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Abstract

We are living a pivotal moment for neutrino physics. A new generation of experiments is
about to begin and will extend our understanding of neutrinos. Very large scale experiments,
like Hyper-Kamiokande, will collect unprecedented statistics and will constrain oscillation pa-
rameters to high precision: the CP violation phase, the octant of θ23, and the mass hierarchy
are likely to be determined. Many are the experimental difficulties behind a successful megaton
water Cherenkov detector, but improvements in photodetection technologies luckily allow such
an ambitious project. One of the most important challenges is to keep systematical uncertain-
ties under control, so as they do not dominate over statistical errors. Assessing the impact of
the systematics on the overall sensitivity of the experiment is a fundamental requirement to the
final success of Hyper-Kamiokande.

Thanks to powerful accelerator facilities, future long baseline experiments, such as DUNE,
will also explore the intensity frontier of neutrino physics and study rare phenomena. Numerous
extension to the Standard Model (SM) and alternative theories have been introduced to explain
neutrino masses and mixings. These new scenarios often predict new physics, the signature of
which is accessible to next-generation experiments. An interesting example comes from low-
scale see-saw models, which consider GeV-scale neutral leptons coupled to SM particles with
suppressed mixing angles. The near detector system of DUNE is an ideal place for searches of
these particles, thanks to high exposure that compensate small event rates.

Current neutrino experiments have also joined this new venture; Super-Kamiokande has been
extensively refurbished in view of a new phase, starting in early 2020, in which the detector will
turn into a supernova observatory. This is achieved by doping the water of Super-Kamiokande
with gadolinium, in order to increase the efficiency of neutron tagging up to 90%. The use of
gadolinium is a novel technique which will be adopted by many existing and planned experi-
ments. The benefits of improved neutron tagging are not limited just to supernova neutrinos,
but to a plethora of other studies, such as reactor and atmospheric neutrinos or proton decay.

In this thesis, all of the topics above are addressed. After a review of SM neutrino physics
in Chapter 1, the gadolinium-loaded water Cherenkov technique is discussed in Chapter 2 with
particular focus on Super-Kamiokande. A new technique to monitor gadolinium concentration
in water using UV spectroscopy and an improved method for neutron calibration using a cali-
fornium source are presented. Chapter 3 deals with CP violation in neutrino oscillation and the
potential of Hyper-Kamiokande to constraining oscillation parameters. The methodology used
to asses the experimental sensitivity is described in detail. First estimations are shown with
the full systematic model and some of its variations are also taken into account. In Chapter 4
a possible Standard Model extension to explain neutrino masses is considered, and the phe-
nomenology of such models is extensively studied in the context of a beam dump experiment.
The prospect of the DUNE’s near detector to searches of heavy neutral lepton decays is then
evaluated in Chapter 5. It is found that the DUNE ND is capable of extending current limits on
these searches, reaching regions of the parameter space extremely interesting from a theoretical
point of view.
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Chapter 1

Neutrinos in the Standard Model

The Standard Model (SM) is a renormalisable Yang-Mills theory [2] that describes the
strong, electromagnetic, and weak interactions of elementary particles in the framework of
quantum field theory [3–5]. It is based on the local gauge symmetry group

SU(3)C ⊗ SU(2)L ⊗U(1)Y (1.1)

where C, L and Y denote respectively colour, left-handed chirality and weak hyper-charge. The
gauge group uniquely determines the interactions and the number of vector gauge bosons that
correspond to the generators of the group. The electroweak subgroup SU(2)L⊗U(1)Y undergoes
a spontaneous symmetry breaking process out of which three of the four vector bosons acquire
mass (W± and Z bosons) and the last one, the photon, remains massless. This process requires
at least one scalar boson with a nonzero vacuum expectation value [6, 7]. The colour symmetry
does not break and does not mix with the electroweak sector. The generators of its algebra
correspond to eight massless gluons. The gauge and scalar bosons are coupled to fermion fields,
which are irreducible representations of the Poincaré group. The known elementary fermions
are divided in two categories: quarks and leptons. They are distinguished by the fact that
quarks participate in all the interactions whereas leptons participate only in the electroweak
interactions. Since the number and properties of the gauge bosons are determined by the SM
group, the only independent parameters left are the coupling constants of the interactions,
which can be constrained from experiments. The number and the masses of scalar bosons and
fermions are also to be determined experimentally, keeping in mind that they must transform
according to the representations of the symmetry group and the fermion representations must
lead to the cancellation of quantum anomalies.

Despite being the most successful theory of particle physics to date, the SM is actually
limited in its description of reality in that some evidence is not explained nor addressed. The
most outstanding breakthrough is the discovery of neutrino oscillation which was awarded the
Nobel Prize in Physics in 2015 and has proven that the neutrinos are not all massless as imposed
by the SM. Mass terms for the neutrinos can be actually included in the SM, although with
the implication of theoretical and naturalness problems. Likewise, the SM is unable to provide
an explanation of the observed asymmetry between matter and antimatter. It was noted by
Sakharov that a solution to this puzzle would require some form of C and CP violation in
the early Universe, along with Baryon number violation and out-of-equilibrium interactions [8].
There is also plenty of evidence suggesting the presence of dark matter in the Universe [9–11],
and there are a variety of theoretical and experimental endeavours trying to unearth its nature.
These facts suggest that the Standard Model is not a complete theory and additional physics
Beyond the Standard Model (BSM) is required.

11



12 CHAPTER 1. NEUTRINOS IN THE STANDARD MODEL

The study of neutrinos is for sure one of the most promising probes to BSM physics and is of
vital importance to the future development of particle physics, in particular through precision
measurement of their interactions. A deep understanding of neutrino interactions, and neutrino–
nucleon interactions in particular, could lead to a great impact on long-baseline experiments,
proton decay searches, and supernova detection. Since the SM is a renormalisable theory, even
its quantum corrections are insensitive to the physics beyond the SM. For this reason, the
SM is phenomenologically very successful and so far has been able to describe all the known
phenomena, except for the indications in favour of neutrino oscillations as it will be discussed
in the following chapters.

1.1 Electroweak sector

The electroweak (EW) sector of the SM is formed by the direct product of the weak isospin
group SU(2)L and the hyper-charge group U(1)Y . The two groups are connected by the Gell-
Mann–Nishijima [12, 13] relation which connects the I3 component of the weak isospin operator
and the hyper-charge operator Y with the charge operator Q as

Q = I3 +
Y

2
. (1.2)

Left-handed chiral components of the fermion fields form doublets under SU(2)L

LL =

(
νL
`L

)
, QL =

(
qUL
qDL

)
, (1.3)

where the left-handed fields (in boldface) represent the fermion families

νL =

νeLνµL
ντL

 , `L =

eLµL
τL

 , qDL =

dLsL
bL

 , and qUL =

uLcL
tL

 . (1.4)

The right-handed fields, instead, transform simply as singlets and they are

`R =

eRµR
τR

 , qDR =

dRsR
bR

 , and qUR =

uRcR
tR

 . (1.5)

The right-handed components of the neutrino fields, ναR, are not historically considered in the
SM because neutrinos are assumed to be massless and the νR components are sterile under any
charge of the SM. Furthermore, the helicity of neutrinos was measured to be consistent with
left chirality [14]. The EW Lagrangian is therefore the most general renormalisable Lagrangian
invariant under the local symmetry SU(2)L ⊗U(1)Y :

LEW = iLL /DLL + iQL /DQL + i `R /D `R + i qDR /D qDR + i qUR /D qUR

− 1

4
BµνB

µν − 1

4
AµνA

µν + (DµH)†(DµH)− µ2H†H − λ(H†H)2

−
(
LL Y

`H `R +QL Y
DH qDR +QL Y

UH̃ qUR + h.c.
)
, (1.6)

where the covariant derivative satisfies gauge invariance and is defined as

Dµ = ∂µ + igAµ · I + ig′Bµ
Y

2
, (1.7)
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and H̃ = iσ2H
∗ is the conjugate Higgs field. It is important to note that Dirac mass terms

for fermion fields other than neutrinos are anyway forbidden by the gauge symmetry. These
terms will become manifest once the symmetry is broken through the Higgs mechanism (see
Section 1.1.2). The vector boson fields Aµ = (Aµ1 , A

µ
2 , A

µ
3 ) and Bµ correspond respectively to

the three generators I = (I1, I2, I3) of the SU(2)L group and the generator Y of the U(1)Y
group. The SU(2)L generators are Ia = σa/2, with σa the Pauli matrices, and thus satisfy the
commutation relation

[Ia, Ib] = i εabc Ic , (1.8)

where εabc is the Levi-Civita tensor.

1.1.1 Electroweak interactions

Expanding the covariant derivative and ignoring kinetic terms, the interaction terms for the
lepton sector are retrieved

Lint,L = −1

2

∑
α

(
ναL `αL

)( g /A3 − g′ /B g( /A1 − i /A2)
g( /A1 + i /A2) −g /A3 − g′ /B

)(
ναL
`αL

)
− g′ `αR /B `αR , (1.9)

where α is the family generation index. Defining the combinations

Wµ = (Aµ1 − iA
µ
2 )
/√

2 (1.10)

Zµ = cosϑWA
µ
3 − sinϑWB

µ (1.11)

Aµ = sinϑWA
µ
3 + cosϑWB

µ , (1.12)

the electromagnetic field Aµ is expressed as a rotation of Aµ3 and Bµ, thus recovering QED;
the new field Zµ also mediates neutral current processes. The Lagrangian in Eq. (1.9) can
therefore be divided into two parts, Lint,L = LCC,L + LNC,L, describing charged-current (CC)
and neutral-current (NC) interactions. These are

LCC,L = − g

2
√

2
jµCC,LWµ + h.c. , (1.13)

LNC,L = − g

2 cosϑW
jµNC,LZµ + g sinϑW ` /A ` , (1.14)

where the W and Z vector bosons have been factorised out, leaving the fermionic currents

jµCC,L = ν γµ(1− γ5) ` , (1.15)

jµNC,L = ν γµ (gνV − gνAγ5)ν + ` γµ (g`V − g`Aγ5) ` . (1.16)

The constant g′ has been rewritten in terms of g and ϑW by setting to zero the coupling of
neutrinos to the electromagnetic field which implies

g sinϑW = g′ cosϑW . (1.17)

The weak mixing angle ϑW is also known as Weinberg angle and it is estimated to be approxi-
mately sin2 ϑW ' 0.231 from either studies of neutrino neutral-current processes at low energies
or studies of the Z mixing with the photon in Drell-Yan processes at higher energies [15]. An-
other important relation comes from the charged lepton couplings with the electromagnetic field
which must coincide with the QED Lagrangian. It follows that g sinϑW = qe and so g2+g′2 = q2

e .
The constants gV and gA, introduced in Eq. (1.16), can be defined for any fermion f as

gfV = I f3 − 2qf sin2 ϑW and gfA = I f3 . (1.18)
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Thanks to this notation, the interaction Lagrangians for the quark sector can be written in the
same form of Eqs. (1.13) and (1.13), where the fermionic currents of Eqs. (1.15) and (1.16) now
become

jµCC,Q = qU γµ(1− γ5) qD , (1.19)

jµNC,Q = qU γµ (gUV − gUAγ5) qU + qD γµ (gDV − gDA γ5) qD . (1.20)

1.1.2 Higgs mechanism

In the EW Lagrangian of Eq. (1.6), the Higgs H is a complex scalar field and an SU(2)L
doublet

H(x) =

(
H+(x)
H0(x)

)
, (1.21)

the potential of which, V (H), can spontaneously break if λ > 0 and µ2 < 0, where

V (H) = µ2H†H + λ(H†H)2 . (1.22)

Defining

v ≡
√
−µ

2

λ
, (1.23)

the potential V (H) finds its minimum for H†H = v2/2 which corresponds to the lowest energy
state, or vacuum. In general, fermion and nonzero spin boson fields must have a vanishing
vacuum expectation value (vev), so as to preserve the Lorentz symmetries of space and time.
The same applies to charged scalar fields, since the vacuum is electrically chargeless. On the
other hand, neutral scalar fields can have a nonzero value in vacuum and so the vev of the Higgs
field could be given by

〈H〉 =
1√
2

(
0
v

)
. (1.24)

This value spontaneously breaks the EW group SU(2)L⊗U(1)Y , but it remains invariant under
the gauge transformations from the U(1)Q group, with Q from Eq. (1.2), which guarantees
the existence of a massless gauge boson associated with the photon. To study what happens
around the vacuum state, the scalar field can expanded around its vev and by choosing the
unitary gauge three of the four real scalar fields are rotated away since they are unphysical,
simplifying to

H(x) =
1√
2

(
0

v + h(x)

)
. (1.25)

Using the definition of the EW fields in Eq. (1.10), the covariant derivative of Eq. (1.7) applied
to the Higgs field reads

DµH(x) =
1√
2

(
i g√

2
Wµ(x)[v + h(x)]

∂µh(x)− i g
2 cosϑW

Zµ(x)[v + h(x)]

)
. (1.26)

The Lagrangian terms with the Higgs field therefore become

LHiggs =
1

2
(∂h)2 − v2λh2 − λh3 − λ

4
h4 +

g2v2

4
W †µW

µ +
g2v2

8 cos2 ϑW
ZµZ

µ

+
g2v

2
W †µW

µh+
g2v

4 cos2 ϑW
ZµZ

µh

+
g2

4
W †µW

µh2 +
g2

8 cos2 ϑW
ZµZ

µh2 . (1.27)
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The second term of the first line is a mass term for the scalar field, from which the mass of the
Higgs boson is determined to be mH = v

√
2λ =

√
−2µ2. The fifth and sixth terms represent

the mass terms for the W and Z bosons, namely

mW =
gv

2
, mZ =

gv

2 cosϑW
, (1.28)

and the following parameter

ρ =
m2
W

m2
Z cos2 ϑW

(1.29)

is predicted to be ρ = 1 in the SM. The other terms of 1.27 describe self-interactions of the
Higgs and interactions with the W and Z vector bosons.

Applying the same expansion of Eq. (1.25) to the Yukawa terms of the SM Lagrangian,
couplings between left and right chiral fields and trilinear couplings of the fermions with the
Higgs are obtained. The lepton section becomes

LH,L = − v√
2
`L Y

` `R −
1√
2
`L Y

` `R h + h.c. , (1.30)

and the same is found in the quark sector:

LH,Q = −
(
v√
2
qDL Y

DqDR +
v√
2
qULY

UqUR

)
−
(

1√
2
qDL Y

DqDR h+
1√
2
qULY

UqUR h

)
+ h.c. (1.31)

The terms in the Lagrangians of Eqs. (1.30) and (1.31) proportional to fLfR = f f are Dirac
mass terms for the fermion f. There is no principle by which the Yukawa coupling matrices
Y f should be a priori diagonal, however without a diagonal matrix the fermion masses are not
properly defined. Being a generic complex matrix, the diagonalisation can be performed via a
biunitary transformation

V f†
L

(
v√
2
Y f

)
V f
R =

v√
2
Ŷ f
α ≡ diag

(
yfαv√

2

)
, (1.32)

where VL and VR are both unitary matrices. The fermion masses are defined by the Yukawa
couplings

mf
α ≡

yfαv√
2
, (1.33)

with α the family generation index. The biunitary transformation acts on the lepton fields as

ˆ̀
L = V `†

L `L , ˆ̀
R = V `†

R `R (1.34)

and on the quark fields as

q̂DL = V D†
L qDL , q̂DR = V D†

R qDR

q̂UL = V U†
L qUL , q̂UR = V U†

R qUR . (1.35)

Dropping the “hat notation” to denote mass eigenfields, the lepton sector becomes

Lmass = −
∑

α=e,µ,τ

y`αv√
2
`α `α = −

∑
α=e,µ,τ

mα `α `α , (1.36)
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and similarly for quarks

Lmass = −
∑

α=d,s,b

(
yDα v√

2
qDα q

D
α

)
−
∑

β=u,c,t

(
yUα v√

2
qUβ q

U
β

)
= −

∑
α=d,s,b

(
mα q

D
α q

D
α

)
−
∑

β=u,c,t

(
mβ q

U
β q

U
β

)
. (1.37)

As stressed previously, in the SM there are no right-handed neutrino fields, necessary to obtain
Dirac mass terms: the neutrinos are simply massless by definition.

1.1.3 Fermion mixing

The same transformations of Eqs. (1.34) and (1.35) should be equally applied to all the parts
of the EW Lagrangian. Let us start from the quark charged current expressed in Eq. (1.19)

jµCC,Q = 2 qUL γ
µ qDL = 2 q̂

U
LV

U†
L γµ V D

L q̂
D
L = 2 q̂

U
L γ

µ V q̂DL , (1.38)

where the unitary matrix V = V U†
L V D

L , called Cabibbo-Kobayashi-Maskawa (CKM) matrix,
describes the mixing between quark fields in weak interaction processes when initial and final
states represent particles with definite masses. The same mixing matrix however does not appear
in the NC current of Eq. (1.20). Defining the couplings 2 gfL = gfV + gfA and 2 gfR = gfV − g

f
A, the

current with explicit mass eigenstates becomes

jµNC,Q = 2 gUL q
U
L γ

µ qUL + 2 gUR q
U
R γ

µ qUR + 2 gDL q
D
L γ

µ qDL + 2 gDR q
D
R γ

µ qDR

= 2 gUL q̂
U
LV

U†
L γµ V U

L q̂
U
L + 2 gUR q̂

U
RV

U†
R γµ V U

R q̂
U
R

+ 2 gDL q̂
D
L V

D†
L γµ V D

L q̂
D
L + 2 gDR q̂

D
RV

D†
R γµ V D

R q̂
D
R

= 2 gUL q̂
U
L γ

µ q̂UL + 2 gUR q̂
U
R γ

µ q̂UR + 2 gDL q̂
D
L γ

µ q̂DL + 2 gDR q̂
D
R γ

µ q̂DR . (1.39)

The neutral current with massive fields has the same form of the neutral current with unrotated
fields. This is also true for the electromagnetic current of the EW Lagrangian. The phenomenon
is called Glashow-Iliopoulos-Maiani (GIM) mechanism [16], by which flavour-changing neutral
currents (FCNCs) are forbidden at tree level thanks to the unitarity of the electroweak interac-
tion, but allowed in suppressed loop diagrams.

Looking at the lepton sector, the transformations of Eq. (1.34) are not analogously defined for
the neutrino fields. Therefore, neutrino states can be arbitrarily chosen such that ν̂L = V `†

L νL,
where V `

L is the same of Eq. (1.34). The lepton charged current therefore remains unchanged

jµCC,L = 2 νL γ
µ `L = 2 ν̂LV

`†
L γµ V `

L
ˆ̀
L = 2 ν̂L γ

µ ˆ̀
L . (1.40)

The fields ν̂ = (ν̂e, ν̂µ, ν̂τ ) are called flavour neutrino fields, because they only couple to the
corresponding charged lepton fields in the equation above. As in the case of the quark fields,
the GIM mechanism applies even for the leptonic neutral current thanks to the unitarity of the
matrices V `

L and V `
R.

1.2 Neutrino oscillations

As seen in Section 1.1, the SM does not consider right-handed neutrino fields. For this
reason, a Yukawa term coupling the lepton SU(2)L doublet with the conjugate Higgs field does
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not appear in the EW Lagrangian. It follows that after the spontaneous symmetry breaking
caused by the nonzero Higgs vev the neutrinos do not gain Dirac mass terms, as the other
fermions do. This “asymmetry” between fermion fields can be easily resolved by extending the
SM and introducing the right-handed neutrino fields

νR =

νeRνµR
ντR

 . (1.41)

These fields are chargeless under all the SM gauge groups and therefore are not directly coupled
to any vector boson and as such their existence is not easily testable. Having now both chiralities,
Dirac mass terms can be constructed for neutrinos, leading to neutrino mixing and so the
neutrino oscillation phenomenon, observed in various neutrino experiments.

1.2.1 Neutrino mixing

Thanks to this extension, the following Yukawa term is now allowed

LEW ⊃ −
(
LL Y

`H `R +LL Y
νH̃ νR + h.c.

)
, (1.42)

and using the expansion of Eq. (1.25) the Yukawa matrix can be diagonalised by a biunitary
transformation to define masses for the neutrino fields. This leads to new mass eigenfields

ν̂L = V ν†
L νL =

ν1L

ν2L

ν3L

 , ν̂R = V ν†
R νR =

ν1R

ν2R

ν3R

 , (1.43)

where the fields νi = νiL + νiR describe Dirac neutrinos with definite masses. Having now
neutrino mass eigenstates, the lepton charged current of Eq. (1.15) becomes

jµCC,L = 2 νL γ
µ `L = 2 ν̂LV

ν†
L γµ V `

L
ˆ̀
L = 2 ν̂L γ

µ U ˆ̀
L , (1.44)

where the unitary matrix U = V ν†
L V `

L is completely analogous to the CKM matrix of the
quark weak charged current. This matrix is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix. Since the flavour of charged lepton is uniquely defined by their masses, it is customary
to redefine the left-handed flavour neutrino fields as

νL = U ν̂L , (1.45)

which allows to write the charged current Lagrangian in terms of flavour neutrinos being careful
that if neutrino masses are taken into account mixing of the fields occurs:

LCC,L = − g√
2

∑
α=e,µ,τ

να /W (1− γ5) `α + h.c.

= − g√
2

∑
α=e,µ,τ

3∑
i=1

U∗αi νi /W (1− γ5) `α + h.c. (1.46)

The GIM mechanism is still valid and no mixing takes place in neutral current interactions.
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1.2.2 Propagation of neutrinos in vacuum

The effect of neutrino mixing is mostly visible in the propagation of neutrinos in space-
time. Neutrinos with flavour α are produced and detected in charged current interactions in
association with a charged lepton, according to Eq. (1.46). Approximating the neutrino fields
to plane-waves, the flavour states are described by the following combination of mass states

|να〉 =
∑
i

U∗αi |νi〉 , (1.47)

where the mass eigenstates are orthonormal, 〈νi|νj〉 = δij , and thanks to the unitarity of the
PMNS matrix the relation 〈να|νβ〉 = δαβ holds. The probability of producing and detecting
a neutrino of the same flavour in the same point of space-time is trivially one. However, in
a typical neutrino experiment, production and detection of neutrinos happen in two different
locations and times. The massive neutrino states |νi〉 are eigenstates of the Hamiltonian, with
the particle energies as eigenvalues:

H |νi〉 = Ei |νi〉 =
√
p2 +m2

i |νi〉 , (1.48)

and p is the momentum of the produced flavour neutrino. The Hamiltonian dictates the time
evolution of the states through the Schrödinger’s equation, and so assuming neutrinos evolve as
plane waves a solution to the equation is given by

|νi(t)〉 = e−iEit |νi〉 and |να(t)〉 =
∑
i

U∗αie
−iEit |νi〉 . (1.49)

Using the relation of Eq. (1.47), the pure neutrino flavour state |να(t)〉 at t = 0 can expressed
as a superposition of flavour states at time t > 0

|να(t)〉 =
∑

β=e,µ,τ

(∑
i

U∗αie
−iEitUβi

)
|νβ〉 . (1.50)

Hence, the transition probability from a state να to a state νβ over a certain amount of time t
is calculated to be

P (να → νβ) ≡ |〈να|νβ(t)〉|2 =
∑
ij

U∗iαUβiUαjU
∗
jβe
−i(Ej−Ei)t . (1.51)

The energies of ultrarelativistic neutrinos can be approximated by

Ei ' E +
m2
i

2E
, (1.52)

and the propagation time is naturally replaced by the propagation length, i.e. t ' L, since
it is easier to determine experimentally. Adopting these approximations, the probability of
Eq. (1.51) reads

P (να → νβ) ≡ |〈να|νβ(t)〉|2 =
∑
ij

U∗iαUβiUαjU
∗
jβ exp

(
−i

∆m2
ijL

2E

)
, (1.53)

where ∆m2
ij = m2

i −m2
j are the squared mass differences of the neutrinos. The probability of

Eq. (1.53) is called oscillation probability because it shows an oscillatory behaviour with respect
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Figure 1.1: Oscillation probability for an initial νe (left) and νµ (right), clearly manifesting an oscillatory
behaviour with respect to L/E. The oscillation parameters used here are ∆m2

21 = 7.6 × 10−5 eV2,
∆m2

32 = 2.4× 10−3 eV2, sin2 θ12 = 0.32, sin2 2θ13 = 0.1, sin2 θ23 = 0.5, and δCP = 0.

to the ratio L/E , while the other parameters— the PMNS matrix elements and the neutrino
masses—are constants of nature. The probabilities for initial νe and νµ to be detected as νe,
νµ, or ντ is shown on Fig. 1.1 as function of L/E . The transition probability for α = β is
usually called disappearance probability, and for α 6= β is called appearance probability, because
experiments typically measure the amount of neutrinos of a certain flavour at the production
site and at the detection site.

The oscillating term is the result of the interference between different massive neutrinos
which propagate at different velocities while coherency between states is preserved. It could
happen that neutrinos are produced or detected incoherently, for which interference terms do
not appear, or that the detector resolution on propagation length or neutrino energy is limited
and so the probability is averaged. In both cases, the oscillation probability simplifies to

〈P (να → νβ)〉 =
∑
i

|Uαi|2|Uβi|2 , (1.54)

and for α 6= β it can be shown that the maximum value this averaged probability can take is

〈P (να → νβ)〉max =
1

N
, (1.55)

with N the number of massive neutrinos. Under these circumstances, the mixing matrix behaves
as if its entries have all the same absolute value, in an eventuality called N-maximal mixing. This
corresponds to minimal average disappearance probability and maximal average appearance
probability, equal to 1/N in each possible channel.

Apart from this limit scenario, the PMNS matrix and analogously the CKM matrix are
generic unitary N ×N matrices, where N is the number of fermion generations. A matrix with
this characteristics depends on N2 independent real parameters, divided among

N(N − 1)

2
mixing angles and N(N + 1)

2
phases , (1.56)

even though not all the phases are observables or give physical effects. Due to the unitarity of
the neutral currents, only the weak charged current manifests these phases, although 2N − 1
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phases can be reabsorbed by a redefinition of the fermion fields. Excluding the CC term, the
SM Lagrangian is invariant under a global phase transformation of the lepton and quark fields,
such as

fα 7−→ eiφ
f
αfα . (1.57)

Let us apply this to the CC current of Eq. (1.46). A common phase can be factorised outside

jµCC,L = 2
3∑
i=1

∑
α=e,µ,τ

νLi γ
µe−iϕ

ν
i V ∗αi e

iϕ`α`Lα (1.58)

= 2e−i(ϕ
ν
3−ϕ`τ )

3∑
i=1

∑
α=e,µ,τ

νLi γ
µe−i(ϕ

ν
i−πν3 ) V ∗αi e

i(ϕ`α−ϕ`τ )`Lα , (1.59)

showing that there are only 2N −1 phases that can be reabsorbed in a redefinition of the fields.
A common rephasing would leave the charged current unchanged. It follows that the number
of physical phases is

N(N + 1)

2
− 2N + 1 =

(N − 1)(N − 2)

2
(1.60)

and so the total physical parameters are

N(N − 1)

2
+

(N − 1)(N − 2)

2
= (N − 1)2 . (1.61)

In the case of three generations, the PMNS matrix can be described by three mixing angles and
just one physical phase. It is typically parameterised as

U =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 , (1.62)

where cij ≡ cos θij and sij ≡ sin θij . The angle δCP is the physical phase responsible for CP
violation (see Section 3.1). From a model building point of view, the complex phase may arise
from complex Yukawa couplings and/or from a relative phase in the vacuum expectation values
of Higgs fields. It is important to note that if neutrinos were Majorana fermions, there would
be two additional physical phases and the mixing matrix would contain an extra contribution:

U ′ = U

1 0 0
0 e−iγ1 0
0 0 e−iγ2

 , (1.63)

where U is the same matrix of Eq. (1.62). However, due to the structure of the oscillation
probability (see Eq. (1.53)) the Majorana phases do not contribute to neutrino oscillation. The
CKM matrix can be parameterised in an analogous way.

The best known value of the mixing angles and mass-squared differences are reported in
Table 1.1. The δCP phase has not been determined as well as the other oscillation angles, and
synergies between current experiments are used to get the best estimates before next-generation
experiments start operation (see Section 3). Only one of the two independent squared mass
differences is known with its relative sign and it is the so-called solar mass difference ∆m2

21.
The absolute value of the other mass difference |∆m2

32|, known as atmospheric mass difference,
has a best value fit which depends on the assumed sign [17]. If the atmospheric mass difference
is positive, then the order between neutrino masses is m1 < m2 � m3, otherwise the order is
m3 � m1 < m2. The first scenario is referred to as normal hierarchy, whereas the second one
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Table 1.1: Best �t values for neutrino oscillation parameters [17]. This result includes Super-
Kamiokande data and assumes a normal mass ordering.

Parameter Value Error

sin2 θ12 0.310 +0.013
−0.012

sin2 2θ13 0.0875 +0.0025
−0.0025

sin2 θ23 0.563 +0.018
−0.024

δCP/π -0.772 +0.217
−0.156

∆m2
21/10−5 eV2 7.39 0.21

−0.20

|∆m2
32|/10−3 eV2 2.528 +0.029

−0.031

as inverted hierarchy. At first order, it is not possible to extract the hierarchy information from
a measurement of neutrino oscillation in vacuum, using simply Eq. (1.53). The sign of ∆m2

21 is
accessible thanks to the matter effects on the propagation of solar neutrinos. For the Sun–Earth
baseline, the oscillation probability is more sensitive to the solar mass difference, since

|∆m2
21|

2

L

E
∼ π , (1.64)

and solar neutrino experiments have constrained ∆m2
21 cos 2θ12 > 0 (see Section 1.2.3); by

convention the octant of θ12 is fixed to have ∆m2
21 > 0. The existing data is not sufficient to

determine the sign of the atmospheric mass difference, the knowledge of which would define the
neutrino mass hierarchy.

1.2.3 Propagation of neutrinos in matter

Neutrinos propagating in a dense medium can interact with its particles, although the prob-
ability of an incoherent inelastic scattering is very small (see Section 1.4). For example the
characteristic cross-section for neutrino–neutron elastic scattering is of the order

σ '
G2
FE

2
ν

π
∼ 10−43cm2

(
Eν
MeV

)2

(1.65)

where Eν is the neutrino energy and GF is the Fermi constant introduced later in Eq. (1.121).
The mean free path of a neutrino passing through a material with number density n can be
approximated as

` ∼ 1

nσ
, (1.66)

assuming the target particles are at rest. In matter, the main targets are nucleons with mass
m ' 1GeV. If the number density is n ' NA cm-3, the mean free path is

` ∼ 1014 cm3

(E/GeV)
. (1.67)

The Earth, with an approximate diameter of 109 cm is opaque only to neutrinos with energies
above 100TeV. On the other hand, solar neutrinos with energies of the order of 0.1MeV have
a mean free path through matter of 0.1 light years. The interaction rate changes significantly
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in materials with a very high number density, such as in neutron stars or supernovae. It was
first noted in Ref. [18] that neutrinos propagating in dense regions are subject to an effective
potential due to the coherent forward elastic scattering with the particles in the medium. In
coherent interactions it still is possible to have interference between the scattered and the
unscattered neutrino waves which enhances the effect of matter in the neutrino propagation.
Differently from vacuum interference, in this case the effect of the medium is not on the intensity
of the propagating neutrino beam, which remains unchanged, but on the phase velocity of the
wave packets. The phenomenon can be seen as a refractive index that modifies the mixing of
neutrinos.

The forward scattering possible for neutrinos in matter are CC interactions of νe on electrons
and NC interactions of any neutrino on electron, protons, and neutrons. The effective four-point
Hamiltonians for these interactions (see Eqs. (1.119) and (1.120)) are, up to Fierz reordering,

HCC =
GF√

2

[
νeγ

µ(1− γ5)νe
][
e γµ(1− γ5)e

]
, (1.68)

HNC =
GF√

2

∑
α=e,µ,τ

[
ναγ

µ(1− γ5)να
] ∑
f=e,p,n

[
f γµ(gFV − gFAγ5)f

]
. (1.69)

The fermions, either electrons, neutrons, or protons, must have identical four-momenta and
helicities in their initial and final states, thanks to the coherent nature of the scattering. The
effective Hamiltonian can therefore be averaged on the fermion background, using a statistical
distribution ρ of the fermion energy at a given temperature of the medium which normalises to
the total number of particles

Nf =

∫
d3p ρ(Ef, T ) . (1.70)

After averaging over the helicities of the fermions, terms proportional to the neutrino currents
are obtained

〈HCC〉 = VCC νeLγ
0νeL , (1.71)

〈HNC〉 =
∑

f=e,p,n

V f
NC

∑
α=e,µ,τ

ναLγ
0ναL , (1.72)

where the effective potentials are

VCC =
√

2GF ne , (1.73)

V f
NC =

√
2GF nf g

f
V . (1.74)

The vector coupling constants for electrons and protons are equal and opposite

geV = −gpV = −1

2
+ 2 sin2 ϑW , (1.75)

but due to the neutrality of matter the densities have the same value, i.e. ne = np, and so their
NC contributions cancel out. Neutrons are the only particles providing an overall potential to
neutrino neutral-current interactions and since they are chargeless the corresponding potential
is

VNC = −
√

2

2
GF nf . (1.76)

The total Hamiltonian is H = H0 + Hm, where H0 is the Hamiltonian in vacuum (see
Eq. (1.48)). The operator Hm acts on neutrino flavour state as

Hm |να〉 = Vα |να〉 , (1.77)
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and the total potential is defined as

Vα = VCCδαe + VNC =
√

2GF

(
neδαe −

1

2
nn

)
. (1.78)

The massive neutrino states are eigenstates of the free Hamiltonian, but for Hm the description
in the flavour basis is simpler. It is convenient to define the transition amplitude

φαβ(t) = 〈νβ|να(t)〉 , (1.79)

from which the transition probability is simply

P (να → νβ) = |φαβ(t)|2 . (1.80)

From Eqs. (1.48) and (1.77), it follows that

H φαβ(t) =
∑
ρ

(∑
i

UβiEiU
∗
ρi + δβρVβ

)
φαρ(t) . (1.81)

With this relation, the propagation of neutrinos in matter can be derived in complete analogy
to the vacuum oscillation. The evolution of neutrino states in time comes from solving the
Schrödinger’s equation and the probability of flavour transition is then accordingly derived. Us-
ing the same approximations introduced for vacuum oscillations, the evolution equation becomes

i
d

dx
φαβ(x) =

∑
ρ

(∑
i

∆m2
i1

2E
UβiU

∗
ρi + δβeδρeVCC

)
φαρ(x) . (1.82)

The term
p+

m2
1

2E
+ VNCφαβ(x) (1.83)

has been removed, since it generates a common phase to all flavours and so it is irrelevant to
flavour transitions.

The treatment of oscillations in matter for three-neutrino mixing can be quite intricate,
because of the combinations between the different mass-squared differences. Let us consider a
simpler scenario of only two neutrino generations, νe and νµ. Assuming the initial flavour being
α = e, the evolution equation is now

i
d

dx

(
φee
φeµ

)
= HF

(
φee
φeµ

)
=

1

4E

(
−∆m2 cos 2θ +ACC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ −ACC

)(
φee
φeµ

)
, (1.84)

where ∆m2 = m2
2 −m2

1 and θ is the mixing angle, as in(
νe
νµ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1

ν2

)
, (1.85)

and
ACC ≡ 2

√
2EGF ne . (1.86)

The effective Hamiltonian HF of Eq. (1.84) can be diagonalised by means of an orthogonal
transformation

OM =

(
cos θM sin θM
− sin θM cos θM

)
, (1.87)
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to obtain
HM = OTMHFOM =

1

4E
diag(−∆m2

M ,∆m
2
M ) . (1.88)

The effective mixing angle θM is defined by

tan 2θM =
tan 2θ

1− ACC
∆m2 cos 2θ

(1.89)

and the effective mass-squared difference ∆m2
M reads(

∆m2
M

)2
= (∆m2 cos 2θ −ACC)2 + (∆m2 sin θ)2 . (1.90)

It was found in Refs. [19, 20] that it is possible to have a resonant flavor transitions when
neutrinos propagate in a medium with varying density, with the effective mixing angle passing
through the maximal mixing value of π/4. This resonance condition is achieved when

ACC = ∆m2 cos 2θ , (1.91)

or equivalently when the electron density reads

ne =
∆m2 cos 2θ

2
√

2EGF
. (1.92)

By transforming the transition probability to the mass basis by means of OM , the evolution
equation becomes

i
d

dx

(
φ′e1

φ′e2

)
=

−∆m2
M

4E
−idθM

dx

i
dθM
dx

∆m2
M

4E

(φ′e1
φ′e2

)
. (1.93)

It is interesting to note that if the matter profile is constant, then dθM/dx = 0 and the
structure of the oscillation probability simplifies to a two-flavour oscillation in vacuum, with
effective mixing angle θM and mass-squared difference ∆m2

M . On the other hand, if the matter
density is not constant, the variation of θM must be taken into account. From Eq. (1.89), it
reads

dθM
dx

=
sin 2θM
2∆m2

dACC
dx

. (1.94)

If the variation of the effective matter angle is small compared to the diagonal terms of the
Hamiltonian of Eq. (1.93), then the transition between neutrino mass states in matter is negli-
gible. With the condition

∆m2
M

4E

∣∣∣∣dθMdx

∣∣∣∣−1

=
(∆m2

M )2

2E sin 2θM

∣∣∣∣dACC
dx

∣∣∣∣−1

� 1 (1.95)

satisfied along the neutrino path, the transition is said to be adiabatic and flavour conversion
occurs without oscillation between states.

The condition of adiabaticity is typically met for solar and supernova neutrinos, for which
the medium profile smoothly changes from the high density of the core to the vacuum or the
detector density, which is practically negligible. Neutrinos are produced in astrophysical sources
mostly in the electron flavour (see Section 1.3). Regarding terrestrial experiments, the distance
between the source and the detector is much larger than the detector itself, which means that
only the averaged probability can be measured. If at production the matter potential is well
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below the resonance value, i.e. ACC � ∆m2 cos θ, the matter effects are negligible and the
propagation occurs almost in vacuum with an average survival probability

〈P (νe → νe)〉 = 1− 1

2
sin2 2θ . (1.96)

If the matter potential at production is closer to the resonant potential, i.e. ACC . ∆m2 cos θ,
the resonance is not crossed, but the propagation can still be described by an adiabatic propa-
gation. The survival probability is now

〈P (νe → νe)〉 =
1

2
+

1

2
cos 2θM cos 2θ , (1.97)

where θM is the effective mixing angle in matter at the production point. Since the resonance
condition is not met, cos θM has the same sign of cos θ and so 〈P (νe → νe)〉 > 1/2 . When
the potential is such that ACC & ∆m2 cos θ, the resonance can be crossed and this occurs if
cos 2θ > 0, assuming ∆m2 > 0. It follows that the produced neutrino νe has a larger component
of ν2 in matter, but when in vacuum the main component becomes ν1. Finally, if the density
is much higher than the resonance one, i.e. ACC � ∆m2 cos θ, the effective mixing angle in
matter is maximal, θM ' π/2 , and so the νe is produced mostly as ν2. As the neutrino travels
to regions of lower density crossing the resonance adiabatically, the final mixing angle in matter
tends to the mixing angle in vacuum and so ν2 = sin θνe + cos θνµ. If the vacuum angle θ is
small, the overall effect is a smooth conversion from νe to νµ. The survival probability becomes
the same of Eq. (1.97) and this mechanism is known as Mikheyev-Smirnov-Wolfenstein (MSW)
effect. When the condition of adiabaticity is violated, there might be transition between the
two neutrino mass states in matter. The expression in Eq. (1.95) gets its minimum value with

d2 cos 2θ

dx2
= 0 , (1.98)

and the survival probability is modified into [21]

〈P (νe → νe)〉 =
1

2
+

(
1

2
− P12

)
cos 2θM cos 2θ , (1.99)

where P12 is the crossing transition probability between the two states ν1 and ν2 at the resonance.
The adiabatic case is recovered when P12 = 0.

1.3 Neutrino production

Neutrinos are the most abundant fermions in the Universe. With the expansion and cooling
of the Universe, the interaction rate of primordial neutrinos decreased below the expansion rate,
resulting in a decoupling of the neutrinos from the other particles. These relic neutrinos form
what is called the Cosmic Neutrino Background (CνB), a radiation analogous to the Cosmic
Microwave Background (CMB) which also decoupled at the early stages of the Universe. The
CνB formed well before the CMB, due to the weak nature of neutrino interactions, and it has
a temperature given by the relation

Tν =

(
4

11

)1/3

Tγ = (1.945± 0.001)K . (1.100)

This relation makes an exact prediction of the temperature of the neutrinos Tν , connecting it
with the photon temperature Tγ , which is accurately measured by CMB surveys. The tempera-
ture is equivalent to Tν = (1.676± 0.001)× 10−4 eV. By comparing this energy to the measured
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mass differences from oscillation experiments (see Table 1.1) one can infer that at least two mass
states of relic neutrinos are nonrelativistic. However, neutrinos at these energies are almost im-
possible to detect with the current technologies and it will be a challenge for next-generation
experiments.

The density of relativistic neutrinos can be related to the density of photons, thanks to
Eq. (1.100) by which

ρν
ργ

=
7

8

(
4

11

)1/3

Neff , (1.101)

and so the energy density with respect to the critical density is

ΩνR h
2 =

(
4

11

)1/3

Ωγ h
2 , (1.102)

with h the Hubble constant. When the neutrinos are nonrelativistic, their energy density is
given by ρν '

∑
imini, where ni are the number density of each species which are equal to each

other up to negligible corrections from flavour effect. Using the expression of Eq. (1.101) and
knowing the number density of photons nγ , the total energy density of nonrelativistic neutrinos
today is

ΩνNR h
2 =

∑
imi

94.14 eV , (1.103)

and the contribution of relativistic neutrinos to the total mass is also negligible. Due to the
fact that the density of Eq. (1.103) can never be greater than the energy density of all matter
in the Universe, a naive bound on the neutrino masses can be derived:∑

i

mi . 13 eV . (1.104)

The limit can be improved with more precise theoretical considerations under ΛCDM assump-
tion which combined with the latest cosmological surveys decreases down to

∑
imi . 0.12 [22].

Other than cosmological neutrinos, these elusive fermions are produced and involved in
a large variety of processes. They are emitted in astrophysical processes, such as supernova
explosions, blazars, and in the nuclear reactions of the cores of stars. Cosmic ray interactions
with the Earth’s atmosphere also produce neutrinos from decays of secondary mesons. Human-
made sources include accelerator facilities in which neutrino beams are produced in a controlled
environment, as well as those emitted by nuclear reactors. Neutrinos are also the products of
natural-occurring β-decays, from the study of which neutrinos were first hypothesised. The
study of the rare double-β decay is of utter importance, because the proposed neutrinoless
manifestation of this decay is a true lepton number violating process, the detection of which
has deep and considerable connotations for neutrino mass theories [23].

In the following sections the most relevant sources for the neutrino experiment mentioned
in this thesis are discussed.

1.3.1 Solar and supernova neutrinos

Neutrinos emitted by the Sun were the first astrophysical source of neutrinos detected. They
are produced by thermonuclear reactions occurring in the solar core. Being a G-type star in
the main sequence, the Sun is powered mostly from proton–proton chain (pp) and partly by the
carbon–nitrogen–oxygen cycle (CNO). In both these processes, the net result is the conversion
of four protons and two electrons into an α-particle and two electron neutrinos

4 p + 2 e− −→ 4He + 2 νe , (1.105)
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Table 1.2: Processes occurring in the pp chain (left) and the CNO cycle (right) that emit νe. The �rst
column of the pp chain table lists the typical label with which the processes are referred to; the neutrinos
of the CNO cycle are labelled with the name of the decaying nuclide. In both tables, the maximum
neutrino energy is also reported.

Label Process
Emax

(MeV)

pp p+ p −→ 2H +e+ + νe 0.423
pep p+ e− + p −→ 2H +νe 1.445
hep 3He +p −→ 4He +e+ + νe 18.778
7Be 7Be +e− −→ 7Li +νe 0.386
8Be 8Be −→ 8Be* +e+ + νe 0.862

−→ 2 4He +e+ + νe ∼15

Process
Emax

(MeV)

13N −→ 13C +e+ + νe 1.198MeV
15O −→ 15N +e+ + νe 1.732MeV
17F −→ 17F +e+ + νe 1.736MeV

along with the release of 26.731MeV in the form of photons or kinetic energy of the neutrinos.
The processes of the pp chain and CNO cycle releasing neutrinos are listed in Table 1.2. Due
to their evasive nature and low energy, solar neutrinos are difficult to study in detail and
therefore a reliable theoretical model describing the solar nuclear reactions is needed. The
standard solar model (SSM), developed by Bahcall and collaborators [24], perfectly agrees with
data from helioseismology [25], such as the speed of sound and the density profile of the Sun,
For this reason, the SSM is considered to provide a credible estimate of the flux of neutrinos
produced in the Sun, the distribution of which is reported in Fig. 1.2. The first neutrino
experiments, such as Homestake [26], GALLEX/GNO [27], and SAGE [28, 29], were in strong
disagreement with the predictions of the SSM. The so-called solar neutrino problem was later
solved by the SNO experiment [30] which demonstrated the presence of flavour transition,
explained theoretically by the MSW effect (see Section 1.2.3). The low-background and low-
threshold BOREXINO experiment [31] was able to measure different solar neutrinos across the
energy spectrum reaching good agreement with the theoretical prediction of flavour transition
in matter [32], as demonstrated in Fig. 1.3.

The second astrophysical source of neutrinos ever identified was the supernova (SN) explo-
sion SN1987A which occurred on the 23rd of February, 1987, in the Large Magellanic Cloud.
It was the only SN explosion which was detected also through its neutrino emission. In spite
of this fact, supernova explosions are the most intense sources of neutrinos in the Universe.
Historically, SNe are classified by their spectral characteristics near maximal luminosity. This
is dictated by the composition of the progenitor star. The main subdivision is between spectra
with or without hydrogen lines, respectively called type II and type I. Further classification of
type I SNe comes from the presence of silicon and helium. Type Ia SN, the spectrum of which
shows strong Si lines, is the only SN type that is not accompanied by a substantial neutrino
emission. This is because the mechanism of explosion comes from the accretion of a white
dwarf to the point where the pressure of the degenerate electron gas can no longer sustain the
gravitational pull. The limit is known as Chandrasekhar limit and it is around 1.4M� [34].
When the white dwarf collapses, the fusion of carbon and oxygen heavy nuclei is activated and
an enormous quantity of energy is freed in thermonuclear processes.

On the other hand, the supernovae of type Ib and Ic (with He lines) and II explode
via a core-collapse, liberating an intense flux of neutrinos. Old stars with a mass between
8M� .M . 40M� tend to stratify in layers of elements undergoing fusion, with the lightest
(H) in the outer shell burning progressively into heavier nuclei (He, C, Ne, Mg, Si, ...) up to
iron at the core. After carbon ignition, the neutrino luminosity of the star comes mainly from
a long silicon burning phase. The pre-supernova neutrinos from Si fusion, in fact, make up
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Figure 1.2: The neutrino �ux from the pp chain,
predicted with the solar standard model. Neutri-
nos from two-body processes are monoenergetic,
whereas three-body ones present a continuous spec-
trum. The threshold energies of major solar neu-
trino experiments are shown for comparison. Taken
from [33].

Figure 1.3: Survival probability of νe produced
by the di�erent nuclear reactions in the pp chain,
as measured by BOREXINO. The violet band cor-
responds to the ±1σ prediction of the �avour tran-
sition in the Sun. Taken from [32].

roughly 1% of the total energy that is emitted during the star’s core-collapse. At this stage, the
gravitational pressure is balanced overall by the thermonuclear energy released in each shell, but
in the Fe core for which exothermic reactions are not allowed. The mass of the core is sustained
by the pressure of degenerate relativistic electrons which is reduced by photodissociation of iron

γ + 56Fe→ 13α+ 4n , (1.106)

a reaction which absorbs 124.4MeV, and electron capture with neutrinos escaping the supernova

e− + p→ n+ νe . (1.107)

Once the Fermi pressure is no longer sufficient to contrast the core, this collapses and the in-
crease in temperature accelerates photodissociation and electron capture in a positive feedback
reaction. The density of the core however increases until when neutrinos from electron capture
are trapped inside and so the collapse becomes an adiabatic process. The free-falling core is
finally stopped by the pressure of degenerate nonrelativistic nucleons. The abrupt halt causes
a shock wave that propagates to the outer parts of the core and slows down the imploding
mantle. As the wave propagates through the in-falling dense matter of the outer core, its en-
ergy is dissipated by the photodissociation of nuclei into nucleons, leading to an intensification
of the electron capture rate thanks to the copious number of free protons. The electron neu-
trinos pile up behind the opaque wave until the shock reaches a layer of lower density and
the νe are released in a few milliseconds in what is called neutronisation burst, carrying away
around 1050 erg. In most scenarios, the shock wave stalls and the bounce mechanism from the
core alone is not enough to cause an explosion. The remnant of the core, which is forming a
proto-neutron star, can revive the shock if its mass is large enough. In the hot core, numer-
ous neutrinos are produced in all flavours by electron–positron annihilation, electron–nucleon
and nucleon–nucleon bremsstrahlung, and electron neutrinos from electron or positron capture.
These neutrinos remain trapped between the core and the mantle regions with a density high
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Figure 1.4: Time and energy pro�le of the predicted neutrino �ux from a supernova core-collapse
of mass M ' 20M�. Other neutrino �avours than νe and νe are collectively represented by νX =
(νµ + νµ + ντ + ντ )/4. From the prediction, the neutronisation burst of νe is visible at early stages of
the explosion, whereas neutrinos of all �avours are emitted at later times. Taken from [35].

enough such that their mean free path is smaller than the supernova radius. The size of this
region, known as neutrinosphere, depends on the ν energies and flavours and emits a thermal
flux of neutrinos the energy of which is believed to revive the shock up to explosion. The lu-
minosity of neutrinos in this phase does not peak as for the neutronisation burst, but presents
a long hump on a time scale of a few seconds, as seen in Fig. 1.4. The average energies are
typically higher for muon and tau neutrinos, since they are produced in deeper region of the SN,
and their values strongly depend on the model (see for example Refs. [35–37]). The energies for
both neutrinos and antineutrinos usually range between 10MeV and 30MeV.

The estimated rate of supernova explosions in our Galaxy is relatively low, around two to
three explosions per century [38]. Considering the whole Universe however this rate should
be much higher. All core-collapse SNe in the causally-connected Universe are isotropically
distributed and therefore an isotropic and time-independent neutrino flux should exist. This
stochastic flux is known as Diffuse Supernova Neutrino Background (DSNB) and the detectable
neutrinos are called Supernova Relic Neutrinos (SRN). The energy density of SRN is around
0.01 eV cm-3 which is roughly ten times less than that of the CMB, but it is comparable to
the density number of all photons from stars. The energy spectrum should peak at a few
MeV, where the inverse beta decay (IBD) interaction for νe dominates (see Section 1.4.3). This
process is the best discovery prospect for SRN in water Cherenkov experiments like Super-
Kamiokande, thanks to low background and a high cross-section in this energy region [39].
Despite being a challenging task, the detection of the DSNB is fundamental for astrophysics
and stellar formation, because the study of SNe cannot rely just on very rare galactic core-
collapse explosions.

1.3.2 Atmospheric neutrinos

Atmospheric neutrinos are generated by the interactions of cosmic rays with the Earth’s
atmosphere. Primary cosmic rays are mainly composed by energetic protons or heavier nuclei,
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Figure 1.5: Measurement of cosmic rays over the entire energy spectrum, where the change of energy
dependence (knee) is visible at around 1015 eV. The �ux is multiplied by the power law E2.5. Taken from
Ref. [40].

originated from the Sun or outside the solar system. Their interactions with nuclei in the
atmosphere produce pseudoscalar mesons such as pions and kaons, which rapidly decay into
charged leptons and neutrinos. Due to helicity suppression, two-body decays of π± and K±

favour the muon channel

π± → µ± +
(−)
νµ , (1.108)

K± → µ± +
(−)
νµ . (1.109)

The muon itself decays with a relatively longer lifetime releasing two neutrinos per decay:

µ+ → e+ + νe + νµ , (1.110)

µ− → e− + νe + νµ . (1.111)

At sufficient low energies around E . 1GeV, all of the muons decay before reaching the ground
and so the neutrino fluxes follow the proportions of neutrino flavours

φνe : φνµ = 1 : 2 , (1.112)

φνµ : φνµ = 1 : 1 , (1.113)

φνe : φνe = φµ+ : φµ− . (1.114)

At higher energies, the amount of muons hitting the ground before decaying increases, changing
the ratio between flavours. The energy range of primary cosmic rays goes from a few hundreds
of MeV up to about 1020 eV, as it is shown in Fig. 1.5. The isotropy in the angular distribution
of cosmic rays and their energies suggest that they are produced mostly outside the solar
system. Above a few GeV, the cosmic ray spectrum approximately follows E−2.7, apart in the
region between 1015.5 eV and 1017.7 eV where the behaviour is E−3.0∼−3.3 (knee). The maximum
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Figure 1.6: Prediction of atmospheric neutrinos created with a 3D simulation of Earth's atmosphere
and including geomagnetic e�ects. The �ux prediction (left) shows that the most probable energy for
electron neutrinos is around a few GeV, but for muon neutrinos goes up to hundred GeV. The ratio of
�avours is shown as a function of energy on the right. Taken from [44].

theoretical limit is near 1020 eV [41], after which the spectrum is suppressed because of the
interactions between cosmic rays and photons of the cosmic microwave background, known as
Greisen-Zatsepin-Kuzmin (GZK) cutoff [42, 43].

The neutrinos are produced isotropically around the atmosphere with energies up to a
few hundreds of TeV, peaking at tens of GeV, even though the energy distribution is flavour
dependent. Although the production point of neutrinos varies in altitude, with a most probable
value around 15 km, for an experiment on the Earth’s surface neutrinos are coming from all
directions with the flight path depending on the zenith angle to the origin. This means that
the distance travelled by atmospheric neutrinos varies from a minimum of a few kilometres to a
maximum equal to the Earth’s diameter, 1.2×104 km. It was observed by the Super-Kamiokande
experiment that the flavour ratio of atmospheric neutrinos from positive and negative zenith
angle were different, implying the presence of neutrino oscillation [45]. A correct prediction of
the atmospheric flux becomes instrumental when studying oscillation physics; computational-
intensive 3D simulations have reached state-of-the-art precision with negligible statistical errors
thanks to the implementation of geomagnetic models [44, 46]. The predictions of the model
used by the Super-Kamiokande experiment is shown in Fig. 1.6, thanks to which the evidence
of neutrino oscillation was confirmed.

1.3.3 Accelerator neutrinos

Atmospheric neutrinos provide an invaluable source for studying the properties of neutrinos,
such as the squared mass differences and the mixing angles. However, the uncertainty on the
path lengths of neutrinos from production to detection can downgrade the precision of the
measurement. Accelerator facilities try to overcome this limitation. Neutrino beams are derived
from a similar mechanism that generates atmospheric neutrinos. A proton beam directed on
a fixed target typically yields a large number of pions and kaons, but also heavier mesons the
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Figure 1.7: Prediction of the νµ (top) and νµ
(bottom) �uxes at the Booster Neutrino Beam.
The contributions from di�erent parent particles
are highlighted. Taken from Ref. [47].
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for the νµ disappearance probability (top). Taken
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amount of which depends on the energy of the protons and the choice of the target. All these
secondary particles decay leptonically or semileptonically via CC weak interactions thus creating
the neutrino beam. Pions and kaons principally decay into νµ because two-body electronic
modes are disfavoured by helicity suppression. Muons decay in turn into equal numbers of
νe and νµ. Other production sources of νe and νµ are the three-body decays of K0 and K+.
As an example, the parentage composition of the Booster Neutrino Beam flux [47] is shown
in Fig. 1.7, highlighting that pions are the main source of low energy neutrinos and kaons of
energetic ones. Above the neutral kaon mass, the first significant source of neutrino is given by
the D+

s meson, for which helicity suppression again favours the production of heavy charged-
leptons, and so τ leptons and ντ are more likely to be emitted than the other flavours. Each of
the subsequent τ+ decays produces a ντ . The production of charm mesons however requires a
very high energy proton beam and therefore for practical reasons this contribution is disregarded
in most experiments.

The energy and angular distributions of the neutrinos reflect the kinematic properties of the
parent particles, which are in turn produced with a variety of angles and energies. Given its
wide angular distribution, the neutrino beam may not give rise to the high statistics required
by typical long baseline oscillation experiments. To improve the quality of the beam, a focusing
system is typically put into place by partially surrounding the target with one or more pulsed
toroidal electromagnets, called horns. The horns are activated with pulsed currents of hundreds
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Figure 1.9: Generic CC (right) and NC (left) tree-level interactions with neutrinos involved. Note that
these diagrams have illustration purpose only, and time �ow convention is not respected.

of kiloampere for a few microseconds in coincidence with the proton beam arriving at the target.
Within the horn cavity, the pulse creates a magnetic field that decreases radially with respect
to the axis of the horn, meaning that the peak intensity of the magnetic field is reached at the
inner regions of the toroid. By changing the direction of the pulsed current it is possible to
select and focus particles of the desired charge. The configuration for which positively charged
pions are focused and negatively ones are rejected is referred to as Forward Horn Current (FHC)
and the resulting beam is mainly composed of neutrinos. With a Reverse Horn Current (RHC)
configuration, negative pions are selected and the beam is principally made of antineutrinos.
The two operation modes are also known as ν-mode and ν-mode. Despite the optimal design
of the horn, kaons and other short-lived mesons cannot be deflected as efficiently as pions and
muons, and therefore the neutrino beam always presents an intrinsic spread. In certain cases,
the neutrino experiment is located off the axis of the beam, as for the T2K [48] and NOνA [49]
experiments. The energy distribution of neutrinos emitted away from the beam axis loses some
dependency from the parent meson and the profile becomes approximately monochromatic [50].
This characteristic is favourable in oscillation experiment, in which the ratio between baseline
and neutrino energy should be fixed and known. In Fig. 1.8, the T2K flux prediction is shown
at different angles; with an off-axis angle of 2.5◦ the energy distribution is strongly peaked at
the minimum of the disappearance channel νµ → νµ.

1.4 Neutrino interactions

Neutrino interactions in their flavour states are described by Eqs. (1.15) and (1.16). Replac-
ing the values of gνV and gνA for a neutrino, the relevant Lagrangian terms are

LCC,ν = − g

2
√

2

∑
α=e,µ,τ

να /W (1− γ5)`α + h.c. , (1.115)

LNC,ν = − g

4 cosϑW

∑
α=e,µ,τ

να /Z(1− γ5)να . (1.116)

For energies below the W and Z mass, the allowed tree-level interactions involving at least one
neutrino are any allowed variation of the processes represented in Fig. 1.9. The vector bosons
cannot be produced on shell and so their field operator must contract with some other external
field. The amplitudes of the processes shown in Fig. 1.9 are

iMCC = i
g2

8
u`αγ

µ(1− γ5)uνα
ηµν

q2 −m2
W + iε

uf2γ
ν(1− γ5)V12 uf1 , (1.117)

iMNC = i
g2

8 cosϑ
uναγ

µ(1− γ5)uνα
ηµν

q2 −m2
Z + iε

ufγ
ν(gfV − g

f
Aγ

5)uf , (1.118)
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Figure 1.10: Behaviour of the neutrino�nucleus cross-sections for various targets, as a function of the
neutrino energy. The cross-sections for neutrino-induced neutrons (NIN), inverse beta decay (IBD), and
elastic scattering of νe on electrons are also shown for comparison. Taken from Ref. [51].

where k is the momentum of the propagator and V12 is a possible mixing between generic
fermions f1 and f2. Due to the typical energies involved, the momentum propagating between
the particles is small compared to the masses of the intermediate bosons and therefore their
mass can be factorised out, resulting in the four-point interactions

iMCC ' i
G2
F√
2
u`αγ

µ(1− γ5)uνα uf2γ
µ(1− γ5)V12 uf1 , (1.119)

iMNC ' i
G2
F√
2
uναγ

µ(1− γ5)uνα ufγ
µ(gfV − g

f
Aγ

5)uf , (1.120)

where the relation in Eq. (1.29) was used and a new constant was introduced

GF√
2

=
g2

8m2
W

. (1.121)

The constant GF = 1.166 378 7× 10−5 GeV−2 in Eq. (1.121) is called Fermi’s constant and it is
obtain from measuring the muon lifetime [15].

In the following sections the most important neutrino interactions with matter are reviewed,
from low to high energies.

1.4.1 Coherent elastic neutrino�nucleus scattering

The neutrino coupling to the Z boson opens the possibility of a coherent interactions with all
the nucleons in an atomic nucleus, if the momentum exchange q2 is significantly small [52]. This
interaction is called coherent elastic neutrino–nucleus scattering, or “CEνNS”. The coherence
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condition corresponds to target nucleons in phase with each other when q2 . 1/R2, where R is
the size of the nucleus. This restricts the process to energies below a few tens of MeV. However,
the probability of interaction scales with the square nuclear mass, enhancing at low energies
the cross-section with respect to the interaction with individual nucleons. This is depicted in
Fig. 1.10 where the CEνNS cross-section for a few different nuclear species is shown as a function
of neutrino energy.

The signature of this reaction is a recoil of the target nucleus, since low-energy neutrinos are
not easily detected. The differential cross-section with respect to the recoil energy T reads [52,
53]

dσ

dT
=
G2
F

2π
M

[
(GV +GA)2 + (GV −GA)2

(
1− T

E

)2

− (G2
V −G2

A)
M T

E2

]
, (1.122)

where M is the mass of the target, E the energy of the incoming neutrino and

GV =
[
gpV Z + gnV N

]
FV (q2) (1.123)

GA =
[
gpA (Z+ − Z−) + gnA (N+ −N−)

]
FA(q2) . (1.124)

The vector and axial coupling constants for protons and neutrons are

gpV =
1

2
− 2 sin2 ϑW , gpA =

1

2
,

gnV = −1

2
, gnA = −1

2
.

(1.125)

Z± and N± are respectively the number of protons and neutrons with spin up or spin down,
and FV (q2) and FA(q2) are the vector and axial nuclear form factors. The vector contribution
dominates strongly for most nuclei, whereas the axial term shows an effect only on unpaired
nucleons, which are typically just a few compared to the total number of nucleons or none for
spin-zero nuclei. Neglecting the axial form factor, the cross-section for a small recoil T . E
simplifies to

dσ

dT
'
G2
F

8π
MF 2(q2)

[
N + (4 sin2 ϑW − 1)Z

]2(
2− MT

E2

)
. (1.126)

The angular dependence of the scattering is then

dσ

d cos θ
'
G2
F

8π

[
N + (4 sin2 ϑW − 1)Z

]2
E(1 + cos θ) . (1.127)

Since sin2 ϑW = 0.231, the CEνNS cross-section is strongly dependent on the squared number
of neutrons N , with just a little contribution from the squared atomic number Z.

For heavy nuclei and sufficiently intense neutrino sources, the measurement of CEνNS can be
achieved using relatively small active volumes. This was first demonstrated by the COHERENT
collaboration [54] which successfully observed the coherent scattering for the first time using
a 14.57 kg CsI[Na] scintillating crystal and collecting 1.76 × 1023 protons on target [51]. The
measurement of CEνNS is of utter importance for direct dark matter experiments, since the
so-called neutrino floor is due to CEνNS interactions of solar and atmospheric neutrinos. This
scattering also presents a chance for significant tests of the SM or searches of new physics, like
nonstandard neutrino interactions and the dark sector [55] (see also Ref. [56]).
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1.4.2 Neutrino�electron scattering

The easiest interaction to study between neutrinos and matter components at low energies
is the neutrino–electron elastic scattering

(−)
ν α + e− →

(−)
ν α + e− . (1.128)

Using the effective four-point amplitudes of Eq. (1.120), one can calculate the differential cross-
sections in the laboratory frame with an initial electron at rest:

dσ

dq2
=
G2
F

π

[
κ2

1 + κ2
2

(
1− q2

2 (pν · pe)

)2

− κ1 κ2m
2
e

q2

2 (pν · pe)2

]
. (1.129)

The quantities κ1 and κ2 depend on the neutrino flavour and embeds CC and NC contributions;
they are expressed in terms of the vector and axial coupling of Eq. (1.18) and they read

κνe1 = κνe2 = 1 +
g`V + g`A

2
=

1

2
+ sin2 ϑW , (1.130)

κνe2 = κνe1 =
g`V − g`A

2
= sin2 ϑW , (1.131)

κ
νµ,τ
1 = κ

νµ,τ
2 =

g`V + g`A
2

= −1

2
+ sin2 ϑW , (1.132)

κ
νµ,τ
2 = κ

νµ,τ
1 =

g`V − g`A
2

= sin2 ϑW . (1.133)

The quantity q2 is the transfer momentum between the initial and final electrons. Denoting
Te = Ee −me as the kinetic energy of the outgoing electron, it follows that

q2 = 2me Te . (1.134)

With some kinematics, the kinetic energy is found to be

Te =
2meE

2
ν cos2 θ

(me + Eν)2 − E2
ν cos2 θ

, (1.135)

which has a maximum value when the neutrino is not deviated in the scattering, i.e. cos θ = 1,
and it equates

Tmax
e =

2E2
ν

me + 2Eν
. (1.136)

The differential cross-section in Eq. (1.129) can be given as a function of the electron scattering
angle θ with respect to the incoming neutrino with energy Eν

dσ

d cos θ
=

2G2
Fme

π

4E2
ν(me + Eν)2 cos θ

[(me + Eν)2 − E2
ν cos2 θ]2

×[
g2

1 + g2
2

(
1− 2meEν cos2 θ

(me + Eν)2 − E2
ν cos2 θ

)2

− 2m2
e cos2 θ g1 g2

(me + Eν)2 − E2
ν cos2 θ

]
. (1.137)

For the electron neutrino νe, both CC and NC interactions are allowed and for the electron
antineutrino νe the s-channel and t-channel diagrams are swapped, whereas for α = µ, τ only
neutral-current interactions exist. It results that the total cross-section for νe, νµ,τ , and νµ,τ
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are approximately and respectively 42%, 16%, and 14% of the total cross-section of electron
neutrinos, which goes for

√
s� me as

σνe ' 93× 10−46 cm2 s

MeV2 . (1.138)

The proportions between these interaction probabilities have been an important discriminant
for the SNO and SK experiments [57] in solving the solar neutrino problem (see Section 1.3.1),
since the rate of neutrino–electron scattering is related to the neutrino flavour.

1.4.3 Neutrino scattering with nucleons

At higher energies, the dominant neutrino interaction mode is with nucleons in matter,
thanks to the W and Z couplings of the quark components and the currents of Eqs. (1.38)
and (1.39). In general, these processes can be categorised according to the momentum transfer.
For q2 . mN , elastic interactions dominate and are brought about by neutral currents. When
this occurs via neutral currents, all flavour of neutrinos and antineutrinos can scatter off both
neutrons and protons in what is referred to as “NC elastic” (NCE) scattering. The process is
the same for neutrinos and antineutrinos

να +N → να +N or ν̄α +N → ν̄α +N . (1.139)

Once neutrinos acquire sufficient energy they can also undergo the analogous charged current
counterpart, called “quasi-elastic” (CCQE) interaction, due to the fact that the recoiling nucleon
changes its charge and mass transfer occurs. The allowed processes are

να + n→ p+ `−α and ν̄α + p→ n+ `+α , (1.140)

with α = e, µ, τ . The process for νe is historically referred to as inverse beta decay (IBD) and it
is the principal mode of detection of electron antineutrinos [58]. The differential cross-sections
for the CCQE scattering in the laboratory frame are given by

dσCC
dq2

=
G2
F |Vud|2m4

N

8π (pν · pN )2

[
A(q2)±B(q2)

s− u
m2
N

+ C(q2)
(s− u)2

m4
N

]
, (1.141)

dσCC
d cos θ

= −
G2
F |Vud|2m2

N

4π

pl
Eν

[
A(q2)±B(q2)

s− u
m2
N

+ C(q2)
(s− u)2

m4
N

]
, (1.142)

where N denotes the nucleon and the plus sign refers to N = n and the minus sign to N = p.
The functions A(q2), B(q2), and C(q2) for the charged-current process are:

A(q2) =
m2
l + q2

m2
N

{(
1 +

q2

4m2
N

)
G2
A −

(
1− q2

4m2
N

)(
F 2

1 −
q2

4m2
N

F 2
2

)
+

q2

m2
N

F1 F2

−
m2
l

4m2
N

[
(F1 + F2)2 + (GA + 2GP )2 − 1

4

(
1 +

q2

4m2
N

)
G2
P

]}
, (1.143)

B(q2) =
q2

m2
N

GA (F1 + F2) , (1.144)

C(q2) =
1

4

(
G2
A + F 2

1 +
q2

4m2
N

F 2
2

)
. (1.145)

The terms F1, F2, GA, and GP are form factors and are functions of q2. The nucleon form
factors F1 = F p1 − Fn1 , F2 = F p2 − Fn2 are known respectively as Dirac and Pauli form factors.
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Figure 1.11: Total neutrino (left) and antineutrino (right) cross-section measurements and predictions
for an isoscalar target as a function of energy. The contributions from quasi-elastic (QE, red), resonance
(RES, blue), and deep-inelastic scattering (DIS, green) are highlighted. Resonant modes only give a
substantial contribution in a small energy region between 1GeV and 10GeV, explaining the di�culty in
constraining theoretical models. Taken from Ref. [60].

For q2 = 0, they simplify to

F p1 (0) = 1 , Fn1 (0) = 0 ,

F p2 (0) =
2mp µp
e~

− 1 , Fn2 =
2mp µn
e~

,
(1.146)

where µp and µn are the proton and neutron magnetic momenta. For q2 6= 0 they are more
conveniently described by the Sachs electric and magnetic momenta [59]. The pseudoscalar
form factor GP is usually ignored in cross-section calculations, whereas the axial form factor is
parameterised as

GA(q2) =
gA(

1 +
q2

m2
A

)2 . (1.147)

All the form factors are usually fitted from data of neutrino experiments since they give non-
negligible contributions to the systematic uncertainties, particularly the axial mass mA which
is arbitrarily assumed to be mA = 1.0GeV in many neutrino event generators. The NCE cross-
section has the same structure as in Eqs. (1.141) and (1.142), apart from the mixing term |Vud|2
and the corresponding neutral-current form factors

FN1,2 = ±1

2
(F p1,2 − F

n
1,2)− 2 sin2 ϑWF

N
1,2 −

1

2
FN1,2 , (1.148)

where the plus sign is for N = p and the minus sign for N = n.
CCQE interactions are of vital importance for neutrino physics, because the measurement

of its differential cross-section give precious information on the nucleon form-factors which are
difficult to measure with a different probe. Also, the two-body nature of the interactions is such
that the kinematic properties of the incoming neutrino can be determined with good precision.
This is relevant especially for oscillation experiments, in which the energy of the neutrino can be
estimated from the momentum of the outgoing charge lepton p` and its angle with the direction
of the incoming neutrino θ`, if known. If the target nucleon is at rest compared to the neutrino
energy, then this can be calculated as:

Eν =
mnE` + 1

2

(
m2
p −m2

n −m2
` )

mn − E` + p` cos θ`
. (1.149)
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The neutrino–hadron cross-sections as a function of energy are shown in Fig. 1.11. The QE
cross-section drops for neutrino energies above 1GeV as the available q2 increases. At energies
between 1GeV . Eν . 10GeV, processes such as multinucleon emission or baryon resonance
become relevant. Correlated pairs of nucleons inside the nucleus can be simultaneously ejected,
in the so-called 2p-2h interactions, or the nucleon itself can excite into a baryonic resonance
before decaying and emitting a charged or a neutral pion. There are many theoretical mod-
els explaining these multibody interactions [61–63], and neutrino interaction generators, like
GENIE [64] or NEUT [65], often implement more than one. The determination of the correct
paradigm is a hard task, due to the difficulty of the measurement of resonant modes. In fact,
at q2 � mn or for Eν & 50GeV, deep inelastic scattering (DIS) is the dominant mode since
the neutrino has enough energy to scatter directly off a constituent quark and to fragment the
original nucleon.
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Chapter 2

The future of Super-Kamiokande

The typical total cross-section for an accelerator neutrino (Eν ∼ 1GeV) is of the order
of 10−38 cm2 and for a solar neutrino (Eν . 10MeV) it is roughly one order of magnitude
lower, as it can be evinced from Figs. 1.10 and 1.11. These small values make the detection of
neutrinos a challenging task. Neutrino experiments usually compensate the small cross-section
by instrumenting large active volumes, so that a statistically significant amount of neutrino
interactions with matter can be recorded. By studying final-state particles some knowledge on
the incoming neutrino may be retrieved. Large volumes however are prone to intense background
too, either from cosmic rays or natural radioactivity. Passive or active techniques to reduce such
undesired events must be therefore put into place. Neutrino physics has greatly progressed in
recent times thanks to both massive detectors and improvements in detection technologies. The
most emblematic examples of neutrino experiments are Sudbury Neutrino Observatory (SNO)
and Super-Kamiokande (SK) which respectively demonstrated solar [30] and atmospheric [45]
neutrino oscillations. The picture of three-flavour neutrino oscillations has since been studied
in depth by numerous experiments with not only atmospheric and solar neutrinos, but also
with neutrinos from reactor and accelerator facilities. Current and future neutrino experiments
rely on the experimental techniques that were pioneered and perfected by these two successful
experiments.

SK and SNO are both Cherenkov detectors, in which a large body of water—heavy water
in the case of SNO—is surrounded by photodetectors to capture Cherenkov radiation emitted
by the charged leptons produced in neutrino CC and NC interactions. The volumes of SNO
and SK are located in mines so as to take advantage of the thick rock overburden, which acts
as a passive shield to cosmic muons. An outer detector system provides a passive and active
veto to the fiducial region of both experiments. These simple measures are responsible for the
suppression of the majority of backgrounds. However, backgrounds from atmospheric neutrino
interactions with or without neutron emission together with β-decay from spallation events
induced by cosmic rays are more difficult to control. These events can generate electrons or
positrons that pass the selection criteria and so contaminate candidate samples of CC quasi-
elastic events (CCQE, see Section 1.4.3) much needed for oscillation studies [66, 67]. The
neutrons emitted in antineutrino CCQE interactions could be used to discriminate such events.
As we are entering a precision era for neutrino experiments, the capability of detecting neutrons
in signal and background events is in fact becoming a crucial requisite especially for detectors
studying solar, supernova, or reactor neutrinos. One of the most promising approaches is the
addition of gadolinium to the active medium of the detector. Certain isotopes of Gd have a very
high cross-section for neutron capture accompanied with the emission of high energy photons
which makes neutron detection more efficient. Many existing neutrino experiments are already
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using Gd-loaded water or Gd-loaded scintillator for neutron tagging, such as EGADS [68],
ANNIE [69], and RENO [70], and future experiments are planning to adopt the same approach.

In the next phase of SK, hundred tons of gadolinium sulphate will be dissolved in water,
making Super-Kamiokande the largest Gd-doped water Cherenkov detector. The benefits and
challenges of this technique are extensively covered in this chapter, after a review of the working
principle of a generic Cherenkov detector in Section 2.1 and the theory of neutron thermalisation
and neutron capture in Section 2.2. The Super-Kamiokande experiment is briefly introduced
in Section 2.3, with an emphasis on the techniques currently in place to control backgrounds,
searches limited by irreducible background, and the improvements provisioned by the gadolinium
phase of SK. The neutron calibration procedure of the detector is explained in Section 2.4 and
a promising substitute for the neutron calibration device is there introduced. Finally, a novel
technique to monitor gadolinium concentration in water using UV spectroscopy is presented in
Section 2.5 and the first laboratory results are reported.

2.1 Cherenkov detectors

Light travelling through a transparent material undergoes a reduction of its phase velocity
due to a superposition with the electromagnetic fields of the electrons in the medium. The
change in velocity will therefore depend on the frequency of the incoming photons. The ratio
of the new phase velocity and the speed of light in vacuum defines the refractive index of the
material

n(λ) =
c

vP (λ)
, (2.1)

which is greater than one by definition.
A charged particle moving at a velocity faster than the speed of light in a medium emits

a coherent electromagnetic radiation, called Cherenkov radiation. Provided that the distance
covered by the particle in the medium is large compared to the emitted wavelength, the radiation
is produced when [71]

β ≡ v

c
>

1

n
, (2.2)

where v is the velocity of the particle. The minimum energy of the particle to reach this
condition is therefore

Ethr = m

√
1 +

1

n2 − 1
, (2.3)

with m the mass of the charged particle. As the particle is moving faster than c/n, the wave
front of the EM radiation forms a cone which follows the charged particle. The angular aperture
θ of such cone is given by

cos θ =
1

nβ
. (2.4)

The maximum angle is reached by ultrarelativistic particles for which β ' 1. The charged
particle, however, will progressively lose kinetic energy in the medium due to ionisation, slowing
down until its energy falls below the threshold Ethr. As soon as the condition of Eq. (2.2) does
not hold anymore, the particle stops emitting radiation and the cone of light reduces to a
truncated cone which forms a ring when projected onto a surface.

Many particle physics experiments take advantage of this effect, in order to convert the
passage of charged particles into detectable light. A volume of transparent material, such as
water, ice, or aerogel, can be instrumented with photodetectors to capture Cherenkov radia-
tion. Liquid scintillators are also employed in such detectors despite not being transparent to
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the radiation: most scintillators absorb the Cherenkov light and re-emit it isotropically at a dif-
ferent wavelength, therefore loosing the information on directionality. The number of photons
emitted by a charged particle of charge z per unit path length and per unit energy interval, or
equivalently to the wavelength λ, has a distribution that follows the Frank-Tamm formula [72]

∂2N

∂x∂λ
=

2π α z2

λ2

(
1− 1

β2n2(λ)

)
=

2π α z2

λ2
sin2 θ , (2.5)

where α is the fine structure constant and z is the charge of the particle. Due to the inverse
dependence on λ2, most of the Cherenkov photons are emitted at shorter wavelengths. However,
a real medium is always dispersive and allowed frequencies are restricted to the region for which
n(λ) > 1/β . The radiation is hence typically emitted in the near visible and ultraviolet regions
of the EM spectrum. At higher frequencies, for example in the x-ray region, the refractive
index drops below one and Cherenkov photons cannot be produced at these shorter wavelengths.
Experiments exploiting the Cherenkov effect try to match the sensitivity band of photodetectors
to the radiation region. Photomultipliers (PMT) are the detectors of choice, thanks to their
low noise and capability of single photodetection, but microchannel plates (MCP) and silicon
photomultipliers (SiPM) are used too (see e.g. [73]). This technique is largely used in neutrino
detection, since it easily allows to transform large volumes of some transparent or scintillating
medium into a detector sensitive to charged particles. Amongst the most notable examples, the
IceCube experiment is the largest Cherenkov detector [74], in which more than five thousands
PMTs are deployed into the Antarctic ice, covering a volume of one cubic kilometre.

Charged-current interactions of neutrinos on a nucleon produce charged leptons that are
likely to acquire most of the incoming neutrino momentum thanks to the heavy mass of the
nucleon. If the energy of the outgoing lepton is above the threshold of Eq. (2.3), the emitted
radiation can be collected and used to reconstruct the interacting neutrino’s properties, with
some limited resolution (see Eq. (1.149)). The photons collected on the light sensors are cor-
related to the particle’s energy, whereas the location and timing of the hit photodetectors is
used to reconstruct the vertex and the direction of the interaction. The directionality infor-
mation is lost in scintillator Cherenkov detectors, because scintillating materials typically emit
light isotropically. The topology and pattern of the radiation collected are often used for event
classification; a precise particle identification is possible in some cases, such as in SK which is
discussed in Section 2.3.

2.2 Neutron thermalisation and neutron capture

Neutrons have a very long lifetime and since they cannot directly emit Cherenkov radiation
they can travel quite some distance from their production point without being detected. Neu-
trons interact with nuclei in various ways, depending on their energy and the target nucleus.
The interactions are divided in three typologies: scatterings, which can be elastic or inelastic,
absorptions, such as radiative capture or fission, and nucleon transfer reactions. The kinetic
energy of the neutron T , sometimes referred to as the detection temperature, is the main factor
in determining the dominant interaction mode. For fast neutrons, with T > 1MeV, elastic
scattering is the prevailing process and for some target nuclei the only mode possible. The
cross-section for these energetic neutrons present some resonance peaks the structure of which
depends on the target nuclei. The elastic scattering cross-section at energies below 1MeV is
almost independent of the neutron energy. This is true for most light isotopes, but some in-
termediate and heavy elements present specific behaviours at higher energy. Neutrons with a
kinetic energy T ' 0.025 eV are called thermal neutrons because a Maxwell-Boltzmann distribu-
tion at the temperature of 290K peaks at that energy; such neutrons are in thermal equilibrium
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with the surrounding medium. At thermal energies and below, the most important interaction
is neutron absorption, the cross-section of which follows the “1/v law”, with v being the veloc-
ity of the neutron. In this region, the absorption cross-section increases as the velocity of the
neutron, i.e. its temperature, decreases:

σ ∼ 1

v
∼ 1

T
. (2.6)

Being in thermal equilibrium and having a lower kinetic energy allows the neutron to form
a compound nucleus with the target, which might undergo spontaneous fission or radiation
emission if it is a nonfissile nuclide. For energies between a few eV and hundreds of keV there
are resonances in the capture cross-section which are strongly dependent on the target isotope,
but also on the temperature of the material. In fact, the thermal motions of the target relative
to the incident neutron broadens the resonance peaks, even though the integrated cross-section
over the energy range remains constant. This effect is called Doppler broadening and results
in a decreased likelihood of capture or fission when the target material has a wide energy
distribution.

Fast neutrons slow down to thermal energies via subsequent elastic collisions until the free
neutron is captured by some nucleus: this process is called thermalisation. Considering a
scattering between a neutron and a nucleus,

n+A→ n+A , (2.7)

the final state energy of the neutron depends on the outgoing angle θ̂ in the centre of mass
frame [75]

Ef = Ei
(1 + ζ) + (1− ζ) cos θ̂

2
, (2.8)

where Ei,f are the initial and final energies of the free neutron. The kinematic factor ζ is defined
as

ζ =
(mn −MA)2

(mn +MA)2
' (1−A)2

(1 +A)2
, (2.9)

where mn is the neutron mass, MA ≈ Amn is the mass of the nucleon and A the mass number.
Using classic mechanics, the scattering angle θ in the laboratory frame is given by

cos θ =
A cos θ̂ + 1√

1 + 2A cos θ̂ +A2
, (2.10)

and the average scattering angle can be therefore estimated as

〈cos θ〉 =

∫
dΩ cos θ∫

dΩ

=
2

3A
. (2.11)

On average, heavy targets will modify the neutron’s path more significantly than light ones. For
hydrogen (A = 1), the average angle is 〈θ〉 ' 48◦, but for heavier elements with large atomic
mass the average angle 〈θ〉 → 90◦. Assuming uniform isotropic scattering, the average outgoing
energy for the neutron is

〈Ef〉 =

∫
dΩEf∫

dΩ

= Ei
1 + ζ

2
. (2.12)
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This means that if each collision decreases the neutron energy by the same factor as in Eq. (2.12),
after n interactions the neutron energy is

En = E0

(
1 + ζ

2

)n
= E0 e

−nξ . (2.13)

The thermalisation process follows an exponential law and ξ represents the typical energy de-
crease in log-scale which on average equals to [75]

〈ξ〉 =

∫
dΩ log

(
Ei
Ef

)
∫

dΩ

=
ζ − ζ log ζ − 1

ζ − 1
= 1 +

(A− 1)2

2A
log

A− 1

A+ 1
. (2.14)

The average number of collisions a neutron undergoes when propagating in a medium can be
then computed with the above expression. Lighter nuclides turn out to be more effective at
slowing down neutrons than heavier ones due to the A-dependency of ξ. For example, the
number of interactions necessary for a fast neutron to decelerate to thermal energies in lead
(A = 208) is about hundred times the number of interactions that would occur in hydrogen. In
most cases, the media in which neutrons propagate are compounds with more than one type
of target. The energy decrease for these materials is an average of the individual components
weighted by their respective elastic cross-sections [75]

ξtot(E) =

∑
k σk(E)ξk(E)∑

k σk(E)
. (2.15)

In this simplified scenario, the impact of resonance capture has been overlooked which is only
manifest at around the keV energy range. While fast neutrons with energies above 1MeV are
being slowed down to thermal energies, the mean free path decreases with the neutron’s velocity
and the likelihood of resonance capture increases. These captures affect the relative neutron flux
around the energy of the resonance peaks, which might be widened by the Doppler broadening
effect.

2.3 The Super-Kamiokande experiment

The Super-Kamiokande experiment (SK) [76] is a water Cherenkov detector, located in the
Kamioka mine, under Mt. Ikeno in the Gifu prefecture, Japan. A schematic of the cavern is
shown in Fig. 2.1. The rock overburden of roughly 1000m (2700m.w.e.), shields very efficiently
the experiment and only cosmic rays with energies above 1.3TeV can reach the detector: the
muon flux at SK is about 6× 10−8 cm-2s-1sr-1, which translates to a rate of 2Hz in the fiducial
volume. The detector consists of a cylindrical stainless steel tank, with a height of 41.4m and a
diameter of 39.3m, and it is filled with 50 kt of ultra pure water. The water region is separated
in two concentric cylindrical regions, called the inner detector (ID, 33.8m in diameter) and
the outer detector (OD), the latter working as a passive and active veto. The two regions are
separated by a 55 cm insensitive region containing the support structure for the PMTs and
their cables. The ID is instrumented with 11 129 20” Hamamatsu R3600 PMTs, facing towards
the inside of the tank. Since the 2001 implosion accident, the photocathode of each PMT is
protected by UV–transparent acrylic domes and the side of the tube with fibre-reinforced plastic.
The photocoverage of the inner surface is around 40%; the remaining surface not occupied by
a PMT is lined with black sheet to reduce light reflection. The main goal of the OD is to tag
events originating or finishing outside the ID. The only signal events that can originate inside
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Figure 2.1: Cut-open view (left) of the Super-Kamiokande detector in Kamioka mine, located at the
centre of Mt. Ikeno. On the right, a wide-angle picture of the inside of the tank; each golden bulb is a
20� PMT.

the ID without triggering the OD are neutrino or proton decay events. The OD is instrumented
with 1885 8” Hamamatsu R1408 PMTs which are optically coupled to wavelength shifting plates
to increase light collection. Sheets of white tyvek maximise the propagation of photons inside
the OD and help the reconstruction of events occurring at the edges of the cylinder tank, also
known as corner-clipping events.

The refractive index of water in the visible and ultraviolet region is n ≥ 1.33, and so a
charged particle can emit Cherenkov radiation if it is travelling with speed β & 0.75. This
translates to an energy threshold of 0.78MeV for electrons, 160.26MeV for muons, 211.69MeV
for pions, and 1423.13MeV for protons, which are the particles usually detected in SK. The
Cherenkov photons, thanks to the high-purity water, reach the walls of the tank forming ring
patterns which are recorded by the PMTs. From the charge deposited on the photodetectors
and the time information, the event reconstruction algorithm estimates the interaction vertex,
the direction and the energy of the incoming particle. The same algorithm performs particle
identification by looking at the topology and the multiplicity of the ring patterns. For example,
an electron travelling in the water is more likely to be scattered compared to a muon which, on
the other hand, will follow a straighter path: the electron-induced ring is therefore less defined
and fuzzier than the muon-induced one. This can be appreciated from the reconstructed events
of Fig. 2.2 showing an electron-like and a muon-like ring originated from neutrino interactions.
Pions usually interact hadronically with oxygen nuclei and the high cross-section does not allow
long tracks; their Cherenkov rings are also less defined than the muon ones. Muon and pion
events can be accompanied by secondary rings from the electrons produced in their decays.
Energetic gamma rays can also be detected, as for instance the ones from π0 decays, thanks to
the rings produced by Compton-scattered or pair-produced electrons.

2.3.1 Background control

As part of the strategies to tackle backgrounds, only events originating at the centre of the
ID are considered to be valid neutrino interactions. The materials of the walls of the tank, and
particularly the glass of the PMTs, contain radioactive material, such as isotopes of thorium,
uranium and potassium. These impurities can mimic a signal event in the MeV energy region,
crucial for solar neutrino studies. The selection algorithm in most of the SK analyses simply
discards any reconstructed event with the interaction vertex less than 200 cm away from the ID
walls. This criterion defines a fiducial volume (FV) which is around 22.5 kt in water mass. The
water used to fill the tank may also contain impurities that cause background events, among
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Figure 2.2: Reconstructed fully-contained events in the �ducial volume of Super-Kamiokande. Electron
rings (left) are less de�ned than muon ones (right) because they are scattered more along their path.
The developed cylinders on the top right of each �gure show the outer detector hits. The histograms on
the bottom right corners are the time distributions of the events.

which radon. Thus, the water in the tank is continuously filtered at a flow rate of 60 t/hour
by a water purification system (see Section 2.3.2). An air purification system pumps radon-free
air into the SK area inside the mine so that the amount of radon that dissolves into the water
system is reduced. The level of contamination reached is usually less than 3mBq/m3. As a
comparison, unpurified air can peak at about 1200Bq/m3. Thanks to these precautions and
state-of-the-art electronics [77], the current energy threshold for SK is 3.5MeV.

Super-Kamiokande has provided much evidence in the experimental understanding of neu-
trinos, be it originated in solar, atmospheric, or accelerator facilities. Despite the large exposure
of the experiment and excellent background control, some studies are still curbed by statistical
uncertainty and would benefit from simply collecting more data. Other searches, instead, suffer
from irreducible background events, as for example the detection of Supernova Relic Neutrinos
(SRNs), an incoherent background spectrum produced from all previous core-collapse super-
nova explosions in the Universe (see Section 1.3.1). The observation of SRNs would be of great
importance for improving our knowledge on the population of core-collapse SNe and the rate of
star formation. The average energies of these neutrinos are around a few tens of MeV, at which
the largest cross-section corresponds to inverse beta decay (IBD, see Fig. 1.4.3). For energies be-
tween 14MeV < Eν < 30MeV, this measurement is afflicted by nonrelativistic muons produced
by atmospheric neutrinos which are below Cherenkov threshold and decay into electrons, known
as invisible muon decays [78]. At lower energies, the dominant backgrounds between 10MeV
and 18MeV are decays of muon-induced spallation products [79], and below 10MeV interactions
from reactor neutrinos. No SRN has been detected yet [66, 80], but theoretical predictions place
the diffuse supernova neutrino background flux (DSNB, see Section 1.3.1) within a factor of four
below the upper limit obtained by SK in 2003 [81, 82]. Even though a more recent and detailed
analysis with increased efficiency, lower energy threshold, and expanded statistics revealed less
stringent limits [80], neutron tagging capabilities could reduce the invisible muon background
by a factor of five and remove the spallation background; this could lead to the detection of the
DSNB for the first time [83].

Searches of galactic supernova bursts could also avail of an improved background suppres-
sion. SK will be exposed to a huge number of neutrino events if a core-collapse supernova occurs
inside our galaxy. Such an event would provide not only an early warning system for other ob-
servatories, but also information about the neutrino spectrum, time profile, and information
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Figure 2.3: Estimated dependency of neutron
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Figure 2.4: Schematic of the band-pass �ltration
system and the fast recirculation loop in EGADS,
where the main components of the system are
highlighted: anion-exchange resins (AE), ultraviolet
lamp (UV), total organic compound lamp (TOC),
deionising system (DI), reverse osmosis stage (RO).
See text and Ref. [68] for details.

about early stages of the core-collapse process, like pre-supernova neutrinos from the silicon
burning phase [84]. A sizeable amount of the neutrinos emitted are actually antineutrinos in
the energies where the IBD cross-section dominates. Detecting the neutron in the final state is
fundamental for distinguishing whether the incoming particle is a neutrino or an antineutrino.
Improved neutron tagging also helps to understand atmospheric and accelerator neutrino inter-
actions and final states. The possibility of separating neutrinos and antineutrinos can at least
raise the data of antineutrino events. At energies Eν > 1GeV, the number of CCQE interactions
decreases and often additional neutrons from 2p-2h interactions or pions from baryon resonance
are also released in the scattering process. The possibility of detecting such multiple nucleon
emission can improve the purity of CCQE samples. Finally, neutron-induced background in
proton decay searches can be reduced, since most channels do not require neutrons to appear
in the final state.

2.3.2 The gadolinium phase of Super-Kamiokande

Gadolinium-157 has the highest thermal neutron capture cross-section amongst any stable
nuclides. It is estimated to be 2.537 × 105 b and its natural abundance is around 15.65%.
Another isotope of gadolinium with similar abundance is 155Gd, at 14.80%, which also presents
a very high neutron capture cross-section 6.074 × 104 b. Dissolving gadolinium compounds in
water could therefore considerably increases the neutron capture probability, as proposed for
the first time in Ref. [85]. Gd-doped water enhances the capture cross-section, with an effective
cross-section of 49 × 103 b for a 0.2% concentration, compared to pure water with ∼0.3 b on
a free proton. Upon capturing a neutron, the Gd nucleus emits three to four gamma rays
having a total energy of about 8MeV. Such energetic photons can produce Cherenkov light
via Compton-scattering and therefore they can be reliably detected in a large detector volume.
The neutron in gadolinium-loaded water thermalises more quickly than in just pure water, with
a characteristic time of ∼30 µs, and it can be captured by a Gd nucleus with an estimated
efficiency of 90% [85] for a 0.2% Gd solution. The efficiency dependency on the concentration
is shown in Fig. 2.3.
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In the next phase of the Super-Kamiokande experiment, called SK-Gd, a gadolinium salt
compound will be dissolved in the detector to improve the ability to identify neutrons. The
gadolinium phase is supposed to start in late 2020. This will be possible thanks to extensive
R&D performed by the EGADS experiment [68]. In Ref. [85], gadolinium trichloride GdCl3 was
proposed, but the current full-scale plan for SK and EGADS has settled on using gadolinium
sulphate Gd2(SO4)3. This choice was determined by a few requirements by which a Gd com-
pound candidate must comply. In addition to the aforementioned salts, a third option could
have been gadolinium nitrate Gd(NO3)3. The candidate compound must be water soluble, also
in large amounts, but all of the three gadolinium salts easily dissolve in water. If used in very
large quantities, as it will be for SK-Gd, the compound must be safe for the detectors compo-
nents and it should be nontoxic. None of the above salts are toxic, but GdCl3 is corrosive and
not suitable for a full scale test. Soak tests in a Gd solution at 25◦C showed that the rubber
friction pads used to hold the inner detector PMTs are susceptible to the sulphate, even though
they seem to be affected also by pure water. In over twenty years of operation of SK, the effect
has never been noticed, meaning the filtration system removes the impurities from this material
with great success. Taking into account the different scales between the detector and the test
and that the typical temperature of the water in SK is around 13◦C, the case was deemed not to
be a potential problem. It is also necessary that the gadolinium solution maintains a high level
of optical transparency, so that optical photons of Cherenkov radiation can propagate inside the
tank without attenuation. The Gd(NO3)3 is opaque in the UV region of the electromagnetic
spectrum, for wavelengths less than 350 nm, and this unfortunately is where a large fraction
of Cherenkov light is detected by SK PMTs. This left Gd2(SO4)3 as the only choice possible,
having good transparency in the UV and optical regions.

The most challenging aspect of a gadolinium-loaded water Cherenkov detector is the fil-
tration system. The SK water purification system produces ultra pure water, close to the
theoretical maximum, with a resistivity around 18MΩ·cm. This high purity is achieved thanks
to several filtration stages, including microfilters, ultrafilters discarding particles with a size less
than 0.1 µm, UV lamps for bacterial growth, reverse osmosis, vacuum and membrane degasi-
fier, and anion-exchange resins. The current process, without modifications, would completely
remove the dissolved gadolinium. Therefore, in order to keep good water quality and high trans-
parency, it is necessary to adapt the purification system such that it can remove all impurities,
ions included, except Gd3+ and its anionic partner (SO4)2-. A new filtration system, called
“band-pass filtration system”, has been devised for EGADS and runs in parallel to the fast-
recirculation loop [68]. The schematic is illustrated in Fig. 2.4. The water from the Cherenkov
tank is first cleaned by microfilters and UV light. The Gd solution is then cooled down, as the
sulphate dissolves better at lower temperatures before passing through an ultafilter. At this
stage, a series of nanofilters splits up the water line into Gd-enriched water and water with less
than one part-per-million of gadolinium. The concentrated line goes directly back to a buffer
collection tank, whereas the gadolinium-free line is first cleaned by deionisation and reverse
osmosis. In the collection tank, dissolved air is removed by a membrane degasifier and resins
are used for the final purification. After full loading up to a concentration of 0.2% of Gd, the
water transparency in EGADS is found to be within typical SK values thanks to the water
filtration system which can maintain good water quality and minimise gadolinium losses.

The water system for the gadolinium phase of SK will be essentially a scaled version of the
EGADS filtration system. During the first stage, a solution of 0.02% in Gd2(SO4)3 mass will
be loaded in SK; it will be progressively increased up to 0.2% after the first commissioning.
When the experiment will be decommissioned in the future, the gadolinium will be extracted
from the water system to avoid dispersing it in the environment. This process was also tested
successfully by the EGADS experiment.
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Figure 2.5: Neutron cross-sections on hydrogen (left) and gadolinium (right) as a function of energy
from Ref. [86]. The dominant component for 1H is elastic scattering, despite neutron capture reaches
relative high cross-section values for subthermal neutrons (T < 2.5meV). Fast neutrons interact on
157Gd via elastic scattering, but for lower energies the main contribution comes from neutron capture
cross-section. The 1/v dependency can be appreciated in both cases. The inset on the right plot shows
a detail of the resonance region of the cross-section, between 10 eV and 500 eV.

2.4 Neutron calibration in Super-Kamiokande

From the considerations of Section 2.2, water is a good moderator for thermalising fast
neutrons. Its energy decrease is ξH2O ' 0.93, when the kinetic energy of the neutron is in the
range 2.5meV . T . 0.1MeV. Neutrons that reach subthermal energies enter the 1/v regions in
which the capture probabilities increases as T−1. Hydrogen presents a relative high cross-section
for neutron capture, as it can be seen from Fig. 2.5: the cross-section for a thermal neutron on
hydrogen is measured to be 332.6 mb [87]. The capture cross-section on oxygen 16O is around
0.19 mb, four orders of magnitude smaller than the capture on hydrogen and therefore typically
neglected. The hydrogen capture is followed by the emission of a single 2.2MeV photon from the
de-excitation of the newly-formed deuterium. The characteristic time for Maxwellian neutrons
with energy below 10MeV to thermalise and being captured by hydrogen in water has been
measured to be (204.8± 0.4) µs [88]. The typical time and energy of this event require special
triggers and dedicated analysis in SK to correctly identify the neutron capture on hydrogen.
Since the SK-IV phase, after any primary event above the standard higher energy threshold is
detected, a time window of 535 µs is saved with no threshold requirement, so that approximately
the 92% of neutron capture signals are collected. The 2.2MeV photon produces on average 7∼8
PMT hits, which are difficult to reconstruct accurately. The PMT hits are expected to happen in
a narrow timing distribution and to be anisotropic. A 10 ns sliding window is used to look for γ
candidates with more than 7 hits and less than 50 to avoid high energy backgrounds. With these
simple selection criteria, an efficiency of 33.2% is obtained from a simulation of neutron capture
events, with 4.5 background events expected per neutrino event. The background rejection is
improved by feeding the simulated data of the selected candidates to a neural network, which
retains an overall efficiency of 20.5% with 0.018 backgrounds per signal event [89]. The efficiency
is found to be highly dependent on the distance travelled by the released neutron due to the fact
that knowing the location of the capture significantly reduces the background. A completely
analogous search can be used for the gadolinium phase of SK, even though the energy released
in the neutron capture process is above the detection threshold, the thermal lifetime is shorter,
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Figure 2.6: Normalised energy distribution of neutrons emitted by an Am-Be source [91] and neutrons
and photons from the spontaneous �ssion of a 252Cf source [92, 93]. The Am-Be emission is more uniform
over the energy range, compared to 252Cf which peaks at around 1MeV.

and the expected efficiency is much higher as explained in Section 2.3.2.
Neutron tagging efficiency in SK is measured with americium-beryllium (Am-Be) [90]. In

an Am-Be source, 214Am decays 100% of the time into 237Np via α-emission, with a half-life
of 432.6 y. The α particle is captured by a 9Be nucleus to become 12C* with the emission of a
neutron. The carbon de-excites to the ground state with sometimes the emission of a 4.43MeV
photon. This gamma is used to trigger the neutron emission. To maximise this trigger signal,
the Am-Be source is placed at the centre of a 5 cm cube of bismuth germanite (BGO) crystal
scintillator which is lowered inside the water Cherenkov tank during calibration runs. The
gamma ray from the beryllium neutron capture is promptly absorbed by the BGO crystal,
with the release of intense scintillation light that triggers the SK detector. Around thousand
photoelectrons from the BGO emission are typically observed by the PMTs; this signal triggers
the search for neutron capture on hydrogen. The candidates are selected by an analysis similar
to the simulation of Ref. [89] and outlined above. Neutrons from beryllium have energies below
10MeV, as seen in Fig. 2.6, less than the typical neutron energy resulting from atmospheric
neutrino interactions. For this reason, in the calibration analysis the neutron capture vertex is
assumed to be roughly at the same location of the Am-Be source. The efficiency measured in
Ref. [90] ranges from 13.1% to 24.5%, the exact value of which is position dependent. These
values agree overall with the simulation analysis.

Another possibility as neutron calibration source would be californium-252 which undergoes
α-emissions (96.91%) or spontaneous fission (SF, 3.09%). Thanks to a shorter half-life of 2.645 y,
a 252Cf source presents a higher activity compared to an Am-Be source with the same number
of nucleons. Furthermore, the SF process emits an average of 3.75 neutrons per fission and
an average of 10.3 photons summing up to a total energy of 8.2Mev [92]. As for the case of
the Am-Be calibrating device, the photons can be collected by a scintillating material and tag
the emission of neutrons. After the trigger signal, multiple neutron captures on hydrogen are
expected, separated by short intervals in time of the order of milliseconds. The yield of multiple
neutrons is an advantage which the SNO collaboration exploited with a method called Time
Series Analysis. Multiplicity and time intervals between the detected events can be used to
determine the neutron detection efficiency, the neutron mean life inside the detector, and the
source activity from nonfission events [94]. Differently from the Am-Be source, the activity



52 CHAPTER 2. THE FUTURE OF SUPER-KAMIOKANDE

Figure 2.7: Setup used to test the californium source. The plastic scintillator cylinder is encased in an
aluminium structure connected to the PMT support (black). The scintillator is optically coupled to the
PMT.

of which must be known precisely, the neutron tagging calibration with a californium source
can be done in principle regardless of that information. The Time Series Analysis could be
implemented also in SK if californium was used as a calibrating source. The fast-neutron and
photon energy spectra from 252Cf are shown in Fig. 2.6. The neutrons are emitted with a
most-probable energy of 1MeV and an average energy of 2.1MeV. Being the average energy of
a SF neutron from 252Cf lower than the one from Am-Be, it is reasonable to assume that the
capture on hydrogen occurs in the proximity of the source. This would bring about an even
more accurate calibration with the californium source, since the location of the capture is an
important detail for the measurement of the neutron tagging efficiency.

Some preliminary studies were performed to develop a neutron calibration device with cal-
ifornium for a generic water Cherenkov detector. During laboratory measurements, a 252Cf
source with an activity of 4.3 kBq at the time of its production was used. The californium is en-
capsulated in a double-hull stainless steel cylinder, 9.5mm in diameter and 37.5mm high. The
source is placed in a simple prototype of the device, shown in Fig. 2.7, consisting of a cylindrical
plastic scintillator (EJ-200), coated with mylar to contain optical photons and optically coupled
to an ET Enterprise 9902B series PMT. A hole, coaxial to the plastic cylinder, allows to insert
the source in the middle of the scintillator which is 3” in length and 1.5” in diameter. The rate
of photons emitted by the 252Cf source is measured with this setup; the signal from the PMT
is amplified and cleaned by NIM modules and finally recorded with a 14-bit VME digitiser.
Without the source inside the scintillator, a dark rate of 1.633Hz is measured, whereas with
the source the rate increases to 41.395Hz. The distributions of the PMT peaks collected by the
digitiser are shown in Fig. 2.8. A predicted activity of 3.1 kBq is expected on the day of the
measurement—446 days after the production of the source— which translates to a SF rate of
96.46Hz. The SF tagging efficiency with this setup is therefore estimated to be around 41%.

A GEANT4 [95] simulation of the setup was performed with the aim of optimising the cal-
ibration instrument. An ideal device would absorb all the photons converting them into visible
light without affecting the neutrons. The plot in Fig. 2.9 shows the correct implementation of
the scintillator and PMT efficiencies in the simulation: there is good agreement between the MC
distribution and the expected optical photon spectrum. Different volumes and materials are
tested for the scintillator in the simulation. As far as materials are concerned, BGO crystal and
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a generic vinyltouluene are chosen. The selected shapes for the volume are a cube and cylinders
with a diameter-height-ratio 1:1 and 1:2. The latter shape models the prototype tested in the
laboratory. The characteristic size, i.e. the side for the cube and the height for the cylinders, is
varied from 1 cm to 40 cm. The simulation tracks the energy deposited in the scintillator by the
photons and the number of neutrons escaping the device, from a simulation of 10 000 SF events.
The results are shown in Fig. 2.10, where for both photons and neutrons the average value of
the fraction of absorbed energy with respect to the initial one is plotted against the size. In
terms of materials, the BGO crystal performs better than the plastic scintillator as expected,
absorbing almost the entirety of photons and leaving the neutrons mainly unaffected. Apart
from not being as efficient as scintillator, the hydrogen in the plastic thermalises the neutrons
more than BGO. This would impact the capture time in a water Cherenkov detector. In terms
of sizes and shapes, a BGO cube of 4 ∼ 6 cm sides seems to maximise photon absorption and
minimise the energy loss of neutrons. This is in line with the choice for the calibrating device
for SK, which is a 5 cm BGO cube. Both the cylindrical shapes are optimal when the height
is 7 ∼ 11 cm, but more crystal would be required increasing the cost of the device. As far as
the plastic scintillator is concerned, it is more difficult to define an optimal size/shape figure:
a cubic scintillator is more efficient in collecting photons, but being the form with the largest
volume per given size, it is also more effective in slowing down neutrons. The two cylinder
shapes have similar performances, proportional to their volumes.

From the simulation studies, the current design used with the Am-Be source seems to be
ideal even for 252Cf. Simply replacing the neutron source in SK and adopting the Time Se-
ries Analysis could give a more accurate calibration. It is important to realise that the same
calibrating procedure and device can be equally applied to the gadolinium phase of SK and
Hyper-Kamiokande in the future. Further R&D is anyway needed to build an optimal device
for neutron calibration with a californium source.

2.5 Monitoring gadolinium concentration

The concentration of Gd in water affects the efficiency and timing of neutron captures, which
must be known for an accurate measurement of the antineutrino rate. It is therefore fundamental
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Figure 2.10: Result of the GEANT4 simulation (points), showing the expected performance of di�er-
ent scintillators as a function of the characteristic size. The lines are a smooth interpolation between
simulation points. The fraction of absorbed energy per initial energy of neutrons (solid) and photons
(dashed) is averaged and plotted against the scintillator size. Three shapes are tested: a cube (green),
a cylinder with diameter-height-ratio of 1:1 (blue), and a cylinder with ratio 1:2 (red). On the left, the
scintillating material is BGO crystal; on the right, a generic vinyltouluene plastic is used.

to measure the concentration regularly, as this can change in time inside the detector. On large
scales, like for SK-Gd, predict the temperature and the flow dependency of the dissolved Gd
is not a trivial task. Currently, the EGADS experiment keeps track of the Gd concentration
with a Zeeman atomic absorption spectrometer (AAS), located near the site of the experiment.
Water samples are collected monthly from the water tank, diluted and atomised inside the
AAS machine. The amount of Gd is then compared to known samples of Gd loaded water to
determine the concentration. This method reaches currently an accuracy of ∼3%.

An alternative method for monitoring gadolinium concentration is under study and proposed
here. The new concept still uses atomic absorption lines of Gd, but in solution in water, allowing
for a more frequent measurement. Gadolinium presents strong emission/absorption lines in the
UV region [96]. Using a UV source and a spectrometer it is possible to measure the absorption
by gadolinium dissolved in water. The absorbance is directly proportional to the amount of
gadolinium and therefore to the concentration, where the absorbance is defined as

A(x) = log10

I0(x)

IGd(x)
. (2.16)

The quantity I0 is the intensity of a luminous source at a wavelength x filtering through a
reference sample of pure water, whereas IGd is the intensity of the same source at the same
wavelength for a gadolinium loaded water sample. The gadolinium absorption spectrum presents
a series of lines in the region between 270 nm and 275 nm and the height of each peak is related
to the Gd concentration, thanks to the exponential law

IGd(x) = I0(x)e− `/λ , (2.17)

with λ the attenuation length and ` the length of the sample. For a fixed cross-section S and a
fixed length, the attenuation length will decrease with the absolute quantity of Gd dissolved in
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Figure 2.11: Gadolinium absorption spectra between 270 nm and 280 nm. On the left, the spectrum
is taken with a high-resolution integrated spectrophotometer Shimadzu UV-2600, revealing numerous
peaks in the region of interest for an aqueous solution of 0.2% gadolinium sulphate. On the right, the
spectrum is recorded with a fast spectrometer Ocean HDX, varying the concentration from 0.2% down
to 0.02%: the height of the peaks scales linearly with the concentration. In both �gures, the absorbance
is normalised to the length of the sample.

the solution, mGd, or rather with the concentration ρGd, since the volume is constant between
the pure water and Gd-loaded water measurements:

ρGd =
mGd
S `

. (2.18)

The Beer-Lambert law relates the optical attenuation of a physical material, containing a single
attenuating species of uniform concentration, to the optical path length via a material-specific
constant [97]

A = ε ` ρ , (2.19)

where ε is the molar attenuation coefficient, or absorptivity of the attenuating species. By
comparing Eq. (2.19) with Eqs. (2.16) and (2.17), the attenuation length λ can be related to
concentration and absorptivity as

λ =
log10(e)

ε ρ
. (2.20)

The Beer-Lambert law agrees with the expectation of decreasing attenuation length with in-
creasing concentration.

The concept of tracking gadolinium concentration in water using the absorbance spectrum
was proven using a 10 cm cell, the measurements of which are reported in Fig. 2.11. The spectra
were taken with a high-resolution spectrophotometer Shimadzu UV2600 and a fast spectrometer
Ocean HDX. The Shimadzu spectrophotometer uses two grating systems to select very narrow
windows of the electromagnetic spectrum both at the source and at the detection, which is
performed by a photomultiplier. A deuterium lamp, integrated in the spectrometer, generates
light at UV wavelengths. This machine can reach very high resolutions in wavelengths, however
it scans over each wavelengths taking one measurement at the time and resulting in a slow
process. The Ocean HDX spectrometer does not have an integrated UV source, but the grating
system refracts the light input on a linear CCD, recording the whole electromagnetic spectrum
simultaneously. The speed of the measurement with such a spectrometer is only limited by the
integration time and reading rate of the CCD. A set of consecutive traces is taken and the error
on the measurement is estimated by taking the mean. One of the advantage of the Ocean HDX
spectrometer is that it can reach a very high light throughput thanks to a toroidal mirroring
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Figure 2.12: Gadolinium absorption measurement taken with the Ocean HDX spectrometer and a
10 cm water sample. The pro�le of the UV LED is shown when pure water (blue) and Gd-loaded water
(black) are used. The absorbance (red) is then extracted from the two intensity measurement.

system which reduces stray light and maximises the dynamic range. These are the deciding
factors for monitoring gadolinium concentration with this technique, in addition to the speed
of the measurement. Wavelength resolution is not as important, because the relative position
of the lines is sufficient to identify them and to compute the correct absorbance. A UV-LED,
with emission centred at 275 nm, is used as an illuminating source. The profiles of the LED in
pure water and in Gd solution are reported in Fig. 2.12, together with the resulting absorbance.

In an absorbance measurement, however, there could be other sources of absorption, since
a light source and a photosensor are needed, in addition to optical interfaces with the sample
to measure; the solvent of the sample can also contribute to the overall absorbance. The Beer-
Lambert law can be generalised to describe a generic number of attenuating elements, as

A =
N∑
i=0

εi

∫ `

0
dz ρi(x) = ` ε0 ρ0 +

N∑
i=1

εi

∫ `

0
dz ρi(x) = a+ b ρ0 , (2.21)

where the attenuating species of interest, labelled “0”, has been isolated: if the other elements
are constant, there is a linear law with measured absorbance and concentration. The absorbance
will also depend on the purity of the solvent—water in this case—and other factors, such as the
optical interfaces. It follows that absorption measurements taken with different setup cannot be
compared unless the effect of other absorbing elements is well understood. Namely this would
require to know the factors a and b of Eq. (2.21), and so calibration of the measurement appa-
ratus is required. The absorption can also be biased by the presence of wavelength-independent
factors, or at least independent in the region of the spectrum of interest. Examples of these
factors are microbubbles or other impurities in the samples which can block or scatter the light,
thus spoiling the measurement. An unbiased estimation of the absorbance can therefore be
achieved by using two absorption lines and taking the difference of the peaks:

∆A = A(x1)−A(x2) = log10

I0(x1)

I(x1)
− log10

I0(x2)

I(x2)
. (2.22)

Any wavelength-independent effect is removed doing so. Supposing the true intensity of the
reference sample is modified by a factor η and the intensity of the study sample is varied by a
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Figure 2.13: The inverse linear �t (red) between concentration and absorption for a 10 cm water
sample is shown together with data (blue) on the top panel. The absolute values of the errors are
roughly constant with the concentration, as it is mostly dominated by the uncertainties on the linear �t.
The relative error (bottom panel) therefore increases with lower concentrations. The rightmost point
corresponds to a 0.2% concentration, the relative error of which is around 3%.

factor ζ, the absorbance difference is

∆A = log10

ηI0(x1)

ζI(x1)
− log10

ηI0(x2)

ζI(x2)
= log10

I0(x1)

I(x1)
− log10

I0(x2)

I(x2)
. (2.23)

The drawback of this method is that two measurements are needed at the two wavelengths x1

and x2: the error on the measurement will increase by a factor ∼
√

2.
In order to estimate the accuracy of the gadolinium concentration measurement, a prototype

based on a 10 cm cell was tested, starting with a 0.2% gadolinium sulphate concentration which
is diluted down to achieve lower concentrations. At each known value of the concentration, the
absorption is calculated by averaging one thousands spectra taken with the Gd-loaded water and
the pure water samples. In this way, the error on the absorbance is defined as the standard error
of the mean. Following Eq. (2.21), a linear interpolation is performed between the absorption
peak differences, ∆A, and the concentrations, ρGb,

∆A = a+ b ρGd . (2.24)

The relation above is then inverted, such that uncertainties from the absorbance measurement
can be propagated to the concentration value, as

ρGd =
∆A− a

b
. (2.25)

The result of the fit is shown in Fig. 2.13, from which a relative error of ∼3% is estimated on the
measurement of the 0.2% concentration. According to Fig. 2.3, this uncertainty translates to a
∼1% error on the neutron capture efficiency. The method employing the 10 cm water sample
performs similarly to the AAS spectrometry employed in EGADS.
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Figure 2.14: Schematic of the device used for testing the 100 cm water sample in laboratory. The
diaphragm pump circulates the water in the cell and interfaces the device with the main water system.
During the test, the pump was leaving a considerable amount of microbubbles in the sample. Waiting
15 minutes between measurement was found to be su�cient to restore the intensity of the light at the
spectrometer. The pump, however, might not be needed when the device will be installed in EGADS or
SK as the pressure of the water system will be enough to circulate water and �ll the 100 cm cell. This
scenario is favourable since the amount of undesired microbubbles is minimised and the measurement
can be taken more frequently.

In the first stage of SK-Gd, a concentration of 0.02% gadolinium sulphate will be loaded
and a good sensitivity on this low value is also required. To achieve better sensitivities, a longer
water sample can be used to increase absorbance by gadolinium. The resolution should improve
with the absolute quantity of Gd, or the sample length in this case, since more light is absorbed
and the peaks become more distinct. Thanks to the high light throughput of the Ocean HDX
spectrometer, the absorbance of a 100 cm water sample was successfully studied. In order to
deal with a larger water volume, an automated device was developed to fill the water sample,
activate the LED and operate the spectrometer. The diaphragm pump used to circulate the
water produced a considerable amount of microbubbles during measurements. It was found
that letting the water settle for 15 minutes between measurement was sufficient to remove the
majority of microbubbles and so clear the light path. A schematic of the prototype used in
laboratory is shown in Fig. 2.14.

At this long scale, effects from optics, LED and spectrometer alignment, and water purity
become important. As it can be seen from Fig. 2.15, measurements of the absorption at different
concentration levels present a nonflat baseline that can bias the concentration estimation. A
five-degree polynomial is employed to fit the baseline which is then removed in order to keep the
measurement consistent over time. The same analysis of the 10 cm water sample is performed
on the 100 cm measurement and the dependency of concentration on absorbance is reported in
Fig. 2.16. The relative error on the measurement is improved tenfold compared to the 10 cm
test. For a concentration of 0.2% the error is estimated to be roughly 0.3%, whereas for a
0.02% concentration the error is at most around 1.5%. The calibration procedure, however,
needs further investigation since the concentration seems to follow a quadratic law with the
absorbance. Nonlinear effects might be originated from the optics, the alignment, or the LED
temperature drift. It is expected that this behaviour should be lessened in the final proto-
type. This device will be eventually installed in EGADS before and SK-Gd later to monitor
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Figure 2.15: Gadolinium absorption lines (right) taken with the automated device on the 100 cm water
sample. The baseline of the absorption spectrum appears to be changing with the concentration. This
could be due to some contaminant in the Gd-enriched water, which is diluted with pure water at each
step. The measurements are also taken at di�erent times and drifts in the electronics or optics might
be a concurrent cause. Removing the baseline with a polynomial �t (right) makes the absorption lines
comparable.

the gadolinium concentration. Once connected to the water system of these experiments, the
pressure of the water flow will be sufficient to fill the 100 cm water cell. This will vastly reduce
the amount of microbubbles and allow for an almost continuous measurement. The water will
be also more pure than the one used in laboratory testing, being continuously filtered. Overall,
the 100 cm demonstrator proved that the absorption UV–spectroscopy technique successfully
works with a better accuracy than the current technique AAS technique.

Summary

In this chapter, the upcoming Super-Kamiokande gadolinium phase was outlined, focusing
on its advantages and main challenges. All of the current analysis will benefit from the the im-
proved neutron tagging efficiency, up to 90% with a Gd concentration of 0.2%. This is thanks
to the smoking-gun signature of the neutron capture on gadolinium: a handful of photons with
a total energy of about 8MeV and a typical thermalisation time of ∼30µs. Up until now, the
sensitivity of SK to neutron tagging has been assessed with a calibrating device consisting of
an Am-Be source encased in a BGO crystal cube. Californium-252 has been investigated as
an alternative neutron source, having a higher neutron activity and emitting multiple neutrons
per fission events. With the help of a GEANT4 simulation, it was found that the same cali-
bration device used in SK is already of the optimal shape and material to be used with 252Cf
instead. The Am-Be neutron source could then be replaced without further modifications of the
device, bringing about a more precise neutron calibration. One of the challenges of a Gd-loaded
Cherenkov detector is to monitor the gadolinium concentration in water, as this can vary in
time or be affected by the water flow and temperature. A new method involving UV absorption
spectroscopy is being developed with promising results which takes advantage of the strong
Gadolinium absorption lines in the region between 270 nm and 275 nm. The Beer-Lambert law
relates absorbance to gadolinium concentration and so the latter can be estimate by measuring
the intensity of UV light through a water sample. The precision reached with this method on
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Figure 2.16: The inverse linear �t (red) between concentration and absorption is shown together with
data (blue) on the top panel for the 100 cm water sample. The error bars on the top panel are enlarged
by a factor of 20. The linear �t is done only with the six leftmost points, since the behaviour appears
to be more quadratic (green) than linear. The relative error (bottom panel) is well below the 3% limit,
even for a concentration of 0.02%.

a 100 cm water sample is around ∼0.3% on the full load concentration of 0.2%. Furthermore,
this technique allows for an almost continuous monitoring of the concentration, compared to the
current atomic spectroscopy technique in place which is executed with a monthly frequency.



Chapter 3

CP violation with the

Hyper-Kamiokande experiment

C and CP violation are some of the conditions required in order to generate an asymme-
try between matter and antimatter particles, the others being baryon number violation and
interactions out of thermal equilibrium [8]. The amount of CP violation in the quark sector
however is not enough to describe the observed baryon asymmetry within the SM [98]. A
conceivable CP asymmetry in the lepton sector could be translated into baryogenesis via non-
perturbative sphaleronic processes [99]. This mechanism, called leptogenesis, would be allowed
by the addition of right-handed Majorana neutrinos to the SM which can violate lepton number.
Furthermore, the extra fermions can justify light neutrino masses via a seesaw mechanism (see
Section 4). This elegant solution to explain the baryon asymmetry is a strong motivation for
searches of signals of CP violation in the lepton sector. As three generations of leptons ex-
ist, a complex phase entirely analogous to the one in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix is expected in the mixing matrix of leptons. The CKM matrix arises from mixing of
quarks in charged-current interactions (see Eq. (1.38)), when describing the fermion fields in
the mass basis. A similar matrix that describes neutrino mass states mixing exists in the lep-
ton sector. It turns out that the best probe to discover CP violation is actually the study of
neutrino oscillations, being a purely weak phenomenon in which CP–conjugate processes are
well-defined. Current neutrino oscillation experiments are paving the way to the discovery of
CP violation and it is foreseen that next-generation experiments such as Hyper-Kamiokande
(HK) will determine the value of δCP, a milestone which requires precise measurements and a
thorough understanding of the systematic errors.

In this chapter, a study of the sensitivity of the HK experiment to oscillation parameters is
presented, with special emphasis on δCP. After a review of the theory and phenomenology of CP
violation in neutrino oscillation in Section 3.1, the HK experiment is introduced in Section 3.2.
A fitting framework which combines atmospheric and beam data samples is employed for the
study. The methodology of the sensitivity studies is outlined in Section 3.3, together with the
results from a validation test. Finally, the full sensitivity to CP violation with the nominal
systematic model is reported in Section 3.4. Despite being very sophisticated, variations of the
beam error model are considered since some systematic parameters are still not well understood
and some early considerations are drawn at the of this chapter.
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3.1 CP violation in neutrino oscillations

The Dirac Lagrangian is invariant under three fundamental transformations of the fermion
fields, and these are charge conjugation C, parity P, and time reversal T. The spinor field ψ and
ψ transform under charge conjugation as

ψ(x) 7−→ ψC(x) = ξC C ψ
T

(x) , ψ(x) 7−→ ψC(x) = −ξ∗C ψT (x) C† , (3.1)

where C is the charge conjugation operator. The application of the transformation twice returns
the same initial field, so ξC must be a unitary phase, i.e. |ξC|2 = 1. The parity transformation,
instead, inverts spatial coordinates and acts on spinor fields as

ψ(x) 7−→ ψP(x′) = ξP γ
0 ψ(x) , ψ(x) 7−→ ψP(x′) = ξ∗P ψ(x) γ0 . (3.2)

With two consecutive parity transformations the coordinate system is restored and therefore
the unitary phase ξP is constrained to be ±1 or ±i. Vector and axial covariants, respectively
ψaγ

µψb and ψaγµγ5ψb, transforms oppositely under charge conjugation and spatial inversion,
unless a = b, and so the V − A structure of weak interactions (see Eqs. (1.15) and (1.16))
violates C and P individually.

The combined transformation of charge conjugation and parity, referred to as CP transfor-
mation, is applied to the fields as

ψ(x) 7−→ ψCP(x) = −ξCP C ψ∗(x) , ψ(x) 7−→ ψCP(x) = −ξ∗CP ψT (x) C†γ0 , (3.3)

where the CP phase ξCP is also unitary. A CP transformation presents the same coefficient
on vector and axial bilinear terms, which means that V −A bilinears are in principle invariant
under CP. The weak interactions of the SM are therefore CP–symmetric if the phase of the W
boson is chosen accordingly. In the case of generation mixing, the invariance in the quark sector
is obtained when

jµCC, QWµ 7−→
(
jµCC, QWµ

)†
⇔ −ξW ξDV T ξ†U = V † , (3.4)

where the CP phases for the quarks have been promoted into diagonal matrices ξD,U , and V is
the CKM matrix. The Lagrangian must be a real scalar, hence by conjugating the conditions
in the equation above it follows that ξ†D,U = ξ−1

D,U and that the diagonal matrices are unitary,
or

ξD,U = eiξδ,υ , (3.5)

where the indices δ and υ refer respectively to down and up quarks. The condition for CP
invariance now becomes

eiξυ Vυδe
−iξδ = V ∗υδ . (3.6)

This condition cannot be satisfied with an arbitrary choice of the CP phases for the quark fields
if the mixing matrix is not real, or V = V ∗.

It follows from the discussion above that if the mixing matrix presents one or more nonzero
complex phases, the quark charged-current weak interactions break the CP symmetry of the SM
Lagrangian. The violation of CP is indeed a known process in the quark sector of the standard
model. It has been extensively observed [100–104], giving a clear evidence that the CKM matrix
is complex. The symmetry is restored when considering the time reversal symmetry: consecutive
transformation of C, P, and T leave invariant all possible covariant bilinears, in accordance with
the CPT theorem.
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The Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix is usually parameterised as in
Eq. (1.62) with the addition of two more phases if the neutrino is Majorana. The PMNS
matrix relates flavour states α = e, µ, τ with mass eigenstates i = 1, 2, 3 as |να〉 =

∑
i U
∗
αi |νi〉,

from which the probability of flavour oscillation in vacuum can be derived (see Eq. (1.53)).
The CP–conjugate of a neutrino with negative helicity is an antineutrino with positive helicity
which, in terms of neutrino oscillations, means transforming the να → νβ oscillation channel
into the να → νβ channel. The violation of CP in neutrino oscillation can be quantified by the
asymmetry in oscillation probabilities between neutrinos and antineutrinos which in vacuum
reads as

ACP
αβ = P (να → νβ)− P (να → νβ) = 4

∑
i>j

=
[
U∗iαUβiUαjU

∗
jβ

]
sin

(
∆m2

ijL

2E

)
. (3.7)

The quartic product U∗iαUβiUαjU∗jβ is invariant under a reparameterisation of the mixing matrix
being a physical observable and it is complex only if α 6= β and i 6= j. For this reason, CP
violation can only be measured in “appearance” channels. The imaginary part of the quartic
products is antisymmetric on the indices α, β and i, j. Starting from the unitarity of the mixing
matrix, for example U U † = 1, the following relation holds:

3∑
i=1

UαiU
∗
βi = δαβ . (3.8)

Multiplying it by U∗αjUβj , the expression can be written as

|Uαj |2|Uβj |2 +
∑
i 6=j

UαiUβjU
∗
βiU

∗
αj = δαβ|Uαj |2 . (3.9)

Taking the imaginary part of left-hand and right-hand sides of the equation results into∑
α6=β
=
[
UαiUβjU

∗
βiU

∗
βj

]
= 0 . (3.10)

The above condition together with the antisymmetry of the indices reveals that the quartic prod-
ucts are all equal up to a sign. This value is called Jarlskog invariant. Using the parametrisation
of the PMNS matrix in Eq. 1.62, this invariant is usually expressed in terms of the mixing angles
as [105]

J = =
[
Uµ3Ue2U

∗
µ2U

∗
e3

]
=

1

8
cos θ13 sin(2θ12) sin(2θ13) sin(2θ23) sin δCP . (3.11)

The main channel of interest for long baseline experiments (LBL) is the appearance channel
νµ → νe. This is for two main reasons: the attainable flux in accelerator experiments is
principally composed of muon neutrinos, and the achieved energies are not enough to produce
τ leptons at the detection site. Putting together Eqs. (3.7) and (3.11), the asymmetry for this
channel looks like

ACP
µe = 4 J [sin ∆12 − sin ∆13 + sin ∆23] , (3.12)

where ∆ij = ∆m2
ijL
/

4E , even though the CP asymmetries for each channel are all equal up
to a sign,

Aµe = Aτµ = Aeτ = −Aeµ = −Aµτ = −Aτe . (3.13)
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Figure 3.1: E�ect of δCP on the oscillation probability. The oscillation probabilities for neutrinos and
antineutrinos are plotted against each other (left), while the CP phase is varied between −π and π. The
e�ect of sin2 θ23 is also emphasised. The mass hierarchy has a nonnegligible behaviour only if matter
oscillation is considered. The normalised asymmetry from Eq. 3.7 is shown on the right. When not
speci�ed, both graphs are created with the Design Report oscillation parameters (see Table 3.2). A
neutrino energy of 0.6GeV and a baseline of 295 km was used to calculate the oscillation probability.

Let us recall the hierarchy of the squared mass differences:

∆m2
sol = ∆m2

21 � ∆m2
atm = |∆m2

31| . (3.14)

The typical energies and baselines of LBL experiments are such that

|∆m2
31|

2

L

E
∼ π , (3.15)

and so in this regime the atmospheric mass difference dominates, meaning that the oscillation
probability in vacuum can be well-approximated by an effective two-flavour scenario

P (να → νβ) = sin2 2θeff sin2

(
∆m2

31L

4E

)
, (3.16)

for α 6= β. As the mixing in the two-flavour limit can be expressed by means of a single
angle, it follows that the effective mixing angle θeff is invariant under CP and so the effective
asymmetry vanishes, Aeff

αβ = 0. The data collected by LBL experiments to date does not provide
sufficient statistics to be sensitive to the effects of ∆m2

21 and the measured neutrino–antineutrino
asymmetries cannot be constrained, even though good significance was recently reached by the
T2K experiment [106]. Remaining in the limit of Eq. (3.14), the evolution equation including
matter effects receives helpful cancellations and it reads

i
d

dx

ψα1

ψα2

ψα3

 =
1

2E

s2
13∆m2

31 +ACC 0 c13s13∆m2
31

0 0 0
c13s13∆m2

31 0 c2
13∆m2

31

ψα1

ψα2

ψα3

 . (3.17)

It is important to observe that the equation depends only on the mixing angle θ13, but it is
independent of δCP. If the experiment is only sensitive to ∆m2

31, an effective two-neutrino mixing
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Figure 3.2: Cut-views of the Hyper-Kamiokande experiment.

is in place, even considering matter effects. However, the oscillation probabilities of neutrinos
and antineutrinos in matter are not the same because the medium is not CP–invariant and so it
induces CP violation in the oscillation probabilities via the matter potential ACC. The effect of
δCP and of matter effects on the asymmetry of Eq. (3.7) are visualised in two different fashions
in Fig. 3.1: one graph shows the probabilities of neutrinos and antineutrinos against each other
evidencing that these two are different for δCP 6= 0,±π; the other figure shows the asymmetry
as a function of δCP.

Given the parametrisation in Eq. 1.62, it is clear that the asymmetry is not measurable if the
phase is trivial, i.e. δCP = 0 or ±π, or if θ13 is vanishing. From a model building point of view,
however, a successful leptogenesis requires the parameters to satisfy |sin θ13 sin δCP| & 0.09 when
the Majorana phases are vanishing [107]. The value of θ13 has been measured to be nonzero [108–
111] and for this reason it is expected that ongoing and future generation neutrino experiments
will constrain the value of δCP.

3.2 Hyper-Kamiokande experiment

Hyper-Kamiokande (HK) [112] will be the next-generation water Cherenkov detector, study-
ing neutrino interactions and searching for nucleon decays with the ring-imaging technique. The
detector will be located in the Tochibora mine, under Mt. Nijugo in the Gifu Prefecture, Japan,
just 8 km south from Super-Kamiokande. At this location, the rock overburden is equivalent to
1750m.w.e. The design of HK is similar to the one of SK (see Section 2.3), with size being the
biggest difference. A possible schematic of the detector is shown in Fig. 3.2. The cylindrical
tank of HK will be 72m high and 68m in diameter, with a fiducial volume of 188.4 kton (to-
tal volume 257.8 kton), around 8.4 times the fiducial volume of SK. The photocoverage of the
inner detector region will be 40%, the same of SK, but it translates to roughly forty thousand
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photomultipliers (PMTs). New 20” box and line PMTs will be employed, with improved charge
and timing resolution, and an increased quantum efficiency which is almost twice as much that
of the previous generation of PMTs. The new photosensors must also have a high pressure
tolerance to be used at a depth of 60m and more of water. A study for implementing multi
PMT modules, each containing 23 3” PMT, is also being carried out. As SK, the new detector
will have an outer detector which is just 1m wide and instrumented with 3” PMTs. Thanks to
incredible statistics and cutting edge resolutions, HK will be capable of a vast variety of physics
studies, from accelerator and atmospheric neutrinos to solar and supernova neutrinos. Besides
detecting proton decay, the main goal of HK is to measure δCP and constrain the other oscil-
lation parameters with high precision. This is best achieved by studying accelerator neutrinos
which allow a higher control of the experimental variables, and to this end the possibility of
installing a second detector in Korea at the secondary oscillation peak is being investigated by
the collaboration.

HK will be located 295 km away from the T2K target and at 2.5◦ off-axis with respect to
the beamline. The neutrino beam is generated by a 30GeV proton beam in the way described
in Section 1.3.3. By selecting the direction of the horn’s current, an almost pure muon neutrino
(or antineutrino) beam is obtained, peaking at 600MeV. The accelerator facility at J-PARC
will undergo a planned upgrade to increase the beam power to 1.3MW, before HK starts
operation. The T2K near detector system, consisting of the detectors ND280 (2.5◦ off-axis) and
INGRID (on-axis) [113], will be refurbished and a new near detector, called Intermediate Water
Cherenkov Detector, possibly gadolinium-loaded, will be located around 1 km from the target.
HK will take data for ten years, collecting a total of 2.7×1022 protons on target (POT), divided
between ν and ν beam modes. Studies have shown that CP violation discovery is not very
sensitive to POT allocation between the two modes [112]. Assuming a POT ratio ν : ν = 1 : 3
and CP conservation, the expected number of fully-contained events in the fiducial volume for
the channels νµ → νe and νµ → νe are respectively 1643 and 15 in ν mode and 206 and 1183 in
ν mode. Deviations from these expected numbers could be an indication of CP violation. The
project has been recently approved by the Japanese government and data taking is expected to
start in 2027.

3.3 Sensitivity studies

At any stage of the experiment it is important to asses the impact of systematic errors on the
total sensitivity of HK. Even if real data is not available, it is possible to understand whether
the planned volume of data to be collected has enough constraining power to achieve the target
precision. The oscillation and systematic parameters are input to a Monte Carlo simulation to
build the expected distribution of events. This expected data is then compared to simulated
“observed data”, which is created by selecting a combination of oscillation parameters in order
to mimic the real distributions of events that will be eventually collected. Scanning over the
oscillation parameters, the resolution of HK to oscillation parameters and, more importantly,
the influence of the systematic uncertainties can be studied. To this end, a fitting framework
capable of performing a simultaneous study of beam and atmospheric samples was employed.

3.3.1 Event samples

For the study, SK atmospheric Monte Carlo (MC) data are adapted and scaled to HK
fiducial volume in order to form the atmospheric sample. The events are then classified and
binned into several two-dimensional histograms of log p and cosϑ, where p and ϑ are respectively
the momentum and the azimuthal angle of the reconstructed charged lepton. The histograms are



3.3. SENSITIVITY STUDIES 67

Table 3.1: The sample events for atmospheric data are used to build 2D distributions in log p and cos θ.
The number of bins in each direction is listed and they sum up to 2224. The samples are categorised as
fully-contained sub-GeV (FC sub-GeV), fully-contained multi-GeV (FC multi-GeV), partially-contained
(PC) and upward-going muons (UP-µ).

Event type Sample Bins log p Bins cos θ

FC sub-GeV

one ring e-like and 0 decay-e 13 20
one ring e-like and 1 decay-e 13 1
one ring µ-like and 0 decay-e 13 20
one ring µ-like and 1 decay-e 13 20
one ring µ-like and 2 decay-e 13 1
one ring π0 13 1
two rings π0 5 1

FC multi-GeV

one ring e-like (νe) 10 20
one ring e-like (νe) 10 20
one ring µ-like 5 20
multi ring e-like (νe) 8 20
multi ring e-like (νe) 8 20
multi ring µ-like 4 20
multi ring other 10 20

PC
stopping 4 20
through-going 5 20

UP-µ
stopping 4 20
through-going, not showering 1 20
through-going, showering 1 20

summarised in Table 3.1 where they are categorised as fully-contained (FC), partially-contained
(PC), or upward-going muons (UP-µ) events [114]. There are a total of 2224 bins employed for
the atmospheric sample.

The beam sample is instead created using a far detector flux prediction which is explained in
Section 3.3.4. From the flux prediction, fully-contained candidate events in the fiducial volume
are grouped as appearance signals, i.e. νµ → νe and νµ → νe, and background events from
disappearance channels. Signal and background distributions in true energy (98 bins) undergo
event selection criteria to obtain the distributions in reconstructed energy (87 bins) for the
four event samples: one ring e-like in ν-mode; one ring µ-like in ν-mode; one ring e-like in
ν-mode; one ring µ-like in ν-mode. A set of 2D smearing matrices, produced by the T2K fitting
framework VALOR [115], simulates and replaces the correct event selection process, including
tuning of the flux with near detector constraints. These smearing matrices are provided for
all samples, acting on signal (CCQE and CCnQE) and background (CCQE, CCnQE, and NC)
distributions. The one ring e-like with one electron decay sample, included in T2K analyses, is
not considered in this study.

3.3.2 Oscillation space

Both the atmospheric and beam distributions are weighted by the corresponding oscillation
probabilities. The oscillation parameters are scanned over the space defined by the four variables

∆m2
32 × sin2 2θ13 × sin2 θ23 × δCP (3.18)
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Table 3.2: The oscillation parameter sets used in this thesis are shown here. The reference set �Design�
is taken from the HK design report [112]. The sensitivity studies are carried out in a parameters space
built around �Asimov A�, the nominal T2K best �t point [116]. It spans over the four parameters ∆m2

23,
sin2 2θ13, sin2 θ23, and δCP, whereas ∆m12 and sin2 2θ12 are �xed. The range and number of points
scanned are reported in the last two columns.

Parameter Design Asimov A Range Points

∆m2
12/10−5 eV2 7.60 7.53 � �xed
sin2 2θ12 0.8704 0.8463 � �xed

∆m2
23/10−3 eV2 2.4 2.509 [2.464:2.554] 13
sin2 2θ13 0.1 0.085 [0.070:0.100] 13
sin2 θ23 0.5 0.528 [0.426:0.579] 19
δCP 0 −π/2 [−π:π] 61

on a grid of respectively 13 × 13 × 19 × 61 points. The solar squared mass difference and
the solar angle θ12 are fixed. Apart from δCP which is scanned over all possible values, the
intervals for the other parameters are built around “Asimov A”, the best fit point used by
T2K for Asimov and fake data studies [116] . The details of the oscillation space are listed in
Table 3.2. For the atmospheric squared mass difference and sin2 2θ13, the range is chosen such
that it covers a [−3σ,+3σ] interval, where σ is the error from the Asimov A set; the range for
sin2 θ23 spans over [−6σ,+3σ] so that both octants are covered symmetrically. At each point
of this space, the event distributions are weighted with the correct oscillation probability for
appearance or disappearance channels. The Asimov A point is chosen to be the true combination
of oscillation parameters to perform sensitivity studies using a χ2-test statistic. It is possible to
define the exclusion regions for CP conservation by changing the true value of the CP phase and
by comparing the χ2 at any value of δCP with the χ2 computed at the null hypothesis, i.e. CP
conservation or δCP = 0,±π. The exclusion sensitivity as a function of true δCP is quantified
by

σ =
√

min
δCP=0,±π

χ2 − χ2
true , (3.19)

where χ2
true is evaluated at the true point and matches the best fit value. The normal hierarchy

is assumed to be known, except where stated.

3.3.3 Test statistic

Let us define the likelihood

L(En, On) =
∏
n

e−EnEOnn
On!

, (3.20)

where On and En are respectively the number of observed and expected events in the n-th bin,
which are built using a specific combination of oscillation parameters

Θ ≡ (∆m2
32, sin

2 2θ13, sin
2 θ23, δCP) . (3.21)

The expected events are defined by a prediction at the far detector weighted by the oscillation
probabilities for parameters Θ, and since there is no real data yet the “observed” events are
also given by a prediction weighted with the true oscillation point, Θtrue. The χ2 is hence the
following log-likelihood ratio

χ2(Θ) = −2 log

[
L(En, On)

L(On, On)

]
= 2

∑
n

[
En −On +On log

(
On
En

)]
, (3.22)
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which is modified according to the “pull approach” χ2 [117]: the parameters ε = {εj} are
introduced to account for systematic uncertainties by replacing

En −→ En

(
1 +

∑
j f

n
j εj

)
, (3.23)

where the index j runs over the systematic parameters. A penalty term that includes variances
and covariances of such parameters is added to the likelihood, using the inverse of the correlation
matrix of the systematic errors, ρ−1. With all these adjustments included, the χ2 becomes

χ2(Θ; ε) = 2
∑
n

[
En(1 +

∑
j f

n
j εj)−On +On log

(
On

En(1 +
∑

j f
n
j εj)

)]
+
∑
ij

εi ρ
−1
ij εj .

(3.24)

The effect of the systematic uncertainties on the event distributions are embedded in the fnj
parameters, defined as the fractional change induced on the n-th bin by a 1σ variation of the
j-th systematic. The amount of change is therefore parameterised by the εj variables in units
of the uncertainty σj . However, being ρ the correlation matrix, the εj are promoted to embody
the systematic uncertainties. Once the observed sample is defined, the oscillation parameters
Θ are scanned over the oscillation space defined in Table 3.2 to estimate the expected events;
finally, the χ2 is profiled with respect to the parameters ε:

χ2(Θ) = min
ε

[
χ2(Θ; ε)

]
. (3.25)

Fixing the combination Θ and dropping it from the notation, the minimisation of the χ2 leads
to the following set of j nonlinear equations

∂χ2

∂εj
(ε) = 0 (3.26)

which can be solved iteratively if the condition
∑

j f
n
j εj < 1 holds. The system can then be

solved with the Gauss-Newton’s method by finding the Hessian of the χ2. This gives a linear
system, which can be solved iteratively until convergence on εj is achieved:

∂2χ2(ε(n))

∂εk∂εj
·
(
ε

(n+1)
j − ε(n)

j

)
= −∂χ

2(ε(n))

∂εk
, (3.27)

with (n) the iteration index. The Gauss-Newton’s algorithm can sometimes be unstable, espe-
cially with a large number of parameters, due to its fast convergence. The algorithm is typically
improved by adopting the Lavenberg-Marquardt method [118, 119] which modifies the Hessian
and the equations become[

∂2χ2(ε(n))

∂εk∂εj
+ λmax

(
diag∂

2χ2(ε(n))

∂εk∂εj

)
1

]
·
(
ε

(n+1)
j − ε(n)

j

)
= −∂χ

2(ε(n))

∂εk
. (3.28)

The parameter λ is chosen dynamically: if the cost function χ2 decreases after an iteration
step, then λ is reduced; otherwise λ is increased and the step recomputed. In the limit λ→ 0,
the algorithm approximates the Gauss-Newton’s method and its fast convergence. When λ is
large, the linear system resembles a gradient descent with small steps of the order of λ−1, but
with a more stable convergence. A “delayed-gratification scheme” is adopted for λ [120], using
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Figure 3.3: The predicted distribution of one ring e-like events with respect to reconstructed energy
at HK are shown here for ν-mode (left) and ν-mode. The appearance signals νµ → νe and νµ → νe
are compared to the background events. The spectra on the top and bottom panel are generated using
respectively the Design Report and the Asimov A oscillation parameters (see Table 3.2).

an initial value of λ(0) = 1 and finding an optimal increment and decrement of respectively
λ(n+1) = 5λ(n) and λ(n+1) = λ(n)/10.

To account for future constraints from other experiments, a Gaussian penalty term is added
to the minimised value of χ2 from Eq. (3.25)

χ2
penalty =

(Θ− Θ̂)2

σ2
Θ

. (3.29)

In this analysis, only a penalty on the parameter θ13 is considered, which is predicted to be
constrained to σ(sin2 2θ13) = 0.005 by future measurements of reactor experiments.

For most of the systematic parameters, a linear response is assumed in the MC. This means
that varying the j-th systematic by a known amount, βj → βj + εjσj the number of expected
events changes accordingly:

βj
MC7−→ En =⇒ βj + εjσj

MC7−→ En(1 + εjf
j
n) . (3.30)

Certain systematic uncertainties, such as the CCQE axial-mass scaling factor, the Fermi mo-
mentum for 16O, or some of the RPA coefficients, do not present a linear behaviour for small
values of ε and they are better described by a four-point linear interpolation of different fnj
histograms, computed at ±1σ and ±3σ variations of the systematic parameter.
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Figure 3.4: The predicted distribution of one ring µ-like events with respect to reconstructed energy
at HK are shown here for ν-mode (left) and ν-mode. The disappearance events νµ → νµ and νµ → νµ
are compared to the small contributions from electron neutrinos. The spectra on the top and bottom
panel are generated using respectively the Design Report and the Asimov A oscillation parameters (see
Table 3.2).

3.3.4 Far detector prediction

The simulation of the HK detector heavily relies on the techniques established by the SK
and T2K collaborations. Neutrinos interactions are generated using NEUT [65], also employed
in SK and T2K. The response of the detector is simulated using the SK-IV full Monte Carlo
simulation, which uses the GEANT3 [121]. Events are reconstructed with the SK reconstruction
software, which gives a realistic estimate of the HK performance. The criteria to select neutrino
candidates in MC simulations follows a similar prescription to the one used in SK. Only fully
contained events within the inner detector are considered, provided that the reconstructed
vertex is more than 1.5m away from the ID walls (fiducial volume) and that the collected
charge from the PMTs, Evis, amounts to an energy greater than 30MeV. The purity of the
data sample is controlled by requiring the detection of a single Cherenkov ring. In this way,
the chance of selecting only CCQE events is enhanced. The neutrino energy is reconstructed
from the energy of the final-state charged lepton and the angle between the neutrino beam
and the charged lepton direction, applying Eq. (1.149). Electron-flavour events are selected
by requiring an e-like ring, deposited energy in the range 100MeV < Evis < 1.25GeV, and
no decay electron associated to the event, typical of a muon decay. The muon sample is built
by requiring a µ-like ring, a reconstructed muon momentum greater than 200MeV and the
presence of the electron from the Michel decay of the muon. The simulation is run assuming an
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Figure 3.5: Predictions of events at the far detector for the one ring e-like sample in ν-mode (left)
and ν-mode (right), where the νe (top) and νe (bottom) CC cross-section systematics are applied with
relative errors between 1% and 5% at 1σ. In each �gure, the top panel shows how the event distribution
is a�ected, and the bottom panel shows the variations with respect to the prediction without errors
applied, which is by de�nition one plus the 1σ histogram of the error, or 1 + fn (see Eq. (3.23)).

integrated beam power of 13MW, corresponding to 2.7×1022 POT collected over 10 years with
a 30GeV proton beam. The proportion between the amount of data collected in neutrino and
antineutrino modes is set to ν : ν = 1 : 3. The ratio is chosen in order to have similar number
of events in the ν- and ν-mode samples. The reconstructed spectra from the simulations are
shown in Figs. 3.3 and 3.4 where two different oscillation parameter combinations are compared
to illustrate the effect of neutrino oscillation; the contributions from different oscillation channels
to the overall distributions are also highlighted.

3.3.5 Validation of the �tter

Before employing the full systematic model, the fitting framework is validated with a special
systematic set for the beam sample. It is composed of just two systematics: the νe and the νe
CC cross-section uncertainties. These two errors are implemented twice, either as correlated or
as anticorrelated, and they are tested at different values (1%, 2%, 3%, 4%, and 5%) for a total
of ten combinations. The correlation matrices used are simply

ρ =

(
1 1
1 1

)
and ρ =

(
1 −1
−1 1

)
, (3.31)

but they are both singular and not invertible. A small offset of 10−5 is added to off-diagonal
terms to allow the calculation of the χ2. Due to the definition of the χ2 in Eq. (3.24), the
difference between fits with the same relative error lies in the correlation matrix, whereas at
fixed correlation the effect of the systematics on the likelihood is given by the 1σ histograms.

In Fig. 3.5, the event distributions of the one ring e-like samples (previously presented in
Fig. 3.3) are shown with the νe and the νe CC cross-section uncertainties applied at 1σ for each
of the five magnitude levels. It can be seen that the effect of the systematic errors is linear with
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Figure 3.6: The top panels of each �gure show the χ2 pro�le for ∆m2
32 (top), sin2 2θ13 (middle), and

sin θ23 for correlated (left) and anticorrelated (right) systematics. The degeneracy in the χ2 for ∆m2
32

is slightly with anticorrelated systematics, whereas the opposite is true for the angles θ23 and θ13, even
though the latter shows variation not only for correlated, but also for anticorrelated systematics. The
bottom panels show instead the di�erence between the pro�les at di�erent error magnitudes and the
curve computed without systematic uncertainties (black). The dashed lines show the position of the best
�t value, which is always at the nominal Asimov A value.
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Figure 3.7: For correlated (left) and anticorrelated (right) systematics, the top panel show the contour
lines for ∆m2

32 versus sin θ23. The �pointy� shape of the contours comes from the low resolution of the
oscillation parameter space, which accounts for 19 points in the sin2 θ23 direction and 13 points in the
∆m2

32 one. On the middle plot, the χ2 pro�le for δCP shows a dramatic di�erence between correlated (left)
and anticorrelated systematics (right). The bottom panels show the di�erence between the pro�les at
di�erent error magnitudes and the curve computed without systematic uncertainties (black). The e�ect
on δCP is re�ected on the expected signi�cance to exclude CP conservation (bottom). The anticorrelation
between the νe and νe CC cross-section systematic errors masks the resolution power to distinguishing
neutrino from antineutrino events. The result is a CP�violating e�ect. The dashed lines and the black
triangles show the position of the best �t value, which is always at the nominal Asimov A value.
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the relative error. The χ2 profiles with respect to ∆m2
32, sin2 2θ13, and sin2 θ23 are shown in

Fig. 3.6 for correlated and anticorrelated errors, and a contour plot between ∆m2
32 and sin2 θ23 is

reported in Fig. 3.7. These parameters are not significantly sensitive to the correlation between
the two systematic uncertainties. The contour levels of the χ2 versus ∆m2

32 and sin2 θ23 show
that at the 1σ level of confidence the determination of the θ23 octant is slowly lost as the
uncertainty increases. On the other hand, the CP phase is the parameter which shows more
difference between correlation and anticorrelation, as it can be seen from the remaining panels
of Fig. 3.7. When the two CC cross-sections are anticorrelated, the increment of one error
brings about the decrement of the other. This results in an effective fluctuation of the number
of events, exhibiting a CP violation–like phenomenon. The importance of this study set can
also be appreciated from the exclusion of CP conservation, from Fig. 3.7. A large systematic
uncertainty of anticorrelated cross-section parameters can therefore only aggravate the overall
sensitivity to δCP. On the other hand, different values of correlated systematics do not degrade
the exclusion power to CP conservation.

3.4 Systematic studies

It is expected that larger systematic uncertainties will result in a worse sensitivity, but certain
errors affect the measurement of the oscillation parameters more than others. For example, these
can be the uncertainties on νe and νe charged-current cross-sections, the transverse flux model,
the pion absorption probability, the energy scale of the far detector, or the flux alignment. The
impact of some selected systematics is studied by modifying the nominal systematic model and
analysing the overall predicted sensitivity of the experiment in these different scenarios. Doing
so, it is possible to determine which systematics have the most important repercussion on the
sensitivity, since it is fundamental to understand their effect at all phases of the experiment.

3.4.1 Systematic model

There are 67 systematics for the atmospheric sample, adopted from SK atmospheric stud-
ies [122]. These are listed in Appendix A where they are grouped among flux, cross-section, and
event separation systematics. In this study, the atmospheric uncertainties are assumed to be
uncorrelated between each other and uncorrelated with the beam systematics. A more accurate
systematic study for the atmospheric analysis of HK is expected in the future. The main focus
of this work is the beam sample and its systematic errors.

The T2K 2018 error model is employed [116] for the beam part. There are 74 uncertainties
for flux and cross-section parameters from near detector constraints, known as the BANFF
fit, acronym for Beam And ND280 Flux extrapolation task Force. These are grouped in 50
systematics—25 for the ν mode and 25 for the ν mode— for the main four flux components
(νe, νµ, νe, and νµ), and 24 systematics for cross-section parameters. In the T2K experiment
the neutrino flux and cross-section parameters are fitted from the unoscillated spectra of CC
candidate events in ND280. The uncertainty from hadron-production data is the dominant
source of systematic error of the flux model. It is found that some of the beamline conditions
slightly change in time, and so the on-axis INGRID detector constantly monitors the stability
of the flux. Even though the flux uncertainty is approximately 9% at the peak energy, its
impact on oscillation parameter uncertainties is significantly smaller, given that the near and
far detector measurements sample nearly the same flux.

The dominant CCQE interaction (see Section 1.4.3) is modelled with a relativistic Fermi
gas nuclear model including long-range correlations using the random phase approximation
(RPA) [123]. The 2p-2h model implemented is developed by Nieves and collaborators [63, 124],
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Figure 3.8: Correlation matrix of the beam systematic model. The two main blocks correspond to
respectively the BANFF errors and the far detector Final State interaction errors.

which predicts multinucleon emission considering contributions from ∆-like meson exchange
currents and from interactions with correlated nucleon–nucleon pairs. These different modes give
rise to specific biases in the reconstructed neutrino energy when calculated with the quasi-elastic
formula of Section 1.149. This effect is adjusted by introducing systematic parameters for the
components of the model related to 12C and 16O and interactions, being these two the principal
target nucleons in ND280. There is an additional uncertainty on the relative normalisation
between such parameters. The q2 dependence of the RPA correction is allowed to vary as well,
parameterising it over four additional variables. Processes producing a single pion and one
or more nucleons in the final state are instead described by a tuned Rein-Sehgal model [61].
The differences between radiative corrections to electron- or muon-neutrino interactions are
large at low energies [125]. This is due to the different final-state lepton mass and the issue
is addressed by adding uncorrelated and anticorrelated uncertainties to νe and νe CC cross-
sections in relation to the muon neutrino ones. Other important parameters are the axial-mass
mA, the Fermi momentum pF , and the nucleon binding energy Eb, which are uncorrelated to
the 12C and 16O systematics and are left unconstrained given the poor agreement from other
neutrino experiments [126].

There are also 45 uncertainties for SK detector efficiencies and Final State Interactions
(FSI), which parameterise the uncertainties on the four final-state event selections at the far
detector. Among these, one uncorrelated systematic describes the energy scale uncertainty. The
reconstruction of the momenta in a neutrino event is mainly based on the charge collected by
the PMTs; for this reason, the resolution is mostly limited by water quality and PMT gain.
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A precise momentum determination of the incoming neutrino is a necessary requirement for
oscillation analysis. The calibration of the energy scale is therefore a crucial step and in SK it
is performed using four well-understood independent control samples [122]. Since the energy
loss dE/dx is approximately constant, the ratio between reconstructed momentum and track
length of high energy stopping muon is used to regulate the energy scale for energies in the range
1 ∼ 10GeV. The track is estimated from the entering position of the muon and the vertex of the
detected Michel electron, both of which are assumed to be independent on the reconstruction
method. The momentum of low-energy stopping muons with energies from 200MeV to 500MeV
are estimated by determining the Cherenkov angle using Eqs. (2.3) and (2.4); only events with
a clear Cherenkov ring and optimal reconstruction are selected, and the purity of the sample
is improved by requiring the detection of the decay electron in the fiducial volume. The single
neutral pions produced in NC interactions of atmospheric neutrinos are reconstructed by looking
at the invariant mass of the final-state photons

m2
π0 = 2 pγ1 pγ2(1− cos θ) , (3.32)

with θ being the opening angle between γ1 and γ2. The error on the energy scale at around
130MeV comes from comparing the peak positions of the data and Monte Carlo distributions of
mπ0 . Finally, the distribution of decay electron events from stopping cosmic muons is used at
energies around 40MeV. This sample is used to test whether the detector response is uniform,
since vertices and the direction of the electrons distribute homogeneously and isotropically in
the fiducial volume. The stability in time of the energy scale is instead validated by the high
energy stopping muons. The energy scale systematic of SK is assumed to be valid for HK.

The full list of systematics is reported in Appendix A. The correlation matrix between the
beam systematics is shown as a 2D colour map on Fig. 3.8, from which the three main typologies
of uncertainties—flux, cross-section, and far detector—are easily recognised. The SK and FSI
systematics are visibly uncorrelated with the BANFF ones.

3.4.2 Sensitivity with the nominal systematic model

Using the predictions from Section 3.3.4 and fixing the true oscillation parameter combina-
tion at the Asimov A point (see Table 3.2), the χ2 profile is now calculated with the minimisation
method in previous Section 3.3.3. A combined fit of the νe and νµ samples allows to estimate
the sensitivity of HK to the oscillation parameters. The χ2 profiles against the variation of the
oscillation parameters ∆m2

32, sin2 2θ13, sin2 θ23, and δCP are shown in Fig. 3.9. The contour
plots of the χ2 with ∆m2

32 versus sin2 θ23 and δCP and sin2 2θ13 are also shown. The lines
show also the effect of the Gaussian penalty term on the angle θ13 from reactor constraints.
Unsurprisingly, this term mostly affects the χ2 profile for sin2 2θ13 and slightly δCP as they are
correlated.

The full sensitivity to exclude CP conservation computed with the nominal systematic model
is shown in Fig. 3.10. The effect of the Gaussian penalty term does not impact the sensitivity of
HK to CP violation, hence this term is always included in the following results. In Fig. 3.10, the
sensitivity is shown at different stages of the experiment. The effect is simulated by rescaling
event samples. With only a quarter of the data collected, a maximally violating CP phase
could be found with a significance of 3σ, but with half of the statistics 5σ are easily reached.
Increasing the collected samples, the sensitivity quickly saturates to the best exclusion of ∼6.5σ.

The usefulness of performing a combined fit between beam and atmospheric data can be
best understood from Fig. 3.11. When the expected (En) and observed (On) event distributions
are built for the χ2 calculation, a neutrino mass hierarchy must be assumed. In reality, the
true mass ordering is unknown and unless this freedom is parameterised in some way, it can
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Figure 3.9: χ2 pro�le for δCP (top left), sin2 2θ13 (top right), ∆m2
32 (middle left), and sin2 θ23 (middle

right), together with the contour levels for δCP versus sin2 2θ13 (bottom left) and ∆m2
32 versus sin2 θ23

(bottom right). The bottom panels in the top four �gures show the di�erence between the χ2 pro�les
computed with the penalty term and the χ2 pro�les computed without. The dashed lines and the black
triangles show the position of the best �t value, which is always at the nominal Asimov A value.
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Figure 3.11: Expected signi�cance to exclude CP conservation with the nominal model and for the
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not known the sensitivity is weakened. When the true mass ordering of the beam sample is normal and
inverse hierarchy is �tted, exclusion power is lost for δCP > 0 (black dashed). Including the atmospheric
sample in the �t restores partially the sensitivity (blue dashed).
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Table 3.3: Variations of the nominal systematic model, labelled 0. The second column specify the
modi�cation applied to the reference model: the sets in the �rst block have one or more parameters added,
whereas one or more parameters are removed in the variations of the second block. The systematic models
in the last group have the same number of parameters of the nominal model, with the modi�cations
speci�ed.

0 Nominal T2K model

1a = 0 + νe CC cross-sections for 0.1GeV < Etrue < 0.6GeV
1b = 0 + νe CC cross-sections for 0.6GeV < Etrue < 1.0GeV
2a = 0 + νe CC cross-sections for 0.1GeV < Etrue < 0.6GeV
2b = 0 + νe CC cross-sections for 0.6GeV < Etrue < 1.0GeV
9 = 0 + CC1π± and CC-coh cross-sections for νe and νe.
10 = 0 + CC1π± and CC-coh cross-sections for νµ and νµ

for 2GeV < Etrue < 10GeV

6a = 0 − ν 2p-2h normalisation
7a = 0 − ν 2p-2h normalisation
67 = 0 − ν and ν 2p-2h normalisation

8 = 0 × increased νe �ux uncertainty in ν-mode beam (2%)
11a = 0 × increased energy scale (2.4% → 2.9%)
11b = 0 × decreased energy scale (2.4% → 1.9%)
�ux = 0 × �ux model additions from INGRID studies

happen that the wrong mass hierarchy is used in defining the expected events. In this case, the
sensitivity to certain values of δCP can deteriorate. For example, if the true mass ordering is
normal hierarchy and inverted hierarchy is assumed in the fit, the sensitivity for δCP < 0 remains
unaffected, whereas the one for δCP > 0 worsens. The opposite occurs in the reverse situation.
Adding the atmospheric sample to the likelihood calculation allows to partially recover the
exclusion power to CP conservation. The very long baseline of atmospheric neutrinos amplifies
matter effects, thanks to which the sensitivity of the experiment to mass ordering is restored.
The differences between expected and observed events thus intensify, leading to larger values of
the likelihood.

3.4.3 Variations of the nominal model

Previous studies [116] found that some systematic uncertainties were not easily implemented
by varying model parameters. These were then the subjects of fake data studies, where a
variant systematic model was analysed under the assumptions of the default model. A series of
modifications of the nominal systematic model are considered also in this study. New systematic
sets are created and by performing sensitivity studies with these variations of the nominal model
it is possible to determine whether certain systematic errors need more control than other. All
of the produced sets are listed in Table 3.3, even though only some of them have been analysed
for this thesis and they are: increment of the νe flux uncertainty in the ν-mode beam by 2%
(labelled 8); increment of the energy scale uncertainty, from 2.4% to 2.9% (labelled 11a);
decrement of the energy scale uncertainty, from 2.4% to 1.9% (labelled 11b). The choice
of these sets is motivated by the fact that the number of systematic errors is the same with
respect to the nominal model and the modified uncertainties are well understood by the various
analysis groups. The remaining variations will be analysed in future studies. The new three
profiles are shown collectively with the nominal model (labelled 0) in Fig. 3.12. The χ2 as a
function of δCP and sin2 2θ13 changes slightly with a different flux uncertainty, but it is not
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Figure 3.12: χ2 pro�le for δCP (top left), sin2 2θ13 (top right), ∆m2
32 (middle left), and sin2 θ23 (middle

right), together with the contour levels for δCP versus sin2 2θ13 (bottom left) and ∆m2
32 versus sin2 θ23

(bottom right). The bottom panels in the top four �gures show the di�erence between the χ2 pro�les
computed with the nominal model (0) and the variations of the nominal model itself (8, 11a, and 11b).
The dashed lines and the black triangles show the position of the best �t value, which is always at the
nominal Asimov A value.
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Figure 3.13: Expected signi�cance (right) to exclude CP conservation with the nominal model (0) and
its variations (8, 11a, and 11b). On the left, the di�erence of each curve with the nominal model show
that the sensitivity does not change signi�cantly with the modi�cations of the systematic model in place.

very much affected by a variation of the energy scale error. The opposite is true for χ2 versus
∆m2

32 or sin2 θ23, in which varying the energy scale error is reflected in larger deviations from
the nominal model away from the best fit value. The contour plots in Fig. 3.12 confirm that
no appreciable deviation from the nominal model is seen for χ2 levels corresponding to 1σ and
3σ. In terms of sensitivity, the variation induced by the modified systematic model is less than
0.1% at values of maximal violation of CP, as it can be appreciated in Fig. 3.13. The treatment
of the energy scale uncertainty with the methodology described in this chapter might be too
simplistic. The linear behaviour of the systematic errors (see Eq. (3.30)) should be applied
with mindfulness: it follows that the systematic parameters in the χ2 could commute with each
other. The energy scale error, however, does not since it effectively shifts the bin contents of
the event distributions. It is also believed that this parameter is simultaneously constrained by
the e-like samples the µ-like samples, thus exhibiting no appreciable effect on the sensitivity
prediction. The calibration of the energy scale is, as a matter of fact, performed separately on
stopping muon and decay electron events, as explained in Section 3.4.1. There is probably need
to improve the systematic model by not only splitting the energy scale systematic between the
two data samples, but also by changing the χ2 definition and the way this parameter is treated.

Keeping in mind the above caveats, the sensitivity to δCP from Fig. 3.13 is above 6σ at
full statistics. It is expected that the systematics variations of Table 3.3 should not degrade
the significance of CP conservation exclusion below this value. Further studies are in place
before the definitive quantitative results, since a more accurate treatment of the energy scale
parameter is needed. Once the beam sample is extensively analysed, the atmospheric sample
can be added to the χ2 calculation and a more comprehensive systematic model can be adopted.

Summary

In this chapter, the sensitivity of the HK experiment to oscillation parameters has been es-
timated, with special emphasis on the CP–violating phase δCP. The HK experiment will collect
a large amount of data thanks to both an exceptional fiducial volume and upgraded instru-
mentation which will allow a detailed study of the oscillation parameters. A fitting framework
which combines atmospheric and beam data samples is employed for the study. The technique
involves the minimisation of a Poissonian likelihood function which includes effects from sys-
tematic uncertainties and is computed at different combinations of the oscillation parameters.
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The error model for the atmospheric data sample consists of 67 systematics, whereas the beam
data sample is described by the T2K systematic model, made of 119 parameters. Considering
the beam sample alone, it is found that Hyper-Kamiokande can exclude maximal violation of
CP at full statistics with more than 6σ of significance. Some variations of the beam systematic
model are also being investigated in order to understand how the experimental sensitivity is
affected by certain model parameters. One of these, the energy scale error, might be treated too
naively in the fitting framework and so slight modifications to both the error model and the like-
lihood should be considered. It is expected that the systematics variations of Table 3.3 should
not degrade the significance of CP conservation exclusion below this value. Finally, performing
a combined fit between beam and atmospheric data is helpful not only because more data is
collected, which increments the overall sensitivity in absolute terms, but also because different
neutrino energies and baselines are studied. This makes the analysis more robust, in particular
regarding the uncertainty on the mass ordering: the very long baseline of atmospheric neutrinos
amplifies matter effects and therefore the atmospheric sample partially recovers exclusion power
to CP conservation when the neutrino hierarchy is unknown.
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Chapter 4

Phenomenology of heavy neutral

leptons

The evidence of three neutrino flavour oscillation is well established [17, 30, 45] and neces-
sarily implies that the neutrino mass splittings are nonzero, as seen in Section 1.2.2. Neutrinos
are therefore massive and they mix, forcing to consider extensions of the Standard Model (SM)
to explain their origin. A simple means of doing so is to introduce the right-handed counterpart
of SM neutrinos (see Section 1.2.1) which are singlet with respect to all SM gauge symmetries.
The new Lagrangian includes a Yukawa coupling between these sterile states, the Higgs boson
and the leptonic doublet, which generates Dirac mass-terms below the scale of electro-weak sym-
metry breaking (EWSB). Since any renormalisable term should be included in the Lagrangian,
Majorana mass terms for the new singlet states are allowed. On diagonalisation of the resulting
neutrino mass matrix, the heavy neutrino states, commonly known as nearly-sterile neutrinos or
Heavy Neutral Leptons (HNLs) in experimental contexts, remain mainly in the sterile neutrino
direction and have subweak interactions suppressed by elements of the extended mixing matrix.

These states have been connected to a vast range of phenomenological behaviours and even to
cosmological implications (for a review on sterile neutrinos see Ref. [127]). For instance, nearly-
sterile neutrinos in the keV region are viable warm dark matter candidates [128], whereas heav-
ier HNLs could play a role in leptogenesis [99, 129, 130]. So far, some possible hints in favour
of sterile neutrinos have emerged in neutrino appearance oscillation experiments, specifically
LSND [131] and MiniBooNE [132–134] but are disfavoured by disappearance experiments [135–
137], unless non-standard effects are present [138–141]. Further hints in the same mass range
have been reported for mixing with electron neutrinos in the so-called reactor anomaly [142–
146] and in the less statistically significant gallium one [29, 147, 148]. Explanations of the
MiniBooNE low energy excess invoking GeV-scale HNLs with nonstandard interactions [149–
153] have also been put forward. In these models, heavy neutral fermions are produced by
neutrino up-scattering in the detector and subsequently decay into photons or electrons, which
mimic an electron neutrino interaction. The interpretation of the current experimental results
is still largely debated in the scientific community. Searches both for electron-like signatures
in MicroBooNE, the SBN programme at Fermilab [154], and in short baseline reactor neu-
trino experiments, such as DANNS [146], NEOS [145], PROSPECT [155], STEREO [156], and
NEUTRINO-4 [157], will shed further light on these possibilities, whereas the KATRIN exper-
iments [158] will be able to exclude the gallium anomalies.

Apart from these controversial hints, no positive evidence of heavy neutrinos has been found
to date in laboratory searches. Bounds critically depend on the HNL masses and the flavour
with which they mix. Searches for kinks in Curie plots of β-decay spectra [159–163] have
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placed bounds on the electronic mixing for HNL masses between the keV and MeV scales. For
masses from a few MeV to a few hundreds MeV, searches for monochromatic peaks in the lepton
spectrum of decaying pions and kaons place important bounds on the muonic and electronic
mixing angles [164–168]. Neutrinoless double beta decay indirectly constrains Majorana HNLs
from the eV to the TeV scale and lepton number violating meson and tau decays can be used to
set limits on the mixing angle in narrow ranges of HNLs masses [169]. The tightest constraints
come from searches for the direct production and subsequent decays of heavy neutrinos in
beam dump experiments (see Chapter 5) and at colliders. These types of studies are almost
model independent and thus can provide competitive bounds. The strongest limits to date
were set by the PS191 experiment [170, 171], even though a similar search in the near detector
of T2K has reached very similar constraints [172]. Other bounds of this type can be found
at LEP experiments [173, 174], CHARM II [175], NuTeV [176], and similar ones [177–179],
as well as collider analyses, from LHCb [180], ATLAS [181], CMS [182, 183], BELLE [184]
(see also Ref. [185]). Thorough reviews of the current experimental constraints can be found
in Refs. [169, 186], and in Ref. [187] for some revised bounds.

In this chapter, low-scale seesaw models are discussed linking the origin of light neutrinos to
a new phenomenologically viable physics scale in Section 4.1. This elegant solution is possible
thanks to a minimal extension of the SM symmetry, in which heavy neutral leptons are predicted
at an energy range accessible by future neutrino experiments (see Chapter 5). Formulae to
compute polarised differential rates were computed for the first time in literature in Ref. [1] and
are reported in Section 4.2 and Section 4.3. The precise formulation of decay and production
rates is necessary to develop a reliable study of searches of HNL decays at neutrino beam
facilities. The range of interest for this study goes therefore from a few MeV up to a couple of
GeV, as motivated in Section 4.3.

4.1 Heavy neutrinos in seesaw models

Given n new SM singlets, Ni, the extended Lagrangian becomes

LSM+N = LSM + iN i /∂ Ni + Yαi Lα H̃ Ni +
1

2
(MR)ij NC

iNj + h.c. , (4.1)

with LSM denoting the SM Lagrangian and the other symbols taking their conventional meaning.
Below EWSB, mass terms for neutrino states become explicitly available

−Lmass =
1

2
νMνC + h.c. , (4.2)

where ν is such that
PL ν ≡ (νe, νµ, ντ , N1, . . . , Nn) , (4.3)

and C denotes charge-conjugation (see Section 3.1). If no additional field content is added and
only renormalisable operators are included, the low-scale mass terms will have the structure

M =

(
0 mT

D

mD MR

)
, (4.4)

where mD and MR are complex matrices of dimensions n × 3 and n × n, respectively. Under
the assumption that MR is full rank, this model defines the Type I seesaw [188–191]. The light
neutrino mass matrix is then retrieved by the following expansion [192]:

mν = mT
DM

−1
R mD +O

([
M−1
R mD

]2)
. (4.5)
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The top-left zero in Eq. (4.4) arises as a consequence of SU(2)L symmetry, and similar theoret-
ical considerations often impose further textures and hierarchies on mD and MR, which in turn
lead to specific correlations in the physical spectrum of states. The heavy neutrino masses are
approximately given by the diagonal entries ofMR and its corresponding eigenstates, the heavy
nearly-sterile neutrinos Ni, have suppressed mixing with active neutrinos and are mainly com-
posed by sterile fields. Neglecting the matrix nature of these expressions for now, if mD takes
values around the electroweak scale, acceptable neutrino masses are produced whenMR has val-
ues around the GUT scale, suggestively connecting it to a high-scale breaking of U(1)B−L [188].
Low-scale solutions are also possible by taking the Yukawa couplings to be similar or smaller
than the other SM lepton Yukawa couplings. For example if mD takes values in the keV range,
new nearly-sterile states would exist with masses around a GeV. The resulting mixing UαN is
constrained by the contribution given to light neutrino masses and naively one can expect to
have

|UαN |2 .
mν

mN
. 10−10 1 GeV

mN
, (4.6)

by taking mν . 0.1 eV as limit for light neutrino masses and with mN the mass of a heavy
neutrino. Specific models in which low energy neutrino masses and mixing angles are derived
from the seesaw parameters allow for a broader range of values, invoking specific structures for
the Yukawa couplings.

Another way to avoid the bound of Eq. (4.6) is by the cancellation between contributions
to neutrino masses from larger families of sterile neutrinos. This is achieved in a class of
models with approximate lepton number (LN), which can lead to phenomenologically acceptable
neutrino masses. Assuming that all of the Ni states have lepton numbers of |QL| = 1, the right-
handed fields Sj = NC

j are defined for any state with QL = −1. The set of flavour states can
then be ordered by lepton number

PL ν ≡ (νe, νµ, ντ , N1, . . . , Na, S
C
1 , . . . , S

C
b ) , (4.7)

with a+ b = n. These charge assignments forbid certain terms in the mass matrix, when LN is
conserved. Following Eq. (4.1) and Eq. (4.4), the most general mass matrix is given when

mD =
(
m, 0

)
and MR =

(
0 MT

M 0

)
, (4.8)

producing in the lepton number conserving (LNC) limit

M =

 0 mT 0
m 0 M
0 MT 0

 , (4.9)

where m andM are complex matrices with respectively dimensions a×3 and a×b. This matrix
preserves LN and all its flavour states have nonzero LN. It is found that the mass spectrum,
i.e. the entries of the diagonalised matrix, consists of [193]

min{3 + b, a} Dirac pairs and |3 + b− a| massless Majorana states , (4.10)

in which the Dirac pair masses are given by the nonzero singular values of the rectangular
a × (3 + b) matrix (mT,MT). Although such a mass matrix can explain the neutrino data
via three Dirac pairs with a = 3 and b = 0, this solution has no natural explanation of the
observed smallness of the light neutrinos. The scale of neutrino masses can be recovered by
a perturbation of the above mass matrix by means of a small lepton number violating (LNV)
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Figure 4.1: This schematic shows the di�erent structure of the neutrino mass spectrum when LNV
terms are included or not in the mass matrix. As an example, ISS(2,2) and ISS(2,3) models are shown.
In the LNC limit, the high scale masses are degenerate and the states form Dirac pairs, whereas the
light neutrinos are all massless Weyl states. When the LNV perturbation µ is added, the degeneracy is
resolved and the Dirac pairs become pseudo-Dirac states, with a mass splitting proportional to µ . At
the low scale, the neutrinos also acquire masses. When a 6= b extra Majorana states appear in addition
to the three light neutrinos.

parameter. In this case, the specific texture of MR and mD guarantees a quasi-preserved LN if
the LNV parameters are natural in the ’t Hooft sense [194]. This can lift eigenstates which are
massless in the LNC limit to states with small masses, the magnitude of which is dictated by the
LNV perturbation. Under assumptions of renormalisability, the most general LNV Lagrangian
must include the following terms,

LLNV = −Y ′αi LαH Si −
1

2
µ′ij N

C
i Nj −

1

2
µij SCi Sj . (4.11)

Each of the terms in this Lagrangian has historically been associated with a simple independent
implementation of the paradigm: the Inverse Seesaw (ISS) [195, 196], the linear seesaw [193,
197, 198], and the extended seesaw [199, 200]. The focus of this thesis is on the ISS model.

In the ISS, the texture of the perturbation assumes the values Y ′ = 0 and µ′ = 0, while µ
controls the size of LNV effects. The mass matrix is therefore

M =

 0 mT
D 0

mD 0 MT
R

0 MR µ

 . (4.12)

On diagonalisation, the light neutrino masses are found to be suppressed by the size of µ.
Assuming µ� m,M and a = b, the light mass matrix takes the following form [196]:

mν = mM−1µ
(
M−1

)T
mT +O(µ2) . (4.13)

It results that light neutrino masses are explained by Yukawa couplings of order one and a new
physics scale a little above the electroweak scale [195, 196]. For a 6= b, extra massless sterile
states degenerate with the light neutrinos are present in addition to the set of Dirac pairs of
arbitrary masses. In the LNC limit, there is no mixing defined that involves these degenerate
states, as any unitary map in the degenerate subspace is permitted. On the contrary, the
introduction of the small LNV parameter µ perturbs the LNC spectrum as well as the mixing
for both light and heavy neutrinos. In general, there are only two possible origins for a low-
scale heavy neutrino. One scenario is when one of the massive Dirac pair is already at a low
energy scale in the LNC limit and it becomes a pseudo-Dirac pair after the perturbation. The
degeneracy is resolved by the µ parameter, which regulates the mass splitting of the pair. Both
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in the LNC limit and in the LNV case, the mixing angles between Dirac pair and light neutrinos
can be arbitrarily large. The other possibility can only occur when a 6= b and it involves one of
the massless Majorana fermion, initially degenerate with the light neutrinos. In the presence of
LNV terms, this state is given a nonzero mass proportional to the perturbation. As the mixing
between massless states is not defined in the LNC limit, the perturbation controls the induced
mixing between the nearly-sterile state and the active ones. The cartoon of Fig. 4.1 illustrates
how the mass spectrum changes with LNV terms, highlighting how the mass degeneracy in the
LNC limit is resolved when LNV contributions are added. The notation “ISS (a, b)” will be used
to denote a realisation of the model with a and b new gauge singlets of, respectively, lepton
number +1 and −1, and a, b 6= 0.

The discussion above suggests that both Majorana states and (pseudo-)Dirac states should
be considered when dealing with possible phenomenological aspects of an ISS framework. In
computing decay and production rates for both Majorana states and Dirac states, lepton number
violating effects will be disregarded and therefore the distinction between pseudo-Dirac and
Dirac states will not be relevant. The region of interest for the masses of heavy states is in
the MeV–GeV range. This is motivated by the kinematic limits on production from meson
decays discussed in more detail in Section 4.3. Feynman rules for Majorana states derived from
Eq. (4.1) can be found in [169], or constructed using the techniques of Ref. [201]. For an explicit
comparison between Dirac versus Majorana Feynman rules for heavy neutrinos, see Ref. [202].

4.2 Heavy neutrino decay

The heavy neutrino decay rates and polarised distributions necessary for studies in experi-
mental searches are presented in this section. The calculations can be simplified by noting the
following equivalences. A Majorana neutrino N decaying via a charged current process has the
same differential decay rate as the Dirac neutrino ND with the appropriate lepton number,

dΓ (N → `−αX
+) = dΓ (ND → `−αX

+) , (4.14)

dΓ (N → `+αX
−) = dΓ (ND → `+αX

−) , (4.15)

where identical mass and mixing angles for both Dirac and Majorana neutrinos are taken. This
equivalence can be seen directly from the Feynman rules for Dirac and Majorana fermions [201,
202], but also explicitly in the formulae below. In a neutral current (NC) decay, however, the
two contractions of the NC operator lead to another contribution, and so

dΓ (N → νX ′) = dΓ (ND → νX ′) + dΓ (ND → νX ′) . (4.16)

These relations hold at the differential level if the kinematic variables are reinterpreted in the
obvious way. In this sense, the Majorana process can be seen as the sum of Dirac particle and
antiparticle decays. It is important to observe that in a general amplitude with Majorana states,
there would also be an interference contribution between these two subprocesses. However, in
all cases of interest, interference diagrams are proportional to the final-state light neutrino mass,
which for the sake of simplicity is zero. Considering the total decay rates only, the Majorana
decay is larger by a factor of 2 compared to the Dirac case,

Γ(N → νX ′) = 2Γ(ND → νX ′) . (4.17)

This is, however, only true for the total decay rates with massless final-state neutrinos.
It is instructive to reconsider this result in the light of the practical Dirac–Majorana confu-

sion theorem [203, 204]. In Ref. [203], the decomposition into particle and antiparticle processes
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Table 4.1: All the available channels for a HNL with a mass below the D±s mass are listed above, sorted
by threshold mass. The active neutrinos are considered massless, when compared to the masses of the
other particles.

Channel Threshold

ννν 0MeV
νe+e− 1.02MeV
νe±µ∓ 105MeV
νπ0 135MeV
e∓π± 140MeV
νµ+µ− 210MeV
µ∓π± 245MeV

Channel Threshold

e∓K± 494MeV
νη 548MeV
µ∓K± 559MeV
νρ0 776MeV
e∓ρ± 776MeV
νω 783MeV
µ∓ρ± 882MeV
e∓K∗± 892MeV

Channel Threshold

νη′ 958MeV
µ∓K∗± 997MeV
νφ 1019MeV
νe±τ∓ 1776MeV
e∓D± 1870MeV
νµ±τ∓ 1880MeV
τ∓π± 1870MeV

was performed for the Majorana neutrino–electron scattering via neutral current, which led to
a factor of two enhancement in the total rate. However, this enhancement was shown to be
absent in practice due to the polarisation of the incoming neutrino which suppresses the ∆L = 2
contributions by factors of the neutrino mass. In the present case of nearly-sterile decay, where
mass effects are large and essential to the calculation, there is no analogous effect: Dirac and
Majorana neutrinos will have distinct total decay rates regardless of their polarisation. Hence,
the total decay rates of heavy neutrinos into observable final states could in principle allow
to determine the Majorana/Dirac nature of the initial state. This is not a trivial effect; for
example, a pure Majorana state decays with equal probability into e−π+ as e+π−, one of its
dominant and most experimentally distinctive decay modes, while a Dirac heavy neutrino will
only decay into e−π+. Assuming charge-identification is possible in the detector, distinguishing
between the two total decay rates should be possible with modest statistics. In a charge-blind
search or for an NC channel, the total decay rate of Majorana neutrinos would appear to be
twice as large as that of Dirac neutrinos. However, since the mixing is usually an unknown
quantity, the difference between Majorana and Dirac nature in this scenario cannot be deduced
as easily. There is also a more subtle impact of the nature of the decaying neutrino. Even
though the total decay rate is not affected by the helicity of the initial neutrino, the helicity
plays an important role on the distributions of final-state particles, which will in turn influence
the observability of the signatures of neutrino decay. Although spin-averaged Majorana neutrino
decay rates are well known in the literature [169, 205–207], it is important that these polarisa-
tion effects are correctly implemented when studying the distributions of final-state observables
and subsequently when developing an analysis to tackle backgrounds.

In calculating the decay rates, summing over any possible outgoing states as

Γ(N → νX ′) ≡
3∑
i=1

Γ(N → νiX
′) (4.18)

defines a semi-inclusive decay rate into the visible particle(s) X ′, such that discussions about
the nature and flavours of final-state neutrinos can be avoided. Many other authors treat
light neutrinos as Dirac particles, and construct the full decay width using arguments of CP
invariance, in practice amounting to adding some judicious factors of two [169, 207]. Following
this approach, the summed decay rate for N → νX ′ can be seen as

Γ(N → νX ′) ≡
τ∑

α=e

[
Γ(N → ναX

′) + Γ(N → ναX
′)
]
. (4.19)
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Figure 4.2: The branching ratios for HNL decays are shown above as functions of the neutrino mass,
computed using the formulae presented in Section 4.2.1 and integrated over the angular variables. They
are grouped in CC�mediated decays (left) and NC�mediated decays (right), in the range from 0.01MeV
up to the maximum mass limit for neutrino production, near 2GeV. A scenario in which |UeN |2 =
|UµN |2 = |UτN |2 is chosen here for illustrative purposes. The branching ratios of Majorana neutrinos
and Dirac neutrinos are mathematically identical and therefore no distinction is stressed. The decay into
three light neutrinos is fundamental for a correct computation of the branching ratios, even though fully
invisible from an experimental point of view.

The two approaches are identical mathematical procedures and can both be used to compute
the differential decay rates; however, the light neutrinos in most seesaw models are Majorana
fermions and making a distinction between να and να is physically misleading. The approach
could be seen as a short-hand for decay rates into polarised massless neutrinos, but this only
adds a further complication when dealing with polarisation effects in the beam. The distribution
of events, the role of helicity and the heavy neutrino nature are found to be obscured by
this approach. In contrast, by summing over all outgoing states, the following formulae are
insensitive to the Majorana/Dirac nature of the light neutrinos, and so are the physically relevant
rates necessary for comparison with experimental searches since outgoing neutrinos are not
reconstructed.

In the remainder of this section, the polarised heavy neutrino decay rates and distributions
for Majorana and (pseudo-)Dirac neutrinos are presented. All the decay modes considered are
listed in Table 4.1 and their respective branching ratios are shown in Fig. 4.2 as functions of the
neutrino mass. The differential widths have been computed using the massive spinor-helicity
formalism [208, 209] and checked numerically using FeynCalc [210, 211].

4.2.1 Majorana neutrinos

Pseudoscalar mesons

The semileptonic meson decays are some of the most important channels identified in pre-
vious studies [169, 212, 213] thanks to their large branching ratios and distinctive signature of
two charged particles with a common vertex. Both charged and neutral pseudoscalar mesons
are viable final-state particles, namely P± and P 0, and the decay widths are given in the centre
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Figure 4.3: Feynman diagrams for the CC (left) and NC (right) semileptonic two-body decays into
pseudoscalar meson, via the |UαN |2 mixing. The diagrams for the analogous decays into vector mesons
have the same structure. The charge-conjugated diagrams are easily retrieved. No fermionic current is
speci�ed for the HNL leg since the decaying neutrino can be both Majorana or (pseudo-)Dirac in nature.
The light neutrino are Majorana fermions in the ISS realisations considered in this work.

of mass (CM) frame by

dΓ±
dΩ`α

(
N → `−αP

+
)

= |UαN |2|Vq q|2
G2

Ff
2
Pm

3
N

16π
I±1
(
ξ2
α, ξ

2
P ; θα

)
, (4.20)

dΓ±
dΩ`α

(
N → `+αP

−) = |UαN |2|Vq q|2
G2

Ff
2
Pm

3
N

16π
I∓1
(
ξ2
α, ξ

2
P ; θα

)
, (4.21)

dΓ±
dΩP

(
N → νP 0

)
=

(
τ∑

α=e

|UαN |2
)
G2

Ff
2
P 0m

3
N

16π

I1

(
0, ξ2

P

)
4π

, (4.22)

where Γh is the decay rate for neutrinos of helicity h, Vqq is the appropriate CKM matrix element
for the considered meson, fP is its decay constant, and ξi = mi/mN denotes the mass of the
final-state particle i as a fraction of the initial-state mass. The solid angle elements Ω`α and
ΩP refer respectively to the charged lepton and pseudoscalar meson angles with respect to the
neutrino direction. The kinematic function

I±1 (x, y; θ) =
1

4π
λ

1
2 (1, x, y)

[
(1− x)2 − y (1 + x)± (x− 1)λ

1
2 (1, x, y) cos θ

]
(4.23)

is a generalisation of the function

I1(x, y) = λ
1
2 (1, x, y)

[
(1− x)2 − y(1 + x)

]
, (4.24)

introduced in Ref. [169], where x and y are squared mass ratios. After integrating over the
angular variables, it is found that both the pseudoscalar meson decay rates do not depend on
the helicity, as expected:

Γ±
(
N → `−αP

+
)

= Γ±
(
N → `+αP

−) = |Vq q|2|UαN |2
G2
F f

2
Pm

3
N

16π
I1

(
ξ2
α, ξ

2
P

)
, (4.25)

Γ±
(
N → νP 0

)
=

(
τ∑

α=e

|UαN |2
)
G2
F f

2
Pm

3
N

16π
I1

(
0, ξ2

P

)
. (4.26)

These rates agree with those presented in Refs. [205, 207], correcting a factor of two discrep-
ancy in the νP 0 rate of Refs. [169, 206]. The Feynman diagram for the charged and neutral
pseudoscalar meson channels are shown in 4.3.

The decay into a neutral meson is isotropic in the rest frame as seen in Eq. (4.22), while the
charged-pion modes in Eqs. (4.20) and (4.21) inherit their angular dependence from I±(x, y; θα),
where θα is the lepton angle to the beam line in the heavy neutrino rest frame. The isotropy of
the neutral current decay N → νP 0 is a manifestation of the Majorana nature of the particle,
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in agreement with the discussion of Ref. [214]. It is worth noting that if final states are not
charge-identified, a similar isotropy is obtained for the total rate of charged semileptonic decays,

dΓ±
dΩ`α

(N → `αP ) ≡ dΓ±
dΩ`α

(
N → `+αP

−)+
dΓ±
dΩ`α

(
N → `−αP

+
)

= |UαN |2|Vq q|2
G2

Ff
2
Pm

3
N

16π

I1

(
ξ2
α, ξ

2
P

)
2π

. (4.27)

The formulae above apply for all pseudoscalar mesons which are kinematically allowed. For
instance, below the K0 mass, the heavy neutrino can decay only into pions, but above this limit
η and η′ are also allowed in the final state.

Vector mesons

Although only for higher masses, HNL can also decay into vector mesons V , both via charged
current, N → `∓V ±, and neutral current, N → νV 0. The polarised differential distributions in
the heavy neutrino rest frame are

dΓ±
dΩ`α

(
N → `−αV

+
)

= |UαN |2|Vq q|2
G2

Ff
2
Vm

3
N

16π
I±2
(
ξ2
α, ξ

2
V ; θα

)
, (4.28)

dΓ±
dΩ`α

(
N → `+αV

−) = |UαN |2|Vq q|2
G2

Ff
2
Vm

3
N

16π
I∓2
(
ξ2
α, ξ

2
V ; θα

)
, (4.29)

dΓ±
dΩV

(
N → νV 0

)
=

(
τ∑

α=e

|UαN |2
)
G2

Ff
2
V κ

2
Vm

3
N

16π

I2

(
0, ξ2

V

)
4π

, (4.30)

where

I±2 (x, y; θ) =
1

4π
λ

1
2 (1, x, y)

[
(1 + x− y) (1 + x+ 2y)− 4x

± (x+ 2y − 1)λ
1
2 (1, x, y) cos θ

]
(4.31)

and
I2(x, y) = λ

1
2 (1, x, y) [(1 + x− y)(1 + x+ 2y)− 4x] , (4.32)

also presented in Ref. [169]. The total decay widths are given by

Γ
(
N → `−αV

+
)

= Γ
(
N → `+αV

−) = |UαN |2|Vq q|2
G2
F f

2
Vm

3
N

16π
I2

(
ξ2
α, ξ

2
V

)
, (4.33)

Γ
(
N → νV 0

)
=

(
τ∑

α=e

|UαN |2
)
G2
F f

2
V κ

2
Vm

3
N

16π
I2

(
0, ξ2

V

)
, (4.34)

where the constants κV are the following combinations of the Weinberg angle, which depend on
the flavour structure of V 0:

κρ = 1− sin2 θW , κω =
4

3
sin2 θW , κφ =

4

3
sin2 θW − 1 . (4.35)

The charged pseudovector decay rates agree with Refs. [169, 205–207] while the neutral pseu-
doscalar calculation agrees with the corrected version presented in Ref. [207]. The Feynman
diagram for these two processes are equivalent to the pseudoscalar meson ones, shown in 4.3.

As with the pseudoscalar meson decay rates, the Majorana nature leads to an isotropic decay
into a neutral vector meson. An analogous effect holds for the charged vector meson decay if
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W+

N

`−α

`+β

νβ

Z

N

να

`+β

`−β

Figure 4.4: Feynman diagrams for the CC (left) and NC (right) leptonic three-body decays, via the
|UαN |2 mixing. The charge-conjugated diagram for the CC process is easily retrieved. No fermionic
current is speci�ed for the HNL leg since the decaying neutrino can be both Majorana or (pseudo-)Dirac
in nature. The light neutrinos are Majorana fermions in the ISS realisations considered in this work.

the charges of final-state particles are not distinguished. In this case, the physically relevant
decay distribution in the particle rest frame is given by

dΓ±
dΩ`α

(N → `αV ) ≡ dΓ±
dΩ`α

(
N → `−αV

+
)

+
dΓ±
dΩ`α

(
N → `+αV

−) ,
= |UαN |2

G2
Ff

2
V

16π
|Vq q|2m3

N

I2

(
ξ2
α, ξ

2
V

)
2π

. (4.36)

There are no vector mesons lighter than the K0, and these decays become relevant only for
higher masses for which decays into ρ± and K∗±, and for the neutral mode into ρ0, ω, and φ
would be relevant.

Charged lepton pairs

Let us assign the momenta to the particles in the three-body decay as follows

N(k1)→ ν(k2) `−α (k3) `+β (k4) , (4.37)

and denote k2
i = m2

i . The five-dimensional phase space of the final-state particles can be
parameterised using the two scaled invariant masses

s1 =
(k2 + k3)2

m2
N

and s2 =
(k2 + k4)2

m2
N

, (4.38)

as well as the three lab-frame angular variables, (θ3, ϕ3) giving the direction of `−α and ϕ43

denoting the relative azimuthal angle between `−α and `+β . Although cos θ4 is not an independent
element of this parametrisation, it is a physically relevant quantity which is used to simplify the
presentation of the distributions below. It can be easily related to the fundamental variables
s1, s2, θ3, ϕ3, ϕ43 as

cos θ4 = cos θ3 cos θ43 − sin θ3 sin θ43 cosϕ43 , (4.39)

with

cos θ43 =
s1 + s2 −m2

N + 2E3E4

|p3||p4|
. (4.40)

The differential decay rate is expressed as

dΓ± =
G2
Fm

5
N

16π3

(
|A0|2 ± |A1|2

)
ds1 ds2

dΩ3

4π

dϕ43

2π
, (4.41)
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where Ω3 assumes the conventional meaning and

|A0|2 ≡ C1

(
s2 − ξ2

3

)(
1 + ξ2

4 − s2

)
+ C2

(
s1 − ξ2

4

)(
1 + ξ2

3 − s1

)
+ 2C3 ξ3 ξ4

(
s1 + s2 − ξ2

3 − ξ2
4

)
, (4.42)

|A1|2 ≡
[
C4

(
s2 − ξ2

3

)
− 2C6 ξ3 ξ4

]
λ

1
2
(
1, s2, ξ

2
4

)
cos θ4

+
[
C5

(
s1 − ξ2

4

)
− 2C6 ξ3 ξ4

]
λ

1
2
(
1, s1, ξ

2
3

)
cos θ3 . (4.43)

The coefficients Ci are polynomials in chiral couplings and extended PMNS matrix elements,
and they read

C1 =
τ∑
γ=e

|Uγi|2
[
(g2
L + g2

R)δαβ + δγα(1 + δαβgL)
]
,

C2 =
τ∑
γ=e

|Uγi|2
[
(g2
L + g2

R)δαβ + δγβ(1 + δαβgL)
]
,

C3 = 2δαβ gR

τ∑
γ=e

|Uγi|2(δαγ + gL) ,

C4 =
τ∑
γ=e

|Uγi|2
[
δαβ(g2

L − g2
R) + δγα(1 + δαβgL)

]
,

C5 = −
τ∑
γ=e

|Uγi|2
[
δαβ(g2

L − g2
R) + δγβ(1 + δαβgL)

]
,

C6 = 0 . (4.44)

On integration over the angular coordinates, however, only the |A0|2 term survives and the
standard expression for the total decay rates is recovered through the following identities∫

ds1

∫
ds2 (s2 − ξ2

3)(1 + ξ2
4 − s2) =

I1(0, ξ2
3 , ξ

2
4)

12
, (4.45)∫

ds1

∫
ds2 (s1 − ξ2

4)(1 + ξ2
3 − s1) =

I1(0, ξ2
4 , ξ

2
3)

12
, (4.46)∫

ds1

∫
ds2 2ξ3 ξ4(s1 + s2 − ξ2

3 − ξ2
3) =

I2(0, ξ2
3 , ξ

2
4)

12
. (4.47)

The functions I1(x, y, z) and I2(x, y, z) are kinematic functions derived by integrating over the
phase space

I1(x, y, z) = 12

(1−
√
z)

2∫
(
√
x+
√
y)

2

ds

s
(s− x− y) (1 + z − s)λ

1
2 (1, x, y)λ

1
2 (1, s, z) , (4.48)

I2(x, y, z) = 24
√
yz

(1−
√
x)

2∫
(
√
y+
√
z)

2

ds

s
(1 + x− s)λ

1
2 (s, y, z)λ

1
2 (1, s, x) . (4.49)



96 CHAPTER 4. PHENOMENOLOGY OF HEAVY NEUTRAL LEPTONS

Thus, the general expression for the total decay rate is again helicity independent and can be
written as

Γ±(N → ν`−α `
+
β ) =

G2
Fm

5
N

192π3

[
C1 I1

(
0, ξ2

3 , ξ
2
4

)
+ C2 I1

(
0, ξ2

4 , ξ
2
3

)
+ C3 I2

(
0, ξ2

3 , ξ
2
4

)]
. (4.50)

Using the expressions for Ci of Eq. (4.44) the total decay rates are given to first order in the
heavy–active mixing parameters UαN by

Γ±

(
N → ν`−α `

+
β

)
=
G2
Fm

5
N

192π3

[
|UαN |2 I1

(
0, ξ2

α, ξ
2
β

)
+ |UβN |2 I1

(
0, ξ2

β, ξ
2
α

)]
, (4.51)

Γ±
(
N → ν`−α `

+
α

)
=
G2
Fm

5
N

96π3

τ∑
γ=e

|UγN |2
{

(gLgR + δγαgR) I2

(
0, ξ2

α, ξ
2
α

)
+
[
g2
L + g2

R + δγα(1 + 2gL)
]
I1

(
0, ξ2

α, ξ
2
α

)}
. (4.52)

where α 6= β, gL = −1/2 + sin2 θW and gR = sin2 θW. The total decay rates agree with those
in Refs. [169, 205–207] and correct a typographical mistake in the rates presented in Ref. [212].
The CC and NC diagrams for these three-body leptonic decays are shown in 4.4, bearing in
mind that α = β is allowed and the inevitable interference terms must be considered.

All possible combinations of charged leptons except ντ−τ+ are allowed for masses be-
low mDs . However, the decays into ντ∓e± and ντ∓µ± can be neglected due to the limited
phase space. The number of events from these modes is negligible with respect to other chan-
nels.

Other decays

There are some other decay rates relevant to this study but not as viable observable channels.
First, the total decay width of the process N → νν̄ν, mediated by the Z boson, reads

Γ(N → νν̄ν) =

(
τ∑
γ=e

|Uγ4|2
)
G2
Fm

5
N

96π3
. (4.53)

Although this decay mode is experimentally invisible, it is the dominant channel up to the pion
mass, when two-body semileptonic decays open up, and plays a significant role in defining the
branching ratios of the observable channels. The expression agrees with Refs. [169, 205–207]
once the correct adjustments for Majorana and Dirac light neutrinos are applied. Secondly, there
are other decay modes with small branching ratios and/or complicated final states which are not
studied here. These include the one-loop decay into a photon which has received some interest
as an observable signature in nonminimal models [149, 150, 215] where it may be enhanced.
In the mass models considered in this work, it has a branching ratio of below 10−3 and will
not be considered. Other interesting but neglected channels are the multi-pion decay modes
discussed in Ref. [207], which are estimated to have at most a percent level branching ratio and
a challenging hadronic final state for reconstruction.

4.2.2 Pseudo-Dirac neutrinos

Pseudo-Dirac particles or antiparticles are coherent superpositions of paired Majorana mass
eigenstates,

NP = Usi νi + i Usj νj and NP = U∗si νi + i U∗sj νj , (4.54)
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where Usk is the mixing between mass states and sterile flavour states. Thanks to this decompo-
sition, the decay rate calculation can be recovered from the treatment of a pure Majorana state
by summing coherently over the constituent Majorana contributions. In a true Dirac pair, the
two components have identical masses and PMNS matrix elements which obey Uαi = ±i Uαj .
On coherent summation, this leads to perfect cancellation in any LNV process. For pseudo-
Dirac particles, the constituent states have both a mass difference and mixing angles usually
proportional to the LNV parameters introduced in Eq. (4.11), therefore of slightly different
magnitudes. This leads to an imperfect cancellation in LNV modes. In spite of this, LNV de-
cays are still allowed for pseudo-Dirac particles, but subdominant compared to pure Majorana
states. The contributions to these negligible rates are suppressed by either the mass splitting
or the difference in mixing angles, both of which are governed by the small LNV parameter
in low-scale seesaw models. Although present, it seems unlikely that such channels would be
of experimental relevance in the near future as they are always accompanied by dominant de-
cay modes with oppositely-charged final states. The signatures of these particles is actually
regulated by the leading order LNC effects and as such a strict Dirac limit is taken into the cal-
culations of the decay rates for (pseudo-)Dirac pairs. However, if evidence for a sterile neutrino
is found and significant statistics are collected, the search for LNV channels could in principle
provide evidence of the Majorana or pseudo-Dirac nature of the HNL. Moreover, it would allow
the measurement of the LNV parameter behind the model, which should correlate with the
scale of light-neutrino masses and so provide an important test of the relationship between the
novel particle and neutrino mass generation models.

The decay rates for a Dirac heavy (anti)neutrino are similar in form to those presented
for the Majorana neutrino. The key differences are lepton number conservation, which acts
to forbid certain channels, and differences in the angular distributions of the neutral current
decays. For charged current–mediated processes, the distributions for Dirac neutrinos and
antineutrinos are mathematically identical to the distributions for Majorana neutrinos. The
two-body semileptonic decays are the same of Eqs. (4.20) and (4.28),

dΓ±
dΩ`α

(
ND → `−αP

+
)

=
dΓ∓
dΩ`α

(
ND → `+αP

−) =
dΓ±
dΩ`α

(
N → `−αP

+
)
, (4.55)

dΓ±
dΩ`α

(
ND → `−αV

+
)

=
dΓ∓
dΩ`α

(
ND → `+αV

−) =
dΓ±
dΩ`α

(
N → `−αV

+
)
. (4.56)

The situation for NC processes is different with respect to Majorana neutrinos. The distribution
of the final-state particles is not isotropic anymore and it depends on the helicity state of the
initial neutrino, in the way shown by the following differential rates

dΓ±
dΩP

(
ND → νP 0

)
=

dΓ∓
dΩP

(
ND → νP 0

)
=

(
τ∑

α=e

|UαN |2
)
G2

Ff
2
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3
N

32π
I±1
(
0, ξ2

P ; θP
)
, (4.57)

dΓ±
dΩV

(
ND → νV 0

)
=

dΓ∓
dΩV

(
ND → νV 0

)
=

(
τ∑

α=e

|UαN |2
)
G2

Ff
2
V κ

2
Vm

3
N

32π
I∓2
(
0, ξ2

V ; θV
)
. (4.58)

The Feynman diagrams for these decay modes are the same of 4.3.
For three-body leptonic decays, the distribution is expressed in Eq. (4.41) with the relevant
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coefficients for a Dirac neutrino

Cν1 = Cν4 =

τ∑
γ=e

|Uγi|2
[
δαβg

2
L + δγα(1 + δαβgL)

]
, (4.59)

Cν2 = Cν5 = δαβ g
2
R

τ∑
γ=e

|Uγi|2 , (4.60)

Cν3 = Cν6 = δαβ gR

τ∑
γ=e

|Uγi|2(δγβ + gL) , (4.61)

and for a Dirac antineutrino

Cν1 = −Cν4 = δαβ g
2
R

τ∑
γ=e

|Uγi|2 , (4.62)

Cν2 = −Cν5 =
τ∑
γ=e

|Uγi|2
[
δαβg

2
L + δγβ(1 + δαβgL)

]
, (4.63)

Cν3 = −Cν6 = δαβ gR

τ∑
γ=e

|Uγi|2(δαγ + gL) . (4.64)

It is not surprising in view of Eq. (4.16) to observe that these coefficients are related to the ones
for the Majorana case as

Ci = Cνi + Cνi . (4.65)

The total decay rates are found to be

Γ±

(
ND → ν`−α `

+
β

)
= |UαN |2
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Fm

5
N

192π3
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(
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2
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)
, (4.66)

Γ±
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β

)
= |UβN |2
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Fm

5
N

192π3
I1

(
0, ξ2
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2
α

)
, (4.67)

Γ±
(
ND → ν`−α `

+
α

)
=
G2
Fm

5
N

192π3
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γ=e

|UγN |2
{

(gLgR + δγαgR) I2

(
0, ξ2

α, ξ
2
α

)
+
[
g2
L + g2

R + δγα(1 + 2gL)
]
I1

(
0, ξ2

α, ξ
2
α

)}
, (4.68)

Γ±
(
ND → ν`−α `

+
α

)
= Γ∓

(
ND → ν`−α `

+
α

)
, (4.69)

where α 6= β. The resulting rates agree with those in Refs. [169, 205–207].
All decay rates not listed above are forbidden for a Dirac (anti)particle as the combination

of production and decay would amount to a LNV process. For the available modes, all NC
modes are smaller by a factor of two for a Dirac (anti)neutrino compared to the equivalent
Majorana process; however, the major difference between the Dirac (anti)neutrino and Majorana
distributions is that these NC channels are dependent on the angular variables. The differences
in the distributions of the final-state particles could be exploited to identify the fermionic nature
of the decaying HNL [214].

4.3 Heavy neutrino production

Heavy neutrinos can be produced in a beam dump experiment via the same processes that
generate light neutrinos (see Section 1.3.3). If kinematically allowed, heavy neutrino states can



4.3. HEAVY NEUTRINO PRODUCTION 99

Table 4.2: Production channels at beam dump facilities yielding neutrinos, with the respective branch-
ing ratios (taken from Ref. [15]), considered for this work. The last column shows the maximum neutrino
mass allowed if a massive state is produced. On the left, all the decays yielding νe, νµ, and νµ up to
the K0 mass are shown. On the right, the neutrino sources which depends on the D+

s decay chain are
shown; the four τ decays listed here are the ones with the highest branching ratio.

Channel BR (%) mN (MeV)
π+ → µ+νµ 99.98 33.91

e+νe 0.01 139.06
K+ → µ+νµ 63.56 387.81

π0e+νe 5.07 358.19
π0µ+νµ 3.35 253.04
e+νe 0.16 493.17

K0
L → π±e∓νe 40.55 357.12

π±µ∓νµ 27.04 252.38
µ+ → νµe

+νe 100.00 105.14

Channel BR (%) mN/MeV
D+
s → τ+ντ 5.48 191.42

µ+νµ 0.55 1862.63
e+νe 0.008 1967.78

τ+ → π+π0ντ 25.49 1502.31
ντe

+νe 17.82 1776.35
ντµ

+νµ 17.39 1671.20
π+ντ 10.82 1637.29

be sourced from two- and three-body decays of mesons and charged leptons. All the neutrino
production channels considered in this analysis are listed in Table 4.2, where the heaviest
neutrino massmN that is accessible by kinematics is also reported. The possible parent particles
producing neutrinos are, up to 2GeV in mass, pions, muons, charged and neutral kaons, strange
charmed mesons Ds, and τ leptons. As explained in Section 1.3.3, the production of mesons
above the kaon mass requires very energetic proton beams which the majority of neutrino
accelerator experiments do not posses. For this reason, the HNL mass range considered goes
from a few MeV up to almost 2GeV.

The flux of heavy neutrinos produced is estimated starting from the flux of light neutrinos
and scaling it by an energy-independent kinematic factor. Given a certain SM neutrino produc-
tion process, Q→ ναQ

′, a scale factor is naively defined by the ratio between the decay width
of the same process producing massive neutrinos, Q → NQ′, and the rate of the SM decay
with light neutrinos. The full flux of nearly-sterile neutrinos with a given helicity is therefore a
linear combination of the different neutrino flux components, φQ→να , summing over all existing
parents and all allowed flavours:

dφ±N
dE

(EN ) ≈
∑
Q,α

KQ,α± (mN )
dφQ→να

dE
(EN −mN ) , (4.70)

where
KQ,α± (mN ) ≡ Γ±(Q→ NQ′)

Γ(Q→ ναQ′)
. (4.71)

The ratio K is proportional to the mixing parameter |UαN |2 and contains only kinematic func-
tions of the involved masses. These are responsible for correcting phase space and helicity
terms.

The helicity state plays a fundamental role in the production rate, in contrast with the case
of neutrino decays, since there is no arbitrariness in the polarisation direction this time; this is
defined by the neutrino momentum in the rest frame of the parent particle. The massive spinor-
helicity formalism is employed to compute the production decay rates for both Majorana and
Dirac neutrinos, and these are used to build the scale factors for each neutrino helicity. Even
though lepton number is preserved differently in the two cases and different Feynman rules hold,
all the production channels of interest in this work are mediated by charge current interactions
and therefore the rates are mathematically identical for Majorana and Dirac neutrinos. If the
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Figure 4.5: On the left, the factors S− (solid) and S+ (dashed) from Eq. (4.75) are shown. When the
mass approaches to zero, the percentage of neutrinos produced with negative helicity tends to 100%.
On the right, the ratio between scale factors K+ and K− from Eq. (4.72) shows the relative amount of
neutrinos with given mass produced with helicity h = −1 (L) and h = +1 (R) produced.

neutrino is Dirac, the production decay width for an antineutrino with given helicity is the same
as the one of the neutrino, but with opposite helicity. The phenomenology of the scale factors is
different for two- and three-body decays and so they are discussed, respectively, in Section 4.3.1
and Section 4.3.2. Only the four most probable decay modes of the τ lepton are considered in
this analysis, as they provide a sufficient description of their contribution to the overall flux.
The decay τ+ → ντπ

+π0 is studied only at the level of phase space sampling in this work.

4.3.1 Two-body decays

A massless neutrino (antineutrino) has its chiral and helicity states degenerate, and so it is
always produced with a negative (positive) helicity. It follows that the component of the light
neutrino beam produced in two-body decays of pseudoscalar mesons is polarised. The initial
spin, which is zero, must be preserved in the decay, and since the helicity of the neutrino in
the rest frame is fixed, the accompanying lepton is produced with a “wrong” helicity. This
is permitted by the nonzero mass of the charged lepton and therefore final states with light
flavour leptons undergo helicity suppression. As soon as the neutrino mass deviates from zero,
the correspondence between chirality and helicity is lost and the neutrino can be produced with
both polarisations. The main consequence is that the production of heavy neutrinos from light
flavour mixings (electron) appears to be enhanced with respect to heavy flavours (muon and
tau). The effect is particularly dramatic when the mass difference between parent meson and
charged lepton widens, as it happens with the electron decay of Ds, the enhancement of which
is around 106 for neutrino masses near 1GeV.

The scale factor Kh for leptonic decays of a pseudoscalar meson P into neutrinos with helicity
h, is given by the analytic expression

KP,α± (mN ) = |UαN |2
λ

1
2

(
1, ξ2

N , ξ
2
`α

)
2ξ2
`α

(1− ξ2
`α

)2

×
[
ξ2
`α + ξ2

N − (ξ2
N − ξ2

`α)2 ± (ξ2
N − ξ2

`α)λ
1
2
(
1, ξ2

N , ξ
2
`α

)]
, (4.72)

where λ is the Källén function

λ(a, b, c) = (a− b− c)2 − 4 b c , (4.73)
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Figure 4.6: The scale factors separated by helicity components are shown. In two-body decays (left),
the h = −1 components (dashed) for all channels do not depend on the mass. The enhancement is driven
by the h = +1 components (dotted), which are the dominant contribution of the unpolarised factors
(solid). In three-body decays (right), there are two di�erent scale factors for purely leptonic decays, noted
as `α → `β : if the decay is mediated by |UβN |2, for which the h = −1 (dashed) and the h = +1 (dotted)
components are comparable, and if the decay is mediated by |UαN |2, for which h = −1 dominates over
the h = +1 (dotdashed). In both cases, the two parts sum up to the same quantity (solid). The kaon
decays are also divided in h = −1 (dashed) and h = +1 (dotted) components; τ+ → νπ+π0 is studied
only at the phase space level.

and ξi = mi/mX is the mass ratio of the final-state particle i over the parent particle mass.
When summing over the helicity states, the resulting factor coincides with the one computed
in Ref. [216],

KP,α(mN ) =
∑
h=±1

KP,αh (mN ) = |UαN |2
λ

1
2

(
1, ξ2

N , ξ
2
`α

)
ξ2
α(1− ξ2

`α
)2

[
ξ2
`α + ξ2

N − (ξ2
N − ξ2

`α)2
]
. (4.74)

In order to understand the effect of Eq. (4.72), it is convenient to define the fraction of neutrinos
produced with a certain helicity as

S± =
KP,α±

KP,α+1 +KP,α−1

=
1

2

[
1±

(ξ2
N − ξ2

`α
) λ

1
2

(
1, ξ2

N , ξ
2
`α

)
ξ2
`α

+ ξ2
N − (ξ2

N − ξ2
`α

)2

]
. (4.75)

In the limit of a massless neutrino, i.e. ξN → 0, the fractions are S+ → 0 and S− → 1, as
expected: all neutrinos are produced with a negative helicity. The opposite is true when the
charged lepton is in the massless limit and the neutrinos are produced with a positive helicity.
The behaviour of the ratio S± is shown in Fig. 4.5.

The only two-body decay of a lepton considered in this work is τ → ντπ, whose scale factor
reads

Kτ,π± (mN ) = |UτN |2
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2
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2
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)]
. (4.76)

The structure is similar to the scale factor for pseudoscalar meson two-body decays, given
in Eq. (4.72), and analogous considerations as above can be deduced. This is explained by
crossing symmetries, as the matrix element of the process is the same. In this case, however,
the positive helicity component does not lead to any enhancement before the phase space cut-off.
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The effect of the scale factors as a function of the neutrino mass can be appreciated on the
left panel of Fig. 4.6, where the enhancement of negative helicity terms is apparent. The phase
space is also correctly described and the K drops to zero as the neutrino mass approaches its
parent mass.

4.3.2 Three-body decays

Scale factors for three-body decays are defined in the same way as two-body decay ones.
Because of the different number of degrees of freedom, the helicity of the outgoing neutrinos is
not fixed by the spin of the parent particles. Hence, these factors are not responsible for any
enhancement in the decay rate, but they only quench the process as the neutrino mass upper
limit is approached (see Table 4.2). The scale factors have nonetheless distinct behaviours
depending on the helicity state involved. They are plotted as a function of the heavy neutrino
mass on the right panel of Fig. 4.6.

The decay of a charged lepton (antilepton) of flavour α to a charged lepton (antilepton)
of flavour β can be proportional to either |UαN |2 or |UβN |2, producing a heavy Dirac neutrino
(antineutrino) in the first case or an antineutrino (neutrino) in the second case. If the neutrino
is Majorana, the decay can occur via both mixing matrix elements because the lepton number
can be violated. Decays of muons and taus yield massive neutrinos with the following decay
rate

Γ±(`+α → `+β νN) =
G2
Fm

5
α

192π3

[
|UαN |2 I±`

(
ξ2
N , ξ

2
`β
, 0
)

+ |UβN |2 I±`
(

0, ξ2
`β
, ξ2
N

)]
, (4.77)

where the integrals I`,`(x, y, z) are given by
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The helicity decompositions in I` and I` are different, but the spin-averaged decay width is the
same.

Neutral and charged kaons produce neutrinos in three-body semileptonic decays. Both of
them can decay into either a muon or an electron and a charged pion if the decaying kaon is
neutral or a neutral pion if the kaon is charged. The decay width of a pseudoscalar meson h1

to a lighter meson h2 is given by

Γ±(h+,0
1 → h0,+
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The integral Ih(x, y, z) is
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where F and G are convenient combinations of hadronic form factors f (h,h′). From lattice QCD
considerations, form factors should carry the correct Clebsch-Gordan, but here it is safe to drop
them as they are irrelevant when studying scale factors. The combinations F and G are

F = 2 f
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, (4.82)
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with λ parameterising the linear dependence [15] of the form factors with respect to the momen-
tum transfer between the two mesons, u, directly connected to the other Mandelstam variables,
s and t:

u = 1 + x+ y + z − s− t . (4.84)

The values of λ+,0 are determined experimentally [15]. The functions A, B, and C are
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B±(s, t) =
1

2
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2
, (4.86)

C±(s, t) = z(1 + y − t) +

[
y ± λ

1
2 (u, y, z)

2

]
(1 + z − s) . (4.87)

When summing over helicity states, the kinematic functions simplify to

A(s, t) = (1 + y − t)(1 + z − s)− (u− y − z) , (4.88)

B(s, t) = (y + z)(u− y − z) + 4 y z , (4.89)

C(s, t) = 2 z (1 + y − t) + 2 y (1 + z − s) . (4.90)

The scale factor was checked numerically against the result of Ref. [217].
The final three-body decay studied in this work is τ+ → ντπ

+π0, even though this channel
is introduced only at the phase space level. The scale factors for the two helicity components
are therefore assumed to be identical, K± = 1/2 , such that the neutrino flux subcomponent
coming from this decay consists of equal number of heavy neutrinos with helicity h = +1 and
h = −1.

Summary

The origin of the light neutrino masses are elegantly described by low-scale seesaw models
which can additionally predict new phenomenologically viable physics scales, accessible by next
generation experiments. In this chapter, the inverse seesaw manifestation of the neutrino mass
matrix has been investigated in an extended SM scenario. Depending on the precise realisation,
Majorana or (pseudo-)Dirac heavy neutral leptons are allowed to decay into SM visible particles.
Such heavy neutrinos can be produced in the beam with light neutrinos at neutrino beam
facilities and for this reason the region of interest spans from tens of MeV up to a few GeV.
Formulae to compute production and decay rates have been computed using spinor-helicity
formalism so as to pay particular attention to the HNL helicity. It is found that not only
Dirac and Majorana neutrinos have different total decay rates in neutral current processes, but
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also that their decay distributions have a different dependency on the helicity. An effective
evaluation of the heavy neutrino flux, in which the HNL mass plays an important role, has
also been carried out. Certain production modes are not helicity-suppressed anymore and
so they appear enhanced with respect to the same production channels for light neutrinos.
The two helicity components of the neutrino flux therefore behave differently and their correct
descriptions are necessary for a precise prediction of HNL decay events.



Chapter 5

HNL discovery with the DUNE

experiment

In a beam dump experiment, an energetic beam of protons is directed into a fixed dense
block of material, such as concrete or graphite in order to absorb the hadronic cascade and
stop secondary charged particles. This facilitates the study of stable and long-lived particles.
The approach resembles accelerator neutrino experiments, in which the production of pions,
kaon, and muons is maximised to generate an intense and focused neutrino beam. A crucial
difference between oscillation detectors and dedicated beam dump searches of the past is that
the former are devised to enhance the SM neutrino scattering rate, while the latter try to
suppress it in order to reduce backgrounds and favour the search for exotic and rare long-
lived particles. It is exciting to note, however, that neutrino oscillation detectors are able to
perform beam-dump-like measurements [172, 213, 218]. This is most favourable for searches
of heavy neutral leptons (HNL), since they could be produced at accelerator facilities in the
beam with light neutrinos (see Section 4.3). The HNL can subsequently decay in one of the
ways described in Section 4.2 inside a detector in proximity of the beam target, leaving a
detectable signature. The event rate is directly linked to the sterile–active neutrino mixings of
the extended PMNS matrix. The strongest limits on mixing angles with heavy states were set by
the PS191 experiment [170, 171], a beam dump experiment which ran at CERN in 1984. Its most
stringent upper bounds on the novel mixing angles are |UeN |2 ≤ 10−8 and |UµN |2 ≤ 10−9 for
neutrino masses between the pion and the kaon mass. Powerful proton beams and strong particle
reconstruction capabilities of current and upcoming neutrino detectors will allow competitive
searches for heavy and long-lived neutrinos and possible improvement of present limits. Among
the running experiments, T2K has recently reached similar constraints to PS191 [172]. As an
example of planned experiments, it has been shown that the Short Baseline Neutrino program
(SBN) [154] can reach interesting bounds on HNL searches [212], despite having a naively large
background which can be controlled thanks to the distinctive kinematics of neutrino decays
and the high performance of Liquid Argon (LAr) technologies. Future long baseline oscillation
experiments, such as the Deep Underground Neutrino Experiment (DUNE) [219], will see a
greatly diluted flux of nearly-sterile neutrinos at their far detectors and consequently poor
sensitivity. However, the near detector of DUNE (DUNE ND), placed 574m from the target,
has a great potential for searches of new physics [220]. Close proximity to a very intense neutrino
beam and cutting-edge event reconstruction capabilities will allow the DUNE ND to undertake
valuable searches for BSM physics in a entirely complementary way to the central oscillation
physics programme.

In this chapter, a detailed analysis of the sensitivity of the DUNE ND to HNL in beam-dump-
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style searches is presented. The following analysis is based on the theoretically consistent models
from Chapter 4, in which sterile neutrinos are associated with a low-scale seesaw mechanism to
address neutrino mass generation. In particular, the production modes of Table 4.2 and most
of the decay channels of Table 4.1 are considered. The analysis presented here is refined and
extended in comparison with previous works [220, 221], thanks to the polarised rates computed
in Chapter 4 and the latest configuration of the DUNE ND [222]. The ND and the neutrino beam
are described in Section 5.1; a first estimate of the ντ flux component is also presented. The
simulation used to compute the number of HNL decays at the ND site is explained in Section 5.2,
and possible backgrounds for the most relevant discovery channels are discussed there. Results
of the sensitivity to HNL discovery are reported in Section 5.3. Finally, discussions of the
possibility of resolving mass models and the fermionic nature of HNLs is carried out respectively
in Section 5.4 and Section 5.5.

5.1 The near detector of DUNE

DUNE [219] is a long-baseline oscillation experiment that will study neutrino physics in
great detail, focusing mainly on the determination of the CP violating phase, δCP, and the mass
ordering, i.e. the sign of ∆m2

32, and on the precision measurement of other oscillation parameters,
in particular θ23. These goals can be achieved thanks to both an intense neutrino beam and a
high-resolution Far Detector (FD), consisting of a 40 kt Liquid Argon Time Projection Chamber
(LArTPC), situated 1300 km from the beam target. The drift velocity of ionised electrons in
LAr, typically of the order of cm/µs, can be controlled with sufficient precision, by tuning
the electric field to result in high spatial resolution for event reconstruction [223]. The LAr is
advantageous compared to the gaseous counterpart because it is around one thousand times
denser, increasing the interaction probability which is a valuable feature for neutrino physics.
Employing very pure argon, the recombination of released electrons can be reduced and so the
LArTPC design can be scaled to large volumes, as it will be done for DUNE. To overcome
high-purity challenges, the TPC can be operated in dual phase mode, in which a portion of the
chamber is filled with argon vapour. Once the drifting electrons are extracted from the liquid
phase to the gaseous one, avalanche multiplication of the electrons amplifies the signal. LAr also
scintillates with a high light yield, around 40 photons/keV, and differently from other liquefied
noble gasses LAr is transparent to its scintillation wavelength, which peaks at 126.8 nm. A
photodetection system can collect the scintillation light giving an additional handle on event
reconstruction. All these exceptional properties make LArTPC a powerful tool for precision
neutrino physics.

A very sensitive FD alone, however, is not enough due to numerous uncertainties on the
neutrino flux and cross-section parameters. A smaller and closer detector, called near detector
(ND), is therefore adopted to normalise the flux of neutrinos reaching the FD and to help cancel
out many of the neutrino–nucleon cross-section systematics. The DUNE ND will be placed
574m from the target. Its design is a hybrid concept consisting of a small LArTPC placed in
front of a magnetised high-pressure gaseous TPC [222]. The latter is a module complementary
to the LArTPC, controlling escaping or below-threshold particles from the LArTPC, but is
also capable of performing standalone measurement. For its versatile nature, it is called Multi-
Purpose Detector (MPD). The subsystem LArTPC/MPD is movable inside the ND hall—
following the DUNE-PRISM concept [222]— for better profiling the neutrino flux at different
angles. There will be a on-axis module, called 3D Scintillation Tracker (3DST), to monitor the
stability of the beam flux and neutron contamination. The configuration of the ND system in
the hall is shown in Fig. 5.1. Currently, the proposed fiducial volume for the LArTPC module
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Figure 5.1: Lateral view of the near detector complex of DUNE.

is 36m3 and 50 t of LAr, employing the ArgonCube technology [224], whereas the design for
the MPD is based on the TPC of ALICE [225]. It consists of a cylinder of 102m3 with gas at a
pressure of 10 atm and a fiducial mass of 1 t; the gas assumed for the study is a an 80–20 mixture
of Ar–CH4. The 3DST is designed to have a fiducial mass of around 8.7 t of plastic scintillating
material and wavelength shifting plates. For this analysis, only the two core subdetectors,
the LArTPC and the MPD, are taken into account. The main difference between these two
ND modules is that the gaseous TPC has a larger volume than the LArTPC. This feature is
favourable when studying rare events, like heavy neutrino decays, because more neutrinos enter
the fiducial volume. Furthermore, the lower density of the MPD helps reduce the number of
neutrino scattering events which are background to rare signatures. Apart from volume and
density differences and relative positions in the detector hall, the two ND units are assumed
to have a similar detection performance and to be on-axis; the magnetisation of the gaseous
TPC is not considered for HNL discovery. These approximations simplify the study which is
purely phenomenological in style. A more accurate and detailed study will be carried out by
the experimental collaboration.

Thanks to its proximity to the accelerator, the ND will be exposed to an extremely intense
neutrino beam, with a flux peak around five million times greater than at the FD. The Long
Baseline Neutrino Facility (LBNF) at Fermilab will deploy a very energetic beam of protons,
extracted from the Fermilab main injector and delivered to a graphite target. The collision
produces secondary particles which are collimated by a focusing horn system and then decay
forming a neutrino beam (see Section 1.3.3). Assuming an 80GeV proton beam at 1.2MW
for the first six years and at 2.4MW for a second set of six years [219], the ND will collect a
total of 2.65 × 1022 protons on target (POT) over the lifespan of the experiment, running for
the same amount of time in neutrino and antineutrino mode. The ND will be placed on-axis
for half of the total runtime, whereas it will be positioned at different angles off-axis for the
remaining acquisition period, enacting the DUNE-PRISM concept. The search for HNL decays
can benefit to some extent with the detector positioned at off-axis angles, as the SM neutrino
background is particularly reduced despite a lower signal rate. However, the modelling of the
neutrino beam profile at different angles using only information from the on-axis spectrum is not
trivial. Half of the total statistics will be collected with a reversed horn current configuration,
but the parentage composition of the neutrino beam in ν-mode was not provided, as well as
the off-axis beam flux. In this work, just the on-axis configuration of the ND with a forward
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Table 5.1: Comparison between experiments mentioned in this work. Using PS191 as a reference
unit, the exposure is de�ned as POT×Energy×Volume×Baseline−2, where �Energy� is the proton beam
energy. The NA62 and SHiP experiments are not directly comparable with SBND and DUNE ND, in
that di�erent technologies are involved; the RICH detectors are adopted as �ducial volume for NA62,
whereas the volume of SHiP is estimated as the cone contained in the �hidden sector� vacuum vessel.
The volume is a driving feature in the de�nition of the total exposure and it is of utter importance for
searches of decay-in-�ight events.

PS191 DUNE ND SBND NA62 SHiP

Baseline 128m 574m 110m 220m 60m
Volume 216m3 150m3 80m3 750m3 590m3

Energy 19.2GeV 80GeV 8GeV 400GeV 400GeV
POT 0.86× 1019 1.32× 1022 6.6× 1020 3× 1018 2× 1020

Exposure 1.0 220.9 16.4 8.5 5820

horn current configuration is considered, which would correspond to a quarter of the runtime,
or 0.66× 1022 POT. The same analysis of this study can nonetheless be applied equally to the
beam in antineutrino mode and it should result in a sensitivity similar to the neutrino mode
configuration, being wary of the different composition of the neutrino spectrum. Even though
a complete estimate of the DUNE ND sensitivity cannot be achieved, with the above caveats
the total sensitivity to HNL— including off-axis angles and antineutrino mode beam—can be
naively equivalent to six years of data taking, i.e. 1.32× 1022 POT, with the beam in neutrino
mode and the ND on-axis.

5.1.1 Exposure

A summary of the detector features relevant for this analysis is reported in Table 5.1, where
the DUNE ND is compared to other beam dump experiments: PS191 [170, 171], SBND which
is the detector of the SBN program with the best sensitivity to HNL [212], NA62 [226], and
SHiP [227]. The total exposure of the experiment is defined as the proton accelerator beam
power integrated over the total run time and scaled by the volume of the detector over the
baseline squared. The beam power times the run time corresponds to the number of POT times
the proton energy. With this definition, an exposure twelve times bigger is expected for the
DUNE ND system with respect to SBND, and around two hundred times bigger than PS191.
Although NA62 and SHiP can be considered beam dump experiments, these experiments have a
different design and use technologies not directly comparable to TPC and tracker experiments;
they are reported here for thoroughness since they give competitive sensitivities to HNL searches.
The estimated exposure of NA62 is limited by its number of POT and by just one year of
data taking; in spite of this, the experiment is optimised to study kaon decays and has good
sensitivity to HNL [228]. The SHiP experiment presents an exposure thirty times bigger than
the DUNE ND, but the detector is specifically designed to search for BSM physics, including
heavy neutrinos [229, 230]. The decay-in-flight search hugely benefits from its 50m long decay
vessel and short baseline. The DUNE experiment, however, is planned to start before than the
SHiP experiment and this new physics search is totally complementary to the main physics goal
of oscillation physics; no modification of the detector design and no special data acquisition
mode are required for DUNE. On the collider physics frontier, the MATHUSLA [231] and
the FASER [232] experiments will perform a dedicated search for extremely weakly-interacting
and long lived particles, like HNLs, for which they present interesting sensitivities [231, 233].
MATHUSLA will be a 800 × 103m3 hodoscope placed on the surface above the ATLAS or
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Figure 5.2: The prediction of neutrino �uxes, in neutrino mode, divided by parentage at the ND
are shown above, normalised to 1020 POT. The νe component (top left) predominately originates from
µ+ decays; kaon decays are responsible for the high energy part of the spectrum. The νµ component
(top right) obtains its main contribution from π+ decays at low energies, whereas the K+ decays are
accountable for the long tail of the spectrum. Contributions from D+

s decay are out of scale for both
νe and νµ. The distribution of the νµ component (bottom left) is due to negative charged secondary
particles which are not successfully de�ected by the horn system; the muon contribution is much more
relevant than for the νµ component. The ντ component (bottom right) is only sourced from Ds decays
and presents a prominent peak at low energies, whereas the ντ are produced in τ+ lepton decays. The
dotted black line is the total ντ component of the �ux.

the CMS detectors. FASER will consist of a 10m cylindrical decay volume located 480m
downstream of the ATLAS interaction point.

5.1.2 Flux prediction

The study of HNL requires the various components of the flux to be known separately by
parentage, as explained in Section 4.3. Only the beam operating with a forward horn current
is considered in this study. Positively charged secondary particles are therefore selected at the
target and this results in a beam dominantly made of neutrinos with a smaller component of
antineutrinos. The flux predictions for νe, νµ, and νµ at DUNE, provided by Ref. [234] for the
reference beam, are shown in Fig. 5.2 subdivided in their parent components. The νe component
was not provided. The νµ flux is the dominant component and is principally originated by pion
decays, whilst its long tail comes from kaon decays. Unsuccessfully deflected negative particles,
like π− or K−, and antimuons are the main contributors to the νµ components, while νe comes
predominately from muon decays and both K+ and K0 decays. The energy range considered is
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Figure 5.3: The �uxes of heavy neutrinos from D+
s → τ+N (left) are presented for di�erent neutrino

masses and normalised to 1020 POT at the ND. Only phase space e�ects are considered here. For each
di�erent value of the neutrino mass, information on the start and end point of the spectrum and the
peak of the �ux are extracted and used to reshape the ντ spectrum. The distortion factors used to build
the heavy neutrino �ux from mixing with ντ are also shown: the energy range normalised to 20GeV
(middle) and the inverse of the rescaled distribution peak (right).

limited to E < 20GeV, because it is the most intense region of the flux and the most relevant
for this study, as it will be explained in Section 5.2.2.

An albeit-small flux of HNLs with masses above the kaon one is nonetheless expected. It
could be inferred from the ντ flux, but this component is not available in the literature. The
lightest meson with a relevant decay width to tau neutrinos is the charmed-strange meson D+

s

which has a mass mDs = 1968.34± 0.07MeV [15]. It decays mostly into τ+ντ with a branching
ratio of (5.48 ± 0.23)%. HNL with masses above the K0 can be produced via the tau mixing,
but more importantly via the muonic and electronic ones which are enhanced, as explained
in Section 4.3. The meson D+ also decays into τ+ντ , but being lighter than the D+

s the
decay is disfavoured by the smaller phase space with a branching ratio 50 times smaller. This
meson presents three-body decay channels into νe and νµ with much higher branching ratio,
but there is no enhancement for such channels into HNL, as explained in Section 4.3, and so
these subdominant components are not taken into account in the present study. The proton
beam has a relatively low energy for producing charm quarks with a high cross-section, so the
prediction of ντ has not been carried out by the collaboration. For the reasons stated above, a
prediction for the D+

s production is carried out assuming an 80GeV proton beam hitting a fixed
graphite target. The distribution at the target site is used to estimate the ντ flux at the ND
system. In the literature, the following parametrisation has been successfully used to describe
charm meson production in proton–proton collision in the centre of mass frame [235]

d2σ

dxF dp2
T

∼ (1− |xF |)ne−bp
2
T , (5.1)

where xF = 2pz/
√
s, with pz the longitudinal momentum in the CM frame. The param-

eters n and b were fitted from the E769 experiment and found to be n = 6.1 ± 0.7 and
b = 1.08± 0.09 [236]. It is reasonable to assume that the D+

s meson production at the tar-
get follows the same distribution. With the help of a purpose-built Monte Carlo simulation,
the D+

s four-momenta are generated starting from Eq. (5.1) and simulate the meson decay and
the subsequent tau decays. A key simplification here is that thanks to the short lifetime of
the D+

s and τ+, of the order of 10−13 s, the meson path is not affected by the horn system
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Table 5.2: The expected rates for CC and NC interaction in the near detector are presented here, nor-
malised to 1020 POT. The values were computed starting from Eq. (5.2), convolving the �uxes of Fig. 5.2
with the CC and NC cross-section predictions from GENIE [64]. Detector e�ciencies are not applied.
The �rst columns show the total number of events per tonne of argon, the second ones the proportion
of CC or NC events with respect to the totality, and the last columns the event frequencies assuming
1× 1014 POT/s.

CC events NC events

Per tonne Ratio Rate (Hz) Per tonne Ratio Rate (Hz)

νe 3.0× 103 75.6% 152× 10−3 1.0× 103 24.4% 48.9× 10−3

νµ 236× 103 75.2% 12.0 77.8× 103 24.8% 3.95
νµ 17.7× 103 70.9% 898× 10−3 7.2× 103 29.1% 368× 10−3

ντ 1.6× 10−5 17.1% 8.3× 10−10 7.9× 10−5 82.9% 4.0× 10−10

ντ 5.2× 10−5 45.3% 2.6× 10−3 6.1× 10−5 54.7% 3.0× 10−9

nor by interactions with other accelerator components. This results in no focusing of these
secondary particles and so only neutrinos emitted within the geometric acceptance of the ND
form the ντ and ντ spectrum. The overall normalisation comes from an open charm calculation
(see Appendix B for details): the number of D+

s per POT is found to be (2.8 ± 0.2) × 10−6.
The result of the simulation is reported in Fig. 5.2, where the different contributions to the ντ
spectrum are shown. Thanks to the large number of POTs in DUNE, the total number of D+

s

mesons produced is comparable to other dedicated experiments [237]; however, the beamline
design is not optimised for heavy mesons production and the ντ flux seen at the ND is strongly
attenuated.

Having knowledge of the parent meson distribution, the production of nearly-sterile neu-
trinos are directly simulated from Ds decays. The spectrum of heavy neutrinos is distorted
when their mass approaches the various phase space thresholds, which appears as a further
enhancement of the flux. This is due to the fact that heavier neutrinos are more easily boosted
inside the geometric acceptance of the detector. Besides the peak height, the start and the end
point of the energy flux are also affected, as illustrated in Fig. 5.3 in which the enhancement
discussed in Section 4.3 is not included. The distribution of heavy neutrinos from τ decays also
changes with the neutrino mass. These effects are taken into account by modifying the scaled
neutrino flux using information retrieved by the ντ and ντ simulation.

5.2 Simulation of events at the DUNE ND

The number of SM neutrino–nucleon interactions expected at the DUNE ND, without con-
sidering detector effects, is calculated by integrating the charged current (CC) and neutral
current (NC) total cross-sections multiplied by the light neutrino spectrum dφν/dE :

Ntot = NCC +NNC = Ntarget

∫
dE [σCC(E) + σNC(E)]

dφν
dE

, (5.2)

where σCC(E) and σNC(E) are the cross-section predictions in argon calculated by GENIE [64]
and Ntarget is the total number of Ar targets. The event rates are shown in Table 5.2. It turns
out that less than one ντ event is expected in the total run of the experiment. As a comparison,
the number of νµ events will be 1010 times higher. This confirms the expectations that the
ντ component of the flux is negligible for standard oscillation physics in the DUNE ND; on
the other hand ντ appearance is expected at the FD. SM neutrino scatterings occurring within
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Table 5.3: The table lists detection thresholds and energy/momentum and angular resolutions used in
the fast MC, where �EM� delineates electro-magnetic showers and �Hadron� any other charged particle
which is neither a lepton nor a pion. The momenta of pions and muons are smeared according to the
containment of their tracks. If the particles enter the MPD in which they cover a length longer than the
detector's diameter or if 80% of the tracks are contained inside the LArTPC then the relative resolution
on the momentum is 5%, otherwise a resolution of 30% is applied. Neutrons are treated with �Hadron�
resolutions, but with a 90% detection e�ciency.

Particle Threshold σrel σθ

EM 30MeV 5%/
√
E ⊕ 1% 1°

Hadron 50MeV 30%/
√
E ⊕ 5% 5°

Muon 30MeV 1% or 30% of |p| 0.3°
Pion 100MeV 1% or 30% of |p| 0.3°

the fiducial volume of the detector could mimic the rare signal of HNL in-flight decays, as
some final-state particles are common to both processes. A good estimate of the number of
possible background events for each discovery channel is very important, since it dictates the
true sensitivity of the experiment. A conservative background analysis is performed only to
decay modes available for neutrino masses below mK0 . They are N → νe+e−, νe±µ∓, νµ+µ−,
νπ0, e∓π±, and µ∓π±. These channels have, as a matter of fact, the best discovery potential
thanks to high branching ratios and easy-to-reconstruct final-state particles.

Particles are typically tagged by studying the topology of the tracks and the energy loss
dE/dx in the active medium. However, instead of dealing with a full detector simulation, a fast
Monte Carlo (MC) analysis was preferred, using as input neutrino–nucleon scattering events
in argon generated by the neutrino event generator GENIE [64]. The tracks are randomly
placed inside the ND system and then smeared according to a normal distribution centred on
the simulated value of energy/momentum; particles with a kinetic energy above the detection
threshold are then assumed to be reconstructed. The relative position between the two detectors
is taken into account, in that particle tracks exiting the LArTPC end entering the MPD are
reconstructed as a single track. Escaping or partially reconstructed tracks are not discarded,
but treated with a different energy/momentum resolution. The initial particle energy can
in fact be estimated, with some limitations, thanks to the energy dependence of the mean
energy loss during the particle propagation. Possible sources of background mis-identification
specific to each channel are then implemented. Detector resolutions and thresholds, summarised
in Table 5.3, are taken from Ref. [238] and used for both modules of the ND.

5.2.1 Background evaluation

A strong discriminant for background events is the presence of protons, neutrons, and other
hadrons in the final states, from nucleus recoils of neutrino–nucleon interactions or multinucleon
resonance processes. If hadronic activity is reconstructed at the interaction vertex, then the
event is clearly originated by SM neutrino–nucleon scattering and tagged as background. In the
case this does not happen, for instance when the hadrons are below threshold, the multiplicity of
final-state particles becomes fundamental to distinguish signal events from intrinsic background.

Mis-identification of certain tracks can worsen the channel-specific background. The main
background to the pseudoscalar meson channels, N → `∓π±, are resonance νe or νµ CC inter-
action with single pion production or charged current incoherent and deep inelastic scatterings
in which only a pair ` π is detected. Three-body lepton decays suffers from mis-identification of
additional pions and photons emitted in CC neutrino scatterings which are mistaken for charged
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Table 5.4: The decay channels with the best discovery prospect are listed here, together with their
signatures and most likely background events. For any HNL decay mode, no hadronic activity such as
nucleus recoil is present at the decay vertex.

Channel Signal Background

N → νe+e− Two e-like tracks νe CC event with γ emission or mis-
reconstructed π0 decay

N → νe±µ∓ A µ- and a e-like track νµ CC event with mis-reconstructed γ or
νe CC event with one mis-reconstructed π

N → νµ+µ− Two µ-like tracks νµ CC event with mis-reconstructed π

N → νπ0 Two γ with invariant mass mπ0 Any NC interaction with only one π0

above detection threshold

N → e∓π± An e- and a π-like track νe CC resonance or DIS with single π
emission or only one π above threshold

N → µ∓π± A µ- and a π-like track νµ CC resonance or DIS with single π
emission or only one π above threshold

leptons. Despite having a similar mass, pion and muon tracks differ on average in length, as
the meson track often culminates in a hadronic shower. In implementing detector effects, if no
hadronic shower is detected and the track length is longer than two metres, the pion is identified
as a muon. Electromagnetic shower induced by photons are identified by looking at the vertex
displacement and at the dE/dx , which is twice as large being it the energy loss of a e± pair. If
a photon converts within two centimetres from the interaction point and either the electron or
the positron of the pair is below threshold, the photon is reconstructed as a single electron. A
pair of electrons with a small separation angle, less than 3°, is tagged as an electron–positron
pair and the parent photon is reconstructed. The main source of photons comes from the decay
of the neutral pion, which is abundantly produced in NC neutrino–nucleon interactions. Certain
hadronic transitions from secondary particles of deep inelastic scatterings also emit photons.
If a pair of photons shows an invariant mass comparable with the π0 mass, the parent pion
is identified. Interactions in which multiple neutral pions are produced, but only a pair of
photons is detected and reconstructed, are background to the N → νπ0 channel. The table of
Table 5.4 summarises the main background events of the channels considered. It is found that
between 2.5% down to 0.0025% of the neutrino–nucleon scattering events survive the particle
identification process, becoming background events.

The channels which open up for masses above the kaon mass are more challenging to deal
with, from an experimental point of view. The final-state particles of these modes are mostly
neutral pseudoscalar mesons which decay electromagnetically or vector mesons which usually
decay into a multiple lighter mesons, depending on the initial flavour content, and sometimes
accompanied by photon emission. The correct identification of these short-lived states is non-
trivial. For very high masses τ leptons are also produced, but their precise reconstruction
requires ad hoc techniques. These tasks are beyond the scope of the analysis presented here
and are best left to the collaboration’s superior simulation tools. Cosmogenic background is
also not considered here, even though a rate of 2.7Hz/m2 cosmic rays is expected at the ND
hall [222] due to the very little over burden. Given an area of a few square meters, the number
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of cosmic rays per drift window can be nonnegligible [219], but rejection techniques are being
developed with good signal efficiencies [239].

5.2.2 HNL decay events and signal e�ciency

Except for N decaying into three neutrinos, all the other decay channels listed in Section 4.2
are in principle detectable. Some decay modes contribute more significantly to the physics reach
thanks to larger branching ratios and lower backgrounds. Along with the number of background
events, a correct estimation of the number of decays in visible channels is necessary in order to
evaluate the sensitivity of the DUNE ND to the discovery of HNL. For a given visible decay
mode d, the number of signal events is

Nd =

∫
dE Πd(E)Wd(E)

dφN
dE

, (5.3)

where dφN/dE is the number of heavy neutrinos expected at the ND, computed in the way
described in Section 4.3. The function Πd(E) accounts for the probability of a heavy neutrino
of energy E to decay inside the ND after covering the baseline distance L. It is expressed in
the following form:

Πd(E) = e
−ΓtotL

βγ

(
1− e−

Γtotλ
βγ

)
Γd

Γtot
, (5.4)

where λ is the length of the ND, Γd the decay rate for the channel d and Γtot the total decay
rate. The total effect of Πd is to favour low-energy bins of the neutrino spectrum for which the
relativistic factor βγ is small. The term Wd(E) is a signal efficiency factor, estimated as the
binned ratio of the true N energy spectrum after and before a background rejection procedure.
This process aims at further reducing the number of background events still present after particle
identification. It consists of simple data selection cuts optimised to reject the background while
keeping an acceptable signal efficiency (≥ 30 %), exploiting differences in the energy and angular
distributions between signal and background events. The HNL decays inside the detector are
simulated by a custom MC code and the tracks are processed in the same way as it is done
for background events (see Section 5.2.1). The resulting signal efficiency therefore embeds also
detector effects. If no background is expected for the channel d, there is no need for applying
any rejection procedure and so the signal efficiency is maximal, i.e. Wd(E) = 1 at all energies.
The final number of background events Bd and the number of signal events Nd are eventually
used to build the Confidence Level (C.L.) regions of sensitivity (see Section 5.3).

5.2.3 Selection example

In this section, the event rates from the background reduction and signal selection process
are presented for all decay channels of both Majorana and Dirac neutrinos of a given mass. It
turns out that the selection cuts are slightly different for Dirac or Majorana HNL decays. This
is a consequence of certain combinations of production and decay modes which are forbidden
for Dirac neutrinos, as they would lead to LNV and so the energy and angular distributions are
not identical. NC–mediated decay modes also present distinct decay widths for Majorana and
Dirac neutrinos in the rest frame and the difference angular dependency can be reflected in the
laboratory frame.

The background evaluation is only performed for the decay channels with an important
discovery potential, and these are N → νe+e−, νe±µ∓, νµ+µ−, νπ0, e∓π±, and µ∓π±. In order
to reject background events, conservative event selection cuts are outlined using the differences
between kinematic properties of the final-state particles from neutrino–nucleon interactions and
from the rare HNL in-flight decays. Simulations of signal events with a given mass inside either
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Table 5.6: The number of background events are reported before and after the event selection process
is applied for two-body decay channels of HNLs. See text for details. The last row is the integrated
signal e�ciency.

N → e∓π± N → µ∓π±

Majorana Dirac Majorana Dirac

νe 19.090 → 0.015 0.015 0.007 → 0.000 0.000
νµ 0.027 → 0.000 0.000 25.030 → 0.011 0.012
νµ 0.025 → 0.000 0.000 29.822 → 0.046 0.053

〈ν〉 0.239 → 0.000 0.000 24.302 → 0.013 0.014

Ŵ`π 36.4% 35.2% 43.3% 40.2%

the LArTPC or the MPD are input to a channel-specific algorithm that discards low energy
events and defines limits on angular and transverse momentum distributions. The algorithm
aims at keeping an integrated signal efficiency Ŵd greater than 30%, where

Ŵd =

∫
dEWd(E) (5.5)

and the signal efficiency Wd(E) is introduced in Section 5.2.2.
As an example of the selection process, the results of the background analysis for an HNL

with mass mN = 450MeV is reported here. In Tables 5.6, 5.7, and 5.8 the number of back-
ground events is reported in the form “X → Y Z”, where X is the per mille (10−3) fraction of
background events from mis-identification and Y and Z are fractions of irreducible background
after the application of selection cuts to respectively Majorana and Dirac neutrino simulations.
When the value 0.000 is shown, less than one background event per million is expected. The
average number of backgrounds, 〈ν〉, is computed by weighting the flux component contribu-
tions to the background using the respective interaction rates as weights, reported in Tab. 5.2.
To obtain the number of background events, each fraction must be multiplied by the number
of SM neutrino–nucleon interactions expected in the ND during the experiment lifetime. It is
assumed that the ντ and ντ components are not responsible for background events, therefore
only the νe, νµ, and νµ components are studied. The last row of each table shows the integrated
efficiency of the selection cuts, introduced in Eq. (5.5).

The studied channels are grouped in three categories, which have similar kinematic features:
two-body decay, which are semileptonic, three-body decay channels, which are purely leptonic
instead, and decays which can be only detected via photon reconstruction.

Two-body decays

The two-body decays N → e±π∓ and N → µ±π∓ are the most promising channels for
the detection of a heavy neutrino, being the decay modes with the highest branching ratios.
Since all final-state particles are charged, direct information on the parent particle is easily
reconstructed, as for instance the mass of the decaying neutrino, which is the invariant mass of
the process

m2
N = s = m2

` +m2
π + 2E`Eπ − 2|p`||pπ| cos θ , (5.6)

where θ is the opening angle between the lepton and the pion. In a two-body decay, the particles
are emitted back-to-back in the neutrino reference frame, so in the laboratory frame the relative
position on the perpendicular plane is mostly preserved and (φ`−φπ) is expected to be close to
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Table 5.7: The number of background events are reported before and after the event selection process
is applied for three-body decay channels of HNLs. See text for details. The last row is the integrated
signal e�ciency.

N → νe−e+ N → νe∓µ± N → νµ−µ+

Majorana Dirac Majorana Dirac Majorana Dirac

νe 0.190 → 0.003 0.002 0.078 → 0.002 0.002 0.000 → 0.000 0.000
νµ 0.193 → 0.001 0.000 0.092 → 0.000 0.000 0.081 → 0.001 0.001
νµ 0.224 → 0.003 0.002 0.160 → 0.000 0.000 0.090 → 0.008 0.006

〈ν〉 0.168 → 0.001 0.000 0.090 → 0.000 0.000 0.022 → 0.000 0.000

Ŵν`` 63.4% 55.4% 68.6% 71.2% 74.0% 68.4%

±π. Despite these distinctive signatures, these two channels are the ones with most background
events, coming from charged-current interactions of νe, νµ, and νµ in which additional pions
can be easily emitted in coherent or deep inelastic scatterings. Background events typically
peak at low energies and present more isotropic angular distributions. Therefore, a tight energy
threshold on the energies of the charge particles is imposed to accept 70% of the signal events
and a threshold on the energy of the reconstructed neutrino is defined by 90% of the retained
events. A cut is also placed on the reconstructed mN to retain 80% of signal events, as well
as an upper limit on the transverse momenta and angles to the beamline and a lower and an
upper limit on the separation angle between the charged particles. After the cuts are applied,
the background events are reduced up to a factor of 2500, and the signal efficiency are ∼35%
for the electronic channel and ∼40% for the muonic channel, with little difference (respectively
1% and 3%) between Dirac or Majorana selection windows. The background rejection and
signal efficiency are shown in Table 5.6.

Three-body decays

The three-body decays studied are N → νe−e+, N → νe∓µ±, and N → νµ−µ+. The
event selection in this case is more challenging compared to the two-body case, due to the loss
of the light neutrino which precludes the reconstruction of the decaying HNL; selection cuts
cannot be defined as rigorously. However, since two charged leptons are needed to identify
these channels, the resulting background rate from mis-identified photons and long-track pions
is low. Even in this case, only high energy events are considered, but with a lower threshold on
the charged lepton energies. The invariant mass of the two leptons has as upper limit mN and
this constrain helps to reduce the background. Lower and upper limits are also defined for the
transverse momenta, as well as for the separation angles from the beamline.

The background events are reduced from a factor of 40 up to a factor of 200, with the selection
requirements for Dirac neutrinos being more effective. The signal efficiency results to be better
by 6 ∼ 8% points for Majorana neutrinos in the N → νe−e+ and µ−µ+ channels, whereas the
Dirac neutrino have give a better efficiency in the N → e∓µ± channel. High efficiency and low
background make these three channels competitive for HNL discovery, despite lower branching
ratios. The background rejection and signal efficiency are shown in Table 5.7.

EM�detected decays

The semileptonic decay N → νπ0 may only be identified by a correct photon reconstruction,
since the neutral pion decays almost 100% of the time in two photons. This particle is produced
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Table 5.8: The number of background events are reported before and after the event selection process
is applied for the neutral pseudoscalar meson decay. See text for details. The last row is the integrated
signal e�ciency.

N → νπ0

Majorana Dirac

νe 4.135 → 0.058 0.048
νµ 5.862 → 0.053 0.039
νµ 7.428 → 0.179 0.138

〈ν〉 5.797 → 0.061 0.045

Ŵνπ0 46.3% 42.3%

in any NC interaction with a π0 emission. Background events occur if only two final-state pho-
tons from the neutral pion decay are above detection threshold and properly reconstructed with
an invariant mass equal to mπ0 . The energy of the reconstructed pion is the best discriminant
against background events which have typically higher energies. Lower and upper limits can be
placed on the π0 transverse momentum and angle with the beamline, but also a threshold on the
energy of the photons as well as an upper limit on their angular distributions help to define the
kinematics of the event. The residual background for this channel is the highest among the ones
studied. Only reduction factors up to 130 can be achieved, with a notable difference between
selection cuts for Majorana and Dirac HNL decays—the latter ones being more strict. The
signal efficiency is ∼46% for Majorana and ∼42% for Dirac. It is, however, one of the decay
modes with the highest branching ratio, and with advanced and dedicated techniques [240, 241]
the background rejection can be improved. The background rejection and signal efficiency are
shown in Table 5.8.

5.3 Sensitivities of the DUNE ND

The sensitivity regions for the discovery of heavy neutrino decays are presented in this
section, for a total amount of 1.32 × 1022 POT collected with the beam in neutrino mode. All
the regions are estimated at the 90% C.L. in rejecting the null hypothesis, H0, by which no
HNL decays are seen (σ = 0), but only background events b are expected. For a specific decay
channel d, the probability of observing n events with a signal mean σ = Nd and background
b = Bd (see Section 5.2.2) follows a Poisson distribution

P (n|σ, b) = (σ + b)n
e−(σ+b)

n!
. (5.7)

The number of events needed in order to reject H0 at the desired C.L. is estimated with the
Feldman-Cousins method [242]. For example, if no background is expected (Wd = 1), an average
of n = 2.44 events must be detected to reject H0 with 90% C.L. This criterion is used to define
the sensitivity regions shown in this section, for both Majorana and Dirac neutrinos. The
lines of the figures in this section and in Section 5.4 encompass regions of the parameter space
which if true could allow to exclude the null hypothesis within the confidence level assumed.
It is expected that the MPD alone has a better sensitivity than the LArTPC, thanks not only
to a larger volume, but also to a less dense medium which gives lower backgrounds. As the
two modules are assumed to have the same detection performance, just a combined sensitivity



118 CHAPTER 5. HNL DISCOVERY WITH THE DUNE EXPERIMENT

Table 5.9: This table summarises the sensitivity result of Fig. 5.4. The minimum value of the mixing
to Majorana HNLs to which the DUNE ND is sensitive to is reported; the value in bracket is with the
background analysis included. The respective mass value at that point is also reported. The particle `∓

denotes the charged lepton with corresponding �avour given by the mixing element.

Channel mN/GeV , |UeN |2/10−9 mN/GeV , |UµN |2/10−7 mN/GeV , |UτN |2/10−6

N → νe+e− 0.40 , 2.9 (24.2) 0.36 , 9.9 (73.1) 1.05 , 1.3 (17.6)
N → νe±µ∓ 0.41 , 2.8 (5.1) 0.36 , 4.8 (6.4) �
N → νµ+µ− 0.42 , 12.0 (46.5) 0.37 , 9.2 (19.6) 1.06 , 1.5 (40.0)
N → νπ0 0.39 , 1.1 (15.6) 0.35 , 1.6 (13.6) 0.88 , 0.46 (17.3)
N → `∓π± 0.39 , 0.7 (4.2) 0.36 , 1.3 (19.9) �

of the two detectors is reported, with particle propagation between them taken into account
when necessary. Charge identification capabilities of the ND are neglected and therefore this
information is washed out in presenting the sensitivity plots in this and next sections. Given
the charge-blind analysis, the number of events expected for Majorana neutrinos is twice as
large as the number in the case of Dirac neutrinos, and so the sensitivity to Dirac neutrino
decays is a factor of

√
2 worse than the Majorana case. The factor is justified noting that for

high numbers the sensitivity is roughly quantified by Nd
/√
Nd + Bdwhich simplifies to

√
Nd

for zero background. The limits reported here below refer to Majorana heavy neutrinos; the
corresponding limit for which N is a Dirac fermion is easily retrieved by multiplying the upper
limit by

√
2.

Section 5.3.1 shows the constraint that the DUNE ND can place on a simplified scenario
in which a single mixing matrix element between HNL and active neutrinos dominates. The
scenario in which two mixings are dominant with respect to the third one is also considered,
the results of which are reported in Section 5.3.2.

5.3.1 Single dominant mixing

The sensitivity regions for the three mixings |UeN |2, |UµN |2, and |UτN |2 are presented here
with the assumption that just one mixing element dominates over the other two. The sensitiv-
ities for the decay channels N → νe+e−, νe±µ∓, νµ+µ−, νπ0, e∓π± (|UeN |2 only), and µ∓π±
(|UµN |2 only) are reported in Fig. 5.4. The solid lines corresponds to a scenario in which zero
background is assumed at the ND. A background evaluation was carried out for these channels
(see Section 5.2.1), in order to define a more realistic sensitivity; the resulting regions are shown
as dashed lines in Fig. 5.4. The final sensitivity will lie somewhere between the lines with and
without backgrounds. It is expected that further improvements to background reduction can
be achieved with a dedicated analysis by the experimental collaboration, although systematic
uncertainties could also degrade the sensitivity.

For both the electronic and the muonic mixings, the two-body semileptonic decay modes
are the ones providing the best sensitivity for sufficiently heavy masses. With the channel
N → e∓π±, the mixing can be constrained in the range 0.15GeV . mN . 0.49GeV to be
|UeN |2 < 3 × 10−9, with a minimum point |UeN |2 < 7 × 10−11 at mN ' 0.39GeV. Including
the background rejection, the limits are loosened by a factor of ∼6.1. The channel N → µ∓π±

can constrain the mixing |UµN |2 < 5.6 × 10−10 in the mass range 0.25GeV . mN . 0.39GeV,
with the best limit |UµN |2 < 1.3×10−10 at mN ' 0.35GeV. In this case, the higher background
reduce the bounds up to a factor of ∼15.1. The NC decay N → νπ0 is the channel most affected
by background and with the worst signal efficiency: the limits are higher at most by a factor
of ∼27.1 for the electronic, ∼24.6 for the muonic, and ∼52.6 for the tau mixing. Assuming



5.3. SENSITIVITIES OF THE DUNE ND 119

10−10

10−8

10−6

10−4

10−2

0.05 0.50.01 0.1 1 0.50.1 1 0.05 0.5 20.01 0.1 1

|U
eN
|2

Mass mN (GeV)

νee Majorana
νee Dirac
νµµ Majorana
νµµ Dirac

Mass mN (GeV)

eπ Majorana
eπ Dirac
νeµ Majorana
νeµ Dirac

Mass mN (GeV)

νπ0 Majorana
νπ0 Dirac

10−10

10−8

10−6

10−4

10−2

0.05 0.50.01 0.1 1 0.50.1 1 0.05 0.5 20.01 0.1 1

|U
µ
N
|2

Mass mN (GeV)

νee Majorana
νee Dirac
νµµ Majorana
νµµ Dirac

Mass mN (GeV)

µπ Majorana
µπ Dirac
νeµ Majorana
νeµ Dirac

Mass mN (GeV)

νπ0 Majorana
νπ0 Dirac

10−6

10−4

10−2

1

0.05 0.50.01 0.1 1 0.05 0.5 20.01 0.1 1

|U
τ
N
|2

Mass mN (GeV)

νee Majorana
νee Dirac
νµµ Majorana
νµµ Dirac

Mass mN (GeV)

νπ0 Majorana
νπ0 Dirac

Figure 5.4: The 90% C.L. sensitivity regions to individual channels for dominant mixings |UeN |2 (top),
|UµN |2 (middle), and |UτN |2 (bottom) are shown. The solid lines correspond to the analysis before the
background analysis, which is equivalent to a weighting factor Wd = 1 (see Eq. (5.3)). The dashed lines
are drawn after the background analysis. The distinction between the fermionic natures are explained
in the colour key.
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Figure 5.5: The 90% C.L. sensitivity regions to individual channels for dominant mixings |UeN |2 (top
left), |UµN |2 (top right), and |UµN |2 (bottom) are presented for Majorana (solid lines) and Dirac (dashed
lines) neutrinos. No background analysis was performed for the channels shown here (see text). These
channels become available only for masses above 0.5GeV.

no background, instead, the constrains placed by this decay mode can be competitive, as the
mixings are limited to be |UeN |2 < 1.1 × 10−10 at mN ' 0.39GeV, |UµN |2 < 1.5 × 10−10 at
mN ' 0.35GeV, and |UτN |2 < 4.6 × 10−7 at mN ' 0.95GeV. There is no sensitivity to the
channel N → τ∓π± because of the subdominant branching ratio and flux content.

The three-body lepton decays have a lower reach, but are more sensitive to masses above the
kaon mass limit than the two-body semileptonic modes. The channel N → νe−e+ is the only
one that covers the whole mass range of interest and the bounds are weakened by background
reduction by a factor less than 8 for mixings with electron and muon flavours. It can limit the
electronic mixing down to |UeN |2 < 2.5 × 10−9 at mN ' 0.11GeV, |UeN |2 < 2.9 × 10−10 at
mN ' 0.39GeV, and |UeN |2 < 3.0 × 10−9 at mN ' 1.6GeV. The channels N → νµ−µ+ and
νe±µ∓ perform better with the muon mixing for which the residual background is very little,
as one muon and one electron or two muons are required in the final state. The bounds are
weakened at most by a factor of ∼1.8 for the muon mixing. These two channels respectively give
the limits |UµN |2 < 9.9× 10−10 at mN ' 0.37GeV and |UµN |2 < 8.0× 10−8 at mN ' 1.6GeV,
and |UµN |2 < 4.8 × 10−10 at mN ' 0.36GeV and |UµN |2 < 5.6 × 10−8 at mN ' 1.6GeV. The
τ sector can only be constrained by the two NC–mediated channels, which give very similar
constraints near mN ' 1.0GeV, these being |UτN |2 < 1.3 × 10−6 for the νe−e+ channel and
|UτN |2 < 1.5× 10−6 for the νµ−µ+ channel. All the results are summarised in Table 5.9.
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Table 5.10: This table summarises the sensitivity result of Fig. 5.5. The minimum value of the mixing
to Majorana HNLs to which the DUNE ND is sensitive to is reported, together with the respective mass
value, mN . No background analysis was carried out for the channels listed here. The particle `∓ denotes
the charged lepton with corresponding �avour given by the mixing element.

Channel mN/GeV , |UeN |2/10−9 mN/GeV , |UµN |2/10−7 mN/GeV , |UτN |2/10−6

N → νρ0 1.55 , 5.7 1.52 , 1.54 1.10 , 1.07
N → νη 1.57 , 6.8 1.52 , 1.87 1.06 , 1.24
N → νη′ 1.64 , 9.5 1.58 , 2.82 1.23 , 5.09
N → νω 1.55 , 7.5 1.50 , 3.03 1.09 , 2.14
N → νφ 1.60 , 3.6 1.58 , 0.96 1.24 , 1.09
N → `∓K± 1.55 , 10.3 1.49 , 2.9 �
N → `∓K∗± 1.57 , 8.6 1.53 , 2.5 �
N → `∓ρ± 1.55 , 2.2 1.53 , 58.4 �

A background study was not performed for all the other decay channels, which open up for
masses above the K0 mass, due to the fact that the final-state particles need a more complex
analysis. The sensitivities to these modes are shown in Fig. 5.5, and they can place some
constraints to the mixing. All the channels peak in their sensitivity for masses between 1.3
and 1.8GeV. The best limits obtained for CC decays are |UeN |2 < 2.3× 10−9 from N → e∓ρ±

and |UµN |2 < 6.0 × 10−8 from N → µ∓ρ±; among the NC decays |UeN |2 < 3.7 × 10−9 and
|UµN |2 < 1.0× 10−7 both from N → νφ. Even for these channels, there is no sensitivity to CC
processes to the tau mixing, but interesting limits are set from N → νη, N → νω, and νρ0 to
be respectively |UτN |2 < 1.86× 10−6, 3.24× 10−6, and 1.60× 10−6. The sensitivity results are
summarised in Table 5.10.

5.3.2 Two dominant mixings

The bounds in a scenario in which two mixing elements are comparable and dominant over
the third one are presented in this section. This case complements the previous analysis in
Section 5.3.1 as, by searching for HNL decays, the experiment can constrain certain combina-
tions of the mixing elements. This can happen when the neutrino is produced via one mixing
and decays via another one, or when both mixing elements play a role in production and de-
cay. For instance, the decay K+ → µ+N yields heavy neutrinos with a flux proportional to
|UµN |2, but they can afterwards decay into the channel νe+e− also via the electronic or the
tau mixing. It is important to highlight that in the case in which one mixing is responsible for
the production and a different mixing for the decay then number of events is proportional to
the product of the mixings |UαN ||UβN | if the studied channel is CC–mediated. However, if the
decay channel is also sensitive to a NC exchange, the number of events is instead proportional
to |UαN |

√
|UαN |2 + |UβN |2. In the remainder of this section, the combination of two mixings

will be denoted by |U∗αNUβN | for comparing bounds and sensitivity plots.
The combinations of mixing terms is relevant to charged Lepton Flavour Violating (cLFV)

decays or flavour changing neutral current processes which can be enhanced in presence of
nearly-sterile neutrinos. For example, the well-known decay µ+ → e+γ has a branching ratio
which is sensitive to extra neutrino states. This reads

Br(µ+ → e+γ) =
3α

32π

∣∣∣∣∣∑
i

Û∗µi ÛeiG

(
m2
i

M2
W

)∣∣∣∣∣ , (5.8)

where G(x) is the loop function of the process [243]. The current upper limit is set by the MEG
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Table 5.11: This table summarises the sensitivity result of Fig. 5.6. The minimum value of the mixing
to Majorana HNLs to which the DUNE ND is sensitive to is reported; the respective mass value at that
point is also reported.

Channel mN/GeV , |U∗eNUµN | mN/GeV , |U∗µNUτN | mN/GeV , |U∗τNUeN |

N → νe+e− 0.37 , 2.35× 10−10 0.36 , 6.99× 10−10 0.40 , 2.61× 10−10

N → νe±µ∓ 0.37 , 1.87× 10−10 0.36 , 4.80× 10−10 0.41 , 2.82× 10−10

N → νµ+µ− 0.42 , 4.46× 10−10 0.37 , 8.56× 10−10 0.42 , 8.51× 10−10

N → νπ0 0.37 , 6.42× 10−11 0.35 , 1.11× 10−10 0.39 , 7.45× 10−11

N → νρ0 1.55 , 4.04× 10−9 1.52 , 1.09× 10−7 1.55 , 4.04× 10−9

N → νη 1.57 , 4.84× 10−9 1.52 , 1.32× 10−7 1.57 , 4.83× 10−9

N → νη′ 1.64 , 6.73× 10−9 1.58 , 2.00× 10−7 1.64 , 6.72× 10−9

N → νω 1.55 , 7.51× 10−9 1.49 , 2.14× 10−7 1.55 , 7.50× 10−9

N → νφ 1.60 , 2.54× 10−9 1.58 , 6.78× 10−8 1.60 , 2.54× 10−9

N → e∓π± 0.37 , 6.19× 10−11 � 0.39 , 7.24× 10−11

N → µ∓π± 0.37 , 7.42× 10−11 0.36 , 1.31× 10−10 �
N → e∓K± 1.53 , 1.03× 10−8 � 1.53 , 1.03× 10−8

N → µ∓K± 1.55 , 1.04× 10−8 1.64 , 3.09× 10−7 �
N → e∓K∗± 1.57 , 8.65× 10−9 � 1.57 , 8.63× 10−9

N → µ∓K∗± 1.57 , 8.74× 10−9 1.50 , 2.58× 10−7 �
N → e∓ρ± 1.55 , 2.23× 10−9 � 1.55 , 2.23× 10−9

N → µ∓ρ± 1.55 , 2.25× 10−9 1.53 , 5.90× 10−8 �

experiment to be Br(µ+ → e+γ) < 4.2× 10−13 [244]. Despite being one of the best constrained
cLFV process, the bounds on |U∗eNUµN | are not as good as the ones imposed by other processes,
like µ→ eee or µ−e conversion on nuclei [245]. For instance, the constraint from conversion on
gold nuclei is |U∗eNUµN | < 1.6× 10−5 for HNL masses larger than 0.1GeV [246]. The branching
ratio of other cLFV channels, like τ± → e±γ or τ± → µ±γ cannot be as simply determined and
so the bounds achieved on the combination of heavy neutrino mixings are expected to be less
stringent [247, 248]. Stronger bounds come from the study of three-body decays of charm and
bottom mesons to charged leptons with different flavour and tau decays to pseudoscalar mesons
and a charged lepton. From the search for the decay K → eµπ the bound |U∗eNUµN | < 10−9 is
reached for masses 0.15GeV . mN . 0.50GeV; the decays τ → eππ and τ → µππ set the limits
|U∗eNUτN |, |U∗µNUτN | < 5× 10−6 for the respective mass ranges 0.14GeV . mN . 1.7GeV and
0.24GeV . mN . 1.7GeV [206].

Instead of dealing with a three-dimensional parameter scan of the neutrino mass and two
mixing angles, the study is simplified by assigning the same value to the two mixing parameters
under consideration, for which the number of HNL decays is maximal. The number of events is
then reported as a function of the neutrino mass and the combination |U∗αNUβN |. The results
for all channels considered in this work are shown in Fig. 5.6. The best constraints come again
from two-body semileptonic decays for all mixing combinations, the lowest upper limits being
|U∗eNUµN | < 6 × 10−11 at mN ' 0.36GeV, |U∗µNUτN | < 1.3 × 10−10 at mN ' 0.35GeV, and
|U∗τNUeN | < 7 × 10−11 at mN ' 0.39GeV. Amongst the three-body leptonic decay channels,
N → νee has the best sensitivity for masses mN < mK0 , but the mode N → νe∓µ± can
be actually more constraining at higher masses. Regarding the channels available only above
the kaon mass threshold, decays to pseudoscalar mesons are the most sensitive between CC
processes, whereas the decay N → νφ gives the best constraint of the NC–mediated channels.
In Table 5.11, the sensitivity results for two dominant mixings are reported.
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Figure 5.6: The 90% C.L. sensitivity regions to individual channels for two dominant mixings |U∗eNUµN |
(top), |U∗µNUτN | (middle), and |U∗eNUτN | (bottom) are presented. All the modes considered in this work
are shown here, but no background analysis is reported. As before, the solid lines correspond to the
analysis with Majorana neutrinos, the dashed lines with Dirac neutrino.
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5.4 Mass model constraints from the DUNE ND

From the results presented in the previous section, the DUNE ND will be sensitive to very
low couplings for experimentally accessible mass values. These points of the parameter space
correspond to regions viable in some realisations of low scale neutrino mass models. In view
of the discussion regarding seesaw models in Section 4.1, a random scan of mass matrices is
performed to define such regions of the parameter space. Three minimal ISS scenarios are
chosen requiring they predict a HNL with a mass accessible by the experiment and that satisfy
the experimental evidence of neutrino oscillation [249]. Following the notation introduce in
Chapter 4, in the first two cases the heavy neutrino under study belongs to the lightest pseudo-
Dirac pair of an ISS (2,2) and an ISS (2,3) realisation; the third scenario is an ISS (2,3) case in
which the fourth massless state becomes a Majorana neutrino in the MeV–GeV region thanks
to a high LNV parameter. The details of this analysis are reported in this section, together
with the overall sensitivities of the DUNE ND to heavy neutrino discovery and low scale mass
models. A comparison with future experiments is also included.

5.4.1 Mass model scan

Neutrino mass matrices with the same structure of Eq. (4.12) are randomly generated and
numerically diagonalised. The number of physical parameters of a ISS (a, b) mass matrix is
found to be np = 7a + b + 2 a b [249]. A basis in which mD has complex entries but three
of which are real and MR is diagonal and real can be chosen without loss of generality. If
the matrix entries respect the hierarchy µ� mD �MR, the mass spectrum in the LNC limit
is principally given by the diagonal values of MR. The matrix is then perturbed to achieve
the three minimal ISS scenarios introduced above; the randomly generated mass matrix M
is diagonalised using the Jacobi Singular Value Decomposition (SVD) as implemented in the
Eigen library [250]. The Takagi decomposition,

ÛTM Û = diag(m1,m2,m3, ...) , (5.9)

is finally retrieved starting from the SVD decompositionM = V ΣU †, from which the singular
values Σ are the nonnegative square roots of the eigenvalues ofM†M and the unitary matrix
is Û = Uρ†, where ρ = (UTV )

1
2 is a unitary phase matrix.

Only matrices satisfying the current constraints on heavy neutral fermions are taken into
account. The first requirement is that the eigenvalues must give the correct mass squared
splittings compatible within 3σ with the measured values [17]. The condition of matching also
the measured mixing angles is relaxed because the entries of the PMNS matrix are the result
of the random structure of mD and µ. Constraints on the unitarity of the mixing matrix are
applied instead. The deviation from unitarity are quantified by the following Hermitian matrix:

εαβ ≡ |δαβ − (U U†)αβ| =

∣∣∣∣∣
n∑
i=4

ÛαiÛ
∗
βi

∣∣∣∣∣ . (5.10)

The nonunitarity of the PMNS matrix has been assessed in various experiments, and the con-
straints depend upon the mass scale of averaged out neutrinos. For neutrino masses below the
GeV scale, but heavy enough to decouple from flavour oscillations, nonunitarity effects are tested
in neutrino oscillation experiment as an overall normalisation. If the neutrino mass is above the
GeV scale, electroweak precision experiments provide strong constraints on nonunitarity. The
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limits are summarised below (from Ref. [251–253])

εαβ <

2.4× 10−2 1.3× 10−2 3.5× 10−2

· 2.2× 10−2 6.0× 10−3

· · 1.0× 10−1

 if 10 eV . mN . 1GeV , (5.11)

εαβ <

1.3× 10−3 1.2× 10−5 1.4× 10−3

· 2.2× 10−4 6.0× 10−4

· · 2.8× 10−3

 if mN & 1GeV . (5.12)

The µ entries of the ISS matrices naturally lead to lepton flavour and lepton number violating
processes. The most studied LFV process is the decay rate of µ+ → e+γ, the branching ratio
of which is given in Eq. (5.8). The current upper limit on the branching ratio is 4.2 × 10−13,
but a future upgrade of the experiment foresees to reach a limit lower than 5× 10−14.

Heavy neutrinos in a ISS model also contribute to the neutrinoless double beta decay. The
effective neutrino mass mββ receives further corrections with respect to the standard expression
as

mββ '

∣∣∣∣∣∑
i

Û2
ei

p2mi

p2 −m2
i

∣∣∣∣∣ (5.13)

where p2 ' −0.015GeV2 is the typical virtual momentum of the exchanged neutrino. The
contribution from masses above the 0.1GeV scale drops as 1

/
m2
i while it is constant for masses

below [254]. It is interesting to note that the contributions given by pseudo-Dirac pairs are
subject to partial cancellation, regulated by the LNV parameters. In the LNC limit, the cancel-
lation is maximal and the paired states do not take part in the 0νββ process. The latest result
from the KamLAND-Zen experiment is interpreted as mββ < 61meV [255].

For the first two ISS scenarios, the allowed ranges span the space given by mD ∼ 10[3,6] eV,
MR ∼ 10[6,15] eV, µ ∼ 10[−4,1] eV. Each matrix generated is verified to respect the naturalness
condition in the ’t Hooft sense [194] and that the mass spectrum presents a mass state accessible
by the DUNE experiment. For the third ISS case, large entries of the submatrix µ are necessary
to give the Majorana state a mass that can be probed by the experiment. The ranges of
mD ∼ 10[3,10] eV, MR ∼ 10[7,15] eV, µ ∼ 10[4,9] eV respects the constraints. The hierarchy and
naturalness conditions are relaxed in this case. The resulting points in the space (mN , |UαN |2)
are clustered together and the regions defined are overlaid in Fig. 5.7. Any combination of mass
and mixing element inside these areas can be justified by a valid neutrino mass matrix which can
explain the light neutrino masses and survive the experimental constraints. The pseudo-Dirac
pairs from the ISS (2,2) and ISS (2,3) scenarios give very similar regions, but Majorana states
from the ISS (2,3) realisation can only be generated with very small couplings. A type I seesaw
band, corresponding to light neutrino mass between 20 meV and 200 meV, is highlighted in the
figure for comparison.

5.4.2 Overall sensitivity

The overall sensitivity of the DUNE ND to the discovery of HNL is defined here as the
combination of the sensitivities to some selected channels and presented in Fig. 5.7. These
channels are N → νe+e−, νe±µ∓, νµ+µ−, νπ0, e∓π±, and µ∓π±, and are preferred because of
their good discovery prospect, for which a background study has also been carried out. They
all give strong sensitivities, especially for masses below 0.5GeV as it can be seen in Section 5.3.
Their competitive reach is due to high branching ratios and the HNL flux being more intense at
such masses. Furthermore, the final-state particles are all well-studied particles most of which
leave tracks in the detector that are easy to reconstruct, thus allowing the background to be
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controlled with sufficient precision. The neutrino spectrum component coming from the Ds

meson allows for a weaker sensitivity to masses above the neutral kaon mass. The sensitivity
study is conducted for the two scenarios in which either a Majorana or a Dirac neutrino is the
decaying particle.

A comparison with previous experiments allows to appreciate the ND performance to searches
of HNLs. The results of PS191 [170, 171], peak searches [164–166], CHARM [175], NuTeV [176],
DELPHI [173], and T2K [172] are shown in Fig. 5.7. It is found that the DUNE ND can increase
the bound on the electronic and muonic mixing elements for masses mN < mK0 with respect to
past experiments. The constraint on the tauonic mixing is at least comparable with previous
measurements. For masses above, for which neutrino production relies on charm meson decays,
the existing bounds are improved for the electronic mixing and the tauonic mixing, while just
a conservative result can be achieved in the muonic case. The prospects for the SBN pro-
gramme [212], NA62 [228], and the proposed SHiP [237], MATHUSLA [231], and FASER [233]
with 1m radius are also overlaid. The DUNE ND will give the best sensitivity for masses below
the 0.5GeV in all channels, but the tauonic one. However, anywhere the Ds meson production
is involved, the experiment cannot outperform the predicted sensitivity of the SHiP experiment
which will deploy a 400GeV proton beam on a titanium-zinc-molybdenum alloy target, enhanc-
ing the production of charm and bottom mesons. MATHUSLA will have a similar sensitivity,
collecting particles from the High Luminosity LHC phase. NA62 gives better results for the
|UµN |2 mixing, but DUNE has a better sensitivity to the electron and tau channels. FASER
is comparable to NA62 in sensitivity, but it can reach regions of the parameter space beyond
the 2GeV limit to which DUNE is not sensitive. Compared to a previous similar study [221],
the sensitivities estimated in this analysis give stronger or at least comparable bounds. More
specifically, the limits on |UeN |2 are stronger even considering the background events. This is
true also for the limits on |UµN |2, but only for masses below 500 MeV: in Ref. [221] the sensi-
tivity to masses above this threshold is enhanced by the contribution from B meson which is
not estimated in this study. For the same reason, the limits on |UτN |2 prove to be comparable
to the result of this work, despite accounting only for the Ds meson component. Moreover, a
different ND configuration was assumed and no background study was performed in Ref. [221].

Finally, in Fig. 5.7 the overall sensitivity is compared with respect to regions allowed by
neutrino mass models. In the electronic and muonic channels, the DUNE ND will be sensitive
to a large part of the pseudo-Dirac regions, corresponding to ISS (2,2) and ISS (2,3) models,
part of which have been already excluded by past experiments. The ND will also close the gap
and put to test type I seesaw parameters, especially for HNL masses between 0.2 and 0.5GeV,
starting to reach the region of ISS (2,3) with large lepton number violation. For the tauonic
channel, the experiment will probe only a small portion of pseudo-Dirac pairs from ISS (2,2)
and ISS (2,3) models. The sensitivity is not high enough to reach type I and Majorana state
regions, which not even the dedicated experiment SHiP can.

The ISS (2,3) scenario in which the pseudo-Dirac pair is accessible by the experiment also
predicts a light Majorana state, the mass of which is controlled by the small LNV perturbations.
This entails the presence of a third mass splitting ∆m2

41, which could give an active–sterile os-
cillation signature in short baseline experiments, very much debated in literature (see Ref. [257]
for a recent review). In figure Fig. 5.8, the new mass splitting is plotted against the mixings
|Ue4|2, |Uµ4|2, and the combination usually referred to as sin2 2θµe ≡ 4|Ue4|2|Uµ4|2. The mass
splittings generated in the matrix scan span from ∆m2

31 ' 0.0025 eV2 up to 104 eV2, and the
squared mixings cover a large region, down to 10−14 for all the flavours. The reactor anomalies
could be soon excluded at the 90% C.L. by the DANSS experiment [146] and the allowed regions
from LSND [131] and MiniBooNE [132–134] require values of sin2 2θµe & 10−3. The regions
already excluded by these experiments are also reported in Fig. 5.8. Given the results of the



5.4. MASS MODEL CONSTRAINTS FROM THE DUNE ND 127

10−10

10−8

10−6

10−4

10−2

0.05 0.5 20.01 0.1 1

|U
eN
|2

Mass mN (GeV)

FASER
MATHUSLA
NA62
SHiP
SBND
DUNE

10−10

10−8

10−6

10−4

10−2

0.05 0.5 20.01 0.1 1

Excluded

Weyl state

Pseudo-Dirac
pair

Type I

10−10

10−8

10−6

10−4

10−2

0.05 0.5 20.01 0.1 1

|U
µ
N
|2

Mass mN (GeV)

FASER
MATHUSLA
NA62
SHiP
SBND
DUNE

10−10

10−8

10−6

10−4

10−2

0.05 0.5 20.01 0.1 1

Excluded

Weyl state

Pseudo-Dirac
pair

Type I

10−10

10−8

10−6

10−4

10−2

100

0.05 0.5 20.01 0.1 1

|U
τ
N
|2

Mass mN (GeV)

FASER
MATHUSLA
NA62
SHiP
DUNE

10−10

10−8

10−6

10−4

10−2

1

0.05 0.5 20.01 0.1 1

Excluded

Majorana state

Pseudo-Dirac
pair

Type I

Figure 5.7: The 90% C.L. sensitivity regions for dominant mixings |UeN |2 (top left), |UµN |2 (top right),
and |UτN |2 (bottom) are presented combining results for channels with good discovery prospects (see
text). The study is performed for Majorana neutrinos (solid) and Dirac neutrinos (dashed), in the case of
no background (black) and after the background analysis (brown). The region excluded by experimental
constraints (grey) is obtained by combining the results from PS191 [170, 171], peak searches [164�168],
CHARM [175], NuTeV [176], DELPHI [173], and T2K [172], with the lines reinterpreted for Majorana
neutrinos (see Ref. [187]). The sensitivity for the DUNE ND (black) is compared to the predictions of
future experiments, SBN [212] (blue), SHiP [237] (red), NA62 [228] (green), MATHUSLA [231] (purple),
and FASER [233] with 1m radius (orange). The shaded areas corresponds to possible neutrino mass
models considered in this work: the simulations of the ISS (2,2) and ISS (2,3) models where the lightest
pseudo-Dirac pair is the neutrino decaying in the ND (cyan); the ISS (2,3) scenario when the single
Majorana state is responsible for a signal (magenta); the type I seesaw scenario with a neutrino mass
starting from 20meV to 0.2 eV (yellow).
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Figure 5.8: One of the two ISS (2,3) realisations considered presents a Majorana state at masses
comparable with short baseline experiments. The results of the ISS (2,3) simulation (blue dots) for ∆m2
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against combination of mixing angles and the experimental result at 90% C.L. are shown. |Ue4|2 (left)
compared to DANSS [146], NEOS [145], STEREO [256], and Super-Kamiokande and IceCube combined
[257]; sin2 2θµe = 4|Ue4|2|Uµ4|2 (middle) compared to KARMEN2, OPERA and MiniBooNE [134], and
|Uµ4|2 (right) compared to a combined νµ disappearance analysis [257]. Only the points generated by
matrices which pass the experimental constraints are shown here.

matrix scan, it is unlikely that one of the ISS (2,3) realisations considered in this work could
explain simultaneously a short baseline anomaly and predict a heavy neutrino–like signal in the
DUNE ND, unless for sparse and very fine-tuned points.

5.5 Determining the nature of HNLs

If such heavy neutrino states are discovered, it would be possible to distinguish the fermionic
nature of the decaying HNL by studying the charge of the decay products. Thanks to the
different angular dependencies of polarised decay rates for Majorana and Dirac, analysing the
angular distributions of HNL decays could be in principle used to distinguish between the two
scenarios [214]. As studied in Section 4.2, the two-body decay distributions for a Majorana
neutrino with given helicity into a neutral final state is isotropic in the heavy neutrino rest
frame. This is also true of the total decay distribution of charged final states in the absence
of charge-ID in the detector. For two-body semileptonic decays, the polarised decay rate has
a linear or antilinear dependency on cos θ in the rest frame, according to the polarisation and
lepton number of the neutrino, where θ is the polar angle of the charged lepton to the beamline.
However, for practical applications, studying angular distributions requires modest statistics
and such distributions might not be obvious anymore once they are convolved with the neutrino
spectrum.

It is worth noting that aside from the neutral current distributional differences the direct
distinction between charged-conjugate final states is an equally competitive means of deter-
mining the nature of the initial state. The discussion of this section focuses on the channels
N → `∓P±, as these present the best discovery prospect. The decays into charged pseudoscalar
mesons P± are the channel with the highest branching ratio (see Section 4.2) and the ones
with the cleanest experimental signature, despite the nonnegligible background. Moreover, the
charge of the final-state lepton is directly determined by the fermionic type of the decaying
neutrino. Assuming a beam purely composed of neutrinos, a Dirac HNL produced in the beam
could only decay into `−P+, as lepton number is preserved. On the other hand, if the heavy
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neutrino is Majorana, the LNV channel `+P− would be also expected with the same rate as the
LNC mode. With perfect detector efficiency and performance, only one LNV event is necessary
to reject LNC. In addition to the different event rate, the angular and energy distribution of
the decays will vary depending on the fermionic nature of the neutrino, because of different
helicity contributions. However, a beam of only neutrino is not achievable with the conven-
tional techniques used to produce accelerator neutrinos. Unsuccessful focusing and deflection
by the horn system for short-lived secondary particles is the cause of an irremovable component
of antineutrinos in the neutrino mode beam. This results in an intrinsic background of LNV
events which are not expected in the case of a Dirac neutrino. The same discussion applies
equally to the beam in antineutrino mode.

Neglecting background from SM events, the number of HNL decay events inside the detector
is computed using Eq. (5.3). For given HNL mass and mixings, let us define as σ and ρ
respectively the number of signal events for the channel `−π+ and for the channel `+π−. The
probability of detecting s events for the first channel and r events for the second one follows a
bi-Poisson distribution with rate parameters respectively σ and ρ:

P (s, r) = e−σ
σs

s!
e−ρ

ρr

r!
. (5.14)

With this probability definition, a frequentist confidence regions is defined for each given point
of the parameter space, i.e. a combination of σ and ρ, sorting by the ratio of probabilities [242]

P (s, r)

P (ŝ, r̂)
, (5.15)

where the best fit points are ŝ = σ and r̂ = ρ if the HNL is Dirac or ŝ = r̂ = (σ + ρ)/2 if
Majorana. The Poissonian probabilities are then summed until reaching 99% C.L., delineating
in this way a region in the (σ, ρ) space. If the two regions for the case of Dirac or Majorana
HNL do not overlap, then it is possible to distinguish the two scenarios with 99% C.L. SM
background can be accounted for by replacing σ → σ + bσ and ρ→ ρ+ bρ.

Correct charge identification is therefore a necessary requirement to distinguish between
lepton number conserving and lepton number violating processes. Being magnetised, the MPD
is capable of charge identification of tracks. An analysis on the determination of the HNL nature
by the MPD was carried out in Ref. [258]. Although charge identification is a difficult task with
liquid argon technology, some events originating inside the LArTPC module can propagate to
the MPD and the charge of escaping particles could be identified in this way. This would allow
the expansion of the fiducial volume of the ND sensitive to charges which strongly depends on
the momentum of the final-state particles. Using the same fast MC simulation of the DUNE
ND explained in Section 5.2, the charge is retrieved if the sagitta of curved tracks inside the
MPD are greater than 1 cm, hundred times the spatial resolution. Assuming a high momentum
and neglecting energy loss in the MPD, the condition required is

s ' L2

R
' 0.3B

p
L2(cos2 θ + sin2 θ sin2 φ)2 > 0.1 cm , (5.16)

where B = 0.5T is the magnetic field of the MPD, p the charged particle momentum, L the
length of the track, and θ and φ the polar and azimuth angles. The 90% C.L. regions in which
statistics is sufficient for distinguishing between Majorana and Dirac neutrinos are shown in
Fig. 5.9. As specified above, the two-body pseudoscalar meson channels are used in conjunction
with an expanded fiducial volume compared to Ref. [258]. A background evaluation for this
specific analysis is under study. Charge identification can further reduce background from SM
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Figure 5.9: The regions in which distinction between Majorana and Dirac HNL is possible with 90%
C.L. are shown for dominant |UeN |2 (left) and |UµN |2 (right). The channels N → e∓π± and µ∓π± are
used, respectively. The dashed line black line assumes 100% charge identi�cation, whereas the solid ones
correspond to a realistic charge detection e�ciency evaluated with a MC simulation. The regions are
compared to the exclusion limits to HNL discovery of future experiments: SBN [212] (blue), SHiP [237]
(red), NA62 [228] (green), MATHUSLA [231] (purple), and FASER [233] with 1m radius (orange).
The region excluded by experimental constraints (brown) is obtained by combining the results from
PS191 [170, 171], peak searches [164�168], CHARM [175], NuTeV [176], DELPHI [173], and T2K [172].
The shaded areas corresponds to possible neutrino mass models considered in this work: the simulations
of the ISS (2,2) and ISS (2,3) models where the lightest pseudo-Dirac pair is the neutrino decaying in the
ND (cyan); the ISS (2,3) scenario when the single Majorana state is responsible for a signal (magenta);
the type I seesaw scenario with a neutrino mass starting from 20meV to 0.2 eV (yellow).

neutrino interactions, especially if with production of extra pions and other hadrons. HNL
decays have always particles of opposite charge in the final state and this requirement can help
reject more background events in the selection process.

Summary

In this chapter, the sensitivity of the DUNE ND to heavy neutral leptons in beam-dump-style
searches has been estimated. The analysis is based on the calculations presented in Chapter 4,
as HNLs can be produced with light neutrinos by the powerful LBNF neutrino beam and sub-
sequently decay inside the Near Detector system. The number of heavy neutrinos is calculated
by a convolution between the HNL flux, the decay probability, and detector’s efficiency and
geometry. A first estimate of the ντ component of the beam from Ds mesons has also been
carried out. The efficiency of the detector is evaluated with the help of a custom fast MC
simulation and the background sources from SM neutrino–nucleon interactions are generated
with GENIE. A detailed background study was also performed on decay channels with good
detection prospects, defined by high branching ratios and clean detector signatures. Thanks to
the vicinity to the beam target and the state-of-the-art reconstruction capabilities, the DUNE
ND can place very competitive bounds to the HNL mixings with active neutrinos; the 90%
C.L. sensitivity regions have been estimated for both single and dominant mixings. For masses
between 0.3 and 0.5GeV, the ND can probe mixing elements below 10−9 in most cases, reaching
10−10 especially with two-body semi-leptonic channels via |UeN |2 and |UµN |2. Thanks to the
Ds meson production, neutrino masses above 0.5 and up to 2GeV are also accessible, as well as
the sensitivity to the tau mixing. A random matrix scan of possible inverse seesaw realisations
shows that the DUNE ND can extend current limits on mixing parameters reaching regions of
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interest for neutrino mass models. If a discovery is made, some considerations can be drawn
upon the nature of the new fermionic states, particularly if the charges of the final state particles
can be reconstructed.
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Chapter 6

Conclusions

One of the most compelling discoveries of the past few years is evidence of neutrino oscil-
lation. The main consequence is that at least two neutrino states have a non-zero mass below
the eV scale, although Dirac mass terms for neutrinos are not permitted or difficult to justify
in the Standard Model. Addressing this insufficiency together with others, for example matter-
antimatter asymmetry or dark matter, requires an extension of the current theory. The hope is
that from accurate and precise measurements new hints of physics beyond the Standard Model
(BSM) will appear and bring about a better comprehension of theoretical models. This thesis
has explored just a fraction of the vast realm of topics in neutrino physics, focusing mainly
on next-generation neutrino experiments. Some of the existing experiments will renovate and
broaden their capabilities by adopting new detection methods, such as Super-Kamiokande and
gadolinium capture. At the same time new experiments, such as Hyper-Kamiokande, will push
familiar techniques to the limit to increase the precision of oscillation physics. Other upcoming
experiments, such as DUNE, will implement state-of-the-art technologies on a large scale not
only to study Standard Model physics, but also to perform complementary searches of BSM
physics.

The benefits of gadolinium for water Cherenkov detectors have been explained in Chapter 2.
Super-Kamiokande (SK) is about to start a new phase in which a hundred tons of gadolinium
sulphate will be dissolved in the water tank. This will allow the detector to improve neutron
tagging efficiency up to 90%—with a Gd concentration of 0.2%—transforming the experi-
ment into a supernova observatory and improving all the ongoing analyses. There are many
technical challenges when dealing with a Gd-loaded Cherenkov detector, one of which being
the monitoring of gadolinium concentration in water. A new method involving UV absorption
spectroscopy is being developed with promising results, as shown in Chapter 2. Gadolinium
presents strong absorption lines in the region between 270 nm and 275 nm and their intensity is
directly proportional to the amount of gadolinium. This technique allows for an almost contin-
uous monitoring of the concentration, compared to the current spectroscopy technique in place
which is executed with a monthly frequency. The precision reached with the UV absorption
spectroscopy is around ∼0.3% on the full load concentration of 0.2%, using a 100 cm water
sample. The same device was able to reach competitive sensitivity also on the initial loading
concentration of 0.02%. Regardless of gadolinium-doping, an improved method for neutron
calibration of the detector was also investigated. A californium-252 source has some advantages
compared to the currently employed Americium-Beryllium (Am-Be), among which the possibil-
ity of estimating the source activity indirectly. Using a GEANT4 simulation, it was found that
the same calibration device used by SK has already the optimal shape to be used with 252Cf
instead. The Am-Be neutron source could then be replaced without further modifications of
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the device, and a more accurate neutron calibration can be achieved thanks to the features of
spontaneous fission events in californium-252.

The next-generation water Cherenkov detector, Hyper-Kamiokande (HK), has been intro-
duced in Chapter 3. Thanks to unprecedented statistics and upgraded instrumentation, Hyper-
Kamiokande has the potential to study a plethora of topics related to neutrino physics, with
particular emphasis on neutrino oscillation and CP violation in the lepton sector. In this thesis,
the sensitivity to oscillation parameters has been assessed employing a framework capable of
beam and atmospheric combined fits. The atmospheric events for HK are simulated by scaling
SK Monte Carlo atmospheric data and they are classified as fully-contained, partially contained,
or upward-going muons events, for a total of 2224 bins. The beam-related events are classified
as electron- or muon-like one ring events, for the beam in neutrino mode or antineutrino mode
and they are arranged in four distributions with 87 energy bins each. These spectra are pre-
dicted from a neutrino beam flux simulation tuned with near detector constraints. Once a true
combination of oscillation parameters is chosen, the χ2 between observed (true) and expected
events is calculated in the way explained in Chapter 3. The likelihood includes effects from
systematic uncertainties and although the atmospheric model is still preliminary, the state-of-
the-art T2K systematic model is adopted for the beam component instead. It consists of 119
systematics encompassing beam, cross-section, and far detector parameters. Just considering
the beam sample, it is found that Hyper-Kamiokande can exclude maximal violation of CP at
full statistics with more than 6σ of significance. Some variations of the beam systematic model
are also being investigated in order to understand how the experimental sensitivity is affected
by certain model parameters. One of these, the energy scale error, might be treated too naively
in the fitting framework and so slight modifications to both the error model and the likelihood
should be considered. This study, however, is preliminary and still ongoing.

In Chapter 4, the origin and lightness of the neutrino mass has been addressed in the
framework of low-scale seesaw mechanisms. The addition of an arbitrary number of heavy
neutral leptons is the simplest extension of the Standard Model and it is accompanied with
a diverse and rich phenomenology. Some textures of the mass matrix, such as the one of
the inverse seesaw, predict Majorana or pseudo-Dirac heavy neutrinos with experimentally
accessible masses. These new particles could be searched for by direct production in beam
dump experiments, in which the expected signature would be an in-flight decay into Standard
Model particles. In this thesis, the phenomenological consequences of Majorana and Dirac states
have been thoroughly investigated in light of searches of neutrino decays. The differential decay
rates and production scale factors have been computed using the spinor-helicity formalism and
are provided decomposed by helicity states. It was shown that Dirac and Majorana neutrinos
have different total decay width in neutral current processes and measuring the rate could be an
actual way of determining the nature of the initial state. Interesting differences appear between
Majorana and Dirac neutrinos once the role of helicity is considered, and this could be also
exploited to determine the nature of the heavy singlet fermion. The effect of helicity emerges in
the differential decay rate leading to different distributions of final state particles. For example,
if the HNL are Majorana, two-body decays present an isotropic distribution for both helicity
states, or if Dirac, the angular distribution has a dependency proportional to A±B cos θ with
the sign depending on the helicity state. An effective evaluation of the heavy neutrino flux
was also carried out which is not polarised to a single helicity state differently from a light
neutrino flux. The production modes of nearly-sterile neutrinos are sensitive to their helicity
state, thanks to mass effects which lead to the enhancement of certain channels with respect to
light neutrinos. The two components of the neutrino flux behave therefore differently thanks to
the dependency of decay distribution on the helicity. These results, first published in Ref. [1],
set the groundwork for novel phenomenological analyses of future experiments.
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For instance, the near detector complex of DUNE is capable of performing BSM searches,
as described in Chapter 5. Although the main goal of the experiment is precision oscillation
physics, the near detector proves to be an ideal candidate to search for heavy neutrino decays,
given the intense neutrino beam and exceptional reconstruction capabilities. If at least one extra
neutral state exists with a mass from few MeV to the GeV, the new singlet would be produced
in the beam thanks to suppressed mixings by meson and lepton decays. The high energy of the
proton beam allows neutrino masses up to 2GeV which have also been tested by simulating Ds

meson production at the target. A background study was performed on decay channels with
good detection prospects, defined by high branching ratios and clean detector signatures. Due
to the ND vicinity to the beam target, it is fundamental to suppress the overwhelming number
of SM neutrino–nucleon interactions, which constitute the background for the rare signal of
HNL decays. Most of the time, both the reconstruction of hadronic activity at the vertex and
the multiplicity of final state particles are enough to distinguish between signal and background,
reducing the latter down to . 5%. To further reduce unwanted events, simple kinematic cuts are
applied thanks to the very forward distribution of decay in-flight events, additionally suppressing
the background events to less than 5× 10−5 of the original number. The rejection prescriptions
are tuned to maintain an acceptable signal efficiency, which is between ∼40% down to ∼20%.
For all the other channels, no background study was performed, mainly because the final state
particles are vector mesons which present experimentally challenging and specific signatures,
the study of which was out of the scope of this work. Combining the scaled flux components
with the decay probabilities and signal efficiencies, the 90% C.L. sensitivity of the near detector
has been estimated to all accessible channels, for both single and dominant mixings. For masses
between 0.3 and 0.5GeV, the ND can probe mixing elements below 10−9 in most cases, reaching
10−10, especially with two-body semi-leptonic channels for both |UeN |2 and |UµN |2. Thanks to
the Ds meson production, neutrino masses above 0.5 and up to 2GeV become accessible, as well
as production and decay modes purely sensitive to the tau mixing. In this case, the sensitivity
does not exceed 10−8 for the electronic and muonic channels and 5 × 10−6 for the tauonic
channel. Finally, a random matrix scan of different inverse seesaw realisations was performed
to define regions of allowed parameter space. It is found that the near detector can extend
current limits on mixing parameters, reaching regions of interest for neutrino mass models. If
a discovery is made, some considerations can be drawn upon the nature of the new fermionic
states. The charges of the final state particles can help determine whether the lepton number
is conserved in the event: any event clearly violating lepton number would be a manifestation
of the Majorana nature of the decaying HNL.

In conclusion, neutrino physics has made giant leaps thanks to both impressive experimental
efforts and remarkable theoretical progress. Neutrino oscillation has an impact on numerous
fields beyond elementary particle physics, such as nuclear physics, astrophysics, and cosmology,
just to name a few. The broader implications that this phenomenon brings need to be taken
into account in order to study it in depth and either prove or disprove the Standard Model.
The work presented in this thesis has been fundamental to progress on both the experimental
and theoretical side. Next-generation neutrino experiments will produce new results that will
be crucial for grasping the underlying principles of particle physics.
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Appendix A

List of systematics

The meaning and the value of the systematic uncertainties of the model adopted for the
oscillation analysis of Chapter 3 is reported here. The beam systematics are a combination of
systematics from near detector fits (BANFF) and SK and Final State Interactions (FSI) studies.
The two groups of systematics are uncorrelated.

A.1 BANFF systematics

ν-mode flux

Parameter σ (%)

νµ (0) 0.057
νµ (1) 0.073
νµ (2) 0.049
νµ (3) 0.006
νµ (4) 0.969
νµ (5) 0.987
νµ (6) 0.056
νµ (7) 0.071
νµ (8) 0.055
νµ (9) 0.011
νµ (10) 0.001

νµ (0) 0.045
νµ (1) 0.011
νµ (2) 0.035
νµ (3) 0.097
νµ (4) 0.165

νe (0) 0.051
νe (1) 0.048
νe (2) 0.045
νe (3) 0.035
νe (4) 0.053
νe (5) 0.054
νe (6) 0.084

νe (0) 0.093
νe (1) 0.204

ν-mode flux

Parameter σ (%)

νµ (0) 0.041
νµ (1) 0.036
νµ (2) 0.047
νµ (3) 0.100
νµ (4) 0.087

νµ (0) 0.051
νµ (1) 0.055
νµ (2) 0.028
νµ (3) 0.004
νµ (4) 0.022
νµ (5) 0.029
νµ (6) 0.068
νµ (7) 0.104
νµ (8) 0.122
νµ (9) 0.089
νµ (10) 0.079

νe (0) 0.086
νe (1) 0.100

νe (0) 0.045
νe (1) 0.036
νe (2) 0.041
νe (3) 0.037
νe (4) 0.080
νe (5) 0.097
νe (6) 0.215

Cross-section

Parameter σ (%)

2p-2h normalisation for 16O 0.673
CA5 nucleon to ∆ axial form factor 0.027
Isospin 1/2 nonresonant background scale 0.212
CCQE axial-mass scaling factor 0.006
Resonance-production axial-mass scaling 0.893
Second-class current axial 1.000
Second-class current vector 1.000
Fermi momentum for 16O 0.978
CC-other shape 0.550
CC-coherent for 16O normalisation 0.148
NC-coherent normalisation 0.235
NC-other normalisation 0.300
CC-νe normalisation 0.028
NC-1γ normalisation 1.000
CC-νe normalisation 0.028
ν 2p2h for 16O 0.096
BeRPA coefficient A 0.741
BeRPA coefficient B 0.717
BeRPA coefficient D 0.096
BeRPA coefficient E 0.228
BeRPA coefficient U 0.300
2p-2h shape for 16O 0.487
2p-2h 12C to 16O normalisation 0.130
Binding energy on Oxygen 1.000
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A.2 SK & FSI systematics

One ring ν-mode

Systematic σ (%)

µ-like (0) 0.008
µ-like (1) 0.013
µ-like (2) 0.015
µ-like (3) 0.176
µ-like (4) 1.006
µ-like (5) 0.660

e-like (0) 0.124
e-like (1) 0.032
e-like (2) 0.041
e-like (3) 0.271
e-like (4) 0.320
e-like (5) 0.393
e-like (6) 0.089
e-like (7) 0.050
e-like (8) 0.063
e-like (9) 0.307
e-like (10) 0.195
e-like (11) 0.473

One ring ν-mode

Systematic σ (%)

µ-like (0) 0.008
µ-like (1) 0.009
µ-like (2) 0.010
µ-like (3) 0.140
µ-like (4) 1.005
µ-like (5) 0.659

e-like (0) 0.076
e-like (1) 0.033
e-like (2) 0.055
e-like (3) 0.317
e-like (4) 0.337
e-like (5) 0.417
e-like (6) 0.060
e-like (7) 0.043
e-like (8) 0.065
e-like (9) 0.329
e-like (10) 0.198
e-like (11) 0.465

Multiring

Systematic σ (%)

e-like + one decay e (0) 0.197
e-like + one decay e (1) 0.165
e-like + one decay e (2) 0.502
e-like + one decay e (3) 0.236
e-like + one decay e (4) 0.192
e-like + one decay e (5) 0.189
e-like + one decay e (6) 0.983
e-like + one decay e (7) 0.523

SK energy scale 0.024

A.3 Atmospheric systematics

Flux

Parameter σ (%)

Flux norm. (E < 1GeV) 0.250
Flux norm. (E > 1GeV) 0.150
ν/ν (E < 1GeV) 0.020
ν/ν (1 < E < 10GeV) 0.030
ν/ν (E > 10GeV) 0.050
νe/νe (E < 1GeV) 0.050
νe/νe (1 < E < 10GeV) 0.050
νe/νe (E > 10GeV) 0.080
νµ/νµ (E < 1GeV) 0.020
νµ/νµ (1 < E < 10GeV) 0.060
νµ/νµ (E > 10GeV) 0.150
Up/down 0.010
Horizontal/vertical 0.010
K/π 0.100
ν path length 0.100
Relative norm. FC 0.050
Relative norm. PC+UP-µ 0.050
Solar activity 0.100
Matter effects 0.068
∆m2

21 error 0.000
sin2 θ12 error 0.021
sin2 θ13 error 0.008

Cross-section

Parameter σ (%)

Axial mass in NC 0.100
CCQE cross-section ratio 0.100
CCQE ν/ν ratio 0.100
CCQE µ/e ratio 0.100
Single meson cross-section 0.200
DIS cross-section 0.050
DIS model comparisons 0.100
DIS Q2 distribution (0) 0.100
DIS Q2 distribution (1) 0.100
Coherent π production 1.000
NC / CC 0.200
ντ cross-section 0.250
Pion production, π0/π 0.400
Pion production, ν/ν 0.100
Hadron simulation 0.100

Event separation

Parameter σ (%)

FC reduction 0.003
PC reduction 0.010
FC / PC sep. 0.0002
PC stop/through sep. (0) 0.068
PC stop/through sep. (1) 0.085
PC stop/through sep. (2) 0.403
Non-ν background e-like 0.010
Non-ν background µ-like 0.010
Non-ν background one ring 0.176
Non-ν background multiring 0.116
Fiducial volume 0.020
Ring sep. 0.10
Particle-ID one ring 0.01
Particle-ID multiring 0.10
Energy calibration 0.023
Up/down energy calibration 0.003
UP-µ stop/through sep. 0.006
UP-µ reduction 0.010
Path cut for UP-µ through 0.015
Energy cut for stop UP-µ 0.017
UP-µ shower/nonshower sep. 0.030
Background UP-µ nonshower 0.170
Background UP-µ stop 0.170
Background UP-µ shower 0.240
νe/νe sep. 0.068
Sub-GeV two ring π0 0.056
Decay-e tagging 0.100
π decay tagging error 0.100
One ring π0 fit 0.100
Multiring electron/other sep. 0.100



Appendix B

Open charm production

Following the same procedure as the one described in Ref. [237], the number of strange D
mesons can be estimated as

NDs =
σcc
σpA

fDs = (2.8± 0.2)× 10−6 , (B.1)

where σcc = 12 ± 1 µb is the proton–target open charm cross section, σpA = 331.4 ± 3.4mb is
the total inelastic proton–target on carbon (A = 12C) [259] cross section, and fDs = 7.7 % is
the Ds fragmentation fraction [260]. The open charm production cross section is computed at
the leading order in perturbation theory, with a graphite fixed target and a 80GeV proton p.
The correct process to consider is the proton–nucleon interaction, therefore

σcc ≡ σ(pA→ cc+X) ≈ Aσ(pN → cc+X) , (B.2)

using the correct Parton Distribution Function (PDF) for a bound nucleon N in the nucleus
A. There are four diagrams, shown in figure Fig. B.1, that contributes to the cross section, but
three of them interfere with each other. These cross sections are well-known SM calculations
and can be found in Ref. [15]. The integrated cross section is:

σ(pN → cc+X) =

∫ 1

τ0

dx1

∫ 1

τ0
x1

dx2

∫
dΩ

[(
f1
g/p f

2
g/A + f2

g/p f
1
g/A

)dσgg→cc
dΩ

+
∑

q=u,d,s

(
f1
q/p f

2
q/A + f2

q/p f
1
q/A + f1

q/p f
2
q/A + f2

q/p f
1
q/A

)dσqq→cc
dΩ

]
, (B.3)

with τ0 = ŝ0/s and ŝ0 being the threshold energy at the partonic level and s = 2mp(mp + Ep)
is the centre of mass energy, given that mp ' mn. The partonic structure of the nucleus is
described by the functions f iρ/η = fρ/η(xi,MF ), which are interpreted as the probability of
finding a parton ρ in the particle η carrying a xi fraction of the momentum of η, at the energy
scale MF . The two momentum fractions are related by x1 x2 s = ŝ, where the hat symbol
denotes the energy of the parton-level process.

A factorisation scale of MF = 2.1mc for the computation of σcc is adopted, while the
renormalisation scale of αs is set to µR = 1.6mc, and the charm mass has the value

mc = (1.28± 0.03)GeV . (B.4)

The integration is regulated for | cos θ| < 0.8, with θ the angle in the centre of mass frame.
The theoretical curve in Fig. 7.4(a) of Ref. [237] was used to check this calculation, and it
was successfully reproduced up to NLO corrections. For the generation of PDF the LHAPDF
libraries [261] and the nCTEQ15 PDF set [262] are used, resulting in σpA→cc = (12± 1)µb, for
an 80GeV protons on a graphite target.
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Figure B.1: These are the four diagrams contributing to the hard process in open charm production.
The diagrams with gluons in the initial state interfere with each other giving rise to cross terms in the
colour structure.
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