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Abstract 26 

Studies of microbiome variation in wildlife often emphasize host physiology and diet as proximate selective 27 

pressures acting on host-associated microbiota. In contrast, microbial dispersal and ecological drift are more 28 

rarely considered. Using amplicon sequencing, we characterized the bacterial microbiome of adult female 29 

(n = 86) Sable Island horses (Nova Scotia, Canada) as part of a detailed individual-based study of this feral 30 

population. Using data on sampling date, horse location, age, parental status, and local habitat variables, 31 

we contrasted the ability of spatiotemporal, life history, and environmental factors to explain microbiome 32 

diversity among Sable Island horses. We extended inferences made from these analyses with both 33 

phylogeny-informed and phylogeny-independent null modeling approaches to identify deviations from 34 

stochastic expectations. Phylogeny-informed diversity measures were correlated with spatial and local 35 

habitat variables, but null modelling results suggested that heterogeneity in ecological drift, rather than 36 

differential selective pressures acting on the microbiome, was responsible for these correlations. 37 

Conversely, phylogeny-independent diversity measures were best explained by host spatial and social 38 

structure, suggesting that taxonomic composition of the microbiome was shaped most strongly by bacterial 39 

dispersal. Parental status was important but correlated with measures of β-dispersion rather than β-diversity 40 

(mares without foals had lower alpha diversity and more variable microbiomes than mares with foals). Our 41 

results suggest that between host microbiome variation within the Sable Island horse population is driven 42 

more strongly by bacterial dispersal and ecological drift than by differential selective pressures. These 43 

results emphasize the need to consider alternative ecological processes in the study of microbiomes. 44 

Keywords: Microbial Ecology, Mammal, Null Models, Phylogenetic Ecology, Social Microbiome, Wildlife 45 

 46 

 47 

 48 
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1 | Introduction 49 

Nascent recognition of the physiological, ecological, and evolutionary importance of host-associated 50 

microbial communities (microbiomes) has inspired growing interest in microbial applications towards 51 

human health, domestic animal production, and wildlife conservation (Arias-Sánchez, Vessman, & Mitri, 52 

2019; Gilbert et al., 2018; Trevelline, Fontaine, Hartup, & Kohl, 2019). But to effectively manipulate 53 

microbiomes we must first understand predictors of microbiome variation and acknowledge the full scope 54 

of ecological processes which underly the assembly of biological communities (selection, ecological drift, 55 

dispersal; Vellend, 2010). However, selection, drift, and dispersal are all influenced by the artificial 56 

laboratory conditions from which much of our understanding of host-associated microbiomes are derived 57 

(Greyson-Gaito et al., 2020). Therefore, there is value in supplementing highly controlled laboratory 58 

experiments with observations from wild systems. To date, research on microbiome variation in wild 59 

systems have most heavily emphasized host or environmental factors thought to exert divergent selective 60 

pressures microbiome (i.e. host physiology: Amato et al., 2014; Stothart, Palme, & Newman, 2019; 61 

Suzuki et al., 2019; host diet: Kartzinel, Hsing, Musili, Brown, & Pringle, 2019; Teyssier et al., 2020). 62 

More recently, researchers have speculated as to the ecological and evolutionary importance of ecological 63 

drift and microbiota dispersal in shaping microbiome variation in nature (Adair & Douglas, 2017; Kohl, 64 

2020; Miller, Svanbäck, & Bohannan, 2018; Sarkar et al., 2020), however, few empirical estimates of 65 

these processes have been made outside of the laboratory. 66 

While host physiology and diet clearly shape wildlife-microbiome variation, the ability of 67 

microbiota to disperse between host intestinal tracts arguably supersede the importance of either in 68 

governing microbiome diversity (Miller et al., 2018). Correlations between microbiome composition and 69 

social networks in gregarious hosts illustrate the importance of microbial community connectivity and 70 

bacterial dispersal on microbiome diversity (savannah baboons [Papio cynocephalus], Tung et al., 2015; 71 

Sarkar et al., 2020). Bacterial dispersal between hosts can occur through grooming (rhesus macaques 72 

[Macaca mulatta], Balasubramaniam et al., 2018), coprophagy (domestic horses [Equus ferus caballus], , 73 
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shared environments (humans [Homo sapiens], Rothschild et al., 2018), or copulation (black legged 74 

kittiwakes [Rissa tridactyla], White et al., 2010). Therefore, we would expect rates of bacterial dispersal 75 

to decrease as a function of the time and space separating hosts. An effect of spatial separation on the 76 

microbiome has been demonstrated at large spatial scales between (sub)populations of red squirrels 77 

(Tamiasciurus hudsonicus; ~7km; Ren et al., 2017), bighorn sheep (~150 km; Couch et al., 2020), house 78 

mice (Mus musculus; ~1100 km; Linnenbrink et al., 2013), American pikas (Ochotona princeps; ~1400 79 

km; Kohl, Varner, Wilkening, & Dearing, 2018), red colobus (Procolobus rufomitratus; ~1100km; 80 

Mccord et al., 2014), and between pairs of predator and prey species (~12100 km; Moeller et al., 2017).  81 

The affects of spatial separation on microbial dispersal between social groups of host individuals 82 

within populations are more rarely considered. One study of a single focal population of house mice (Mus 83 

musculus domesticus) found a greater importance of fine-scale habitat heterogeneity than spatial 84 

separation (Goertz et al., 2019). Conversely, spatial structuring of the microbiome has been reported 85 

among a contiguous moose population spanning 150 km (Fountain-Jones et al., 2020). Similar effects of 86 

spatial proximity have been observed among semi-feral ponies (40 km2; Antwis, Lea, Unwin, & Shultz, 87 

2018), but were limited to comparisons between three large social groups (bands). Regardless of the 88 

spatial scale considered, many studies do not control for local environmental variation. Conversely, 89 

studies which consider environmental terms often do not consider spatial processes, which is problematic 90 

given an expectation that environmental conditions are spatially autocorrelated. Therefore, relationships 91 

between microbiome beta-diversity and host spatial distribution can derive from underlying 92 

environmental selective pressures, or higher rates of microbiota dispersal between hosts in close-93 

proximity—parsing these mechanisms is important but challenging. 94 

Greater rates of microbiota dispersal between co-occurring hosts can drive microbiome similarity, 95 

but strong dispersal limitation can cause greater than expected divergence between communities and 96 

unpredictable β-diversity patterns. In a meta-population context, dispersal between communities are 97 

thought to stabilize populations (Crowley, 1981), so long as dispersal is not so high as to drive spatial 98 



5 
 

synchrony (Yaari, Ben-Zion, Shnerb, & Vasseur, 2012). Conversely, dispersal limitation among isolated 99 

biological communities increases the strength of ecological drift and heightens the risk of local 100 

extinctions (Vellend, 2010). Hosts disconnected from the broader meta-community of conspecific 101 

microbiomes (Miller et al., 2018)—those in low density populations, at the fringes of populations, or 102 

experiencing social isolation—may be at greater risk of stochastic microbiome dysregulation. These 103 

concerns have been raised with respect to wildlife in captivity (McKenzie et al., 2017; Trevelline et al., 104 

2019); although, this effect remains to be explicitly tested in free-living settings.  105 

Dispersal limitation can feed ecological drift but so too can dietary and physiological factors 106 

which are often assumed to be deterministic. For example, different diets can exert divergent selective 107 

pressures, but can also differ in the energy made accessible to the microbiome and the diversity of 108 

metabolic niche space supported. Labile high energy diets may fail to support fibrolytic and cellulolytic 109 

niche-space in the microbiome (Oliphant & Allen-Vercoe, 2019) and can destabilize microbial 110 

communities in a process similar to the paradox of enrichment (Coyte, Schluter, & Foster, 2015; 111 

Rosenzweig, 1971). Similarly, while different host physiological states might select for different 112 

microbial functions (Foster, Schluter, Coyte, & Rakoff-Nahoum, 2017), a loss of host homeostatic control 113 

among physiologically stressed hosts might result in community instability and greater stochastic 114 

variation (Zaneveld, McMinds, & Vega Thurber, 2017). Microbiome β-dispersion, a measure of 115 

microbiome variance, is one indication of the relative strength of stochasticity. A second indication of 116 

stochasticity is the failure of communities to deviate from predictions made by null modelling 117 

approaches. Despite past misuse (for an overview see: Narwani, Matthews, Fox, & Venail, 2015), 118 

phylogenetic null modelling methods are valuable to consider alongside conventional β-diversity metrics, 119 

as traditional diversity metrics can be influenced by system gamma diversity and imbalances in alpha 120 

diversity between communities (Chase, Kraft, Smith, Vellend, & Inouye, 2011; Gering & Crist, 2002; 121 

Zhou & Ning, 2017). However, we stress that the results of null modelling approaches are exploratory, 122 

rather than definite measures of ecological processes underlying community assembly. 123 
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Here we directly contrast the ability of host life history, habitat heterogeneity, and spatial 124 

measures to explain variation in the faecal bacterial microbiome of feral horses using 86 adult females 125 

from the closed population of Sable Island (Nova Scotia, Canada). Building on a comprehensive, long-126 

term, detailed individual-based study of ecology and evolution for this population (Richard, Simpson, 127 

Medill, & Mcloughlin, 2014), we apply a combination of conventional diversity analyses and null 128 

modeling approaches to evaluate the evidence for drift, dispersal, and niche-based processes. If 129 

environmental conditions and host life history (a proxy for physiology) are more similar within 130 

populations than between populations or between species, then microbial dispersal patterns and ecological 131 

drift might play comparably large roles in shaping inter-individual microbiome variation within 132 

populations. Specifically, we predicted that phylogeny-independent diversity measures would be most 133 

strongly influenced by spatial and social variables, reflecting microbial dispersal patterns. Conversely, we 134 

predicted that host life history and local habitat heterogeneity would better explain variation in 135 

phylogeny-weighted metrics of microbiome diversity—reflecting different selective pressures imposed on 136 

host-associated microbiota between host physiological states or diets. These predictions are predicated on 137 

the presumption that microbial niche-spaces are phylogenetically conserved, a pattern which we indirectly 138 

test. Our study represents one of the first direct comparisons between environmental and spatial effects on 139 

host-associated microbiomes in the wild at a within population scale, with consideration offered to 140 

alternative ecological processes. 141 

 142 

2 | Methods 143 

2.1 | Study area and population 144 

Sable Island National Park Reserve, a crescent-shaped emergent sand bar located 175 km off the east 145 

coast of Nova Scotia (Canada), spans ~49 km (east-west) but is only ~1.2 km at its widest point (Figure 146 

1).  The treeless island is dominated by marram grass (Ammophila breviligulata), a common species in 147 
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early-successional grasslands, occurring both in pure swards and in mixed communities alongside other 148 

species such as red fescue (Festuca rubra), beach pea (Lathyrus japonicus var. maritimus), and forbs such 149 

as meadow rue (Thalictrum pubescens) or pearly everlasting (Anaphalis margaritacea). These grasslands 150 

comprise the most common vegetation community (Contasti, Tissier, Johnstone, & McLoughlin, 2012). 151 

Sheltered by 10–30-m high dunes, in the interior of the island grasslands give way to late-successional 152 

mixed heath communities characterized by shrubs (e.g. common juniper [Juniperus communis var. 153 

megistocarpa], lowbush blueberry [Vaccinium angustifolium], northern bayberry [Myrica pensylvanica]), 154 

and the presence of an organic soil layer (Catiling, Lucas, & Freedman, 2009; Tissier, Mcloughlin, 155 

Sheard, & Johnstone, 2013). Dune height and vegetated landcover decrease as the island tapers towards 156 

its longitudinal extremes, where beach pea and seaside goldenrod (Solidago sempervirens) are co-157 

dominant with marram grass and the semi-succulent forb sandwort (Honckenya peploides) dominates at 158 

the edges of dunes (Catiling et al., 2009; Tissier et al., 2013). Sandwort is an important component of the 159 

Sable Island horse diet (Contasti et al., 2012) and a nutritional outlier, being lower in fibre and higher in 160 

crude protein compared to other types of forage on Sable Island (personal communication K. Johnsen; 161 

Lee, 2018)) 162 

Introduced to the island circa 1750 and studied intensively by our research group since 2007 163 

(Contasti, Van Beest, Vander Wal, & McLoughlin, 2013; Gold et al., 2019), the feral horses are the only 164 

terrestrial mammal found on the island (Freedman, 2016). Since their introduction, the horses have 165 

remained unmanaged with very limited introgression from mainland domestic stock (most recently a 166 

single adult male in the 1930s; Welsh, 1975). The horse population (550 individuals in 2014) declines 167 

sharply in density from west to east (Marjamäki, Contasti, Coulson, & Mcloughlin, 2013). A polygynous 168 

mating system exists, characterized by mixed-sex social bands guarded by (usually) a single dominant 169 

adult male (stallion) against mating attempts by other males. Females in the population invariably 170 

segregate across these mixed-sex social bands which are comprised of the dominant stallion, adult 171 

females (mares), and subadult  (<3 years of age) offspring (Regan et al., 2019). Bands can therefore be as 172 
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small as 2 horses (one adult male and one female), although bands as large as 16 horses have been 173 

observed (Manning & McLoughlin, 2017). Band memberships are stable across years but 67% of adult 174 

females  have been observed to disperse to a different social band at least once during a 7-year period 175 

(Debeffe, Richard, Medill, Weisgerber, & McLoughlin, 2015). Outside of social dispersal events, social 176 

bands traverse the landscape together but very rarely stray farther than 4000 m in either direction from the 177 

centre of their home-range during the summer. Most bands constrain their movements to <2000 m from 178 

their home-range’s centre (Rozen-Rechels et al., 2015). Bacterial dispersal between horses is expected to 179 

occur primarily between members of the same—or interacting—social bands and be facilitated by 180 

grooming, coprophagy, interactions with faecal territorial markers (stud piles), or the use of shared 181 

resources (Figure 2). Social dispersal of horses might likewise facilitate bacterial transmission between 182 

social bands over longer distances. 183 

2.2 | Location and life history data 184 

Location data are collected during annual systematic surveys conducted between the months of July–185 

September. Each day (weather permitting) one of seven sections is surveyed on foot by one or multiple 186 

observers, and adjacent sections are not surveyed on consecutive days. Consequently, each section is 187 

typically surveyed once per week over a 6 to 8 weeks period. When horses are encountered, identifying 188 

photos are taken alongside location to the nearest 5 m using a handheld GPS device. Every year, each 189 

horse is sighted 5 ± 2 times (𝑥̅ ± SD; Rozen-Rechels et al., 2015). Annual surveys across years allow us to 190 

track the birth, age, change in reproductive status, death, and social parentage of every individual.  191 

2.3 | Sample collection and storage 192 

Faecal samples are collected using sterile nitrile gloves which are inverted, sealed, and kept in insulated 193 

bags containing icepacks until returning to the laboratory on the same day (max ~6 hrs). Samples are 194 

collected immediately upon defecation but only if the sample has not been disturbed or environmentally 195 

contaminated, and only portions of the faecal pile not in contact with the ground or vegetation are 196 
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collected. Subsamples (~1–2 grams each) are stored in cryotubes at −20oC while on the island before 197 

transfer to long-term storage at −80oC on the mainland at the end of each field season. For the present 198 

study we selected 86 fecal samples collected in 2014 between mid-July and early-September from 86 199 

different adult females (mares) spanning 52 social bands (1–4 samples/band) which ranged from 3–12 200 

horses in size. Each mare represented in the dataset was only sampled once. Ages ranged from 3–9+; 201 

mares classed as 9-years of age might be older than 9 years, as they were adults before the inaugural field 202 

season of the long-term study.  203 

2.4 | Habitat Classification 204 

Habitat classifications were developed using Light Detection And Ranging (LiDAR) surveys and high-205 

resolution aerial photo in 2009 by the Applied Geomatics Research Group (Nova Scotia Community 206 

College, Middleton, Nova Scotia; van Beest et al. 2014). Non-vegetated habitat classes included bare 207 

sand, ocean, human structures (buildings with fenced perimeters), and freshwater ponds. Vegetated 208 

habitat classes were characterized by their dominant plant species: grassland (marram grass), heath 209 

(mixed juniper, crowberry, and blueberry), sandwort, and beach pea. Vegetated classes subcategorized 210 

into ‘sparse’ or ‘dense’ (e.g. sparse grassland and dense grassland) in original classification efforts were 211 

combined in our analyses. The distribution of vegetated habitats on Sable Island is stable across years 212 

(van Beest et al., 2014), and so classifications made from the 2009 remote sensing data are thought to 213 

accurately reflect habitat heterogeneity in 2014 (the year faecal samples were collected). 214 

To quantify variation in an individual’s local environment, we calculated the area of habitat 215 

classes overlapping a 150-m radius circular buffer centred on the location of sample collection in R 216 

(v3.5.1). A 150-m radius buffer corresponds approximately to the observed median daily movement of 217 

horses in 2014 (positive skewed distribution, median: 108 m/day; mean 317 m/day), and so is expected to 218 

coarsely reflect the types of environment, and therefore forage, encountered during the 24 hours 219 

preceding defecation. Habitat class variables were calculated as the area of a given habitat class relative to 220 
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the total occupiable terrestrial area included within an individual’s buffer (AreaBuffer – AreaBuilding– 221 

AreaOcean). Sandwort abundance was zero-inflated and non-normally distributed. Further, resource 222 

selection analysis of Sable Island horse foraging behaviour suggests horses actively select for sandwort 223 

when it is present, while other vegetated habitat classes are used in proportion to their abundance on the 224 

local landscape (personal communication K. Johnsen). For these statistical and biological reasons, 225 

sandwort was parameterized as ‘present’ or ‘absent’ in our analyses. Only vegetated habitat classes were 226 

parameterized in analyses to limit model inflation and limit collinearity between terms.  227 

2.5 | Sequencing and Bioinformatics 228 

Using 2 mL bead beating tubes (0.7 mm Dry Garnet) and a Vortexed-Genie 2 fitted with Qiagen’s Vortex 229 

Adapter (cat. No. 13000-V1-24), we homogenized 0.20-gram sub-samples of horse fecal material. We 230 

extracted DNA from homogenized fecal samples using QIAgen’s QIAamp PowerFecal DNA Kits, 231 

following manufacturer recommendations outlined in the Qiagen PowerFecal DNA handbook. Notably, 232 

we used a single tube extraction protocol (rather than a 96-well format) and randomized the order in 233 

which samples were extracted. In the final step, we eluted DNA from the spin columns using 100 µl of 234 

ddH2O pre-warmed to 60°C. Prior to sequencing, we quantified the DNA in eluted extracts using a Qubit 235 

dsDNA BR Assay Kit and standardized DNA concentration to 20 ng/uL prior to PCR amplification. We 236 

PCR amplified the v3–v4 region of the 16S rRNA gene using the 341f forward and 805r reverse universal 237 

primers. PCR products were sequenced on an Illumina MiSeq platform (v3 chemistry: 2 x 300 base-pair 238 

read pairs) at the University of Calgary Centre for Health Genomics and Informatics. 239 

Cutadapt v1.16 was used to remove 341f and 805r primers or discard  untrimmed reads (Martin, 240 

2011). Trimmed reads were processed in dada2 v1.6 using a standard pipeline 241 

(https://benjjneb.github.io/dada2/tutorial_1_6.html; Callahan et al., 2016). In brief, sequences with a 242 

maximum expected error of two or greater, PhiX spike-ins, and bases with a quality score of <2 were 243 

discarded using the filterAndTrim command. Forward and reverse sequences were truncated to lengths of 244 

https://benjjneb.github.io/dada2/tutorial_1_6.html
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250 and 200, respectively. The remaining commands were conducted using default parameters unless 245 

otherwise noted. Filtered sequences were used to create an error model using the learnErrors command 246 

and were subsequently dereplicated using the derepFastq command. Error correction was performed 247 

using the dada command, at which point, forward and reverse sequences were merged using the 248 

mergePairs command with the trimOverhang parameter set to “TRUE”. Chimeras were removed using 249 

the “consensus” method with the removeBimeraDenovo command. Taxonomic assignment of amplicon 250 

sequence variants (ASVs) was performed using implementation of the naïve Bayesian classifier (Wang et 251 

al. 2007) and v132 of the SILVA database (Yilmaz et al., 2014) using the command assignTaxonomy. To 252 

further conservatively filter sequencing errors and possible extraction kit contaminants, as well as to 253 

reduce singleton noise prior to analysis, ASVs which were not represented by at least 1 count in 4 254 

samples were removed from the dataset (Knowles, Eccles, & Baltrūnaitė, 2019). Additionally, reads 255 

classified as mitochondria or chloroplasts were likewise removed. ASV sequences were aligned using 256 

MUSCLE with default parameters (Edgar, 2004) and a relaxed neighbour-joining method was used to 257 

construct a phylogenetic tree using the mothur implementation of clearcut (Kozich, Westcott, Baxter, 258 

Highlander, & Schloss, 2013; Sheneman, Evans, & Foster, 2006).  259 

Two negative controls, but not field controls, representing DNA extraction kit blanks were 260 

processed and sequenced as described above. Sequencing recovered 3412 and 3015 paired-end reads per 261 

negative control, which were represented by only 20 ASVs. ASVs found observed in the negative 262 

controls were absent from horse fecal samples and therefore removed prior to data analysis.  263 

2.6 | Diversity Analysis 264 

We used the number of observed ASVs (ASV richness) from a rarefied microbiome dataset as a measure 265 

of within-host microbial diversity (α-diversity). While α-diversity indicates within-host diversity, β-266 

diversity indicates pair-wise differences in community composition between hosts. We analyzed two β-267 

diversity metrics: Euclidean distances from a centred log-ratio transformed ASV dataset (Gloor, 268 
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Macklaim, Pawlowsky-Glahn, & Egozcue, 2017) and weighted UniFrac distances (Lozupone, Hamady, 269 

Kelley, & Knight, 2007) from a rarefied ASV dataset (34,280 reads/sample; rarefaction curve: Figure S1, 270 

Supporting information). Both β-diversity metrics weight differences in the ASV composition and relative 271 

abundance of ASVs between communities, but the weighted UniFrac measure differs by simultaneously 272 

weighting the phylogenetic relatedness of ASVs. Finally, we also considered β-dispersion, calculated as 273 

the distance from each sample to the sample-set centroid in Euclidean or weighted UniFrac space 274 

(Anderson, Ellingsen, & McArdle, 2006).  275 

We evaluated the ability of spatiotemporal (day of year, longitude, and distance from the 276 

population’s midpoint), host life history (using age and parental status as proxies of host physiology), and 277 

habitat class relative areas to predict patterns in the described microbiome diversity measures. Given an 278 

east-west orientation of Sable Island’s linear landmass, longitude is a good 1-dimensional measure of 279 

location on the island. Distance from the population midpoint was calculated as the longitudinal distance 280 

separating an individual at the time of fecal sample collection from the average horse longitude in 2014 281 

(5166 sightings total). We theorized that individuals further from the population’s core might be less well 282 

connected by microbial dispersal to the rest of the population. Day of year, longitude, and longitudinal 283 

distance from the population’s centre were scaled to a mean of 0 and a standard deviation of 1 prior to 284 

analysis. Age was coded as continuous data in 1-year increments, with a linear and 2nd order polynomial 285 

fit considered in analyses, given a curvilinear relationship between gut microbiome diversity and age 286 

among humans (Yatsunenko et al., 2012). Parental status, shown to affect the microbiome in other 287 

systems (Amato et al., 2014), was coded as a dichotomous variable based on whether adult females were 288 

nursing a foal (<1 year old offspring) during the 2014 field survey.   289 

For univariate diversity measures (α-diversity and β-dispersion), we used a multi-model inference 290 

approach implemented in the R package MuMIn v1.43.6 (Bartoń, 2009). A starting global general linear 291 

model was parameterized with the spatiotemporal, life history, and environmental terms described above, 292 

without interactions. We determined parameter estimates and significance from conditional AICc 293 
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averaging of models which had a Δ AICc < 3 (Burnham & Anderson, 2002; Grueber, Nakagawa, Laws, 294 

& Jamieson, 2011). Patterns in β-diversity were analyzed using a backwards selection approach from 295 

PERMANOVA outputs, with the global model outputs reported in the Supporting information (vegan R 296 

package v2.5-6, adonis2 function, by = ‘margin’; Oksanen et al., 2019). Additionally, we ran a Mantel 297 

test to test for a correlation between spatial separation and β-diversity measures, and a separate univariate 298 

PERMANOVA to test for an effect of social band membership. 299 

2.7 | Testing for a phylogenetic signal 300 

Inferences made from phylogeny-informed null modeling approaches are predicated on the existence of a 301 

positive phylogenetic signal in species niche-space (Webb, Ackerly, McPeek, & Donoghue, 2002).  A 302 

positive phylogenetic signal is a pattern wherein closely related species possess similar suites of traits or 303 

occupy similar niches (Tucker, Davies, Cadotte, & Pearse, 2018). We tested for a phylogenetic signal 304 

with respect to abundance in the presence of sandwort using the R package phylosignal v1.2.1 (Keck, 305 

Rimet, Bouchez, & Franc, 2016). To approximate an ASVs association with a (putatively) sandwort-306 

based diet, we estimated the ecological niche space of each ASV based on its average relative abundance 307 

within horses for which sandwort was present or absent. Briefly, for each ASV, sequence counts within a 308 

given horse in a rarefied dataset was divided by the total sequence count of that ASV summed across all 309 

samples. Relative abundance estimates among horses with access to sandwort were multiplied by 1 and 310 

relative abundances among horses without sandwort access were multiplied by −1. The sum of these 311 

values within each ASV were assigned as a ‘niche-score’ for each ASV which varied continuously 312 

between 1 (ASV only present in horses with access to sandwort) and -1 (ASV only present in horses 313 

without access to sandwort).  314 

 Sandwort was chosen as the focal environmental variable since: 1) dietary components are 315 

expected to vary in their polysaccharide composition, thereby selecting for different microbial metabolic 316 

functions (Julliand & Grimm, 2017), 2) sandwort has a very different nutritional profile than all other 317 
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components of the Sable Island horse diet (lower fibre, higher crude protein; personal communication K. 318 

Johnsen; Lee, 2018) and 3) sandwort presence was observed in preceding analyses to be an important 319 

correlate of phylogeny-informed and phylogeny-independent β-diversity. 320 

 Again, we emphasize that we inferred phylogenetic conservatism of bacterial niche-space based 321 

on ecological associations, rather than making direct measurements of functional traits. The phenomenon 322 

of lateral gene transfer (LGT) has raised concerns that traits will not be phylogenetically conserved 323 

among bacteria (Boucher et al., 2003). Despite theoretical concerns, reconstructed ancestral gene contents 324 

of archaea and proteobacteria suggests that vertical transmission is more influential than LGT (Snel, 325 

Bork, & Huynen, 2002). Further, large-scale analyses of thousands of publicly archived prokaryotic 326 

genomes indicate that functional traits (especially those related to carbohydrate substrate utilization) are 327 

often shallowly phylogenetically conserved (Berlemont & Martiny, 2013; Jain, Rodriguez-R, Phillippy, 328 

Konstantinidis, & Aluru, 2018; A. C. Martiny, Treseder, & Pusch, 2013; Martiny, Jones, Lennon, & 329 

Martiny, 2015; Van Assche et al., 2017). Counterintuitively, LGT may even reinforce trait conservatism 330 

over shallow phylogenetic distances, since rates of LGT are higher between closely related bacteria than 331 

between more distant relatives (Jeong, Arif, Caetano-Anollés, Kim, & Nasir, 2019). 332 

2.8 | Null modelling within communities 333 

Like macro-ecological communities, the bacterial microbiome can be shaped by deterministic processes 334 

(selection), stochastic processes (ecological drift), and dispersal (Adair & Douglas, 2017). If a given 335 

community is strongly shaped by selection acting on microbial traits, and microbial traits are 336 

phylogenetically conserved, then the phylogenetic structure of this community is expected to deviate from 337 

communities assembled through chance (Webb et al., 2002). Conversely, if a community is strongly 338 

influence by ecological drift, then phylogenetic structure of this community is not expected to deviate 339 

greatly from null expectations.  340 
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To evaluate evidence for the strength of stochastic and deterministic processes in the Sable Island 341 

horse microbiome, we first calculated mean nearest taxon distances (MNTDs) using the ses.mntd function 342 

from the R package picante v1.8 (Kembel et al., 2010). MNTD is a measure of the average phylogenetic 343 

distance separating every taxon (in this instance ASV) in a community to its nearest neighbour on a 344 

phylogenetic tree—this emphasizes diversity at the tips of a phylogenetic tree. For each horse 345 

microbiome, a MNTD null distribution was generated via 9999 randomly assembled communities of 346 

ASV richness equal to that of the observed community.  Randomized communities were generated by re-347 

shuffling taxa labels and relative abundances across a fixed phylogenetic tree comprising the pool of 348 

gamma diversity observed across the entire sample-set. MNTDs were effect size-standardized (MNTDses) 349 

relative to the mean and standard deviation of the null distribution for a given community (Stegen, Lin, 350 

Konopka, & Fredrickson, 2012). A MNTDses value smaller than -2 or greater than 2 indicate that a 351 

community is more phylogenetically clustered or over-dispersed than expected by chance, respectively. 352 

While these thresholds have historically been used to make inferences about the relative strength of 353 

competition versus environmental filtering (Cavender-Bares, Kozak, Fine, & Kembel, 2009), thought 354 

experiments and mixed results from the literature demonstrate such cut-offs are overly simplistic and can 355 

lead to a misattribution of patterns to specific ecological process (Mayfield & Levine, 2010). We instead 356 

considered only the magnitude of phylogenetic departure from stochastic expectations (|MNTDses|) in a 357 

mixed model inference. 358 

2.9 | Null modelling between communities 359 

The same principles which underlie the use of phylogenetic null modelling within a given community, 360 

can be used to infer possible mechanisms for the variation observed between communities (for a 361 

schematic overview of the interpretation of measures in this section, refer to diagram 3 in Zhou & Ning 362 

2017). In the context of between community comparisons, nearest taxon distances are instead calculated 363 

between an ASV in one microbiome and its closest relative in a second microbiome (β mean nearest 364 

taxon distance [βMNTD]; Stegen et al., 2012), using the ses.comdistnt function from the R package 365 
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MicEco v0.9.4 (Russel, 2019). For every community pair we standardized βMNTD by the mean and 366 

standard deviation of a null distribution created via 999 randomly assembled community pairs 367 

(βMNTDses). Positive βMNTDses values >2 indicate that two communities are more phylogenetically 368 

disparate than expected by community pairs assembled through random sampling of a defined pool of 369 

gamma diversity. Conversely, negative βMNTDses <-2 indicate that two communities are more 370 

phylogenetically similar than expected by chance. Assuming taxa niche-spaces and phylogenies are 371 

correlated, then positive and negative βMNTDses values can indicate that the differences or similarities 372 

observed between two communities might be the result of differential or similar selective pressures, 373 

respectively (Stegen et al., 2012). |βMNTDses| values of < 2 are conventionally considered to indicate that 374 

inter-community differences might be more strongly the result of dispersal patterns or ecological drift, as 375 

phylogenetic patterns observed between communities do not differ greatly from those of randomly 376 

assembled community pairs. We analyzed βMNTDses using a PERMANOVA parameterized identically to 377 

the β-diversity analyses described above. Additionally, we ran a mantel test, to test for a correlation 378 

between spatial separation and βMNTDses values, and a univariate PERMANOVA to test for an effect of 379 

social band. For all nearest taxon analyses, we used a phylogenetic tree made ultrametric (λ = 1) using the 380 

chronos function from the R package ape v5.3 (Paradis & Schliep, 2019). 381 

Finally, we also used a phylogeny-independent extension of this null modeling framework by 382 

calculating Raup-CrickBray (RCbray) values (Chase et al., 2011; Richter-Heitmann et al., 2020; Stegen et 383 

al., 2013). Rather than consider greater- or less- than-expected phylogenetic similarities between 384 

communities, RCbray values indicate whether taxa co-occur at similar abundances more or less often than 385 

expected independent of their phylogenetic relatedness (Lowe & McPeek, 2014; Stegen et al., 2013). 386 

Among communities which do not show strong phylogenetic deviations from null expectations, RCbray 387 

estimates < -0.95 indicate that taxa co-occur at similar abundances between communities more frequently 388 

than would be expected by chance, an indication of homogenizing dispersal. RCbray estimates > 0.95 389 

indicate that taxa co-occur between communities less often than would be expected given random 390 
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expectations, indicating dispersal limitation. Finally, |RCbray| < 0.95 indicate that rates of taxa co-391 

occurrence do not differ from null expectations, suggesting possible ecological drift. The null 392 

distributions used to make comparisons were created via 9999 community pairs created through 393 

randomization. Like βMNTDses, RCbray values were analyzed via PERMANOVA and a partial Mantel test 394 

was used to test for a correlation between RCbray values and longitudinal separation, after controlling for 395 

βMNTDses values. 396 

 397 

3 | Results 398 

3.1 | Summary of the Sable Island Horse Microbiome 399 

We used a 16S amplicon sequencing approach to characterize the bacterial microbiome of faecal samples 400 

collected from 86 adult females of the Sable Island feral horse population. Sequencing resulted in an 401 

average of 51,480 quality assembled reads per sample (rarefied to 34,280 reads for all analyses other than 402 

those which used centred-log ratio transformed count tables). A total of 3,767 ASVs were detected in the 403 

population, although the average horse hosted 817 ± 11 SE ASVs, and only 2 ASVs were observed in all 404 

86 horses.  405 

The average Sable Island horse microbiome was comprised of Ruminococcaceae (15% ± 4% SD 406 

mean relative abundance), Lachnospiraceae (13% ± 3%), Prevotellaceae (10% ± 2%), Spirochaetaceae 407 

(9% ± 3%), Fibrobacteriaceae (9% ± 4%), Rikenellaceae (8% ± 3%), and three Bacteroidales families (p-408 

251-o5: 9% ± 4%, F082: 3% ± 2%, RF16: 2% ± 1%). An additional 56 families comprised 13% ± 3% of 409 

rarefied reads, while the remaining 9% ± 2% of sequences could not be assigned to family; almost half of 410 

these unassigned reads were identified as members of the order WCHB1-41 within the newly described 411 

class, Kiritimatiellae (Figure S2, Supporting information). Alpha diversity (ASV richness) decreased 412 

from west to east (-45 ASVs ± 12 SE per 1 standard deviation change in longitude; p < 0.01). Horses with 413 

access to sandwort also had 137 ± 35 SE fewer ASVs than those without access to sandwort (p < 0.01), 414 
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while mares without foals had 52 ± 20 SE fewer ASVs than mares with foals (p = 0.01; Figure 3).  The 415 

full model averaging output can be found in Table S1 of the Supporting Information. 416 

3.2 | Phylogeny-Independent β-Diversity 417 

Euclidean distance, a phylogeny-independent β-diversity distance measure, was significantly correlated 418 

with day of year (R2 = 0.02, p < 0.01), longitude (R2 = 0.02, p < 0.01), distance from the population’s 419 

centre (R2 = 0.02, p < 0.01), and sandwort availability (R2 = 0.02, p < 0.01). The full PERMANOVA 420 

output is reported in Table S2 of the Supporting Information. Sandwort presence appeared to underlie the 421 

primary ecological gradient in these communities based on PCA visualization (Figure 4A). Furthermore, 422 

Euclidean distances were correlated with the longitudinal distance separating horses (rpearson = 0.37, p < 423 

0.01; Figure 4B). Additionally, in a univariate PERMANOVA, social band membership was significantly 424 

correlated with Euclidean distances (R2 = 0.66, p < 0.01); although, this result should be treated with 425 

caution, since the number of social groups (52) relative to our sample size likely lead us to over-estimate 426 

the explanatory power of social band membership. Multi-model inference analysis of β-dispersion, a 427 

measure of β-diversity between an individual horse’s microbiome and the horse population’s theoretical 428 

average microbiome, indicated a negative correlation with longitude (west-east; p = 0.01) and a positive 429 

correlation with distance from the centre of the population (p = 0.03; Table S3, Supporting Information). 430 

3.3. | Phylogeny-Weighted β-Diversity 431 

Phylogeny weighted β-diversity (weighted UniFrac distance) was significantly correlated with day of year 432 

(R2 = 0.02, p = 0.01), longitude (R2 = 0.03 , p = 0.01), sandwort presence (R2 = 0.03, p < 0.01), and beach 433 

pea availability (R2 = 0.02, p = 0.02; Table S4, Supporting Information). A positive correlation was again 434 

observed between the longitudinal distance separating horses and weighted UniFrac distance (Mantel test: 435 

rpearson = 0.33, p < 0.01). Similarly, in a univariate PERMANOVA, band membership was found to be 436 

significantly correlated with weighted UniFrac distance (R2 = 0.69, p < 0.01). Log-transformed weighted 437 

UniFrac β-dispersion was greater among horses with access to sandwort (p < 0.01) but negatively 438 

correlated with beach pea abundance (p = 0.01, Table S5, Supporting information). Of note, β-dispersion 439 
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in weighted UniFrac space trended towards being higher among mares with foals than those without, 440 

although this effect was marginally non-significant (p = 0.06).  441 

3.4 | Ecological Null Modeling 442 

We detected a positive phylogenetic signal over short distances with respect to sandwort availability (p < 443 

0.05, r = 0.02; Figure S3, Supporting Information). Of the life history, environmental, and spatial terms 444 

considered, only parental status (p = 0.03) was associated with non-random patterns of null modelling 445 

estimates of phylogenetic dispersion. Namely mares with foals had higher |MNTDses| values (Table S6, 446 

Supporting information). Overall, based on between-sample comparisons, communities were more often 447 

phylogenetically conserved (βMNTDses < 0) than they were phylogenetically disparate (βMNTDses > 0) 448 

but usually did not deviate in expected phylogenetic similarity from pairs of randomly assembled 449 

communities (|βMNTDses| < 2). 450 

βMNTDses values were correlated with day of year (R2 = 0.03, p < 0.01), sandwort presence (R2 = 451 

0.07, p < 0.01), beach pea availability (R2 = 0.03, p = 0.02), heathland availability (R2 = 0.03, p = 0.01), 452 

and grassland availability (R2 = 0.02, p = 0.04; Table S7, Supporting Information). In the absence of 453 

sandwort, βMNTDses values appeared to be negatively correlated with average grassland availability 454 

(Figure 5), but positively correlated with average heath availability (Figure S4A, Supporting 455 

Information); conversely, βMNTDses values were greater when sandwort was present for at least one 456 

horse in pairwise comparisons and appeared to be negatively correlated with average day of year. In 457 

contrast, the absolute magnitude of phylogenetic deviation from stochastic expectations (|βMNTDses|) was 458 

correlated with beach pea availability (R2 = 0.05, p < 0.01), longitude (R2 = 0.05, p = 0.04), and parental 459 

status (R2 = 0.03, p = 0.03; Table S8, Supporting Information). Specifically, |βMNTDses| values appeared 460 

to be positively correlated with beach pea availability (Figure S4B, Supporting Information) as well as 461 

average longitude, and greater among mares with foals than mares without foals (Figure S4C, Supporting 462 

Information). No significant correlation was observed between longitudinal separation and βMNTDses 463 
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after controlling for sandwort presence (partial Mantel test: p = 0.68). Similarly, no effect of band 464 

membership on βMNTDses was observed (PERMANOVA: p = 0.45). 465 

Approximately 14% of βMNTDses were beyond 2 standard deviations of the randomized null 466 

distributions. Of the remaining ~86% of pairwise comparisons, ~97% had corresponding RCbray values 467 

exceeding 0.95, which signals greater ASV turnover than expected under ecological drift alone (a pattern 468 

suggestive of dispersal limitation). Based on PERMANOVA analyses, RCbray values were correlated with 469 

longitude (R2 = 0.02, p < 0.01), distance from the centre of the population (R2 = 0.02, p < 0.01), sandwort 470 

presence (R2 = 0.01, p = 0.04), beach pea availability (R2 = 0.01, p = 0.04), and day of year. (R2 = 0.02, p 471 

< 0.01; Table S9, Supporting Information). Additionally, in a univariate PERMANOVA, band 472 

membership was significantly correlated with RCbray values (R2 = 0.65, p < 0.01). Furthermore, RCbray 473 

values were positively correlated with the longitudinal distance separating horses even after controlling 474 

for βMNTDses values (partial Mantel test: rpearson = 0.17, p < 0.01; Figure 6A), but negatively correlated 475 

with average longitude and lower among members of the same band than between members of different 476 

bands (Figure 6B). 477 

 478 

4 | Discussion 479 

Accounting for spatial processes in our system was integral to explaining observed patterns of 480 

microbiome variation. Longitude, a proxy for horse location on the island, explained variation in almost 481 

every microbiome diversity measure considered. Unmeasured environmental variables across the island 482 

may account for these patterns; however, plant communities representing the Sable Island horses’ primary 483 

forage were present in our analyses. Furthermore, if environmental selective pressures acting on the 484 

microbiome were spatially autocorrelated, we would have expected co-occurring horse microbiomes to be 485 

more phylogenetically similar, and spatially distant pairs of horses to have microbial communities which 486 

were more phylogenetically disparate, than expected by chance. Pairwise weighted UniFrac distances, but 487 



21 
 

notably not βMNTDses were correlated with the longitudinal distance separating horses. This 488 

disagreement suggests that the correlation between the longitudinal distance separating horses and 489 

weighted UniFrac distances may be the result of differences in α-diversity, rather than disparate selective 490 

pressures. Pairs of communities with low diversity are less likely to share phylogenetic branch lengths by 491 

chance, and thus, can have larger weighted UniFrac distances (Cadotte & Davies, 2016). Rather than 492 

divergent selective pressures, the consistent effect of longitude on measures of microbiome diversity may 493 

therefore derive from more frequent microbial transmission between co-occurring individuals. 494 

Concomitantly, factors that affect ecological drift or stability of the microbiome could contribute to the 495 

effect of longitude. For example, both longitude and distance from the population centre were correlated 496 

with Euclidean beta-dispersion in the microbiome relative to the population mean. The significance of 497 

spatial terms in PERMANOVA analyses may therefore derive partly from correlations with community 498 

variance rather than differences in average community structure. 499 

Host genetics, and thus the physiological environment with which microbes directly interact, might 500 

explain some of the spatial variation in microbiome variance. Based on microsatellite data, Sable Island 501 

horse genetic heterozygosity is higher in the east (Lucas, McLoughlin, Coltman, & Barber, 2009) which is 502 

where we also observed lower microbiome alpha diversity and beta-dispersion when compared to horses in 503 

the west. Evidence from captive and wild mammalian systems has shown microbiome alpha diversity to be 504 

negatively correlated with host heterozygosity (Grosser et al., 2019; Wadud Khan, Zac Stephens, 505 

Mohammed, Round, & Kubinak, 2019). Similarly, an effect of population-level heterozygosity has been 506 

reported on the bacterial microbiome of free-living bighorn sheep (Couch et al., 2020). The homozygosity 507 

implicit of inbred hosts might restrict their immunological complexity (Potts & Wakeland, 1993; Reid, 508 

Arcese, & Keller, 2003), thereby also restricting the dexterity with which host’s recruit and “leash” their 509 

microbial communities  (Foster, Schluter, Coyte, & Rakoff-Nahoum, 2017), perhaps allowing for greater 510 

stochastic variation between individuals. Alternatively, Fst values in Sable Island horses suggest population 511 

sub-structuring between the east and west (Lucas et al., 2009), therefore genetic differences between horses 512 
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might also explain why the microbiome differs across the island’s length. For example, among free-living 513 

house mice, genetic relatedness along a latitudinal gradient was a better predictor of microbiome similarity 514 

than spatial proximity (Suzuki et al., 2019). Genetic variation among Sable Island horses expressed as 515 

phenotypic variation could therefore drive microbiome variance across the island’s longitude (Alberdi, 516 

Aizpurua, Bohmann, Zepeda-Mendoza, & Gilbert, 2016).  517 

While we cannot rule out a role for host genetics, in the present absence of data informative for 518 

testing this, bacterial dispersal limitation between horses provides the most parsimonious explanation of 519 

observed patterns. For example, we observed an apparent positive correlation between the proximity of 520 

horses and similarity of their microbiome in Euclidean space (independent of local habitat composition). 521 

A similar relationship was observed with respect to weighted UniFrac distances however, no positive 522 

relationship was observed among phylogeny-informed null modeling approaches (βMNTDses). Assuming 523 

bacterial niche space and phylogeny are non-independent, these patterns suggest that the decrease in 524 

microbiome similarity with spatial separation was not due primarily to differences in selective pressures 525 

across space. Conversely, the positive relationship between spatial separation and RCbray values suggests 526 

dispersal limitation may occur over relatively short spatial scales. Evidence for dispersal limitation may 527 

be unsurprising given a zero-inflated ASV count table. Of 3767 ASVs, only 2 were detected in all horses 528 

and only 441 were present in at least half of the horses.  529 

In addition to a positive correlation with spatial separation, RCbray values were negatively 530 

correlated with the average longitude of horse pairs, suggesting greater dispersal limitation among horses 531 

in the west than the east. This was unexpected since horse population density, which could facilitate 532 

bacterial dispersal between individuals, decreases from west to east (Marjamäki et al., 2013). However, 533 

while multiple above-ground ponds can be found in the west, horses in the east must crater through sand 534 

to access freshwater (Contasti et al., 2012). Horse-excavated wells are semi-permanent within a season 535 

and visited by multiple social bands but are only accessible to 1–2 horses at a time (Figure 2D). 536 

Prolonged occupancy of an area of social band overlap, and bottlenecked access to a communal 537 
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consumable resource, could catalyze bacterial dispersal despite low population densities in the east. 538 

Similar host aggregation due to patchy resource distribution on urban landscapes facilitates disease 539 

transmission in wildlife (Bradley & Altizer, 2007); the same aggregative effect could as easily facilitate 540 

transmission of commensal and mutualistic microbiota. 541 

Bacterial dispersal between horses undoubtedly occurs; however, it may be largely restricted to 542 

between individuals within the same, or closely interacting, social bands; although, we lack the resolution 543 

in social data to directly test the latter assertion beyond reporting the effect of spatial proximity (a proxy 544 

for overlap in social band territories). Social band membership was correlated with both Euclidean and 545 

weighted UniFrac β-diversity; however, microbiome phylogenetic diversity (βMNTDses) was no more 546 

similar between members of the same band than between members of different bands (when compared to 547 

null expectations), offering little support for homogenizing selection as the mechanism for the effect of 548 

band membership on the microbiome. RCbray values, which were lower between members of the same 549 

band than between horses of different bands, suggests bacterial dispersal limitation as a primary cause for 550 

the observed effect of social band. This interpretation is consistent with Antwis, Lea, Unwin, & Shultz 551 

(2018) who report an effect of band identity and inter-band connectivity on microbiome β-diversity 552 

among three large social bands of feral Welsh ponies. Similar differences in band connectivity might 553 

explain why, above and beyond parameterized environmental terms, distance from the population’s centre 554 

was correlated with Euclidean β-diversity and β-dispersion. No relationship was observed with respect to 555 

βMNTDses but, RCbray values were positively correlated with the average distance of horse pairs from the 556 

centre of the population. Horses on the edges of the population—those more poorly connected within the 557 

population’s microbiome meta-community (Miller et al., 2018)—might be vulnerable to erosion of 558 

microbiome diversity through microbial extinctions and exacerbated ecological drift. Together these 559 

results support recent theorization that inter-host microbial dispersal is an important mechanism which 560 

shapes the microbiome variation observed in free-living wildlife populations (Sarkar et al., 2020). 561 
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 Phylogeny-informed measures of diversity were generally better explained by local plant 562 

community composition than spatial terms. Horses with sandwort in their 150-m radius buffer had lower 563 

alpha diversity and differed in both phylogeny-independent (Euclidean) and phylogeny-informed 564 

(weighted UniFrac) β-diversity measures. The intuitive explanation is that local plant communities reflect 565 

dietary composition, and dietary components differ in their polysaccharide composition, and thus, the 566 

microbial functions required to fully metabolize (David et al., 2014; Julliand & Grimm, 2017). However, 567 

among pairwise comparisons in which sandwort was present for at least one horse, microbiomes were no 568 

more phylogenetically disparate than expected by chance (βMNTDses values close to 0). By comparison, 569 

the microbiomes of horses without access to sandwort tended to be more phylogenetically similar. 570 

Conversely, average grassland and beach pea habitat class covers were negatively correlated with 571 

βMNTDses, while heath (only present where sandwort was absent) appeared to be positively correlated 572 

with βMNTDses. Therefore, phylogenetic patterns most consistent with homogenizing selection acting on 573 

the microbiome were observed when sandwort and heath were absent, but beach pea and marram grass 574 

were abundant. Under reversed conditions, phylogenetic similarities did not deviate far from stochastic 575 

expectations.  576 

Increased evidence for stochasticity in the presence of sandwort and heathland may stem from the 577 

fact that sandwort, as well as the forbs and small graminoids which comprise the primary horse forage in 578 

heathland habitats, possess lower neutral detergent fibre (NDF) when compared to beach pea and marram 579 

grass (personal communication K. Johnsen; Lee, 2018). NDF is a coarse measure of plant lignin, 580 

hemicellulose, and cellulose (Mongeau & Brassard, 1982)—compounds  which many herbivores are 581 

obligately reliant upon their gastrointestinal microbiota to metabolize (Costa & Weese, 2012). The low 582 

NDF characteristic of sandwort and heathland forbs may alleviate the horses’ reliance on their intestinal 583 

microbiota, allowing them to directly absorb nutrients from a relatively labile diet. Loss of dietary 584 

complexity constrains fibrolytic and cellulolytic niche-space in the microbiome which can manifest as 585 

reductions in bacterial gene richness (Cotillard et al., 2013) or alpha diversity (Schnorr et al., 2014). 586 
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Conversely, high fibre forage (e.g. marram grass and beach pea) can facilitate complex microbial 587 

symbioses in which different species specialize on metabolizing different biochemical compounds, and in 588 

doing so, create by-products to be absorbed by the host or further metabolized by other microbiota 589 

(Oliphant & Allen-Vercoe, 2019). The reduction in alpha diversity observed in horses with access to 590 

sandwort mirrors the effects of low dietary fibre manipulations in domestic horses (Julliand & Grimm, 591 

2017). When compared to marram grass and beach pea, sandwort might represent a reduction in the 592 

carbon source complexity accessible to the microbiome, a property thought to have a stabilizing effect on 593 

the microbiome (Coyte et al., 2015). A diet containing sandwort might not select for different microbial 594 

functions, so much as fail to support the full diversity of fibrolytic niche-space created by high fibre diets, 595 

leading to species extirpation and greater ecological drift within individual host microbiomes (Deehan & 596 

Walter, 2016). This could also explain the greater variability in weighted UniFrac β-diversity among 597 

horses with access to sandwort and the decrease in dispersion in response to beach pea availability. These 598 

results highlight how dietary derived microbiome variation might not always be the result of strong 599 

differential selective pressures between communities; the relationship between dietary complexity and 600 

ecological drift must also be considered (Adair & Douglas, 2017; Zhou & Ning, 2017).    601 

Parental status was more strongly correlated with measures of microbiome variance, rather than 602 

mean community structure. Specifically, mares with foals had microbiomes which were a) more diverse, 603 

b) marginally less variable in weighted UniFrac space, c) less randomly phylogenetically dispersed 604 

(higher |MNTDses|), and d) further from phylogenetic null expectations of random community assembly 605 

(higher |βMNTDses|) when compared to mares without foals. Effects of parturition and maternal status on 606 

microbiome alpha and β-diversity have been observed in livestock (Lima et al., 2015) and wildlife 607 

(Amato et al., 2014). Although, to our knowledge, a difference in β-dispersion between parental states has 608 

not previously been reported. Myriad changes to maternal physiology during pregnancy and parturition 609 

are likely partly responsible for microbiome differences during birth and child-rearing (Huang et al., 610 

2019; Nuriel-Ohayon, Neuman, & Koren, 2016). In addition to these physiological changes, maternal care 611 



26 
 

among mammals (especially lactation) saddles mothers with a heavy energetic burden (Dufour & Sauther, 612 

2002; Scantlebury, Russell, McIlrat, Speakman, & Clutton-Brock, 2002). To meet higher energetic 613 

demands, hosts may become increasingly reliant on their microbiomes (Amato et al., 2014); especially in 614 

species such as horses, which are obligately reliant on their gut microbiomes for nutrient uptake (Costa & 615 

Weese, 2012). Therefore, during periods of high energetic demand hosts might enforce stronger control 616 

on the microbiome to maximize metabolic efficiency. For example, in laboratory mice, post-partum 617 

dampening of bi-directionality in the host-microbiome relationship is evidenced by attenuated bacterial 618 

driven immunomodulation (Mu et al., 2019). We suggest that hosts facing a high energetic burden might 619 

keep their microbial constituents on a “tighter leash” than those with a lower energetic demand (Foster et 620 

al., 2017). Within host species, host physiological variation might in many cases act to facultatively 621 

constrain β-dispersion, rather than drive changes in mean β-diversity, although patterns of the former are 622 

often overlooked (Zaneveld et al., 2017). The reverse causal relationship could also explain the patterns 623 

observed, whereby a diverse microbiome under tight host control signals better host health and therefore 624 

greater likelihood of carrying a foal to term. We also note that our inference is limited by our inability to 625 

confidently assess the pregnancy status of mares without foals at the time of sampling. 626 

The inferences we derive from null modelling results—and therefore our interpretation of spatial, 627 

environmental, and life history effects—are likewise limited, predicated as they are on the assumption 628 

that bacterial niche-spaces are shallowly phylogenetically conserved. That bacterial traits are likely 629 

phylogenetically conserved in our system is broadly supported by re-analysis of archived bacterial 630 

genomes (Berlemont & Martiny, 2013; Jain, Rodriguez-R, Phillippy, Konstantinidis, & Aluru, 2018; A. 631 

C. Martiny, Treseder, & Pusch, 2013; Martiny, Jones, Lennon, & Martiny, 2015; Van Assche et al., 632 

2017), and more specifically, by the positive phylogenetic signal we detected with respect to sandwort. 633 

Nonetheless, future shotgun metagenomic sequencing and de novo genome assembly will be required to 634 

empirically demonstrate phylogenetic conservatism in the Sable Island horse microbiome. In the absence 635 

of this data, we cannot unreservedly conclude that the failure of communities to deviate from null 636 
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expectations is the result of weakened deterministic processes. Nonetheless, these results help to generate 637 

new hypotheses which can be directly tested in future research.  638 

Overall, the bacterial microbiome of Sable Island horses is dominated by clades of fibrolytic taxa, 639 

including Ruminococcaceae, Lachnospiraceae, Prevotellaceae, and Fibrobacteraceae (Biddle, Stewart, 640 

Blanchard, & Leschine, 2013; Esquivel-Elizondo, Ilhan, Garcia-Peña, & Krajmalnik-Brown, 2017; Spain, 641 

Forsberg, & Krumholz, 2011). Spirochaetaceae and Kiritimatiellae are also present at modest relative 642 

abundances; however, their metabolic niches are currently less well characterized. These results are 643 

consistent with findings from domestic, feral, and wild horse systems (Antwis et al., 2018; Costa et al., 644 

2015; Metcalf et al., 2017) and a comprehensive comparison of wild and domestic equid species 645 

(Edwards et al., 2020). Unlike previous studies, however, we detected no effect of age, likely because we 646 

constrained sampling to horses of at least 3 years of age, and the horse microbiome appears to reach 647 

maturation after ~1 year (Antwis et al., 2018; De La Torre et al., 2019; Metcalf et al., 2017). 648 

We characterized the bacterial microbiome of 86 mares from the feral horse population of Sable 649 

Island (Nova Scotia, Canada) and contrasted the ability of spatiotemporal, life history, and diet-linked 650 

environmental variables to explain microbiome variation. Phylogeny-independent measures of diversity 651 

were best explained by spatial variables while phylogeny-informed measures were generally better 652 

characterized by measures of local habitat heterogeneity and host life history (parental status); however, 653 

despite statistical significance, these variables explained only nominal variation in overall β-diversity. 654 

Only the longitudinal distance separating horses and social band membership explained what could be 655 

considered substantive variation, and yet, much of the variation in the Sable Island horse microbiome 656 

remained unexplained. In context, our results suggest a predominant importance of bacterial dispersal and 657 

ecological drift in shaping faecal microbiome variation among Sable Island horses. Our findings are 658 

relevant to the study of wildlife microbiome variation: clearly data on the spatial distribution of hosts 659 

should be collected, even at the within-population scale, alongside metrics of individual-based 660 
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environmental variation. Further, when a response of the microbiome to environmental or physiological 661 

variation is observed, deterministic processes must not be assumed as the sole causal process. 662 
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Figure 1: A map of Sable Island National Park Reserve, Nova Scotia (Canada). Habitat classes were 1084 
delineated through a combination of Light Detection And Ranging (LiDAR) surveys, high-resolution 1085 
aerial photography, and ground truthing. X marks the spot of collection for the faecal samples used in this 1086 
study. Insets 1, 2, and 3 demonstrate habitat class heterogeneity across the island’s length. 1087 

 1088 

 1089 

 1090 

 1091 



41 
 

 1092 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

Figure 2: Putative mechanisms of bacterial dispersal between Sable Island horses: (A) social grooming 1105 
[pictured: social band stallion (left) and mare (right) engaged in reciprocal grooming], (B)  coprophagy, 1106 
the consumption of faeces [pictured: a foal (foreground) consuming the faeces of its mother 1107 
(background)], (C) interactions with the faeces of band members or faecal territory markers (stud piles) 1108 
[pictured: band stallion scenting faeces from a social band mare], (D) aggregation of social bands at 1109 
communal resources [pictured: horses standing in—and drinking from—an excavated freshwater well 1110 
(background) immediately adjacent to a fecal stud pile (foreground)]. Photos ©Mason R. Stothart. 1111 
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 1126 

Figure 3: A scatter plot of Sable Island horse microbiome ASV richness versus standardized longitude 1127 
coloured by parental status and shaped by sandwort presence in a 150-m radius buffer surrounding the 1128 
point of sample collection. Points are shaped by whether sandwort is present (circle: ●) or absent (square: 1129 
■) and coloured by whether mares were with a foal (brown: ◙) or without a foal (light blue: ◙). Lines are 1130 
parameterized by estimates from multi-model inference model averaging, typed by sandwort presence 1131 
(present, dashed: ---; absent, solid: —) and coloured by parental status (with a foal, brown: —; without a 1132 
foal, light blue: —). 1133 
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 1142 

Figure 4: The Sable Island horse faecal microbiome β-diversity (Euclidean distance centred log-1143 
transformed counts) visualized in (A) a PCA coloured by sandwort availability in 150-m radius buffers 1144 
surrounding the point of sample collection (absent, dark green: ●, present, gold: ●) and (B) a scatterplot 1145 
of Euclidean distance and the longitudinal distance separating pairs of horses, points coloured depending 1146 
on whether 150-m spatial buffer contained sandwort for neither horse (dark green: ●), only one horse 1147 
(green: ●), or both horses (gold: ●). For ease of plot visualization, a single point was omitted from panel 1148 
‘(B)’ corresponding to two horses of the same social band sampled at the same location (longitudinal 1149 
separation = 0, Euclidean distance = 64).  1150 
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 1160 

Figure 5: Scatterplot of pairwise average relative area of grassland within 150-m radius buffers centred on 1161 
point of sample collection versus effect size standardized β mean nearest taxon distance between pairs of 1162 
horses. Plot facetted by sandwort presence within 150-m radius buffer (absent for both horses, dark green: 1163 
●; present for only one horse, green: ●; present for both horses, gold: ●). Black lines denote the lines of 1164 
best fit, grey lines are lines of best fit group by individual one of the pairwise comparisons.  1165 
 1166 
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 1185 

Figure 6: Scatterplot of Raup-Crickbray values versus (A) longitudinal separation of horses with best fit 1186 
binomial regression grouped by whether the corresponding β mean nearest taxon distance did (dashed: ---1187 
) or did not (coded as “0”, solid: — ) deviate from null phylogenetic expectations and (B) average 1188 
longitude with best fit binomial regression coloured by whether comparisons were made between 1189 
members of the same (dark purple: —) or different (light purple: —) social bands. Shading represent 95% 1190 
confidence intervals. Binomial regressions were fit to a binary dataset, in which Raup-Crickbray were 1191 
categorized as >0.95 (“1”) or <0.95 (“0”). 1192 


