
Topics in Extremal and Probabilistic

Combinatorics

by

Natalie C. Behague

A thesis submitted to the University of London for the degree of

Doctor of Philosophy

School of Mathematical Sciences
Queen Mary, University of London

United Kingdom

May 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/343986288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statement of Originality

I, Natalie C. Behague, confirm that the research included within this thesis is my own

work or that where it has been carried out in collaboration with, or supported by oth-

ers, that this is duly acknowledged below and my contribution indicated. Previously

published material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge break any UK law, infringe any third party’s copyright

or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the

electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Natalie Behague

1st June 2020

Details of collaboration and publications:

The work in Chapter 2 was conducted in collaboration with Dr. Robert Johnson. All

other chapters are solely my own work.

The results of Chapters 1 and 3 were previously published as follows:

1. Natalie C. Behague. Hypergraph Saturation Irregularities. Electronic Journal of

Combinatorics, 25, 2018.

i

2. Natalie C. Behague. Semi-perfect 1-Factorizations of the Hypercube. Discrete

Mathematics, 342(6), 2019.

ii

Abstract

This thesis encompasses several problems in extremal and probabilistic combinatorics.

Chapter 1. Tuza’s famous conjecture on the saturation number states that for r-uniform

hypergraphs F the value sat(F, n)/nr−1 converges. I answer a question of Pikhurko

concerning the asymptotics of the saturation number for families of hypergraphs, prov-

ing in particular that sat(F , n)/nr−1 need not converge if F is a family of r-uniform

hypergraphs.

Chapter 2. Černý’s conjecture on the length of the shortest reset word of a synchronizing

automaton is arguably the most long-standing open problem in the theory of finite

automata. We consider the minimal length of a word that resets some k-tuple. We

prove that for general automata if this is finite then it is Θ
(
nk−1

)
. For synchronizing

automata we improve the upper bound on the minimal length of a word that resets some

triple.

Chapter 3. The existence of perfect 1-factorizations has been studied for various families

of graphs, with perhaps the most famous open problem in the area being Kotzig’s conjec-

ture which states that even-order complete graphs have a perfect 1-factorization. In my

work I focus on another well-studied family of graphs: the hypercubes. I answer almost

fully the question of how close (in some particular sense) to perfect a 1-factorization of

the hypercube can be.

Chapter 4. The k-nearest neighbour random geometric graph model puts vertices ran-

domly in a d-dimensional box and joins each vertex to its k nearest neighbours. I find

significantly improved upper and lower bounds on the threshold for connectivity for the

k-nearest neighbour graph in high dimensions.

iii

Acknowledgments

This work was supported by an EPSRC doctoral studentship.

The most important thank you goes to my supervisor, Robert Johnson, who has been a

purveyor of interesting problems, a sharp-eyed proof-reader, and a fount of useful advice,

both mathematical and otherwise. Thank you for always encouraging me try just a little

longer — a lot of this would never have been solved if I hadn’t been made to corral my

ideas when I thought I was at a dead end.

I am grateful to my second supervisor Mark Walters, without whom the final chapter

of this thesis would not exist, for setting me off in a fruitful direction and for invaluable

discussions on the topic.

Thank you also to David Ellis, Bill Jackson, Mark Jerrum, Justin Ward, Felix Fischer

and the whole combinatorics group at Queen Mary for showing such an interest in my

work. I always enjoyed our mini seminars, annual reviews and of course the CSG.

I would like to thank Ali, Ben, Oliver, Rhys, Will and all of my friends and colleagues

among the PhD community at Queen Mary for innumerable interesting conversations

both at lunchtime and down the pub. Thank you for the maths, the beer and the

boardgames.

Thank you to the rest of my friends: to Ruairidh, Jovan, Ben, Róisin, Ash, Dan, John;

to the Yogis, my literal and metaphorical tag team; to so many people I can’t list you

all. I could maybe have done it without you but it wouldn’t have been nearly as much

fun.

Finally, thank you to my Mum, Dad and sisters Kat and Emily for a lifetime of love

and support. Most pertinently, thank you for taking me in and keeping me sane when a

global crisis hit just as I was writing this thesis.

iv

Table of Contents

Abstract iii

Acknowledgments iv

Table of Contents v

List of Figures vii

List of Tables ix

Introduction 1

1 Hypergraph Saturation Irregularities 6

1.1 Introduction . 6

1.2 A Proof of the Main Theorem . 12

1.3 A Forbidden Family of Constant Size . 15

1.4 Obtaining an Small Saturation Number on a Denser Set 20

1.5 Open Questions . 26

2 Synchronizing Automata and Černý’s Conjecture 30

2.1 Introduction . 30

2.2 Upper Bounds on the Rendezvous Time 37

2.2.1 The Error in Gonze and Jungers 47

2.3 Non-sychronizing Automata with Large Rendezvous Time 50

v

2.3.1 An Alternative Construction . 57

3 Semi-perfect 1-Factorizations of the Hypercube 60

3.1 Introduction . 60

3.2 Main Theorem . 67

3.3 Direction Respecting 1-Factorizations . 74

3.4 Computer Experiments . 77

3.5 Open Questions . 80

4 Connectivity of High Dimension k-Nearest-Neighbour Graphs 83

4.1 Introduction . 83

4.2 An Upper Bound for the Undirected Graph 86

4.2.1 Proof of Theorem 4.4 . 93

4.3 An Upper Bound for the Directed Graph 105

4.3.1 Proof of Theorem 4.9 . 108

4.3.2 An Upper Bound for the Directed Graph on a Torus 110

4.4 A Lower Bound for the Undirected Graph 111

4.5 A Lower Bound for the Directed Graph 116

4.6 Open Questions . 122

References 124

Appendix A Finding 1-Factorisations of the Hypercube by Computer 127

vi

List of Figures

1.1 An example of the extremal number and the saturation number for a

triangle. 8

1.2 An example of Pikhurko’s family for k = 4. 9

1.3 The family F of r-graphs for r = 5 and k = 7 13

1.4 The structure of the graph G . 13

1.5 The family F of r-graphs for r = 5 and k = 15 16

1.6 The two graphs under consideration for k = 14. 22

2.1 The Černý automaton for n = 4. 31

2.2 The transition graph for the Černý automaton on 4 vertices. 33

2.3 The graphs Gt and G[Ct] for the Černý automaton on 4 states, with the

sets of optimal solutions Pt and Rt indicated. 49

2.4 An example of the automaton for k = 3 and n = 21 51

2.5 An example of the automaton for k = 5 54

2.6 The alternative automaton for l = 5,m = 3 58

3.1 Examples of 1-factorizations of K6 and Q3 60

3.2 Part of a 1-factorization of K10 that is not perfect. 62

3.3 A partial example of the Anderson-Nakamura construction for K10. 62

3.4 From a 1-factorization of K6 (left) to a 1-factorization of K5,5 (right). . . 63

3.5 An example when k = 2 and l = 4 . 71

3.6 An example when l = 2 . 72

vii

3.7 The matchings for k = 1 and l = 3 . 74

4.1 The edges xy, wz and w′z′ with lengths a, b, c, d, h labelled. 90

4.2 The first construction for the 2-dimensional case 96

4.3 The second construction for the 2-dimensional case 96

4.4 The regions in the 2-dimensional case . 112

viii

List of Tables

2-A Upper and lower bounds on rdv(k, n) and RDV(k, n). 35

2-B Upper and lower bounds on rdv∗(k, n) and RDV∗(k, n). 37

3-A A 2-semi-perfect 1-factorization of Q4 that is not direction respecting. . . 78

3-B A 1-factorization of Q5 where the union of any pair of 1-factors is two cycles. 79

4-A Bounds on the thresholds for the existence of small diameter components. 85

ix

Introduction

Extremal combinatorics is the study of combinatorial objects and the possible values

their parameters can take. Combinatorial objects are discrete structures which are usu-

ally finite (though arbitrarily large), with examples including graphs, hypergraphs, set

systems and automata. In some cases these structures might be randomly generated,

which is one way a probabilistic element can come in.

A typical problem in extremal combinatorics asks how large or small some parameter

can be, given a structural property the object satisfies. A simple example might be to ask

what is the maximum number of edges a graph can have, given it contains no triangles.

Often solutions to these problems require two complementary parts: an argument that

shows how possible behaviour is limited, along with a construction to show that these

limits can be attained.

Each of the four chapters of this thesis focuses on a different problem; as such, each

chapter is self-contained. We start each chapter with an introduction to the problem

in question and some background on the area, thus this introduction serves merely as

a brief overview of what is to come and an observation of some commonalities between

the problems.

Chapter 1: Hypergraph Saturation Irregularities looks at the asymptotics of the sat-

uration number for families of hypergraphs.

For a fixed graph F , Turan’s number ex(F, n) is the maximum number of edges in

1

2

an F -free graph on n vertices. In any maximal F -free graph, adding any new edge must

create a copy of F as a subgraph, which inspires the following definition: we say a graph

G is F -saturated if it does not contain any copies of F but adding any new edge creates

some copy of F . Then Turan’s number can be defined equivalently as the maximum

number of edges in an F -saturated graph on n vertices.

The saturation number sat(F, n) is obtained by replacing maximum by minimum;

that is, sat(F, n) is the minimum number of edges in an F -saturated graph on n ver-

tices. It forms an interesting counterpoint to the Turan number — the saturation num-

ber is in many ways less well-behaved. For example, we know that the Turan density

limn→∞ ex(F, n)/n2 exists. Tuza [31] conjectured that sat(F, n)/n must tend to a limit

as n tends to infinity, but this conjecture is still open.

The definition of saturation extends naturally to families of graphs. Pikhurko [25]

disproved a strengthening of Tuza’s conjecture by finding a finite family F of graphs

such that sat(F , n)/n does not converge as n tends to infinity. Pikhurko then asked

whether a similar behaviour can occur for families of r-uniform hypergraphs. We shall

see in Chapter 1 that the answer to this question is yes.

Chapter 2: Synchronizing Automata and Černý’s Conjecture concerns reset words of

automata. An automaton consists of a finite set of states and a finite set of transition

functions, which are functions from the set of states to itself. We are interested in the

results of applying a sequence of transitions to the set of states – we call such a sequence

of transitions a word of the automaton. We say that a word is a reset word if it sends

every state to the same point, and we call an automaton synchronizing if it has a reset

word.

Černý conjectured that if an automaton on n states is synchronizing then there exists

a reset word of length at most (n− 1)2. This is arguably the most famous open problem

in the theory of finite automata. Currently, the best upper bound known on the length

of a minimal reset word is ≈ 0.1654n3 [27].

3

We focus our attention on the minimum length of a word synchronizing some k -set:

that is, sending some set of k states to the same point. In Chapter 2 we improve the best

known bounds on the minimum length of a word synchronizing a 3-set, 4-set and 5-set

of any synchronizing automaton. Furthermore, we show that for a non-synchronizing

automaton it could require a word of length Θ
(
nk−1

)
to synchronize a k-set, which is

the worst possible.

Chapter 3: Semi-perfect 1-Factorizations of the Hypercube looks at 1-factorizations

of the hypercube. A 1-factorization of a graph is a partition of the edges of the graph

into disjoint perfect matchings M1,M2, . . . ,Mn. We say that a 1-factorization M =

{M1,M2, . . . ,Mn} is a perfect factorization if every pair Mi∪Mj with i, j distinct forms

a Hamilton cycle. A 1-factorizationM is called semi-perfect if M1∪Mi forms a Hamilton

cycle for all i 6= 1.

The existence or non-existence of perfect 1-factorizations has been studied for various

families of graphs, with perhaps the most famous open problem in the area being Kotzig’s

conjecture [18] which states that the complete graph K2n has a perfect 1-factorization.

We focus on another well-studied family of graphs: the hypercubes Qd.

Craft [2] conjectured that for every integer d ≥ 2 there is a semi-perfect 1-factorization

of Qd. This was proved independently by Gochev and Gotchev [14] and by Královič and

Královič [19] in the case where d is odd, and settled for d even by Chitra and Muthusamy

[8]. Gochev and Gotchev in fact went further and defined M to be k-semi-perfect if

Mi ∪Mj forms a Hamilton cycle for every 1 ≤ i ≤ k and k + 1 ≤ j ≤ d. They proved

that there is a k-semi-perfect factorization of Qd whenever k and d are both even with

k < d.

It turns out there is no perfect 1-factorization of the hypercube, which is a corollary

of a result due to Laufer [20]. An analysis of Laufer’s proof reveals that a k-semi-perfect

factorization is the best we can hope for: the matchings must split into two classes

with no two matchings in the same class forming a Hamilton cycle. In light of this

4

observation, the only remaining question is whether for any k and d there is a k-semi-

perfect factorization of Qd In Chapter 3 we answer this question in the affirmative for

almost every pair k, d, with only the case k = 3, d = 6 left unresolved.

Finally, Chapter 4: Connectivity of High Dimension k-Nearest-Neighbour Graphs

studies the threshold for connectivity of a particular random geometric graph model.

The k-nearest neighbour random geometric graph G = G(d, n, k) is defined as follows:

take a d-dimensional cube of volume n and let P be a Poisson process of density 1 in

the cube. Then put an edge between each point of P and its k nearest neighbours.

This graph has been well-studied in the 2-dimensional setting where the the threshold

for connectivity is Θ(log n) [3, 35]. Using very simple generalisations of the arguments in

the 2-dimensional setting it is easy to show that for fixed d, the threshold for connectivity

is still Θ(log n). These arguments give weak bounds on how the coefficient of log n

depends on d: if k = Ω
(

1
log d log n

)
then G is connected with high probability and if

k = O
(

1
ed

log n
)

then G is disconnected with high probability.

Given the difference in terms of d between these bounds, one natural question is to ask

how the threshold for connectivity depends on the dimension d. In Chapter 4 we improve

the bounds substantially. Precisely, we show that if k ≥ 2.467
d log n then G(d, n, k) is

connected with high probability and if k ≤ 0.102
d log d log n then G(d, n, k) is disconnected

with high probability. We also establish bounds on the threshold for connectivity of the

similarly-defined directed graph
−→
G .

All of these problems come from extremal combinatorics and as a result they share

a common theme of examining the properties of potentially large discrete structures,

whether they are graphs, hypergraphs or automata.

Beyond this, a common thread that emerges from the work is a use of intricate

constructions, which are utilised in a variety of ways. In Chapter 1 the constructions are

counterexamples: we use them to show that the saturation number doesn’t have to have

nicely behaved asymptotics for forbidden families of hypergraphs. Chapter 2 ends with

5

an explicit construction of automata with large rendezvous time, while in Chapter 3 we

construct semi-perfect 1-factorizations to show that they can exist. The constructions

in Chapter 4 are neither examples nor counterexamples, but rather tools used to bound

the probability of small connected components of the geometric random graph.

In each of these cases, it is not sufficient to merely come up with the constructions,

though this can itself be difficult. It takes further work to prove that the constructions

have the desired properties or to bound the probability of the construction occurring, as

relevant.

Chapter 1

Hypergraph Saturation

Irregularities

1.1 Introduction

For a fixed graph F and an integer n, Turán’s extremal number ex(F, n) is the maximum

number of edges in a graph on n vertices that does not contain F as a subgraph.

ex(F, n) = max{e(G) : |G| = n and G is F -free}.

It is not hard to see that the Turán density limn→∞ ex(F, n)/
(
n
2

)
must exist. The density

ex(F, n)/
(
n
2

)
must be decreasing with n: removing a vertex of minimum degree from an

F -free graph on n vertices gives a denser F -free graph on n− 1 vertices. As the density

is bounded between 0 and 1 the limit must therefore exist.

The Turán graph Tn,r is a complete r-partite graph on n vertices with the r parts as

equal in size as possible. This is clearly Kr+1-free, and Turán [30] proved that it has the

maximal number of edges.

Theorem 1.1 (Turán). ex(Kr, n) = e(Tn,r−1) ≤
(

1− 1
r−1

)
n2

2 for all r, n.

6

Chapter 1. Hypergraph Saturation Irregularities 7

Turán’s Theorem gives the Turán density for complete graphs. The Erdős-Stone

Theorem [11] generalises Turán’s Theorem to give the value of the Turán density for all

graphs.

Theorem 1.2 (Erdős-Stone). For any graph F , we have ex(F, n) =
(

1− 1
χ(F)−1 + o(1)

) (
n
2

)

where χ(F) is the chromatic number of F .

Turán’s Theorem and the Erdős-Stone Theorem are foundation stones of extremal

graph theory, and Turán’s number ex(F, n) has been very well studied.

Suppose that instead that we want to ask about the minimum number of edges rather

than the maximum. As it stands this is a trivial question, since if F has at least one edge

an n-vertex graph with no edges is F -free and so the answer is always zero. Note however

that if a graph is F -free and has the maximum number of edges possible then adding

any edge to the graph must create a copy of F . This inspires the following definition.

For a fixed graph F , we say that a graph G is F -saturated if G does not contain F

as a subgraph but adding any edge to G would create a copy of F . We can write down

an equivalent definition of the extremal number in terms of saturation.

ex(F, n) = max{e(G) : |G| = n and G is F -saturated}.

Replacing maximum with minimum gives the definition of the saturation number

sat(F, n):

sat(F, n) = min{e(G) : |G| = n and G is F -saturated}.

As an example, consider the case when F is a triangle. The triangle-free graph with

the maximum number of edges is a complete bipartite graph with parts of size
⌊
n
2

⌋
and

⌈
n
2

⌉
, giving that ex(F, n) =

⌊
n2

4

⌋
.

On the other hand, the triangle-free graph on n vertices with the minimum number of

edges is a star. Clearly the star is triangle-saturated as it does not contain a triangle and

Chapter 1. Hypergraph Saturation Irregularities 8

adding any edge would create one. It also has the minimum number of edges: the star on

n vertices has n− 1 edges and any graph on n vertices with fewer edges is disconnected.

Adding an edge from one connected component to another could not possibly create

a triangle and so any disconnected graph is not triangle-saturated. This tells us that

sat(F, n) = n− 1.

F =

ex(F, n) =
⌊
n2

4

⌋
sat(F, n) = n− 1

Figure 1.1: An example of the extremal number and the saturation number for a triangle.

The saturation number behaves quite differently to the extremal number. For ex-

ample, the simple argument that the Turán density exists does not translate to the

saturation number. Removing a vertex from an F -saturated graph does not necessarily

give an F -saturated graph (in contrast with F -free) and so we cannot conclude that the

density is decreasing.

We know from the Erdős-Stone Theorem that when F is not bipartite the extremal

number is order n2. We saw that for the triangle the saturation number was, in contrast,

linear in n. Kászonyi and Tuza [17] proved the following:

Theorem 1.3 (Kászonyi, Tuza). For every graph F , we have sat(F, n) = O(n).

In contrast to the extremal number and the Erdős-Stone Theorem we do not know

whether the saturation number grows like cn where c is some constant depending on F .

Tuza [31] conjectured that it does.

Conjecture 1.1 (Tuza). For every 2-graph F the limit limn→∞
sat(F,n)

n exists.

Tuza’s conjecture is probably the biggest open question concerning saturation. Bol-

lobás [4] proved that sat(Kk, n) =
(
n
2

)
−
(
n−k+2

2

)
, so the conjecture holds for complete

graphs. For more information and other results relating to the saturation number and

Tuza’s conjecture, see surveys from Pikhurko [25] and from Faudree, Faudree and Schmitt

Chapter 1. Hypergraph Saturation Irregularities 9

[12].

We can generalise the notion of saturation to families of graphs. For a family F of

graphs (called a forbidden family), a graph G is called F-saturated if it does not contain

any graph in F as a subgraph, but adding any edge creates a copy of some graph F ∈ F

as a subgraph of G. We define the saturation number in the same way as before:

sat(F , n) = min{e(G) : |G| = n and G is F-saturated}.

Note that we can also generalise the extremal number in this way, and the same

argument showing the Turán density exists still works.

For a family F of graphs we have sat(F , n) = O(n) [17], just as we did for single

graphs. However, the generalisation of Tuza’s conjecture to finite families of graphs is

not true: an example of a finite family F where sat(F , n)/n does not tend to a limit was

given by Pikhurko [25].

Theorem 1.4 (Pikhurko). There exists a finite family F of graphs such that the limit

limn→∞
sat(F,n)

n does not exist.

Sketch of Proof. Fix some constant k ≥ 4. The idea is to construct a family such that

sat(F , n) has different behaviour depending on whether n is divisible by k.

The family F contains the ‘dumb-bell’ graph that is two copies of Kk and a single

edge between them. The other graphs in F are, for each 1 ≤ i ≤ k − 1, the union of

two copies of Kk intersecting in i common vertices. See Figure 1.2 for an example where

k = 4.

Figure 1.2: An example of Pikhurko’s family for k = 4.

It is easy to check that when k divides n the graph consisting of n
k disjoint copies of

Chapter 1. Hypergraph Saturation Irregularities 10

Kk is F-saturated.

When k does not divide n, Pikhurko shows that here is no such ‘nice’ construction

and any F-saturated graph G on n vertices must contain many extra edges. To get a

handle on the structure of G notice that any copies of Kk within G must be disjoint.

This further implies that not all vertices of G can be contained within a Kk, since k

does not divide n. Combining this observation with a counting argument completes the

proof.

Pikhurko asked whether a similar result holds for r-uniform hypergraphs.

An r-uniform hypergraph, or r-graph, is a pair, (V (H), E(H)), of vertices and edges

where the edge set E(H) is a collection of r-element subsets of the vertex set V (H).

We have |H| = |V (H)| and e(H) = |E(H)|. When the context is clear we will refer to

r-graphs simply as graphs. Note that a 2-graph is just a graph in the usual sense.

For a family F of r-graphs, it was shown by Pikhurko [24] that sat(F , n) = O
(
nr−1

)

when the family contains only a finite number of graphs. When r > 2 this is still open

for infinite families of r-graphs, although when r = 2 Tuza’s result applies to both finite

and infinite families.

Pikhurko’s result leads to the following generalisation of Tuza’s conjecture to r-

graphs, first posed by Pikhurko [24].

Conjecture 1.2. For every r-graph F the limit limn→∞
Sat(F,n)
nr−1 exists.

Let K
(r)
k be the complete r-graph on k vertices (that is, the edge set of K

(r)
k is all

sets of vertices of size r). Bollobás [4] proved that sat(K
(r)
k , n) =

(
n
r

)
−
(
n−k+r

r

)
for all

k ≥ r, so the conjecture holds for the complete r-graphs.

As in the 2-graph case we can further generalise this conjecture by replacing the

single r-graph F with a finite family of r-graphs F . Our main aim in this paper is to

prove that this generalised conjecture is not true — that is, for all r there exists a finite

Chapter 1. Hypergraph Saturation Irregularities 11

family of r-graphs F such that sat(F , n)/nr−1 does not tend to a limit. This resolves a

question of Pikhurko (problem 7 in [25]).

Theorem 1.5. For all r ≥ 2 there exists a family F of r-graphs and a constant k ∈ N

such that

sat(F , n) =





O(n) if k | n

Ω
(
nr−1

)
if k - n

In particular, for any l ∈ {1, 2, . . . , r − 1}, we have that sat(F ,n)
nl does not converge.

We prove Theorem 1.5 in Section 1.2. As in Pikhurko’s proof for the 2-graph case,

the idea of the proof will be to choose a constant k and to define a forbidden family F

such that when k divides n there is a ‘nice’ construction of an F-saturated graph with

few edges; and when k does not divide n, an F-saturated graph requires comparatively

many edges.

Our proof of Theorem 1.5 uses a family F which grows in size with r. In a variation of

the theorem, proved in Section 1.3, we show that we can reduce the size of the forbidden

family to be independent of r.

Theorem 1.6. For all r ≥ 3 there exists a family F of four r-graphs such that sat(F ,n)
nr−1

does not converge.

In reducing the family to a constant size we lose the large gap between the asymptotics

that we had in Theorem 1.5. In particular, for a choice of constant k, we still have that

if k - n then sat(F , n) = Ω
(
nr−1

)
, but if k|n we only have sat(F , n) = O

(
nr−2

)
(as

opposed to the O(n) we had before). It would be interesting to know whether this

extreme oscillation between O(n) and Ω
(
nr−1

)
genuinely does require an unbounded

family or whether this is just an artefact of the construction.

Consider, with respect to a family satisfying the requirements of Theorem 1.5 or

Theorem 1.6, the set of integers n where sat(F , n) is O(n). This set has low density:

specifically, density 1/k where k grows with r. A second variation of the theorem gives a

Chapter 1. Hypergraph Saturation Irregularities 12

forbidden family such that the the set of integers n where sat(F , n) is O(n) has density

1/2. This is proved in Section 1.4.

Theorem 1.7. For all r ≥ 2 there exists a family F of r-graphs such that

sat(F , n) =





O(n) if n is even

Ω
(
nr−1

)
if n is odd.

We end with some open problems in Section 1.5.

1.2 A Proof of the Main Theorem

In this section we prove Theorem 1.5 by giving an explicit construction of such a family

and showing that it has the required properties.

Theorem 1.5. For all r ≥ 2 there exists a family F of r-graphs and a constant k ∈ N

such that

sat(F , n) =





O(n) if k | n

Ω
(
nr−1

)
if k - n

In particular, for any l ∈ {1, 2, . . . , r − 1}, we have that sat(F ,n)
nl does not converge.

Proof. Fix any integer k > r and take F to be the family of all of the following r-graphs:

a) For each 1 ≤ i ≤ k − 1, the graph Fi consisting of two copies of K
(r)
k intersecting in

exactly i vertices.

b) For each (x1, x2, . . . , xt) with Σxi = r and 1 ≤ x1 ≤ x2 ≤ . . . ≤ xt ≤ (r − 1), the

graph H(x1,x2,...,xt) consisting of t disjoint copies of K
(r)
k and an edge E meeting

the ith copy of K
(r)
k in xi vertices. We refer to E as the bridge edge.

An example of the family F for r = 5 and k = 7 can be seen in figure 1.3, where the

vertices surrounded by a dashed line represent a copy of K
(r)
k , and vertices grouped by

Chapter 1. Hypergraph Saturation Irregularities 13

a solid line represent a bridge edge.

F1 F2 F3 F4 F5 F6

H(1,1,1,1,1)

H(1,1,1,2)
H(1,1,3) H(1,2,2) H(1,4) H(2,3)

Figure 1.3: The family F of r-graphs for r = 5 and k = 7

First, let us deal with the case where k divides n. Take the graph consisting of n
k

disjoint copies of K
(r)
k . It is easy to see that this is F-saturated and thus

sat(F , n) ≤ n

k

(
k

r

)
= O(n).

Note that in fact sat(F , n) is equal to n
k

(
k
r

)
(although we do not require this), as can

be shown by an argument similar to the one that follows.

Now suppose that k - n and let G = (V,E) be a graph on n vertices that is F-

saturated. We will show that e(G) = Ω
(
nr−1

)
. Let A be the set of all vertices of G that

are contained in a K
(r)
k , and B = V \A be all vertices not contained in any K

(r)
k .

A B

K
(r)
k K

(r)
k K

(r)
k K

(r)
k

    

m

Figure 1.4: The structure of the graph G

Note that the subgraph of G induced by A must consist of m disjoint copies of K
(r)
k

for some m ≥ 0, by the choice of family F . This implies that B is not empty, since k

Chapter 1. Hypergraph Saturation Irregularities 14

does not divide n. Note also that if an r-set intersecting B is not in E(G), then adding

this edge to G must create a copy of K
(r)
k — it must create some graph in F and it

cannot form a bridge between two or more K
(r)
k s by definition of B.

We make the following two claims about the number of edges in G:

Claim 1.5.1. G contains at least
(
mk
r−1
)
−m

(
k
r−1
)

edges consisting of r − 1 vertices in A

and one vertex in B.

Claim 1.5.2. Suppose |B| ≥ k − 1. Then G contains at least
(|B|
r−1
)
k−r
r edges.

We can use these two claims to deduce the result. One of A and B contains at least

half the vertices in G. If |A| = mk ≥ n
2 , then using claim 1.5.1 the number of edges in

G is Ω
(
nr−1

)
. If |B| ≥ n

2 , then using claim 1.5.2 the number of edges in G is Ω
(
nr−1

)
.

All that is left is to prove the two claims.

Proof of Claim. [Proof of Claim 1.5.1.] This holds trivially if m is 0 or 1, so we may

assume m ≥ 2. Fix a set X of r − 1 vertices in A, not all in the same copy of K
(r)
k . We

will show that G contains at least one edge containing all vertices of X together with a

vertex in B. This proves the claim since there are
(
mk
r−1
)
−m

(
k
r−1
)

such sets X.

Fix some x in B (note that B is non-empty) and suppose that the r-set X ∪ {x} is

not in E(G). Since G is F-saturated, adding X ∪ {x} as an edge must create a copy of

K
(r)
k on some vertex set K.

Note that for y in A\X, the r-set X ∪{y} is not in E(G), as otherwise it would form

a copy of some H(x1,...,xt) in F . Thus the vertices in K \ (X ∪ {x}) cannot be in A.

Hence K \ (X ∪ {x}) is contained entirely in B, and so G contains k − r > 1 edges

that consist of all vertices of X together with a vertex in B.

Proof of Claim. [Proof of Claim 1.5.2.] Fix a set X of r− 1 vertices in B. We will show

Chapter 1. Hypergraph Saturation Irregularities 15

that X is contained in at least k − r edges of G.

Suppose first that we have that X ∪ {y} is an edge for all y in B \X. Then X is in

|B| − |X| ≥ k − r edges as required.

Otherwise, there exists some y in B \ X such that X ∪ {y} is not in E(G). Then

adding the edge X ∪{y} must create a copy of K
(r)
k in G, since B contains no K

(r)
k s and

so this edge cannot be a bridge edge. Then we have that X is contained in k − r edges

in that K
(r)
k .

Thus every (r − 1)-set in B is contained in at least k − r edges. Each edge in G

contains at most r different (r − 1)-sets in B, and so the total number of edges in G is

at least (|B|
r − 1

)
k − r
r

.

Note that the size of the family F used in this proof is (r− 1) + (p(r)− 1), where p is

the partition function. We have log (p(r)) = Θ(
√
r), and so the size of the family grows

exponentially with
√
r.

1.3 A Forbidden Family of Constant Size

Recall that Tuza’s conjecture (and its generalisation to r-graphs) concerns a forbidden

family of just one r-graph. The size of the forbidden family in Theorem 1.5 grows with r,

the size of each edge. It is natural then to ask whether there exists a family of constant

size, independent of r, which has this same non-convergence property.

We will prove that there is such a family, using the family F consisting of the following

four r-graphs:

F : Two K
(r)
k s intersecting in one vertex,

Chapter 1. Hypergraph Saturation Irregularities 16

H: r disjoint copies of K
(r)
k and an edge intersecting each K

(r)
k ,

I2: One K
(r)
k and an edge intersecting it in exactly two vertices, and

Ir−1: One K
(r)
k and an edge intersecting it in exactly r − 1 vertices.

An example of the family F for r = 5 and k = 15 can be seen in figure 1.5, where

the vertices surrounded by a dashed line represent a copy of K
(r)
k , and vertices grouped

by a solid line represent an extra edge.

F I2 Ir−1H

Figure 1.5: The family F of r-graphs for r = 5 and k = 15

This family was obtained by considering the two types of graphs we had in our

previous family, and finding a smaller set of graphs that fulfil the same role for each.

The previous family contained all of the graphs H(x1,...,xt) to ensure that the graph

consisting of disjoint copies of K
(r)
k was F-saturated. In particular, this meant that

when k | n there was an F-saturated graph of size O(n). We will keep H = H(1,1,...,1) to

ensure there are no edges intersecting r different copies of K
(r)
k , and replace the other

p(r)− 2 graphs by I2 and Ir−1. With this smaller family we can no longer find a graph

of size O(n) that is F-saturated, so we lose the large gap in asymptotics that we had

in Theorem 1.5. However, we can construct (for n divisible by k) an F-saturated graph

that has size O
(
nr−2

)
.

The previous family contained all of the graphs Fi to ensure that all of the copies

of K
(r)
k in an F-saturated graph must be disjoint. For k sufficiently large, these r − 1

different graphs can be replaced by the three graphs I2, Ir−1 and F = F1, which achieve

the same goal.

Theorem 1.6. For all r ≥ 3 there exists a family F of four r-graphs such that sat(F ,n)
nr−1

does not converge.

Chapter 1. Hypergraph Saturation Irregularities 17

Proof of Theorem 1.6. Fix r ≥ 3 and k ≥ max{r + 1, 2r − 4}.

Let F be the set containing the four r-graphs F,H, I2 and Ir−1, as defined earlier.

First, we will construct an example of an F-saturated graph with O
(
nr−2

)
edges

when k divides n.

Claim 1.6.1. sat(F , n) = O
(
nr−2

)
when k | n.

Proof of Claim. Let G be a graph consisting of n
k = m disjoint copies of K

(r)
k , together

with all other edges except those which:

i) intersect r of the K
(r)
k s, each in one vertex, or

ii) intersect one of the K
(r)
k s in exactly two vertices, or

iii) intersect one of the K
(r)
k s in exactly r − 1 vertices.

Clearly, adding any r-set not in E(G) to the graph G creates one of the graphs in

the family F — graphs I2, Ir−1 and H respectively.

We will show that G contains no other K
(r)
k s except for the original ones, thus proving

that G does not contain any graph in F . Suppose G did contain another K
(r)
k . Using

that k ≥ 2r − 2, we have that one of the following three cases holds:

� the new K
(r)
k intersects all of the original K

(r)
k s in at most one vertex, and thus it

contains an edge of type (i);

� the new K
(r)
k and one of the original K

(r)
k s intersect in between two and k− (r−2)

vertices, and thus it contains an edge of type (ii); or

� the new K
(r)
k and one of the original K

(r)
k s intersect in r− 1 or more vertices, and

thus it contains an edge of type (iii).

Whichever case we are in, we have a contradiction. Thus G is F-saturated.

Chapter 1. Hypergraph Saturation Irregularities 18

We now need to calculate the size of G. The number of r-sets meeting exactly t of

the K
(r)
k s is O

(
nt
)
. Note that G does not contain any edges intersecting more than r−2

of the K
(r)
k s and thus we have e(G) = O

(
nr−2

)
and Claim 1.6.1 follows.

Now we will consider the case where k does not divide n. We want to show that

sat(F , n) = Ω
(
nr−1

)
when k - n.

Let G = (V,E) be a graph on n vertices that is F-saturated. Let A be the set of all

vertices of G that are contained in a K
(r)
k , and B = V \ A be all vertices not contained

in any K
(r)
k .

The choice of family F implies that all of the copies of K
(r)
k contained in A must be

disjoint:

� F forbids two K
(r)
k s intersecting in exactly one vertex.

� I2 forbids two K
(r)
k s intersecting in at least two vertices and each containing at

least r − 2 vertices not in the intersection.

� Ir−1 forbids two K
(r)
k s intersecting in at least r− 1 vertices and each containing at

least one vertex not in the intersection.

Since k was chosen with k ≥ 2r − 4, any two intersecting copies of K
(r)
k s fall in one of

these three categories.

Thus A consists of m disjoint copies of K
(r)
k for some m, together with some extra

edges that go between them. Since k does not divide n, we can conclude that A is not

all of V (G), or equivalently that B is non-empty.

We make the following two claims about the number of edges in G:

Claim 1.6.2. If m ≥ r − 1 then G contains at least
(
m
r−1
)
kr−1 edges consisting of r − 1

vertices in A and one vertex in B.

Chapter 1. Hypergraph Saturation Irregularities 19

Claim 1.6.3. If |B| ≥ k − 1, then G contains
(|B|
r−1
)
k−r
r edges.

We can use these two claims to deduce the result. One of A and B contains at least

half the vertices in G. If |A| = mk ≥ n
2 , then using claim 1.6.2 the number of edges in

G is at least Ω
(
nr−1

)
. If |B| ≥ n

2 , then using claim 1.6.3 the number of edges in G is at

least Ω
(
nr−1

)
.

All that is left is to prove the two claims.

Proof of Claim. [Proof of Claim 1.6.2.] Fix r−1 vertices v1, . . . , vr−1, each in a different

copy of K
(r)
k in A. We will show that G contains at least one edge containing all of

v1, . . . vr−1 together with a vertex in B.

If all possible such edges exist, then we are done (recall that B is non-empty).

Otherwise, there is some x in B such that the r-set {x, v1, . . . , vr−1} is not in E(G).

Adding this edge must create a graph in F , and so it must create a new copy of K
(r)
k (it

cannot be any of the ‘extra’ edges in I2, Ir−1 or H).

Consider this new K
(r)
k . Suppose for a contradiction it contains some vertex y in

A \ {v1 . . . vr−1}. If y is in the same original K
(r)
k as one of the vis then the edge

{y, v1, . . . vr−1} creates a copy of I2. If y is not in the same original K
(r)
k as any of

the vis then the edge {y, v1, . . . vr−1} creates a copy of H. Thus {y, v1, . . . vr−1} is not in

E(G), and we have a contradiction.

Thus the other vertices of this new K
(r)
k are in B, and G contains k − r > 1 edges

containing all of v1, . . . vr−1 together with a vertex in B.

Proof of Claim. [Proof of Claim 1.6.3.] Fix a set X of r− 1 vertices in B. We will show

that X is contained in at least k − r edges in G.

Suppose first that X∪{y} is an edge for all y in B \X. Then X is in |B|−|X| ≥ k−r

edges as required.

Chapter 1. Hypergraph Saturation Irregularities 20

Otherwise, there exists some y in B \X such that X ∪{y} is not in E(G). Note that

adding the edge X ∪{y} must create some graph in F . It must thus create a K
(r)
k , since

B contains no K
(r)
k s and so it cannot be the ‘extra’ edge in I2, Ir−1 or H. Then we have

that X is contained in k − r other edges in that K
(r)
k .

Thus every r−1 set in B is contained in at least k−r edges. Each edge in G contains

at most r different (r − 1)-sets in B, and so the total number of edges in G is at least

(|B|
r − 1

)
k − r
r

.

1.4 Obtaining an Small Saturation Number on a Denser

Set

In both Theorem 1.5 and Theorem 1.6, the saturation number is asymptotically small

(O
(
nr−2

)
) when n is divisible by k and asymptotically large (Θ

(
nr−1

)
) for all other

values of n. Since k is at least as big as r, this means that the set of values where the

saturation number is asymptotically small has low density — less than 1/r. It is natural

to ask whether it is possible to have a forbidden family where the saturation number

has different asymptotics for complementary subsets of the naturals of equal density.

For example, could we ensure sat(F , n) is asymptotically small on even numbers and

asymptotically large on odd numbers?

It turns out that it is possible.

Chapter 1. Hypergraph Saturation Irregularities 21

Theorem 1.7. For all r ≥ 2 there exists a family F of r-graphs such that

sat(F , n) =





O(n) if n is even

Ω
(
nr−1

)
if n is odd.

The proof will use a family similar to the one in Theorem 1.5. However, rather than

just using K
(r)
k as a base graph, we will take two base graphs of different even orders.

The family will contain all possible intersections of the two base graphs, and all graphs

consisting of disjoint unions of copies of the base graphs together with a bridge edge.

For large even n there is an F-saturated graph on n vertices that uses few edges;

namely taking disjoint copies of the base graphs. However, for odd n we will need to use

many more edges.

A first attempt at choosing the two base graphs might be to take K
(r)
k and K

(r)
k+2 for

some even k. However, K
(r)
k+2 contains two K

(r)
k s intersecting in k − 2 vertices, which is

a graph we would want to include in our forbidden family. This is a problem, as if that

graph was forbidden, all copies of K
(r)
k+2 would be forbidden too.

Instead, we will take K
(r)
k and any graph on k + 2 vertices which has certain helpful

properties: one of which is that it contains only one copy of K
(r)
k .

Proof. Fix any even integer k > r + 1. Let K = K
(r)
k and let L be an r-graph which

satisfies the following properties:

� L has k + 2 vertices;

� Every vertex of L is contained in at least one edge;

� L contains exactly one copy of K
(r)
k ; and

� For any edge e of L and any (r − 1)-sized subset s of the edge e, there is another

edge e′ in L such that e ∩ e′ = s.

Chapter 1. Hypergraph Saturation Irregularities 22

One such L consists of a K
(r)
k and two K

(r)
k−1s with a common intersection of k−2 vertices.

It is easy to see that this has the required properties.

We call K and L the base graphs. An example of the these two graphs for k = 18

can be seen in figure 1.6, where if a set of vertices is surrounded by a dashed line then

all edges contained in that set exist.

K L

Figure 1.6: The two graphs under consideration for k = 14.

Take F to be the family containing all of the following r-graphs:

a) Every graph comprising t disjoint graphs H1, H2, . . . Ht (for 2 ≤ t ≤ r) where each

Hi is a base graph, together with an edge E meeting each Hi in xi ≥ 1 vertices such

that
∑t

i=1 xi = r. We call E a bridge edge.

b) Every graph comprising two base graphs on vertex sets V1 and V2 with non-empty

intersection and neither contained in the other — that is, V1 ∩ V2, V1 \ V2 and V2 \ V1
all non-empty.

c) Every graph comprising L plus a single extra edge on the same vertex set.

First, let us deal with the case where n is even. For all n sufficiently large, (in

particular, at least k(k−2)
2), we can write n as a sum ak + b(k + 2) for some a, b ∈ N.

Take G to be a graph on n vertices consisting of a disjoint copies of K and b disjoint

copies of L. It is clear that adding any edge will create a graph in the family F : adding

a missing edge between base graphs creates a graph of type (a), and adding a missing

Chapter 1. Hypergraph Saturation Irregularities 23

edge within a copy of L creates a graph of type (c). Thus

sat(F , n) ≤ e(G) ≤ a
(
k

r

)
+ b

(
k + 2

r

)

≤ (ak + b(k + 2))
1

r

(
k + 1

r − 1

)

= O(n)

Now suppose that n is odd and let G = (V,E) be a graph on n vertices that is

F-saturated.

Let A be the set of all vertices of G that are contained in a copy of one of the base

graphs, and B = V \A be all vertices not contained in any copy of a base graph.

Note that the subgraph induced on A must consist of disjoint copies of the two base

graphs, by the choice of family F . This implies that B is not empty, since n is odd and

both base graphs have an even number of vertices.

Let X be an r-set meeting B that is not in E(G). Adding the edge X to G must create

some graph in F . The edge X cannot form a bridge between two K
(r)
k s by definition of

B, and it also cannot add an extra edge to an existing copy of L for the same reason.

Thus adding such an edge must create a copy of one of the base graphs, K or L.

We make the following two claims about the number of edges in G:

Claim 1.7.1. G contains at least (|A|
k+2

r − 1

)
kr−1

edges consisting of r − 1 vertices in A and one vertex in B.

Claim 1.7.2. If |B| ≥ k − 1 then G contains at least
(|B|
r−1
)
k−r
r edges.

We can use these two claims to deduce the result. One of A and B contains at least

half the vertices in G. If |A| ≥ n
2 , then using claim 1.7.1 the number of edges in G is at

Chapter 1. Hypergraph Saturation Irregularities 24

least Ω
(
nr−1

)
. If |B| ≥ n

2 , then using claim 1.7.2 the number of edges in G is Ω
(
nr−1

)
.

All that is left is to prove the two claims.

Proof of Claim. [Proof of Claim 1.7.1.] Fix r−1 vertices v1, . . . , vr−1, each in a different

base graph in A (of which there are at least |A|k+2). We will show that G contains at least

one edge containing all of v1, . . . vr−1 together with a vertex in B. Then the number of

edges between A and B is at least the desired amount.

If all possible such edges exist, then we are done (recall that B is non-empty).

Otherwise, there is some x in B such that the r-set {x, v1, . . . , vr−1} is a missing edge.

Adding this edge must create one of the graphs in F . It cannot be a bridge edge as B

contains no copies of L. It also cannot be the extra edge in a copy of ‘L plus an edge’,

as no vertex in B is contained in a copy of L. Thus adding the edge must create a new

copy of one of the base graphs, K
(r)
k or L.

The other vertices of this new base graph cannot be in A: if y is in A \ {v1 . . . vr−1},

then {y, v1, . . . vr−1} is a non-edge, otherwise it serves as a bridge edge and G contains

a graph of type (a) in the family F .

So the other vertices of this new base graph are all in B. We then have that there is at

least one edge containing all of v1, . . . vr−1 together with a vertex in B: this is obviously

true if the base graph was K
(r)
k , and true by the properties insisted upon earlier if the

base graph was L.

Proof of Claim. [Proof of Claim 1.7.2.] To apply a similar proof to before, we first want

to show that if Y is an r-set in B that is not in E(G), then adding Y to G creates a new

copy of K
(r)
k . Suppose for contradiction this is not the case.

Adding Y must create a graph in the family F , so Y must create one of:

� a graph of type (a) in F ;

Chapter 1. Hypergraph Saturation Irregularities 25

� a copy of the graph L; or

� a copy of the graph L plus an edge.

However, no vertex in B is in a copy of one of the base graphs. This implies both that

Y cannot be a bridge edge between copies of the base graph and also that Y cannot be

an extra edge added to a copy of L. Thus we must have that Y creates a copy of L.

Note that L contains a copy of K
(r)
k . Since Y does not create a K

(r)
k , this K

(r)
k must

already exist. However, then Y must intersect this K
(r)
k in r − 2 vertices, contradicting

that no vertex in B is contained within a copy of K
(r)
k .

Now, fix a set X of r− 1 vertices in B. We will show that X is contained in at least

k − r edges in G.

Suppose first that X∪{y} is an edge for all y in B \X. Then X is in |B|−|X| ≥ k−r

edges as required.

Otherwise, there exists some y in B \X such that X ∪{y} is not in E(G). Note that

by the above argument, adding the edge X ∪ {y} must create a copy of K
(r)
k and so we

have that X is contained in k − r other edges in that K
(r)
k .

Thus every r−1 set in B is contained in at least k−r edges. Each edge in G contains

at most r different (r − 1)-sets in B, and so the total number of edges in G is at least

(|B|
r − 1

)
k − r
r

.

Chapter 1. Hypergraph Saturation Irregularities 26

1.5 Open Questions

The main questions still left unanswered are the two conjectures in Section 1; that is,

Tuza’s conjecture and its generalisation to r-graphs. The questions that follow are all

variations on and generalizations of these conjectures.

In Theorem 1.6, we defined H to be the graph consisting of r disjoint copies of K
(r)
k

and an edge intersecting each K
(r)
k . This seems to somehow be the key graph in ensuring

a nice construction when k divides n and so we might guess that H is a counterexample

to Tuza’s conjecture. Unfortunately, Sat(H,n)
nr−1 does tend to a limit.

In the case r = 2, we use an argument similar to one by Pikhurko (example 4, [25]).

Proposition 1.8. Let H be the dumb-bell graph consisting of two copies of Kk joined

by a bridge edge. For k ≥ 3, we have that Sat(H,n)
n =

(
k−1
2

)
n+O(1) .

Proof. First, we show that Sat(H,n)
n ≤

(
k−1
2

)
n+O(1). Write n = mk+c where 0 ≤ c < k

and let G be the graph on n vertices consisting of m − 1 disjoint Kks and one Kk+c.

This graph G is certainly H-saturated and has k−1
2 n+O(1) edges.

Next, we show that Sat(H,n)
n ≥

(
k−1
2

)
n+O(1).

Let G be an H-saturated graph on n vertices. First, note that if G has minimum

degree ≥ k − 1 then e(G) ≥
(
k−1
2

)
n and we are done immediately.

Thus suppose that there exists a vertex v ∈ G of degree ≤ k − 2. For any x that is

not a neighbour of v, adding the edge vx must create a copy of H. Since v has ≤ k − 2

other neighbours the edge vx cannot be a bridge edge and so it must complete a copy of

Kk. In particular, v must have exactly k− 2 other neighbours and x must be connected

to all of them. This holds for all x that are not in the neighbourhood of v, and so G has

at least (k − 2)(n− (k − 2)) > k−1
2 n− (k − 2)2 edges.

For r > 2, we can show something more general. We call an r-graph a generalized

Chapter 1. Hypergraph Saturation Irregularities 27

dumb-bell if it consists of r disjoint complete graphs Kk1 ,Kk2 , . . . ,Kkr and an edge

intersecting each complete graph in exactly one vertex.

Proposition 1.9. Suppose an r-graph H is a generalized dumb-bell. Then Sat(H,n) =

O(n) and in particular, for r ≥ 3 we have that Sat(H,n)
nr−1 → 0 as n tends to infinity.

Proof. LetH consist of r disjoint complete graphsKk1 ,Kk2 , . . . ,Kkr with k1 ≤ k2 ≤ . . . < kr,

and an edge intersecting each complete graph in exactly one vertex.

Let m =
∑r

i=1 ki and let

l = max





r−1∑

i=1

ki,

r∑

i=d r2e+1

ki




.

Note that m− l = min

{
kr,
∑i=d r2e

i=1 ki

}
is greater than 1 for r ≥ 3, so long as H is not

just a single edge (in which case we are done).

Consider a graph G consisting of disjoint complete graphs where each complete graph

has size ≥ l and < m.

It is not hard to see that G is H-saturated. Since each complete graph has size < m,

we know G is H-free. Let A be an r-set that is not an edge of G. Let A intersect

the jth complete graph Ktj in aj vertices, where by reordering the Ktj we assume that

a1 ≥ a2 ≥ . . . ≥ as > 0 and aj = 0 for j > s. We have that s ≥ 2 and a1+a2+ . . . as = r.

Note that by our choice of l we have

k1 + k2 + . . . ka1 ≤ l ≤ t1,

k(a1+1) + k(a1+2) + . . .+ k(a1+a2) ≤ l ≤ t2,
...

k(a1+a2+...+as−1+1) + k(a1+a2+...+as−1+2) + . . .+ kr ≤ l ≤ ts.

Chapter 1. Hypergraph Saturation Irregularities 28

Thus adding the edge A to G will create a copy of H.

Finally, note that l ≤ m−2 ≤ m−1 < m and so any G consisting of disjoint complete

graphs on m− 2 or m− 1 vertices is H-saturated. For n sufficiently large we can always

find such a graph G on n vertices and we have e(G) <
(
m−1
r

)
n

m−2 = O(n).

In the case r = 2 we know the precise asymptotic behaviour of Sat(H,n). When

r > 2 we know that Sat(H,n) = O(n) but it seems difficult to work out the coefficient

of n in Sat(H,n). To do so we would need an argument giving a matching lower bound

on the number of edges in an H-saturated graph.

Pikhurko gave an example of a family F of r-graphs where Sat(F , n) = O(n) but

Sat(F , n)/n does not tend to any limit as n tends to infinity (Example 6 in [25]). One

could ask whether the same thing is possible with a single graph rather than a family.

Question 1.3. For all r does there exists an r-graph F such that Sat(F, n) = O(n) but

Sat(F, n)/n does not tend to a limit as n tends to infinity?

The generalized dumb-bell H might be a contender for a positive answer to this

question.

A similar question could be asked at other scales, that is, for any 1 ≤ t ≤ r − 1 we

can ask whether there is an F for which Sat(F, n) = O(nt) but Sat(F, n)/nt does not

converge. In the case t = r − 1 this is precisely Tuza’s conjecture for r graphs.

We do not have a good guess for a single r-graph which is a counterexample to Tuza’s

conjecture, since H does not work. Instead we ask the weaker question of whether there

is a smaller family with sat(F , n)/nr−1 not converging.

Question 1.4. Does there exists a family F containing fewer than four r-graphs such

that sat(F ,n)
nr−1 does not tend to a limit as n tends to infinity?

Observe that the forbidden family used in section 1.3 actually only contains three

hypergraphs when r = 3, so we have a positive answer for this special case.

Chapter 1. Hypergraph Saturation Irregularities 29

The smallest 2-graph family given by Pikhurko that has sat(F , n)/n not converging

contains four graphs. A recent result of Chakraborti and Loh [7] improves this to a

family of three graphs with sat(F , n)/n not converging. Adapting this construction to

r-graphs could be a good place to start looking for a smaller family to answer question

1.4.

A natural question that arises from this work is whether it is possible to combine

the results of Theorems 1.6 and 1.7. It seems that it is non-trivial to combine the

constructions in the two proofs to get a family with both desired properties.

Question 1.5. Does there exist for all r a bounded size forbidden family of r-graphs

where sat(F , n) is asymptotically small on even numbers and asymptotically large on

odd numbers?

In going from a forbidden family of size that grows with r in Theorem 1.5 to a family

of constant size in Theorem 1.6, we lost the large gap in the asymptotics for sat(F , n).

That is, in the case when n is divisible by k, the construction of a saturated graph with

few edges went from having Θ(n) edges to having Θ
(
nr−2

)
edges. Is it possible to retain

the large difference in asymptotics and still decrease the size of the family? This seems

difficult, especially if we try to reduce the family to a single graph.

Question 1.6. Let F be an r-graph. Can Sat(F, n) be O(n) for some infinite sequence

of values of n and Ω(nr−1) for some other infinite sequence?

An example of a class of r-graphs where the saturation number is O(n) are the

generalized dumb-bell graphs defined above.

If Tuza’s conjecture is true, it would imply that the answer to Question 1.6 is ‘no’.

However, it may be easier to provide a negative answer to Question 1.6 than to prove

Tuza’s conjecture directly, and an answer might help provide ideas towards a full proof.

Chapter 2

Synchronizing Automata and

Černý’s Conjecture

2.1 Introduction

A (deterministic, finite) automaton Ω consists of a finite set of states (usually labelled

[n] = {1, 2, . . . , n}) and a finite set of transition functions, which are functions from the

set of states to itself.

We shall be interested in the results of applying a sequence of transition functions to

the set of states. We call such a sequence of transition functions a word of the automaton.

The words of the automaton form a monoid, generated by the transition functions, which

acts on the set of states.

We say that a word w of the automaton is a reset word if it sends every state to the

same point; that is if w(i) = w(j) for all i, j. We call an automaton synchronizing if it

has a reset word.

Conjecture 2.1 (Černý’s Conjecture). Suppose an automaton on n states is synchro-

nizing. Then the automaton has a reset word of length at most (n− 1)2.

30

Chapter 2. Synchronizing Automata and Černý’s Conjecture 31

This conjecture comes from a particular family of automata, which we shall refer to

as the Černý automata. For each n ≥ 2, we define an automata with states {1, 2, . . . , n}

and two transition functions a and b, defined as follows:

a(i) = i+ 1 (mod n) b(i) =





2 if i = 1

i otherwise

Figure 2.1 shows the Černý automaton for n = 4, which has shortest reset word baaabaaab.

It is not too hard to check that the shortest reset word for the Černý automaton on n

states has length (n−1)2. Thus if Černý’s conjecture were true it would be best possible.

1

4

2

3

b b

bb

a

a

a

a

Figure 2.1: The Černý automaton for n = 4.

Černý’s conjecture has been shown to hold for certain classes of automata, including

orientable automata [10], automata where one transition function is a cyclic permutation

of the states [9], and automata where the underlying digraph is Eulerian [16]. For a

survey of these and other results see [32]. It remains open to prove the conjecture for all

automata.

One can easily obtain a naive upper bound on the length of a shortest reset word.

Note that for any pair of states there is some word sending them to a single state, since

the automaton is synchronising. Applying the shortest such word, we will never pass

through the same pair of states twice, or we could have found a shorter word. Thus the

shortest word sending a given pair of states to a single state is of length at most
(
n
2

)
.

Applying this repeatedly gives a reset word of length at most n(n−1)2
2 .

A better upper bound for the length of a minimal reset word comes from a result due

Chapter 2. Synchronizing Automata and Černý’s Conjecture 32

to Frankl and Pin [13] [26].

Theorem 2.1 (Frankl–Pin). Consider a synchronizing automaton with state set Ω of

size n. Let S ⊆ Ω be a set of size k where k ≥ 2. There exists a word w of length at

most
(
n−k+2

2

)
such that |w(S)| < k.

Sketch of Proof. Let S be a set of size k ≥ 2. Let w be a word of minimum length such

that |w(S)| < k. Write w as a product of transition functions w = fmfm−1 . . . f2f1 where

m is the length of w.

Let S0 = S and let Si = fi(Si−1) for i = 1, 2, . . .m, so we have Sm = w(S). There

must be some pair of states x 6= y in S such that |w({x, y})| = 1. Let P0 = {x, y} and

let Pi = fi(Pi−1).

Since w is of minimal length we have |Si| = k and |Pi| = 2 for i = 0, 1, . . . ,m−1, with

Pi ⊆ Si. We must also have that Pj 6⊆ Si for i < j, else we would have that the shorter

word w′ = fmfm−1 . . . fj+1fi . . . f2f1 has |w′(s)| < k. We can rewrite these conditions in

terms of Si and the complements P ci as follows:

1. |Si| = k and P ci = n− 2 for 0 ≤ i ≤ m− 1,

2. Si ∩ P ci = ∅ for 0 ≤ i ≤ m− 1, and

3. Si ∩ P cj 6= ∅ for 0 ≤ i < j ≤ m− 1.

If the final condition were replaced by Si ∩ P cj 6= ∅ for all pairs i, j, then Bollobás’ two

families theorem [4] (also known as the set pair method) would show that the number

of set-pairs m is at most
(
(n−2)+k

2

)
. Frankl used linear algebra and symmetric tensor

products to prove that the same holds in this more general case.

Applying Theorem 2.1 repeatedly, we have that the length of a shortest reset word

for an n-state synchronizing automaton is at most
∑n

i=2

(
n−i+2

2

)
= n3−n

6 .

This was the best known upper bound until relatively recently. Slight improvements

Chapter 2. Synchronizing Automata and Černý’s Conjecture 33

to the constant factor have now been found: Szyku la [29] obtained an upper bound

of ≈ 114
685n

3 + O(n2) and Shitov [27] refines this method to obtain an upper bound of

≈ 0.1654n3 + o
(
n3
)
.

Let Ω be an automaton on [n]. The transition graph T (Ω) has vertices the non-empty

subsets of [n], and for each set S and each transition function f a directed edge from S

to f(S) with label f . Figure 2.2 shows the transition graph for the Černý automaton in

figure 2.1. The subsets of size k form the kth layer of the transition graph, written Lk.

b

b

b

b

b

bbb
b

b b b
b

b b

a

aaa

a

a

aa

a

a

a

a a a

1234

341123

34 4112 24

1

13

3 4

234

23

2

412

L4

L3

L2

L1

Figure 2.2: The transition graph for the Černý automaton on 4 vertices.

Now Černý’s conjecture can be restated in terms of the transition graph:

Conjecture 2.1′ (Černý’s conjecture). Let Ω be an automaton on [n]. If in the transition

graph T (Ω) there exists a path from [n] to a vertex in L1, then there exists such a path

of length at most (n− 1)2.

Conjecture 2.1′ suggests the following questions:

Question 2.2. What is the minimal value of rdv(k, n) such for any synchronizing au-

tomaton Ω on [n] there is a path in the transition graph T (Ω) from Lk to L1 of length

at most rdv(k, n)?

Question 2.3. What is the minimal value of RDV(k, n) such for any synchronizing

automaton Ω on [n] and for any k-set S there is a path in the transition graph T (Ω)

Chapter 2. Synchronizing Automata and Černý’s Conjecture 34

from S to L1 of length at most RDV(k, n)?

Given an automaton Ω and a set of states S, we call S synchronizable if there exists

a path from S to a singleton in the transition graph T (Ω). Let the weight t(S) of a set

S be the shortest path from S to a singleton if S is synchronizable and∞ otherwise. We

define

m(k,Ω) = min{t(S) : S ∈ Lk}

M(k,Ω) = max{t(S) : S ∈ Lk, S synchronizable}.

Then rdv(k, n) is the maximum of m(k,Ω) taken over all synchronizing automata and

RDV(k, n) is the maximum of M(k,Ω) again taken over all synchronizing automata. It

is clear that rdv(k, n) ≤ RDV(k, n) and rdv(k, n) ≤ 1 + RDV(k − 1, n).

Answering either of these questions in the case k = n is equivalent to answering

Černý’s conjecture. Note that finding a lower bound on rdv(k, n) or RDV(k, n) requires

a construction of a suitable automaton with all k-sets having large weight or one k-set

having large weight respectively; while finding an upper bound on rdv(k, n) or RDV(k, n)

requires an argument about all synchronizing automata.

We know that rdv(2, n) = 1 as all synchronising automata must have a transition

function sending a pair to a singleton. We have RDV(2, n) ≤
(
n
2

)
since at worst some

pair must travel through every other pair before being squashed to a singleton. In fact,

RDV(2, n) =
(
n
2

)
, where the example is given by the Černý automaton on [n]. Consider

the pair (2,
⌊
n
2

⌋
+ 2) in this atuomaton: when n is even it takes n

2 steps to reduce the

distance between the points on the cycle to n
2 − 1 and n steps for each further reduction

by one; when n is odd it takes n steps to reduce the distance between the points by one

each time.

The Černý automaton also gives lower bounds for general k. We have that the

minimum weight k-set is {1, 2, . . . , k} with weight (k − 2)n + 1 and so rdv(k, n) ≥

Chapter 2. Synchronizing Automata and Černý’s Conjecture 35

lower bound upper bound

rdv(3, n) n+ 3 3−
√
5

4 n2 +O(n)

rdv(k, n) (k − 2)n+ 1 1
2

⌊
k−1
2

⌋
n2 +O(n)

RDV(k, n) k−1
k n(n− 1) k−1

2 n2 +O(n)

Table 2-A: Upper and lower bounds on rdv(k, n) and RDV(k, n).

(k − 2)n + 1. Using the fact that it takes n moves to get two states one step closer

to each other on the cycle, the k-set with states equally spaced around the circle has

weight ≥ (k−1)n(n−1)
k and so RDV(k, n) ≥ (k−1)n(n−1)

k .

For upper bounds, we can apply Theorem 2.1, which gives rdv(n, k) ≤ 1+
∑k−1

i=2

(
n−i+2

2

)

and RDV(n, k) ≤∑k
i=2

(
n−i+2

2

)
.

An equivalent version of question 2.2 was asked by Gonze and Jungers [15], partic-

ularly for the case k = 3. They call rdv(3, n) the triple rendezvous time, which inspires

our notation rdv. We will sometimes refer to rdv(k, n) as the k-set rendezvous time.

Gonze and Jungers give a construction showing that rdv(3, n) ≥ n + 3. They also

claim a proof that rdv(3, n) ≤ n(n+4)
4 , but this proof appears to be fundamentally flawed.

We will outline the error in this proof in Section 2.2.

Our main result is an improved upper bound for the triple rendezvous time rdv(3, n)

of 3−
√
5

4 n2 + 5−
√
5

4 n u 0.19098n2 + O(n). We prove this upper bound in Section 2.2,

together with a simple argument almost halving the upper bound on rdv(k, n) given by

Frankl–Pin. We will also apply the techniques used on rdv(3, n) to further improve the

upper bound for rdv(4, n) and rdv(5, n).

Table 2-A summarises what is known about rdv(3, n), rdv(k, n) and RDV(k, n), with

the new results highlighted in red.

We can also ask similar questions over all automata, not just synchronizing automata.

Question 2.4. What is the minimal value of rdv∗(k, n) such that for any automaton Ω

Chapter 2. Synchronizing Automata and Černý’s Conjecture 36

on [n], if in the transition graph T (Ω) there exists a path from some vertex in Lk to a

vertex in L1, then there is such a path of length at most rdv∗(k, n)?

Question 2.5. What is the minimal value of RDV∗(k, n) such that for any Ω an au-

tomaton on [n], if any k-set has a path to some vertex in L1, then that k-set has such a

path of length at most RDV∗(k, n)?

In particular, rdv∗(k, n) is the maximum of m(k,Ω) taken over all automata Ω with

at least one synchronizable k-set, and RDV∗(k, n) is the maximum of M(k,Ω) over the

same collection of automata.

Again we have that answering either question in the case k = n is again equivalent to

Černý’s conjecture. Note that rdv∗(k, n) ≤ RDV∗(k, n) and rdv∗(k, n) ≤ 1 + RDV∗(k −

1, n). A naive upper bound on rdv∗(k, n) is 1 +
∑k−1

i=2

(
n
i

)
, since a shortest word down to

a singleton will take a set through each of set of size < k at most once.

A very slightly improved upper bound can be obtained by noting that an automaton

is synchronizing if and only if for every pair of states u, v there is a word w with w(u) =

w(v). If the automaton is synchronizing then we can use the Frankl–Pin bound. If not,

then there is pair u, v that cannot be sent to the same state and any set containing both

u and v is not synchronizable. The shortest path will not pass through any of these

sets and so rdv∗(k, n) ≤ 1 +
∑k−1

i=2

((
n
i

)
−
(
n−2
i−2
))

. In either case, for fixed k we have

rdv∗(k, n) = O(nk−1) and by the same argument RDV∗(k, n) = O(nk).

In section 2.3 we show that this is, surprisingly, best possible — that is, if k is fixed

then the answer to question 2.4 is Θ
(
nk−1

)
. Since RDV∗(k, n) ≥ rdv∗(k + 1, n)− 1, we

also get that RDV∗(k, n) = Θ
(
nk
)
.

Table 2-B summarises what is known about rdv∗(k, n) and RDV∗(k, n). The new

contributions are highlighted in red.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 37

lower bound upper bound

rdv∗(3, n) 1
8n

2 1
2n(n− 1)

rdv∗(k, n) 4
3

(
n
4k

)k−1 (
n
k−1
)

+O
(
nk−2

)

RDV∗(k) 4
3

(
n

4(k+1)

)k
− 1

(
n
k

)
+O

(
nk−1

)

Table 2-B: Upper and lower bounds on rdv∗(k, n) and RDV∗(k, n).

2.2 Upper Bounds on the Rendezvous Time

Frankl–Pin gives trivially that for 2 ≤ k ≤ n, the k-rendezvous time ω is at most

1 +
∑k−1

i=2

(
n−i+2

2

)
. The following simple adaptation of Frankl–Pin’s result improves on

this bound for k ≥ 4.

Theorem 2.2. For all n and all 2 ≤ k ≤ n the k-set rendezvous time rdv(k, n) is at

most
b k2c∑

i=1

(
i+ 1

2

)
+

d k2e−1∑

i=1

(
n− i+ 1

2

)
.

In particular, for fixed k and n sufficiently large given k we have that

rdv(k, n) <

⌊
k − 1

2

⌋
n2

2
.

Proof. By Frankl–Pin, there exists a word w that takes [n] to a set S of size n−
⌊
k
2

⌋
of

length at most

n∑

i=n−b k2c+1

(
n− i+ 2

2

)
=

b k2c∑

i=1

(
i+ 1

2

)
.

By the pigeonhole principle, there are at least n− 2
⌊
k
2

⌋
points in S with exactly one

point in their preimage under w. Take T to be n− k such points and let R = S \ T . We

have |R| =
⌈
k
2

⌉
and |w−1(R)| = n− |w−1(T)| = n− |T | = k.

By Frankl–Pin again, we can find a word w′ that takes R to a singleton of length at

Chapter 2. Synchronizing Automata and Černý’s Conjecture 38

most
d k2e∑

i=2

(
n− i+ 2

2

)
=

d k2e−1∑

i=1

(
n− i+ 1

2

)
.

Concatenating w′w gives the required word.

We can also obtain an improved rendezvous bound for k = 3, 4 and 5. The triple

rendezvous time rdv(3, n) was studied in particular by Gonze and Jungers [15] who

claimed a proof that it was bounded by n2

4 , a proof which we believe to be fundamentally

flawed.

Theorem 2.3. For all n ≥ 3, we have rdv(3, n) ≤ 3−
√
5

4 n2 + 3
2n.

Note that 3−
√
5

4 u 0.19098, so this does significantly better than the 1 +
(
n
2

)
given

by Frankl–Pin, as well as the n2

4 claimed by Gonze and Jungers. The proof introduces

ideas that will be further built on to improve the bounds for rdv(4, n) and rdv(5, n).

Proof. First, note that if n = 3 then the triple rendezvous time is at most 4 and the

result is trivially true. Thus we may assume that n ≥ 4.

The rank of a word w is the number of points in the image Imw = w([n]). Let r be

the minimum rank over all words of length at most n. Note that by Frankl–Pin there is

a word of length 4 =
(
2
2

)
+
(
3
2

)
that takes [n] to a set of size n− 2. Since n ≥ 4 we thus

have that r ≤ n− 2.

Let w be a word of length ≤ n of minimal rank r. If r < n
2 then by the pigeonhole

principle there must be some triple sent to a singleton by w and so we have triple

rendezvous time at most n. We may therefore assume that r ≥ n
2 ≥ 2.

Claim 2.3.1. There exists a word of length ≤ n +
(
r+2
2

)
that takes some triple to a

singleton.

Proof of Claim. Let w be a word of length ≤ n of minimal rank r. If there is some triple

which w sends to a singleton then we are done, so we can assume that w sends at most

Chapter 2. Synchronizing Automata and Černý’s Conjecture 39

two points to the same point.

Let S = {x : ∃y 6= z with w(y) = w(z) = x} be the set of points with two pre-images

under w. Let T = Imw−S be the set of all points with a unique pre-image under w. We

have that |S|+ |T | = r and 2|S|+ |T | = |w−1([n])| = n, from which we obtain |S| = n−r.

By Frankl–Pin there exists a word w′ of length ≤
(
n−(n−r)+2

2

)
=
(
r+2
2

)
such that

|w′(S)| < |S|. In particular, there exist x 6= y in S with w′(x) = w′(y) = z. Take u, v

with w(u) = w(v) = x and s, t with w(s) = w(t) = y. The word w′w has length at most

n+
(
r+2
2

)
and w′w({u, v, s, t}) = w′{x, y}) = {z} so in this case w′w sends some 4-set to

a single point.

Claim 2.3.2. There exists a word of length ≤ n + (n−r)n
2 that takes some triple to a

singleton.

Proof of Claim. Let C be the minimal non-empty set such that f(C) ⊆ C for all transi-

tion functions f . In particular, if w is any synchronising word and x is the vertex with

w([n]) = x then C = {y : ∃w′ with w′(x) = y}. Note that C is strongly connected, by

which we mean that for any pair of points u, v ∈ C we can find a word that sends u to

v and a word that sends v to u. Let m = |C| and let E = {(u, v) : u, v ∈ C, u 6= v} be

the set of pairs of points in C.

We call an pair (u, v) ∈ E good if there exists a word wuv of length ≤ n with

|w−1uv ({u, v})| ≥ 3. We will count the number of good pairs, splitting into three cases

depending on the value of m.

First, suppose that m > n − r + 1. We can find a point z ∈ C and a transition

function f with |f−1(z)| ≥ 2. Since C is strongly connected, for each v ∈ C there is

some word wv of length ≤ m − 1 with wv(z) = v. In particular, (wvf)−1(v) ⊇ f−1(z)

where wvf is a word of length ≤ m. For all a ∈ (Im (wvf) − v) ∩ C the pair (v, a) is

good.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 40

Since wvf is a word of length≤ m ≤ n, the rank of wvf is≥ r and so | (Im (wvf)− v)∩

C| ≥ r− 1− (n−m) > 0. Every vertex in C is in at least m− 1− n+ r good pairs and

so the number of good pairs is at least (m−1−n+r)m
2 > 0.

The number of pairs in E that are not good is at most
(
m
2

)
− (m−1−n+r)m

2 = (n−r)m
2 .

We conclude that there is some word w of length at most (n−r)m
2 that sends some good

pair (u, v) to a singleton x, where the worst case scenario is having to pass through every

not good pair in C first.

By definition of good, we can find a word wuv of length ≤ n with |w−1uv ({u, v})| ≥ 3.

Then wwuv is a word of length at most n + (n−r)m
2 where (wwuv)

−1(x) ⊇ w−1uv ({u, v})

has size at least 3. In particular, the claim holds when m > n− r + 1.

Now, suppose that 2 ≤ m ≤ n− r+ 1 ≤ n− 1. There must be some y 6∈ C and some

transition function f such that f(y) ∈ C. We have that f(C ∪ {y}) ⊆ C and so by the

pigeonhole principle there is some x in C with two pre-images under f . If x is the only

point in Im f ∩ C then f−1(x) ⊇ C ∪ {y} has size m + 1 ≥ 3, and we get that f takes

a triple down to the single point x. Otherwise, there is another point y in Im f ∩ C.

We can find a word w of length at most
(
m
2

)
that takes (x, y) to a singleton, where the

worst case scenario is having to pass through every other pair in C. Now wf is a word

of length at most 1 +
(
m
2

)
that takes some triple to a singleton.

Finally, suppose m = 1, so C = {x} for some point x. Note that f(x) = x for all f .

There is some point y 6= x and some transition function f such that f(y) = x. The rank

of f is at least r, so there is some point z in Im f −x and some word w of length at most

n− r + 1 with w(z) = x, where the worst case scenario is having to pass through every

point in [n] \ Im f . Now wf is a word of length at most 2 + n− r that takes some triple

to the singleton x.

To summarise, we can find a word taking some triple to a singleton of the following

Chapter 2. Synchronizing Automata and Černý’s Conjecture 41

length:





m+ (n−r)m
2 if m > n− r + 1

1 +
(
m
2

)
if 2 ≤ m ≤ n− r + 1

2 + n− r if m = 1

each of which is at most n+ (n−r)n
2 as required.

Combining the results of these two claims, we have that the triple rendezvous time

is at most min
{
n+

(
r+2
2

)
, n+ (n−r)n

2

}
.The former is increasing in r while the latter is

decreasing in r and so to find the maximum we look for the r where they are equal. This

is when (r + 2)(r + 1) = (n − r)n, which occurs when r = −n−3+
√
5n2+6n+1
2 (subject to

r ≥ 0).

Substituting this in gives that the triple rendezvous time is at most

n+

(
3n+ 3−

√
5n2 + 6n+ 1

)
n

4
≤ n+

(
3n+ 3−

√
5
(
n+ 1√

5

))
n

4

= n+

(
(3−

√
5)n+ 2

)
n

4

=
3−
√

5

4
n2 +

3

2
n.

In a similar way we can improve the upper bounds on the 4-set and 5-set rendezvous

times.

Theorem 2.4. For all n ≥ 4, we have

rdv(4, n) ≤ rdv(3, n) + (2−
√

3)n2 + 2n− 1 ≤
(

11−
√

5− 4
√

3

4

)
n2 +

7

2
n− 1.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 42

Note that 11−
√
5−4
√
3

4 u 0.4589, so this is again an improvement on the 4 +
(
n
2

)
given

by Theorem 2.2.

Theorem 2.5. For all n ≥ 5, we have

rdv(5, n) ≤ rdv(4, n) +
4−
√

7

4
n2 +

3

2
n− 1 ≤

(
15−

√
5− 4

√
3−
√

7

4

)
n2 + 5n− 2.

Note that 15−
√
5−4
√
3−
√
7

4 u 0.7975, so this is again an improvement on the bound of

4 +
(
n
2

)
+
(
n−1
2

)
given by Theorem 2.2.

To prove both Theorems 2.4 and 2.5 we will need two lemmas. In the case k = 2 the

lemmas correspond precisely to claims 2.3.1 and 2.3.2 in the proof of Theorem 2.3 and

we prove each lemma in an anlogous way.

Lemma 2.6. Fix 2 ≤ k ≤ n− 1 and l ≥ 1. Let r be the minimal rank over all words of

length ≤ l. Suppose that r ≤ n−2d k2e
b k2c

and let s =
n−b k2cr
d k2e

≥ 2. Then

rdv(k + 1, n) ≤ l +

(
n− s+ 2

2

)
.

Proof. Let w be a word of length ≤ l of minimal rank r. If there is some (k + 1)-set

which w sends to a singleton then we are done, so we can assume that w sends at most

k points to the same point.

Let S = {x :
∣∣w−1(x)

∣∣ ≥
⌈
k+1
2

⌉
} be the set of points with at least

⌈
k+1
2

⌉
pre-images

under w. Let T = Imw − S be the set of points with ≤
⌊
k
2

⌋
pre-images under w. We

have that |S|+|T | = r. We also have that n = |w−1([n])| = |w−1(S)|+|w−1(T)| ≤ k|S|+
⌊
k
2

⌋
|T |. Putting these together, we have k|S|+

⌊
k
2

⌋
(r−|S|) ≤ n and so |S| ≥ n−b k2cr

d k2e
≥ 2.

By Frankl–Pin there exists a word w′ of length ≤
(
n−|S|+2

2

)
such that |w′(S)| < |S|. In

particular, there exist x 6= y in S with w′(x) = w′(y) = z. We have that
∣∣(w′w)−1(z)

∣∣ =

|w−1(x, y)| ≥ 2
⌈
k+1
2

⌉
, so w′w sends some (k + 1)-set to a single point.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 43

The length of the word w′w is l +
(
n−|S|+2

2

)
≤ l +

(
n−s+2

2

)
where s =

n−b k2cr
d k2e

.

Lemma 2.7. Fix n ≥ 4 and k ≤ n − 1. Let r be the minimal rank over all words of

length ≤ rdv(k, n) + n− 1. Then rdv(k + 1, n) ≤ rdv(k, n) + n− 1 + (n−r)n
2 .

Proof. Let C be the minimal non-empty set such that f(C) ⊆ C for all transition

functions f . Note that since C is minimal it must be strongly connected. Let m = |C|

and let E = {(u, v) : u, v ∈ C, u 6= v} be the set of pairs of points in C.

Let rdv(k, n) = l. We call an pair (u, v) ∈ E good if there exists a word wuv of length

≤ l+n−1 with |w−1uv ({u, v})| ≥ k+ 1. We will count the number of good pairs, splitting

into two cases depending on the value of m.

Case 1: m > n− r + 1.

There is a word ω of length l = rdv(k, n) that sends some k-set to a singleton x. We

can then find a word ω′ of length at most n − m that sends x to a point z ∈ C. In

particular, |(ω′ω)−1(z)| ≥ k where ω′ω is a word of length ≤ l + n−m.

Since C is strongly connected, for each v ∈ C there is some word ωv of length

≤ m − 1 with ωv(z) = v. In particular, (ωvω
′ω)−1(v) ⊇ (ω′ω)−1(z) where ωvω

′ω is a

word of length ≤ l + n− 1. For all a ∈ (Im (ωvω
′ω)− v) ∩ C the pair (v, a) is good.

Since ωvω
′ω is a word of length ≤ l + n − 1, the rank of ωvω

′ω is ≥ r and so

| (Im (ωvω
′ω)− v)∩C| ≥ r−1−(n−m) > 0. Every vertex in C is in at least m−1−n+r

good pairs and so the number of good pairs is at least ≥ (m−1−n+r)m
2 > 0.

The number of pairs in E that are not good is at most
(
m
2

)
− (m−1−n+r)m

2 = (n−r)m
2 .

We conclude that there is some word w of length at most (n−r)m
2 that sends some good

pair (u, v) to a singleton x, where the worst case scenario is having to pass through every

not good pair in C first.

By definition of good, we can find a word wuv of length ≤ n with |w−1uv ({u, v})| ≥ k+1.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 44

Then wwuv is a word of length at most l+n−1+ (n−r)n
2 where (wwuv)

−1(x) ⊇ w−1uv ({u, v})

has size at least k + 1. In particular, the claim holds when m > n− r + 1.

Case 2: m ≤ n− r + 1.

We will show that there is a word of length ≤ l + 2(n −m) +
(
m
2

)
that takes some

(k + 1)-set to a singleton.

As before, we can find a point z ∈ C and a word w of length ≤ l + (n − m) with

|(w)−1(z)| ≥ k. If z is the only point in Im(w) then w is a synchronizing word sending

n ≥ k + 1 points down to a singleton.

So suppose Im(w)− z is non-empty and take some v ∈ Im(w), v 6= z. We can find a

word w′ of length ≤ n−m that takes v to a vertex y ∈ C.

If w′(z) = y then the word w′w of length ≤ l + 2(n − m) has |(w′w)−1(y)| =

|w−1(z, v)| ≥ k + 1.

Else, y, w′(z) are two distinct vertices in C and we can find a word w′′ of length

at most
(
m
2

)
that takes {y, w′(z)} to a singleton. Then w′′w′w is a word of length

≤ l + 2(n−m) +
(
m
2

)
that has takes some (k + 1)-set to a singleton.

We have that there is a word of length ≤ l+ 2(n−m) +
(
m
2

)
taking some (k+ 1)-set

to a singleton. To prove that the bound as stated in the lemma holds, it suffices to show

that the following quantity is positive.

(
n− 1 +

(n− r)n
2

)
−
(

2(n−m) +

(
m

2

))
=
n(n− r − 2)−m2 + 5m− 2

2

Note that by Frankl–Pin there is some word of length ≤
(
2
2

)
+
(
3
2

)
= 4 of rank n− 2.

Since l + n− 1 ≥ 4, this implies that r ≤ n− 2, and so n− r − 2 ≥ 0.

If −m2 + 5m − 2 ≥ 0 then we are done, so in particular we are done if m ≤ 4. If

Chapter 2. Synchronizing Automata and Černý’s Conjecture 45

m ≥ 5, then we have

n(n− r − 2)−m(m− 5)− 2

2
≥ (m+ r − 1)(m− 3)−m2 + 5m− 2

2

=
(m− 3)r +m+ 1

2
≥ 0

We use these lemmas to prove the Theorems.

Proof of Theorem 2.4. Fix n ≥ 4. Let l = rdv(3, n) + n − 1 and let r be the minimal

rank of a word of length at most l.

Applying the k = 3 case of Lemmas 2.6 and 2.7 we get

rdv(4, n) ≤





l + 1
2

(
n+r
2 + 2

) (
n+r
2 + 1

)
if r ≤ n− 4

l + 1
2(n− r)n for all r

If r > n− 4 then 1
2(n− r)n < 2n.

If r ≤ n − 4, the first bound is increasing with r (for r ≥ 0) and the second is

decreasing with r so the maximum is obtained where the two are equal, that is when
(
n+r
2 + 2

) (
n+r
2 + 1

)
= (n− r)n. Rearranging gives r2 + 6(n+ 1)r− (3n2 − 6n− 8) = 0.

Solving for r, we get that the maximum is obtained when

r = −3(n+ 1) +
√

12n2 + 12n+ 1

Chapter 2. Synchronizing Automata and Černý’s Conjecture 46

Thus we have that the maximum is

(n− r)n
2

=

(
4n+ 3−

√
12n2 + 12n+ 1

)
n

2

≤
(

2n+
3

2
−
√

3

(
n+

1√
12

))
n

= (2−
√

3)n2 + n

Putting this together with the bound on rdv(3, n) from Theorem 2.3 we get the final

bound

rdv(4, n) ≤
(

3−
√

5

4
+ 2−

√
3

)
n2 +

7

2
n− 1.

Proof of Theorem 2.5. Fix n ≥ 5. Let l = rdv(4, n) + n − 1 and let r be the minimal

rank of a word of length at most l.

Applying the k = 4 case of Lemmas 2.6 and 2.7 we get

rdv(5, n) ≤





l + 1
2

(
n+2r
2 + 2

) (
n+2r
2 + 1

)
if r ≤ n−4

2

l + 1
2(n− r)n for all r

If r > n−4
2 then 1

2(n− r)n < 1
4n

2 + n.

If r ≤ n−4
2 , the first bound is increasing with r (for r ≥ 0) and the second is de-

creasing with r so the maximum is obtained where the two are equal, that is when
(
n+2r
2 + 2

) (
n+2r
2 + 1

)
= (n−r)n. Rearranging gives r2 +(2n+3)r− (34n

2− 3
2n−2) = 0.

Solving for r, we get that the maximum is obtained when

r =
−(2n+ 3) +

√
7n2 + 6n+ 1

2

Chapter 2. Synchronizing Automata and Černý’s Conjecture 47

Thus we have that the maximum is

(n− r)n
2

=

(
4n+ 3−

√
7n2 + 6n+ 1

)
n

4

≤

(
4n+ 3−

√
7
(
n+ 1√

7

))
n

4

=
4−
√

7

4
n2 +

1

2
n

Putting this together with the bound on rdv(4, n) from Theorem 2.3 we get the final

bound.

It is clear that we could continue applying this method in the way we have here to

obtain upper bounds on rdv(k, n) for larger k. However, as it stands the method does

not give an improvement on the bound rdv((k, n) <
⌊
k−1
2

⌋
n2

2 given by Theorem 2.2 for

larger k. We remain hopeful that the method could be improved upon to give results for

larger k. One approach might be to alter Lemma 2.6 to allow one to go directly from a

result about rdv(k, n) to a result about rdv(k + c, n) for c larger than 1.

2.2.1 The Error in Gonze and Jungers

Gonze and Jungers [15] claim a proof that the triple-rendezvous time r(3, n) < n2

4 .

However, there is an error in the proof of Theorem 3.8.

To identify the error we will first need to explain some of the notation used. Fix an

automaton Ω on n states and let T3 be the minimum weight of a triple. If t < T3 the

sets of weight ≤ t will only be singletons and pairs. We let Gt be the graph on n vertices

with edge-set all pairs of weight ≤ t.

Let A(t) be a matrix with rows indexed by [n] and columns indexed by the sets in

Ω of weight ≤ t. A column corresponding to the set S will have a 1 in rows indexed by

elements of S and a 0 in all other rows. For example, A(0) will be the identity matrix

Chapter 2. Synchronizing Automata and Černý’s Conjecture 48

since a set has weight 0 is and only if it is a singleton.

Define ProgA(t) to be the linear program

max
q,k

k

s.t.A(t)qT ≥ keT

eqT = 1

q ≥ 0

where e is the all ones vector. Let k(t) be the maximum value attained by ProgA(t) and

let Pt be the set of optimal solutions q to ProgA(t).

The linear program ProgA(t) can be thought of in terms of assigning weights to Gt.

The vector q assigns a weight to each vertex and edge of Gt such that the sum of all

the weights is one. The condition A(t)qT ≥ keT means that for each vertex v the sum

of the weight of v and the weights of all edges incident to v is at least k. Then k(t) is

maximal subject to a weighting of Gt existing that satisfies these conditions. Figure 2.3

demonstrates this for the Černý automaton on 4 vertices.

It is interesting to note that if we take the dual of this linear program and rescale by

1
k then we get the fractional independence number of Gt. A weighting of the vertices of

Gt is a fractional independent set if each vertex has weight in [0, 1] and for each edge of G

the weights of the endpoints of the edge sum to at most one. The fractional independence

number is the maximum total weight (that is, sum of all vertex weights) of a fractional

independent set.

Note also that the complement of a fractional independent set (that is, where the new

weight of a vertex is one minus its previous weight) is a fractional vertex cover, where

each vertex has weight in [0, 1] and for each edge of G the weights of the endpoints of

the edge sum to at least one. The fractional vertex cover number is the minimum total

Chapter 2. Synchronizing Automata and Černý’s Conjecture 49

weight of a fractional vertex cover. In particular, the fractional independence number is

n minus the fractional vertex cover number, and the vertex cover number is the form in

which it is more commonly studied.

Lemma 3.6 of [15] proves that if t < T3, there exists a collection Ct of pairs of weight

≤ t such that (a) the graph with edge-set Ct is composed of disjoint singletons, pairs,

and odd cycles, and (b) if Ac(t) has columns indexed by Ct then the linear program

ProgAc(t) has the same maximum, k(t), as ProgA(t) does. Let Rt be the set of optimal

solutions to ProgAc(t).

Note that k(t) ≤ k(t+ 1), since Gt is a subgraph of Gt+1. Note also that 2/k(t) must

be an integer – Gonze and Jungers show this using Ct but it can also be deduced from

the fact that the fractional vertex cover number of any graph is half an integer.

The strategy of Gonze and Jungers’ proof is to show that either k(t + 1) < k(t), or

k(t+ 1) = k(t) and dim(Pt+1) > dim(Pt). Since 2/k(t) is an integer bounded between 1

and 2n and the dimension of Pt is also bounded, this would give a bound on the maximal

value of t. This claim (the basis of Theorem 3.8 of [15]) could potentially hold, as we

have found no counterexample.

0

1
3

1
4

t

Gt

& Pt

& Rt

G[Ct]

0 1 2 3 4

0 ≤ a ≤ 1
3

1
4

1
3 0 a

a

1
3 − a

1
3 − a

0 ≤ a ≤ 1
2

1
3

0 0

0

0

0

1
2

0

1
2

0

0

0

0

a a

1
2 − a

1
2 − a

1
4

1
4

0

1
3

1
3 0 0

1
3

1
3 0 0

0

0

0

1
2

1
2

0

0

0

0

1
2

1
2

1
3

1
4

1
4

1
4

1
4

1
3

1
3

k(t) 1
4

1
3

1
3

1
2

1
2

Figure 2.3: The graphs Gt and G[Ct] for the Černý automaton on 4 states, with the sets
of optimal solutions Pt and Rt indicated.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 50

However, the authors’ attempt to prove this claim by passing to Rt and this is where

the problem lies. They claim that the same holds for Rt, that is if k(t+ 1) = k(t) then

dim(Rt+1) > dim(Rt). This is not true in general. For example, it does not hold for the

Černý automaton on 4 states where we have G[C1] = G[C2] and G[C3] = G[C4] and so

the optimal solution sets R1 = R2 and R3 = R4. See Figure 2.3 for a diagram.

2.3 Non-sychronizing Automata with Large Rendezvous

Time

We will prove a lower bound on rdv∗(k, n) via a construction of a suitable automaton.

To introduce the main idea of the construction we give the simpler k = 3 case first.

Theorem 2.8. For n sufficiently large, rdv∗(3, n) > n2

8 .

Proof. We will construct an automaton on [n] where the minimal weight of a k-set is

greater than n2

8 .

Partition [n] into A and X, where |A| =
⌊
n
4

⌋
.

Label the vertices ofA by a1, a2, . . . , a|A| and label the vertices ofX by x1, x2, . . . , x|X|.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 51

Take two functions f and g as follows, as shown in figure 2.4.

f(xt) = x(t+1 mod |X|)

f(a|A|) = a1

f(aj) = xj for j 6= |A|

g(xt) =





xt+1 if 1 ≤ t ≤ |A| − 1

xt−|A|+1 if t = |A|

xt otherwise

g(aj) = a(j+1 mod |A|)

A

X

a1 a2 a3 a4 a5

x2
x3

x4

x5

x6

x1

x7

x16

Figure 2.4: An example of the automaton for k = 3 and n = 21

Note that f and g restricted to X are permutations on X and so any set containing

more than one vertex in X cannot be synchronized. Moreover, any set containing three

vertices in A cannot be synchronized: the image of such a set under g still has three

vertices in A, and the image under f contains two vertices in X.

It follows that a synchronizable triple must contain two vertices in A and one vertex

Chapter 2. Synchronizing Automata and Černý’s Conjecture 52

in X. Fix such a triple S and consider a word that synchronizes this set acting on it.

We will obtain that the triple of minimal weight is in fact {x|X|, a1, a|A|}.

Note that for a shortest word from a triple to a singleton the first step must map a

triple to a pair. In particular, the first map of the shortest word must be f , as g is a

permutation. The triple S must contain two points in A, one of which must be a|A| else

applying f gives two points in X. Let the other be at, where 1 ≤ t ≤ |A| − 1. After

applying f , we have the points a1 and xt, which must be the only point in X.

Note that

fgl−1 (a1) =





a1 if l ≡ 0 (mod |A|)

x(l mod |A|) otherwise

and for 1 ≤ t ≤ |A| − 1,

fgl−1 (xt) =





x|A|+1 if t+ l − 1 ≡ 0 (mod |A|)

x(t+l mod |A|) otherwise

.

This means that applying fgl−1 gives two points in X for any l 6≡ 0 (mod |A|). Thus

the next step must be to apply fgl−1 where l is some multiple of |A|. This sends a1 and

xt to themselves unless t = 1, in which case xt is sent to x|A|+1.

To further reduce the size of the set, we must map x|A|+1 and a1 to the same point.

To do this, we must move the vertex in position x|A|+1 round through x|A|+2, x|A|+3, . . .

until we reach x|X|, without moving the second vertex that is currently in A into X as

we do so.

Suppose we have just applied f , and we now want to move xs to xs+1 without adding

any extra vertices into X (where s is some value not in {|X|, 1, 2, 3 . . . , |A|}). Since we

have just applied f , the vertex in A must be at position a1 (having just come from

position a|A|). We need to apply f to move xs, but we can only apply f when the vertex

in A is at position a|A| and so we must first apply g|A|−1 to move the vertex at a1 to

Chapter 2. Synchronizing Automata and Černý’s Conjecture 53

be at a|A|. Only then can we apply f , and so the shortest word moving xs to xs+1 is

fg|A|−1.

Repeatedly applying this, we have that the shortest word squashing a triple to a

singleton is f
(
fg|A|−1

)(|X|−(|A|+1))
fg|A|−1f which has length

1 + (|X| − |A|)|A|+ 1 =
(
n− 2

⌊n
4

⌋) ⌊n
4

⌋
+ 2 >

n2

8
.

The general case extends the construction given in Theorem 2.8. We still have two

transition functions and a set of states X on which both transition functions act as

permutations, meaning that any synchronizable set has at most one vertex in X. Rather

than having a single gadget A we will need k − 2 gadgets A0, A1, Ak−3, each with the

same structure as A but of coprime sizes.

To synchronize a k-set we will need to apply a transition function f to move a vertex

around X. As before, we will not be able to apply f without first applying the other

transition function g several times to move the vertex in in each Ai from a
(i)
1 to a

(i)
0 .

Because we chose the Ai to have coprime sizes, each such move will neccessitate many

applications of g.

Theorem 2.9. Let k ≥ 3. For n sufficiently large, rdv∗(k, n) ≥ 4
3

(
n
4k

)k−1
.

Proof. Fix the integer k. We will construct an automaton on [n] where the minimal

weight of a k-set is 4
3

(
n
4k

)k−1
.

Partition [n] into A0, A1, A2, . . . , Ak−3 and X, where n
4k ≤ |Ai| ≤ n

3k and

gcd{A0, A1, A2, . . . , Ak−3} = 1. This is possible for n sufficiently large, for example by

the prime number theorem.

Label the vertices in each Ai by a
(i)
1 , a

(i)
2 , a

(i)
3 , . . . and label the vertices of X by

x1, x2, x3 Let q =
⌊
2n
3k

⌋
.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 54

A0

A1

A2

a
(0)
1 a

(0)
2 a

(0)
3 a

(0)
4

a
(1)
2

a
(1)
3

a
(2)
1

a
(2)
2

x1
x2 x3 x4

x5

xq+1

xq+2

xq+3

xq+4

x2q+1

x2q+2

x2q+3

a
(0)
5

a
(1)
4

a
(1)
1a

(2)
3

Figure 2.5: An example of the automaton for k = 5

Take two functions f and g as follows, as shown in figure 2.5.

f(xt) = x(t+1 mod |X|)

f
(
a
(i)
j

)
=





a
(i)
1 if j = |Ai|

xiq+j otherwise

g(xt) =





xt+1 if iq + 1 ≤ t ≤ iq + |Ai| − 1 for some i

xt−|Ai|+1 if t = iq + |Ai| for some i

xt otherwise

g(a
(i)
j) = a

(i)
(j+1 mod |Ai|)

Note that f and g restricted to X are permutations on X and so any set containing

more than one vertex in X cannot be synchronized.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 55

Moreover, any set containing three vertices in some Ai cannot be synchronized: the

image of such a set under g still has three vertices in Ai, and the image under f contains

two vertices in X. Similarly, any set containing two vertices in Ai and two vertices in

Aj for some distinct i and j also cannot be synchronized.

It follows that a synchronizable set of size k must contain two vertices in some Ai,

one vertex in every other Aj and one vertex in X. Fix such a set S and consider a word

that synchronizes this set acting on it.

For a shortest word from a triple to a singleton the first step must map a triple to

a pair and so the first map must be f . The set S contains two points in Ai, one of

which must be a
(i)
|Ai| else applying f gives two points in X. Let the other be a

(i)
t , where

1 ≤ t ≤ |Ai| − 1. After applying f , we have the points a
(i)
1 and xiq+t, which must be the

only point in X.

Note that

fgl−1
(
a
(i)
1

)
=





a
(i)
1 if l ≡ 0 (mod |Ai|)

xiq+(l mod |Ai|) otherwise

and

fgl−1 (xiq+t) =





xiq+|Ai|+1 if t+ l − 1 ≡ 0 (mod |Ai|)

xiq+(t+l mod |Ai|) otherwise

.

Since 1 ≤ t ≤ |Ai| − 1 this means that applying fgl−1 gives two points in X for any

l 6≡ 0 (mod |Ai|). Thus the next step must be to apply fgl−1 where l is some multiple

of |Ai|. This sends a
(i)
1 and xiq+t to themselves unless t = 1, in which case xiq+t is sent

to xiq+|Ai|+1.

To further reduce the size of the set, we must map the vertex in X and some vertex

in some Aj to the same point. To do this, we must move the vertex xiq+|Ai|+1 in X

round to be in {xjq, xjq+1, . . . , xjq+|Aj |−2}, without adding extra vertices to X as we do

Chapter 2. Synchronizing Automata and Černý’s Conjecture 56

so.

Suppose we have just applied f , and we now want to move xs to xs+1 without adding

any extra vertices into X (where s is some value not in {xjq+1, xjq+2, . . . , xjq+|Aj |−1} for

any j). Since we have just applied f , the vertex in each Aj must be at position a
(j)
1

(having just come from position a
(j)
|Aj |). We must apply f to move xs, but we can only

apply f when for each Aj , the vertex in Aj is at position a
(j)
|Aj |. Thus we must use g to

move the vertex at a
(j)
1 to be at a

(j)
|Aj | for each j.

The number of times g is applied must be congruent to −1 modulo |Aj | for all j.

Since |A0|, |A1|, . . . , |Ak−3| are coprime, the smallest such number is
∏k−3
j=0 |Aj |− 1. This

is followed by an application of f and so it takes at least
∏k−3
j=0 |Aj | steps to move xs to

xs+1.

Applying this repeatedly, we see that the length of a word taking the vertex in X from

xiq+|Ai|+1 to some vertex of the form {xjq, xjq+1, . . . , xjq+|Aj |−2} without introducing a

second vertex to X must be at least

(q − (|Ai| − 1))
k−3∏

j=0

|Aj | ≥
(

2n

3k
− n

3k

)(n
4k

)k−2
=

4

3

(n
4k

)k−1
.

We have shown that for fixed k we have rdv∗(k, n) = Θ
(
nk−1

)
. A natural question

to ask is what are the correct asymptotics for rdv∗(k, n)? In the case k = 3 we have

n2

8 ≤ rdv∗(k, n) ≤ n2−n−1
2 .

Question 2.6. Is there an automaton which attains rdv∗(3, n) = (12 + o(1))n2?

An upper bound on the minimum weight of a triple rdv∗(3, n) is the total number of

synchronizable pairs plus one. To get a minimum weight triple of weight (12 + o(1))n2

we would need the automaton to be almost synchronizing in the sense that all but an

arbitrarily small proportion of pairs are synchronizable.

Chapter 2. Synchronizing Automata and Černý’s Conjecture 57

Consider the construction given in the proof of Theorem 2.8. We know that a pair

of vertices both in X is not synchronizable. In fact, it is straightforward to check that

only pairs of the following forms are synchronizable:

� {ai, xs} for i ∈ {1, 2, 3, . . . , |A|} and s 6∈ {1, 2, 3, . . . , |A|},

� {ai, xi} for i ∈ {1, 2, 3, . . . , |A|},

� {a1, x|A|} and (ai, xi−1) for i ∈ {2, 3, . . . , |A|}, and

� {ai, a(i+1 mod |A|)} for i ∈ {1, 2, 3, . . . , |A|}.

In particular, the automaton has |A| (|X| − |A|)+3|A| = n2

8 +O(n) synchronizable pairs.

We have that number of synchronizable pairs and the minimum weight of a triple are

asymptotically equal in this example. Is it possible to construct an automaton with this

same property where a larger proportion of pairs are synchronizable?

2.3.1 An Alternative Construction

We found an alternative construction of an automaton with the minimal weight of a

triple being approximately 2n. This is twice the maximum that has been found for any

synchronizing automaton but not as good as the value of n2

8 obtained in Theorem 2.8.

We mention it here because it is interesting that it works in a genuinely different way

to the above construction. It also has much in common with the construction by Gonze

and Jungers [15] of a synchronizing automaton with minimal weight in L3 of n+ 3.

The construction is as follows. See figure 2.6 for an example. Fix l,m ≥ 1 where

l - m and l + m = n. Label the vertices x1, x2, . . . , xl, y1, y2, . . . , ym. We define three

Chapter 2. Synchronizing Automata and Černý’s Conjecture 58

maps a, b and c.

a(y1) = x1

a(v) = v if v 6= y1

b(x2k) = x2k+1 if 2 ≤ 2k ≤ l − 1

b(x2k+1) = x2k if 2 ≤ 2k ≤ l − 1

b(y2k) = y2k+1 if 2 ≤ 2k ≤ m− 1

b(y2k+1) = y2k if 2 ≤ 2k ≤ m− 1

b(v) = v if v = x1, y1, xl if l even, ym if m even

c(x2k−1) = x2k if 2k ≤ l

c(x2k) = x2k−1 if 2k ≤ l

c(y2k−1) = y2k if 2k ≤ m

c(y2k) = y2k−1 if 2k ≤ m

c(v) = v if v = x1, y1, xl if l odd, ym if m odd

a

a a a a a

a a

b

b
b

b bc c

c c

cx2 x3 x4 x5x1

y1 y3y2

Figure 2.6: The alternative automaton for l = 5,m = 3

The function a synchronizes the pair {x1, y1} and this is the only weight 1 pair. To

find a synchroizing triple of minimal weight we consider preimages of x1, y1. Since b2 and

c2 are the identity and a−1 acts as the identity on any pair not containing x1, we consider

Chapter 2. Synchronizing Automata and Černý’s Conjecture 59

pairs of the form
(
c−1b−1

)t
({x1, y1}) and b−1

(
c−1b−1

)t
({x1, y1}). We have that

(
c−1b−1

)t
(x1) =





x1+2t if 2t ≤ l − 1

x2(l−t) if l ≤ 2t ≤ 2l

b−1
(
c−1b−1

)t
(x1) =





x2+2t if 2t ≤ l − 1

x2(l−t)−1 if l ≤ 2t < 2l − 2

It is easy to check that b−1
(
c−1b−1

)l−1
(y1) 6= y1 so long as m - l. We obtain that other

than {x1, y1}, the pair containing x1 of minimum weight is {x1, b−1
(
c−1b−1

)l−1
(y1)} of

weight 2l.

Thus the minimum weight triple is {x1, y1, a−1b−1
(
c−1b−1

)l−1
(y1)} of weight 2l+ 1.

This is maximised when m is the smallest positive integer not dividing n, in which case

the minimum weight triple is 2(n−m) + 1.

Chapter 3

Semi-perfect 1-Factorizations of

the Hypercube

3.1 Introduction

A 1-factorization of a graph H is a partition of the edges of H into disjoint perfect

matchings {M1,M2, . . . ,Md}. The perfect matchings are also known as 1-factors, so-

called because every vertex has degree 1.

Note that for a graph G to have a 1-factorization it is necessary that G is regular and

has an even number of vertices. For a d-regular graph a 1-factorization can be thought of

as a proper edge colouring using d colours. Figure 3.1 shows examples of 1-factorizations

for the complete graph K6 and the 3-dimensional cube Q3.

Figure 3.1: Examples of 1-factorizations of K6 and Q3

Let M = {M1,M2, . . . ,Md} be a 1-factorization of a graph G. The union Mi ∪Mj

60

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 61

of any two 1-factors must be a spanning 2-regular subgraph, known as a 2-factor. Note

that a 2-factor must be a disjoint union of cycles.

We say thatM is a perfect 1-factorization if the union Mi∪Mj of any pair of distinct

1-factors forms a Hamilton cycle in G. For example, in Figure 3.1 the 1-factorization

of K6 is perfect but the 1-factorization of Q3 is not as the union of the red and blue

1-factors is not a Hamilton cycle.

The biggest open problem in the field of 1-factorizations is a conjecture due to Kotzig

[18].

Conjecture 3.1 (Kotzig). For all n the complete graph K2n on an even number of

vertices has a perfect 1-factorization.

It is easy to find a (not necessarily perfect)1-factorization of the complete graph K2n.

The following construction was known in the 1890s and is attributed to Walecki [21].

Arrange 2n− 1 vertices x0, x1, x2, . . . , x2n−2 equally around a circle and put one vertex

y in the centre. For 0 ≤ i ≤ 2n − 2 let the 1-factor Mi consist of the edge yxi and all

edges perpendicular to it.

Mi = yxi ∪
n−1⋃

t=1

xtx(2i−t mod 2n−1).

The 1-factorization of K6 in Figure 3.1 is an example of this construction.

When 2n− 1 is prime, this 1-factorization of K2n is perfect. This is straightforward

to check, given the observation that by rotational symmetry it is sufficient to show that

M0 ∪Mi is a Hamilton cycle for all i. In particular, we have that Kotzig’s conjecture

holds when 2n = p+ 1 for some odd prime p.

When 2n − 1 is not prime this 1-factorization is not perfect: if 2n − 1 = ab then it

is straightforward to check that M0 ∪Ma is not a Hamilton cycle. Figure 3.2 gives a

demonstration of how this fails for the 1-factorization of K10.

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 62

Figure 3.2: Part of a 1-factorization of K10 that is not perfect.

Anderson [1] and Nakamura [22] independently found a perfect 1-factorization of the

complete graph K2p on 2p vertices where p is an odd prime. Split the vertices onto two

classes labelled a1, a2, . . . , ap and b1, b2, . . . , bp. We take two kinds of 1-factor, Mi and

Nj .

Mi = aibi ∪
p−1
2⋃

t=1

(
ata(2i−t mod p) ∪ btb(2i−t mod p)

)
for 1 ≤ i ≤ p

Nj =

p⋃

t=1

atb(t+j mod p) for 1 ≤ j ≤ p− 1

Figure 3.3 shows an example of the 1-factors M1, . . . ,M5 for K10.

a1

a2

a3

a4

a5

b2

b3

b1

b4

b5

Figure 3.3: A partial example of the Anderson-Nakamura construction for K10.

Using symmetry, checking that this 1-factorization is perfect can be reduced to check-

ing that M0 ∪Mi, M0 ∪Nj and N1 ∪Nj are Hamilton cycles for all i and j. This is not

hard to check.

These two infinite families (i.e. 2n = p+1 and 2n = 2p where p is prime) are the only

infinite families of values for which Kotzig’s conjecture is known to hold. The conjecture

has also been checked for certain other sporadic values of 2n — see [23] for references

and the most recently settled case of K56 . The smallest case for which the answer is

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 63

unknown is K64.

The existence or non-existence of perfect (or ‘close to perfect’) 1-factorizations has

been studied for various other families of regular graphs on an even number of vertices.

Perhaps the most natural next families to consider are the complete bipartite graphs

Kn,n and the hypercubes Qd for d ≥ 2.

Let us briefly consider the complete bipartite graphs Kn,n. There is a direct relation

to Kotzig’s conjecture: if Kn+1 has a perfect 1-factorization {M1,M2, . . . ,Mn} then so

does Kn,n. Label the vertices of Kn+1 by y, x1, x2, . . . , xn and the vertices of Kn,n by

a1, a2, . . . , an, b1, b2, . . . , bn. Let Mi be a 1-factor of Kn+1 and define M ′i a 1-factor of

Kn,n where for each edge xrxs ∈M we have the edges arbs and asbr in M ′i , and the edge

yxt ∈ Mi gives the edge atbt in M ′i . It is not hard to check that {M ′1,M ′2, . . . ,M ′n} is a

perfect 1-factorization of Kn,n. Figure 3.4 gives an example where n = 5.

y

x1

x2

x3x4

x5

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

Figure 3.4: From a 1-factorization of K6 (left) to a 1-factorization of K5,5 (right).

This reduces the case where n is odd to Kotzig’s conjecture. Clearly K2,2 has a perfect

1-factorization. For even n > 2, the graph Kn,n cannot have a perfect 1-factorization, a

generalisation of which will be discussed later and which is a specific case of Theorem 3.1.

In particular, a proof of Kotzig’s conjecture would also completely answer the question

of which complete bipartite graphs Kn,n have a perfect 1-factorization.

The converse, that if Kn,n has a perfect 1-factorization then so does Kn+1, may not

be true. Wanless [34] showed that there are 37 non-isomrphic perfect 1-factorizations

of K9,9 but only one perfect 1-factorization of K10, which is evidence against a direct

construction. Bryant, Maenhaut and Wanless [6] found a construction of a perfect 1-

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 64

factorization of Kp2,p2 where p is an odd prime. This does not come from Kn+1 (indeed,

infinitely many p2 are not of the form q or 2q−1 for some prime q) but rather uses Latin

squares to construct 1-factorizations.

From now on we shall focus on 1-factorizations of the hypercube. For d ≥ 1 the d-

dimensional hypercube graph Qd has vertices the subsets of {1, 2, . . . , d} and two vertices

joined by an edge if they differ in a single element. The hypercube Qd can also be

equivalently defined with vertex set {0, 1}d and two vertices joined by an edge if they

are at Hamming distance 1 (that is, if they differ in exactly one coordinate).

We say a vertex of Qd is even if the set contains an even number of elements, and

odd if not. Note that every edge of Qd goes from an odd vertex to an even vertex and so

Qd is bipartite with one vertex class of odd vertices and one vertex class of even vertices,

each of size 2d−1.

We say an edge is in direction i if its two endpoints differ in element i. This allows

us to define some natural 1-factors of Qd, called the directional matchings: for each

direction i = 1, . . . , d let Di be all edges in direction i. The collection of all directional

matchings is a 1-factorization of Qd, and note that the union of any pair Di∪Dj , with i, j

distinct, is a disjoint union of 4-cycles. Thus the factorization into directional matchings

is very far from perfect.

Perfect 1-factorizations are generally hard to find (we shall see later that they do not

exist for Qd with d > 2) and so we consider a weaker notion. We call a 1-factorization

M = {M1,M2, . . . ,Md} semi-perfect if there is a specified 1-factor, say M1, such that

M1 ∪Mi is a Hamilton cycle for all i 6= 1. We call a 1-factorization k-semi-perfect if

there is a set of k 1-factors M1, . . . ,Mk such that Mi ∪Mj is a Hamilton cycle for all

1 ≤ i ≤ k and all k < j ≤ d. .

Craft [2] conjectured that for every integer d ≥ 2 there is a semi-perfect 1-factorization

of Qd. This was proved independently by Gochev and Gotchev [14] and by Královič and

Královič [19] in the case where d is odd, and settled for d even by Chitra and Muthusamy

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 65

[8].

Gochev and Gotchev in fact went further and defined M to be k-semi-perfect if

Mi ∪Mj forms a Hamilton cycle for every 1 ≤ i ≤ k and k + 1 ≤ j ≤ d. They proved

that there is a k-semi-perfect factorization of Qd whenever k and d are both even with

k < d.

This leads us to wonder how close to a perfect factorization we can get. Is there a

k-semi-perfect factorization of Qd for all k < d? Is there a perfect factorization of Qd? If

not, what is the maximal number of pairs of 1-factors whose union is a Hamilton cycle?

Let us introduce some definitions.

It is convenient to introduce an auxiliary graph to express these (and similar) prop-

erties of 1-factorizations. For a 1-factorization M = {M1,M2, . . . ,Md} of H, we define

an auxiliary graph G[M] with vertices labelled M1, . . . ,Md and an edge between Mi and

Mj if Mi ∪Mj is a Hamilton cycle on H. Note that the definitions above can be easily

restated using G[M]: M is perfect if G[M] is complete, M is semi-perfect if G[M]

contains K1,d−1 as a subgraph, and M is k semi-perfect if G[M] contains Kk,d−k as a

subgraph.

With this new notation, we can rephrase our questions and ask what is the maximal

number of edges that G[M] can contain if M is a 1-factorization of Qd? Which graphs

can G[M] be isomorphic to? It is in fact not possible for G[M] to be complete when

d > 2 (i.e. M cannot be perfect). More than this, we can show that G[M] must be

bipartite.

Theorem 3.1 ([20]). Let H be a bipartite graph on two vertex classes each of size n,

where n is even. Let M be a partition of H into perfect matchings. Then G[M] must be

bipartite.

A version of Theorem 3.1 with the weaker conclusion that G[M] is not complete has

been, according to Bryant, Maenhaut and Wanless [6] proved many times, including by

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 66

Laufer in 1980 [20]. We re-prove it here for a few reasons, the main one being that we

extend the argument slightly to show that G[M] is bipartite. The proof also introduces

ideas that we will be using later (in Theorem 3.8).

In addition, it is hard to find the theorem and its proof in the literature — in par-

ticular, when making the conjecture that there is a semi-perfect 1-factorization of Qd,

Craft also asked whether a perfect 1-factorization of Qd could be found. Theorem 3.1 is

not mentioned in any of the papers that proved Craft’s semi-perfect conjecture.

Proof. Let X and Y be the vertex classes of H. A perfect matching M naturally induces

a function M : X → Y , where (x,M(x)) is an edge of M .

For two perfect matchings Mi and Mj , let πj,i be the permutation M−1j Mi on X.

Note that πi,i = id, πi,j = π−1j,i and πk,jπj,i = πk,i. Note further that if MiMj is an edge

of G[M] then Mi ∪Mj is a Hamilton cycle and so πj,i is a cycle of length n on X.

Suppose for a contradiction that G[M] contains an odd cycle and let

Mi1 , Mi2 , . . ., Mik , Mi1 be such a cycle. The permutations πi2,i1 , πi3,i2 , . . ., πik,ik−1
, πi1,ik

are all cycles of length n. Since n is even, all of these are odd permutations. Now,

1 = sgn(πi1,i1) = sgn(πi1,ikπik,ik−1
πik−1,ik−2

. . . πi3,i2πi2,i1)

= sgn(πi1,ik) sgn(πik,ik−1
) . . . sgn(πi3,i2) sgn(πi2,i1)

= (−1)k = −1

We have a contradiction, hence G[M] contains no odd cycles.

In the light of Theorem 3.1, the only remaining question is whether for any k, d there

is a 1-factorization M of Qd such that G[M] is isomorphic to the complete bipartite

graph Kk,d−k. (Equivalently, whether there is a k-semi-perfect 1-factorization of Qd for

every k and d, in the language of Gochev and Gotchev.) We almost fully resolve this

problem, with the one exception being for whether G[M] can be isomorphic to K3,3.

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 67

Theorem 3.2. For k, l ∈ N not both equal to 3, there is a 1-factorization M of the

hypercube Qk+l such that G[M] is isomorphic to the complete bipartite graph Kk,l.

We also explain, in section 3.3, why the K3,3 case cannot be resolved with our meth-

ods. In particular, the 1-factorizations we construct in the proof of the main theorem

have a direction respecting property. We show that any 1-factorization M of Q6 satis-

fying this direction respecting property cannot have G[M] is isomorphic to K3,3.

We finish with some open questions.

3.2 Main Theorem

To prove the theorem, we will use the following result due to Stong, which concerns the

symmetric directed hypercube
←→
Qd, obtained from Qd by replacing each edge with two

directed edges, one in each direction.

Theorem 3.3 ([28]). For d 6= 3, the symmetric directed hypercube
←→
Qd can be partitioned

into d directed Hamilton cycles.

The result of Stong’s Theorem is false when d = 3, which is easy but unenlightening

to check. As a result, when proving Theorem 3.2 we will have to deal separately with the

case when one of k or l is equal to 3. This is also the reason why we have been unable

to resolve the k = l = 3 case.

Stong’s result applies to directed cubes, but the following corollary allows us to use

it for undirected cubes.

Corollary 3.4. For d 6= 3, the cube Qd can be partitioned into 1-factors A1, A2, . . . , Ad

and also partitioned into 1-factors B1, B2, . . . , Bd such that Ai ∪Bi is a Hamilton cycle

for all i = 1, 2, . . . , d.

Proof. Using Theorem 3.3, partition
←→
Qd into directed Hamilton cycles H1, H2, . . ., Hd.

Let E be the even vertices of
←→
Qd and O the odd vertices, so that

←→
Qd is bipartite with

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 68

respect to the vertex classes E and O. For each Hi, we define Ai to be the edges of Hi

that go from E to O, and Bi to be the edges that go from O to E.

Since H1, H2, . . . ,Hd partition
←→
Qd , every edge from E to O is in a unique Ai and

every edge from O to E is in a unique Bj . If we now ignore the directions on the edges,

every edge of Qd is in a unique Ai and a unique Bj . It is clear that Ai and Bi are perfect

matchings and Ai ∪Bi is a Hamilton cycle by construction.

Note that we have slightly abused notation in the case d = 1, since A1 = B1 = Q1

and so A1 ∪ B1 is a single edge rather than a cycle. This will not matter in the cases

k 6= 3, l = 1, and we will consider the case k = 3, l = 1 separately.

Corollary 3.4 together with a theorem of Gochev and Gotchev [14, Theorem 3.1] is

enough to show that it is possible to have G[M] isomorphic to Kk,n−k for all k 6= 3

and all even n− k. We will improve on their arguments to deal with all but one of the

remaining cases.

We will split the theorem for three different cases and prove each separately. Before

we do so, let us outline the ideas involved.

We can view the hypercube Qk+l as a k-dimensional hypercube whose ‘vertices’ are

copies of Ql (i.e. as the Cartesian product of Qk and Ql). It may be helpful to recall

the alternative definition of Qk+l as having vertex set {0, 1}k+l and two vertices joined

by an edge if they are at Hamming distance 1. Using this definition, we think of Qk as

‘the first k coordinates’ and Ql as ‘the last l coordinates’.

Let us formalise this idea: Label the vertices of Qk as subsets of {1, 2, . . . , k} in the

usual way. For each vertex u of Qk, we define a different copy of Ql within Ql+k: let Qul

be the induced subgraph of Qk+l on all vertices w where w ∩ {1, 2, . . . , k} = u.

Conversely, we can view Qk+l as a l-dimensional hypercube whose ‘vertices’ are copies

of Qk. This time, label the vertices of Ql as subsets of {k + 1, k + 2, . . . , k + l} in the

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 69

natural way. For each vertex v of Ql, we define a different copy of Qk within Ql+k: let

Qvk be the induced subgraph of Qk+l on all vertices x with x∩{k+1, k+2, . . . k+ l} = v.

The most straightforward case of the theorem is when neither k nor l is equal to 3,

proved in Proposition 3.5. To prove this we use a generalisation of Gochev and Gotchev’s

construction [14].

The idea of the proof is as follows: first, we construct k disjoint matchings that use

only edges in directions 1, . . . , k. The matchings used within the Qvks are those obtained

from applying Corollary 3.4 to Qk. Next we construct l disjoint matchings that use only

edges in directions k + 1, . . . , k + l. Similarly, the matchings used within the Qul s are

those obtained from applying Corollary 3.4 to Ql. We then prove that taking the union

of a matching of the first kind and a matching of the second kind gives a Hamilton cycle.

The second case of the theorem is when k = 3 and l is not equal to 1 or 3, proved in

Proposition 3.6. We use a similar construction to the first case, the only difference being

that while we can use Corollary 3.4 on Ql, we cannot apply it to Q3. We will instead

take directional matchings on the copies of Q3; it turns out this can be made to work

here.

Finally, we are left with two cases: (k, l) = (3, 1) and (k, l) = (3, 3). The first of these

is proved in Proposition 3.7 by means of an explicit example. The case (k, l) = (3, 3) is

left unsolved. The difficulty of these final two cases is discussed in Section 3.3.

The following useful notation is common to the proofs of propositions 3.5 and 3.6.

For a perfect matching M and a vertex v, we define M(v) to be the other endpoint of the

edge containing v in M . (Note that this clashes slightly with our notation in Theorem

3.1: by that notation we are here conflating M and M−1.)

Proposition 3.5. When neither k nor l is equal to 3, there is a 1-factorization M of

the hypercube Qk+l such that G[M] is isomorphic to the complete bipartite graph Kk,l.

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 70

Proof. Using Corollary 3.4 partition Qk into matchings A1, A2, . . . , Ak and matchings

B1, B2, . . . , Bk such that Ai ∪Bi is a Hamilton cycle for all i.

For i = 1, 2, . . . , k define Mi to be the matching on Qk+l defined by taking the

following edges: 



Ai on Q∅k

Bi on Qvk for v 6= ∅

Note that the Mi are all disjoint, and they only use edges in directions 1, 2, . . . , k.

Also partition Ql into matchings X1, X2, . . ., Xl and matchings Y1, Y2, . . ., Yl such

that Xj ∪ Yj is a Hamilton cycle for all j.

For j = 1, 2, . . . , l define Nj to be the matching on Qk+l defined by taking the

following edges: 



Xj on Qul for u even

Yj on Qul for u odd

Another way to think of Nj is as containing edges between copies of Qvk. From an even

vertex in Qvk we add an edge to the corresponding vertex in Q
Xj(v)
k , and from an odd

vertex in Qvk we add an edge to the corresponding vertex in Q
Yj(v)
k .

Note that the Nj are all disjoint, and they only use edges in directions k + 1, k +

2, . . . , k + l. Thus the matchings {Mi}ki=1 ∪ {Nj}lj=1 are all disjoint and form a 1-

factorization of Qk+l (see Figure 3.5).

Note that since the auxiliary graph G[M] must be bipartite, to show that G[M] is

isomorphic to Kk,l to finish the proof it is sufficient to show that Mi ∪Nj is a Hamilton

cycle for all i, j.

Consider following the cycle starting at a vertex u that lies in Q∅k and alternating

between edges first in Nj and then in Mi.

Every time we travel along an edge in Mi the parity of the vertex in Qvk switches,

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 71

Ai

Bi Bi Bi Bi

Bi Bi Bi Bi Bi

Bi Bi Bi Bi

Bi

Bi

(a) Mi

Xj Yj

Xj Yj

(b) Nj

Figure 3.5: An example when k = 2 and l = 4

and so we will alternate using edges from Xj and edges from Yj in Nj . As Xj ∪ Yj is

a Hamilton cycle, the first time the cycle returns to Q∅k we will have travelled through

each other Qvk exactly once.

Each time we travel through a different Qvk we use an edge from Bi within it. After

passing through 2l − 1 copies of Qvk we will have bounced between u and Bi(u) an odd

number of times, so the first vertex we encounter in our return to Q∅k is Bi(u). The next

vertex would then be Ai(Bi(u)).

After passing through 2(2l) distinct vertices (two in each Qvk) we have moved from u

to Ai(Bi(u)), i.e. made two steps of the Hamilton cycle Ai ∪ Bi within Q∅k. Thus the

first time we will return to u∪∅ is after passing through 2k2l vertices, which is the total

number of vertices in the graph. Hence we have a Hamilton cycle.

Proposition 3.6. For l not equal to 1 or 3, there is a 1-factorizationM of the hypercube

Q3+l such that G[M] is isomorphic to the complete bipartite graph K3,l.

Proof. Using Corollary 3.4, partition Ql into matchings A1, A2, . . . , Al and B1, B2, . . . , Bl

such that Ai∪Bi is a Hamilton cycle for all j. Let X1, X2 and X3 be the three directional

matchings of Q3 — that is, Xj contains all edges in direction j.

For i = 1, 2, . . . , l defineMi to be the matching onQ3+l defined by taking the following

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 72

edges: 



Ai on Q∅l , Q
{1,2}
l , Q

{1,3}
l , Q

{2,3}
l and Q

{1,2,3}
l

Bi on Q
{1}
l , Q

{2}
l and Q

{3}
l

For j = 1, 2, 3 define Nj to be the matching on Q3+l defined by taking the following

edges, where the subscripts for the Xs are taken modulo 3:





Xj on Qv3 for v odd

Xj+1 on Qv3 for v even and v 6= ∅

Xj+2 on Q∅3

Bi

Bi

BiAi

Ai

Ai

Ai Ai

(a) Mi

X3

X1

X1X2

(b) N1

∅

{3}

{1}

{2} {1, 2}

{1, 3}

{1, 2, 3}{2, 3}

(c) Sketch of cycle Mi ∪N1

Figure 3.6: An example when l = 2

Now {Mi}li=1 ∪ {Nj}3j=1 is a set of 3 + l disjoint perfect matchings. As G[M] must

be bipartite, to complete the proof it only remains to show that Mi ∪Nj is a Hamilton

cycle for any i and j.

Note that {Mi} is invariant under the permutation that cycles directions 1,2 and 3.

Since N2 and N3 are obtained from N1 by such cyclic permutations, we can without loss

of generality assume that j = 1.

Consider Mi ∪N1 with the edges in Q∅3 removed; that is, the edges ∅{3}, {1}{1, 3},

{2}{2, 3} and {1, 2}{1, 2, 3}. We will show that the resulting graph comprises four paths,

from ∅ to {2}, from {2, 3} to {1, 2, 3}, from {1, 2} to {1} and from {1, 3} to {3}. Thus

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 73

when we add back the four edges in direction 3, we get a Hamilton cycle. See figure 3.6c

for an example.

View Q3+l as an l-dimensional hypercube whose ‘vertices’ are copies of Q3. Starting

at a vertex in Q∅3 and following the path from it, we will not return to Q∅3 until we have

made 2l steps around Ai ∪Bi.

A path starting at ∅ will move in directions according to Ai then X1 then Bi then

X2 and then repeat this pattern. It will return to Q∅3 after 2l moves from Ai ∪ Bi and

2l − 1 moves from X1 ∪X2. Since l ≥ 2, this means we end at the vertex {2}, and the

path contains 2(2l) vertices.

The same argument works to show that there is a path from {1, 2} to {1} containing

2(2l) vertices.

A path starting at {2, 3} will move in directions according to Ai then X1 then Ai,

ending at the vertex {1, 2, 3} and containing 4 vertices.

A path starting at {1, 3} will move in directions according to Ai, X1, Bi, X2, Ai, X1,

Ai, X2, and then repeat this pattern. It will return to Q∅3 after 2(2l) − 2 moves from

Ai ∪Bi and 2(2l)− 3 moves from X1 ∪X2. Thus we end at the vertex {3}, and the path

contains 4(2l)− 4 vertices.

The sum of the lengths of these paths is 8(2l), and so every vertex is contained in

one of these paths.

Proposition 3.7. There is a 1-factorization M of the hypercube Q4 such that G[M] is

isomorphic to the complete bipartite graph K3,1.

Proof. The four matchings are shown in figure 3.7. It is easy to check that the top

matching forms a Hamilton cycle with any of the three bottom matchings (in fact, by

symmetry you need only check one pair).

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 74

Figure 3.7: The matchings for k = 1 and l = 3

Proof of Theorem 3.2. Combine the results of Propositions 3.5, 3.6 and 3.7.

3.3 Direction Respecting 1-Factorizations

The only case not covered by Theorem 3.2 is whether G[M] can be isomorphic to K3,3.

This case cannot be resolved with our methods alone. To explain why, we will introduce

a notion of direction respecting 1-factorizations.

Fix k and l and let M = M1,M2, . . .Mk+l be a 1-factorization of Qk+l. We call

the 1-factorizationM direction respecting if M1,M2, . . . ,Mk only use edges in directions

1, . . . , k and Mk+1,Mk+2, . . .Mk+l only use edges in directions k + 1, . . . k + l.

Note that the matchings constructed in Propositions 3.5 and 3.6 were direction re-

specting for the appropriate k and l. However, the 1-factorization given in the proof of

proposition 3.7 was not direction respecting. We shall prove that there is no direction

respecting 1-factorization M with G[M] isomorphic to K3,3 or K3,1.

Theorem 3.8. There is a direction respecting 1-factorization M of Qk+l with G[M] =

Kk,l if and only if (k, l) are not (3, 1), (1, 3) or (3, 3).

Proof. First note that the proof of Theorem 3.2 shows that such a direction respecting

1-factorization exists when (k, l) are not (3, 1), (1, 3) or (3, 3).

Let d = 3 + l where l is 3 or 1. For M a perfect matching on Qd, think of M as a

bijection from the odd vertices of Qd to the even vertices (as in Theorem 3.1). If M and

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 75

N are perfect matchings then MN−1 is a permutation on the even vertices of Qd. We

define the sign of a 1-factorization {Mi}di=1 of Qd to be the product of the signs of the

permutations MiM
−1
j for all i < j. That is,

sgn(M) =
∏

i<j

sgn
(
MiM

−1
j

)
.

Let D(d) = {D(d)
i }di=1 be the directional matchings of Qd, where D

(d)
i contains all

edges in direction i. For i 6= j the permutation D
(d)
i

(
D

(d)
j

)−1
consists of 2d−2 disjoint

4-cycles. Thus sgn

(
D

(d)
i

(
D

(d)
j

)−1)
= (−1)2

d−2
= 1 for all i, j, and so sgn(D(d)) = 1.

Suppose M = {Mi}3i=1 ∪ {Nj}lj=1 is a 1-factorization of Qd where Mi ∪ Nj is a

Hamilton cycle for all i, j. The permutation MiN
−1
j is a cycle of length 2d−1 and so has

sign −1. Note that sgn
(
MiM

−1
s

)
= sgn

(
MiN

−1
j

)(
(MsN

−1
j)−1

)
= (−1)(−1) = 1, and

similarly sgn(NjN
−1
t) = 1. Thus sgn(M) = (−1)3l = −1 for any M with G[M] = K3,l.

We will define a switching operation on 1-factorizations that preserves their sign. We

will further show that any direction respecting 1-factorization M can be obtained from

D(d) using a series of switches. Since the sign of D(d) is 1, this is enough to show that

G[M] 6= K3,l.

Let M = {Mi}di=1 be a 1-factorization of Qd. Take a 4-cycle x, y, v, w in Qd and

suppose that the edges xy and vw are in matching Ms and vy and xw are in matching

Mt. A switch on w, v, y, w replaces M by the 1-factorization M′ = {M ′i}ni=1 where

M ′s = Ms ∪ {vy, xw} \ {xy, vw}, M ′t = Mt ∪ {xy, vw} \ {vy, xw}, and M ′i = Mi for

i 6= s, t.

Viewing the 1-factors Mi as bijections from the even vertices to the odd vertices,

we have composed Ms and Mt with the function swapping x and v, where x and v are

the even vertices of x, y, v, w. Therefore the permutations MsM
−1
i and M ′sM

−1
i , where

i 6= s, t, differ from each other by the transposition (x, v) and so have opposite sign.

Similarly MtM
−1
i and M ′tM

−1
i have opposite sign.

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 76

From this second interpretation of the switch it is clear that:

sgn(M′) =
∏

i<j

sgn
(
M ′i(M

′
j)
−1)

=
∏

exactly one of
i, j is s or t

− sgn
(
MiM

−1
j

) ∏

neither or both of
i, j is s or t

sgn
(
MiM

−1
j

)

= (−1)2(d−2) sgn(M) = sgn(M)

All that is left to show is that a 1-factorization satisfying the conditions of the theorem

can be obtained from D(d) by a series of switches. We will use the following proposition.

Proposition 3.9. Let D
(3)
1 , D

(3)
2 , D

(3)
3 be the directional matchings on Q3 and let A1, A2,

A3 be another 1-factorization of Q3. Then there are a series of switches that transform

D
(3)
1 , D

(3)
2 , D

(3)
3 into A1, A2, A3, respecting the ordering.

Proof of Proposition. It is easy to check that there are only 4 ways to partition Q3 into

perfect matchings, up to ordering — one way uses three directional matchings and the

other three ways each use one directional matching. Without loss of generality say that

A1 is a directional matching.

Note that we can use switches to re-order D
(3)
1 , D

(3)
2 , D

(3)
3 . To swap D

(3)
i and D

(3)
j

switch on ∅, {i}, {j}, {i, j} and on {k}, {i, k}, {j, k}, {i, j, k}, where i, j, k is 1, 2, 3 in some

order. Thus we can assume without loss of generality that A1 = D
(3)
1 .

If A2 and A3 are also directional matchings then we are done. If not, then we can

switch on ∅, {2}, {2, 3}, {3} to make them both directional matchings.

Let M = {Mi}3i=1 ∪ {Nj}lj=1 be a 1-factorization of Qd satisfying the conditions of

the theorem.

As in Theorem 3.2, we can view Q3+l as an l dimensional hypercube whose ‘vertices’

are copies of Q3. For v ⊂ {3 + 1, . . . , 3 + l} let Qv3 be the induced subgraph of Q3+l on

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 77

vertices of the form u ∪ v for all u ⊂ {1, 2, 3}. For each v in turn, apply the claim to Qv3

and M1,M2,M3 restricted to Qv3. In this way we obtain a series of switches that turn

D
(d)
1 , D

(d)
2 , D

(d)
3 into M1,M2,M3.

If l = 1, N1 = D
(n)
4 and we are done. If l = 3, apply an analogous process to above

to find switches that turn D
(d)
4 , D

(d)
5 , D

(d)
6 into N1, N2, N3. Note that these switches will

be only on edges in directions 4,5,6 and so will not interfere with M1,M2,M3 in any

way.

3.4 Computer Experiments

Given that there is only one case missing from Theorem 3.2, we wrote a computer

program to find k-semi-perfect 1-factorizations of the hypercube. Unfortunately, the

running time grows very large with the dimension and so we were unable to find a 3-

semi-perfect 1-factorization of Q6. We did, however, find various 1-factorizations for

cubes in fewer than 6 dimensions.

For d ≤ 4, we can exhaustively find all 1-factorizations of Qd for d ≤ 4. In particular,

we can find all k-semi-perfect 1-factorizations of Q4 for k < 4.

We know that there is a 1-semi-perfect 1-factorization of Q4 that is not direction re-

specting, as Figure 3.7 shows. One notable discovery of our computer experiments is that

there also exist 2-semi-perfect 1-factorizations of Q4 that are not direction respecting.

An example is given in Table 3-A, where the rows represent the vertices of Q4 (written

in binary), the columns represent the four 1-factors, and the entries of the table give the

direction of the edge adjacent to that vertex in the corresponding 1-factor.

It is clear to see that this is not a direction respecting 1-factorization as the 1-factors

M2 and M3 both have at least one edge in every direction. We can check that Mi ∪Mj

is a Hamilton cycle for 0 ≤ i ≤ 1 and 2 ≤ j ≤ 3 (so this is 2-semi-perfect), and for this

particular example we have in addition that Mi ∪Mj is only two disjoint cycles for any

other pair of distinct Mi,Mj .

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 78

Edge Directions

Vertices M0 M1 M2 M3

0000 1 2 3 4
0001 1 3 4 2
0010 4 2 1 3
0011 4 3 1 2
0100 4 2 3 1
0101 4 3 2 1
0110 1 2 4 3
0111 1 3 2 4
1000 1 3 2 4
1001 1 2 4 3
1010 4 3 2 1
1011 4 2 3 1
1100 4 3 1 2
1101 4 2 1 3
1110 1 3 4 2
1111 1 2 3 4

Table 3-A: A 2-semi-perfect 1-factorization of Q4 that is not direction respecting.

When the dimension is 5 the running time becomes too long to perform an exhaustive

search. We were able to use the program to find an example of a 1-factorization of Q5

where the union Mi ∪ Mj of any pair of distinct 1-factors forms exactly two disjoint

cycles. This is shown in Table 3-B.

How does the program work? First, we store the hypercube Qd as a list of vertices

from 0 to 2d−1, a list of edges as ordered pairs (i, j) with i < j, and a dictionary indexed

by vertices where the entry for a vertex is a list of all adjacent edges.

To find all 1-factorizations, start with i = 0 and then apply the following algorithm:

1. Set P to be a list of all edges that are not in any Mj for 0 ≤ j < i. Think of P as

the potential edges.

2. Put (0, 2i) into the 1-factor Mi and remove all edges adjacent to (0, 2i) from P .

3. If P is not empty, put the first edge e of P into Mi and remove all edges adjacent

to e from P .

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 79

Edge Directions

Vertices M0 M1 M2 M3 M4

00000 1 2 3 4 5
00001 1 2 4 5 3
00010 1 2 4 3 5
00011 1 2 3 5 4
00100 1 2 3 5 4
00101 1 4 5 2 3
00110 1 2 4 3 5
00111 1 5 3 2 4
01000 1 2 3 4 5
01001 1 5 4 2 3
01010 1 2 4 5 3
01011 1 3 5 2 4
01100 1 5 3 2 4
01101 1 4 2 5 3
01110 1 5 4 2 3
01111 1 3 2 5 4
10000 1 4 3 2 5
10001 1 3 2 5 4
10010 1 4 3 2 5
10011 1 4 2 5 3
10100 1 2 3 5 4
10101 1 3 5 2 4
10110 1 2 3 4 5
10111 1 5 4 2 3
11000 2 4 1 3 5
11001 3 5 1 2 4
11010 2 4 3 5 1
11011 3 4 5 2 1
11100 2 5 1 3 4
11101 3 2 1 5 4
11110 2 5 3 4 1
11111 3 2 4 5 1

Table 3-B: A 1-factorization of Q5 where the union of any pair of 1-factors is two cycles.

4. Repeat step 3 until P is empty.

� If Mi is a 1-factor (1) and i 6= d− 1, increase i by one and go back to step 1.

� If Mi is a 1-factor (1) and i = d − 1, then we have a 1-factorization. Store it

(2). Then, reverse to the last point where P contained more than one edge at

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 80

the end of step 3. Remove the first edge from P and apply step 3 (so we will

now be taking what was the next edge in P).

� Otherwise Mi is not a 1-factor. Reverse to the last point where P contained

more than one edge at the end of step 3. Remove the first edge from P and

apply step 3.

5. Continue until all possibilities have been exhausted.

Note that by ensuring that the edge (0, 2i) is in Mi, we have ruled out counting as

different 1-factorizations where the 1-factors are simply reordered.

This algorithm can be adapted to find 1-factorizations with certain properties by

adding in a check that Mi has the desired property at the places indicated by (1). For

example, to find all k-semi-perfect 1-factorizations we will check that if i ≥ k then

Mi ∪Mj is a Hamilton cycle for all 0 ≤ j < k. To find all 1-factorizations where the

union of any pair of 1-factors is at most two cycles, we add a check that Mi ∪Mj is

at most two cycles for all j < i. Checking as we go along rather than at the end saves

exploring fruitless avenues.

The algorithm can also be adapted is to find a single example of a 1-factorization

with a property rather than exhaustively searching for all of them. This can be done by

simply stopping the algorithm at the place indicated by (2). This is particularly useful

when dealing with dimensions greater than 4 where exhaustive searches are impractical.

The actual computer code that was written to find these examples can be found in

Appendix A.

3.5 Open Questions

The most obvious question is the missing case from Theorem 3.2.

Question 3.2. Is it possible to find a 1-factorization M of Q6 such that G[M] = K3,3?

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 81

Theorem 3.8 and its proof show that any such matchingM cannot be obtained from

applying a series of switches to the directional matchings. However, the answer could

still be ‘yes’. We found by hand a 1-semi-perfect factorization of Q4 that wasn’t obtained

from applying a series of switches to the directional matchings. Computer checking shows

that there in addition are other 1- and 2-semi-perfect 1-factorizations of Q4 that are not

direction respecting, of which the 1-factorisation in Table 3-A is an example.

We know from Theorem 3.1 that we cannot have a perfect 1-factorization of Qd for

d > 2. In fact, the maximum possible number of pairs of 1-factors whose union forms

a Hamilton cycle is
⌊
d2

4

⌋
, obtained when G[M] = Kbd/2c,dd/2e. What can be said about

the other pairs — can their union be close to a Hamilton cycle in some way?

Question 3.3. Let M = {Mi}di=1 be a 1-factorization of Qd. Is it possible for Mi ∪Mj

to contain a cycle of length (1− o(1))2d for every i 6= j?

Question 3.4. Let M = {Mi}di=1 be a 1-factorization of Qd. Is it possible for Mi ∪Mj

to consist of at most 2 cycles for every i 6= j?

In any direction-respecting k-semi-perfect 1-factorization, we have that Mi ∪Mj is

contained solely within the copies of Qk and so contains cycles of length at most 2k and

at least 2l components (and similarly for Ns ∪ Nt with k and l swapped). Assuming

without loss of generality that k ≤ l, the 2-factor Mi ∪Mj pretty far from a Hamilton

cycle. In particular, a positive answer to Questions 3.3 and 3.4 would have to use a

1-factorization that is far from direction respecting.

The examples in Figure 3.7 or Table 3-A (for Q4) and Table 3-B (for Q5) show that

for d ≤ 5 the answer to question 3.4 is ‘yes’.

One could also pose more general versions of these questions.

Question 3.5. What is the largest c = c(d) for which there exists a 1-factorization of

Qd such that for every i 6= j, Mi ∪Mj contains a cycle of length at least c?

Chapter 3. Semi-perfect 1-Factorizations of the Hypercube 82

Question 3.6. What is the smallest t = t(d) for which there exists a 1-factorization of

Qd such that for every i 6= j, Mi ∪Mj consists of at most t components?

We suspect that c(d) grows exponentially in d, but are only able to prove that c(d) is

non-decreasing with d. Let M = {M1, . . . ,Md} be a 1-factorization of Qd where every

pair Mi∪Mj contains a cycle of length at least c. Write Qd+1 = Qd×{0, 1}. For 1 ≤ i ≤ d

let the 1-factor M ′i be the same as Mi on Qd × {0} and the same as M(i+1 mod d) on

Qd × {1}. Let M ′d+1 be all edges in the (d + 1)th direction. It is not hard to see that

{M ′1, . . . ,M ′d+1} is a 1-factorization of Qd+1 where any pair M ′i ∪M ′j contains a cycle of

length at least c.

The same construction shows that t(d + 1) ≤ 2t(d). Again, we suspect that this is

far from optimal and that, as per Question 3.4, it could be that t(d) is bounded by a

constant.

A different way of thinking of Hamilton cycles is as connected 2-factors. Thus a

different generalisation of the problem would be to ask about the connectivity of other

r-factors. For example,

Question 3.7. For each d, let r = r(d) be minimal subject to there existing a 1-

factorization M of Qd where the union of any r distinct 1-factors is connected. What is

the value of r(d)?

Theorem 3.1 shows that r(d) is greater than 2 for d > 2. The 1-factorization given

by Theorem 3.2 in the case k =
⌊
d
2

⌋
and l =

⌈
d
2

⌉
has the property that the union of any

(⌈
d
2

⌉
+ 1
)

1-factors is connected, hence r(d) ≤
⌈
d
2

⌉
+ 1 for d 6= 6. It seems possible that

r is constant and it could be even as small as 3.

Chapter 4

Connectivity of High Dimension

k-Nearest-Neighbour Graphs

4.1 Introduction

Suppose that you had n radios lying in a plane and each radio can communicate with

its k nearest neighbours. How large does k need to be, in relation to n and d, for every

radio to be able to communicate (maybe indirectly) with any other?

Let us formalise this notion. First, for each n, let Sn be the square of area n. Define

an undirected random geometric graph G = G(n, k) as follows: Let P be a Poisson

process of density 1 in Sn. Join every point of P with its k nearest neighbours (in the

Euclidean metric) by an undirected edge.

Note that we could have instead chosen a square of side-length 1 and a Poisson process

of density n, which would simply be a rescaling. Note also that the expected number of

points in the square is n, and if we condition on the number of points being exactly n

we have a uniform distribution.

Throughout this document we say that G has a certain property with high probability

83

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 84

if the probability G has the property tends to 1 as n tends to infinity.

This random geometric graph has been well-studied. Xue and Kumar [35] proved

that in this case the threshold for connectivity is Θ(log n), showing in particular that

if k > 5.1774 log n then G is connected with high probability and if k < 0.074 log n

then G is disconnected with high probability. Balister, Bollobás, Sarkar and Walters [3]

improved the upper and lower bounds to 0.5139 log n and 0.3043 log n respectively, and

Walters [33] went on to further improve the upper bound to 0.4125 log n.

Choosing the k-nearest neighbours of each vertex gives the edges a natural orientation.

With this in mind, define the directed random geometric graph
−→
G =

−→
G(n, k) where for

every point of a Poisson process of density 1 in Sn we add directed edges pointing out

towards each of its k nearest neighbours. We say that this directed graph is connected

if it is strongly connected, that is, if for every pair of points u, v there is a directed path

from u to v and vice versa.

The directed random graph was also shown to have threshold for connectivity is

Θ(log n) by Balister, Bollobás, Sarkar and Walters [3], who proved upper and lower

bounds of 0.9967 log n and 0.7209 log n respectively.

A natural question to ask is what is the connectivity threshold if you construct these

graphs in higher-dimensional spaces? Let γd,n be the d-dimensional cube of volume n (so

the sidelengths of γd,n are n
1
d) and let P be a Poisson process of density 1 in γd,n. Define

the undirected random graph G = G(d, n, k) and directed random graph
−→
G =

−→
G(d, n, k)

as in the 2-dimensional case.

Using very simple generalisations of the arguments in the 2-dimensional setting [3] it

is easy to show that for fixed d, the threshold for connectivity is still Θ(log n).These argu-

ments give weak bounds on how the coefficient of log n depends on d: if k = Ω
(

1
log d log n

)

then G is connected with high probability and if k = O
(

1
ed

log n
)

then G is disconnected

with high probability. Given the difference in terms of d between these bounds, one

natural question is to ask how the threshold for connectivity depends on the dimension

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 85

d.

The main result of this chapter is to improve these bounds substantially.

Theorem 4.1. Let d ≥ 2. If k ≥ 2.467
d log n then G(d, n, k) is connected with high

probability. If k ≤ 0.102
d log d log n then G(d, n, k) is disconnected with high probability.

We also establish bounds on the threshold for connectivity of the directed graph
−→
G .

Theorem 4.2. Let d ≥ 2. If k > 2d

d log n then
−→
G(d, n, k) is connected with high proba-

bility. If k < 0.079
log d log n then

−→
G(d, n, k) is disconnected with high probability.

In the course of each proof we reduce to considering only components of small diam-

eter, where ‘small’ means less than c(log n)
1
d for some large constant c. In the directed

case we must consider separately both components with no edges out and components

with no edges in. The table below summarises the findings.

Small component without adjacent

edges out-edges in-edges

No such component if k
logn >

2.467
d

1
log d

1
d2d

Exists such component if k
logn <

0.102
d log d

0.721
d

0.079
log d

Table 4-A: Bounds on the thresholds for the existence of small diameter components.

Note that in the directed case the barrier to connectivity is the existence of small

components with no in-edges. This is due to the way we construct the graph: each vertex

is joined outwards to k nearest neighbours and so in the extreme case of a single vertex

component there will always be out-edges, though there may well be no in-edges.

The exponential upper bound in the in-edge case comes from an argument involving

vertices near the boundary of the cube. If we choose points at random in a d-dimensional

torus rather than a d-dimensional cube we no longer need to worry about what happens

at the boundaries. This allows us to improve the upper bound in the directed case.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 86

Theorem 4.3. Let d ≥ 2 and let
−→
G tor be the directed k-nearest-neighbour graph on a

d-dimensional torus. If k > 1.443 log n then
−→
G tor is connected with high probability. If

k < 0.792
log d log n then

−→
G tor is disconnected with high probability.

We prove the upper bound on the threshold for connectivity for the undirected graph

G in section 4.2. The upper bound for the directed graph
−→
G uses an adjustment of this

argument and is proved in section 4.3, which also includes a proof of the improved upper

bound when we instead consider the graph on a torus.

The lower bounds on the thresholds for connectivity for G and
−→
G are proved in

sections 4.4 and 4.5 respectively. We end with some open questions in section 4.6.

4.2 An Upper Bound for the Undirected Graph

We will prove the following theorem.

Theorem 4.4. Let d ≥ 2. If k > 2.467 logn
d , then as n → ∞ the undirected graph

G(d, n, k) is connected with high probability.

Fix d and assume that k = dc log ne (where c might depend on d). Before we get to

the proof of Theorem 4.4 we will prove two useful lemmas, Lemma 4.5 and 4.6, which

will allow us to approximate the structure of G = G(d, n, k).

Lemma 4.5. There exist constants c1, c2 and c3, depending on d and k but not n, such

that with high probability G = G(d, n, k) has the following properties:

1. All points distance ≤ c1(log n)
1
d apart are joined by a (bidirectional) edge;

2. All points distance ≥ c2(log n)
1
d apart are not joined by an edge;

3. Any half-ball of radius c3(log n)
1
d based at a point of G that is contained entirely

within γd,n contains at least one other point of G.

Proof. This lemma follows from simple properties of the Poisson distribution.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 87

1. Fix a vertex P and let B = B(P, c1(log n)
1
d) be the ball around P of radius

c1(log n)
1
d . Suppose that P is not joined to every vertex of B∩γd,n. Then B∩γd,n

has volume at most v = cd1 log nVd, where Vd is the volume of a d-dimensional unit

ball, and it contains at least k additional vertices of G.

The probability of this happening can be bounded as follows

p = e−v
∞∑

l=k

vl

l!
< e−v

∞∑

l=k

(v
k

)l−k vk
k!

< e−v
k

k − v
vk

k!
if v < k

< e−v
k

k − v
(ve
k

)k

≤ c

c− cd1Vd
n
−cd1Vd+c

(
1+log

(
cd1Vd

c

))
.

This is o
(
n−1

)
if both cd1Vd < c and −cd1Vd + c

(
1 + log

(
cd1Vd
c

))
< −1. This works

if, for example, we take c1 such that cd1Vd = ce−1−
1
c .

The expected number of vertices is n. Thus the expected number of vertices P such

that the ball around P of radius c1(log n)
1
d contains at least k additional vertices is

o(1). Hence the probability there is such a vertex is o(1) and with high probability

there is no such vertex P .

2. Fix a vertex P and let B = B(P, c2(log n)
1
d) be the ball around P of radius

c2(log n)
1
d . Suppose that fewer than k of P ’s nearest neighbours are in B ∩ γd,n.

Then B ∩ γd,n contains at most k vertices of G. The volume of B ∩ γd,n is at least

v = cd2 log nVd/2
d.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 88

The probability of this happening can be bounded as follows

p = e−v
k∑

l=0

vl

l!
< e−v

k∑

l=0

(
k

v

)k−l vk
k!

< e−v
v

v − k
vk

k!
if v > k

< e−v
v

v − k
(ve
k

)k

≤
((

c2
2

)d
Vd(

c2
2

)d
Vd − c

)
n
−(c2

2)
d
Vd+c

(
1+log

(
(c2

2)
d
Vd

c

))

This is o
(
n−1

)
if both

(
c2
2

)d
Vd > c and −

(
c2
2

)d
Vd + c

(
1 + log

(
(c2

2)
d
Vd

c

))
< −1.

This works if, for example, we take c2 such that
(
c2
2

)d
Vd = e(1 + c) (using that

log
(
1+c
c

)
≤ 1

c).

The expected number of vertices is n and so the expected number of vertices P

such that the ball around P of radius c2(log n)
1
d contains fewer than k additional

vertices is o(1). Hence the probability there is such a vertex is o(1) and with high

probability there is no such vertex P .

3. Fix a vertex P and let B = B(P, c3(log n)
1
d) be the ball around P of radius

c3(log n)
1
d . Split B into 2d regions using hyperplanes through P parallel to the

faces of γd,n. We shall show that any one of these regions that is fully contained

within γd,n is non-empty with high probability. Since any half-ball based at P must

fully contain one of the 2d regions, this will suffice to prove the result.

Let B′ be one of the 2d regions and suppose that it is empty and contained entirely

within γd,n. B′ has volume v = cd3 log nVd/2
d. The probability that it is empty is

p = e−v = n−(c3
2)

d
Vd ,

which is o
(
n−1

)
if we take c3 such that

(
c3
2

)d
Vd > 1.

The expected number of vertices is n and so the expected number of empty regions

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 89

based at a vertex of G is n2dp = o(1). Hence with high probability no such region

is empty.

Lemma 4.6. There exists a constant c4 depending on d and k but not n such that with

high probability G = G(d, n, k) has at most one component of large diameter ≥ c4(log n)
1
d .

The proof of Lemma 4.6 follows the same approach as the proof of Lemma 12 in [3].

First, we show that two components cannot be too close together.

Lemma 4.7. With high probability the distance between any two edges belonging to

different components of G is at least c1(log n)
1
d /2.

Proof. By Lemma 4.5 we may assume that any vertices that do not have an edge between

them are distance > c1(log n)
1
d apart for some c1. Let γ = c1(log n)

1
d .

Let xy be an edge in one component of G and wz be an edge in a different component

of G. Let u be the point on the line segment xy that is closest to wz, let v be the point

on wz that is closest to xy, and let h = d(u, v) be the distance between xy and wz. We

need to show that h > γ/2.

Suppose first that u is an endpoint of xy and v is an endpoint of wz. Without loss

of generality u = x and v = w. Since there is no edge between x and w, h = d(x,w) > γ

and we are done.

Suppose next that exactly one of u and v is an endpoint of their respective edges, say

u = x. Without loss of generality let z be one of the k nearest neghbours of w. Since

x is not one of the k nearest neighbours of w, we must have d(w, x) ≥ d(w, z), By the

triangle inequality, we have d(v, x) > d(z, x)− d(z, v) and d(v, x) > d(w, x)− d(w, v) >

d(w, z)− d(w, v). Summing these, we have that

2d(v, x) > d(z, x) + d(w, z)− d(z, v)− d(w, v) = d(z, x) > γ

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 90

and so h = d(v, x) > γ/2 as required.

Finally, suppose that neither u nor v are endpoints of their respective edges. Then

the line segment uv is orthogonal to both xy and wz. Without loss of generality suppose

that y is one of the k nearest neighbours of x and z is one of the k nearest neighbours

of w. We observe that the following inequalities must hold:

d(w, y) > d(w, z) (4.1)

d(w, x) > d(w, z) (4.2)

d(x, z) > d(x, y) (4.3)

d(x,w) > d(x, y) (4.4)

d(x, z) > γ (4.5)

d(w, y) > γ (4.6)

d(y, z) > γ (4.7)

w x

y
z

vu

c

d
a

b h

w′

z′

θ

a

c

Figure 4.1: The edges xy, wz and w′z′ with lengths a, b, c, d, h labelled.

Let a = d(w, v), b = d(y, u), c = d(z, v) and d = d(x, u), so that d(x, y) = b + d and

d(w, z) = a+ c. Let w′ = w +−→vu and z′ = z +−→vu , so that
−−→
w′z′ and −→xy lie in the same

plane with normal −→uv. Then let θ be the angle between the vectors −→xy and
−−→
w′z′. See

figure 4.1 for a diagram.

Using the cosine rule in triangle w′uy and Pythagoras’s Theorem on triangle ww′y

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 91

we can calculate that

d(w, y)2 =
(
a2 + b2 + 2ab cos θ

)
+ h2.

By a similar argument,

d(x, z)2 =
(
c2 + d2 + 2cd cos θ

)
+ h2,

d(w, x)2 =
(
a2 + d2 − 2ad cos θ

)
+ h2, and

d(y, z)2 =
(
b2 + c2 − 2bc cos θ

)
+ h2.

Substituting these into the squares of the first set of inequalities and rearranging gives

h2 > c2 − b2 + 2ac− 2ab cos θ (4.1′)

h2 > c2 − d2 + 2ac+ 2ad cos θ (4.2′)

h2 > b2 − c2 + 2bd− 2cd cos θ (4.3′)

h2 > b2 − a2 + 2bd+ 2ad cos θ (4.4′)

h2 > γ2 − c2 − d2 − 2cd cos θ (4.5′)

h2 > γ2 − a2 − b2 − 2ab cos θ (4.6′)

h2 > γ2 − b2 − c2 + 2bc cos θ (4.7′)

Consider the following linear combination of these inequalities:

1

b+ d

(
d(4.1′) + b(4.2′) + b(4.5′) + d(4.7′)

)
+

1

a+ c

(
a(4.3′) + c(4.4′) + c(4.6′) + a(4.7′)

)
.

Cancelling like terms, this gives that

4h2 >
1

b+ d

(
bγ2 + dγ2 − 2b2d− 2bd2 + 2acd+ 2abc

)

+
1

a+ c

(
cγ2 + aγ2 − 2a2c− 2ac2 + 2abd+ 2bcd

)

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 92

which further simplifies to 4h2 > 2γ2 and so h > γ√
2
. This completes the proof.

We use this result to prove the lemma.

Proof of Lemma 4.6. By Lemma 4.5, we may assume that any two vertices within dis-

tance c1(log n)
1
d are connected. Suppose there exist two components G1 and G2 each of

diameter at least D = c4(log n)
1
d .

Tile the cube γd,n with tiles of side-length s = c1(logn)
1
d

4
√
d

. Colour a tile red if it contains

a vertex of G1 or intersects an edge of G1. Colour a tile blue if it contains a vertex of G2

or intersects an edge of G2. Colour a tile black if it is neither red or blue but contains a

vertex, and colour a tile white if it contains no vertices. This is well-defined by Lemma

4.7. Furthermore, the distance between two points in two tiles that meet (even if only

at a corner) is < 2s
√
d = c1(log n)

1
d /2, and so by Lemma 4.7 a red tile can only touch

red or white tiles, and a blue tile can only touch blue or white tiles.

Let l = n
1
d

s (assuming for convenience that this is an integer) and identify the tiling

with the d-dimensional grid graph [l]d. The set of red tiles R and the set of blue tiles

B form connected components. Since G1 and G2 have diameter at least D and each tile

has diameter s
√
d, the number of red tiles is at least D

s
√
d

= 4c4
c1

and the number of blue

tiles is at least 4c4
c1

too.

The complement of B splits into components C1, C2, . . . , Ct. Since R is connected it

is contained entirely within one of these components, say C1. Now consider C1 and its

complement Cc1 = B ∪⋃t
i=2Ci. Both C1 and Cc1 are connected and since C1 contains R

and Cc1 contains B they both contain at least 4c4
c1

tiles.

Let ∂Cc1 be the set of all tiles that touch Cc1 but are not contained in Cc1. Since

Cc1 = B ∪⋃t
i=2Ci, by our earlier observation all tiles in ∂Cc1 must be white. Also note

that ∂Cc1 is connected in the grid [l]d and it contains the usual vertex boundary of Cc1.

By the vertex isoperimetric inequality in the grid [5], |∂Cc1| is bounded below by

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 93

the size of the vertex boundary of a simplex of volume 4c4
c1

. This is some constant c′

depending on d and c4 but independent of n.

Hence we have |∂Cc1| is a connected component of size > c′ containing only empty

tiles. We now just need to bound the probability of the existence of such a set. The

probability that a set containing c′ tiles is empty is e−c
′sd .

For any graph with maximum degree ∆, the number of connected subsets of size t

containing a particular vertex is at most (e∆)t. Thus the number of connected compo-

nents of [l]d of size c′ containing a particular tile is at most (e2d)c
′

and there are at most

ld(e2d)c
′

such components in total.

Putting all of this together, the probability that there is a connected set of c′ empty

tiles is

p = ld(e2d)c
′
e−c

′sd =

(
4
√
d

c1

)d
(e2d)c

′

log n
n
1−c′

(
c1

4
√
d

)d

Recall that c′ is the size of the vertex boundary of a simplex of volume 4c4
c1

. Thus by

choosing c4 large enough, thus ensuring that c′ is large enough, we can obtain p = o(1).

4.2.1 Proof of Theorem 4.4

We need only consider graphs G that have the four properties given by Lemmas 4.5 and

4.6, since these properties occur with high probability. Let c1, c2, c3, c4 be the constants

defined in these two lemmas. We will use these properties to obtain a granular model Ĝ

of the graph G.

Tile the cube γd,n with tiles of small side-length s < c5(log n)
1
d , where c5 = c5(d) is

a small constant independent of n. (Note that this may be a different side-length s to

the one given in the proof of Lemma 4.6.) Any two points in the same tile are distance

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 94

≤ c5
√
d apart, so we insist that c5 <

c1√
d

to guarantee that any pair of points that are in

the same tile are connected.

Let Ĝ be the graph where the vertices are the tiles and two tiles are joined if the dis-

tance between their centres is less than c2(log n)
1
d +
√
ds. If two points are connected then

the distance between them is < c2(log n)
1
d , and so their respective tiles are connected.

Note that Ĝ has bounded degree independent of n: each tile is connected to fewer

than

(
2

⌈
c2(logn)

1
d+
√
ds

s

⌉)d
=
(

2
⌈
c2
c5

+
√
d
⌉)d

other tiles.

Suppose that G is not connected. Then it contains a component C of small diameter

< c4(log n)
1
d . Let Ĉ be the collection of tiles containing points of C. Then the following

hold:

� if a point is in a tile in Ĉ then it is in C (since any two points in the same tile are

connected);

� the tiles in Ĉ form a connected subgraph in Ĝ (since if two points are connected

then so are the tiles containing them);

� The number of tiles in Ĉ is bounded by a constant independent of n. In particular,

the number of tiles is less than

(
2

⌈
c4(logn)

1
d+
√
ds

s

⌉)d
=
(

2
⌈
c4
c5

+
√
d
⌉)d

.

Since Ĝ has bounded degree, the number of connected, bounded-size subgraphs of Ĝ

containing any given tile is bounded by a constant. Summing over all tiles containing a

point, in total there are O(n) possibilities for Ĉ.

Our aim will be to show that the probability of a particular connected subset Ĉ

actually containing a connected component C of G (i.e. having no in-edges or out-edges)

is o
(
1
n

)
when k = 2 logn

d .

First some notation: for a set S let |S| denote the volume of S and let #S denote

the number of points of G contained in S. We will use in our proof the following simple

technical lemma due to Walters [33].

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 95

Lemma 4.8. Suppose A, B and C are three sets in γd,n with |A| ≤ |C| and |B| ≤ |C|.

Then

P(#A ≥ k,#B ≥ k,#(A ∩B) = 0 and #C = 0) ≤
(

4|A||B|
(|A|+ |B|+ |C|)2

)k
.

Proof. See Lemma 6 of [33]; the proof given is independent of the number of dimensions.

4.2.1.1 If C is not near the boundary

For ease of explanation, we shall first run the argument ignoring any issues that arise

due to the boundary of γd,n. We assume that no point of C is within distance c3(log n)
1
d

of the boundary. We use two constructions to bound the probability and combine them.

First, let us use that there are no out-edges. Consider taking the smallest box X that

contains the component C. On each face of the box there is a point xi of the component:

let B1, . . . , B2d be the k-nearest-neighbour balls of each of these xi. Pick j such that

Bj ∩X has the smallest volume, and let A′ = Bj ∩ Ĉ. For each i let Ai be the region

Bi∩X reflected in the relevant face of X. Note that all these regions are disjoint, A′ has

the smallest volume, and if the component has no edges out, there must be ≥ k vertices

in A′ and no vertices in each Ai. See figure 4.2 for an example in 2 dimensions.

We combine this with another construction. Let P ∈ C and Q 6∈ C be such that

the distance between them, r0 = d(P,Q), is minimised. Note that since P and Q are

not connected, we must have r0 ≥ c1(log n)
1
d . We also have that r0 ≤ c3(log n)

1
d , since

the half-ball of radius c3(log n)
1
d around the right-most point of C is not empty. Then

let B = Br0(Q) \ Br0(P) and note that B must contain Q’s k nearest neighbours. Let

r = r0 − s
√
d. We have r ≤ c3(log n)

1
d − s

√
d and so Ĉ(r) is contained in γd,n.

See figure 4.3 for an example in 2 dimensions.

Let x =
(
rdVd
|A′|

) 1
d

where Vd is the volume of a d-dimensional ball of radius 1. Note

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 96

A4

A2

A1

Ax2

x1

x4

A3

x3

Figure 4.2: The first construction for the 2-dimensional case

P

B

Ĉ(r0)

Q

Ĉ

Figure 4.3: The second construction for the 2-dimensional case

that

xd|A′| = rdVd =

(
r

r0

)d
rd0Vd =

(
1− s

√
d

r0

)d
rd0Vd

≥
(

1− c5(log n)
1
d

√
d

c1(log n)
1
d

)d
rd0Vd since r0 ≥ c1(log n)

1
d

=

(
1− c5

√
d

c1

)d
rd0Vd

Note that B has volume strictly less than a ball of radius r0 with a ball of radius r0
2

removed, and so |B| < rd0Vd −
(
r0
2

)d
Vd =

(
1− 1

2d

)
rd0Vd. Using this, we take c5 = c5(d)

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 97

sufficiently small to get that

xd|A′| > |B|.

Let us now use these constructions to bound the probability of a small connected

component C.

Start with a connected component Ĉ of Ĝ containing <
(

2
⌈
c4
c5

+
√
d
⌉)d

tiles. Sup-

pose that the points contained in the tiles of Ĉ form a connected component C of the

graph G. Then, as we’ve discussed, there exist regions A′, A1, A2 . . . , A(2d) determined

by 2d points defining the faces of the convex hull and the kth nearest neighbour of each

of these. There is also the region B determined by the points P and Q. All of these

4d+ 2 points are in C, except for Q, which is the nearest point to C that is not itself in

C.

Let Z be the event that, given Ĉ, there are 4d + 2 points of G defining regions as

above, with #A′ ≥ k,#B ≥ k,#
⋃2d
i=1Ai = 0 and #Ĉ(r) \ Ĉ = 0. Then the probability

that the points contained in Ĉ form a connected component is at most the probability

of Z.

Fix a particular collection of 4d + 2 points of G and let Z ′ be the event that these

points witness Z.

First, let us use the first construction and apply lemma 4.8 with A = A′, B = B

and C =
⋃2d
i=1Ai. We need to bound the sizes of these regions. Clearly, we have

|A′| ≤ 2d|A′| ≤ |⋃2d
i=1Ai|. If x ≤ (2d)

1
d then |B| ≤ xd|A′| ≤ 2d|A′| ≤ |⋃2d

i=1Ai|.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 98

Thus if x < (2d)
1
d then

P

(
#A′ ≥ k,#B ≥ k,#

2d⋃

i=1

Ai = 0

)
≤
(

4|A′||B|
(|A′|+ |B|+ |⋃2d

i=1Ai|)2

)k
.

≤




4 |B||A′|(
1 + |B|

|A′| + 2d
)2




k

≤
(

4xd

(1 + xd + 2d)
2

)k

where it is easy to check that the last inequality holds given |B|
|A′| ≤ xd ≤ 2d.

Next, let us use the second construction and apply lemma 4.8 with A = A′, B = B

and C = (Ĉ(r) \ Ĉ).

We need to bound |Ĉ(r) \ Ĉ|. Let |D| and |D′| be balls of volume |Ĉ(r)| and |A′|

respectively. Note that r = r0 − s
√
d < c3(log n)

1
d − s

√
d and so Ĉ(r) doesn’t intersect

the boundary. Thus by the isoperimetric inequality,

|Ĉ(r) \ Ĉ| ≥ |D(r) \D| > |D′(r) \D′|

D′ is a ball of radius
(
|A′|
Vd

) 1
d
, and so D′(r) has radius

(
|A′|
Vd

) 1
d

+r = (1+x)
(
|A′|
Vd

) 1
d
. Thus

|Ĉ(r) \ Ĉ| ≥ |D′(r) \D′| =
(

(1 + x)d − 1
)
|A′|.

We have |B| ≤ xd|A′| <
(
(1 + x)d − 1

)
|A′| ≤ |Ĉ(r) \ Ĉ|. If x ≥ 2

1
d − 1 then |A′| ≤

(
(1 + x)d − 1

)
|A′| ≤ |Ĉ(r) \ Ĉ|.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 99

Thus if x ≥ 2
1
d − 1 then

P
(

#A′ ≥ k,#B ≥ k,#Ĉ(r) \ Ĉ = 0
)
≤
(

4|A′||B|
(|A′|+ |B|+ |Ĉ(r) \ Ĉ|)2

)k
.

≤




4 |B||A′|(
1 + |B|

|A′| + (1 + x)d − 1
)2




k

≤
(

4xd

((xd + (1 + x)d)
2

)k

where again it is easy to check that the last inequality holds.

Combining these two bounds we get that

P(Z ′) ≤





(
4xd

(2d+1+xd)
2

)k
if x ≤ (2d)

1
d

(
4xd

((x+1)d+xd)
2

)k
if x ≥ 2

1
d − 1

It is straightforward to see that the former is smaller when (x+ 1)d ≤ 2d+ 1 and the

latter is smaller otherwise. Since 2
1
d − 1 < (2d+ 1)

1
d − 1 < (2d)

1
d , we can re-write this as

P(Z ′) ≤





(
4xd

(2d+1+xd)
2

)k
if x ≤ (2d+ 1)

1
d − 1

(
4xd

((x+1)d+xd)
2

)k
if x ≥ (2d+ 1)

1
d − 1

One can check that the first expression is increasing for 0 < x < (2d+ 1)
1
d , and so it

is maximised at x = (2d+ 1)
1
d − 1, where it is equal to the second expression. Thus we

only need to bound the second expression for x ≥ (2d+ 1)
1
d − 1.

We have that

4xd

((x+ 1)d + xd)
2 ≤

4xd

((x+ 1)d)
2

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 100

and by differentiating, we find that this is maximised when x = 1. In particular,

P(Z ′) ≤
(

4

22d

)k
= 4k(1−d).

Now we can calculate the probability of Z. Recall that we chose 4d+ 2 points within

c2 (log n)
1
d of Ĉ, so the number of tiles we could choose from was bounded by a constant.

Thus we picked the 4d + 2 points within an area of size O(log n), giving with high

probability O(log n)4d+2 ways of choosing the points. The expected number of sets of

points that witness Z is therefore O
(
(log n)4d+2

)
P(Z ′). So we have

P(Z) = O
(

(log n)4d+24k(1−d)
)

We conclude that if k
logn >

1.443
d > 2

d log 4 ≥ 1
(d−1) log 4 then P(Z) = o(n−1).

Finally, we can bound the probability that G is connected. We already observed

that the number of possible connected bounded-size subgraphs Ĉ is O(n). Thus the

probability that there is a component in G of small diameter < c4 log n
1
d is O(n)P(Z) =

o(1) if k
logn >

1.443
d . In particular, if k

logn >
1.443
d then with high probability there are no

components in G of diameter < c4 log n
1
d . By Lemma 4.6, G has only one component

with high probability.

4.2.1.2 If C is near the boundary

Let f be the number of faces of the cube γd,n that are within distance c3(log n)
1
d of Ĉ.

As before, construct the smallest box X containing the component C, where X has

faces parallel to the faces of the cube γd,n, and take xi to be the points of C lying on

each face of the box. For each xi construct Bi, the k-nearest-neighbour ball around xi

intersected with γd,n, and construct Ai, the region Bi ∩ Ĉ reflected in the relevant face

of X, again intersected with γd,n. Pick j such that Bj ∩X has the smallest volume and

let A′ = Bj ∩ Ĉ.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 101

Up to f of the Ai might intersect the boundary of γd,n. Without loss of generality,

suppose that A1, . . . , A2d−f do not intersect the boundary. We will ignore these regions.

It is the still the case that A has the smallest volume out of A,A1, . . . , A2d−f .

Let Z be the event that, given Ĉ, there are 4d + 2 points of G defining regions as

above, with #A′ ≥ k,#B ≥ k,#
⋃2d−f
i=1 Ai = 0 and #

(
Ĉ(r) \ Ĉ

)
∩ γd,n = 0. Then the

probability that the points contained in Ĉ form a connected component is at most the

probability of Z.

Fix a particular collection of 4d + 2 points of G and let Z ′ be the event that these

points witness Z.

Let us use the first construction and apply lemma 4.8 with A = A′, B = B and

C =
⋃2d−f
i=1 Ai. Clearly, we have |A′| ≤ (2d − f)|A′| ≤ |⋃2d−f

i=1 Ai|. Let x =
(
rdVd
|A′|

) 1
d

as

before, and note that we still have |B| < xd|A′|. If x ≤ (2d − f)
1
d then |B| ≤ xd|A′| ≤

(2d− f)|A′| ≤ |⋃2d−f
i=1 Ai|.

Thus if x < (2d− f)
1
d then

P

(
#A′ ≥ k,#B ≥ k,#

2d−f⋃

i=1

Ai = 0

)
≤
(

4|A′||B|
(|A′|+ |B|+ |⋃2d−f

i=1 Ai|)2

)k

≤
(

4xd

(1 + xd + 2d− f)
2

)k

Now consider the second construction. Let r0 be the minimal distance between a

vertex in C and a vertex not in C and let r = r0 − s
√
d. Note that since C does

not intersect the boundary and Ĉ(r) intersects at most f faces, we have that |(Ĉ(r) \

Ĉ) ∩ γd,n| ≥
(
1
2

)f |(Ĉ(r) \ Ĉ)|. Using the bound we calculated in Section 4.2.1.1 we have

|(Ĉ(r) \ Ĉ) ∩ γd,n| ≥
(
1
2

)f (
(1 + x)d − 1

)
|A′|.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 102

We will split into two cases. First, suppose x ≥ 1. Then

P
(

#A′ ≥ k,#
(

(Ĉ(r) \ Ĉ) ∩ γd,n
)

= 0
)
≤
(

|A′|
|A′ ∪ (Ĉ(r) \ Ĉ) ∩ γd,n|

)k
.

≤
(

1

1 +
(
1
2

)f
((1 + x)d − 1)

)k

≤
(

2f

(1 + x)d

)k

Next, suppose x ≤ 1. Let us try to apply lemma 4.8 with A = A′, B = B and

C = (Ĉ(r) \ Ĉ) ∩ γd,n. We have that |B| ≤ xd|A′| ≤ |A′|. If we also have that 1 ≤
(
1
2

)f (
(1 + x)d − 1

)
then |A′| ≤

(
1
2

)f (
(1 + x)d − 1

)
|A′| ≤ |Ĉ(r) \ Ĉ|.

Thus if (2f + 1)
1
d − 1 ≤ x ≤ 1 we can apply the lemma to get

P
(

#A′ ≥ k,#B ≥ k,#Ĉ(r) \ Ĉ = 0
)
≤
(

4|A′||B|
(|A′|+ |B|+ |Ĉ(r) \ Ĉ|)2

)k
.

≤




4 |B||A′|(
1 + |B|

|A′| +
(
1
2

)f
((1 + x)d − 1)

)2




k

≤
(

4xd

(xd + 2−f (1 + x)d)
2

)k

Combining these calculations for each construction, we have that

P(Z ′) ≤





(
4xd

(2d−f+1+xd)
2

)k
if x ≤ (2d− f)

1
d

(
4xd

(2−f (x+1)d+xd)
2

)k
if (2f + 1)

1
d − 1 ≤ x ≤ 1

(
2f

(1+x)d

)k
if 1 ≤ x

We will split into cases depending on the value of f .

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 103

Case 1: f = d. We have that

P(Z ′) ≤





(
4xd

(d+1+xd)
2

)k
if x ≤ d 1

d

(
2d

(1+x)d

)k
if d

1
d ≤ x

The former bound is increasing with x on its domain, while the latter is decreasing with

x on its domain. Thus

P(Z ′) ≤





(
4d

(2d+1)2

)k
if x ≤ d 1

d

(
2

1+d
1
d

)dk
if d

1
d ≤ x

In particular, we have P(Z ′) ≤ (c′)k, where c′ = max

(
4d

(2d+1)2
,

(
2

1+d
1
d

)d)
< 1 is some

constant depending only on d.

Case 2: f < d− 1. We have (2f + 1)
1
d − 1 ≤ 1 ≤ (2d− f)

1
d and so we can weaken the

bounds to get

P(Z ′) ≤





(
4xd

(2d−f+1+xd)
2

)k
if x ≤ (2f + 1)

1
d − 1

(
4xd

(2−f (x+1)d+xd)
2

)k
if (2f + 1)

1
d − 1 ≤ x ≤ 1

(
2f

(1+x)d

)k
if 1 ≤ x

Note that the final constraint is decreasing with x, so is maximised at x = 1, giving

P(Z ′) ≤ 1
2k(d−f) when x ≥ 1.

The first constraint is increasing with x on its domain, so is maximised at x = (2f + 1)
1
d − 1.

Note that for this value of x we have 2−f (x+ 1)d = 2−f (2f + 1) < 2d− f , which means

that the first constraint is strictly smaller than the second constraint. Thus we only need

to bound the second expression. We have

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 104

4xd

(2−f (x+ 1)d + xd)
2 ≤

4xd

(2−f (x+ 1)d)
2 ≤

4

4d−f

where the second inequality comes from the fact that the expression is maximised at

x = 1. Putting this together with the x ≥ 1 case, we have that when f ≤ d − 2 the

probability satisfies

P(Z ′) ≤ max

((
1

2d−f

)k
,

(
4

4d−f

)k)
=

(
1

2d−f

)k
= 2−k(d−f)

Case 3: f = d− 1. The calculations for the f < d− 1 case still hold in this case, but

the final bound is not quite strong enough when f = d − 1. In this case, we use that

(x+ 1)2 ≥ 4x and (x+ 1)d > 2f = 2d−1 to get the following improved bound:

4xd
(
2−(d−1)(x+ 1)d + xd

)2 ≤
4xd

41−d ((x+ 1)2)d + 2 (21−d)xd(x+ 1)d

≤ 4xd

41−d(4x)d + 2 (21−d)xd2d−1
=

2

3

Again, we combine this with the bound when x ≥ 1 to get that when f = d − 1 the

probability satisfies

P(Z ′) ≤ max

((
1

2

)k
,

(
2

3

)k)
=

(
2

3

)k

Because Ĉ is within distance c3 log n
1
d of f faces and has diameter < c4 log n

1
d , we

have that Ĉ must contain a vertex that is within distance (c3 + c4) log n
1
d of f faces of

the cube γd,n. Call such a vertex x.

The volume of the region that is within distance (c3 + c4)(log n)
1
d of f faces of the

cube γd,n is ≤
(
d
f

)
2f
(

(c3 + c4) log n
1
d

)f (
n

1
d

)(d−f)
. Thus with high probability there are

O
(
n

d−f
d

+o(1)
)

choices for x, giving that with high probability the number of possible

connected bounded-size components Ĉ within distance c3(log n)
1
d of f faces of γd,n is

also O
(
n

d−f
d

+o(1)
)

.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 105

As before, given Ĉ there are O
(
(log n)4d+2

)
ways of choosing the 4d+ 2 points that

define Z, and so putting everything together we have that the probability that there is

a component of diameter < c4(log n)
1
d is





O
(
n

d−f
d

+o(1)2−k(d−f)
)

if f < d− 1

O
(
n

1
d
+o(1)

(
2
3

)k)
if f = d− 1

O
(
no(1) (c′)k

)
if f = d

It is now clear to see that taking k
logn > 2.467

d > 1

(log 3
2)d

gives that the expected

number of small components is o(1) (using that c′ < 1). Thus when k > 2.467 logn
d , with

high probability there are no small diameter components.

4.3 An Upper Bound for the Directed Graph

Theorem 4.9. If k
logn > 2d

d , then as n → ∞ the directed graph
−→
G =

−→
G(d, n, k) is

connected with high probability.

The proof of Theorem 4.9 will follow a similar approach to the proof of Theorem 4.4.

Lemma 4.5 still holds in the directed case by the same proof. We will need something

analogous to Lemma 4.6.

Fix d and assume that k = dc log ne (where c might depend on d).

Call a set C an in-component if it has no adjacent edges coming in to it, and an

out-component if it has no adjacent edges going out of it. Note that any two disjoint

in-components have no edges between them and any two disjoint out-components have

no edges between them. Thus by Lemma 4.6, with high probability we do not have

two disjoint in-components of diameter > c4(log n)
1
d or two disjoint out-components of

diameter > c4(log n)
1
d .

To deal with the possibility of both an in-component and an out-component of large

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 106

diameter, we prove the following lemma which is analogous to Lemma 4.6. The proof

follows the same approach as the proof of Lemma 14 in [3].

Lemma 4.10. There exists a constant c4 (depending on d and k but not n) such that with

high probability
−→
G =

−→
G(d, n, k) does not contain an in-component and an out-component

that are disjoint and both of diameter ≥ c4(log n)
1
d .

Proof. By Lemma 4.5, we may assume that any two points at distance ≤ c1(log n)
1
d are

connected, and any two points at distance ≥ c2(log n)
1
d are not connected.

Let G1 be an out-component and G2 an in-component, both of diameter ≥ D =

c4(log n)
1
d . Unlike in the proof of Lemma 4.6, we do not necessarily have that edges of

G1 and G2 are distance > c1(logn)
1
d

2 apart. However, using arguments from the proof of

Lemma 4.7, we can say that a vertex x not in the out-component G1 is distance at least

c1(logn)
1
d

2 away from any edge wz of G1.

As before, tile the cube γd,n with tiles of side-length s = c1(logn)
1
d

4
√
d

. Colour a tile

red if it contains a vertex of G1 or intersects an edge of G1. Colour a tile blue if it

contains a vertex of G2 (unlike before, we do not colour blue tiles intersecting an edge

of G2). Colour a tile black if it is neither red or blue but contains a vertex, and colour

a tile white if it contains no vertices. This is well-defined by our observation above, and

furthermore, any tile touching a red tile must be either red or white.

Let l = n
1
d

s and identify the tiling with the d-dimensional grid graph [l]d, which we

will call Ĝ. Let R be the set of red tiles and B the set of blue tiles. Note that R forms

a connected component. Since no points at distance ≥ c2(log n)
1
d are connected, there

must be at least D

c2(logn)
1
d

= c4
c2

red tiles and at least c4
c2

blue tiles.

The complement of R splits into components C1, C2, . . . , Cm. Let C1, . . . , Cp be all

components that contain blue tiles, and let V =
⋃p
i=1Ci. Let U = V c and note that

U = R ∪⋃m
i=p+1Ci is connected. Since all blue tiles are in V and all red tiles are in U ,

they must each contain ≥ c4
c2

tiles.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 107

Let ∂U be the set of tiles not in U but touching at least one tile in U . By our earlier

observation all tiles in ∂U must be white. By the vertex isoperimetric inequality in the

grid [5], |∂U | is bounded below by the size of the vertex boundary of a simplex of volume

c4
c2

. This is some constant c′ depending on d and c4 but independent of n.

Unlike in the proof of Lemma 4.6, we do not necessarily have that ∂U is connected,

however we can show that it is connected in some power of the the grid graph Ĝ = [l]d.

Let t = 2 c4(logn)
1
d

s = 8
√
dc4
c1

so that the blue tiles are connected in Ĝ(t). Suppose that

∂U is not connected in Ĝ(t). Then we can partition ∂U into two non-empty sets A and

B with no tile in A within distance t of any tile in B. For 1 ≤ i ≤ p, let ∂Vi = ∂U ∩Ci.

Since ∂Vi is connected in G, we must have A and B are unions of ∂Vis. Now, there must

be a pair of 1 ≤ i, j ≤ p with ∂Vi ⊆ A, ∂Vj ⊆ B and blue tiles bi ∈ Vi, bj ∈ Vj at distance

< t apart. The shortest path from bi to bj passes through ∂Vi and ∂Vj and has length

< t, giving that d(∂Vi, ∂Vj) < t which is a contradiction.

Thus ∂U is connected in Ĝ(t). Recall that for any graph with maximum degree ∆,

the number of connected subsets of size t containing a particular vertex is at most (e∆)t.

The maximum degree ∆ of Ĝ(t) is ≤ (2t)d and so the number of connected components

of Ĝ(t) of size c′ containing a particular tile is at most
(
e(2t)d

)c′
. Thus there are at most

ld(2t)dc
′
ec
′

such components in total.

Putting all of this together, the probability that there is a connected set of c′ empty

tiles is

p = ld(2t)dc
′
ec
′
e−c

′sd =

(
4
√
d

c1

)d
(2t)dc

′

log n
exp

(
log n+ c′ − c′

(
c1

4
√
d

)d
log n

)

Recall that c′ is the size of the vertex boundary of a simplex of volume 4c4
c1

. Thus

by choosing c4 large enough, thus ensuring that c′ is large enough, we can obtain p =

o(1).

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 108

4.3.1 Proof of Theorem 4.9

We will prove two results, one to bound the probability of a small-diameter in-component

and the other to bound the probability of a small-diameter out-component. These com-

bined with Lemmas 4.6 and 4.10 give us Theorem 4.9.

Theorem 4.11. If k
logn > 1

log d , then as n → ∞ the directed graph
−→
G =

−→
G(d, n, k)

contains no component of diameter < c4(log n)
1
d with no adjacent out-edges.

Theorem 4.12. If k
logn >

2d

d , then as n→∞ the directed graph
−→
G =

−→
G(d, n, k) contains

no component of diameter < c4(log n)
1
d with no adjacent in-edges.

Proof of Theorem 4.11. Suppose that C is an out-component of diameter < c4(log n)
1
d .

Tile the cube γd,n as in the the proof of Theorem 4.4 and construct Ĉ, as well as

the sets A′ and A1, . . . , A2d. Note that since there are no edges out of C, we have that

A1, . . . , A2d are empty and A′ contains at least k points.

Let f be the number of faces of the cube γd,n that are within c3(log n)
1
d of C, and

without loss of generality suppose that A1, . . . , A2d−f do not intersect the boundary, so

we have (2d− f)|A′| ≤ |⋃2d−f
i=1 Ai|.

P

(
#A′ ≥ k,#

2d−f⋃

i=1

Ai = 0

)
=


 |A′|
|A′|+

∣∣∣
⋃2d−f
i=1 Ai

∣∣∣



k

≤
(

1

1 + 2d− f

)k

If k
logn >

1
log d+1 we have

P

(
#A′ ≥ k,#

2d−f⋃

i=1

Ai = 0

)
≤ n−

2 log (2d−f+1)
log d = o

(
n−1

)

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 109

Now just as in the undirected case, the number of possible connected bounded-size

subgraphs Ĉ is O(n), and given such a Ĉ there are O
(
(log n)4d

)
ways of choosing the 4d

points that define A′, A1, . . . , A2d. The probability that these define an out-component

is certainly bounded by P
(

#A′ ≥ k,#⋃2d−f
i=1 Ai = 0

)
. Putting this all together, the

probability that there is a small-diameter out-components in G is o
(
n(log n)4dn−1

)
=

o(1) when k
logn >

1
log (d+1) .

Proof of Theorem 4.12. Suppose that C is an in-component of diameter < c4(log n)
1
d .

Tile the cube γd,n as in the the proof of Theorem 4.4 and construct Ĉ. Let P ∈ C

and Q 6∈ C be such that the distance between them r0 = d(P,Q) is minimised, and let

r = r0 − s
√
d. Construct the set B as before and note that since there are no edges into

C the k nearest neighbours of Q must be in B.

Let xd = rdVd
|Ĉ| . As before, we have |B| < rdVd = xd|Ĉ|.

Let f be the number of (d − 1)-dimensional faces of the cube γd,n that are within

distance c3(log n)
1
d of our component.

We have that |Ĉ(r) \ Ĉ ∪ γd,n| ≥ 2−f |Ĉ(r) \ Ĉ| ≥ 2−f
(
(1 + x)d − 1

)
, using the same

arguments as before.

Applying these bounds on |B| and |Ĉ(r) \ Ĉ| we can bound the following probability:

P
(

#B ≥ k,#
(
Ĉ(r) \ Ĉ ∩ γd,n

))
=




∣∣∣B \
(
Ĉ(r) \ Ĉ ∩ γd,n

)∣∣∣
∣∣∣B ∪

(
Ĉ(r) \ Ĉ ∩ γd,n

)∣∣∣



k

≤


 |B|
|B|+

∣∣∣Ĉ(r) \ Ĉ ∩ γd,n
∣∣∣



k

≤
(

xd

xd + 2−f ((1 + x)d − 1)

)k

≤
(

1

1 + 2−f

)k

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 110

As in the undirected case, with high probability the number of possible connected

bounded-size components Ĉ within distance c3(log n)
1
d of f faces of γd,n is O

(
n

d−f
d

+o(1)
)

.

There are O
(
(log n)2

)
ways of choosing the points P and Q that define B and Ĉ, and

so putting everything together we have that the probability that there is an in-component

of diameter < c4(log n)
1
d is

O

((
1

1 + 2−f

)k
n

d−f
d

+o(1)

)
.

In order for this to be o(1) we need that k > d−f
d log (1+2−f)

log n for all 0 ≤ f ≤ d.

Using the inequality log x ≥ 1− 1
x , we obtain that d−f

d log (1+2−f)
≤ (2f+1)(d−f)

d ≤ 2d

d , so it

suffices to take k
logn >

2d

d .

4.3.2 An Upper Bound for the Directed Graph on a Torus

Suppose that we instead construct a k-nearest neighbour graph on a torus. Let the torus

Td,n be formed from the cube γd,n with opposite faces identified and let Ptor be a Poisson

process of density 1 on Td,n. Let
−→
G tor =

−→
G tor(d, n, k) have vertices given by Ptor and

each vertex joined by a directed edge out to its k nearest neighbours under the Euclidean

metric.

The directed graph
−→
G tor is like the directed graph

−→
G on the cube γd,n but with any

restrictions arising due to the boundary of the cube removed. In particular, we can

obtain a better upper bound on the connectivity threshold for
−→
G tor than for

−→
G .

Theorem 4.13. If k
logn > 1.443, then as n→∞ the directed graph

−→
G tor =

−→
G tor(d, n, k)

is connected with high probability.

Lemmas 4.5, 4.6 and 4.10 and Theorem 4.11 still hold for
−→
G tor as for

−→
G . If we can

improve the bound on the threshold for a large in-component we will be done.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 111

Theorem 4.14. If k
logn > 1.443, then as n→∞ the directed graph

−→
G tor =

−→
G tor(d, n, k)

contains no component of diameter < c4(log n)
1
d with no adjacent in-edges.

Proof. The proof is identical to that of Theorem 4.12, except that there are no boundary

faces to consider so we can substitute in f = 0 throughout. This gives that the probability

that there is an in-component of diameter < c4(log n)
1
d is

O

((
1

1 + 20

)k
n

d
d
+o(1)

)
= O

(
2−kn1+o(1)

)
.

If k
logn > 1.443 > 1

log 2 then this probabiltiy is o(1) and there are with high probability

no small diameter in-components.

It seems likely that the existence of the boundary in the cube compared to the torus

really does change the threshold for the existence of a small diameter in-component.

Suppose there is a point x of
−→
G close to several faces the cube γd,n. A ball around

the point has will be sliced by the boundary faces and have much reduced volume, and

so it is much more likely that it contains no points nearby. In particular, there is a

high probability that no points will have x as one of their nearest neighbours, making

x an in-component of its own. This is not an obstacle in the undirected case or for

out-components as the point x will always send out edges to at least k other points.

4.4 A Lower Bound for the Undirected Graph

Theorem 4.15. If k
logn < 0.102

d log d , then as n → ∞ the undirected graph G(d, n, k) is

disconnected with high probability.

The idea of the proof is to define a certain density distribution on a ball D such that

� if a region had this density distribution it would necessarily contain a small con-

nected component,

� the probability that a Poisson process on D gives the specified density distribution

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 112

is ‘large’, and

� we can fit many balls of size |D| into the cube γd,n.

The latter two points will give that the expected number of copies of D with the specified

density distribution is at least 1. By the first point this copy of D will thus contain a

small connected component.

Proof. Let D be a ball of radius (2− α)r0 for some α and r0 around a point (called the

origin). We will name some of the regions of D. Let X be the ball of radius αr0 about

the origin; let Y be the annulus from radius αr0 to r0; let Z1 be the annulus from radius

r0 to (1 + δ)r0; and let Z2 by the annulus from radius (1 + δ)r0 to (2−α)r0. See Figure

4.4 for a diagram of the 2-dimensional case.

We will specify that Y is empty. We want X to contain an isolated component, which

requires two things. Firstly, that X contains ≥ k + 1 points, so that every point in X

has its k nearest neighbours in X. Secondly, that for any vertex x at radius r > r0,

the number of vertices in B(r−αr0)(x) is at least k + 1: this ensures that the k nearest

neighbours of x lie outside of X.

X

Y

Z1

Z2

xx0

G1 G2

Figure 4.4: The regions in the 2-dimensional case

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 113

Note that B(r−αr0)(x) ⊃ B(r0−αr0)(x0) where x0 is on the same line from the origin

as x, but at radius r0 < r. Thus it is sufficient to stipulate that B(r0−αr0)(x0) con-

tains k + 1 vertices for all x0 at radius r0: as such, fix a particular such x0 and define

G = B(r0−αr0)(x0) \ (X ∪ Y). Let G1 = G ∩ Z1 and G2 = G ∩ Z2 so that G = G1 ∪G2.

Now we will specify the density function ρ, as a function of the distance r from the

origin.

ρ(r) =





ρ1|G1|+ |G2|
|X| if 0 ≤ r ≤ αr0 (X)

0 if αr0 < r ≤ r0 (Y)

ρ1 if r0 < r ≤ (1 + δ) r0 (Z1)

1 if (1 + δ) r0 < r ≤ (2− α) r0 (Z2)

where

ρ1 =
|D| − |G2| − |Z2|
|G1|+ |Z1|

is independent of r0.

By the choice of ρ1, we have that the total density is 1:

∫

D
ρ dV = (ρ1|G1|+ |G2|) + ρ1|Z1|+ |Z2| = |D|

We also have that ∫

X
ρ dV = ρ1|G1|+ |G2| =

∫

G
ρ dV.

and so by adjusting r0 we can ensure that, as was required, we have

k + 1 =

∫

X
ρ dV =

∫

G
ρ dV.

To approximate the probability of the density being close to this, we will make use

of the following lemma which can be found in [3] (stated for the 2-dimensional case, but

the dimension is actually irrelevant to the proof).

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 114

Lemma 4.16. Let A1, . . . At be disjoint volumes, and ρ1, . . . , ρt ≥ 0 be real numbers

such that ρi|Ai| ∈ Z. Then the probability that a Poisson process with intensity 1 has

precisely ρi points in each region Ai is

exp

(
t∑

i=1

(ρi − 1− ρi log ρi)|Ai|+O
(
t log+

∑
ρi|Ai|

))

with the convention that 0 log 0 = 0 and log+ x = max(log x, 1).

Note that the exact probability is easy to write down and Lemma 4.16 just gives us

a simple usable approximation.

If we divide Z1 ∪ Z2 into very small tiles Ai, we can apply this lemma to the regions

X, Y and the Ai, and the densities they should have according to the function ρ. Note

that the number t of tiles used may depend on d, ρ1, δ and α but does not depend on n

or k. Let p be the probability that we are very close to the specified density, in the sense

that each of the regions X, Y and the Ai contain the same number of points that they

would under the density ρ. We have that p satisfies

− log p =

∫

D
ρ log ρ dV −

∫

D
ρ dV +

∫

D
dV +O(t log

∫

D
ρ dV)

=

∫

D
ρ log ρ dV +O(log |D|)

=
(k + 1)∫
X ρ dV

∫

D
ρ log ρ dV +O(log |D|)

and so we want to bound

∫
D ρ log ρ dV∫

X ρ dV
= log

(
ρ1|G1|+ |G2|

|X|

)
+ log (ρ1)

ρ1|Z1|
ρ1|G1|+ |G2|

.

Since |D| > |Z1|+ |Z2|+ |G1|+ |G2|, we have that

ρ1 =
|D| − |G2| − |Z2|
|G1|+ |Z1|

> 1.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 115

We also have that

ρ1 =
|D| − |G2| − |Z2|
|G1|+ |Z1|

≤ |D| − |Z2|
|Z1|

=
(1 + δ)d

(1 + δ)d − 1
≤ 1 +

1

δ
.

Now we can calculate

ρ1|Z1|
ρ1|G1|+ |G2|

≤ ρ1|Z1|
|G| ≤

|D| − |Z2|
|G|

≤ 2(1 + δ)d

(1− α)d
since G is at least half of B(1−α)r0(x)

and

ρ1|G1|+ |G2|
|X| ≤ ρ1|G|

|X|

≤
(

1 +
1

δ

)
(1− α)d

αd
since G is smaller than B(1−α)r0(x).

Thus

∫
D ρ log ρ dV∫

X ρ dV
≤ log

((
1 +

1

δ

)(
1− α
α

)d)
+ 2

(
1 + δ

1− α

)d
log

(
1 +

1

δ

)

Set δ = 1
2d and α = 1

2(d+1) so that
(

1+δ
1−α

)d
=
(
1 + 1

d

)d ≤ e. We get

∫
D ρ log ρ dV∫

X ρ dV
≤ log

(
(2d+ 1)(2d+ 1)d

)
+ 2e log (2d+ 1)

= (d+ 1 + 2e) log (2d+ 1)

≤ (3 + 2e) log 5

2 log 2
(d log d) using that d ≥ 2.

Letting c = (3+2e) log 5
2 log 2 , we have

− log p ≤ (k + 1)cd log d+O (log |D|) .

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 116

Note that

k + 1 = ρ1|G1|+ |G2| > |G| >
1

2

(
1− α
2− α

)d
|D|

=
1

2

(
2d− 1

4d− 1

)d
|D| ≥ 1

2

(
3

7

)d
|D|.

and so log |D| ≤ log k + 1− d log (7/3) + log 2 = O(log (k + 1)). We get that

p ≥ exp (−(k + 1)cd log d+O(log (k + 1))).

Now, we need to bound the number of expected number of copies of D. The number

of balls of radius (2− α)r0 that fit inside the cube γd,n is

≥
(⌊

n
1
d

(2− α)r0

⌋)d
= Θ

(
n

|D|

)
= Θ

(
n

k + 1

)
.

In particular, the expected number of copies of D is Θ
(
np
k+1

)
and so we can say that the

graph is disconnected with high probability if

lim
n→∞

np

k + 1
=
n exp (−(k + 1)cd log d+O(log (k + 1)))

k + 1
> 1.

If

k

log n
<

0.102

d log d
<

1

cd log d

then the graph is disconnected with high probability.

4.5 A Lower Bound for the Directed Graph

We have the following two theorems on the existence of small diameter in-components

and small diameter out-components respectively.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 117

Theorem 4.17. If k
logn < 0.721

d then with high probability the directed graph
−→
G =

−→
G(d, n, k) contains an out-component of diameter < k

1
d .

Theorem 4.18. If k
logn < 0.079

log d then with high probability the directed graph
−→
G =

−→
G(d, n, k) contains an in-component of diameter < k

1
d .

The general theorem follows immediately from the second of these.

Theorem 4.19. If k
logn < 0.079

log d then with high probability the directed graph
−→
G =

−→
G(d, n, k) is not strongly connected.

Similarly to the proof of Theorem 4.15 for the undirected graph, to prove each of

Theorems 4.18 and 4.17 we will define a density distribution on a ball that guarantees

an out-component or in-component respectively and then bound the probability of such

a density distribution occuring.

Proof of Theorem 4.17. Let D be a ball of radius r0 about a point (which we call the

origin). Let X be the ball of radius r0
4 about the origin and let Y be the annulus from

r0
4 to r0. Specify a density function ρ as a function of the distance r from the origin.

ρ(r) =





4d if 0 ≤ r ≤ r0
4

(X)

0 if
r0
4
< r ≤ r0 (Y)

Note that the distance between two points in X is closer than the distance between

a point in X and a point outside D. By adjusting r0, we can ensure that we have

k + 1 = rd0Vd = |D| =
∫

D
ρ dV.

This means that the k nearest neighbours of any point in X are also in X, and so any

region with this density must be an out-component.

Let p be the probability that region X contains k + 1 points and region Y is empty.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 118

Then by Lemma 4.16 we have that p satisfies

− log p =

∫

D
ρ log ρ− ρ+ 1 dV +O(2 log

∫

D
ρ dV)

=
(

4d log 4d − 4d + 1
) rd0Vd

4d
+

(
1− 1

4d

)
rd0Vd +O(2 log (k + 1))

= (k + 1)d log 4 +O(2 log (k + 1))

We bound the number of expected number of copies of D as before. The number of

balls of radius r0 that fit inside the cube γd,n is

≥
(⌊

n
1
d

r0

⌋)d
= Θ

(
n

(r0)d

)
= Θ

(
n

k + 1

)
.

Then the expected number of copies of D that exist is Θ(np
k+1). Thus we can say that

with high probability the graph contains an out-component of diameter r0
2 < k

1
d if

lim
n→∞

np

k + 1
= lim

n→∞
ne−(k+1)d log 4+O(2 log k+1)

k + 1
> 1.

which certainly holds when k
logn <

0.721
d < 1

d log 4 .

Proof of Theorem 4.18. Let D be a ball of radius (2−α)r0 about a point (which we call

the origin), and define the regions X,Y, Z1, Z2, G,G1 and G2 as in the proof of Theorem

4.15 (see Figure 4.4).

We specify a density function ρ on D as a function of the distance r from the origin.

ρ(r) =





ρ1 if 0 ≤ r ≤ αr0 (X)

0 if αr0 < r ≤ r0 (Y)

ρ2 if r0 < r ≤ (1 + δ)r0 (Z1)

1 if (1 + δ)r0 < r ≤ (2− α)r0 (Z2)

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 119

We need that
∫
D ρ dV = |D|, so that the total density is correct; that

∫
X ρ dV = 1,

so that the component X is non-empty; and that
∫
G ρ dV = k + 1, so that there are no

edges in to X. This last follows from the fact that for any point x at distance r > r0

from the origin, the ball of radius r−αr0 around x contains a region G, as demonstrated

in Figure 4.4.

Take ρ1 and ρ2 satisfying the simultaneous equations (k + 1)ρ1|X| = ρ2|G1| + |G2|

and ρ1|X|+ ρ2|Z1| = |D| − |Z2|. In particular,

ρ2 =
(k + 1) (|D| − |Z2|)− |G2|

(k + 1)|Z1|+ |G1|
and ρ1 =

ρ2|G1|+ |G2|
(k + 1)|X| .

This gives that
∫
D ρ dV = ρ1|X|+ ρ2|Z1|+ |Z2| = |D|. By scaling r0 we can ensure

that
∫
X ρ dV = ρ1|X| = 1 and

∫
G ρ dV = ρ2|G1 + |G2| = k + 1.

We would like to apply Lemma 4.16. Divide Z1 ∪ Z2 into small tiles A1, A2, . . . , At

where the number t of tiles used may depend on d, ρ1, ρ2, δ and α but does not depend

on n or k. Let p be the probability that that we are very close to the specified density

on D, in the sense that the regions X, Y and A1, A2, . . . , At contain the same number

of points that they would under the density ρ. We get that p satisfies the following

equation:

− log p =

∫

D
ρ log ρ dV −

∫

D
ρ dV +

∫

D
dV +O(t log

∫

D
ρ dV)

= ρ1|X|logρ1 + ρ2|Z1| log ρ2 +O(log |D|)

= log ρ1 + (k + 1)
ρ2|Z1|

ρ2|G1|+ |G2|
log ρ2 +O(log |D|).

Let us bound some of these quantities. We have that |D|−|Z1|−|Z2| = |X|+|Y | > |G|

and so

ρ2 =
(k + 1) (|D| − |Z2|)− |G2|

(k + 1)|Z1|+ |G1|
>
|D| − |Z2| − |G2|
|Z1|+ |G1|

> 1.

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 120

We also have that

ρ2 <
|D| − |Z2|
|Z1|

=
(1 + δ)d

(1 + δ)d − 1
= 1 +

1

(1 + δ)d − 1
< 1 +

1

δ
.

Using these, we can calculate

ρ2|Z1|
ρ2|G1|+ |G2|

<
ρ2|Z1|
|G| ≤

|D| − |Z2|
|G| <

2(1 + δ)d

(1− α)d
.

Finally, we can bound

ρ1 =
ρ2|G1|+ |G2|

(k + 1)|X| <

(
1 + 1

δ

)
|G|

(k + 1)|X| <
(
1 + 1

δ

)
(1− α)d

(k + 1)αd
.

Putting these together, we get that

− log p < log

((
1 + 1

δ

)
(1− α)d

(k + 1)αd

)
+ (k + 1)

2(1 + δ)d

(1− α)d
log

(
1 +

1

δ

)
+O(log |D|).

Set δ = 1
2d and α = 1

2d+2 so that
(

1+δ
1−α

)d
=
(
1 + 1

d

)d
< e. We get

− log p < log
(

(2d+ 1)d+1
)
− log (k + 1) + (k + 1)2e log (2d+ 1) +O(log |D|)

= (k + 1)2e log (2d+ 1)− log (k + 1) +O(log |D|).

Note that

k + 1 = ρ1|G1|+ |G2| ≥ |G| ≥
((1− α)r0)

d Vd
2

≥

(
(2−α)

3 r0

)d
Vd

2
=
|D|

2 · 3d .

In particular, log |D| = log (k + 1) + d log 3 + log 2, which gives

− log p = (k + 1)2e log (2d+ 1)− log (k + 1) +O(log (k + 1))

= (k + 1)2e log (2d+ 1) +O(log (k + 1)).

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 121

The number of balls of radius (2− α)r0 we can fit in the cube γd,n is at least

⌊
n

1
d

2(2− α)r0

⌋d
=

 n
1
d

6
(
2(k+1)
Vd

) 1
d



d

= Θ

(
n

k + 1

)
.

Then the expected number of copies of D that exist is Θ(np
k+1). We can say that with

high probability the graph contains an in-component of diameter (2− α)r0 if

lim
n→∞

np

k + 1
= lim

n→∞
n exp [−(k + 1)2e log (2d+ 1) +O(log (k + 1))]

k + 1
> 1.

In particular, the graph contains an in-component of diameter (2−α)r0 with high prob-

ability if

k

log n
<

0.079

log d
<

log 2

2e log 5 log d
<

1

2e log 2d+ 1
.

The above proof of the lower bound on the connectivity threshold for
−→
G does not

make use of the boundary of the cube γd,n. This means that it also gives a lower bound

on the connectivity threshold for the directed graph on a torus
−→
G tor . We know from

Theorem 4.13 that the connectivity threshold for
−→
G tor is bounded above by a constant

times log n and so without considering the boundary of the cube we cannot possibly

improve this lower bound by more than a log d factor.

As discussed in Section 4.3.2, it seems likely that the threshold for connectivity for

the
−→
G and the directed graph on a torus

−→
G tor are different and the crucial difference

lies in the existence of small diameter in-components. Instead of the proof of Theorem

4.18 based on a density distribution on a ball one could try looking at some density

distribution defined on some region lying on the boundary of the cube γd,n.

Unfortunately it doesn’t seem possible to improve the bound by just looking instead

at a half-ball or quarter-ball and so on at the boundary of the cube and keeping the

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 122

density distribution uniform in shells. Suppose x lies on the intersection of f faces of

γd,n. Suppose we want to define a density distribution in shells on a 1
2f

-ball D′ around

x (that is, D′ is a segment of a ball bisected by f orthogonal planes). Consider a point

y lying on the same f faces as x at distance r from x. If we want x to be in a small

diameter in-component not containing y then we need that a 1
2f

-ball G′ of radius r around

y contains at least k points. In particular, this tells us that the density distribution in

the shells of D′ woud have to be equivalent to those in the shells of the ball D in the

above proof of Theorem 4.18. These have the same probability of occuring.

One could potentially get around this either by considering a more complicated shape

that ‘flattens out’ near the boundary rather than a segment of a ball, or by allowing the

density to increase nearer to the boundary. The trade-off is that it becomes much more

difficult to bound the probability of these more complicated densities occuring.

4.6 Open Questions

The bounds we’ve obtained for the threshold for connectivity for the graphG = G(d, n, k)

do not match, differing by a log d factor. We conjecture that the true threshold is

Θ
(
logn
d

)
: it seems likely that the existence of small in-components in the directed

setting is the barrier for existence of small components in the undirected setting. If this

is the case then the threshold for no small component and the threshold for no small

in-component would both have to have k = Θ
(
logn
d

)
.

Conjecture 4.1. There exist constants c1 and c2 such that for all d ≥ 2 we have

� if k > c1 logn
d then the graph G(d, n, k) is connected with high probability and

� if k < c2 logn
d then the graph G(d, n, k) is disconnected with high probability.

For the directed graph
−→
G =

−→
G(d, n, k) we have a much greater discrepancy in the

upper and lower bounds on the connectivity threshold, with a difference of an exponential

factor. However, we have that if you ignore boundary effects by considering the graph on

Chapter 4. Connectivity of High Dimension k-Nearest-Neighbour Graphs 123

a torus we get a much improved upper bound with only a log d gap between the bounds.

The question of what happens on the torus is is an interesting one in its own right.

Question 4.2. Let
−→
G tor(d, n, k) be the directed k-nearest neighbour graph defined on a

d-dimensional torus (rather than a cube). What is the threshold on k, in terms of d and

n, for
−→
G tor(d, n, k) to be connected?

Theorem 4.3 gives upper and lower bounds on the answer to this question.

Let us return to
−→
G(d, n, k) defined on the cube γd,n. Considering the boundary effects

of the cube increases the upper bound on the connectivity threshold from constant to

exponential. This is perhaps surprising as in the undirected graph
−→
G =

−→
G(d, n, k)

considering the boundary did not fundamentally change the upper bound, except to

increase the constant.

It seems that the boundary is crucial in the directed case because connectivity is

driven by the existence of small in-components. A vertex x lying near the boundary

of the cube could form a small out-component of its own if there are no points nearby

which have x as one of their k-nearest neighbours.

The lower bound on the connectivity threshold calculated in Section 4.5 ignores any

boundary effects. As discussed after the proof, we believe that it should be possible to

increase the lower bound using by defining an appropriate density function for a region

on the boundary of the cube γd,n and finding its probability of occuring. We conjecture

that this will give an exponential bound to match the upper bound.

Conjecture 4.3. There exist constants c1 and c2 such that for all d ≥ 2 we have

� if k > cd1 log n then the graph
−→
G(d, n, k) is connected with high probability, and

� if k < cd2 log n then the graph
−→
G(d, n, k) is disconnected with high probability.

References

[1] B. A. Anderson. Finite topologies and Hamiltonian paths. J. Combinatorial Theory

Ser. B, 14:87–93, 1973.

[2] Dan Archdeacon. Problems in topological graph theory. http://www.cems.uvm.

edu/TopologicalGraphTheoryProblems/perfectq.htm, 1995. [Online; accessed

27-July-2018].

[3] Paul Balister, Béla Bollobás, Amites Sarkar, and Mark Walters. Connectivity of

random k-nearest-neighbour graphs. Adv. in Appl. Probab., 37(1):1–24, 2005.

[4] B. Bollobás. On generalized graphs. Acta Math. Acad. Sci. Hungar., 16:447–452,

1965.

[5] Béla Bollobás and Imre Leader. Edge-isoperimetric inequalities in the grid. Com-

binatorica, 11(4):299–314, 1991.

[6] Darryn Bryant, Barbara M. Maenhaut, and Ian M. Wanless. A family of perfect

factorisations of complete bipartite graphs. J. Combin. Theory Ser. A, 98(2):328–

342, 2002.

[7] Debsoumya Chakraborti and Po-Shen Loh. Minimizing the numbers of cliques and

cycles of fixed size in an f -saturated graph. https://arxiv.org/abs/1907.01603,

2019. (preprint).

[8] Vaithiyalingam Chitra and Appu Muthusamy. A note on semi-perfect 1-factorization

and Craft’s conjecture. Graph Theory Notes N. Y., 64:58–62, 2013.

[9] Louis Dubuc. Sur les automates circulaires et la conjecture de černỳ. RAIRO-

Theoretical Informatics and Applications, 32(1-3):21–34, 1998.

[10] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on

Computing, 19(3):500–510, 1990.

[11] Paul Erdos and Arthur H Stone. On the structure of linear graphs. Bull. Amer.

Math. Soc, 52(1087-1091):1, 1946.

[12] Jill R Faudree, Ralph J Faudree, and John R Schmitt. A survey of minimum

saturated graphs. The Electronic Journal of Combinatorics, 1000:DS19–Jul, 2011.

[13] Peter Frankl. An extremal problem for two families of sets. European Journal of

124

http://www.cems.uvm.edu/TopologicalGraphTheoryProblems/perfectq.htm
http://www.cems.uvm.edu/TopologicalGraphTheoryProblems/perfectq.htm
https://arxiv.org/abs/1907.01603

References 125

Combinatorics, 3(2):125–127, 1982.

[14] Vasil S. Gochev and Ivan S. Gotchev. On k-semiperfect 1-factorizations of Qn and

Craft’s conjecture. Graph Theory Notes N. Y., 58:36–41, 2010.

[15] François Gonze and Raphaël M. Jungers. On the synchronizing probability function

and the triple rendezvous time for synchronizing automata. SIAM J. Discrete

Math., 30(2):995–1014, 2016.

[16] Jarkko Kari. Synchronizing finite automata on eulerian digraphs. Theoretical

Computer Science, 295(1-3):223–232, 2003.

[17] L. Kászonyi and Zs. Tuza. Saturated graphs with minimal number of edges. J.

Graph Theory, 10(2):203–210, 1986.

[18] A. Kotzig. Hamilton graphs and Hamilton circuits. In Theory of Graphs and

its Applications (Proc. Sympos. Smolenice, 1963), pages 63–82. Publ. House

Czechoslovak Acad. Sci., Prague, 1964.

[19] Rastislav Královič and Richard Královič. On semi-perfect 1-factorizations. In

Structural information and communication complexity, volume 3499 of Lecture Notes

in Comput. Sci., pages 216–230. Springer, Berlin, 2005.

[20] P. J. Laufer. On strongly Hamiltonian complete bipartite graphs. Ars Combin.,

9:43–46, 1980.

[21] Edouard Lucas. Les jeux de demoiselles. 1883.

[22] G. Nakamura. Dudeney’s round table problem for the cases of n = p+1 and n = 2p.

Sugaku Sem., 159:24–29, 1975. [in Japanese].

[23] David A Pike. A perfect one-factorisation of k56. https://arxiv.org/abs/1810.

08734, 2018. (preprint).

[24] Oleg Pikhurko. The minimum size of saturated hypergraphs. Combinatorics,

Probability and Computing, 8(5):483–492, 1999.

[25] Oleg Pikhurko. Results and open problems on minimum saturated hypergraphs.

Ars Combin., 72:111–127, 2004.

[26] Jean-Eric Pin. On two combinatorial problems arising from automata theory. In

North-Holland Mathematics Studies, volume 75, pages 535–548. Elsevier, 1983.

[27] Yaroslav Shitov. An improvement to a recent upper bound for synchronizing words

https://arxiv.org/abs/1810.08734
https://arxiv.org/abs/1810.08734

References 126

of finite automata. arXiv preprint arXiv:1901.06542, 2019.

[28] Richard Stong. Hamilton decompositions of directed cubes and products. Discrete

Math., 306(18):2186–2204, 2006.

[29] Marek Szyku la. Improving the upper bound and the length of the shortest reset

words. In 35th Symposium on Theoretical Aspects of Computer Science, volume 96

of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 56, 13. Schloss Dagstuhl.

Leibniz-Zent. Inform., Wadern, 2018.

[30] Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436–452,

1941. [In Hungarian].

[31] Zsolt Tuza. Extremal problems on saturated graphs and hypergraphs. Ars Combin,

25:105–113, 1988.

[32] Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Language

and automata theory and applications, volume 5196 of Lecture Notes in Comput.

Sci., pages 11–27. Springer, Berlin, 2008.

[33] Mark Walters. Small components in k-nearest neighbour graphs. Discrete Appl.

Math., 160(13-14):2037–2047, 2012.

[34] I. M. Wanless. Perfect factorisations of bipartite graphs and Latin squares without

proper subrectangles. Electron. J. Combin., 6:Research Paper 9, 16, 1999.

[35] Feng Xue and Panganamala R Kumar. The number of neighbors needed for con-

nectivity of wireless networks. Wireless networks, 10(2):169–181, 2004.

Appendix A

Finding 1-Factorisations of the

Hypercube by Computer

The Python program below can be used to find all 1-factorisations of a d-dimensional

hypercube Qd for small d. It can also be used find all k-semi-perfect 1-factorisations

of Qd for any k, and a 1-factorisation of Qd where the union of any pair of 1-factors

is at most two cycles. More information on how the program works and some example

outputs can be found in 3.4. The code was written in Python 3.

1 import numpy

2

3 c l a s s hypercube (object) :

4 def i n i t (s e l f , n) :

5 ”””

6 I n i t i a l i s e s a hypercube o b j e c t

7 n : d imens ion o f the hypercube .

8 v e r t i c e s : 0 , . . . , 2ˆn = 1 .

9 edges : a l i s t o f a l l the edges , as o r d e r ed p a i r s o f v e r t i c e s

10 edge sF romVer t i c e s : a d i c t i o n a r y i ndexed by v e r t i c e s o f a l l

edges ad j a c en t to each v e r t e x

11 ”””

127

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 128

12 s e l f . n = n

13 s e l f . v e r t i c e s = range(1<<n)

14 s e l f . edges = []

15 s e l f . edge sF romVer t i c e s = {}

16

17 ”””

18 I n i t i a l i s e t h e s e to be empty u n t i l we g ene r a t e them

19 ”””

20 s e l f . f a c t o r i z a t i o n s = []

21 s e l f . s em i P e r f e c t F a c t o r i z a t i o n s = {}

22 s e l f . g o o dF a c t o r i z a t i o n s = Fa l s e

23

24 def genEdges (s e l f) :

25 ”””

26 Genera te the edges o f the cube as o rd e r ed p a i r s o f

v e r t i c e s (v , u) w i th v < u

27 ”””

28 f o r v i n s e l f . v e r t i c e s :

29 b i t = 1

30 f o r i i n range (s e l f . n) :

31 u = vˆ b i t

32 i f v < u :

33 s e l f . edges . append ([v , u])

34 b i t *=2

35 genEdges (s e l f)

36

37 def edgesFromVertex (s e l f , v) :

38 ”””

39 Retu rns a l l edges ad j a c en t to v e r t e x v

40 ”””

41 edges = []

42 b i t = 1

43 f o r i i n range (s e l f . n) :

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 129

44 u = vˆ b i t

45 i f v < u :

46 edges . append ([v , u])

47 e l s e :

48 edges . append ([u , v])

49 b i t = b i t<<1

50 return edges

51

52 def genEdgesFromVer t i ce s (s e l f) :

53 ”””

54 Genera te a l i s t where the vth e n t r y i s a l l edges ad j a c en t

to v e r t e x v

55 ”””

56 f o r v i n s e l f . v e r t i c e s :

57 s e l f . edge sF romVer t i c e s [v] = edgesFromVertex (s e l f , v)

58

59 genEdgesFromVer t i ce s (s e l f)

60

61

62 def f i n dD i s j o i n t E d g e s (s e l f , cu r rentEdge , e d g e L i s t) :

63 ”””

64 Retu rns a l i s t o f a l l o f the edges i n e d g e L i s t t ha t a r e not

ad j a c en t to cu r r en tEdge

65 ”””

66 newEdgeL i s t = l i s t (e d g e L i s t)

67 f o r edge i n s e l f . edge sF romVer t i c e s [cu r r en tEdge [0]] :

68 i f edge i n newEdgeL i s t :

69 newEdgeL i s t . remove (edge)

70 f o r edge i n s e l f . edge sF romVer t i c e s [cu r r en tEdge [1]] :

71 i f edge i n newEdgeL i s t :

72 newEdgeL i s t . remove (edge)

73 return newEdgeL i s t

74

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 130

75 def g e n F a c t o r i z a t i o n s (s e l f , matchings , unusedEdges , cu r r entMatch ing ,

p o t e n t i a l E d g e s) :

76 ”””

77 Gene ra t e s r e c u r s i v e l y a l l 1= f a c t o r i z a t i o n s , i n the form o f a l i s t

o f p e r f e c t match ings .

78 Matchings a r e s t o r e d as d i c t i o n a r i e s i ndexed by v e r t i c e s , where

the e n t r y f o r a v e r t e x i s i t s ne i ghbou r under the matching .

79

80 match ings : a l i s t o f 1= f a c t o r s a l r e a d y i n c l u d e d i n the 1=

f a c t o r i z a t i o n

81 cu r r en tMatch ing : the matching c u r r e n t l y be i ng gene r a t ed

82 unusedEdges : edges o f the cube not used i n any match ings so f a r

83 p o t e n t i a l E d g e s : edges t ha t we haven ’ t r u l e d out from be ing added

to cu r r en tMatch ing

84 ”””

85 match ingLength = 2**(s e l f . n=1)

86 i f len (cu r r en tMatch ing) == 2*match ingLength : #Cur r en t matching i s

p e r f e c t

87 newMatchings = l i s t (match ings)

88 newMatchings . append (cu r r en tMatch ing)

89 i f len (unusedEdges) > match ingLength : #S t i l l more 1= f a c t o r s

to f i n d

90 g e n F a c t o r i z a t i o n s (s e l f , newMatchings , unusedEdges , {} ,

l i s t (unusedEdges))

91 e l s e : #This i s a 1= f a c t o r i z a t i o n wi th the r ema in i ng edges

fo rm ing the f i n a l 1= f a c t o r

92 newMatchings . append (match ingFromEdgeLis t (unusedEdges))

93 s e l f . f a c t o r i z a t i o n s . append (newMatchings)

94

95 e l i f not cu r r en tMatch ing : #Cur r en t matching i s empty , want to

s t a r t w i th edge (0 , i)

96 edge = unusedEdges . pop (0)

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 131

97 p o t e n t i a l E d g e s = f i n dD i s j o i n t E d g e s (s e l f , edge , p o t e n t i a l E d g e s

[1 :])

98 newMatching = { edge [0] : edge [1] , edge [1] : edge [0] }

99 g e n F a c t o r i z a t i o n s (s e l f , matchings , unusedEdges , newMatching ,

p o t e n t i a l E d g e s)

100

101 e l i f p o t e n t i a l E d g e s : #Cur r en t matching i s n e i t h e r p e r f e c t nor

empty and t h e r e a r e p o t e n t i a l edges to add

102 f o r i i n range (l en (p o t e n t i a l E d g e s)=(matchingLength=(l en (

cu r r en tMatch ing) //2))+1) : #Try add ing each p o t e n t i a l edge i n tu rn

103 edge = po t e n t i a l E d g e s [i]

104 newPoten t i a lEdge s = f i n dD i s j o i n t E d g e s (s e l f , edge ,

p o t e n t i a l E d g e s [i +1 :])

105 newUnusedEdges = l i s t (unusedEdges)

106 newUnusedEdges . remove (edge)

107 newMatching = d i c t (cu r r en tMatch ing)

108 newMatching [edge [0]] = edge [1]

109 newMatching [edge [1]] = edge [0]

110 g e n F a c t o r i z a t i o n s (s e l f , matchings , newUnusedEdges ,

newMatching , newPoten t i a lEdge s)

111

112

113 def g e nS em iP e r f e c t F a c t o r i z a t i o n s (s e l f , k , matchings , unusedEdges ,

cu r r entMatch ing , p o t e n t i a l Edg e s , d i s p l a y) :

114 ”””

115 F inds r e c u r s i v e l y a l l k=semi=p e r f e c t 1= f a c t o r i z a t i o n s .

116 S im i l a r to g e nF a c t o r i z a t i o n s , but th row ing out p a r t i a l 1=

f a c t o r i z a t i o n s tha t a r e not k=semi=p e r f e c t .

117

118 match ings : a l i s t o f p e r f e c t match ings a l r e a d y i n c l u d e d i n the 1=

f a c t o r i z a t i o n

119 cu r r en tMatch ing : the matching c u r r e n t l y be i ng gene r a t ed

120 unusedEdges : edges o f the cube not used i n any match ings so f a r

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 132

121 p o t e n t i a l E d g e s : edges tha t we haven ’ t r u l e d out from be ing added

to cu r r en tMatch ing

122

123 d i s p l a y : i f t rue , the match ings a r e p r i n t e d as we go a long .

124 ”””

125 match ingLength = 2**(s e l f . n=1)

126 i f len (cu r r en tMatch ing) == 2*match ingLength : #Cur r en t matching i s

p e r f e c t

127 newMatchings = l i s t (match ings)

128 newMatchings . append (cu r r en tMatch ing)

129 i f l a s tMa t ch i n gSem iPe r f e c t (s e l f , k , newMatchings) : #Check i f

the p a r t i a l 1= f a c t o r i z a t i o n i s k=semi=p e r f e c t

130 i f len (unusedEdges) > match ingLength : #S t i l l more 1=

f a c t o r s to f i n d

131 g e nS em iP e r f e c t F a c t o r i z a t i o n s (s e l f , k , newMatchings ,

unusedEdges , {} , l i s t (unusedEdges) , d i s p l a y)

132 e l s e : #This i s a 1= f a c t o r i z a t i o n wi th the r ema in i ng

edges fo rm ing the f i n a l 1= f a c t o r

133 newMatchings . append (match ingFromEdgeLis t (unusedEdges)

)

134 i f l a s tMa t ch i n gSem iPe r f e c t (s e l f , k , newMatchings) : #

The p a r t i a l 1= f a c t o r i z a t i o n i s k=semi=p e r f e c t

135 s e l f . s em i P e r f e c t F a c t o r i z a t i o n s [k] . append (

newMatchings)

136 i f d i s p l a y : #Pr i n t the match ings

137 p r e t t y P r i n t F a c t o r i z a t i o n (s e l f , newMatchings)

138 e l i f not cu r r en tMatch ing : #Cur r en t matching i s empty , want to

s t a r t w i th edge (0 , i)

139 edge = unusedEdges . pop (0)

140 p o t e n t i a l E d g e s = f i n dD i s j o i n t E d g e s (s e l f , edge , p o t e n t i a l E d g e s

[1 :])

141 newMatching = { edge [0] : edge [1] , edge [1] : edge [0] }

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 133

142 g e nS em iP e r f e c t F a c t o r i z a t i o n s (s e l f , k , matchings , unusedEdges ,

newMatching , p o t e n t i a l Edg e s , d i s p l a y)

143

144 e l i f p o t e n t i a l E d g e s : #Cur r en t matching i s n e i t h e r p e r f e c t nor

empty and t h e r e a r e p o t e n t i a l edges to add

145 f o r i i n range (l en (p o t e n t i a l E d g e s)=(matchingLength=(l en (

cu r r en tMatch ing) //2))+1) : #t r y add ing each p o t e n t i a l edge i n tu rn

146 edge = po t e n t i a l E d g e s [i]

147 newPoten t i a lEdge s = f i n dD i s j o i n t E d g e s (s e l f , edge ,

p o t e n t i a l E d g e s [i +1 :])

148 newUnusedEdges = l i s t (unusedEdges)

149 newUnusedEdges . remove (edge)

150 newMatching = d i c t (cu r r en tMatch ing)

151 newMatching [edge [0]] = edge [1]

152 newMatching [edge [1]] = edge [0]

153 g e nS em iP e r f e c t F a c t o r i z a t i o n s (s e l f , k , matchings ,

newUnusedEdges , newMatching , newPotent i a lEdges , d i s p l a y)

154

155 def l a s tMa t ch i n gSem iPe r f e c t (s e l f , k , f a c) :

156 ”””

157 Retu rns True i f t h e r e a r e k or f ewe r 1= f a c t o r s i n the p a r t i a l 1=

f a c t o r i z a t i o n fac , o r i f the l a s t 1= f a c t o r forms a Hami l ton c y c l e

w i th each o f the f i r s t k 1= f a c t o r s

158 ”””

159 i f len (f a c) <= k :

160 return True

161 s em i p e r f e c t = True

162 i = 0

163 whi le s em i p e r f e c t and i < k :

164 s em i p e r f e c t = (numberOfCyc les (s e l f , f a c [i] , f a c [=1]) == 1)

165 i+=1

166 return s em i p e r f e c t

167

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 134

168 def f i n dGoodFa c t o r i z a t i o n (s e l f , matchings , unusedEdges ,

cu r r entMatch ing , p o t e n t i a l E d g e s) :

169 ”””

170 Attempts to f i n d r e c u r s i v e l y a ’Good ’ 1= f a c t o r i z a t i o n , p r i n t i n g

i t i f i t f i n d s one .

171 ’ Good ’ he r e means tha t the un ion o f any p a i r o f 1= f a c t o r s

c o n s i s t s o f a t most two d i s j o i n t c y c l e s .

172 S im i l a r to g e nF a c t o r i z a t i o n s , but th row ing out p a r t i a l 1=

f a c t o r i z a t i o n s tha t a r e not Good .

173

174 match ings : a l i s t o f p e r f e c t match ings a l r e a d y i n c l u d e d i n the 1=

f a c t o r i z a t i o n

175 cu r r en tMatch ing : the matching c u r r e n t l y be i ng gene r a t ed

176 unusedEdges : edges o f the cube not used i n any match ings so f a r

177 p o t e n t i a l E d g e s : edges t ha t we haven ’ t r u l e d out from be ing added

to cu r r en tMatch ing

178 ”””

179 match ingLength = 2**(s e l f . n=1)

180 i f len (cu r r en tMatch ing) == 2*match ingLength : #Cur r en t matching i s

p e r f e c t

181 newMatchings = l i s t (match ings)

182 newMatchings . append (cu r r en tMatch ing)

183 i f l a s tMatch ingGood (s e l f , newMatchings) : #Check i f the

p a r t i a l 1= f a c t o r i z a t i o n i s Good

184 i f len (unusedEdges) > match ingLength : #S t i l l more 1=

f a c t o r s to f i n d

185 return f i n dGoodFa c t o r i z a t i o n (s e l f , newMatchings ,

unusedEdges , {} , l i s t (unusedEdges))

186 e l s e : #This i s a 1= f a c t o r i z a t i o n wi th the r ema in i ng edges

fo rm ing the f i n a l 1= f a c t o r

187 newMatchings . append (match ingFromEdgeLis t (unusedEdges)

)

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 135

188 i f l a s tMatch ingGood (s e l f , newMatchings) : #The p a r t i a l

1= f a c t o r i z a t i o n i s Good

189 return newMatchings

190 e l s e :

191 return Fa l s e

192 e l s e :

193 return Fa l s e

194 e l i f not cu r r en tMatch ing : #Cur r en t matching i s empty , want to

s t a r t w i th edge (0 , i)

195 edge = unusedEdges . pop (0)

196 p o t e n t i a l E d g e s = f i n dD i s j o i n t E d g e s (s e l f , edge , p o t e n t i a l E d g e s

[1 :])

197 newMatching = { edge [0] : edge [1] , edge [1] : edge [0] }

198 return f i n dGoodFa c t o r i z a t i o n (s e l f , matchings , unusedEdges ,

newMatching , p o t e n t i a l E d g e s)

199

200 e l i f p o t e n t i a l E d g e s : #Cur r en t matching i s n e i t h e r p e r f e c t nor

empty and t h e r e a r e p o t e n t i a l edges to add

201 f o r i i n range (l en (p o t e n t i a l E d g e s)=(matchingLength=(l en (

cu r r en tMatch ing) //2))+1) : #t r y add ing each p o t e n t i a l edge i n tu rn

202 edge = po t e n t i a l E d g e s [i]

203 newPoten t i a lEdge s = f i n dD i s j o i n t E d g e s (s e l f , edge ,

p o t e n t i a l E d g e s [i +1 :])

204 newUnusedEdges = l i s t (unusedEdges)

205 newUnusedEdges . remove (edge)

206 newMatching = d i c t (cu r r en tMatch ing)

207 newMatching [edge [0]] = edge [1]

208 newMatching [edge [1]] = edge [0]

209 goodFact = f i n dGoodFa c t o r i z a t i o n (s e l f , matchings ,

newUnusedEdges , newMatching , newPoten t i a lEdge s)

210 i f goodFact :

211 return goodFact

212

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 136

213 def numberOfCyc les (s e l f , matching1 , matching2) :

214 ”””

215 Retu rns the number o f d i s j o i n t c y c l e s i n the un ion o f two 1=

f a c t o r s matching1 and matching2

216 ”””

217 numberOfCyc les = 0

218 unu s e dVe r t i c e s = l i s t (s e l f . v e r t i c e s)

219 whi le unu s e dVe r t i c e s :

220 s t a r t V e r t e x = unu s e dVe r t i c e s [0]

221 unu s e dVe r t i c e s . remove (s t a r t V e r t e x)

222 nex tVe r t e x = matching1 [s t a r t V e r t e x]

223 unu s e dVe r t i c e s . remove (nex tVe r t e x)

224 c u r r e n tV e r t e x = matching2 [n ex tVe r t e x]

225 whi le c u r r e n tV e r t e x != s t a r t V e r t e x :

226 unu s e dVe r t i c e s . remove (c u r r e n tV e r t e x)

227 nex tVe r t e x = matching1 [c u r r e n tV e r t e x]

228 unu s e dVe r t i c e s . remove (nex tVe r t e x)

229 c u r r e n tV e r t e x = matching2 [n ex tVe r t e x]

230 numberOfCyc les+=1

231

232 return numberOfCyc les

233

234 def numbersOfCyc les (s e l f , f) :

235 ”””

236 Retu rns a l i s t o f the number o f d i s j o i n t c y c l e s i n the un ion o f

two 1= f a c t o r s f o r each p a i r o f 1= f a c t o r s i n the 1= f a c t o r i z a t i o n f

237 ”””

238 numbersOfCyc les = []

239 f o r i i n range (s e l f . n) :

240 f o r j i n range (i +1, s e l f . n) :

241 numbersOfCyc les . append (numberOfCyc les (s e l f , f [i] , f [j]))

242 return numbersOfCyc les

243

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 137

244 def l a s tMatch ingGood (s e l f , f) :

245 ”””

246 Retu rns True i f f the un ion o f the l a s t 1= f a c t o r i n f w i th any

o th e r 1= f a c t o r c o n s i s t s o f a t most two d i s j o i n t c y c l e s .

247 f : a p a r t i a l 1= f a c t o r i z a t i o n , t ha t i s , a l i s t o f d i s j o i n t 1=

f a c t o r s .

248 ”””

249 good = True

250 i = 0

251 whi le good and i < l en (f)=1:

252 good = (numberOfCyc les (s e l f , f [i] , f [=1]) <= 2)

253 i+=1

254 return good

255

256 def match ingFromEdgeLis t (e d g e L i s t) :

257 ”””

258 Takes a matching i n the form o f a l i s t o f edges and r e t u r n s the

matching i n the form o f a d i c t i o n a r y .

259 ”””

260 matching = d i c t (e d g e L i s t)

261 matching . update (d i c t (edge [: : =1] f o r edge i n e d g e L i s t))

262 return matching

263

264 def f a c t o r i z a t i o n s (s e l f) :

265 ”””

266 I n i t i a l i s e s g e n F a c t o r i z a t i o n s

267 ”””

268 g e n F a c t o r i z a t i o n s (s e l f , [] , l i s t (s e l f . edges) , {} , l i s t (s e l f . edges

))

269 p r i n t (”Q” , s e l f . n , ” has ” , l en (s e l f . f a c t o r i z a t i o n s) , ” 1=

f a c t o r i z a t i o n s . ”)

270

271 def s em i P e r f e c t F a c t o r i z a t i o n s (s e l f , k , d i s p l a y=Fa l s e) :

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 138

272 ”””

273 I n i t i a l i s e s g e nS em iP e r f e c t F a c t o r i z a t i o n s .

274 I f d i s p l a y i s True then the f a c t o r i z a t i o n s w i l l be p r i n t e d .

275 ”””

276 s e l f . s em i P e r f e c t F a c t o r i z a t i o n s [k] = []

277 g e nS em iP e r f e c t F a c t o r i z a t i o n s (s e l f , k , [] , l i s t (s e l f . edges) , {} ,

l i s t (s e l f . edges) , d i s p l a y)

278 p r i n t (”Q” , s e l f . n , ” has ” , l en (s e l f . s em i P e r f e c t F a c t o r i z a t i o n s [k]) ,

” ” , k , ”=semi=p e r f e c t 1= f a c t o r i z a t i o n s . ” , sep=’ ’)

279

280 def p r e t t y P r i n t F a c t o r i z a t i o n (s e l f , f a c) :

281 ”””

282 P r i n t s 1= f a c t o r i z a t i o n f a c w i th n i c e LaTeX t a b l e f o rma t t i n g .

283 ”””

284 p r i n t (’ V e r t i c e s ’ , end=’ ’)

285 f o r j i n range (l en (f a c)) :

286 p r i n t (’& M ’ , j , sep=’ ’ , end=’ ’)

287 p r i n t (’ \\\\ ’)

288

289 f o rma t t i n g = ’ 0 ’ + s t r (s e l f . n) + ’ b ’

290 f o r i i n s e l f . v e r t i c e s :

291 p r i n t (format (i , f o rma t t i n g) , end=’ ’)

292 f o r m i n f a c :

293 p r i n t (’& ’ , i n t . b i t l e n g t h (i ˆm[i]) , end=’ ’)

294 p r i n t (’ \\\\ ’)

295

296 p r i n t (”Number o f c y c l e s i n un i on s o f 1= f a c t o r s : ” , numbersOfCyc les

(s e l f , f a c) , sep=’ ’)

297

298 def p r i n tG o o dF a c t o r i z a t i o n (s e l f) :

299 ”””

300 I n i t i a l i s e s f i n dGoodFa c t o r i z a t i o n to f i n d a good f a c t o r i z a t i o n .

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 139

301 P r i n t s the good f a c t o r i z a t i o n (assuming t h e r e i s one) w i th n i c e

LaTeX t a b l e f o rma t t i n g .

302 ”””

303 f a c = f i n dGoodFa c t o r i z a t i o n (s e l f , [] , l i s t (s e l f . edges) , {} , l i s t (

s e l f . edges))

304 p r i n t (”A Good 1= f a c t o r i z a t i o n o f Q” , s e l f . n , ” : ” , sep=’ ’)

305 p r e t t y P r i n t F a c t o r i z a t i o n (s e l f , f a c)

306

307 ########################## Examples ##########################

308 ”””

309 Crea te a 3=dim cube and count i t s 1= f a c t o r i z a t i o n s and i t s semi=

p e r f e c t 1= f a c t o r i z a t i o n s .

310 ”””

311 Q3 = hypercube (3)

312 f a c t o r i z a t i o n s (Q3)

313 s em i P e r f e c t F a c t o r i z a t i o n s (Q3 , 1 , d i s p l a y=True)

314

315 ”””

316 Crea te a 4=dim cube , count the number o f 1= f a c t o r i z a t i o n s and p r i n t

some 1= f a c t o r i z a t i o n s .

317 ”””

318 Q4 = hypercube (4)

319 f a c t o r i z a t i o n s (Q4)

320

321 s em i P e r f e c t F a c t o r i z a t i o n s (Q4 , 1)

322 p r i n t (”A 1=semi=p e r f e c t 1= f a c t o r i z a t i o n o f Q4 : ”)

323 p r e t t y P r i n t F a c t o r i z a t i o n (Q4 , Q4 . s em i P e r f e c t F a c t o r i z a t i o n s [1] [0])

324

325 s em i P e r f e c t F a c t o r i z a t i o n s (Q4 , 2)

326 p r i n t (”A 2=semi=p e r f e c t 1= f a c t o r i z a t i o n o f Q4 : ”)

327 p r e t t y P r i n t F a c t o r i z a t i o n (Q4 , Q4 . s em i P e r f e c t F a c t o r i z a t i o n s [2] [=1])

328

329 ”””

Appendix A. Finding 1-Factorisations of the Hypercube by Computer 140

330 Crea te a 5=dim cube and p r i n t a good 1= f a c t o r i z a t i o n .

331 ”””

332 Q5 = hypercube (5)

333 p r i n tG o o dF a c t o r i z a t i o n (Q5)

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Hypergraph Saturation Irregularities
	Introduction
	A Proof of the Main Theorem
	A Forbidden Family of Constant Size
	Obtaining an Small Saturation Number on a Denser Set
	Open Questions

	 Synchronizing Automata and Cerný's Conjecture
	Introduction
	Upper Bounds on the Rendezvous Time
	The Error in Gonze and Jungers

	Non-sychronizing Automata with Large Rendezvous Time
	An Alternative Construction

	Semi-perfect 1-Factorizations of the Hypercube
	Introduction
	Main Theorem
	Direction Respecting 1-Factorizations
	Computer Experiments
	Open Questions

	Connectivity of High Dimension k-Nearest-Neighbour Graphs
	Introduction
	An Upper Bound for the Undirected Graph
	Proof of Theorem 4.4

	An Upper Bound for the Directed Graph
	Proof of Theorem 4.9
	An Upper Bound for the Directed Graph on a Torus

	A Lower Bound for the Undirected Graph
	A Lower Bound for the Directed Graph
	Open Questions

	References
	Appendix Finding 1-Factorisations of the Hypercube by Computer

