. Granzyme, perforin and CD107a are well reported markers of degranulation 

in flow cytometry. Cytokines were selected according to reported cytokine production 

signatures of the different cell types of interest. Ki67 was a selected as a surrogate marker or 

proliferation and has previously been shown to correlate with CFSE based proliferation assays 

151. 

3.4.1.3 Optimisation of staining protocol 

During the early stages of developing the mass cytometry panel a high level of cell loss was 

noted during the sample staining process. This was particularly problematic when considering 

the small sample size of many of the available clinical samples, which in some cases contain 

only 1x106 cells. Steps were therefore taken to limit the number of washes required by 

combining compatible steps of the staining workflow. Viability staining was combined with cell 

surface staining and nuclear antigen staining was combined with intracellular cytokine staining. 

In addition a switch was made from using polystyrene tubes to polypropylene tubes for all 

stages of sample preparation. This resulted in an improvement in cell retention with 

satisfactory and appropriate staining intensity for all markers. The mean post staining cell 

recovery before these changes were made was 71%, following these changes it was 91%, 

however when using myeloma samples a mean cell recovery of 34% was seen. This is likely to 

reflect poor cell viability, particularly in the setting of stimulation. 

The addition of an automated sample introducer, the supersampler, to the mass cytometer 

resulted in a 1.8 times increase in the number of CD45 positive event counts that could be 

analysed. The supersampler agitates the sample and maintains a forward flow through the 

machine tubing. This reduces cell settling and sticking to tubing. 

 

Antigen Clone Metal Tag Purpose Source 

CD45 HI30 89Y Phenotyping - Pan leukocyte Fluidigm 

CD3 UCHT1 154Sm Phenotyping  - T cell  Fluidigm 

CD4 RPA-T4 145Nd Phenotyping  - T cell Fluidigm 

CD8a RPA-T8 146Nd Phenotyping  - T cell Fluidigm 

CD56 B159 155Gd Phenotyping - NK Fluidigm 
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CD16 3G8 209Bi Phenotyping - NK Fluidigm 

CD19 HIB19 142Nd Phenotyping - B cell Fluidigm 

CD20 2H7 147Sm Phenotyping - B cell Fluidigm 

CD38 HIT2 161Dy Phenotyping - Plasma cell Biolegend* 

CD138 DL101 168Er Phenotyping - Plasma cell Fluidigm 

CD45RA HI100 169Tm Phenotyping - T cell subsets Fluidigm 

CD197 (CCR7) G043H7 159Tb Phenotyping - T cell subsets Fluidigm 

CD27 L128 167Er Phenotyping - T cell subsets Fluidigm 

CD28 CD28.2 160Gd Phenotyping - T cell subsets Fluidigm 

CD25 2A3 149Sm Phenotyping - T regulatory  Fluidigm 

CD127 A019D5 176Yb Phenotyping -  T regulatory Fluidigm 

FoxP3 PCH101 162Dy Phenotyping -  T regulatory Fluidigm 

HLA-DR L243 174Yb Phenotyping - B cell subsets Fluidigm 

CD244 (2B4) C1.7 164Dy Immune activatory receptor Biolegend* 

CD134 (OX40) ACT35 158Gd Immune activatory receptor Fluidigm 

CD314 (NKG2D) ON72 166Er Immune activatory receptor Fluidigm 

CD226 (DNAM1) DX11 171Yb Immune activatory receptor Fluidigm 

CD223 (LAG3) 874501 150Nd Immune inhibitory receptor Fluidigm 

CD366 (TIM3) F38-2E2 156Gd Immune inhibitory receptor Biolegend* 

CD152 (CTLA4) 14D3 170Er Immune inhibitory receptor Fluidigm 

CD279 (PD1) EH12.2H7 172Yb Immune inhibitory receptor Biolegend* 

CD274 (PDL1) 29E.2A3 143Nd Immune inhibitory receptor Biolegend* 

Granzyme GB11 173Yb Functional - Degranulation Fluidigm 

Perforin B-D48 175Lu Functional - Degranulation Fluidigm 

CD107a H4A3 151Eu Functional - Degranulation Fluidigm 

IFNy B27 165Ho Functional - Cytokine Fluidigm 

TNFa Mab11 152Sm Functional - Cytokine Fluidigm 

IL2 Mq1-17H12 148Nd Functional - Cytokine Biolegend* 

IL10 JES3-9D7 141Pr Functional - Cytokine Biolegend* 

TGFB TW4-6H10 163Dy Functional - Cytokine Fluidigm 

Ki67 Ki-67 153Eu Functional - Proliferation Biolegend* 

Cisplatin  198Pt Viability Fluidigm 

DNA Intercalator  191/193Ir Cell event identification Fluidigm 

Table 3.3: Antibodies selected for mass cytometry panel. * Purified antibody purchased from 

Biolegend and conjugated  in-house using Fluidigm conjugation kits. 
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3.4.1.4 Determining threshold of detection 

In order to determine the ability for mass cytometry to detect rare populations, spiking studies 

were carried out. A known number of CD45 labelled PBMCs were added to a known number of 

unlabelled PBMCs from the same donor. All cells were labelled with cisplatin and iridium to 

allow cell identification and exclusion of non-viable cells. Samples were then analysed by mass 

cytometry and the percentage of CD45 positive viable cells in each sample determined. 

Samples were run in triplicate with two sets of samples undergoing barcoding prior to analysis. 

This demonstrated that it is possible to identify populations with a frequency 1%. At 

populations of less than 1% the spiked cells can still be identified but the actual detected 

population size is higher than the expected population size. This may relate to measurement 

error at low cell number or low level cross talk from another channel. (Figure 3.6) 
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3.4.2 Cell surface staining 

Samples were washed in 2mls of cell staining buffer (Fluidigm) for 5 minutes at room 

temperature at 500g using an Allegra X-15R centrifuge (Beckman Coulter). Supernatant was 

discarded and cells were re-suspended in residual volume by gentle vortex. 50ul of surface 

marker antibody master mix was added to each sample. Samples were gently vortexed and 

incubated for 30 minutes at room temperature. During the final 5 minutes of incubation 2ul of 

cisplatin stock (Fluidigm) diluted 1:10 in PBS was added. After incubation samples were 

washed twice using 2mls of cell staining buffer at 500g for 5 minutes at room temperature. 

3.4.3 Intracellular and intranuclear staining 

Intracellular and intranuclear staining steps were successfully combined using intranuclear 

staining reagents. Sample were vortexed thoroughly to re-suspend pellet in residual volume. 

1ml on Nuclear antigen Staining Buffer (1 part concentrate with 3 parts diluents, both 

Fluidigm) was added to each sample and gently vortexed. Samples were incubated at room 

temperature for 30 minutes before being washed twice with 2mls of nuclear antigen staining 

perm (Fluidigm) at 800g for 5 minutes at room temperature. Following a second wash cells 

were resuspended in residual volume by vortex and 50ul of intracellular antibody mastermix 

was added. Samples were gently vortexed and incubated for 30minutes at room temperature. 

Samples were then washed twice with 2mls of Cell Staining Buffer (Fluidigm) at 800g for 5 

minutes at room temperature. 

3.4.4 Fixation and intercalation 

Sample was re-suspended in residual volume and 1ml of FixI dilution (1-part FixI buffer to 4 

parts MaxPar PBS), both Fluidigm) was added. Samples were stored for 12-72 hours at 4oC. On 

the day of analysis 1ul of 1000x dilution of Ir intercalator was added to each sample and 

incubated for 20 minutes. Samples were washed twice with cell staining buffer, counted, and 

washed once with MaxPar water for 5 minutes at 800g at room temperature. Cells were left 

pelleted until run on mass cytometer. 

3.4.5 Data acquisition 

Samples were analysed using a CyTOF 2 mass cytometer (Fluidigm). Immediately prior to 

analysis samples were re-suspended to a concentration of 2.5x105/ml using MaxPar water 

(Fluidigm) containing EQ beads (Fluidigm) at a 1:10 dilution. Re-suspended sample was filtered 

prior to analysis using a 40 micron mesh filter (Falcon) to reduce debris and cell clumping. 

Samples were introduced using a supersampler (Victorian Airships) and run at a rate of 45 
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microliters per minute. Data files were normalised using the Helios Normaliser (Fluidigm) and 

stored using the .fcs format. 

3.4.6 Data analysis 

FCS files were analysed using Cytobank (Cloud based data analysis tool). Statistical analysis was 

performed in Prism (Graphpad version 5.4 and 7.2). 

A data clean up approach was undertaken using Boolean manual gating. EQ beads, which were 

added to samples to allow data normalisation, were first excluded on the basis of cerium 

signal. Cell events were identified by dual expression of iridium 191 and 193 isotopes. Iridium 

is a cationic nucleic acid intercalator which is used to identify events containing DNA. Singlet 

cell events were then identified using 191Ir and event length. Finally live cell events were 

identified on the basis of low cisplatin signal  (Figure 3.7). 

 

 

Boolean gating was used to identify cells populations according to their classically described 

phenotypes (Table  3.4). The expression of functional markers was also assessed using Boolean 

gating, with positivity cuts off determine by metal minus one controls where necessary. 
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Cell type Phenotype 

Cytotoxic T lymphocyte CD45+CD3+CD8+ 

 Naïve cytotoxic lymphocyte CD45+CD3+CD8+CCR7+CD45RA+ 

 Memory cytotoxic lymphocyte CD45+CD3+CD8+CCR7+CD45RA- 

 Effector memory cytotoxic 

lymphocyte 

CD45+CD3+CD8+CCR7-CD45RA- 

 EMRA cytotoxic lymphocyte CD45+CD3+CD8+CCR7-CD45RA+ 

Natural killer cell CD45+CD3-CD56+CD16+ 

 Immature natural killer cell CD45+CD3-CD56brightCD16+/- 

 Mature natural killer cell CD45+CD3-CD56dimCD16+ 

Helper T cell CD45+CD3+CD4+ 

 Naïve helper T cell CD45+CD3+CD4+CCR7+CD45RA+ 

 Memory helper T cell CD45+CD3+CD4+CCR7+CD45RA- 

 Effector helper T cell CD45+CD3+CD4+CCR7-CD45RA+/- 

 T regulatory cell CD45+CD3+CD4+CD25highCD127-FoxP3+ 

B cell CD45+CD19+CD20+/- 

 Naïve B cell CD45+CD3-CD19+CD20+/-CD27-HLADR- 

 Memory B cell CD45+CD3-CD19+CD20+/-CD27+HLADR+ 

 Plasma cell CD45+CD3-CD19+CD20+/-CD38+CD138+ 

 Malignant plasma cell CD45+/-CD3-CD38brightCD138+CD56+/- 

Table 3.4: Phenotypes used to identify cell populations 

3.5 General statistical analysis 

Data from .fcs files was assessed using both percent in gate and mean intensity signal 

parameters. For percent in gate analysis populations with fewer than 50 cells were excluded 

from further analysis to prevent skewing of percentage based statistics.  

When two groups were being compared the t-test was used if data was parametric and the 

Mann-Whitney for non-parametric data. When multiple groups were being compared the 

Friedman test was used for non-parametric, paired data sets, the 1-way ANOVA for 

parametric, non-matched data sets and the repeated measures ANOVA for parametric, paired 

data sets. 

Statistical analysis was carried out in Graphpad Prism versions 5.4 and 7.2 
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3.6 General reagents 

3.6.1 Purchased reagents 

Reagent Details Source 

PBS Dulbecco’s Phosphate Buffered Saline Sigma 

FBS Fetal Bovine Serum (Heat inactivated) Life Technologies 

RPMI Rosewell Park Memorial Institute 1640 Sigma 

Penicillin / streptomycin 10,000 units penicillin and 10mg 

streptomycin per ml 

Sigma 

Cell staining buffer Buffered saline solution with blocking 

protein to minimise non specific binding 

Fluidigm 

Fix I Buffer for cell fixation prior to 

permeabilisation 

Fluidigm 

MaxPar PBS MaxPar Phosphate Buffered Saline Fluidigm 

MaxPar water Metal contaminate free water Fluidigm 

Table 3.5: Purchased reagents 

3.6.2 Reagents made in house 

Reagent Contents 

FACS buffer PBS + 2% FBS 

Complete culture media RPMI + 1% Pen strep + 10% FBS 

Freezing media FBS +10% DMSO 

Table 3.6: Reagents made in house 
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4. Preface to chapters four to nine 

Chapters four through nine describe the phenotypic and functional changes in key different 

immunological subsets as identified by mass cytometry from the same cohort of patient and 

control samples. Patient demographics and sample processing methodology are described 

here to avoid repetition. 

4.1 Patient demographics 

All single cell suspensions of myeloma tissue samples available within the Bart’s Cancer 

Institute Tissue Bank were identified. Single, diagnostic bone marrow samples were selected 

for immunological characterisation by mass cytometry. Samples covered the range of myeloma 

types; IgG, IgA and light chain. Clinical features of the selected samples are shown in table 4.1. 

Control bone marrow samples were obtained from elective hip replacements (n=6) and from 

stage one high grade lymphoma without any evidence of marrow involvement (n=3). It is 

understandably difficult to obtain sufficient quantities of age matched healthy bone marrow to 

act as controls. While the control samples used here are not truly healthy controls they are a 

readily available and chosen as best aged matched surrogate. 

 Myeloma 

N=18 

Control 

N=9 

Age at sample collection 

(years) 

Median (range) 

63.5 (41-90) 67 (40-85) 

Male  

Number (%) 

8 (45%) 4 (44%) 

Sample type IgA:              7 (39%) 

IgG:              7 (39%) 

Light chain: 4 (22%) 

Hip replacement:  6 (66%) 

DLBCL stage 1:       3 (33%) 

Survival (months) 

Median (range) 

51.5 (1-144) n/a 

Table 4.1: Patient demographics 

All samples were cryopreserved in liquid nitrogen, using a DMSO and FBS based freezing 

media, as per the SOP of the Barts Tissue Bank until time of analysis. 
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4.2 Specific methodology 

Samples were processed for mass cytometry and analysed on a CyTOF2 mass cytometer as 

described in Chapter 3: General materials and methods: when sample size allowed, samples 

were stimulated in polypropylene FACS tubes with tube-bound CD8 and free CD28 as 

described in general materials and methods. Data was normalised against EQ bead standards. 

Data analysis took place in Cytobank. 

4.2.1 Statistical analysis 

During data analysis sub-populations with fewer than 50 cells were excluded from further 

percentage based analysis to prevent skewing of percentage based statistics.  

All data was assessed for normality using the D’Agostino and Pearson omnibus normality test. 

When two groups were being compared the t-test was used if data was parametric and the 

Mann-Whitney for non-parametric data. When multiple groups were being compared the 

Friedman test was used for non-parametric, paired data sets, the 1-way ANOVA for 

parametric, non-matched data sets and the repeated measures ANOVA for parametric, paired 

data sets. 

Statistical analysis was carried out in Graphpad Prism version 5.4 and 7.2. 
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5. Phenotypic and functional assessment of CD3+CD8+ T cells and subsets in newly 

diagnosed multiple myeloma 

5.1 CD8+ lymphocytes and the immune response to malignancy 

The immune surveillance model proposes that liberation of tumour antigen by innate immune 

cells drives recruitment and maturation of antigen presenting cells, which in turn prime and 

recruit antigen specific T cells. In this model, antigen specific CD8 cytotoxic T cells are then able 

to identify and target malignant cells. When this system fails or is overwhelmed then overt 

malignancy can develop. 

CD8 T cells which encounter antigen in the absence of a second co-stimulatory signal become 

anergic 27, while those with a prolonged exposure to antigen in a pro-inflammatory state enter 

a reversible state of exhaustion 27 (Figure 5.1). T cell exhaustion is associated with a 

hierarchical loss of cytokine production, with early loss of IL2 and loss of IFN occurring later28, 

and the expression of immune checkpoint inhibitors including PD1 29. The development of T 

cell exhaustion and its functional impact have been well described by our group in the B cell 

malignancy CLL 30, which, like myeloma, is a progressive and incurable malignancy. Unlike 

myeloma however, the bulk of malignant cells in CLL are circulating in peripheral blood while 

myeloma is largely a bone marrow based disease. Within the bone marrow microenvironment 

the interplay of structural cells, alongside antigen presenting cells and developing myeloid and 

lymphoid precursors creates a supportive niche which is hijacked by malignant plasma cells. 

CLL specific T cells which encounter their antigen in the peripheral circulation may not be 

subject to the same microenvironment influences as myeloma specific T cells which encounter 

their antigen in the bone marrow. 

In murine models, the absence of mature lymphocytes or defects in lymphocyte cytotoxicity 

result in increased rates of spontaneous and induced tumour 4,15. While in human solid 

tumours, including hepatocellular carcinoma 155, breast cancer 16 and small cell lung 18 cancer, 

the presence of tumour infiltrating lymphocytes is associated with improved survival,  

indicating the vital role lymphocytes play in immune surveillance. 

Previous studies of the T cell landscape in myeloma have demonstrated that higher levels of 

circulating lymphocytes are positively correlated with improved survival 65. Long term 

myeloma survivors have expanded populations of non-anergic clones 67 with a cytotoxic 

phenotype 70. Functional assessment by chromium release assay reveals distinct differences in 

response between good and standard prognosis myeloma, with good risk individuals having 

more effective cytotoxicity 66. Peripheral blood T cell PD1 expression is elevated in advanced 

myeloma compared to healthy controls 72. 
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Myeloma is a slowly progressive disease, characterised by a pre malignant phase followed by 

an asymptomatic, malignant phase which together may last many years. CD8 T cells are 

therefore exposed to tumour antigen for a prolonged period of time, with no effective 

clearance of the malignant cells. While no specific data is available about the immune 

microenvironment in NDMM, we postulate that features of T cell exhaustion rather than 

anergy will be seen, even at the time of diagnosis. As the disease progresses and plasma cell 

clones that are less immunogenic emerge the ability of CD8 T cells to target the malignant 

compartment is further compromised. It can therefore be expected that the CD8 T cell 

landscape in NDMM is distinct from that in relapsed refractory myeloma. Furthermore, 

targeting T cell defects at the time of relapsed refractory disease may be less effective due to 

the combination of T cell exhaustion and plasma cell immune-subversion.  Identifying early 
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CD8 T cell changes may offer therapeutic opportunities early in the disease course to restore T 

cell function and control of the malignant plasma cells. For this reason only patients with 

newly diagnosed multiple myeloma are the focus of the chapter. 

5.2 Aim 

To compare the frequency and phenotype of CD8+ cytotoxic T lymphocytes in NDMM to non-

myeloma controls 

To compare the expression of functional markers of proliferation, degranulation and cytokine 

production of CD8+ cytotoxic T lymphocytes in NDMM to those seen in non-myeloma controls 

5.3 Specific methodology 

Patient demographics and specific methodology are described in the preface to chapter 4.  

CD8 T cells were identified on the basis of the CD45+CD3+CD8+ phenotype. CD8 

subpopulations were identified using expression of CD45RA and CCR7. (Figure 5.2) 
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5.4 Results  

5.4.1 The proportion of CD8 positive cells is well preserved in NDMM however there is a 

reduction in the proportion of resting CD8 CM cells 

In the resting state, no significant difference was seen in the proportion of CD3+ cells 

expressing CD8+ between control and NDMM samples (mean control 36.65%, NDMM 34.91% 

t-test p=0.7034) (Figure 5.3 A). 

Within the CD8+ gate, cells were further categorised into naive, effector memory, central 

memory and EMRA populations on the basis of expression of CD45RA and CCR7. This 

demonstrated a relative loss of CM populations in NDMM (mean control 7.883%, NDMM 

3.678% t-test p=0.0290). The reduction in CM cells in NDMM was accompanied by a non-

significant relative expansion of naïve populations (mean control 23.72%, NDMM 29.27% t-test 

p=0.4859). There was also a non-significant loss of NDMM EMRA populations (mean control 

26.06%, NDMM 16.83% t-test p=0.1042). Effector population proportions remained stable 

(mean control 18%, NDMM 21.51% t-test p=0.4171) (Figure 5.3 C). This shift towards naive 

populations differs from the observed changes in CLL where an expansion in effector subsets is 

seen 30. These analyses are hampered by the relatively small number of samples analysed and 

will require validation with a larger cohort in the future. 

While overall T cell numbers as a proportion of CD3+ cells are well preserved, the shift toward 

a naive phenotype in NDMM suggests that cytotoxic effector populations may be diminished, 

either due to, or resulting in, loss of immunological control of the malignant clone. 

5.4.2 Stimulation with CD3 and CD28 restores CM cell proportions and results in an 

expansion in NDMM effector population proportions 

Samples were stimulated with CD3 and CD28 in order to assess their capacity to generate 

cytokines, degranulate and proliferate. In the setting of exhaustion these cytotoxic functions 

are diminished 27,28. When samples were stimulated with CD3 and CD28 for 72 hours, no 

difference was seen in the frequency of CD3+CD8+ populations between control and NDMM 

(mean control 24.86%, NDMM 26.26% t-test p=0.8387) (Figure 5.3 B). In contrast to resting 

samples, following stimulation NDMM CM population proportions were restored to normal 

levels (mean control 14.62%, NDMM 7.89% t-test p=0.1359) and a shift away from naïve 

populations was seen (mean control 20.59%, NDMM 15.6% t-test p=0.2264). Furthermore 

there was a significant relative expansion of effector cells in NDMM (mean control 21.94%, 

NDMM 42.82% t-test p=0.0298) accompanied by a non-significant reduction in EMRA 

populations (control 42.85%, NDMM 33.69% t-test p=0.1598) (Figure 5.3 D,E). 
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This suggests that, in the context of NDMM, the capacity to generate cytotoxic effector cells 

remains, providing that appropriate stimulatory signals are received.  This is vital if therapeutic 

strategies targeting cytotoxic T cells are to be utilised effectively. 
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5.4.3 CD8 populations in NDMM strongly up-regulate Ki67 expression in response to 

stimulation with CD3 and CD28 

In the resting setting there is reduced Ki67 expression on NDMM naïve CD8 cells compared to 

controls (mean control 8.076%, NDMM 3.904% t-test p=0.0107). This suggests that the relative  

 

expansion of the resting naïve subset described above is not due to proliferation of naïve 

subsets but is instead due to reduction in one or more other subsets (Figure 5.4 A).  

Following stimulation with CD3 and CD28, Ki67 expression rises across all subsets with no 

difference in expression levels seen between the different subsets in control or NDMM 

samples. The proportion of cells expressing Ki67 following stimulation is higher in NDMM naïve 

(mean control 50.72%, NDMM 76.8% t-test  p0.0023) and memory (mean control 53.34%, 
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NDMM 80.83% t-test p=0.0109) subsets than in control samples, suggesting that these 

populations have a high proliferative capacity. A similar pattern is seen with the mean 

expression intensity of Ki67 which is higher in NDMM across naïve (mean control 217.6, 

NDMM 691.6 t-test p0.0086), memory (mean control 217.6, NDMM 691.6 t-test p0.0086), 

effector (mean control 308.8, NDMM 782.4 t-test p0.0253) and EMRA subsets (mean control 

311.4, NDMM 780.5 t-test p0.0206) (Figure 5.4 B). 

This indicates that CD8 populations in NDMM retain their proliferative capacity. 

5.4.4 CD8 subsets in NDMM are able to produce cytokines in response to appropriate 

stimulation, however an aberrant pattern of expression across subsets was seen for TGFb, 

IL2 and IL10 

Resting cytokine expression was appropriately low in both control and NDMM samples. 

Following stimulation with CD3 and CD28 there was a rise in cytokine expression with no 

significant difference seen between control and NDMM (Figure 5.5).  

Since IFN, which is lost late in the development of T cell exhaustion, continues to be 

expressed in NDMM, it is clear that a full T cell exhaustion profile is not present at the time of 

myeloma diagnosis (Figure 5.5 C).Work within our groups has previously reported that 

cytokine production was also relatively preserved in the setting of CLL, this was termed 

“pseudo-exhaustion” 30.  

When expression of IL2 across the CD8+ subsets is considered, IL2 expression shows a broadly 

similar rise across all subsets in both control and NDMM samples. In control samples there was 

a statistically significant variation in expression (RM-ANOVA p0.0389) which was due to higher 

expression in memory and effector subsets. This was not significant in NDMM (RM ANOVA 

p=0.4301) (Figure 5.5 B).  

Loss of IL2 production is considered to occur early in the development of T cell exhaustion 

while aberrant IFN production occurs later; in this data, overall intracellular expression of 

these cytokines is well preserved, suggesting that an established state of T cell exhaustion has 

not been reached. There is however, aberrant subset expression of IL2 in NDMM with loss of 

its expression in memory subsets which may indicate early evidence of T cell exhaustion. 

The cytokines TGF and IL10 are often associated with a pro-inflammatory, pro-tumour 

cytokine environment. While overall intracellular expression of these cytokines does not 

statistically differ between control and NDMM, there are differences in which subsets are 

predominantly responsible in generating these cytokines, which may influence the secreted 

cytokine fingerprint within the tumour microenvironment. With TGF, a shift away from 
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production by naive subsets is seen, in a pattern distinct from expression in control samples 

(Figure 5.5 D).  

IL10 expression in control populations shows a heterogeneous expression with highest peaks 

seen in the naïve and memory subsets (Control RM ANOVA p0.0055,). In NDMM subsets the 

expression is overall lower and more homogenous with a more modest rise in expression in 

memory and naïve subsets which does not reach significance (NDMM RM ANOVA 

p0.5450)(Figure 5.5 A). 

Naive and effector subsets are expected to have differing spatial locations within the bone 

marrow microenvironment, with effector populations seen close to malignant plasma cells 

targets, this skew in pro-tumour cytokine production in NDMM CD8 subsets may therefore be 

delivering pro-tumour cytokines preferentially to the site of disease. 

It is also worth noting that TGF and IL10 are present regardless of whether CD8 cells have 

undergone stimulation, while anti-tumour cytokines rise in response to stimulation. This 

suggests that providing T cells with an appropriate activating signal is sufficient to overcome 

the effects of these pro-tumour cytokines and generate anti-tumour cytokines. 
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5.4.5 Multi-cytokine producing CD8 subsets are present in NDMM 

Since CD8 T cells are capable of producing multiple cytokine types simultaneously, the various 

cytokine producing subsets were examined. 

When all five cytokines measured are considered together 32 different combinations of 

cytokine production can be identified. In both control and NDMM at rest only 21 of these 32 

possible combinations are seen with the majority of these subsets producing only one or two 

cytokines (Figure 5.6 A). No significant difference between cytokine producing subsets is seen 

between control and NDMM. 

Following stimulation with CD3 and CD28, all 32 cytokine populations become detectable in 

both control and NDMM samples, with no loss of diversity seen in NDMM. No significant 

difference between cytokine producing subsets is seen between control and NDMM (Figure 

5.6 B). 

While this technique can identify 32 cytokine producing subsets it is likely that this includes 

many populations which are not biologically meaningful. Therefore cytokines were then 

divided in to the categories pro-tumour and anti-tumour and the cytokines producing subsets 

in each group were examined (Figure 5.7). No difference was seen between cytokine 

producing subsets in the resting or stimulated state between control and NDMM samples. 
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5.4.6 CD8 populations in NDMM express markers of degranulation which are most 

prominent on effector populations and are upregulated following stimulation with CD3 and 

CD28  

In the resting setting, the proportion of CD8+ cells expressing CD107a is low, with a modest 

increase seen in NDMM when compared to control (median control 1.836% NDMM 7.156% 

MW p=0.0422)(Figure 5.8 B). This is echoed by the mean signal intensity which is higher on 

NDMM total CD8 (median control 0.8839 NDMM 5.884 MW p=0.0168), naïve (median control 

1.318 NDMM 2.495 MW p=0.0236) and effector memory (median control 1.006 NDMM 2.056 

MW p=0.0311) subsets compared to controls (Figure 5.8 B,C).  

Expression of perforin and granzyme B appears higher in resting cells than that of CD107a with 

no significant difference in expression between control and NDMM samples (Figure 5.8 A). 

Expression of both markers is low in naïve and central memory subsets, peaks in effector 

memory subsets and shows a modest fall in EMRA subsets. The fall in expression in EMRA 

populations is more pronounced in control samples and, for granzyme, approaches statistical 

significance (mean control 24.45%, NDMM 53.95% t-test p=0.0513) (Figure 5.8 D,E).  

Following stimulation with CD3 and CD28, expression of CD107a, granzyme and perforin rises 

across all subsets in both control and NDMM samples (Figure 5.8 C,D,E). There is no significant 

difference between the proportions of cells expressing these markers in control and NDMM. 
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5.4.7 DNAM1 , NKG2D, 2B4  and PD1  are present at detectable levels on resting CD8 cells in 

NDMM which may offer therapeutic opportunities  

The co-activating receptors DNAM1 (NDMM 11.39%), 2B4 (NDMM 50.57%) and NKG2D 

(NDMM 42.73%) are all detectable on resting CD8 cells in NDMM at a level greater than 10% 

Figure 5.9 A). These remain detectable following stimulation with CD3 and CD28.  NKG2D 

(resting NDMM 42.73%, stimulated NDMM 40.12%) levels remaining stable while 2B4 (resting 

NDMM 50.75%, stimulated NDMM 27.48%) levels fall (Figure 5.9 B). DNAM1 levels rise and will 

be discussed in more detail below. 

In the resting state, 2B4 expression in naïve and memory populations is 20% while expression 

in EM and EMRA subsets is 70% and 50% respectively. The pattern is maintained in control and 

NDMM samples with a similar, albeit lower pattern seen following stimulation (Figure 5.10 D).   

NKG2D expression is similar across all CD8 subsets in both control and NDMM samples with a 

similar pattern seen following stimulation (Figure 5.10 A). 

Persistent expression of these receptors in the resting and stimulated state makes them 

interesting potential therapeutic targets. Using small molecule drugs or monoclonal antibodies 

to stimulate these receptors may upregulate the CD8 anti-tumour response. Since these 

ligands are also expressed on NK cells the activity of this population may also be optimised. 

This strategy carries the risk, however, of unregulated immune activation with the potential for 

autoimmune complications. 
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5.4.8 Expression of DNAM1 on resting NDMM CD8 population is reduced in comparison to 

control samples 

In the resting setting DNAM1 expression is reduced in NDMM compared to controls (mean 

control 18.79% NDMM 11.39% p=0.0463). Following stimulations DNAM1 levels rise and 

match those of healthy controls (mean control 51.48%, NDMM 54.07% p=0.7717). In the 

resting state control samples DNAM1 expression is low in naïve and EMRA subsets with peaks 

in EM and CM subsets (ANOVA p=0.0469). In resting NDMM samples this pattern of expression 

is lost, with a reduction in DNAM1 expression in CM and EM subsets (ANOVA p=0.1161) (Figure 

5.10 C). 

DNAM1 is a CD8 co-receptor which can provide the secondary signal necessary to fully 

activated lymphocytes whose TCR has been engaged by ligand. Loss of expression of the 

receptor in NDMM may hinder CD8 cell activation. The significance of this is uncertain as other 

co-stimulatory receptors are expressed at normal levels. 

Expression of OX40 (CD134) (NDMM 17.02%), LAG3 (CD223) (NDMM 77.77%), TIM3 (CD366) 

(NDMM  19.59%) and PDL1 (CD276) (NDMM 20.93%) become detectable following stimulation 

with CD3 and CD28. In control samples OX40 expression is highest on naïve and central 

memory populations and falls on effector and EMRA populations (ANOVA p=0.0057) (Figure 

5.10 G). Control LAG3 expression is consistent across all subsets (ANOVA p=0.5395) (Figure 

5.10 H). Control TIM3 expression peaks in naïve and effector subsets (ANOVA p=0.0310) 

(Figure 5.10 E). Control PDL1 expression is stable across subsets (ANOVA p=0.2168) (Figure 

5.10 F). Matching patterns are seen in NDMM samples. 

Both TIM3 and LAG3 are reported to have immune regulatory functions when expressed by 

CD8 lymphocytes. Their expression is expected to rise following cell stimulation as a 

physiological mechanism to regulate and limit tissue damage during a cytotoxic response. The 

fact that their expression is undetectable in the resting state raises questions as to whether 

inhibitory monoclonal antibodies will be of benefit in NDMM. 
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5.4.9 PD1 expression is increased in stimulated CD8 cells in NDMM when compared to 

controls 

PD1 expression is detectable in the resting state (NDMM 29.1%) and rises with stimulation 

(NDMM 83.62%) with a significantly higher level reached in stimulated NDMM samples when 

compared to controls (mean control 65.54%, NDMM 83.62% t-test p=0.0455). In the resting 

setting, PD1 expression is low on naïve subsets and highest on EMRA subsets with both central 

memory and effector memory populations showing a modest expression. This pattern is seen 

in both NDMM and control populations (NDMM ANOVA p=<0.0001, control ANOVA 

p=<0.0001). Following stimulation there is equivalent expression of PD1 across all subsets 

(Figure 5.10 B). 

5.4.10 PD1high CD8 T cells are increased in NDMM and have an aberrant functional phenotype 

When CD8+ cells are stratified according to PD1 expression levels three distinct populations 

can be considered, the PD1 low, intermediate and high subsets (Figure 5.11 A). In the resting 

setting, the proportion of cells with PD1high expression is low, however it is significantly higher 

in NDMM samples (median control 0.44%, NDMM 1.05% MW p=0.0175) (Figure 5.11 B). When 

the PD1high populations are compared, the NDMM PD1high subset had a lower expression of 

DNAM1 (median control 17.31%, NDMM 2.726% MW p=0.0175) but higher expression of 

granzyme (median control 15.96%, NDMM 50.67% MW p=0.0379) compared to control 

samples (Figure 5.11 C). 

When the pattern of expression is considered across PD1 low, intermediate and high 

populations in NDMM, granzyme and perforin expression is highest in PD1int subsets 

(granzyme Friedman p0.0272 perforin Friedman p0.0207) (Figure 5.12). A similar pattern of 

expression is seen for DNAM1 (Friedman p0.0003) (Figure 5.13 B). In contrast NKG2D 

expression shows a modest increase in expression in PD1high populations (Friedman 

p0.0272)(Figure 5.13 A), while 2B4 has equal expression between PD1high and PD1int subsets 

(Friedman p0.0162) (Figure 5.13 C). In control samples none of these markers show a 

significant variation in expression levels between PD1 subsets. This suggests that PD1high 

subsets have lost cytotoxic activity, in keeping with the role of PD1 as a marker of immune cell 

exhaustion. 
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Following stimulation with CD3 and CD28, no difference is seen in the proportion of cells with 

PD1high expression between control and NDMM (Figure 5.11 B). There is, however, a shift in the 

pattern of marker expression across the NDMM PD1 subsets, with granzyme expression 

dropping in the PD1high subset compared to PD1low and PD1int subsets (Friedman p0.0046) 

(Figure 5.12 C). In contrast perforin expression increases with increasing PD1 expression level 

(Friedman p0.0046) (Figure 5.12 B). This suggests that the PD1high subset does retain some 

ability to respond to T cell stimulation. 

Following stimulation, expression of Ki67 is highest in PD1high subsets (Friedman p0.0046), in 

keeping with previous published murine data 74 (Figure 5.12 A). Furthermore a distinct PD1high 

cytokine profile become apparent in NDMM, with increased expression of IL10 (Friedman 

p0.0417)(Figure 5.14 C), IL2 (Friedman p0.0046)(Figure 5.14 D) and TGF (Friedman 

p0.0046)(Figure 5.14 B) compared to other PD1 subsets. The PD1high subset also has distinct 

expression of other immune regulatory molecules with increased expression of LAG3 

(Friedman p0.0046)(Figure 5.15 A), CTLA4 (Friedman p0.0046)(Figure 5.15 C), DNAM1 

(Friedman p0.0046)(Figure 5.13 B) and NKG2D (Friedman p0.0046)(Figure 5.13 A) when 

compared to the other subsets. This suggests that the NDMM PD1high subset has an immune 

regulatory role.  

In contrast to NDMM samples, a different PD1high cytokine profile is seen in control samples 

with both IL2 (Friedman p0.0008)(Figure 5.14 D) and TNF (Friedman p0.0085)(Figure 5.14 A) 

levels being increased. In addition control samples show increased levels of TIM3 (Friedman 

p0.0008)(Figure 5.15 B) expression in the PD1high subset. Expression of LAG3, NKG2D, DNAM1 

and perforin is similar to that described for NDMM samples (Figures 5.12, 5.13, 5.15). This 

pattern of activity suggests that the PD1high subset in control bone marrow has an activated, 

cytotoxic phenotype. 
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PD1 expression is known to transiently rise when a T cell is activated and may have a role to 

play in the generation of memory subsets 117. Previous work within the group has suggested 

that that PD1int expression may be a marker of cell activation while PD1high expression is a 

marker of pathological changes in T cells 32, this has also been reported in the context of 

human head and neck tumours 156. Furthermore in murine models PD1high subsets retain 

proliferative activity but are less cytotoxic 74. 

This data presented here supports the suggestion that in the setting of NDMM, resting T cells 

with intermediate PD1 expression are more cytotoxic than their PD1high counterparts and that, 

following stimulation, increased proliferation is seen in PD1high populations. 

Following stimulation an interesting distinction is seen between control and NDMM PD1high 

subsets with a predominantly pro-tumour profile being seen in NDMM, whereas a more anti-
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tumour pattern is seen in control samples. The NDMM PD1 populations also show aberrant 

expression of degranulation markers. This suggests that, while PD1high cells may be seen in 

both NDMM and control samples following stimulation, the environmental context is an 

important influence in the behaviour of these PD1high subsets following stimulation. 

5.4.11 Dual checkpoint receptor expressing populations have distinct functional phenotypes 

In order to explore the functional behaviour of CD8+PD1+ lymphocytes, population co-

expressing a second immune regulatory receptor were assessed. No differences in the cell size 

of PD1+TIM3+, PD1+LAG3+ or PD1+2B4+ was observed between control and NDMM samples 

(Figure 5.16). 

The PD1+TIM3+ population had increased expression of Ki67 in control populations (median 

control 32.39, NDMM 10.83 MW p=0.0354) suggesting that there is loss of proliferation in 

NDMM (Figure 5.17A).  No differences in cytotoxic activity or cytokine production were 

observed. The CD8 PD1+TIM3+ population has been previously described in the context of 

tumour infiltrating lymphocytes in head and neck cancers 156, renal cell carcinoma 157 and 

schwannomas 158. This subset is described as being more exhausted than PD1+TIM3- cells with 

defects in proliferation, cytokine production and perforin and granzyme expression reported. 

CD8+ lymphocytes co-expressing PD1 and LAG3 demonstrated a shift towards a more cytotoxic 

phenotype in NDMM with both CD107a and perforin expression being increased (CD107a 

median control 5.524, NDMM 16.37 MW p=0.0062; perforin median control 31.82, NDMM 

154.9 MW p=0.0462)(Figure 5.17 B,C). Low cell numbers do not allow distinction between PD1 

high and PD1 intermediate expression in this analysis. It may be that PD1+LAG3+ cells have 

intermediate PD1 expression, which is associated with increased expression of cytotoxic 

molecules. Alternatively LAG3 may be acting to mitigate the functional impacts of high PD1 

expression.  

Previous reports regarding the role of dual PD1+LAG3+ cells in malignancy have been varied. In 

the setting of follicular lymphoma tumour infiltrating PD1+LAG3+ have been shown to have 

reduced cytokine producing and degranulation potential compared to PD1+LAG3- subsets 159. 
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In contrast, work in murine models has demonstrated subtle PD1+LAG3+ subsets where the 

degree of PD1 expression determines the impact of LAG3 co-expression 160. The PD1intLAG3+  

subset had increased IFN, TNFand CD107a expression compared to the PD1intLAG3- subset, 

while LAG3 expression made no difference to the exhausted phenotype of PD1high expressing 

cells. This description of increased cytotoxic activity in dual expressing subsets is strikingly 

similar to the changes I have demonstrated in NDMM, suggesting that the changes I see may 

relate to a lower level of PD1 expression. 

Finally the PD1+2B4+ population demonstrated increased expression of TGF in NDMM 

suggesting a shift towards a pro-tumour cytokine profile (median control 16.91, NDMM 24.87 

MW p=0.0075)(Figure 5.17 C). Dual PD1+2B4+ expression has previously been reported in the 

setting of chronic viral infection when it was found to result in a less proliferative phenotype, 

cytokine expression was not examined 161. 

When the functional activity of the three populations are compared in NDMM there is 

variation in expression of Ki67 (Ki67 Friedman p=0.0009), IL10 (Friedman p=<0.0001) and TGFb 

(Friedman p=0.0020) which are all expressed at lower levels by the PD1+2B4+ population 

(Figure 5.18). 

This analysis of dual immune checkpoint inhibitor expressing cells suggests that the 

combination of inhibitory receptors being expressed by a CD8+ T cell is key in directing the 

nature of its response. Differences in cytotoxicity, cytokine production and proliferation are 

seen with different receptor combinations and may go some way towards explaining the 

diversity of response seen in PD1 positive cells. This is an example of the complexity of 

immune checkpoint regulation which can only be fully explored when multiple parameters are 

measured simultaneously at the single cell level. 

 



99 
 

 

 

 

 



100 
 

5.5 Summary of results 

1. CD8 T cell numbers are maintained in the bone marrow in NDMM 

2. CD8 subsets in NDMM are able to produce cytokines in response to appropriate 

stimulation, however an aberrant pattern of expression across subsets was seen for 

TGF, IL2 and IL10 

3. CD8 populations in NDMM express markers of degranulation which are most 

prominent on effector populations and are upregulated following stimulation with CD3 

and CD28  

4. CD8 populations in newly diagnosed NDMM strongly up-regulate Ki67 expression in 

response to stimulation with CD3 and CD28 

5. DNAM1, NKG2D, 2B4 and PD1 are present at detectable levels on resting CD8 cells in 

NDMM which may offer therapeutic opportunities  

6. Expression of DNAM1 on resting NDMM CD8 population is reduced in comparison to 

control samples 

7. PD1 expression is increased in stimulated CD8 cells in NDMM when compared to 

controls 

8. PD1high CD8 T cells are increased in NDMM and have an aberrant functional phenotype 

9. Dual checkpoint expressing CD8 populations have diverse functional phenotypes 

5.6 Discussion 

This data identifies a number of important ideas surrounding CD8 lymphocyte function in 

NDMM. CD8 lymphocytes in this setting demonstrate phenotypic and functional changes 

across multiple subsets which can only be explored by measuring multiple parameters at the 

single cell level. Mass cytometry is particularly well suited to this type of in depth analysis as it 

allows these parameters to be measured simultaneously. 

The first is of population skew within the tumour microenvironment with functional changes 

seen in cell subsets which would be expected to be engaging with the malignant cell 

population.  This pro-tumour shift in function is characterised by aberrant loss of IL2, granzyme 

and co-activation potential accompanied by the increased expression of IL10 and TGF.  

Lymphocytes which infiltrate a tumour will have repeated, direct exposure to tumour antigen 

and are therefore likely to become phenotypically and functionally distinct from their non-

tumour infiltrating counterparts. In the setting of myeloma the malignant cells are often 

diffusely infiltrating the bone marrow, so all lymphocytes within the bone marrow 

compartment have the potential to have tumour infiltrating lymphocyte characteristics. Given 
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the persistence of tumour antigen in this setting it is therefore not unexpected that effector 

lymphocyte populations from within the bone marrow have features of dysfunction. 

The second key theme identified by this data is the functional behaviour of PD1 expressing 

subsets. Firstly there is a distinction between PD1int and PD1high expression with PD1int cells 

having enhanced cytotoxic activity compared to other subsets. Secondly there are distinct 

differences in the PD1high subsets between control and NDMM, with NDMM subsets showing 

loss of cytotoxicity, pro-tumour cytokine responses and increased expression of inhibitory 

receptors.   

The recognition that PD1int expression by CD8 cells indicates recent activation is increasingly 

being reported in the literature 162. It has also been suggested that PD1 expression can be used 

to identify and isolate antigen specific T cells 163. This highlights the importance of setting 

appropriate thresholds to define populations according to the biological question being asked, 

with more stringent threshold required if PD1 expression is being used to define exhausted 

populations. 

The observation that there are functional differences between PD1high expressing CD8 

populations in control and NDMM bone marrow samples demonstrates that PD1 expression 

alone is not sufficient to determine the behaviour of cells. This suggests that the 

microenvironment context is key, with PD1high cells from within a malignant environment 

demonstrating pro-tumour characteristics which are not found in cells from a non-malignant 

environment. This highlights the complexity of the immunological response to cancer, with 

multiple factors determining the function of cell subsets. This may explain the variation in 

response seen to immune checkpoint regulators as well as the varied clinical course in multiple 

myeloma. It can be hypothesised that individuals with longer durations prior to and between 

treatments are able to maintain immunological control despite a malignant microenvironment. 

5.7 Relevance of work 

1. Identifies defects in the CD8 populations which are expected to interact directly with 

malignant cells 

2. Demonstrates that the level of PD1 expression is vital in predicting functional 

behaviour of CD8 subsets 

3. Demonstrates that the functional impact of PD1 expression is modulated by the 

presence of other checkpoint inhibitors  
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6. Natural killer cell phenotype and function in NDMM 

6.1 Natural killer cells and the recognition of tumour cells 

Natural killer (NK ) cells are innate lymphoid cells which, while sharing many phenotypic 

features with CD3+ lymphocytes, lack an antigen specific receptor that has undergone somatic 

hypermutation. They instead rely on the interplay between a range of activating and inhibitory 

signals to determine the behaviour of the cell. 

There are two important pathways by which NK cells can recognise transformed cells: 

1. Loss of self when transformed cells down regulate MHC  class 1 expression 

2. Cellular stress when target cells up regulate ligands of NK cell activating receptors 

including NKG2D and DNAM1  

In health MHC class 1 is expressed on nearly all human cell types with the exception of red 

blood cells and platelets and is used to display peptides derived from normal cellular protein 

turnover. MHC containing normal self protein is not normally an immune target, however a 

transformed or virally infected cell will also display viral or tumour antigens which can then be 

recognised by antigen specific immune cells. NK cells, unlike antigen specific cells, detect the 

presence of MHC rather than the antigen it contains. A cell which is not expressing MHC class 1 

is a target for NK cell cytotoxicity. 

Alongside MHC expression, NK cells also respond to the levels of expression of a range of both 

NK cell inhibitory and NK cell stimulatory ligands (Table 6.1). The interplay between MHC 

expression and NK cell ligand expression is key in determining whether a cell becomes an NK 

target. A healthy cell expresses both MHC and low levels of NK cell activating ligands, however 

NK cells do not become activated as the inhibitory signals from MHC outweighs the activating 

signals.  An excess of NK activating ligands will trigger NK cell activity regardless of MHC 

expression (Figure 6.1). 

In addition to the key receptors involved in NK cell activation, NK cells also express a range of 

receptors that can modify the NK cell response. This includes LAG3 164and TIM3  165 which are 

described as having inhibitory effects on CD3+ lymphocytes, but their role in NK cell behaviour 

is less clearly defined. NK cell exhaustion, with loss of functional activity which parallels that 

described in CD8+ lymphocytes, has been described in the setting of chronic infection and 

malignancy 166167. 
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An NK cell which has been activated can perform three key activities against target cells: 

1. Direct cytotoxicity via the release of cytotoxic granules 

2. Secretion of cytokines, including IFNand TNF. 

3. Expression of apoptosis ligands including TRAIL and CD95-L 

NK cells are classically divided into two subpopulations based on their expression of CD56. 

CD56 is strongly expressed on immature NK cells and is lost as cells mature. The immature, NK 

56bright  subset constitutes 10% of circulating NK cells while the NK 56dim subset forms 90% of 

circulating NK cells. The NK CD56bright subset is classically described as being immature and 

predominantly secretes cytokines in response to IL12 and IL18 168. In contrast the NK 56dim 

subset is considered more mature and releases cytotoxic granules in addition to cytokines 

following encounters with NK receptor ligands 168. 

NK cell cytotoxicity is delivered via immunological synapse formation with a target cell. The 

synapse is used to deliver a targeted release of preformed lytic granules containing granzyme 

and perforin. This is an actin remodelling dependant process similar to that seen in CD8+ 

lymphocytes 169. 
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Receptor Ligand 

MHC class 1 specific 

CD94 – NKG2 MHC peptides with HLA-E 

KIR Various MHC class 1 

LIR1 Various MHC class 1  

NK activating 

NKG2D ULPB, MIC A/B 

2B4 CD48 

DNAM1 CD122 / CD155 

FCyR Surface bound IgG 

NK inhibiting 

2B4 CD48 

KLRG1 Cadherins 

NKR-P1B CLR-B 

Table 6.1: NK cell receptors and ligands 

Healthy NK cells predominantly produce TNF and IFN which are secreted via a non 

immunological synapse polarised pathway which is distinct from cytotoxic granules 170. Peak 

cytokine production occurs six hours after cell activation 168. The dominant cytokine produced 

is dependent on the nature of the activating stimulus received by the NK cells with TNF 

production requiring engagement of fewer receptor classes than IFN production 168. 

NK cells are known to express apoptosis ligands including FAS ligand 171 and TRAIL 172.Unlike 

granzyme dependent cytotoxicity, apoptosis ligand dependent target cell killing requires 

multiple NK cell – target conjugations which gradually activate caspase 8 resulting in target cell 

death 173. Immature NK cells have been reported to utilise a predominantly TRAIL mediated 

cytotoxic pathway while mature CD56dim NK cells primarily use a FAS ligand dependant 

pathway alongside direct cytotoxicity172. 

It is known that malignant cells can exert a range of inhibitory effects on NK cells. This includes 

the expression of inhibitory ligands, the down regulation of MHC expression, the release of 

immunosuppressive cytokines, chemokines and other secretes molecules including adenosine,  

and modification of the stromal microenvironment 174. 

Malignant plasma cells differ from many other transformed cells because they continue to 

express MHC class 1 175 and therefore have a degree of protection against NK cell mediated 

lysis. Despite the continued expression of MHC, NK cells still have the potential to target 
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malignant plasma cells providing sufficient levels of NK cell activating ligands are expressed by 

the myeloma cells. Plasma cells express cell surface MICA, the ligand for the NK receptor 

NKG2D, however the level of expression decreases with progressive disease 176.   The NK cell 

activating receptors NKG2D 177178, DNAM1 179 and 2B4 178 are reduced in myeloma, suggesting 

that the response to plasma cell ligands will be suboptimal. This is seen functionally as NK cells 

in myeloma demonstrate reduced in-vitro cytotoxicity 180,181. Furthermore NK cell expression of 

the immune checkpoint inhibitor PD1 is elevated and PD1 blockade has been shown to 

enhance NK cytotoxicity and IFN production71. 

The importance of NK cells in the initial anti-tumour response is demonstrated by the elevated 

risk of malignancies seen in those with genetic NK cell defects. There are a number of genetic 

immunodeficiency syndromes which predominantly effect NK cell function 182. The best 

characterised of these are all associated with decreased lytic function and may also have 

abnormalities of proliferation and subset distribution. The most well described NK cell defect is 

GATA2 deficiency which associated with increased incidence of human pappilomavirus (HPV) 

associated cervical cancer and Epstein Barr virus (EBV) associated tumours183. It is unknown 

whether this increased risk of malignancy is due to failure of immune-surveillance or loss of 

control of oncogenic viruses. 

There have also been reports that specific NK cell subsets may have a regulatory role. Cooper 

et al described an IL10 producing CD56bright subset induced by the presence of IL-15 184. This is 

in contrast to the IFN producing subset induced by IL-12. These distinct CD56bright cytokine 

producing subsets may have immune stimulatory and immune regulatory roles. 

6.2 Aims 

To compare the frequency and phenotype of NK cell subsets in NDMM to non-myeloma 

controls 

The compare the expression of functional markers of proliferation, degranulation and cytokine 

production of NK cell subsets in NDMM to non-myeloma controls 

To identify features of NK cells in NDMM which may predict duration of survival 

6.3 Specific methodology 

Cryopreserved bone marrow samples from patients with NDMM, who had not yet received 

any treatment, were identified within the Barts Cancer Institute tissue bank. These were 

processed for mass cytometry and analysed on a CyTOF2 mass cytometer as described in 
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chapter three. Data was normalised against EQ bead standards using the Helios normaliser 

(version 6.7).  

NK cells were identified using the phenotype CD45+CD3-CD16+/-CD56+ and were further 

subdivided according to level of CD56 expression into CD56bright and CD56dim subsets (Figure 

6.2).  

 

The use of CD56 as an NK cell marker in myeloma can be problematic as malignant plasma cells 

can also express CD56 154, while NK cells are strongly positive for CD38 185. Low plasma cell 

CD138 expression as a result of cryopreservation is a further complication 186. The fact that 

population frequencies across all cell types, including NK cells, in this analysis are close to 

expected values suggests that there is not a large problem with malignant plasma cells being 

detected within the NK cell gates. Backgating on B cell and plasma cell lineage markers was 

also used to ensure that CD56 positive plasma cells were not included within the NK cell gate. 

6.4 Results 

6.4.1 The NK cell population in NDMM is shifted toward a less mature, CD56bright phenotype 

In both control and NDMM bone marrow samples the natural killer population made up 3% of 

total CD45+ cells (mean control 3.377%, NDMM 3.152% t-test p=0.8709) (Figure 6.3 A). When 

the NK population was further subdivided according to expression of CD56, a significant shift 

towards the less mature CD56bright population was observed in  NDMM when compared to 
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control samples (CD56bright mean control 11.34%, NDMM 24.08% t-test p=0.0460; CD56dim 

mean control 80.22%, NDMM 58.97% t-test p=0.0213)(Figure 6.3 B). 

This pattern could be due to relative expansion of the NK CD56bright subset or relative loss of 

the CD56dim population.  

 

 

 

6.4.2 NK cells in NDMM have lower expression of Ki67, with the CD56dim population being 

least proliferative 

Expression of Ki67 across the total NK cell population is two times higher in control samples 

compared to NDMM (mean control 29.57%, NDMM 15.5% t-test p=0.0721)(Figure 6.4 A). 

Within the NK56bright subset no significant difference is seen in proliferation between control 

and NDMM samples (mean control 26.78%, NDMM 24.84% t-test p=0.8402), however in the 

CD56dim subset Ki67 expression is significantly lower in NDMM (mean control 29.51%, NDMM 

11.12% t-test p=0.0054)(Figure 6.4 B). This suggests that the relative expansion of the 

NK56bright subset seen in NDMM is due to a failure of proliferation in the more mature NK56dim 

subset, rather than due to expansion of the more immature fraction. This may indicate the 

development of NK cell exhaustion in the NK56dim subset. 
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6.4.3 Granzyme and perforin expression is more intense in the NDMM NK56dim subset but is 

not accompanied by a rise in CD107a  

In order to assess the cytotoxic potential of NK cells in NDMM, intracellular expression of 

granzyme and perforin and cell surface expression of CD107a was examined in the resting 

state. No difference in the size of the population expressing the markers was observed 

between control and NDMM (Perforin mean control 50.02%, NDMM 63.50% t-test p=0.2701; 

granzyme mean control 53.29%, NDMM 61.84% t-test p=0.4851; CD107a median control 

2.186%, NDMM 4.019% MW p=0.0955)(Figure 6.5 A). Of note there was a broad range of both 

granzyme and perforin expression between individuals in both control and NDMM groups. 

While the proportion of cells expressing granzyme was not significantly different between 

disease and control groups, there was an increase in the intensity of expression in NK56dim 

subset (median control MSI 153.4, NDMM MSI 497.1 MW p=0.0251) which is classically 

described as the more cytotoxic subset (Figure 6.5 B). Within the NK56dim subset an increased 

intensity of perforin expression was also observed (median control MSI 200.3, NDMM MSI 

915.8 MW p=0.0148)(Figure 6.5 B). 

Since this increase in the constituents of cytotoxic granules intensity is not accompanied by 

CD107a expression it is unclear where this represents meaningful cytotoxic activity. It could 

instead represent generalised cellular activation, or a cytotoxic granule packaging defect 

similar to that reported in CLL 30. Unlike CD8+ T cells, NK cells store pre-formed perforin and 

granzyme within cytolytic granules to enable a rapid response when cells are activated. The 

upregulation of granzyme and perforin expression may therefore represent an increase in 

stored granule content rather than an increase in cytolytic activity.  
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To address this observation, the proportion of cells of triple positive for granzyme, perforin 

and CD107a was assessed. The proportion of triple positive cells rose in both control (median 

resting 0.26%, stimulated 9.986% MW p=0.0120) and NDMM (median resting 1.582%, 

stimulated 8.537% MW p0.0445) samples following 72 hour exposure to autologous BMMC 

stimulated with CD3 and CD28. This was accompanied by a fall in triple negative cell 

populations (control median resting 44.36%, stimulated 2.189% MW p=0.0120; NDMM median 

resting 22.55%, stimulated 0.576% MW p=<0.0001). No difference in peak triple positive cell 
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numbers were observed between control and NDMM (median control 9.986% NDMM 8.537% 

MW p=0.8413)(Figure 6.5 C).  

Given the ongoing presences of tumour antigen in NDMM an increase in cytotoxic activity 

compared to controls would have been expected if NK cells were fully functioning.  

Interestingly both NK cell perforin (Pearson correlation r=0.5737, p=0.0254)(Figure 6.6 A) and 

granzyme (Pearson correlation r=0.5506, p0.0334) (Figure 6.5 B)expression positively 

correlated with survival suggesting that persistent NK cell cytotoxicity it a key aspect of the 

immunological control of NDMM. 

 

 

6.4.4 Loss of intracellular IFN and IL10 is seen in NDMM NK cell populations  

NK cells are classically described as producing the anti-tumour cytokines IFN and TNF and 

the pro-tumour cytokine IL10. When each cytokine is considered separately in resting NK cells, 

intracellular expression of both IFN (mean control 2.07%, NDMM 0.53% t-test p=0.0305) and 

IL10 (mean control 7.09%, NDMM 1.44% t-test p=0.0114) is reduced in NDMM compared to 

controls (Figure 6.7 A). IL10 expression is lost across both the CD56bright (mean control 3.76%, 

NDMM 1.31%, t-test p=0.0024) and CD56dim (mean control 7.364%, NDMM 1.847%, t-test 

p=0.0242) subsets, while IFN expression is predominantly lost in the NK56dim subset (mean 

control 2.030%, NDMM 0.6164% t-test p=0.0403) (Figure 6.7 B). No difference in TNF 

expression is seen. Following 72hour incubation with autologous bone marrow mononuclear 

cells which have been stimulated with CD3 and CD28, no difference is seen in single cytokine 

expression levels between control and NDMM NK cells and NK subsets (Figure 6.7 C). 
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The loss of IL10 expression in NDMM compared to controls at first appears unexpected. The 

CD56bright IL10 producing subset in control samples may, however, represent the regulatory 

population described by Cooper et al 184 which may be suppressing tissue damaging NK cell 

activity in the absence of an appropriate activating signal.  

Loss of NK cell IFN expression has previously been reported in the context of CLL 30 and is 

thought to represent NK cell exhaustion. IFN production by NK56dim populations is known to 

require the engagement of more NK cell activating receptors than TNF 168 implying that IFN 

production will be lost first when the driving mechanism is failure of NK cell receptor 

engagement. In contrast, cytokine production by CD56bright NK cells is determined by the 

cytokine microenvironment. With this in mind, the pattern of cytokine loss identified here in 

NDMM suggests a failure of NK cell receptor engagement by CD56dim subsets. 
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Since NK cells often secrete a combination of cytokines, the distribution of multiple cytokine 

phenotypes was examined in both the resting and stimulated state. As expected, in the resting 

state the majority of NK cells are triple negative for TNF, IL10 and IFN (mean control 87.15%, 

NDMM 78.82%)(Figure 6.8 A). Following stimulation, control samples have a ten fold increase 

in IFN+TNF-IL10- and IFN+TNF+IL10- cell populations (INF+TNF-IL10- resting 0.3432% 

stimulated  3.177% MW p=0.0070; IFN+TNF+IL10- resting 0.4388% stimulated 3.066% MW 

p=0.0020)(Figure 6.8 C). In NDMM there is a much more modest increase in IFN+TNF+IL10- 

cells only (INF+TNF+IL10- resting 0%, stimulated 1.136% MW p=0.0049) (Figure 6.8 C). This 

pattern is replicated in the NK 56bright subset which is expected since these are described as the 

predominant cytokine producing subset. 
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6.4.5 TIM3 expression is reduced in NK cells from NDMM and may represent loss of NK cell 

activation 

Expression of TIM3 is significantly lower on NDMM NK cells than those of control samples 

(mean control 9.342%, NDMM 3.008% t-test p=0.0021) (Figure 6.9 A). This is predominantly 

due to a loss of expression on the CD56dim (mean control 9.620%, NDMM 3.228% t-test 

p=0.0019) subset (Figure 6.9 B), although a drop in intensity of expression (mean control MSI 

9.864, NDMM MSI 2.320 t-test p=0.0397) but not proportion of cells expressing TIM3 is seen in 

the NK 56bright subset (mean control 7.764%, NDMM 4.705%, t-test p=0.3904).  

TIM3 expression is reported to increase with NK cell maturation and is considered to be a 

marker of NK cell activation 187. As expected, TIM3 levels rise on control samples with NK cell 

maturity (NK56bright 7.764%, NK56dim 9.620%) however, they fall in NDMM (NK56bright 4.705%, 

NK56dim 3.228%)(Figure 6.9 B). Loss of NK cell TIM3 expression in NDMM may therefore 

represent the development of a less active or exhausted state. Expression of HLA-DR, another 

marker of NK cell activation, is also reduced on NK cells in NDMM adding weight to the 

proposal that there is a defect in NK cell activation in this condition (mean control MSI  255.2, 

NDMM  MSI 117.1, t-test p=0.0165)(Figure 6.9 C). This shift in HLA-DR expression is also seen 

predominantly on the NK56dim subset (mean control MSI 246, NDMM MSI 97, t-test p=0.0102). 

When NDMM patients are stratified according to survival, a higher level of TIM3 is seen in 

those surviving more than 36 months (mean <36 months 2.126%, >36 months 3.468% MW 

p=0.0311)(Figure 6.9 D), suggesting that NK cell activation is important for long term myeloma 

survival. 
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6.4.6 Receptors and ligands of the PD1 pathway are upregulated on NK cells from NDMM 

Expression of both PD1 and PDL1 are two times higher on NDMM NK cells compared to control 

NK cells (PD1 mean control 7.5%, NDMM 15.85%; PDL1 mean control 4.852%, NDMM 11.88%). 

PD1 expression increases as cells mature with higher PD1 expression seen on both control and 

NDMM NK56dim cells compared to NK 56bright subsets (Figure 6.10A). Up regulation of PD1 

expression in NDMM is more pronounced on CD56dim populations (mean control 7.991%, 

NDMM 20.04% t-test p=0.0392) populations while PDL1 expression is predominantly seen on 

CD56bright subsets (mean control 4.848%, NDMM 23.49% t-test p=0.0260)(Figure 6.10 B). This 

differential expression of PD1 and PDL1 across NK cell subsets may represent differing roles for 

PD1 and its ligand in NK cell maturity and activation. 

Interestingly when cells are gated on PD1 high and low expression, higher granzyme (mean 

PD1low 45.5%, PD1high 81.54% t-test p=0.0046)(Figure 6.10 C) and DNAM1 (mean PD1low 8.2% 

PD1high 16.92% t-test p=0.0460)(Figure 6.10 D) expression is seen in the PD1high subset 
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suggesting that PD1 may be a marker of NK cell activation rather than exhaustion in this 

context. As described earlier, however, the significance of elevated granzyme expression in 

NDMM NK cells is uncertain. 

 

6.4.7 NK cell activating receptors are expressed at normal levels in NDMM 

NK cells can receive activating signals from a range of non-MHC ligands which may be 

expressed on tumour cells. The NK cell activating receptors DNAM1 (control 28.65%, NDMM 

19.39 t-test p=0.1580), NKG2D (control 16.14, NDMM 21.35 p=0.3716) and 2B4 (control 79.15, 

NDMM 74.06 p0.6285) are all expressed at normal levels in NDMM (Figure 6.11). The immune 

checkpoint regulator LAG3 is also present at low levels on both control and NDMM cells 

(control 5.551, NDMM 8.483 p=0.7103)(Figure 6.11). No difference is seen when BMNCs are 

stimulated with CD3 and C28 and no difference is seen between NK CD56bright and CD56dim 

subsets.   
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This is an important observation as NKG2D 177,178, DNAM1 179 and 2B4 178 have previously 

reported to have reduced expression in unselected myeloma patients. This data suggests that 

loss of these receptors may be a later feature of the disease, providing a therapeutic window 

to target these receptors at an early disease time point.  

6.5 Summary of results 

1. NK cell population proportions are shifted towards CD56bright phenotype in NDMM 

2. Population shifts due to loss of proliferation in CD56dim subset 

3. No differences in CD107a+Gnz+Perf+ cell numbers are seen between control and 

NDMM NK cells, however increased intensity of granzyme and perforin is seen in the 

56dim subset 

4. Loss of IFN production by non-stimulated CD56dim subset   

5. Failure to increase IFN+TNF-IL10- and TNF+IFN+IL10- NK cell populations following 

stimulation in NDMM 

6. Reduced expression of markers of activation TIM3 and HLA-DR by CD56dim subsets in 

NDMM  

7. Increased TIM3 expression seen on NK cell of those surviving more than 36 months 
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8. Increased PD1 and PDL1 expression in NDMM with higher PD1 expression on CD56dim 

subset 

9. Normal levels of NK cell activating receptors in NDMM 

6.6 Discussion 

This data establishes that multiple NK cell defects are present at the time of myeloma 

diagnosis. These defects predominantly effect the NK56dim population and have multiple 

functional effects. Importantly this data also indicates that there is a survival advantage in 

having features of NK cell activation. 

The CD56dim defects identified result in reduced proliferation, loss of IFN production, loss of 

NK cell activation and elevated PD1 expression. The consequences of increased granzyme and 

perforin expression in the absence of CD107a expression remain uncertain. 

Similar shifts towards CD56bright NK cell populations have been reported in other malignancies. 

In the setting of non-small cell lung cancer several studies have identified that the 

predominant tumour infiltrating NK cell is CD56bright, compared to being predominantly CD56dim 

in non-cancerous lung tissue188. Furthermore these CD56dim tumour infiltrating NK cells have 

defects in degranulation188,189 and IFNproduction 189.  

In haematological malignancies, Vari et al reported that NK cells in the peripheral blood of 

Hodgkin lymphoma (HL) patients are shifted towards a NK CD56bright subset. In HL, however, it 

is these CD56bright cells which have abnormal expression of PD1 with levels increased above 

that seen on the CD56dim subset. A similar shift in NK cell population was seen in DLBCL but 

changes in PD1 expression were less marked 190. 

The NK CD56dim changes I have reported here are similar to those reported in tumour 

infiltrating lung cancer. This is consistent with the source of NK cell I have studied which have 

been collected from the bone marrow compartment where they will have been interacting 

directly with the malignant cell population, in a similar way to NK cells infiltrating lung 

tumours. It is possible that circulating NK cells in NDMM may have a phenotype more similar 

to those described by Vari et al. 

The observation that several different markers of NK cell activation are seen at the time of 

myeloma diagnosis in those with superior long term survival highlights the key role NK cells are 

playing in tumour surveillance in this disease. A similar link between cell activation and 

prognosis could not be identified in CD8+ lymphocyte populations. 
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The role of PD1 expression by NDMM NK cells is uncertain as the highest PD1 levels are seen 

on NK cells which also have higher expression of granzyme and DNAM1, an observation 

inconsistent with NK cell exhaustion. When the entire data set is considered, however, PD1 

expression is highest on the NK cell subset which also has loss of IFN production and 

proliferation, which is consistent with an exhausted cell population. 

This data has important implications for optimising therapeutic strategies for NDMM. 

Traditionally individuals with NDMM are only offered treatment once symptomatic disease has 

become apparent. This data, however, clearly indicates that NK cell defects which may impact 

prognosis, are already detectable at the time of myeloma diagnosis. Focusing on repairing 

these defects at an early disease time point may allow long term myeloma control to be 

established, avoiding or delaying the need for more intensive therapeutic strategies and 

preventing end organ damage. Possible therapeutic options would include the use of 

Lenalidomide, which has been show to restore IFN production in NK cell from individuals with 

CLL 30. Since this drug already has an established use in myeloma, is usually well tolerated and 

is an oral treatment this would be a practical choice for many patients. Alternative strategies 

would be to target the PD1-PDL1 axis using monoclonal antibodies such as Nivolumab or 

Durvalumab or to directly stimulate NK cell activity via stimulation of NKG2D or DNAM1. These 

strategies have the disadvantage of requiring regular infusions. PD1 axis blockade carries the 

risk of autoimmune complications while activating NK cells may lead to similar off target 

effects, for this reason this risks of these drugs may outweigh the potential benefits in 

otherwise well patients. 

The early loss seen here of NK cell immune surveillance also raises the interesting question; is 

NK cell exhaustion responsible for progression from MGUS to myeloma? The immune 

surveillance model proposes that prolonged antigen exposure after initial failure to clear the 

malignant clone leads to lymphocyte exhaustion. This in turn allows the malignant clone to 

proliferate unchecked. This data in NDMM however suggests that loss of NK cell activity may 

be key at an early disease stage and that CD8 exhaustion may have a role to play later in the 

disease. The multiple NK cell defects identified are in contrast to CD8+ lymphocytes which, 

while having an increase in PD1 expression, maintain many of their functional attributes at this 

early disease stage.  

In summary, this data demonstrates that NK cells in NDMM exhibit multiple features of NK cell 

exhaustion which disproportionately affect the cytotoxic CD56dim subset. Lack of NK cell 

activation is associated with inferior long term survival. The NK cell subset may serve as a 

useful therapeutic target at this early disease stage. 
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6.7 Relevance of work 

1. Identifies NK cells as key in long term myeloma survivorship 

2. Demonstrates that key immunological changes have already taken place at the time of 

myeloma diagnosis, raising questions about optimal treatment timings and strategies 

3. Identifies a range of potential therapeutic targets to restore NK cell function 
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7. The phenotype and function of CD4+ lymphocytes in NDMM 

7.1 CD4 lymphocytes and the coordinated immune response 

CD4 lymphocytes are responsible for the coordination of other aspects of the immune 

response, via the production of cytokines and chemokines and through direct cell activation. 

The secreted cytokines can act as stimulatory or inhibitory signals to antigen presenting cells 

and cytotoxic cells depending on the microenvironment context. CD4 lymphocytes also 

provide the second activatory signal to B cells to induce antibody production 191. 

CD4 cells are antigen specific, like CD8 lymphocytes, and require the presence of the antigen 

they recognise plus additional co-stimulatory signals in order to become activated. Unlike CD8 

lymphocytes, however, they recognise antigen displayed in MHC Class II. 

 

Naive CD4 lymphocytes can differentiate into one of several different effector subsets. This 

differentiation is driven by cytokine signalling and is dependent on the activation of specific 

transcription factors. There are currently four key, biologically relevant CD4 T cell subsets 

described 192. These are summarised in table 7.1. CD4 populations also exhibit plasticity, with 

cells able to move between subsets in response to specific cytokine signals (Figure 7.1).  
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 Induced by Function Cytokines 

produced 

Characteristic 

transcription 

factor 

TH1 IFN 

IL12 

Intracellular 

pathogens via 

activation CD8, 

macrophages, 

recruit NK cells 

IFN 

IL2 

T-bet 

TH2 IL4 

IL2 

Extracellular 

parasites 

IL4 

IL5 

IL13 

IL25 

IL10 

GATA-3 

TH17 TGF 

IL6 

IL21 

IL23 

Extracellular 

bacteria and 

fungi 

IL21 

IL17a 

IL22 

RORt 

Treg TGF 

IL2 

Immune 

tolerance and 

homeostasis 

TGF 

IL35 

IL10 

FoxP3 

Table 7.1: CD4 subsets 

Within the setting of the cancer immune surveillance model, CD4 lymphocyte subsets have 

diverse roles. The TH1 subset can recruit cytotoxic NK and CD8 populations in addition to the 

production of IFN which may have direct anti-tumour effects 193. The roles of both the TH2 

and TH17 subsets are less clear cut. The TH17 subset is associated with a chronic inflammatory 

response which may suppress the activity of cytotoxic cells, however murine models using 

adoptive transfer of high number of TH17s have suggested an anti-tumour response 193. 

The role of the T regulatory (Treg) subset is better defined. This subset comprises 5-10% of 

circulating CD4 T cells  and mediates peripheral tolerance by suppressing self responsive T cells 

8. In the context of malignancy, however, this can result in the suppression of tumour 

recognising T cell populations. Unlike most CD4 subsets, Tregs have direct killing mechanisms 

via perforin and granzyme release, in addition to signalling via T cell inhibitory pathways and 

the production of TGF and IL10 8. 
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Histological infiltration of tumour with Treg cells is associated with a poor prognosis in a range 

of malignancies including DLBCL 22, breast cancer 23, ovarian cancer 24, hepatocellular 

carcinoma 25 and non-small  cell lung cancer 26. 

Treg cell numbers are increased in both peripheral blood and bone marrow from patients with 

myeloma when compared to healthy controls and MGUS 76–78 and higher numbers are 

associated with faster time to progression 72 and with shorter survival 79,80. This is in keeping 

with the suggestion that the tumour microenvironment can have an influence on the immune 

response. Not all reports confirm this however, with lower Treg numbers and poorly functional 

Treg cells also being described in myeloma 194. Interestingly, treatment with IMiDS appears to 

lead to an increase in Treg numbers 78,81, perhaps in a tissue protecting attempt to limit 

cytotoxic damage. 

7.2 Aim 

To establish phenotype and function of CD4 Treg populations in NDMM and compare these to 

controls 

To describe the phenotype and function of CD4 naive, effector and memory subsets 

7.3 Specific methodology 

CD4+ lymphocytes were identified by the phenotype CD45+CD3+CD4+ and then further 

subdivided on the basis of CD45RA and CCR7 expression. T regulatory cells were identified by 

the phenotype CD45+CD3+CD4+CD25highCD127-FoxP3+ (Figure 7.2). 

CD4 markers were incorporated into the panel to enable the CD4 Treg population to be 

identified since this population has been shown to correlate with survival and prognosis in 

other studies.  The incorporation of these markers also allows CD4 naive, memory and effector 

populations to be defined, however this was not the primary focus of the panel. As a result the 

markers for TH1, TH2 and TH17 subsets have not be included and these subsets cannot be 

identified. This limits the biological relevance of exploring the CD4 sunsets but some general 

observations can be made. 
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7.4 Results 

7.4.1 There are no numerical differences between CD4 subsets in control and NDMM bone 

marrow  

No numerical differences were identified in CD4 populations and their subsets, including Tregs, 

between control and NDMM (Figure 7.3 A). Furthermore no differences were seen in the 

CD8:CD4 ratio between control and NDMM (Figure 7.3 B). 

The lack of increase in the Treg subset is at odds with much of the published data in myeloma, 

but may reflect differences in the stage of disease being studied, the use of appropriate age 

matched controls (which is not always done) and the different methodology to identify the 

population. 
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7.4.2 CD4+ lymphocytes in NDMM are poorly proliferative, express PDL1 and generate TGF 

and perforin 

Within the resting total CD4 population a small population of cells was observed to express 

PDL1 in control samples which was significantly higher in NDMM (median control 0.183%, 

NDMM 1.275% MW p=0.0043)(Figure 7.4 A) with a similar pattern seen for intensity of PDL1 

expression (control MSI 1.417, NDMM 2.469 p=0.02)(Figure 7.4 B). 

A shift towards a pro-tumour cytokine environment was noted in NDMM with increased 

intensity of TGF expression (median MSI control 11.74, NDMM 16.73 MW p=0.0146)(Figure 

7.4 B) which was accompanied by an increase in perforin expression (median MSI control 

2.961, NDMM 12.6 MW p=0.0308)(Figure 7.4 D) but not of granzyme (median MSI control 

10.18, NDMM 19.84 MW p=0176)(Figure 7.4 H). CD107a was undetectable (Figure 7.4 G).  
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Intensity of Ki67 expression was lower in NDMM indicating a loss of proliferation (median MSI 

control 6.359, NDMM 4.309 MW p=0.0308)(Figure 7.5 A) however this did not translate into a 

difference in the proportion of cell positive for Ki67 (Figure 7.5 B). 

Following stimulation with CD3 and CD28 there was a significantly larger Ki67 expressing CD4 

population in NDMM (control 54.41%, NDMM 82.33% p=0.0324)(Figure 7.5 C), which also 

demonstrated an increase in Ki67 expression intensity (control MSI 296.8, NDMM 910.9 

p=0.0089).  
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Despite the apparent increase in proliferation following stimulation, the CD4 population 

remains functionally abnormal with a smaller NKG2D expressing population (mean control 

7.648%, NDMM 2.777% t-test p=0.0188). Interestingly there was also an increased intensity of 

CD107a (MSI mean control 9.216, NDMM 17.23 t-teat p=0.0426) and perforin (MSI mean 

control 10.06, NDMM 23.31 t-test p=0.0206) in NDMM CD4 cells following stimulation. These 

perforin and CD107a expressing CD4+ lymphocytes may represent a cytotoxic CD4 subset. 

CD4 cytotoxic cells are a recognised entity 195–197 which are defined as CD4+ lymphocytes which 

express one or more of granzyme A, granzyme B or perforin. They have been shown in murine 

models to have anti-tumour activity in a similar way to CD8 lymphocytes 198. Recently CD4+ 

cytotoxic cells have been identified at increased numbers in the peripheral blood of patients 

with NDMM. These cells were able to target plasma cells during in-vitro modelling and 

expressed lower PD1 than their CD8 counterparts 199. 

 

7.4.3 The T regulatory population in NDMM has a more immune suppressive phenotype 

compared to control samples 

The resting Treg population had a larger PDL1 expressing population in NDMM compared to 

control (mean control 0.2833%, NDMM 2.483% t-test p=0.0160), this was accompanied by an 

increase in PDL1 expression intensity (control 0.9247%, NDMM 2.825% p=0.0041) (Figure 7.6 

A). 

The expression of TGF (median MSI control 12.11, NDMM 17.66 MW p=0.0032)(Figure 7.6 B) 

was also elevated in NDMM as was perforin (median control 2.417%, NDMM 9.988% MW 

p=0.0194)(Figure 7.6 D) and CD107a expression (median control 0.6601%, NDMM 1.772% MW 

p=0.0401)(Figure 7.6 E). 

Following stimulation, the proportion of Treg cells positive for Ki67 (mean control 61.85%, 

NDMM 91.83% t-test p=0.0394) was higher in NDMM, accompanied by increased intensity of 

expression (mean control MSI 327.1 NDMM 951 t-test p=0.0086)(Figure 7.6 F). They also have 

a decreased expression of NKG2D (mean control 11.9%, NDMM 2.183% t-test p=0.0114)(Figure 

7.6 C). The intensity of CD107a (mean control MSI 10.58, NDMM 18.84 t-test p=0.0471)(Figure 

7.6 E) and perforin (mean control MSI 12.66, NDMM 26.85 t-test p=0.0414)(Figure 7.6 D) 

expression was also increased.  

Despite not identifying a numerical difference in Treg subset numbers between control and 

NDMM, it is clear that the functional differences describe a more immune suppressive subset 

in NDMM with evidence for immune regulation via cytotoxic mechanisms. 
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7.4.4. Naïve CD4 cells in NDMM are poorly proliferative and express PDL1 

The resting naive CD4 population had a small proliferative population in control samples which 

was significantly smaller in NDMM (Ki67 mean control 5.45%, NDMM 3.129% t-test 

p=0.0390)(Figure 7.7 A). The expression of PDL1, while low in both disease and control 

samples, was significantly higher in NDMM (PDL1 control 1.374%, NDMM 2.602% 

p=0.0293)(Figure 7.7 B). 

Stimulation with CD3 and CD28 results in an increase in the size of CD107a (control 21.77%, 

NDMM 49.96% p=0.0349)(Figure 7.7 D) and a decrease in NKG2D (control 21.4%, NDMM 

8.388% p=0.0098)(Figure 7.7 C) expressing populations. This was accompanied by increased 

intensity of Ki67 (mean MSI control 256.5 NDMM 819.8 t-test p=0.0111)(Figure 7.7 A), PD1 

(mean MSI control 39.13 NDMM 75.65 t-test p=0.0348)(Figure 7.7 F), perforin (mean MSI 

control 8.162 NDMM 26.85 t-test p=0.0421)(Figure 7.7 E) and CD107a (mean MSI control 9.03 

NDMM 18.1 t-test p=0.0222)(Figure 7.7 D). This suggests that the CD4 naive population in 

NDMM is a poorly proliferative subset with a cytotoxic response following activation. 
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7.4.5 The memory CD4 subset in NDMM has a pro-tumour cytokine profile 

The resting memory population demonstrated loss of DNAM1 expressing populations in 

NDMM (mean control 30.06%, NDMM 17.67% t-test p=0.0494)(Figure 7.8 A) with an increase 

in intensity of TGF expression (mean control 12.34%, NDMM 19.19% t-test p=0.0348)(Figure 

7.8 B). 

Stimulated CD4 memory populations had a higher proportion of Ki67 positive cells (mean 

control 48.54%, NDMM 77.64% t-test p=0.0347)(Figure 7.8 C) and granzyme positive cells 

(mean control 43.76% NDMM 90.5% t-test p=0.0390)(Figure 7.8 D) in NDMM. 

The CD4 memory subset therefore has a pro-tumour cytokine profile. 
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7.4.6 The effector CD4 population has a pro-tumour phenotype 

The resting effector CD4 population had an increase in intensity of both PDL1 (mean MSI 

control 1.451%, NDMM 2.223% t-test p=0.0085)(Figure 7.9 A) and TGF (median MSI control 

8.518%, NDMM 16.3% MW p=0.0064)(Figure 7.9 B) expression suggesting a shift towards a 

pro-tumour environment. 

Following stimulation effector CD4 populations had increased expression of Ki67 in NDMM 

(mean control 367, NDMM 982.4 t-test p=0.0153)(Figure 7.9 C) but this did not translate to a 

population size difference. 

CD4 population phenotypes do not correlate with improved survival in NDMM. 

7.5 Summary of results 

1. No numerical differences were identified in CD4 populations and their subsets, 

including Tregs, between control and NDMM.  

2. CD4+ lymphocytes in NDMM are poorly proliferative, express PDL1 and generate TGFb 

and perforin 

3. The T regulatory population in NDMM has a more immune suppressive phenotype 

compared to control samples 

4. Naïve CD4 cells in NDMM are poorly proliferative and express PDL1 

5. The memory CD4 subset in NDMM has a pro-tumour cytokine profile 

6. The effector CD4 has a pro-tumour phenotype 

7. CD4 population phenotypes do not correlate with improved survival in NDMM. 
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7.6 Discussion 

Across all CD4 subsets examined there was a recurring theme of increased PDL1 and 

TGFexpression, suggesting a pro-tumour response. This was accompanied by a reduction in 

the proliferating fraction and the suggestion of a shift towards a CD4 cytotoxic phenotype. 

Taken together, these data support our hypothesis that the CD4 ability to recruit an anti-

tumour response is impaired, with function being polarised towards a regulatory response. 

While the CD4+perforin+ subset identified in the total CD4 cohort might represent an anti-

tumour CD4 cytotoxic response, this may also represent an immune suppressive T regulatory 

subset with cytotoxicity directed toward anti-tumour immune cells rather than the tumour 

clone. This idea is supported by the fact that the pattern of perforin and CD107a expression is 

replicated within the T regulatory subset but not within the CD4 effector subset. 

The data highlights the importance, once again, of the PDL1-PD1 axis in NDMM. PDL1 

expression by T regulatory cells is an expected feature since one method of immune 

suppression by this subset is the engagement of immune regulatory receptors on cytotoxic 

lymphocytes. The increased expression of PDL1 across other CD4 subsets is perhaps more 

surprising, however it should be remembered that CD4 cells can act as antigen presenting cells 

and may therefore be able to deliver immune checkpoint signals to cytotoxic subsets.   

There have been conflicting reports regarding the numbers of CD4 T regulatory compartment 

in myeloma, the data presented here confirms that, in the setting of the NDMM bone marrow 

compartment, T regulatory cells are not increased. They do, however, have a more 

immunosuppressive phenotype than their control counterparts with high expression of both 

TGF and PDL1 seen accompanied by activation of cytotoxic pathways. This is evidence that, 

while numerically normal, NDMM Tregs have immune suppressive potential. 

An important limitation of this data is the lack of ability to discriminate between TH1, TH2 and 

TH17 subsets. These subsets are being increasingly recognised as vital in driving an anti-

tumour response and understanding the numerical, phenotypic and functional characteristics 

would aid our understanding of the biology of the disease and potential pitfalls when using 

immune targeting therapy. Unfortunately mass cytometry panels are not yet complex enough 

to allow in depth characterisation of all immunological subsets! 

7.7 Relevance of work 

1. Demonstrates that T regulatory cells have a more immune suppressive phenotype in 

NDMM despite a lack of numerical difference 
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8. Plasma cell and the non-myeloma B cell population phenotype and function 

8.1 Plasma cells and the non-myeloma B cell population 

B cells form part of the adaptive immune system which can function as antigen presenting 

cells, generate cytokines and produce immunoglobulin. Naive B cells circulate until they meet 

their specific antigen. They then move to the germinal centre where they undergo somatic 

hypermutation and heavy chain class switching, generating long lived plasma cells with high 

affinity antibody and memory B cell subsets 33. Mature memory B cells circulate within the 

peripheral blood, while plasma cells home to the bone marrow 33. Following secondary 

exposure to their antigen both B cell subsets are able to rapidly proliferate and generate 

immunoglobulin in the case of plasma cells or re-enter the germinal centre in the case of 

memory B cells. 

Myeloma is a malignancy of long lived, post germinal centre plasma cells which produce 

immunoglobulin. In myeloma, control of proliferation is a lost and, in most cases, 

immunoglobulin secretion is dysregulated. This results in production of the characteristic 

paraprotein which is responsible for many of the clinical features of myeloma, including renal 

impairment and hyperviscosity. The bulk of malignant disease occurs within the bone marrow 

although discrete plasmacytomas are sometimes seen. Heavy bone marrow infiltrations results 

in suppression of normal haematopoesis. Malignant plasma cells also induce changes to the 

stromal microenvironment, angiogenesis and induction of immune regulatory cytokines. 

Molecular analysis of the IGH gene in myeloma has demonstrated that mature circulating B 

cells do not share the clonal IGH gene rearrangement of the malignant plasma cells 200 

suggesting that the memory B cell compartment is not involved in the disease. B cell subset 

proportions have been reported to not be different between MGUS and myeloma 200, however 

there is a reduction in IgD+CD27+ unswitched memory cells 201 and a shift towards mature, 

post germinal centre B cell subsets 202 have been reported in myeloma compared to healthy 

controls  

8.2 Aim 

To describe non-malignant B cell lineage cells and malignant plasma cell phenotype in NDMM  

To correlate malignant plasma cell changes to characteristics of other immunological subsets 
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8.3 Specific methodology 

8.3.1 Identification of plasma cells 

Plasma cells proved to be challenging to identify using traditional Boolean gating due to lack of 

a consistent phenotype and downregulation of CD138 expression due to cryopreservation 186. 

In order to overcome this difficulty the viSNE dimensionality reducing algorithm was 

performed on the single cell gate of all NDMM and control unstimulated samples. 15000 cells 

were sampled per file and viSNE was performed with iterations set at 3000 and perplexity at 

70.  

The algorithm was run twice, once using basic phenotyping markers for dimensionality 

reduction and once using all markers. In both versions of the viSNE it was possible to place a 

plasma cell gate which incorporated varying malignant cell phenotypes while minimising 

incorporation of cells in control samples.  The gate was predominantly placed on the basis of 

CD38 expression with the exclusion of other lineage markers. When the two viSNE versions 

were compared the malignant plasma cell proportions were matched between paired samples 

(paired t-test p=0.1967. Mean basic 24.16%, mean all 26.04%), however significantly more cells 

in control samples were located within the malignant plasma cell gate when only basic 

phenotyping markers were used to generate the viSNE (paired t-test p=0.0305 mean basic 

2.204, mean all markers 1.111%). The viSNE incorporating all markers was therefore selected 

as the preferred option for further analysis. 

Incidentally the all markers analysis also allowed identification of NK cells by viSNE which has 

previously been challenging. 

8.4 Results 

8.4.1 The non malignant B cell compartment is less proliferative in NDMM and expresses 

higher levels of IL2 

When considering the non-myeloma B cell compartment no difference in event counts 

between control and NDMM samples was seen (Figure 8.1 A).  

Proliferation was reduced in non-myeloma B cells in NDMM (mean control 13.79% NDMM 

6.386% t-test p0.0336)(Figure 8.1 B) while IL2 expression is increased (median control 1.535% 

NDMM 3.923% MW p=0.0405)(Figure 8.1 C). 

B cells are known to have the potential to produce a wide range of cytokines in response to 

various stimuli. IL2 producing B cell may have a role to play in polarisation towards the CD4 
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TH2 subset, as well as recruitment of NK cells and generation of CD4 T regulatory subsets 203. It 

is not known whether the net result is a pro-tumour or anti-tumour response.  
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8.4.2 NDMM plasma cell populations as detected by mass cytometry vary widely in size 

between individuals 

Using the complete phenotype viSNE gate the mean plasma cell event count in NDMM was 

26.04% % (range 0.5933-95.18), compared to 1.11% (range 0.0867-2.513%) in control samples 

(Figure 8.2). 

 

Within the plasma cell gate a range of patterns of cell distribution could be identified. In some 

cases all cells were closely clustered together, indicating that these cells were phenotypically 

very similar and likely to be a single plasma cell clone (Figure 8.3 A). A second pattern was a 

tight clustering of a large proportion of cells, with other cells scattered throughout the gate 

(Figure 8.3 B). Finally some individuals had a diffuse spread of cells throughout the plasma cell 

gate (Figure 8.3 C). These differences in cell clustering within the plasma cell gate is likely to 

represent differences in the clonal behaviour of the malignant plasma cells, with some 

individuals having one dominant clone while others have multiple sub clones. Similar patterns 

of clonal behaviour have previously been reported in the context of genetic subclones  38. 

Within these different patterns of plasma cell distribution there is also variation seen in PDL1 

expression, with some individuals having no or minimal expression (Figure 8.4 A), while others 

have expression in a proportion of cells (Figure 8.4 B). Interestingly, even within a tight cluster 

of plasma cells there was variation in the levels of PDL1 expression. 

The marked variation in plasma cell numbers may reflect true differences in disease burden, 

however it is well recognised that bone marrow aspirate samples often underestimate plasma 

cell burden compared to bone marrow trephines and the degree to which this is a problem 



140 
 

varies between individuals. Disproportionate loss of plasma cells in the samples analysed by 

mass cytometry due to poor viability and epitope downregulation following cryopreservation 

may also have an impact on total plasma cell numbers. For these reasons it has not been 

possible to assess the impact of plasma cell burden on the numbers and function of other 

immunological subsets. 
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8.4.3 Plasma cell populations in NDMM express PDL1, LAG3 and 2B4  

The plasma cell population in NDMM expressed PDL1 (15.71%), LAG3 (13.07%) and 2B4 

(13.93%), with lower level expression of PD1(3.83%), OX40 (3.1%) and DNAM1 (3.7%) (Figure 

8.5 A). 

Plasma cell PDL1 expression is reported to be between 5 and 96% with average of 20% 204. In 

murine studies LAG3 was expressed on 50% of plasma cells and was thought to represent a B 
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regulatory subset 205. 2B4 is not normally expressed on B cells 206. No data is available 

regarding PD1, OX40 and DNAM1. 

When functional markers were assessed 20% of plasma cells were expressing Ki67, indicating 

proliferation in this subset.  IFN was undetectable, a low level of IL2 (3.75%) and IL10 (5.96%) 

production was seen (Figure 8.4 B). TNF production had a mean expression of 20%, however 

the median was 3.9% with just four individuals having elevated TNF levels (Figure 8.5 B).  

TNF expression by B cells 203 and plasma cells 207 has been previously reported but the 

biological consequences of this is unknown. TNF has been reported to promote plasma cell 

survival in vitro 208 but is also a key part of the anti-tumour response. 
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8.4.5 High plasma cell TGF expression is associated with co-expression of immune 

checkpoint ligands and decreased CD8 subset cytotoxicity 

Across the total population the mean expression of TGF was 6%, however expression was 

much higher (>20%) in four individuals. Plasma cells in those with higher TGF levels had three 

times higher expression of LAG3 (mean low 8.902% high 27.68%)(Figure 8.6 A) and double the 

expression of PDL1 (mean low 12.29% high 27.68%)(Figure 8.6 B).  These changes, however, 

were largely driven by one individual who had very high LAG3 and PDL1 expression. 

Level of plasma cell TGFexpression showed a positive correlation with CD4 T regulatory cells 

TGF expression (r=0.5604, p=0.0295)(Figure 8.6 C). No correlation with survival was seen.  

When PDL1 expression was stratified by mean expression, an increase in TGF expression was 

seen in those with higher PDL1 expression (MSI TGF low 7.438, high 18.13, t-test 

p=0.0325)(Figure 8.7 A). There was no correlation between plasma cell PDL1 expression and 

survival, however, a positive correlation was seen between plasma cell PDL1 expression and 

CD8 PDL1 expression (r=0.8219,p=<0.0001)(Figure 8.7 B). A negative correlation between 

plasma cell PDL1 expression and CD8 EMRA perforin was also seen (r=0.5529, p=0.0285)(Figure 

8.7 C). 

This suggests that plasma cells with a TGF+ or immune checkpoint regulatory phenotype may 

be exerting suppressive influences on CD8 cytotoxic function.  
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8.5 Summary of results 

1. The non malignant B cell compartment is less proliferative in NDMM and expresses 

higher levels of IL2 

2. NDMM plasma cell populations as detected by mass cytometry vary widely in size 

between individuals 

3. Plasma cell populations in NDMM express PDL1, LAG3 and 2B4 and produce TGF 

4. High plasma cell TGF expression is associated with co-expression of immune 

checkpoint ligands and decreased CD8 subset cytotoxicity 

8.6 Discussion 

Flow cytometry has traditionally relied on a set of sequential gates to identify plasma cells, 

based on strong expression of CD38 and CD138. Previous reports have suggested that this risks 

missing important malignant populations due to variation in plasma cell phenotype both 

between and within individuals 154. I have shown that viSNE can be utilised to successfully 

identify plasma cell populations with diverse characteristics and distinguish them from healthy 

B cell populations. This technique is not dependent on a single phenotype and is successful 

despite loss of CD138 expression in these samples. 

Deep characterisation of malignant plasma cells has several possible benefits; firstly it may 

identify new therapeutic targets and broaden our understanding of malignant plasma cell 

biology, secondly it may identify markers which predict response to treatment and finally it 

may allow the analysis and tracking of subclonal evolution. The data presented here has shown 

the both LAG3 and 2B4 are present on malignant plasma cells, this has not previously been 

reported in humans. It has also shown that plasma cells produce both TGF and TNF which 

may drive plasma cell proliferation and suppress the anti-tumour response. 

The loss of proliferation by non-myeloma B cells demonstrates that normal B cell function is 

inhibited by the presence of malignant plasma cell. IL2 producing B cell have been reported 

previously but their significance is unknown. Much of the work surrounding the immune 

microenvironment in myeloma has focused on cytotoxic cell populations. This data suggest 

that functional aberrations are also present within non-myeloma B cell populations. This may 

be contributing to the known increase in infection related mortality seen in myeloma patients, 

but may also be skewing the T cell response towards a potentially less anti-tumour response. 

This subset is therefore worthy of further future investigation.  

This data demonstrates the key strengths of mass cytometry. Firstly is allows the exploration of 

the expression of markers beyond the subsets with which they are usually associated, thereby 
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providing new biological insights into disease mechanisms. Secondly the assessment of 

multiple cell types simultaneously allows the identification of patterns of response within 

individuals which may be of biological or prognostic significance when it comes to optimising 

treatment strategies. While the small numbers of patients examined in this work limits the 

power of this cross subset data analysis, it does provide evidence that mass cytometry is an 

appropriate tool to enable this approach which should be considered in future clinical trials.  

8.7 Relevance of work 

1. Demonstrates that viSNE can be used to identify plasma cells even when traditional 

gating has failed 

2. Identified LAG3 and 2B4 expression on malignant plasma cells 

3. Demonstrates the potential role of mass cytometry for deep profiling of immunological 

populations in therapeutic studies 
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9. Identifying a global bone marrow signature of multiple myeloma 

9.1 Myeloma and global signatures of disease 

Myeloma is a disease which, while originating within the plasma cell compartment, also 

involves the bone marrow microenvironment. This includes the supportive cellular network, 

the cells of bone remodelling and haematopoietic cells. 

The recruitment of so many supportive cells into the disease pathogenesis may lead to a 

global, immunological, signature which is characteristic for the disease and distinguishes it 

from non myeloma bone marrow. As well as offering potential diagnostic techniques, the 

presence of such a signature may provide insights into the dominant drivers of the 

immunological aspects of the disease. 

Ludwig et al have previously demonstrated a metabolomic signature that separates myeloma 

and MGUS from control bone marrow samples. This was characterised by loss of the essential 

amino acids isoleucine and threonine and their breakdown products in the disease setting, 

accompanied by a rise in urea and creatine and the presence of an oxidative environment 209. 

Ludwig proposes that the progression from MGUS to myeloma is determined by cells from the 

microenvironment rather than intrinsic plasma cells changes and that these microenvironment 

changes also drive the metabolomic landscape.  

Peripheral blood cytokine arrays have also demonstrated global aberrant microenvironments 

changes in MGUS and MM with Zheng et al describing increases in IL-4 and IL-10 accompanied 

by a fall in IFN in myeloma compared to age and sex matched controls 63. Interestingly these 

cytokine aberrations did not return to normal after treatment, suggesting a sustained pro-

tumour environment causing susceptibility to relapse. 

9.2 Aim 

To use mass cytometry data across all live cells to determine whether a global immunological 

cellular signature of multiple myeloma is present. 

To determine whether an immunological signature correlates with clinical disease progression 

and survival 

9.3 Specific methodology 

9.3.1 CIRTUS algorithm 

Chapters five to eight describe the phenotyping and functional changes seen when mass 

cytometry data was analysed according to traditional Boolean dot-plots. In order to identify 
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novel populations and confirm manually identified changes, an algorithmic approach was 

undertaken. 

The CITRUS (Cluster Identification, Characterisation and Regression) algorithm is an 

unsupervised clustering approach which was designed to identify cell populations which are 

associated with a specific endpoint. 

CITRUS was applied to the live cell gate of all control and NDMM samples. The selected 

endpoint was disease status (Control versus NDMM).  The algorithm was set to determine 

clustering on the basis of marker abundance and all lineage and functional markers were 

included. An equal number of events were sampled from each individual. The false discovery 

rate was set to 5%. CIRTUS applied the correlative Significance Analysis of Microarrays (SAM) 

model to determine which populations were associated with a given endpoint.  

The CIRTUS algorithm was run three times in parallel on the same data set to confirm findings 

were reproducible (Figure 9.1). 

The output of CITRUS is a clustered map of cell populations with each cell population “node” 

being numbered to allow cross referencing with abundance and phenotype data. Each node 

represents a daughter of the proceeding node. A unique .fcs file is generated for each node on 

a per sample basis and can be exported to enable further interrogation and statistical analysis.  

Statistical analysis was performed using non-parametric testing with Mann-Whitney for non-

paired samples and Wilcoxon for paired samples. 

It must be remembered when interpreting CITRUS  plots that the data represents only the 

down sampled cells from each population and that peripheral CITRUS nodes may represent 

only a small number of cell events. 

 



151 
 

 

 



152 
 

9.4 Results 

9.4.1 Identification of cell populations 

Using the CIRTUS map and marker expression data it was possible to identify seven distinct cell 

populations which were present in all three iterations of the CITRUS analysis. These could be 

further divided into sub-populations with unique phenotypic or functional characteristics 

(Table 9.1). 

Cell type Phenotype for CITRUS identification 

B lymphocytes CD19+CD20+OX40+TGFb+CD45RA+  

CD 4 T lymphocytes CD45+CD3+CD4+ 

NK cells CD45+CD3-CD16+CD56+ 

Plasma cells CD45-CD3-CD56+CD38+CD138+PDL1+FOXP3+TGFb+  

Dendritic cells 

 Population 1 (DCTOL) 

 Population 2 (DC16) 

HLADR+TGFb+  

PDL1+Ki67+ 

CD16+PDL1+LAG3+TIM3+CCR7+2B4+DNAM1+  

 

CD8 T lymphocytes  

 Population 1 (Cytotoxic) 

 Population 2 (Cytokine) 

CD45+CD3+CD8+ 

Granzyme+Perforin+DNAM1+ 

IL2+NKG2D+  

Table 9.1: Phenotypes of populations identified by CITRUS 

The core populations identified were; B lymphocytes, CD4 T cells, two distinct CD8 T cell 

populations, plasma cells, NK cells and dendritic cells (DCs)(Figure 9.2). 

Of the cellular populations identified, CIRTUS highlighted five populations or subpopulations 

which had a significant difference in population abundance between control and NDMM 

samples. These were plasma cells, two DC populations, a CD4 subpopulation and a CD8 

subpopulation (Figure 9.3). 
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9.4.2 Dendritic cell populations are lost in NDMM and a shift towards tolerogenic activity is 

seen (Figure 9.4) 

The ability to identify dendritic cells is of particular note since the mass cytometry panel was 

not designed with this cell population in mind. While specific DC markers were not included in 

the panel, it was possible to infer the DC cell population  on the basis of exclusion of other cell 

types and the expression of cell surface receptors associated with DCs. Strong HLA-DR 

expression by CD45+ cells which did not express B cell markers or CD3 was considered 

consistent with a DC phenotype. Furthermore this population co-expressed a range of markers 

found on DCs including PDL1 and TIM3. 

Within the DC cell cluster two distinct populations could be identified. The first was strongly 

CD16 positive and co-expressed a range of markers associated with DC maturity and activation 

including CCR7, TIM3 and 2B4. CD16 expression on DCs is described on monocyte derived DCs 

210. This mature, active population is termed DC16. The second population with strongly PDL1 

positive and also expressed Ki67 suggesting that it is a proliferative population. 
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In addition to identifying distinct populations within the DC population is was also possible to 

identify differences in DC phenotype and function between control and NDMM samples.  The 

DC16 population was less abundant in NDMM compared to control samples. In NDMM this 

population also had lower expression of TIM3 (control 5.128, NDMM 2.656 p=0.0122) and 2B4 

(control 15.54, NDMM 12.17 p=0.0148) which are expressed by activated DCs. Furthermore an 

increase in DC16 expression of PDL1 (control 7.739, NDMM 17.93 p=0.0349) was seen in 

NDMM. This suggests that, while overall this is an activated DC population, it is less strongly 

activated in NDMM and may therefore be less effective at antigen presentation. 

The second DC population was also less abundant in myeloma and loss of both TIM3 (control 

2.494, NDMM 0.6665 p=0.0165) and DNAM1 (control 4.866, NDMM 3.06 p=0.0165) was seen 

in the disease state. This was associated with a gain of PDL1 (control 1.732, NDMM 5.357 

p=0.0065), CD107a (control 1.616, NDMM 3.696 p=0.0014) and perforin (control 3.857, 

NDMM 9.554 p=0.0196) expression in NDMM. Perforin expression has been described in a 

subset of tolerogenic DCs which maintain peripheral tolerance via the deletion of T 

lymphocytes 211. The expression of perforin and PDL1 in the absence of strong expression of 

other markers of DC activation suggest that, in NDMM, this subset has a tolerogenic role and it 

has therefore been termed DCTOL. 

9.4.3 CD8 lymphocytes have distinct cytotoxic and cytokine producing populations with 

shifts towards a pro-tumour cytokine environment (Figure 9.5) 

CIRTUS reproducibly identifies two distinct CD8 positive populations. One of these populations 

has a cytotoxic effector phenotype (CD8TOX) with strong expression of granzyme (CD8TOX 343,7, 

CD8CYK 44.28, p=<0.0001) and perforin (CD8TOX 119.1, CD8CYK 16.06, p=<0.0001). Interestingly 

NK cell population cluster closely with this CD8 population, presumably due to their shared 

cytotoxic phenotype. The second and distinct CD8 population (CD8CYK) also has an effector 

phenotype but is predominantly IL2 producing (CD8TOX 1.066, CD8CYK 1.293, p=0.0010).  
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A second interesting observation is that the cytotoxic CD8 population co-expresses DNAM1 

(CD8TOX 6.559, CD8CYK 3.627, p=<0.0001) while the cytokine producing CD8 population co-

expresses NKG2D (CD8TOX 8.968, CD8CYK 14.64, p=<0.0001), suggesting that these co-

stimulatory receptors may have a differential response with one promoting a cytokine 

producing phenotype while the other promotes a cytotoxic response. This has implications for 

the use of therapeutic agents that target these receptors as it may be possible to modify the 

CD8 response depending on which co-receptor is targeted. 

The CD8 cytokine population is less abundant in NDMM compared to controls. This appears to 

be due to loss of proliferation as evidences by a fall in Ki67 (control 6.125, NDMM 3.525 

p=0.0494) expression in NDMM. This population has an EM/EMRA phenotype as defined by 

expression of CD45RA and CCR7. In NDMM there is also a shift towards a pro-tumour cytokine 

prolife with elevated expression of TGFcontrol 9.573, NDMM 20.47 p=0.0022. Although 

this cell population predominantly expressed NKG2D, expression of DNAM1 is also seen, 

however this is reduced in NDMM compared to controls (control 5.452, NDMM 2,856 

p=0.0096), suggesting a reduction of co-stimulatory potential. 

No abundance difference is seen between control and NDMM for the CD8 cytotoxic 

population. In a similar pattern to the cytokine producing node, an increase in TGF (control 

median 11.63, NDMM 19.29 p=0.0096) and a decrease in DNAM1 (control 9.21, NDMM 5.625 

p=0.0080) is seen in NDMM. No difference in granzyme or perforin production is seen between 

control and NDMM samples. A modest rise in CD107a is seen in NDMM (control 1.061, NDMM 

2.687 p=0.0369), the standard deviation, however, is broad (SD NDMM 8.562).  

This CITRUS analysis has grouped CD8 lymphocytes primarily according to their functional 

behaviour while traditional Boolean gating divides them by stage of maturation. Traditional 

gating did not identify differences in DNAM1 and NKG2D expression between cytotoxic and 

cytokine producing CD8 populations since it did not classify cells in this way. The pattern of 

granzyme, perforin and CD107a expression observed in cytotoxic cells identified by CITRUS is 

very similar to that identified by traditional gating.  CITRUS appears to be better at identifying 

shifts in cytokine producing populations, this is probably because it is able to simultaneously 

assess the role of multiple cytokines when determining clusters. It was challenging to assess 

multiple cytokine producing populations using traditional gating techniques which are very 

dependent on user defined gating and also suffers from reducing population sizes each time a 

sequential gate is applied.  
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9.4.4 CD4 lymphocytes with distinct memory and effector phenotype can be identified, with 

a shift towards a regulatory phenotype (Figure 9.6 and 9.7) 

The total CD4 population could be further divided into two distinct populations. The first had a 

memory phenotype with strong expression of CCR7 (CD4MEM 127.9, CD4EFF 19.23 p=0.0039) 

while the second had low expression of CCR7 and moderate expression of CD45RA (CD4MEM 

5.256, CD4EFF 9.455 p=0.0078) consistent with an effector phenotype. Interestingly the CD4MEM 

population had stronger expression of a range of cell surface receptors including PDL1 (CD4MEM 

19.61, CD4EFF 6.486 p=0.0039), LAG3 (CD4MEM 4.334, CD4EFF 2.754 p=0.0273), TIM3 (CD4MEM 

105.9, CD4EFF  39.46 p=0.0039), 2B4 (CD4MEM 3.551, CD4EFF 2.09 p0.0039), DNAM1 (CD4MEM 

17.1, CD4EFF 3.995 p0.0039) and PD1 (CD4MEM 63.08, CD4EFF 8.539 p0.0039), while the CD4EFF 

population had stronger expression of HLA-DR (CD4MEM 38.66, CD4EFF 63.28 p0.0195) 

suggesting cellular activation, and OX40 (CD4MEM 55.82, CD4EFF 65.57 p0.0039). 

When considering differences between control and NDMM, the CD4MEM populations had 

reduced intensity of expression of OX40 (control median 55.82, NDMM 40.94 p0.0317) and 

PD1 (control 63.08, NDMM 32.08 p0.0272) in NDMM, while the CD4EFF population had a 

modest decrease in PD1 (control 8.539, NDMM 6.073 p0.0096) expression in NDMM. 

Within the CD4+ cell population an abundance difference was identified by CITRUS in single 

node with a CD4 effector phenotype. When this node was interrogated further, a loss of Ki67 

(control 4.376, NDMM 2.44 p=0.0054) expression was seen in NDMM suggesting that the 

reduced abundance of this population was due to loss of proliferation. Cells in NDMM also had 

increased expression of FoxP3 (control 6.041, NDMM 8.436 p=0.0409) and TGF (control 

6.525, NDMM 12.72 p=0.0027) indicating that this population may have adopted a regulatory 

function in NDMM.  

When compared to traditional gating techniques there does not appear to be an overlap in the 

changing marker expressions of the identified populations. Using Boolean gating identified loss 

of DNAM1 and increased TGF by CD4 memory subsets with increased PDL1 and TGF by CD4 

effector subsets. The T regulatory subsets as identified by both techniques demonstrated 

increased TGF expression. 
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9.4.5 Natural killer cells have a cytotoxic phenotype and cluster closely to cytotoxic CD8 

lymphocytes (Figure 9.8) 

NK cells were clustered by CITRUS close to CD8 cytotoxic cells but could be distinguished from 

the CD8+ population by the absence of CD3 and the presence of CD16 and CD56 expression. 

No difference in population abundance was seen between control and NDMM.  

When the expression of markers by the NK population was compared between control and 

NDMM, a rise in the NK activating receptor DNAM1 (control 168.7 NDMM 408.3 p=0.0494) 

was seen in NDMM. This was accompanied by a rise in granzyme (control 207 NDMM 759.2 

p=0.0065) but not perforin (control 42.37 NDMM 9.694 p=0.1076) or CD107a (control 6.731, 

NDMM 4.029 p=0.4523). 
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The increased expression of granzyme echoes the intensity increase identified by traditional 

gating techniques. Since the CITRUS analysis clustered all NK cells into a single node and down-

sampling reduces the number of events available for further analysis, it is not possible to 

explore the NK cell subsets. This is a limitation of clustering techniques when dealing with a 

large number of different cell types, some of which have large and numerous subpopulations. 

9.4.6 B cells are seen in both control and NDMM and cluster in a distinct locations from 

plasma cells (Figure 9.9) 

CD19 and CD20 B cells clustered in a distinct location, which is spatially separate from cells 

with a malignant plasma phenotype. There was no abundance difference between control and 

NDMM. 
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Surprisingly, B cells from individuals with NDMM had lower expression of PD1 (control 725.3 

NDMM 407.2 p=0.0165). 

When non-myeloma B cells were examined using viSNE and the Boolean gating differences in 

KI67 and IL2 expression were seen. This is not replicated in this CITRUS data. 

9.4.7 Plasma cells from NDMM have a proliferative phenotype with expression of immune 

regulatory ligands and immune suppressive cytokines (Figure 9.10) 

As expected, cells with a malignant plasma cell phenotype, characterised by CD45 negativity, 

CD38 and CD138 positivity and variable CD56 expression, were significantly less abundant in 

control samples compared to NDMM. 

When malignant plasma cells from individuals with NDMM were compared to the healthy B 

cell compartment, plasma cells were found to have higher expression of IL10 (B cell 2.222, 

plasma 6.388 p=0.002) and IL2 (B cell 1.162, plasma 13.52 p=0.0006), PDL1 (B cell 1.933, 

plasma 3.751 p=0.0013), Ki67 (B cell 0.3075 plasma 9.456 p=<0.0001), CCR7 (B cell 87.06, 

plasma 1358 p=<0.0001), FoxP3 (B cell 1.815, plasma 5.965 p=<0.0001) and DNAM1 (B cell 

7.038 plasma 13.58 p=0.0250) while healthy B cells had higher expression of TIM3 (B cell 48.64 

plasma 10.01 p=0.0052) and PD1 (B cell 407.2 plasma 4.699 p=<0.0001). This suggests that the 

malignant plasma cell compartment has an immune regulatory role via PDL1, IL10 and IL2. 

This pattern of proliferation with PDL1, IL2 and IL10 expression is similar to that seen when 

plasma cells are identified by viSNE gating. Interestingly the TGF signal is not seen when the 

CITRUS algorithm was employed but was strongly expressed by viSNE gating. This is likely to be 

because CITRUS identified differences between groups while viSNE and Boolean gating focuses 

on marker expression.  
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9.4.8 Immunological fingerprint in NDMM and links with immune surveillance model 

Drawing these findings together suggests that an immunological fingerprint is present in 

NDMM bone marrow samples which distinguishes them from control bone marrow samples 

(Figure 9.11). 

1. Loss of antigen presenting capacity with gain of activity of tolerogenic DCs 

2. Loss of cytokine producing CD8 lymphocytes with a shift towards a pro-tumour 

cytokine profile 

3. Loss of a CD4 effector subset  with a shift towards a regulatory phenotype 

This pattern of expression response is similar to that seen by traditional Boolean gating, with 

the added information provided by the ability to identify DC populations by CITRUS. It should 

be remembered however that CITRUS downsamples a small number of events per sample, 

meaning that some of the populations described contain very few events. 
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9.4.9 Patterns of population expression and association with survival 

I observed a broad range in abundance of key population is myeloma, with some individuals 

having cell population numbers close to those seen in control samples. This led me to examine 

whether there was a link between population abundance and ability to control the plasma cell 

clone. In order to determine whether the level of population abundance resulted in 

differences in clinical outcome I assessed population size in relation to overall survival duration 

as well as time to first relapse. 

When cell populations with an abundance difference as identified by CITRUS, were considered 

individually, the size of the CD8 cytokine population positively correlated with duration of 

survival (p=0.0026, r=0.6643)(Figure 9.12 A). This correlation was not seen for the CD4 

population or either DC group. 

Next the combined impact of having a larger CD8 cytokine population and a larger DC16 

population, considered to be the “active” anti-tumour populations, was assessed. Individuals 

who had both CD8CYK and DC16 numbers above the NDMM median had better overall survival 

(Log-rank p=0.0273)(Figure 9.12 B) and time to relapse or death (Log-rank p=0.0366)(Figure 

9.12 C) in the first 36 month following diagnosis than those who had either one or neither 

population numbers above the median. Interestingly 75% (4/6) of those with DC16 and CD8 CYK 

numbers above the median also had DCTOL and CD4 numbers above the median, suggesting 

that the size of the residual non myeloma immune compartment may be driving this change 

rather than the cell types which make up the compartment. 
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9.5 Summary of results 

1. Dendritic cell populations are lost in NDMM and a shift towards tolerogenic activity is 

seen 

2. CD8 lymphocytes have distinct cytotoxic and cytokine producing populations with 

shifts towards a pro-tumour cytokine environment 

3. Differential expression of DNAM1 (cytotoxic) and NKG2D (cytokine) is seen on CD8 

subsets 

4. CD4 lymphocytes with distinct memory and effector phenotype can be identified with 

a shift towards a regulatory phenotype  

5. Natural killer cells have a cytotoxic phenotype and cluster closely to cytotoxic CD8 

lymphocytes 

6. Plasma cells from NDMM have a proliferative phenotype with expression of immune 

regulatory ligands and immune suppressive cytokines 

7. Having a larger active anti-tumour immune environment is associated with improved 

survival and reduced relapse rate. 

9.6 Discussion 

Using the CITRUS algorithm it is possible to identify a cellular immune signature of NDMM 

which is characterised by loss of antigen presenting capacity, numerical and functional 

disturbances in CD8 and CD4 effector populations and a shift towards tolerogenic DC activity. 

These multi-cellular changes are expected to have an impact on priming, recruitment and 

activation of tumour specific lymphocytes and consequently limit direct cellular cytotoxicity 

toward the malignant clone. This is in keeping with the immunesurveillance model of 

malignancy and helps to give a global overview of the impact that the presence of malignant 

plasma cells has on the immune system. It is important to know that these changes are already 

established at the time point of myeloma diagnosis. This is consistent with previously 

described metabolomic and genetic profiling of myeloma which also report that these changes 

are present in both myeloma and MGUS. 

The fact that individuals with higher numbers of active anti-tumour immune populations have 

superior overall and relapse free survival is an important indicator that loss of 

immunesurveillance has a key role to play in the progression of myeloma and may also 

influence response to therapy 

There are important implications for therapy arising from these findings. Firstly, it may be 

possible to selectively target and correct these defective immunesurveillance mechanisms at 
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this early disease state in order to restore immunological control or eradication of the 

malignant clone and prevent end organ damage. Secondly, established therapies may be 

effectively suppressing malignant plasma cell growth but failing to restore immune 

surveillance thereby creating an environment which is primed for relapse. This suggests a role 

for combined modality therapy targeting both the malignant cell and repairing immunological 

defects. A number of agents already in use in the treatment of myeloma act via their effects on 

the immune microenvironment in addition to direct cytotoxic activity. This includes 

daratumumab and the IMiDs. The addition of checkpoint inhibitors to these existing treatment 

strategies is an attractive way to attempt to further influence the immune microenvironment 

in order to control myeloma progression. The role of combined therapies will be discussed 

further in chapter ten. 

9.7 Relevance of work 

1. Establishes the presence of a distinct immunological fingerprint in NDMM 

2. Identifies immunological features predictive of improved survival  
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10. Targeting immune checkpoint regulators in relapsed refractory myeloma 

10.1 Acknowledgements  

The work described in this section was performed as a collaboration between our group at 

Barts Cancer Institute and Celgene Corporation. Celgene provided access to cryopreserved 

clinical samples and provided grant support funding for the work performed at BCI. 

I designed the mass cytometry panel, performed the optimisation work and performed mass 

cytometry on the clinical samples. The CITRUS algorithm was run by Mary Young of Celgene. I 

then performed data interpretation and further data analysis. 

10.2 Durvalumab and daratumumab to target the immunological microenvironment in 

RRMM 

As has been established in previous chapters, there is defect in T cell and NK cell function in 

newly diagnosed multiple myeloma with abnormalities in expression of ligands and receptors 

in the PD1 axis being particularly marked. This has profound implications for the management 

of the disease, both in optimising plasma cell clearance and restoring immune surveillance 

mechanisms.  

PD1 and its ligands are known to be expressed across multiple cell populations in myeloma 

(see chapters 1 and 4-9) and blockade of the PD1 axis has shown clinical efficacy in other 

tumour types, making this a viable target in myeloma. Single agent activity in myeloma 

however has been disappointing, whereas combination strategies incorporating IMiDs have 

demonstrated anti-tumour activity 212. This provided the rationale for further combination 

studies incorporating multiple monoclonal antibodies to target protein receptors, such as PDL1 

and CD38. 

Durvalumab (Astrazeneca) is a human IgG1k monoclonal antibody which recognises PDL1, a 

ligand for PD1. It has been modified to reduce C1q, CD16, CD32A and CD64 binding 213. This 

limits antibody dependent and complement dependent cytotoxicity and therefore maintains 

PDL1 expression on the cell membrane, permitting blockade of its interaction with PD1. PDL1 

inhibitors have been FDA approved for use in advanced urothelial cancer and non-small cell 

lung cancer. To date there is minimal published data on the use of PDL1 inhibitors in myeloma, 

however clinical trials in a range of haematological malignancies are on-going.  

Daratumumab (Janssen) is a human IgG1k monoclonal antibody which recognises CD38. CD38 

is highly expressed on malignant plasma cell but is also expressed on a range of other 

haematopoetic cell types including erythroid lineages and NK cells 214. Daratumumab is 

approved by the European Medicine Agency in the following settings: 
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1. In combination with bortezomib, melphalan and prednisone for the treatment of adult 

patients with newly diagnosed multiple myeloma who are ineligible for autologous 

stem cell transplant 

2. As monotherapy for the treatment of adult patients with relapsed and refractory 

multiple myeloma, whose prior therapy included a proteasome inhibitor and an 

immunomodulatory agent and who have demonstrated disease progression on the 

last therapy 

3. In combination with lenalidomide and dexamethasone, or bortezomib and 

dexamethasone, for the treatment of adult patients with multiple myeloma who have 

received at least one prior therapy. 

Daratumumab has a diverse mechanism of action including ADCC, complement dependent 

cytotoxicity, and antibody dependant cellular phagocytosis 215(Figure 10.1). This induces rapid 

clearance of CD38 positive cells.  

 

 

Studying the bone marrow of patients who have received the drugs of interest in-vivo, rather 

than using in-vitro modelling systems, is a more clinically relevant approach to understanding 

the global immunological activities of these therapeutic agents. In-vitro models may miss 



173 
 

interactions between different immune cells which may influence patient outcome. For 

example blocking the PD1 axis may result in altered dendritic cells function which, in turn, 

impacts upon lymphocyte priming and activation. An in-vitro model studying the effect of the 

drugs on lymphocytes alone would not detect this response.  

In-vivo drug assessment also allows us to attempt to determine which patient or disease 

factors are predictive of response to a certain drug combination as well as whether certain 

disease features exert a dominant or inhibitory effect over the therapeutic activities of the 

drugs. 

10.3 Aim 

To characterise changes in immune subsets following in-vivo treatment with anti-CD38 and 

anti-PDL1 monoclonal antibodies in patients with relapsed refractory myeloma. 

10.4 Specific methodology 

10.4.1 Clinical samples and study design 

Bone marrow samples were obtained from patients enrolled on the Celgene MEDI4736-MM-

003 clinical study (NCT02807454). This was an open label, Phase 2 multi centre, international 

clinical trial. Bone marrow samples were collected prior to starting treatment and at Cycle 2 

Day 15. Daratumumab was administered weekly according to established dosing regimes. 

Durvalumab was administered once per cycle as established by previous clinical trials. (Figure 

10.2) At the time of collection of the second bone marrow samples, patients had received two 

doses of Durvalumab and six doses of Daratumumab. This study was placed on hold following 

FDA concerns regarding the safety of PD1 blockade in the setting of myeloma after an excess 

of deaths was reported in a trial examining Pembrolizumab. This early trial closure limited the 

number of clinical samples available for analysis. The work was covered under existing ethics 

approval, as previously described. 
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10.4.2 Entry and exclusion criteria 

Inclusion criteria for the trial included multiply relapsed or double refractory myeloma with 

measurable burden of disease. Crucially the exclusion criteria included prior exposure to an 

immune checkpoint inhibitor such as anti-CTLA4 or anti-PD1 mAb, cell based therapies such as 

CAR-Ts, cancer vaccination and allogenic stem cell transplantation. Furthermore individuals 

with a history of autoimmune disease or immunodeficiency were also excluded. For the 

purposes of this work the exclusion of patients whose immune response may be abnormal or 
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therapeutically modified means that this cohort of patients most closely represents the 

“normal” activity of the immune system in relapsed refractory myeloma.  

It should be noted, however, that both PIs and IMiDs are recognised to exert effects on T cells. 

As these are now both established treatments for myeloma it is neither possible nor desirable 

to examine bone marrow samples from relapsed disease which have not been exposed to 

these agents. 

Inclusion criteria Exclusion criteria 

3 prior anti myeloma regimen including PI and 

IMiD or double refractory to PI and IMiD. 

Prior exposure to anti-CTLA1, anti-PD1, anti-

PDL1 mAbs, cell based therapies or cancer 

vaccines 

Measurable disease Previous Daratumumab or anti-CD38 

therapies 

Achieved MR or better to at least 1 prior 

treatment 

Plasmapheresis, major surgery, radiation 

treatment or systemic anti-myeloma drugs 

within last 14 days. 

Evidence of PD on or within 60 days of most 

recent treatment 

Prior organ or allogeneic stem cell 

transplantation 

Previously received alkylating agent Prior history of autoimmune disease or 

immunodeficiency. 

ECOG 2 or less  

Prior treatment toxicities resolved or Grade 1 

or less 

 

Table 10.1: Entry and exclusion criteria for MEDI4736-MM-003 

Paired bone marrow samples were obtained from 9 patients, mononuclear cells were isolated 

using gradient density centrifugation with lymphoprep and samples were re-suspended in 

freezing media (FBS with 10% DMSO) for cryopreservation in liquid nitrogen for storage and 

transport.  

10.4.3 Mass cytometry panel 

The previously described mass cytometry panel (chapter 3) was modified to incorporate key 

markers relating to the PD1 axis and plasma cell ligands with potential therapeutic roles. The 

new targets incorporated into this panel were PDL2 and B cell maturation antigen (BCMA) 

which replaced HLA-DR and CD28.  
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Antigen Metal Clone Source 

CD45 89Y HI30 Fluidigm 

IL10 141Pr JES3-9D7 Biolegend – BCI conjugation 

CD19 142Nd HIB19 Fluidigm 

CD274 PDL1 143Nd 29E.2A3 Biolegend – BCI conjugation 

CD4 145Nd RPA-T4 Fluidigm 

CD8a 146Nd RPA-T8 Fluidigm 

CD20 147Sm 2H7 Fluidigm 

IL2 148Nd Mq1-17H12 Biolegend – BCI conjugation 

CD25 149Sm 2A3 Fluidigm 

CD223 LAG3 150Nd 874501 Fluidigm 

CD107a 151Eu H4A3 Fluidigm 

TNFa 152Sm Mab11 Fluidigm 

Ki67 153Eu Ki-67 Biolegend – BCI conjugation 

CD3 154Sm UCHT1 Fluidigm 

CD56 155Gd B159 Fluidigm 

CD366 TIM3 156Gd F38-2E2 Biolegend – BCI conjugation 

CD134 OX40 158Gd ACT35 Fluidigm 

CD197 159Tb G043H7 Fluidigm 

PD1 160Gd EH12.2H7  Biolegend – BCI conjugation 

CD38 161Dy HIT2 Biolegend – BCI conjugation 

FoxP3 162Dy PCH101 Fluidigm 

TGFB 163Dy TW4-6H10 Fluidigm 

CD244 2B4 164Dy C1.7 Biolegend – BCI conjugation 

IFNy 165Ho B27 Fluidigm 

CD314 NKG2D 166Er ON72 Fluidigm 

CD27 167Er L128 Fluidigm 

CD138 168Er DL101 Fluidigm 

CD45Ra 169Tm HI100 Fluidigm 

CD152 CTLA4  170Er 14D3 Fluidigm 

CD226 DNAM1 171Yb DX11 Fluidigm 

CD279 PDL2* 172Yb 24F.10C12 Fluidigm 

Granzyme B 173Yb GB11 Fluidigm 

BCMA* 174Yb 19F2 Fluidigm – Custom conjugation 
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Perforin 175Lu B-D48 Fluidigm 

CD127 176Yb A019D5 Fluidigm 

CD16 209Bi 3G8 Fluidigm 

Table 10.2 Mass cytometry panel. * indicates antibodies which differ from the original panel.  

PDL2 and BCMA replace CD28 and HLA-DR. 

PDL2 is a ligand for PD1 with structural similarity to PDL1. Its tissue expression is more 

restricted than that of PDL1, with expression predominantly found on DCs, macrophages and 

bone marrow derived mast cells 216. As with PDL1, engagement of PDL2 with PD1 suppresses T 

cell function 216. 

BCMA is a member of the TNF receptor superfamily and is expressed on mature B cells 217. 

Induction of BCMA signalling via its ligands APRIL and BAFF promote the proliferation and 

survival of mature plasma cells 217. These pro-survival signals are also thought to be significant 

in promoting malignant plasma cell survival in myeloma 217. The fact that BCMA expression is 

primarily restricted to mature plasma cells makes BCMA a possible therapeutic target in the 

management of myeloma 218. 

10.4.4 Optimising and troubleshooting mass cytometry panel 

Pilot samples were used to ensure that the modified mass cytometry panel was functioning 

appropriately. This work appeared to identify unexpected expression of BCMA on multiple cell 

types which do not normally express BCMA. Metal minus one (MMO) and flow cytometry 

analysis found this to be due to spill over from granzyme B which sits at the +1 position of 

molecular weight. While signal spillover is rare in mass cytometry when it does occur it is 

usually due to oxidation of metals with a molecular weight of 1 or 16 less than the channel 

detecting the spillover (Figure 10.3). As plasma cells are not thought to express granzyme B it is 

possible to determine BCMA expression on plasma cells but not across the global data set. 

10.4.5 Sample preparation 

An initial pilot study was performed using six screening bone marrow samples from individuals 

who did not go on to receive treatment. This identified that cellular viability was poor with a 

large proportion of cells dying during the thaw process and during overnight resting. To 

combat this, the previously described thaw procedure was modified. Samples were rapidly 

thawed in a 37oC waterbath before 1ml of warmed FBS was added dropwise. Resuspended 

samples were then transferred to 10mls of warmed culture media containing  
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10% FBS. Cells were rested for 4 hours in full culture media containing protein transport 

inhibitor cocktail in a humidified 37oC incubator with 5% CO2. 

Cell staining was performed as previously described (Chapter 3). For some samples a second 

vial was available which was processed and stained in the same way. 

10.4.6 Data analysis strategies 

Where two vials were available the data was pooled for analysis. Data clean up and gating was 

performed in Cytobank with mean expression and percent in gate data exported to Microsoft 

Excel and Graphpad Prism (version 5 and 7.02) for further analysis. 

Live single cells were identified using Boolean gating. ViSNE was then used to define key cell 

populations (Figure 10.4). 

A CITRUS analysis was performed on the live cell gate of pre- and on-treatment samples. The 

selected endpoint was treatment status (pre- versus on-treatment). Algorithm settings were 

applied as described in chapter 3, in brief, clustering was based on marker abundance, equal 

sampling was used from each individual (Figure 10.5).  The algorithm was run in triplicate. 

Statistical analysis was performed using the Wilcoxon test for paired, non-parametric samples. 

Assessment of CD38 positive cell clearance is hampered by the fact that the CD38 epitope 

recognised by Daratumumab overlaps with the epitope recognised by most / all commercially 

available anti-CD38 monoclonal antibodies. Daratumumab also has a prolonged binding time. 

The net result is that following treatment with Daratumumab the CD38 epitope may be 

masked and unavailable for binding by metal-conjugated CD38 antibodies. Currently there are 

not commercially available antibodies to CD38 which recognise a distinct epitope.   
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10.5 Results 

10.5.1 CD8 and CD4 lymphocyte numbers rise following treatment with Daratumumab and 

Durvalumab 

Events counts as a proportion of live cells events were examined before treatment and on 

cycle 2 day 15 (C2D15). When assessed by viSNE gating a relative increase in CD8 (median pre 

8%, C2D15 15%, WC p=0.0073) and CD4 (median pre 6.3%, C2D15 11.6% WC p=0.0085) 

populations was seen while NK (median pre 2.66%, C2D15 0.9% WC p=0.0009) and B cell 

(median pre 4.82%, C2D15 2.93% WC p=0.0273) populations decreased (Figure 10.6). 

 

CITRUS analysis confirmed the fall in NK cells and B cells and also demonstrated a fall in 

tumour burden and in DC cells, all at an FDR of 0.01. A rise in CD8 populations was seen at an 

FDR of 0.05 but the rise in CD4 populations could not be demonstrated (Figure 10.7). 
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The fall in NK cells and B cells is expected, as both these populations express high levels of 

CD38 86 and are therefore depleted by Daratumumab. The apparent rise in CD8 and CD4 may 

occur due to depletion of these other cell subsets or may be a true rise due to activation and 

proliferation following inhibition of the PD1 pathway. 

10.5.2 CITRUS analysis 

10.5.2.1 Population phenotype as identified by CITRUS 

Further exploration of the CITRUS analysis demonstrated two distinct NK cell populations, one 

which expressed IL2 (median MSI naive 4.383, active 5.813 WC p=0.0039), IFN (median MSI 

naive 4.616, active 6.352 WC p=0.0039), TNF (median MSI naive 5.825, active 86.82 WC 

p=0.0039) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) (median MSI 

naive 1.425, active 3.001 WC p=0.0039) and can be considered to have an active phenotype, 

the other did not have active features and is considered naive. The active phenotype also had 

increased expression of granzyme B (median MSI naive 26.46, active 47.84 WC p=0.0039) and 

perforin (median MSI naive 11.05, active 11.4 p=0.0078)(Figure 10.8).  
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Within the dendritic cell population distinct proliferative and non proliferative populations 

were identified. The proliferative population strongly expressed Ki67 (median MSI proliferative 

207.2, non-proliferative 30.4 WC p=0.0156) and co-expressed CCR7 (a marker of tissue DCs) 

(median MSI proliferative 10.27, non-proliferative 2.161 WC p=0.0078), PDL2 (median MSI 

proliferative 9.393, non-proliferative 3.423 WC p=0.0078) and, importantly, CD38 (median MSI 

proliferative 377.9, non-proliferative 50.43 WC p=0.0078) (Figure 10.9).   

The B cell node was proliferative (median Ki67 141.8). It expressed very low levels of PDL1 

(median MSI 0.9018) and PDL2 (median 1.153)(Figure 10.10).  

CD8 populations were the dominant population identified by CITRUS. CD8 expression of Ki67 

was lower than for other cell types (median MSI 4.4-24.5) suggesting lack of proliferation. 

Expression of TGF was also seen (median MSI 50.4-76.19). There was varied expression of 

NKG2D (median MSI 1.286-12.12), 2B4 (median MSI 5.78-46.71), CD107a (median MSI  8.707-

12.51), PDL2 (median MSI 15.1-25.89), granzyme (median MSI 779-1521) and perforin (median 

MSI 218-632) (Figure 10.11).  

CD4 lymphocytes, like CD8 lymphocytes, were poorly proliferative (Ki67 median MSI 5.797). 

PD1 expression was variable (median MSI 1.274-23.33) and cells expressed TGF (median MSI 

50.27). FoxP3 median MSI expression was 20.56 (Figure 10.12). 

Plasma cells were proliferative (Ki67 median MSI 273.4) and had varied expression of IL10 

(median MSI 3.908-26.78), LAG3 (median MSI 2.371-40.27) and BCMA (median MSI 3.142-

13.28)(Figure 10.13).  
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10.5.2.2 Functional changes following treatment as identified by CITRUS 

Exported marker information from CITRUS was used to assess changes in marker expression at 

C2D15 in the key populations identified.  

When assessed at C2D15, NK cell numbers fall in both the naive and active populations. Those 

NK cells that remain have an activated phenotype with elevated expression of TNF (pre MSI 

86.82, post 138.7 WC p0.0039) and IFN (Pre MSI 6.352, post 11 p0.0195) but interestingly not 

a rise in markers of cytotoxicity (Figure 10.14).  

Within the DCs non-proliferative population, an increase in CD107a (median MSI pre 26.37, 

post 77.36 p=0.0234) expression is seen, while the proliferative node has an increase in TGF 

(median MSI pre 71.19, post 109.3 p=0.0195) and granzyme (median MSI pre 31.52, post 74.8 

p=0.0195) expression (Figure 10.15).  

There is a marked decrease in Ki67 (median MSI pre 141.8, post 15.33 p0.0039) in B cell at 

C2D15, indicating a fall in proliferation.  IL2 (median MSI pre 2.42, post 4.581 p0.0078) and 

TGF  (median MSI pre 44.78, post 67.57 p0.0039) levels rise (Figure 10.16).  

The CD8 population shows a rise in both CD107a (median MSI pre 8.707, post 16.37 p0.0039) 

and TGF (median MSI pre 76.19, post 96.33 p0.0195) (Figure 10.17).  

CD4 populations show an increase in TGF (median MSI pre 50.27, post 56.16 p=0.0391) on 

C2D15 (Figure 10.18).  

Plasma cells show a C2D15 increase in CD223 - lymphocyte-activation gene 3 (LAG3) (median 

MSI pre 5.864, post 17.04 p=0.0078) and TGF (median MSI pre 56.12, post 71.49 p=0.0078) 

while BCMA (pre 6.017, post 3.59 p=0.0391) expression falls (Figure 10.19).  
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10.5.3 Analysis from viSNE based gating 

When traditional data analysis was applied to viSNE gated populations, changes in functional  

activity was seen across multiple cell populations on C2D15.  

10.5.3.1 CD8 populations have an activation signature consistent with a cytotoxic response 

following treatment with Daratumumab and Durvalumab  

Within CD8 populations there was a rise in granzyme (median pre 52.45%, median post 68.43% 

WC p=0.0195) and perforin (median pre 24.84%, median post 43.68% WC p=0.0078) 

expression which was accompanied by a fall in PD1 expression (median pre 19.4%, post 15.49  

% WC p=0.0078). Surprisingly, expression of NKG2D, which is expressed by activated CD8 cells, 

also fell (median pre 68.8%, post 51.27% WC p=0.0273).  

The proportion of CD8+CD107a+granzyme+perforin+ cells also rose on CD2D15 (median pre 

1.872%, median post 4.403% WC p=0.0273) due to a decrease in the triple negative cell 

population (median pre 31.7%, post 24.45%, WC p=0.0273). 

This pattern of marker expression is consistent with CD8 T cell activation. Increases in 

granzyme and perforin expression have previously been reported following treatment with 

Daratumumab 144, however a fall in PD1 expression has not been reported in that setting. It is 

possible of course that the observed fall in PD1 expression here may be due to Durvalumab.  

Within the CD8 subsets, this activation signature was most marked in the EMRA and EM 

population, although similar changes were also seen in the naïve subset. Additionally naïve 

cells had an increased expression of CD244 (2B4) (median pre 10.14%, post 29.79 %, WC 

p=0.0273) while the CM subset became more proliferative on C2D15 (Ki67 median pre 0%, 

post 11.1% WC p=0.0156)(Figure 10.20). 
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10.5.3.2 T regulatory subsets are less proliferative following treatment with durvalumab and 

daratumumab 

In keeping with changes seen in the CD8 population, the CD4 population also shows a decrease 

in PD1 (median pre 27.72%, post 21.56% WC p=0.0273) expression which is accompanied by a 

rise in granzyme (median pre 8.875%, post 17.79% WC p=0.0391). Unsurprisingly, the 

expression level of granzyme is lower on CD4 population than on CD8. Unlike the CD8 

population, however, CD4 cells also show a fall in Ki67 (median pre 9.4%, post 6.55% WC 

p=0.0078) expression suggesting loss of proliferation. Importantly, this reduction in 

proliferation (median pre 10.29%, post 2.985% WC p=0.0078) and PD1 expression (median pre 

36.36%, post 22.64%, WC p=0.0078) is also seen within the T regulatory subset (Figure 10.21). 

10.5.3.3 NK cells show a loss of cytotoxic activity following treatment with daratumumab 

and durvalumab 

Unlike their antigen specific counterparts, NK cells have a fall, not a rise in expression of 

granzyme (median pre 69.23%, post 48.48%, WC p=0.0078) and perforin (median pre 85.14%, 

post 73.91% WC p=0.0078) on C2D15. This may be related to the profound depletion of this 

subset. The activated pattern of cytokine expression seen by CITRUS analysis could not be 

identified by traditional data analysis techniques (Figure 10.22). 

10.5.3.4 B cell populations have a profound reduction in Ki67 expression which is 

accompanied by a rise in pro-tumour cytokines 

B cell population Ki67 expression (median 70.43%, post 5.882% WC p=0.0117) drops 

significantly following treatment with daratumumab and durvalumab. This is accompanied by 

a rise in IL2 (median pre 2.273%, post 7.5% WC p=0.0078) and TGFb (median pre 3.235 %, post 

15.96% p=0.0273) expression which have previously been reported to support B cell and 

plasma cell growth (Figure 10.23). 
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10.6 Summary of results 

1. Following treatment with daratumumab and durvalumab, CD4 and CD8 lymphocyte 

numbers rise while NK cell and B cell numbers fall. 

2. The residual NK cell population is cytokine competent when assessed by CITRUS but 

shows a loss of cytotoxicity when assessed by viSNE. 

3. CD8 populations show an increase in cytotoxic activity with a corresponding fall in PD1 

expression 

4. CD4 regulatory populations are less proliferative and express less PD1 following 

treatment 

5. B cell subsets have a loss of proliferation accompanied by a rise in pro-tumour 

cytokine production 

10.7 Discussion 

This chapter identifies the early immunological changes seen in heavily pre-treated relapsed 

refractory myeloma patients receiving daratumumab and durvalumab immunotherapy.  

A direct comparison between the NDMM and RRMM samples in this work is not possible due 

to differences in methodology and data analysis techniques. It is clear, however, that PD1 

expression persists across multiple cell subsets from the time of myeloma diagnosis to the 

relapsed refractory setting. 

CD8 lymphocytes and NK cells both demonstrate an improvement in functional competency at 

this early assessment time point. Interestingly CD8 populations show an increase in cytotoxic 

activity while NK cell show improved cytokine production. This suggests that the NK cell 

response may be from the CD56bright compartment, which is recognised to be the predominant 

cytokine producing NK cell subset, however there were insufficient cell numbers in this 

analysis to confirm that this is the case.  

Many of the changes in cell number and function described here have previously been 

reported in the context of daratumumab therapy 86,144,214. Importantly the fall in CD8 cells PD1 

expression accompanying the increase in cytotoxic activity has not been previously described 

following daratumumab monotherapy and therefore suggests that this effect is due to the 

addition of durvalumab. 

Since this data has been obtained from an early treatment timepoint it is not yet possible to 

determine whether these early immunological changes, with the gain of cytotoxic and cytokine 

production which has the potential to target malignant plasma cells, will translate into clinical 

efficacy. 
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10.8 Relevance of work 

1. Identifies that dual treatment with daratumumab and durvalumab is associated with 

an early increase in NK cell and CD8 lymphocyte functional activity 

2. Demonstrates a fall in CD8 PD1 expression which has not previously been reported 

with daratumumab monotherapy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



206 
 

11. General discussion and conclusions 

In the preceding chapters I have described the immunological changes across multiple immune 

subsets seen in newly diagnosed (NDMM) and relapsed refractory (RRMM) multiple myeloma. 

I have also assessed the impact of combined blockade of CD38 and PDL1 on these defects. I 

performed this analysis using mass cytometry to maximise the information available. 

In the setting of NDMM these immune microenvironment changes include defects in antigen 

presenting populations, effector and helper lymphocyte populations and NK cells. Importantly 

these defects are present before treatment has been initiated, have prognostic significance 

and may be responsible for disease progression from MGUS or asymptomatic myeloma to 

symptomatic disease. 

A recurring theme throughout the chapters of this thesis has been the role of the PD1 axis, 

with both the receptor PD1 and its ligand PDL1 being upregulated across multiple immune 

subsets. PD1 expression is known to rise with cellular activation, and is thought to act as a 

physiological “break” to prevent an uncontrolled immune response leading to unwanted tissue 

damage or autoimmune disease. This can make the interpretation of PD1 expression data 

difficult as a healthy, active response to the presence of a malignant cell would be expected to 

lead to increased PD1 expression. This means that PD1 cannot be used as the sole marker to 

define cellular exhaustion. This work adds to our understanding of physiological versus 

pathological PD1 in humans, firstly by demonstrating a functional distinction between PD1int 

and PD1high expressing CD8 populations, with loss of cytotoxic activity in the PD1high subset, and 

secondly by identifying functional differences between PD1high CD8 subsets in control and 

NDMM, with the subset in NDMM having features of exhaustion, indicating that the 

microenvironmental context is key in determining the behaviour of PD1high expressing CD8 

lymphocytes.  

The association between expression of PD1 axis receptors and ligands and aberrant functional 

behaviour in NDMM was also seen in other immune populations. Within the NK cell population 

increased PD1 expression was observed on the CD56dim subset in NDMM which also 

demonstrated numerical and functional abnormalities in cytokine production but not 

cytotoxicity. CD4 lymphocyte populations had increased expression of PDL1 which was not 

isolated to T regulatory cells and was associated with increased expression of TGFexpression 

and reduced proliferation. Plasma cell populations expressed PDL1 and expression levels 

correlate with TGF production. Finally, dendritic cell populations expressed PDL1 and in 

NDMM were shifted towards a tolerance inducing phenotype. 
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It was also clear that not all PD1 expressing populations are the same, with populations 

expressing both PD1 and another checkpoint inhibitor such as LAG3 or TIM3 having distinct 

patterns of functional behaviour depending on which checkpoint inhibitors were being co-

expressed. 

Importantly, having features of an active immune response appears to be an important 

prognostic marker. Within the NK cell subset, NK cell activation correlated with longer duration 

of survival. Active CD8 cytokine producing population size as identified by CITRUS also 

correlated with survival, while individuals with both active dendritic cells and CD8 populations 

also had superior outcomes. 

I have also demonstrated that the CD8 subset is able to upregulate markers of cytotoxicity in 

response to cellular stimulation, suggesting that there is the potential to target these immune 

defects and restore immunological function at this early disease timepoint. 

Since defective immunological response in NDMM correlates with poorer outcome and there 

is the potential to restore immune function to these cell subsets, this data provides a strong 

argument for considering multi-lineage immunological damage to represent a form of 

symptomatic myeloma worthy of treatment. The difficulty remains determining how to 

identify, in the clinical setting, which patients had sufficient immunological damage to warrant 

treatment as well as which treatment strategies will be most effective. It may be that drugs 

targeting the PD1 axis in combination with an immune activating agent such as an IMiD will be 

an effective strategy at this early disease time point. The issue of identifying which patients 

will benefit remains unresolved. While a pattern of varied immunological damage affecting 

multiple cell types can be identified by mass cytometry, this is not a technique which is 

currently applicable to a clinical setting. Ideally a single marker which can be identified in blood 

or bone marrow or a simple immunological prognostic score would need to be developed.  

Possible candidates indentified by this data include PD1 expression, TGF expression and 

markers of NK cell activation. The difficulty, however, remains that myeloma is a diverse 

disease with different biological and clinical phenotypes and a single strategy to identify and 

treat those with immunologically symptomatic disease is unlikely to exist. These unanswered 

questions will be best addressed in the context of a large clinical trial. 

Importantly, in the relapsed refractory setting, I have been able to demonstrate that dual 

treatment with monoclonal antibodies which target the immunological microenvironment in 

addition to the malignant cell clone are able to generate early functional cytotoxicity and 

cytokine production signals. While it is not yet known whether this will translate into clinical 

response it does support the concept that chemotherapy free treatments may be able to 
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activate immune responses in myeloma and avoid the need for more toxic chemotherapy 

regimens. 

While the field of myeloma therapy has improved considerably in the last decade there still 

remains a significant treatment and disease morbidity and mortality burden. Since 

immunological damage is established but demonstrates reversibility at the time of disease 

diagnosis I would suggest that strategies aimed at restoring immune function at this early 

disease timepoint should be explored. Simultaneously diminishing tumour burden and 

restoring immunological control may be one route to curing myeloma. 

11.1 Future work 

1. Multiparameter phenotyping by mass cytometry of paired blood and bone marrow 

samples from a large sample of patients with NDMM to determine whether patients 

with evidence of bone marrow immune dysfunction also have a peripheral blood 

marker of immune dysfunction which could be used to identify those patients 

requiring treatment.  

2.  Sequential multiparameter analysis by mass cytometry of samples from patients with 

MGUS to identify the immunological changes present as MGUS evolves to myeloma. 

3. In-vitro cytotoxicity assays to study the effects of combined immune checkpoint 

blockade on functional activity of NK cells and CD8 lymphocytes in NDMM in order to 

identify potentially beneficial therapeutic combinations  
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