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Abstract. The seamless incorporation of electronics in textiles have the potential

to enable various applications ranging from sensors for the internet of things to

personalised medicine and human-machine interfacing. Graphene electronic textiles

are a current focus for the research community due to the exceptional electrical and

optical properties combined with the high flexibility of this material, which makes

it the most effective strategy to achieve ultimate mechanical robustness of electronic

devices for textile integrated electronics. An efficient way to create electronic textiles

is to fabricate devices directly on the fabric. This can be done by coating the

textile fabric with graphene to make it conductive. Here we discuss successful and

efficient methods for coating graphene nanoplatelets (GNPs) on textile substrates of

nylon, polyester and meta-aramid using ultrasonic spray coating technique. These

coatings are characterised by scanning electron microscopy, contact angle and electrical

conductivity measurements in order to identify the optimal textile electrode. Our study

provides the foundation for the large-area fabrication of graphene electronic textiles.

Keywords: Graphene nanoplatelets (GNPs), ultrasonic spray coat, textiles, electrode
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles2

1. Introduction

Textile-based electronics is an emerging technology that will play a strategic role in

various areas ranging from the internet of things to remote health monitoring, medical

therapies and human-machine interfacing. To enable such advances, there are still many

challenges to overcome. One of the critical challenges is the seamless incorporation

of electronics in textiles that will preserve their softness and comfort. Within this

area, a key feature is the realisation of electrically conductive coatings on textile that

conform to the irregular and coarse structures of the textile fabrics. The use of ultrathin

2D materials, with only few-atom thickness, resulting in extreme flexibility and high

fracture strengths, constitutes one of the strategies to achieve this aim. Graphene is a

current focus for the research on conductive textiles due to its outstanding mechanical[1],

electrical[2] and optical properties[3]. The biocompatibility[4] and large-scale graphene

processibility[5] further facilitate applications for textile electronics. This includes

textile based energy harvesting and storage devices such as solar cells, nanogenerators

and supercapacitors, as well as various type of sensors and actuators using graphene as

their electrodes or active materials.

The difficulty of directly integrating graphene onto textiles lies in achieving the

required conductivity following a cost-effective and scalable way. Methods for producing

graphene include micromechanical exfoliation or cleavage of graphite, liquid-phase

exfoliation (LPE) of graphite, chemical vapour deposition (CVD), synthesis on silicon

carbide (SiC) substrate and by reducing graphene oxide (GO) to obtain reduced

grephene oxide, rGO[6]. The quality, quantity and suitability of graphene produced

differs for each of these methods and the best route is typically chosen based on

the properties desired. For example, micromechanical exfoliation, where graphite is

exfoliated to graphene by mechanical forces, produces graphene with the highest quality

in terms of carrier mobility and crystalline structure. However, apart from its use

in fundamental research studies, this method is time-consuming and is not scalable

for large-area applications. CVD method includes the thermal catalytic growth of

graphene on a metal substrate and has emerged as one of the most competitive growth

methods for securing the industrial exploitation of graphene, due to its compatibility

with Si and roll-to-roll technologies. However, this method is costly considering the

high temperatures (∼1000 ◦C), pure metal substrate and the transfer methods available

thereafter. LPE is one of the lowest cost, easy manufacture and industrially scalable

methods for the production of few-layer graphene (FLG) with reasonable quality. It

allows the separation of graphite into graphene layers in a liquid medium to produce

FLG dispersions, stabilised by a surfactant[7, 8, 9] or solvents[10]. Recent progress

in LPE made by using high-shear blending has significantly improved the quality of

graphene and the volume-time dependency of exfoliating graphene in water, allowing

for the production of more than 100 litres per hour of defect-free graphene solution[9].

However, electrically insulting surfactants need to be removed after the deposition of

the film in order to render the film electrically conductive[11], while organic solvents
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles3

are not environmental friendly. Preparation of rGO requires a series of reactions

involving oxidation of graphite, conversion to few-layer graphene oxide and finishing

with its reduction to produce reduced graphene oxide. The use of strong agents during

the reactions leaves rGO with potentially less quality compared to other methods of

production but it is potentially one of the lowest cost methods to follow.

Various approaches have been explored so far towards fabricating conductive

graphene textiles. One approach is the incorporation of graphene in textile fibres[12,

13, 14, 15] as a conductive substrate which can be used either as wiring for devices

or to fabricate the devices directly on them. Such textile electrodes have been

used in sensors[16], light emitting devices[17], photovoltaic cells[18], as flexible high

capacity electrodes for batteries[19] and supercapacitors[20, 21]. A second approach

is needed for creating conductive textile fabrics without compromising the properties

of the fabric. The works so far on integrating graphene in fabric include semi-flexible

devices attached to the fabric by using planarisation layers[22], inkjet printing[23, 21]

dip coating process[13, 14], brush coating[24], screen printing[25, 15] and spray

coating[26, 27, 28, 29, 30, 31, 32, 33, 34, 35]

Spray coating of graphene on textile fabrics is emerging as one of the more promising

techniques to overcome the limitations of the irregular and coarse structures of textile

fabrics[27]. Beyond textiles, spray coating of graphene on glass, quartz and plastic

substrates has also gain considerable interest in academia[36, 34] and industry[37] as

it is a mature thin film fabrication technique, scalable to large areas. Various spray

techniques involving air pressure for the atomisation such as hand-held air sprayer,

air brush, pneumatic spray nozzles are currently being explored for the deposition

of graphene and various types of graphene composites on textiles[26, 27, 32, 28, 31,

38, 30, 34, 29]. Air pressure methods are inexpensive and allow high throughput,

however precise deposition control is limited. The ultrasonic spray technique where

the atomisation is caused by ultrasonic frequencies is an alternative method that can

be used to obtain a more homogeneous dispersion and to improve film uniformity. In

this method, the droplet size can be controlled precisely through the ultrasonic drop

formation creating a narrow distribution of drop sizes, comparable or smaller than

those obtained by inkjet printing. Ultrasonic spray coating has been explored so far

for various classes of materials such as organic solar cells[39, 40], the light emitting layer

in polymer OLEDs[41] and perovskites solar cells[42].

In this study, we explore the use of different types of solution processed graphene

materials for coating textile fabrics for their potential application as an electrode

in fabricating wearable devices. FLG obtained from LPE by high shear mixing of

graphite and commercial graphene nanoplatelets (GNPs) are used here to produce

water based graphene suspensions which do not require surfactants, are stable as

well as environmentally friendly since they do not require organic solvents. Different

methods of coating using these two types of suspensions are analysed for their coverage,

adhesion and electrical conductivity on different textile substrates. The ultrasonic

spray coating method is studied extensively considering their application to large scale
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coating as well as their reproducibility. Specifically, water based graphene suspension

has been sprayed on various textile substrates using an ultrasonic spray coater for

the fabrication of conductive textile electrodes. These comprise heat resistant meta-

aramid and the more commonly used nylon and polyester. Ultrasonic spray coating

using a suspension of GNPs was found to be the best method and best precursor

suspension for the fabrication of conductive textile electrodes. These are characterised

by Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy

and conductivity measurements to identify the optimal conductive textile electrode.

This study paves the way towards the large scale fabrication of 2D devices on fabrics

for wearable electronics.

2. Experimental methods

Textile fabrics of meta-aramid (F-00910-Z01), nylon (G-60287-Q10) and polyester

(M-09305-A01) used here for the studies are provided by Heathcoat Fabrics Ltd.

These substrates are used as provided and after ultraviolet-ozone (UVO) variable time

surface treatments with an Ossila UV-Ozone cleaner. Scanning electronic microscopy

(SEM) was performed in a TESCAN VEGA3 microscope on samples coated with a

thin conductive layer of chromium, at an accelerating voltage of 20 kV and working

distance of 15 mm. Electron dispersive spectroscopy (X-Max EDS, Oxford Instruments)

connected to the SEM were used for elemental analysis at the same operating conditions.

The sheet resistance of each graphene coated fabric was measured using the van der

Pauw method to obtain an average resistance value for the coating. The thickness of

the coatings was measured with a Taylor Hobson TalyScan 150 non-contact scanning

instrument, at a speed of 200 µm/s and a spacing of 1 µm along x and 5 µm along y

axes.

Figure 1 shows the optical and scanning electron microscopy of the fabrics before

any treatment of coating, from the optical images of the fabric weaves, and down to

individual fibre level. Figure 1(a) shows the meta-aramid fabric with comparatively

well-spaced weaving. Figures 1(b) and 1(c) show nylon and polyester, respectively, with

their denser weaving pattern on 1 mm and individual fibres on a 10 µm scale bar. It can

be seen from the figure that nylon has a tightly packed weaving pattern, a flatter surface

while the meta-aramid fabric has a high surface roughness of visible scale created by its

thicker and loosely bound yarns.

2.1. Graphene suspensions

Two different type of water based graphene suspensions were used. The first one

was prepared by shear exfoliation of graphite flakes (Sigma-Aldrich) in the presence of

sodium cholate (Sigma-Aldrich), as described previously[11]. This results in an aqueous

suspension of FLG stabilised by the surfactant. The second was prepared by suspending

commercially available GNPs (Cheap Tubes, Inc), based on a method we previously
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles5

Figure 1. Optical and scanning electron microscopy images of fabrics in rows with (a)

meta-aramid, (b) nylon and (c) polyester showing their weaving pattern on an optical

scale to individual fibres on a micrometer scale.

described[43]. According to the manufacturer, these GNPs are chemically exfoliated

from natural graphite. These GNPs have an oxygen content of ca. 13.5%, as shown by

the SEM-EDS chacterisation (supplementary Figure S1). 0.8 grams of this GNPs were

dispersed in 1 litre of de-ionised water using the same Silverson L5 high shear mixer at

5000 rpm for 120 minutes. These GNPs do not require a surfactant to be stably dispersed

since they have a residual oxygen content of ca. 13.5% from the manufacturing, and

these residual oxygen-containing groups makes them less hydrophobic than those of

FLG, which are obtained from direct exfoliation of pristine graphite.

2.2. Graphene coating methods

In order to identify the best method to coat the textiles with graphene, different coating

methods were tested. Firstly we used the FLG suspension to coat nylon substrates

by dip and dry cycles, membrane filtration followed by dip coating[11], and ultrasonic

spray coating. Figure 2 schematically describes these three methods and summarises

the corresponding results.

As the name suggests, the dip and dry method consists in dipping the nylon

substrate in the FLG suspension and drying it on a hotplate. The cycle was repeated

Page 5 of 16 AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100440.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles6

Figure 2. Different methods of coating done on nylon fabric with liquid phase

exfoliated few-layer graphene suspension: (a) dip and dry cycles; (b) membrane dip

coating; and (c) ultrasonic spray coating. The first column depicts each method, the

second column shows an optical image of the coated sample, and the third column

shows the scanning electron microscopy images of the coated surfaces.

10 times until there was a visible amount of FLG flakes coated on the fabric (Figure

2a). The second method consisted of passing 60 ml of FLG suspension through a PTFE

membrane (Millipore) in a vacuum filtration setup. The film formed over the filter

membrane is released carefully on a water surface by dipping it at a shallow angle

with respect to the surface. The released film can be then scooped with the nylon

fabric (Figure 2b). The final method of ultrasonic spray coating is an automated way of

spraying graphene suspension onto the substrate (Figure 2c) and it is explained in detail

in the next section. As it can be seen in Figure 2, dip and dry cycles can only leave

a small amount of FLG flakes onto the fabric. The surface coverage is improved using

the membrane dip coating, but with visible cracks to the film, which inevitably result

in high resistance. Ultrasonic spraying of graphene suspension formed an even film

over the fabric covering the whole fibres providing a uniformly coated surface. However,

FLG suspensions contain a considerable amount of the surfactant, sodium cholate, which

precipitates as the coated fabric dries. The surfactant residue prevents good overlapping
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles7

between flakes and breaks the percolation network necessary for electrical conduction. It

was then deemed necessary to use a different source of graphene flakes which was stable

enough in suspension to allow for spray coating, but without the need for a surfactant.

2.3. Ultrasonic spray coating of GNPs suspension on textile

A SONO-TEK ExactaCoat ultrasonic spray coater (supplementary Figure S2) was

used. This emerging technology makes use of an ultrasonic nozzle to spray the loaded

suspension onto a substrate, and it is suitable to coat large areas without any need for

fillers or stabilisers. It is combined with an ultrasonic syringe to keep an evenly dispersed

suspension during the process, not allowing the flakes/particles in the suspension to

settle down. The suspension is loaded into the syringe, and it gets sonicated while

being pumped into the nozzle. The ultrasonic vibration created in the nozzle oscillates

the suspension inside to form capillary waves. Reaching the atomising surface (tip)

of the nozzle, these waves acquires an amplitude large enough to detach from the

surface, forming the spray (Figure 3 and supplementary Figure S3). The droplet size

is controlled by the frequency of ultrasonic vibration as they follow an inverse linear

proportionality. We used an impact ultrasonic spray shaping nozzle of 48 kHz frequency.

The spray is then directed onto the substrate by a jet air deflection provided by a

supply of compressed air gas. The gas supply merely helps in shaping the spray and

does not involve in pushing the suspension like a conventional pressure spray. The fabric

substrates were kept on a hot plate set to 120◦ C to quickly evaporate the water present.

Figure 3. Schematic depiction of the ultrasonic nozzle of the ExactaCoat. The

ultrasonic vibration inside the nozzle tube causes the suspension to move as capillary

waves. Upon reaching the tip of the nozzle, the droplet acquires a large enough

amplitude to detach itself. The droplets are collected and directed onto the hotplate

beneath by the jet air deflector equipped above the nozzle. Vibrations also help in

breaking down any clusters present in the suspension to produce a better dispersed

suspension.

A square-shaped mask was kept over the substrate to obtain a uniform coating
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles8

with strict boundaries on the substrate (supplementary Figure S4) and to create a

suitable shape for the sheet resistance and thickness measurements. Three sequential

coating cycles were employed to coat the fabrics. For the van der Pauw method of sheet

resistance measurement, silver ink contacts are placed on the four corners of the square

shaped coating to connect the voltage and current probes (shown in supplementary

Figure S5) to a Keithley source meter. Resistance measurements are made by passing

current through the adjacent probes and measuring the voltage at the other ends.

Sample is rotated periodically and measured at each configuration to arrive at an average

sheet resistance value using the van der Pauw formula.

Ultrasonic spray coating has been used recently to form transparent conductive

films of rGO and single-walled carbon nanotubes (SWCNT) composites with low surface

roughness[44]. They have also been increasingly studied in the production of various

types of solar cells[45, 40, 46] and organic light emitting devices[47] replacing its

traditional time consuming and costly steps of fabrication. However to the best of

our knowledge, this is the first time this system has been used to coat textile fabrics

with graphene nanoplatelets suspension. Choosing an ultrasonic spray coating over

regular pressure spraying has the advantages of more control over the flow of material

thus reducing the wastage of chemicals. It provides a narrow droplet size distribution

for a uniform coating and helps to acquire reproducible results as it is an automated

process. Most importantly it has the potential, when integrated in electronic textile

application, to not change the texture or feel of the fabric as the process is quite similar

to dyeing fabric and can be scaled up easily.

3. Results and discussions

3.1. Characterisation of GNPs suspension

As detailed in a previous study, the estimated number of graphene layers in these

GNPs suspensions is 10-14 per flake, determined by Raman mapping[43]. The ratio

of intensities of D peak to G peak were also analysed and indicate that there are

no significant defects introduced to the basal plane of these GNPs. To ascertain the

thickness of each ultrasonic-coating cycle performed, sequential measurements were done

with a non-contact scanning instrument. This was performed on a PET (polyethylene

terephthalate) sheet coated with 3 cumulative spray-coating cycles to avoid the noise

from the rough topographies of the fabrics. The results are shown in supplementary

Figure S6, and indicate a thickness of ca. 50 µm per cycle.

3.2. GNPs coated textiles

The conductive textiles coated with GNPs by ultrasonic spray coating were analysed

under a scanning electron microscope to study the morphology of GNPs on each fabric

surface. Figure 4 shows meta-aramid, nylon and polyester fabrics coated with graphene

flakes, showing how the coating covers the fabric with good and uniform adhesion down
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles9

to the fibre level. This is in striking contrast with what was observed when FLG

suspensions were used to coat nylon using the same method.

Figure 4. Scanning electron microscopy images of graphene nanoplatelets (GNPs)

suspension spray coated on (a) meta-aramid (b) nylon and (c) polyester fabric showing

the flakes adhered onto the individual fibres of each fabric under three different low to

high magnifications.

Although the GNPs coating is visually clear on the fabric (supplementary Figure

S4), Raman spectroscopy is done before and after the coating to attest to the GNPs

coverage on the fabric (supplementary Figure S7).

Spray coating of fibres/fabrics has been reported, starting with a graphene oxide

suspension and later reducing it to restore its conductive properties by thermal or

chemical reduction procedures[26]. However, a final reduction step often results in

damaging the coating and/or the substrate. Our proposed method skips all those steps,

avoiding the additional damage. This also helps with the flexibility of the sample since

a film like coating over the fabric might be more prone to cracks while bending, cutting

off possible conductive channels.

To assess if the adhesion of graphene to fabrics can be further improved, a contact

angle goniometer was used to monitor the effect of UVO surface treatment of the

fabrics. The purpose of the UVO treatment was to make the surface of the fabrics more

hydrophilic. The change in contact angle between a water droplet and the surface of

the substrate was then recorded against increasing UVO exposure time of the substrate
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Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles10

(supplementary Figure S8). As the GNPs were produced by chemical exfoliation, the

residual oxygen-containing groups present in the material not only play an important

part in stabilising the suspensions, it also assists the interaction of the GNPs with the

UVO-treated hydrophilic textile substrate obtained. Figure 5a shows how the contact

angle of the fabric with a water droplet (dyed in green for illustrative purposes, on

meta-aramid, inset of Figure 5a), changes for each fabric before and after coating with

GNPs, and before and after UVO treatment. For all fabrics, a 5-minute UVO treatment

resulted in much smaller contact angles, corresponding to improved wettability. The

improvement was such that in the case of nylon the droplet completely disappeared

against the fabric. The GNP coating on each fabric also contributes to improved

hydrophilicity, which might be useful if more layers are to be added to the surface

of the graphene coated fabrics, when used as electrodes for different purposes.

Figure 5. (a) Changes in contact angle for untreated and un-coated fabrics, GNPs

coated fabrics, and fabrics after a 5-minute UVO treatment. Inset photos show a green-

coloured water droplet on an untreated meta-aramid fabric, same fabric after GNPs

coating and after 5 minutes of UVO treatment, respectively. (b) Sheet resistance of

GNPs coated fabrics with no UVO treatment and after the 5 minute UVO treatment.

Inset photos shows GNPs coated polyester with 4 van der Pauw contacts.

Sheet resistance values were determined for GNPs coated fabrics with and without

UVO treatment. The lowest values achieved are shown in Figure 5b, with a photo of the

coated fabrics with four silver electrodes for the van der Pauw method of measurement.

While nylon had same sheet resistance of 45 kΩ/sq before and after the UVO treatment,

polyester and meta-aramid showed a decrease in sheet resistance, with the latter by an

order of magnitude to the value, reaching the same as nylon after the UVO treatment.

The change in the sheet resistance of polyester was very small. While all fabrics

seem to respond in similar ways to the 5 minutes UVO treatment, with a significant

decrease in contact angle because of the increase in wettability that comes from the

generation of additional oxygen-containing groups at its surface, this does not translate

to a comparable decrease in sheet resistance, which seems to indicate that the surface

morphology of the fabrics is the dominant parameter. Nylon is the least rough fabric,
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with small individual fibres in the fabric, so this calendered morphology is already

optimal for a uniform almost purely two-dimensional coating. Polyester has a larger

surface roughness, but with the individual fibres still very close together in the fabric,

although with larger variations between bundles, so the coating quality does not seem to

improve significantly with increased wettability, same as with nylon, although generally

less conductive. In meta-aramid, on the other hand, the fibrils are much less organised

and oriented, with several layers being exposed in a more three-dimensional fashion.

With a larger exposed surface, the increase in wettability seems to more noticeably

influence the resulting coating quality, which results in a decrease of the sheet resistance

when the coating is applied after the UVO treatment.

3.3. Stress and strain cycles

As these conductive textiles are expected to be used as electrodes on wearable devices,

it is important to have consistent behaviour under stress and strain in order to have a

long-term usage without significant degradation. A series of bending and compression

cycles were performed on these textile electrodes to study their response to varying

amounts of stress and strain. This includes measuring the sheet resistance after

bend and compressed positions of the textile electrodes at different diameters (<14

mm) repeated upto 2000 times to compare the response to the value at the point of

zero bending/compression, i.e its flat position (supplementary Figure S9). Nylon and

polyester fabrics without any UVO exposure (pure fabrics) had more or less the same

behaviour under compression (Figure 6a), and bending (Figure 6c). Nylon fabric with

just 5 minutes of UVO exposure had a high and varying sheet resistance compared to

its point of no bending/compression (shown in supplementary Figure S10) indicating

damage to its calendered fibres. While the meta-aramid fabric had a varied response

based on the UVO treatment time, ranging from 0, 5 to 15 minutes. Prolonged UVO

exposure of 15 minutes has an adverse effect on the fabric compared to 5 minutes of

exposure as seen in Figure 6b and 6d for compression and bending, respectively.

Even though in some cases the resistance varies from certain points of

bending/compression by an order of magnitude, the behaviour of all three fabrics

remained almost consistent throughout in various bending/compression diameters

(Figure 6e and 6f) on an increased number of trials up to 2000 cycles. This might

be the result of flakes initially moving around while bending/compressing the fabric

and settling to give a consistent value there onwards. This would be minimised by a

mechanical treatment post-spray-coating and by encapsulation to protect the coating

and preserve its properties. In devices with a layered structure, such as nanogenerators

or solar cells, the graphene electrode on the fabric would be immediately protected

by the adjacent layer, which will eliminate the need to individually encapsulate the

conductive layer.

Though the range of sheet resistance for our GNPs coated conductive fabrics

are useful towards fabrication of wearable sensors and nanogenerators, for some other
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0

a) b)

c) d)

e) f)

Figure 6. Sheet resistance of nylon (in orange), polyester (in green) and meta-aramid

(in blue) to varying degrees of stress and strain cycles: (a) and (b) in compression;

(c) and (d) in bending; and (e) and (f) over 2000 bending (circles) and compression

(squares) cycles. Solid, hollow and cross fillings on each symbol indicate no UVO, 5

minutes UVO and 15 minutes UVO treatment on fabrics prior to their GNPs coating

respectively.

applications it still remains quite high. However, there are several strategies to decrease

it further, such as increasing the thickness of the GNP coating. Here, this can be

achieved by spraying the GNPs more than 3 times or by using a GNP suspension of

higher concentration. Using a highly concentrated GNPs suspension (1.7 grams/litre)

to spray coat the fabrics resulted in sheet resistance value as low as 4.5 kΩ/sq

for 5-minute UVO-treated polyester. However, there is a limit to this approach of

increasing the thickness to decrease sheet resistance. On the one hand, suspensions

of increased concentration are not as stable over the spray-coating process time, with

GNPs deposition at the bottom as the suspension is being drawn into the ultrasonic

spray system. On the other hand, whether we apply more cycles of coating or use a more

concentrated suspension, there is a point where the coatings become fragile and easily

crack under bending/compression. A further reduction in sheet resistance could possibly

obtained with the addition of dopants to the suspension, such as metal nanoparticles.

4. Summary

The first step towards the realisation of truly wearable textile-base electronics is to have

a conductive textiles as electrodes. Here we have shown a simple, low-cost, efficient,

and highly scalable method of ultrasonic spray coating for coating three types of textile

fabrics, meta-aramid, polyester and nylon, with a water based graphene nanoplatelets

Page 12 of 16AUTHOR SUBMITTED MANUSCRIPT - JPMATER-100440.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles13

suspension. These textile electrodes show a sheet resistance as low as 4.5 kΩ/sq without

any intentional doping or required additives for improved adhesion. A simple ultra-

violet ozone treatment can improve the adhesion of the conductive coating. This can

be utilised in sensors or energy-harvesting wearable technologies, including solar cells,

nanogenerators, supercapacitors and thermoelectric devices.
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