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Abstract 

Hematopoietic stem and progenitor cells (HSPC) are necessary for life-long blood production 

and replenishment of the hematopoietic system during stress. We recently reported that nuclear 

factor I/X (Nfix) promotes HSPC survival post-transplant. Here, we report that ectopic 

expression of Nfix in primary mouse HSPCs extends their ex vivo culture from about 20 days to 

40 days.  HSPCs overexpressing Nfix display hypersensitivity to supportive cytokines and 

reduced apoptosis when subjected to cytokine deprivation relative to controls. Ectopic Nfix 

resulted in elevated levels of c-Mpl transcripts and cell surface protein on primary murine HSPCs 

as well as increased phosphorylation of STAT5, which is known to be activated down-stream of 

c-MPL. Blocking c-MPL signaling by removal of thrombopoietin or addition of a c-MPL 

neutralizing antibody negated the anti-apoptotic effect of Nfix overexpression on cultured 

HSPCs. Further, NFIX was capable of binding to and transcriptionally activating a proximal c-

Mpl promoter fragment. In sum, these data suggest that NFIX-mediated up-regulation of c-Mpl 

transcription can protect primitive hematopoietic cells from stress ex vivo. 
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Introduction 

Hematopoietic stem and progenitor cells (HSPCs) are necessary for replenishing the blood 

system during native hematopoiesis and times of stress, such as during a hematopoietic stem cell 

transplant (HSCT), which is employed routinely in the clinic to treat hematologic disease. 

Transplant-induced stress exerted on HSPCs has been well documented, resulting in reduced 

stem cell pools and decreased self-renewal ability [1-3], but regulation of their ability to 

overcome this stress and successfully replenish hematopoiesis is not well understood. Cell-

extrinsic and cell-intrinsic regulators of HSCT have been implicated in HSPC self-renewal and 

mobilization and homing [4-6]. Better understanding the mechanisms that allow HSPC 

engraftment post-transplant will facilitate efforts to improve transplantation protocols and 

clinical outcomes.  

 

Recently, our lab completed a functional screen that identified 17 novel regulators of murine 

HSCT, including the nuclear factor I (NFI) family member, Nfix [7]. NFI family members 

function as transcriptional activators and repressors [8,9]. Although Nfix-/- mice display no overt 

hematopoietic phenotypes during native hematopoiesis, shRNA-mediated knock-down or genetic 

deletion of Nfix in HSPCs results in a profound loss of competitive in vivo repopulating potential, 

a loss of niche retention post-transplant and increased apoptosis [10]. NFIX and NFIA, a related 

family member, have also been implicated in regulating hematopoietic lineage fate decisions, 

with ectopic expression of NFIA or Nfix promoting HSPC commitment to erythropoiesis or 

myelopoiesis and depletion promoting granulopoiesis or lymphopoiesis, respectively [11,12].  
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Although Nfix is clearly required by HSPCs during HSCT, little is known about how NFIX 

regulates HSPCs at the molecular and cellular level. Here we report that Nfix can promote ex 

vivo growth, cytokine hypersensitivity, and survival of primitive hematopoietic populations ex 

vivo. We further demonstrate that these effects are in part mediated via up-regulation of the 

thrombopoietin (TPO) receptor, c-Mpl, thus revealing NFIX as a novel transcriptional regulator 

of c-Mpl and illuminating one molecular pathway targeted by NFIX in HSPC. 
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Materials and Methods 

Complete materials and methods can be found in the Supplemental Data.  
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Results and Discussion   

We have previously shown that Nfix is critical to HSPC survival post-transplantation [10]. To 

further interrogate the role of Nfix in HSPC biology, we ectopically expressed Nfix in Lineage-

Sca-1+c-Kit+ (LSK) cells cultured under serum-free conditions (Supporting Information Fig. 

S1A). During culture, cells were assessed for growth rate, retention of vector+ (NFIX+) cells, 

and persistence of an LSK phenotype (Fig. 1A). Nfix was over-expressed 20-fold in NFIX+ 

cells, while other NFI genes remained unperturbed (Fig. 1B). Remarkably, ectopic Nfix 

expression prolonged hematopoietic cell cultures two-fold, allowing cells to persist up to 40 days 

ex vivo (Fig. 1C). However, the relative growth of control and NFIX+ cultures did not 

significantly diverge until control cells began to display culture exhaustion (p = 0.036) (Fig. 1C). 

During this extended time, a steady selection for NFIX+ cells was apparent (Fig. 1D). These data 

suggest that Nfix can promote the extended cell culture of hematopoietic progenitors. 

 

 By seven days of culture, the majority of cells in both control and NFIX+ cultures had lost the 

LSK cell surface phenotype (Fig. 1E), with immunophenotypic LSK cells being almost 

completely lost from culture by day 14 (Supporting Information Fig. S1B, S1C). However, Nfix 

overexpression appeared to accelerate the loss of this phenotype, evident by the appearance of a 

Sca-1-c-Kit- population in NFIX+ cells and reduced overall levels of cell surface c-Kit, relative 

to control (Fig. 1Ei, 1Eii, Supporting Information Fig. S1D). These data suggest that Nfix might 

promote LSK cell differentiation during ex vivo culture. At day seven of culture, control and 

NFIX+ cells displayed a similar blast-like morphology, with NFIX+ cells retaining this 

morphology through day 30 of culture (Supporting Information Fig. S2). However, LSK cells 

overexpressing Nfix displayed a loss of in vivo competitive hematopoietic repopulating potential, 



NFIX PROMOTES SURVIVAL OF HEMATOPOIETIC CELLS 
 

 8 

a myeloid bias in peripheral blood production and a loss of colony-forming unit (CFU) potential 

compared to control cells by seven days of culture, with a significant loss in CFU potential by 21 

days in culture (p = 0.023) (Supporting Information Fig. S3A-D and S4). A majority of expanded 

control and NFIX+ cells were negative for all major lineage markers (excepting CD8) and 

expressed c-Kit and CD71, which is a marker of proliferating progenitors (Supporting 

Information Fig. S5A-B). High CD71 expression can also be indicative of erythroid progenitors, 

and while NFIX+ cells show a significantly higher percentage of a CD71hi population compared 

to controls (p = 0.017), this population represents only a small portion (15-25%) of cells 

throughout the entirety of the culture (Supporting Information Fig. S5C). Together, these data 

suggest that Nfix promotes differentiation of LSK cells towards a heterogeneous immature 

progenitor population that ultimately lacks CFU potential, suggesting arrested differentiation 

potential.  

 

As Nfix-deficient HSPCs display elevated apoptosis post-transplant [10], we next tested if 

ectopic Nfix protects primitive hematopoietic cells from apoptosis during ex vivo culture. 

Towards this, NFIX+ HSPCs were cultured under normal or reduced cytokine conditions and 

monitored for growth rate, NFIX+ cell selection, cell cycle, and apoptosis (Fig. 2A). Control 

cells cultured in reduced cytokines displayed a significantly lower growth rate by day 13 (p = 

0.048) and an attenuated culture lifespan relative to cells maintained at normal cytokine levels 

(Fig. 2B).  Remarkably, reduced cytokine levels had no effect on the extended culture of NFIX+ 

cells (Fig. 2B). NFIX+ cells cultured under reduced cytokines were selected for at a significantly 

accelerated rate compared to NFIX+ cells cultured under normal cytokine levels (p = 0.041) 

(Fig. 2C). There were no significant differences in cell cycle status between control and NFIX+ 



NFIX PROMOTES SURVIVAL OF HEMATOPOIETIC CELLS 
 

 9 

cells regardless of cytokine levels (Fig. 2D), suggesting that the reduced growth rate of cytokine-

deprived control cells was not due to a reduction in cycling. However, control cells displayed a 

significant increase in apoptosis (p = 0.032) when cultured in reduced cytokines (Fig. 2E). In 

contrast, the apoptotic status of NFIX+ cells was unaffected by reduced cytokines (Fig. 2E), 

even in immunophenotypic HSPCs (Supporting Information Fig. S6).  These data reveal that 

Nfix promotes primitive hematopoietic cell survival ex vivo.  

 

We previously observed by global gene expression analyses [10] that Nfix knockdown in HSPC 

reduced expression of multiple genes implicated in HSPC survival and maintenance including c-

Mpl, a known regulator of HSC maintenance in the bone marrow niche that has been shown to 

affect apoptosis via multiple downstream signaling cascades [13-16]. c-MPL is the receptor for 

TPO, which is added as a supplement to our ex vivo serum-free cultures of HSPCs.  To further 

explore possible regulation of c-Mpl levels by NFIX, we assessed the expression of c-Mpl in 

NFIX+ cells after seven days of ex vivo culture by qRT-PCR and flow cytometry (Fig. 3A, 3B). 

We found that c-Mpl transcripts increased two-fold in NFIX+ cells (p = 0.028) (Fig. 3A). We 

also observed a two-fold increase in c-MPL cell surface antigen on NFIX+ cells relative to 

control via flow cytometry (p = 0.042) (Fig. 3Bi, 3Bii). Also, from the number of additional 

HSPC genes previously observed to be perturbed by loss of Nfix [10], Erg was significantly 

upregulated (p = 0.022) (Supporting Information Fig. S7). TPO/c-MPL signaling is classically 

involved in megakaryopoiesis and platelet production [17-19]. Thus, as expected, NFIX+ cells 

also displayed a substantial increase in the cell-surface antigen CD41 (Fig. 3C), a known marker 

of megakaryocytes [20]. Since our data suggested that Nfix was driving HSPC towards an 

immature progenitor population (Supporting Information Fig. S2-S5), we further interrogated our 
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cultures for CFU-Megs. NFIX+ cells appeared to generate more CFU-Megs than control cells 

after seven days of culture (p = 0.052), but the absolute frequency of CFU-Megs in NFIX+ 

cultures was minute (0.016), revealing that megakaryocytic progenitors with colony forming 

potential are rare in NFIX+ cultures (Supporting Information Fig. S8A-B).  This is consistent 

with the observed low percentage of immunophenotypic megakaryocyte progenitors (c-Kit+Sca-

1-CD127-CD9+CD32/CD16loCD41+) (Supporting Information Fig. S8C) [21]. Indeed, by day 30 

almost no CFU-Megs were present in NFIX+ cultures (Supporting Information Fig. S8A).  

 

 TPO/c-MPL can activate JAK/STAT, PI3K/AKT, and MAPK/ERK downstream signaling 

pathways [22]. To determine if NFIX-mediated up-regulation of c-Mpl also increased TPO/c-

MPL signaling, we examined the phosphorylation status of STAT5, AKT, and ERK1/2 via flow 

cytometry. NFIX+ cells displayed significant enhancement of STAT5 phosphorylation compared 

to control cells (p = 0.018), while AKT trended towards enhanced phosphorylation after 

prolonged TPO treatment (Fig. 3D, Supporting Information Fig. 9A). Also, NFIX+ cells showed 

no difference in phosphorylation of ERK1/2 compared to control cells (Fig. 3D, Supporting 

Information Fig. 9A). This suggests that the anti-apoptotic effects displayed by NFIX+ HSPC 

may be mediated through the STAT5 signaling pathway. Indeed, expression of Bcl-XL, an anti-

apoptotic factor induced by STAT5 [23], was also significantly upregulated in NFIX+ cells by 

two weeks of culture compared to controls (p = 0.0038) (Supporting Information Fig. S9B).  In 

sum, these data reveal that up-regulation of Nfix induces both c-Mpl expression and signaling 

downstream of c-MPL in primitive hematopoietic cells. 
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Examination of the c-Mpl locus revealed palindromic NFI binding sites within the c-Mpl 

promoter (Figure 3Eii). Promoter analysis by TRANSFAC revealed full NFI consensus sites 101 

and 127 nucleotides upstream of the c-Mpl transcription start site (TTS, +1) (Figure 3Eii). NFI 

members are known to bind both full and half NFI consensus sites [24]. Two half sites were 

identified 18 and 189 nucleotides upstream of the c-Mpl TSS (Figure 3Eii). To assess NFIX 

transcriptional activity against these putative NFI binding sites in the c-Mpl proximal promoter, a 

c-Mpl 243 bp genomic fragment 5’ of the c-Mpl promoter containing the four identified putative 

NFI binding sites was sub-cloned into the pGL4.14 promoterless luciferase vector. Transient 

transfection of this vector into K562 cells yielded nearly three-fold higher levels of promoter 

activity when co-transfected with MND-NFIX relative to co-transfection with MND-Control 

(Figure 3Eii). This enriched activity was diminished when the half NFI site (-189) furthest from 

the TSS was removed and was significantly reduced by the additional removal of the two full 

NFI sites (-127 and -101) (p = 0.0056) (Figure 3Eii). Further, chromatin immunoprecipitation 

(ChIP) was used to show direct NFIX binding to the c-Mpl proximal promoter in the HPC5 bone 

marrow derived cell line. Primers were designed and validated to amplify the promoter region 

containing two full NFI consensus sites. In Figure 3Ei, a near 9-fold enrichment is observed in 

samples where a FLAG-tagged NFIX is present compared to controls. These data suggest that 

NFIX may directly activate c-Mpl promoter activity in a hematopoietic cell line. 

 

To determine if the anti-apoptotic effects of ectopic Nfix in primitive hematopoietic cells 

depends on enhanced TPO/c-MPL signaling, we cultured NFIX+ HSPC in reduced cytokines 

while also either removing TPO or blocking ligand binding to c-MPL via a neutralizing antibody 

(AMM2) [13] for 72 hours. Although removal of TPO and neutralization of c-MPL led to 
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reduced cell expansion in both control and NFIX+ cultures, NFIX+ cultures were significantly 

more sensitive to the loss of c-MPL stimulation after TPO removal or the addition of AMM2 (p 

= 0.0021 and 0.033, respectively) (Fig. 4A). The selection for NFIX+ cells under reduced 

cytokines was also lost when TPO/c-MPL signaling was blocked by TPO removal or the addition 

of AMM2 (p = 0.0054 and 0.0019, respectively) (Fig. 4B), suggesting an enhanced reliance on 

TPO/c-MPL signaling for expansion of NFIX+ cells. NFIX+ cells display an accelerated loss of 

the LSK immuno-phenotype (Fig. 1E), possibly due to enhanced differentiation towards a 

downstream progenitor (Supporting Information Fig. S3-S5). This loss of immuno-phenotype 

was mostly due to down-regulation of c-Kit cell surface expression (Fig. 1Ei). When NFIX+ 

cells were cultured in the absence of TPO or the presence of AMM2, c-Kit was no longer rapidly 

down-regulated relative to control (Fig. 4C). Finally, while apoptosis was relatively unaffected 

by a loss of c-MPL signaling in control cells, NFIX+ cells displayed a significant increase in 

apoptosis after TPO removal (p = 0.045) or addition of AMM2 (p = 0.0098) (Fig. 4D). These 

data reveal that NFIX-mediated up-regulation of c-MPL, and subsequent downstream signaling, 

functionally contributes to Nfix-induced protection from apoptosis and accelerated differentiation 

in primitive hematopoietic cells ex vivo. 

 

  



NFIX PROMOTES SURVIVAL OF HEMATOPOIETIC CELLS 
 

 13 

Conclusion 

In this study we have utilized ex vivo culture of HSPCs to further interrogate the molecular 

regulation of HSPCs by Nfix, which is required for their in vivo repopulation potential [10]. 

Primitive hematopoietic cells overexpressing Nfix persist in culture significantly longer than 

control cells, even when severely deprived of cytokines. We show that this persistence is due to 

enhanced survival that is mediated, in part, by up-regulation of the TPO receptor, c-Mpl, and 

correlates with our previous finding that loss of Nfix is detrimental to HSPC survival post-

transplant [10]. Nfix appears to promote differentiation of cultured LSK cells towards a 

heterogeneous mixture of immature progenitors that lack transplantation and CFU potential 

(Supporting Information Fig. S2-S5, S8), likely indicative of a differentiation block. It is also 

possible that Nfix expression selects for a cell in these cultures that depends on c-MPL signaling 

for survival. However, the enhanced survival of NFIX+ cells can also be observed in 

immunophenotypic HSPCs (Supporting Information Fig. S6), demonstrating that this 

phenomenon is not confined to a particular population. 

 

We further demonstrate that NFIX may function as a transcriptional regulator of c-Mpl. Indeed, 

NFIX was capable of activating a promoter containing multiple NFI consensus binding sites 

located upstream of the c-Mpl promoter. We also show NFIX-FLAG directly associated with the 

proximal promoter. NFIX may also regulate downstream effectors of the TPO/c-MPL signaling 

pathway, as Stat5a is significantly upregulated in NFIX+ cells compared to controls (p = 0.0012, 

Supporting Information Fig. 9C). However, this effect may be indirect as there are no NFI 

consensus binding sites proximal to the Stat5a promoter (data not shown). NFI proteins favor 

binding in the proximal promoter region.  
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c-Mpl is a well-known regulator of HSPC function, as it is required for the maintenance of adult 

quiescent HSCs and protection from DNA-damage induced apoptosis in vivo [13-15]. Given that 

Nfix is required for HSPC survival during transplant hematopoiesis [10], our data further 

implicate Nfix as a novel regulator of this important HSPC regulatory axis. Further work will be 

required to determine if Nfix-mediated regulation of HSPC responsiveness to TPO contributes to 

loss of HSPC survival and niche retention following transplant in vivo.  
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Figure 1. Nfix induces longevity in HSPC ex vivo culture. (A) Experimental schematic. 48 

hours post-transduction, LSK cells transduced with MND-Control or MND-Nfix were re-plated 

in 96-well non-tissue culture treated plates in serum-free expansion medium (SFEM) 

supplemented with mSCF, mTPO, mIGF-2, and hFGF-a (STIF). Every 48-72 hours of culture, 

cells were counted, assessed for GFP+ cells, and passaged 1:4. Cells were also periodically 

assessed for LSK immuno-phenotype. (B) Relative expression of NFI-family genes in NFIX+ 

cells compared to control cells, quantified by qRT-PCR (n = 3). Tbp was used as a housekeeping 

gene. (C) Relative growth of control and NFIX+ cells during ex vivo culture (n = 4). Dotted line 

indicates the divergence in relative growth between control and NFIX+ cells. (D) GFP 

percentage of control and NFIX+ cells during ex vivo culture, assessed by flow cytometry (n = 

4). (E) Percentage of control and NFIX+ cells with an LSK immuno-phenotype at day seven of 

ex vivo culture, depicted as a (i) representative dot plot and (ii) bar plot (n = 6). All values 

represent mean ± standard deviation. NS denotes not significant. 

 

Figure 2. HSPCs overexpressing Nfix can withstand cytokine deprivation and display 

reduced apoptosis during ex vivo culture. (A) Experimental schematic. 48 hours post-

transduction, LSK cells transduced with MND-Control or MND-Nfix were re-plated in 96-well 

non-tissue culture treated plates in serum-free expansion medium (SFEM) supplemented with 

either normal (100%) or reduced (25%) levels of STIF cytokines. Every 48-72 hours of culture, 

cells were counted, assessed for GFP+ cells, and passaged 1:4. Cells were also assessed by flow 

cytometry for apoptosis via Annexin V and cell cycle via DAPI at day seven of culture.  (B) 

Relative growth of control and NFIX+ cells during ex vivo culture (n = 4). Dotted line indicates 

the divergence in relative growth between control 100% and control 25% cells. (C) GFP 
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percentage of control and NFIX+ cells during ex vivo culture, assessed by flow cytometry (n = 

4). Dotted line indicates significant selection of NFIX+ cells under 25% cytokines. (D) Cell 

cycle analysis of GFP+ control or NFIX+ cells at day seven of ex vivo culture (n = 3). (E) 

Percentage of GFP+ apoptotic cells within control or NFIX+ cell cultures at day seven of ex vivo 

culture (n = 6). All values represent mean ± standard deviation. NS denotes not significant. 

 

Figure 3. NFIX up-regulates c-Mpl expression and downstream signaling in HSPC during 

ex vivo culture. (A) Expression of (i) c-Mpl  in LSK cells transduced with MND-Nfix relative to 

controls at day seven of culture, quantified by qRT-PCR (n = 3). Tbp was used as a 

housekeeping gene. (B) Percentage of c-MPL+ cells at four days of ex vivo culture for control 

and NFIX+ HSPCs, depicted as (i) representative dot plots and (ii) bar plots (n = 3). (C) Relative 

level of CD41 cell surface expression in NFIX+ cells compared to controls after four days of ex 

vivo culture, measured by flow cytometry as gMFI, depicted as (i) representative fluorescence 

histogram and (ii) bar plot (n = 3). (D) Relative levels of STAT5, AKT, and ERK1/2 

phosphorylation in NFIX+ cells compared to controls after four days of ex vivo culture, 

measured by flow cytometry as geometric mean fluorescence intensity (gMFI). Depicted as (i) 

representative fluorescence histograms and (ii) bar plots (n = 3). (E) (i) Quantitative ChIP 

analysis of c-Mpl proximal promoter in HPC5 cells. Data are presented as a percentage of total 

input chromatin (n = 3). (ii) Left, Schematic representation of the c-Mpl promoter with half and 

full NFI consensus sites cloned into luciferase reporter backbone pGL4.14. Right, Results 

showing luciferase activity normalized to Renilla luminescence and relative to MND-control 

samples (n = 3-5). Values represent mean ± standard error. NS denotes not significant. 
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Figure 4. The anti-apoptotic effect of Nfix in HSPC depends on c-MPL signaling. (A) 

Relative number of cells in control and NFIX+ cultures (i) with or without TPO and (ii) with or 

without AMM2 72 hours after replating (TPO, n = 3; AMM2, n = 6).  Bar indicates significant 

difference in the extent of cell loss after 72 hours of culture between control and NFIX+ cells. 

(B) Percentage of GFP+ cells in control and NFIX+ cultures (i) with or without TPO and (ii) 

with or without AMM2 72 hours after replating (TPO, n = 3; AMM2, n = 6). (C) Representative 

fluorescence histograms of GFP+ control and NFIX+ cultures to illustrate shift in c-KIT 

intensity 72 hours after removal of mTPO or addition of AMM2 (TPO, n = 3; AMM2, n = 6). 

(D) Relative levels of apoptosis in GFP+ compartment of control and NFIX+ cultures (i) with or 

without TPO and (ii) with or without AMM2 72 hours after replating (TPO, n = 3; AMM2, n = 

6). All values represent mean ± standard deviation. NS denotes not significant. 
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Supplemental Figure Legends 

Supplemental Figure 1. NFIX overexpression promotes accelerated differentiation of LSK 

cells during ex vivo culture. (A) FACS plots depicting the sorting schematic for freshly isolated 

LSK cells. (B) LSK immunophenotype of control and NFIX+ cells at day 0, 7, and 14 of culture 

depicted a representative dot plot from three independent experiments. (C) LSK 

immunophenotype of control and NFIX+ cells at day 14 of culture depicted as bar plot (n = 3). 

(D) One-way FACS histogram depicting a reduction in c-KIT+ cells among the lineage negative 

population of control and NFIX+ cells after seven days of ex vivo culture. All values represent 

mean ± standard deviation. NS denotes not significant. 

 

Supplemental Figure 2. HSPCs overexpressing Nfix display an immature blast-like 

morphology similar to control cells. Romanowsky stain of fresh bone marrow (BM) LSK cells, 

culture day seven (D7) GFP+ MND-Control, D7 GFP+ NFIX+ cells, and day thirty (D30) GFP+ 

NFIX+ cells. Representative images from two independent experiments are shown. Scale bars 

represent 50µm. 

 

Supplemental Figure 3. HSPCs overexpressing Nfix fail to repopulate the bone marrow of 

irradiated recipients and display a myeloid bias in lineage distribution. (A) Schematic 

displaying competitive transplantation assay to assess hematopoietic repopulation potential of 

HSPC. CD45.2 “test” LSK cells were harvested from bone marrow and transduced with either 

MND-control or MND-Nfix lentiviral vectors. CD45.1 “competitor” LSK cells were mock 

transduced. 24 hours post-transduction, 5000 test and 5000 competitor cells were harvested and 
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transplanted into irradiated recipients. (B) Percentage of CD45.2 “test” cells in the peripheral 

blood of transplanted recipients over a 16 week period. (C) Percentage of GFP+ cells within 

CD45.2 “test” cells in the peripheral blood of transplanted recipients over a 16 week period. (D) 

Percentage of T-, B-, and myeloid cells within CD45.2 “test” cells in the peripheral blood of 

transplanted recipients over a 16 week period. 

 

Supplemental Figure 4. HSPC overexpressing Nfix display reduced CFU potential. (A) 

Frequency of colony-forming units among GFP+ control and NFIX+ cells cultured for seven 

days ex vivo (n = 3). (B) Frequency of colony-forming units among GFP+ control and NFIX+ 

cells cultured for 21 days ex vivo (n = 3). The frequency of colony forming units refers to the 

number of colonies scored divided by the total number of cells plated in methylcelluose. All 

values represent mean ± standard deviation. NS denotes not significant. 

 

Supplemental Figure 5. Nfix-overexpressing cells display no major lineage markers and an 

immature progenitor immuno-phenotype. (A) Percentage of lineage+ cells among GFP+ 

control and NFIX+ cells as one (n = 3), three (n = 2), and four (n = 3) weeks in ex vivo culture. 

(B) Percentage of c-Kit+ CD71+ cells among GFP+ control and NFIX+ cells at various time-

points during ex vivo culture. (C) Representative FACS plot depicting the percentage of CD71hi 

cells in GFP+ control and NFIX+ cultures at day seven and day 30 of ex vivo culture. All values 

represent mean ± standard deviation. Note: all comparisons in (A) are not significant. 
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Supplemental Figure 6. LSK cells overexpressing Nfix display reduced apoptosis under 

cytokine deprivation during ex vivo culture. Percentage of GFP+ apoptotic cells within control 

or NFIX+ LSK cells at day seven of ex vivo culture (n = 3). All values represent mean ± standard 

deviation. NS denotes not significant. 

 

Supplemental Figure 7. Nfix overexpression affects the expression of other known 

regulators of HSPC biology. Relative expression of several regulators of HSPC biology in 

NFIX+ cells compared to control cells known to be down-regulated upon shRNA-induced Nfix 

knockdown [10] at day seven of ex vivo culture (n = 3). All values represent mean ± standard 

deviation. NS denotes not significant. 

 

Supplemental Figure 8. HSPCs overexpressing Nfix are not enriched for megakaryocyte 

progenitors or CFU-Megs. (A) Frequency of GFP+ CFU-Megs from control day seven, NFIX+ 

day seven, and NFIX+ day 30 ex vivo cells (n = 2). (B) Representative images of CFU-Megs 

from control day seven, NFIX+ day seven, and NFIX+ day 30 ex vivo cells (n = 2). (C) 

Percentage of megakaryocyte progenitors (c-Kit+Sca-1-CD127-CD9+CD32/CD16loCD41+) 

among GFP+ control and GFP+ NFIX+ cells (n = 4). All values represent mean ± standard 

deviation. Scale bars represent 50µm. MND-Control D7 = 100X magnification; MND-Nfix D7 = 

100X magnification; MND-Nfix D30 = 200X magnification. 
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Supplemental Figure 9. NFIX+ cells display enhanced TPO/c-MPL signaling sensitivity to 

mTPO exposure. (A) Relative phosphorylation status of STAT5, AKT, and ERK1/2 in NFIX+ 

cells during a time-course of mTPO exposure following cytokine starvation, as measured by 

phosphoflow (STAT5, ERK1/2: n = 4; AKT: n = 3). gMFI: Geometric mean fluorescence 

intensity. (B) Relative expression of Bcl-xL in NFIX+ cells compared to control cells at different 

time points during ex vivo culture, quantified by qRT-PCR (n = 3). Tbp was used as a 

housekeeping gene. (C) Relative expression of Stat5a and Stat5b in NFIX+ cells compared to 

control cells at day seven of ex vivo culture, quantified by qRT-PCR (n = 6). Tbp was used as a 

housekeeping gene. All values represent mean ± standard deviation. NS denotes not significant. 

Graphical Abstract Legend 

Hematopoietic stem and progenitor cells (HSPC) are necessary for lifelong blood production and 

replenishment of the hematopoietic system during stress. Here, we show that nuclear factor I/X 

(Nfix) is capable of protecting HSPC from stress-induced apoptosis during ex vivo culture. This 

protection relies on proper thrombopoietin/c-MPL signaling, as NFIX directly regulates c-Mpl 

expression.  
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 Materials and Methods 

Mice 

C57BL/6J and C57BL/6.SJL-PtprcaPep3b/BoyJ mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and housed in a pathogen-free facility. All animal experiments 

were carried out according to procedures approved by the St. Jude Children’s Research Hospital 

Institutional Animal Care and Use Committee. 

 

Vector construction 

Mouse Nfix cDNA was purchased from GE Healthcare Dharmacon Inc. (Lafayette, Colorado) 

(Accession: BC003766; Clone ID: 3491917). Nfix was cloned into the Gateway entry vector 

pDONR221 (Thermo Fisher Scientific, Waltham, MA) by BP clonase reaction, followed by 

transfer into pCCL-MNDU3-Gateway-PGK-GFP by LR clonase reaction to produce pCCL-

MNDU3-Nfix-PGK-GFP (MND-Nfix). pCCL-MNDU3-Gateway-PGK-GFP was prepared by 

transferring the Gateway cassette from pRFA (Thermo Fisher Scientific) to pCCL-MNDU3-

PGK-GFP downstream of the MNDU3 promoter. pCCL-MNDU3-PGK-GFP was used as a 

control vector (MND-Control).  
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Lentivirus production 

A four plasmid system (transfer vector (i.e. Nfix), Gag/Pol, Rev/Tat, and vesicular stomatitis 

virus glycoprotein (VSVG) envelope plasmid) was used to produce VSVG-pseudotyped 

lentivirus. Briefly, plasmids were co-transfected into 293T cells using TransIT 293 (Mirus, 

Madison, WI) and viral supernatant was collected 48 hours post-transfection. 293T cells were 

maintained in DMEM (GE Healthcare Life Sciences, Logan, UT) supplemented with 10% FCS 

(Omega Scientific, Tarzana, CA).  

 

Quantitative real-time polymerase chain reaction (qRT-PCR) 

Total RNA was isolated from 70-200,000 cells after 4-7 days in ex vivo culture using the Qiagen 

RNeasy Micro Kit (Qiagen, Valencia, CA), followed by reverse transcription using the High 

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Thermo Fisher Scientific). 

qRT-PCR was performed on an ABI StepOnePlus thermal cycler using SYBR Green (Thermo 

Fisher Scientific). Tbp was used as a housekeeping gene, and changes in gene expression 

between test and control samples were calculated using the ΔΔCt method. Primer sequences can 

be found in Supplemental Table 1. 

 

Fluorescence-activated cell sorting 

Bone marrow was harvested from the femurs, tibias, pelvic bones, and spines of mice by 

crushing. c-KIT+ cells were enriched by staining the bone marrow with anti-cKIT microbeads 

(Miltenyi Biotec, San Diego, CA), followed by magnetic separation on an autoMACS Pro 
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Separator (Miltenyi Biotec). Following separation, cells were stained with the following 

antibodies: c-KIT-APC (2B8) (eBioscience, Inc., San Diego, CA) and SCA-1-FITC (E13-161.7) 

(BD Biosciences, San Jose, CA). The c-KIT+SCA-1+ fraction was sorted on a FACSAriaIII (BD 

Biosciences). 4’,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific) was used to 

exclude dead cells. 

 

Lentiviral transduction 

96-well non-tissue culture (NTC) treated plates (Thermo Fisher Scientific) were coated with 

Retronectin (Takara Bio USA, Inc., Mountain View, CA) according to the manufacturer’s 

instructions. After coating, lentivirus was spin loaded onto the plates for one hour at 1000 g at 

room temperature at 2.5 x 106 virus/cm2. Wells were then washed once with PBS (Thermo Fisher 

Scientific) and 15,000 sorted LSK cells resuspended in 200 µL of serum-free expansion media 

(SFEM) (STEMCELL Technologies Canada, Inc., Vancouver, BC) were added to each well. 

SFEM was supplemented with 10 ng/mL murine stem cell factor (mSCF), 20 ng/mL murine 

thrombopoietin (mTPO), human fibroblast growth factor acidic (hFGF-a) (Peprotech, Rocky 

Hill, NJ), 20 ng/mL murine insulin-like growth factor 2 (mIGF-2) (R&D Systems, Inc., 

Minneapolis, MN), and 5 ug/mL protamine sulfate (Sigma-Aldrich Corp., St. Louis, MO). This 

cytokine combination will hereafter be referred to as “STIF.”  

 

HSPC ex vivo culture 

Following 24-48 hours of lentiviral transduction, cells were washed of any residual viral particles 

with PBS/2% FCS. After washing, 15,000 cells resuspended in 200 µL SFEM supplemented 
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with STIF and 10 µg/mL heparin (Sigma-Aldrich) were added to each well of a 96-well NTC 

plate. Cells were collected and passaged 1:4 into new media every 48-72 hours. 50 µL of cells 

not used for passaging were simultaneously assessed for relative growth and GFP% via flow 

cytometry analysis using BD LSRFortessa (BD Biosciences) and data analysis using FlowJo 

(FlowJo, LLC, Ashland, OR). To determine relative cell number, the 50 µL fraction was 

collected for 30 seconds at medium speed on the same instrument for every time point assessed, 

and the number of live cells collected was recorded. DAPI was used to exclude dead cells. This 

value was then entered into the following equation: 

relative growth value = ((live cell # x 4)/previous live cell #) x previous relative growth value 

In this equation, “4” corresponds to the dilution factor of the previous passage. For cytokine 

deprivation experiments, the same procedure was followed with the exception that 25% of the 

normal concentrations of STIF cytokines were used.  

 

Cytospin Preparation 

Cytospins were prepared and stained using cytopads with caps (Fisher) in a 7120 Aerospray 

Hematology Slide Stainer/Centrifuge (Wescor, Logan, UT). Briefly, 75,000 GFP+ control or 

GFP+ NFIX+ cells in 100ul were centrifuged for three minutes at 1000 rpm.  After letting the 

slides air dry, slides were stained using the Romanowsky staining method: eosin (Wescor), 

Thiazin (azure B, methylene blue) (Wescor) and light eosin rinse (Wescor).  Anhydrous 

methanol (Wescor) was used for fixation. 
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Bone Marrow Transplantation 

CD45.2 “test” LSK cells were collected and transduced with lentivirus as described above. 

Twenty-four hours post-transduction, 5000 test cells were washed with PBS and transplanted 

with 5000 mock-transduced CD45.1 LSK cells into lethally irradiated CD45.1/CD45.2 

recipients. For lethal irradiation, CD45.1/CD45.2 mice received two doses of 5.5 Gy 

administered three hours apart.  

 

TPO removal and AMM2 treatment 

Ex vivo HSPCs were transduced with lentivirus and plated as described above. After 72 hours in 

culture, 15,000 cells were collected, washed with PBS, and replated in 200ul SFEM 

supplemented with 25% STIF ± TPO or ± 2 µg/mL of the c-MPL neutralizing antibody AMM2 

[13] (Takara Bio USA). After another 72 hours in culture, cells were collected and counted via 

hemacytometer, as well as analyzed for GFP%, c-KIT%, and apoptosis via flow cytometry on a 

BD LSRFortessa. 

 

CFU assays 

Control and NFIX+ cells were sorted for GFP+ cells as described above and plated in 

methylcellulose M3434 (STEMCELL Technologies). Colonies were scored and counted 10-12 

days after plating. For identification of CFU-Megs, sorted cells were plated in MegaCult-C 

medium with collagen (STEMCELL Technologies), along with 50ng/ml TPO, 20ng/ml IL-6, and 
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10ng/ml IL-3. Colonies were stained and counted 6-8 days after plating, according to 

manufacturer’s instructions (STEMCELL Technologies).  

 

Phosphoflow 

Cells were transduced with lentivirus and plated as described above. After four to seven days in 

culture, 15,000-40,000 cells were collected, washed with PBS, and replated in 200ul SFEM 

without cytokines for two hours. After the incubation period, cells were collected and treated 

with 20 ng/mL mTPO for 5, 10, 25, 60, or 120 minutes at 37 ºC, followed by fixation in 1.6% 

formaldehyde (Avantor Performance Materials, Center Valley, PA) for 10 minutes at room 

temperature. Fixed cells were then pelleted and resuspended in ice cold methanol (Thermo Fisher 

Scientific), followed by 30 minutes incubation on ice or storage at -20 ºC for later analysis. After 

permeabilization, cells were washed with PBS/2% FCS and stained with fluorescent conjugated 

antibodies for phosphorylation of STAT5, ERK1/2, or AKT for analysis by flow cytometry.  

Luciferase Reporter Activity Assay 

Constructs for luciferase reporter assays were designed by using primers listed in Supplemental 

Table 2. HindIII and XhoI restriction sites were included during primer design (bold, lowercase 

in Table 2). Regions of the c-Mpl promoter were amplified via polymerase chain reaction (PCR) 

using these primers and fragments were purified with Wizard SV Gel and PCR Clean-up system 

(Promega, Madison, WI). Purified fragments and promoterless luciferase vector pGL4.14 

(Promega) were incubated with restriction enzymes HindIII-High Fidelity and XhoI (New 

England Biolabs, Ipswich, MA) and purified. Each fragment of the c-Mpl promoter and digested 

pGL4.14 backbone were ligated together with T4 DNA ligase overnight at 16qC. Ligation 
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reactions were transformed into Escherichia coli TOP10 One Shot competent cells (Invitrogen) 

and plated onto LB agar plates supplemented with 100ug/ml Ampicillin. Resulting colonies were 

sequenced using the RVprimer3 sequencing primer. The MND-control or MND-NFIX constructs 

(2.5 ug) were co-transfected with pGL4.70 (hRluc) (0.125 ug) and one of the luciferase 

constructs described earlier (0.875 ug) into 106 K562 cells using nucleofector kit V (Amaxa; 

Lonza Group, Basel, Switzerland) according to the manufacturer’s protocol. K562 cells were 

maintained in DMEM (GE Healthcare Life Sciences) supplemented with 10% FCS (Omega 

Scientific). 24 hours post-transfection, cells were lysed with passive lysis buffer and tested for 

reporter activity using the Dual-Luciferase Reporter Activity Assay Stop-and-Glo Kit (Promega) 

and a BioTek Synergy H1 Multi-Mode Microplate Reader (BioTek Instruments, Winooski, VT) 

according to manufacturer’s instructions. 

 

 

Chromatin Immunoprecipitation 

HPC5 cells were maintained in IMDM (Hyclone) media supplemented with 5% FCS, 0.15 mM 

1-thioglycerol (MTG) (Sigma, M6145), 10 ng/mL human interleukin-6 (hIL-6) (Pepro Tech 

Inc.), and 100 ng/mL mSCF. The cells were then infected with lentivirus carrying MND-Nfix-

FLAG or MND-control constructs. 48 hours after infection, cells were sorted for GFP+ cells. 

GFP+ HPC5 cells were expanded to 107 in culture for no more than one week. 107 GFP+ HPC5 

cells were crosslinked with 1% formaldehyde and stored at -80qC. After crosslinking, cells were 

sheared and diluted. At this time, 10% of the total lysate volume was reserved as the total input 

sample. Each sample received 1μg of an anti-FLAG antibody (CST, clone: D6W5B) or rabbit 
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IgG antibody (CST, 2729). Samples were incubated overnight at 4qC with gentle rocking. Next, 

Protein G Dynabeads (Fisher) were added to samples and incubated for two hours at 4qC with 

gentle rocking. Samples were washed with a series of buffers and then immunoprecipitated 

chromatin and total input chromatin were eluted. Chromatin were de-crosslinked and RNA and 

protein were digested by overnight incubations with RNase and Proteinase K in a sodium 

chloride rich buffer. DNA from ChIP samples and total input samples was extracted using 

phenol/chloroform. Total input samples were diluted ten times before qPCR. The following 

primers were designed to encompass NFI consensus binding sites in the Mus musculus c-Mpl 

proximal promoter [Forward: CCCATTCCCCCTCCTCTGG] and [Reverse: 

CCTGTCAGATACAGCCCCAC]. Primers used for ChIP-qPCR were validated with serial 

dilutions of HPC5 genomic DNA. Total input samples were first adjusted to represent 100% of 

the total chromatin present in samples. Finally, percent input was calculated as follows, % Input 

= 100 × 2(adjusted input Ct – ChIP Ct).   

 

Flow cytometry 

All flow cytometry analysis was performed on a BD LSRFortessa and all data was analyzed by 

FlowJo. For determination of Lineage-SCA-1+c-KIT+ immuno-phenotype of ex vivo cells, the 

following antibodies were used: {CD3 (145-2C11), CD4 (GK1.5), CD19 (6D5), GR-1 (Rb6-

8C5), TER-119 (TER-119) (BioLegend, San Diego, CA), CD8 (53-6.7), B220 (RA3-6B2) (BD 

Biosciences)}-PerCP; SCA-1-PerCP-Cy5.5 (E13-161.7) (BioLegend); c-KIT-APC-eFluor780 

(2B8) (eBioscience). For determination of c-KIT% of ex vivo cells in the TPO and AMM2 

experiments, c-KIT-PE-Cy7 (2B8) (BioLegend) was used. For flow cytometry analysis of cell 
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cycle, cells were collected, washed with PBS/2% FCS, then fixed and permeabilized followed by 

DAPI staining. For flow cytometry analysis of apoptosis, cells were collected, washed with 

PBS/2% FCS and resuspended in Annexin Binding Buffer (BD Biosciences). Cells were then 

stained with DAPI and Annexin V-APC (BD Bioscences). For phosphoflow, the following 

antibodies were used: STAT5(pY694) (47); ERK1/2(pT202/pY204) (20A); AKT(pS473) (M89-

61) (BD Biosciences). For peripheral blood analysis of recipients, blood was collected from the 

retro orbital plexus in heparinized capillary tubes and lysed in red blood cell lysis buffer (Sigma-

Aldrich Corp.). Cells were then stained with CD45.1-APC (A20), CD45.2-v500 (104) 

(eBioscience), {B220 (RA3-6B2), Gr-1 (RB6-8C5), CD11b (M1/70)}-PerCP-Cy5.5, {B220 

(RA3-6B2), CD4 (GK1.5), CD8 (53-6.7)}-PE-Cy7 (BioLegend). For staining of megakaryocyte 

progenitors, cells were stained with c-KIT-APC-eFluor780 (2B8) (eBioscience), SCA-1-PE 

(E13-161.7) (BioLegend), CD127-PE-Cy7 (A7R34) (Tonbo Biosciences, San Diego, CA), CD9-

A647 (KMC8) (BD Biosciences), CD32/CD16-A700 (93) (eBioscience), and CD41-PerCP-e710 

(eBioMWReg30) (eBioscience).  

 

Statistical analysis 

Statistical significance was determined using two-sample/one sample Student’s t-tests or exact 

Wilcoxon rank sum tests, depending on the normality of the data as determined by the Shapiro-

Wilk test. In Fig. 4A, a linear regression model was used to examine the reduction in cell number 

in controls compared with NFIX+ cells. p-values < 0.05 were considered statistically significant 

in all analyses.   
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Supplemental Tables 

Supplemental Table 1. qRT-PCR primer sequences 

Designed sequences: 

Target Forward Primer Reverse Primer 
Amplicon Size 

(bp) 
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Nfix AGGCTGACAAGGTGTGGC CACTGGGGCGACTTGTAGAG 103 

Nfia GAGTCCAGGAGCAATGAGG CCATTTCATCCTCCACAGAC 86 

Nfic CCGGCATGAGAAGGACTCTAC TTCTTCACCGGGGATGAGATG 187 

c-Mpl CTGGTCCTTCCCTGTGACT GCGGTTCCTCCTCTTCACAT 206 

Bcl-xL GACAAGGAGATGCAGGTATTGG TCCCGTAGAGATCCACAAAAGT 124 

Erg CTAAGACAGAGATGACCGCA GTGGTCATATTGGGAGGCG 274 

Gata3 CTCGGCCATTCGTACATGGAA GGATACCTCTGCACCGTAGC 134 

Hlf CCGTCTCCGAACTGTATGC AGAACTTCCGTTTGCGAGG 187 

Mecom ACATGGGAGAGCAGAGATCAG TGATCATAGCAGCCAGCG 151 

Robo4 TGTGTTGCTCCTGAGGCTG TCTGTTCACCCACTACGGTC 203 

Tek GATTTTGGATTGTCCCGAGGTCAAG CACCAATATCTGGGCAAATGATGG 306 

Tie1 AGGAGGTGTATGTGAAGAAGAC CCTCCAAGGCTCACTATCTC 142 

Tbp GAAGAACAATCCAGACTAGCAGCA CCTTATAGGGAACTTCACATCACAG 129 

 

 

 

Sequences obtained from Qiagen: 

Target Qiagen Order Number 
Amplicon Size 

(bp) 

Hemgn QT00106099 127 

Mycn QT00252196 111 
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Gata2 QT00160524 95 

Stat5a QT00164367 87 

Stat5b QT00126126 99 

 

 

 

 

 

Supplemental Table 2. Primer sequences for luciferase constructs 

Sites Included Forward (5’-3’) Reverse (5’-3’) 

-189,-127,-101,-18 GGGGctcgagAATATATACCTCTGTGTCCCTGCC GGGaagcttCACTGTGTGCCTGCCTTA 

-127,-101,-18 GGGGctcgagATATATACCTCTGTGTCCCT GGGaagcttCACTGTGTGCCTGCCTTA 
-18 GGGGctcgagGGACGTGGGGCTGTATCTGA GGGaagcttCACTGTGTGCCTGCCTTA 
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