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Presumption of guilt for T cells in type 1 diabetes: lead culprits
or partners in crime depending on age of onset?
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Abstract
Available evidence provides arguments both for and against a primary pathogenic role for T cells in human type 1 diabetes. Genetic
susceptibility linked to HLAClass II lends strong support. Histopathology documents HLAClass I hyperexpression and islet infiltrates
dominated by CD8+ T cells. While both hallmarks are near absent in autoantibody-positive donors, the variable insulitis and residual
beta cells of recent-onset donors suggests the existence of a younger-onset endotype with more aggressive autoimmunity and an older-
onset endotypewithmore vulnerable beta cells. Functional arguments from ex vivo and in vitro human studies and in vivo ‘humanised’
mouse models are instead neutral or against a T cell role. Clinical support is provided by the appearance of islet autoantibodies before
disease onset. The faster C-peptide loss and superior benefits of immunotherapies in individuals with younger-onset type 1 diabetes
reinforce the view of age-related endotypes. Clarifying the relative role of T cells will require technical advances in the identification of
their target antigens, in their detection and phenotyping in the blood and pancreas, and in the study of the T cell/beta cell crosstalk.
Critical steps toward this goal include the understanding of the link with environmental triggers, the description of T cell changes along
the natural history of disease, and their relationship with age and the ‘benign’ islet autoimmunity of healthy individuals.
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Abbreviations
DiViD Diabetes Virus Detection Study
EADB Exeter Archival Diabetes Biobank
FOXP3 Forkhead box P3
HLA-I HLA Class I
HLA-II HLA Class II
ICI Insulin-containing islet

IGRP Islet-specific glucose-6-phosphatase
catalytic-subunit related protein

MHC-I MHC Class I
nPOD Network for Pancreatic Organ

Donors with Diabetes
TCR T cell receptor
T1DE1 Type 1 diabetes endotype 1
T1DE2 Type 1 diabetes endotype 2
Treg Regulatory T cell

Introduction

While type 1 diabetes is described as a T cell-mediated auto-
immune disease, a more holistic view comprising the dialogue
between T cell aggressors and beta cell targets is gaining cred-
it. On one hand, this novel view underlines the active patho-
genic role played by beta cells (reviewed in [1]) and on the
other, it calls for a critical reappraisal of the role of T cells,
which we address here. We contend that evidence for a prima-
ry or exclusive role of T cells is variable and probably reflects
a balance with mechanisms of beta cell dysfunction that
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underlie different disease subtypes (endotypes) [2]. These
endotypes may thus feature T cells as either ‘lead culprits’ or
‘partners in crime’ for beta cell destruction. We will review
arguments for and against T cell-mediated mechanisms
(summarised in Fig. 1), link them to age-related endotypes,
and propose future directions to settle these questions.

Genetic evidence

For Type 1 diabetes susceptibility and protection are strongly
associated with HLA Class II (HLA-II) and, to lesser extent,
HLA Class I (HLA-I) loci [3], with HLA-DQB1*06:02 exerting
a dominant protection. Given the antigen-presenting function of

HLA molecules, these associations support a role for T cells.
Several other disease-associated gene variants regulate T cell
responses (e.g. PTPN22, IL2RA, CTLA4) [3]. Moreover,
disease-associated, and likely causal, genetic variants are
enriched in open chromatin (i.e. accessible for transcription)
specifically in immune cells, particularly in CD4+ effector T cells
[4]. The rare genetic poly-autoimmune syndromes immune
dysregulation, polyendocrinopathy, enteropathy, X-linked
(IPEX) syndrome (FOXP3 mutations) and autoimmune
polyendocrinopathy, candidiasis, ectodermal dystrophy
(APECED) syndrome (AIRE mutations) affect T cell tolerance
mechanisms and can comprise type 1 diabetes. Genetically
imprinted, age-related disease endotypes may exist, as younger
(<13months old) childrenmore frequently carryHLA-DR4/DQ8
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and first seroconvert for anti-insulin autoantibodies (IAA), while
older children (>40 months old) more often carry HLA-DR3/
DQ2 and present with anti-GAD at first seroconversion [5].

Against Although several disease-predisposing alleles are
expressed in beta cells and modulate islet inflammation [1],
their contribution to disease predisposition is rather small,
suggesting a modulatory rather than driving role.
Interestingly, HLA-II-imprinted endotypes influence serocon-
version [5] but do not strongly affect age of onset [6], clinical
progression or C-peptide loss post-diagnosis [7], indicating
that other genetic and/or acquired factors determine the
progression rate of beta cell damage.

Histopathological evidence

ForHLA-I hyperexpression on beta cells [8, 9] suggests a role
for CD8+ T cells. The second histopathological hallmark is the
presence of immune infiltrates (insulitis) dominated by CD8+

T cells, followed by CD68+ macrophages, CD20+ B cells and
CD4+ T cells [10–13]. Scattered neutrophils are also observed
throughout the pancreas [14, 15] and evidence of dysregulated
systemic innate immunity has been consistently reported,
even before autoantibody seroconversion [14]. The relative
under-representation of CD4+ T cells and the near absence
of regulatory T cells (Tregs) may reflect an earlier, more
peripheral role (e.g. in pancreatic lymph nodes), while the
over-representation of CD8+ T cells may reflect a final effec-
tor role in beta cell destruction.

Studies on the Exeter Archival Diabetes Biobank (EADB)
documented that insulitis of donors with recent-onset type 1
diabetes differs according to age [13, 16, 17], suggesting the
existence of two endotypes with different pathogenic mecha-
nisms (Fig. 2): type 1 diabetes endotype 1 (T1DE1), in indi-
viduals with onset at age <13 years; and type 1 diabetes
endotype 2 (T1DE2), mostly occurring in individuals diag-
nosed at ≥13 years of age. T1DE1 is characterised by a
CD20high insulitis rich in CD8+ T cells, few residual insulin-
containing islets (ICIs; indicative of residual beta cells) and
evidence of abnormal insulin processing in the remaining beta
cells. In contrast, T1DE2 displays a CD20low insulitis with
fewer CD8+ T cells, more residual ICIs and normal insulin
processing. Recent-onset (<6 month) CD20high donors
have a median of 78% of insulitis-positive ICIs (range
19–100%; n = 20), vs 14% (range 0–52%; n = 19) in
CD20low donors (SJR, unpublished data). In line with

this endotype view, the frequency of insulitis within
1 month of diagnosis is 73% in young donors with type
1 diabetes (<14 years old, likely to be mostly T1DE1)
[18] and the parallel reduction in residual ICIs may
indicate an aggressive beta cell destruction. In contrast,
insulitis within 1 month from diagnosis is less frequent
(29%) in older donors (15–40 years old, likely T1DE2)
and long-term ICI preservation suggests reduced aggres-
siveness [19].

Against If viewing type 1 diabetes as a single disease, the
histopathological evidence for a critical T cell involvement
is unconvincing. Immune infiltrates are limited, as exempli-
fied by the debate on the diagnostic definition of insulitis
being the presence of ≥15 immune (CD45+) cells/islet in ≥3
islets [20, 21]. This definition should be interpreted by consid-
ering the following points: (1) 15 immune cells/islet is only
twice the number found in non-diabetic donors [10]; (2) it
does not account for differences in islet size (i.e. the insulitis
density); (3) infiltrated islets are typically few (<10%) and
found in a minority (~20%) of donors [18, 22]; (4) peri-islet,
non-invasive insulitis is more common [19]; and (5) lympho-
cytes are also found scattered in the exocrine tissue, even in
autoantibody-positive non-diabetic donors [12]. Moreover,
insulitis is mostly confined to ICIs (33% vs 2% in non-ICIs)
and beta cell area and mass are higher in donors with type 1
diabetes with insulitis than in those without insulitis [22].
These patterns may indicate that immune cells leave the islets
once beta cell destruction is complete.

These findings become more convincing when interpreted
according to age-related endotype differences. However, a
major bias is introduced by the specimens available, which are
very limited for children with recent-onset type 1 diabetes
because, fortunately, very few still die close to disease onset.
For instance, the Network of Pancreatic Organ Donors with
Diabetes (nPOD) has collected only one such specimen since
2007. In contrast, most tissues are available for T1DE2 donors
with older-onset type 1 diabetes (i.e. those with weaker evidence
for a major T cell role). In most studies, age-related endotype
differences are further blurred by the analysis of specimens from
individuals with overall long disease durations, which, together
with age, influence the extent of insulitis and the number of
residual ICIs. For instance, the frequency of insulitis in young
donors with type 1 diabetes (<14 years old) drops from 73%
within 1 month of diagnosis to 4% beyond 1 year [18]. Thus,
even for the younger histopathological T1DE1 with stronger
evidence for a major T cell role, key hallmarks have likely
waned in most long-standing diabetes specimens available.
Together with the focus of most studies on older-onset donors,
these limitations may bias our view against T cells.

The bias of long disease duration is absent in the Diabetes
Virus Detection Study (DiViD), which collected surgical
pancreas specimens from living adults with new-onset disease

Summing up: The genetics of type 1 diabetes 
suggests an involvement of T cells.
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[23]. In these donors, 11% of the islets displayed insulitis, a
proportion comparable with that observed in similar age/
duration-matched CD20low donors in both EADB and nPOD
specimens. The fact that these samples came from living
donors rules out perimortem or post-mortem changes as possi-
ble confounders. Collectively, the DiViD, EADB and nPOD
findings with older-onset but short-duration disease rule out
the possibility that the limited insulitis observed represents an
extinguished phase of islet autoimmunity, as could be the case
in donors with longer disease duration.

Even in individuals with recent-onset disease, the autoim-
mune process dates back several months or years and the situa-
tion could be different at the preclinical disease stages: stage 1,
presence of ≥2 autoantibodies; stage 2, presence of

autoantibodies and initial metabolic alterations (e.g. loss of
first-phase insulin secretion); and stage 3, presence of autoanti-
bodies and overt hyperglycaemia (i.e. clinical disease) [24]. One
single autoantibody marks a low risk of progression, especially
in adults, and is therefore not included in this staging system.
Yet, most autoantibody-positive pancreas donors analysed to
date are adults who are positive for a single autoantibody. It
should be noted, however, that the low-risk definition of the
single autoantibody status is based on longitudinal assessments
in living humans and that the probability of appearance of a
second autoantibody is approximately 7–20% at 5 years
(depending on age), with a subsequent risk of clinical progres-
sion similar to those individuals who are positive for multiple
autoantibodies from the start [25]. Thus, out of the reasonably
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large series of ~100 donors positive for a single autoantibody
analysed to date, a fraction would have eventually progressed.
Yet, insulitis was invariably absent in all autoantibody-positive
donors, even in those with predisposing HLA haplotypes [19].
Additionally, in the relatively limited number of specimens from
donors positive for multiple autoantibodies (i.e. stage 1 disease;
~20 analysed to date), little or no insulitis was observed (1–9%
of islets) [10, 22, 26]. This picture may reflect a disease kinetics
remaining stable for many years before sudden progression.
Arguably, snap-shooting this ‘point of no-return’ may be diffi-
cult in histopathological studies.

HLA-I hyperexpression is also typically found in ICIs;
expression decreases with disease duration and is often associ-
ated with CD8+ insulitis [27]. However, it is more readily appar-
ent than insulitis and is present in most ICIs, probably reflecting
a readout of beta cell stress. A possible interpretation of this
discrepancy is that insulitis hallmarks may be more labile due
to immune cells migrating between islets and the peri-islet and
exocrine tissue, resulting in a variable pattern at any given time
point compared with the more stable HLA-I hyperexpression.
Nonetheless, even HLA-I hyperexpression was only found in
13% of islets from individuals positive for two autoantibodies,
associated with higher yet mild CD8+ T cell infiltration [28].

Another point of controversy is that, despite the identification
of several antigen specificities among pancreas-infiltrating T
cells, a large fraction remains unassigned. Moreover, whether
these T cells present an effector/memory phenotype compatible
with an active autoimmune engagement is unknown. One study
suggested a prevalent (46%) tissue-resident memory phenotype
of peri-islet CD8+ T cells [29] that is enriched in non-diabetic
donors [30] and, possibly, individuals who are T1DE2 [16, 29].
Although described as non-cytotoxic in insulitis lesions [29],
tissue-resident T cells can proliferate locally, produce proinflam-
matory cytokines and recruit circulating cells, thus possibly
contributing to perpetuate disease. Mouse studies [31, 32]
suggest that a significant fraction of pancreas-infiltrating T cells
are naive (also in humans [15]) and non-islet-reactive, possibly
configuring insulitis as an ‘open’ lesion inwhich bystander T cell
activation may contribute to beta cell damage.

Functional evidence

For Although the NOD mouse model is imperfect, both CD4+

and CD8+ T cells are needed to transfer disease [33]. Moreover,
NOD mice lacking MHC Class I (MHC-I) do not develop
diabetes unless receiving splenocytes from diabetic animals

[34]. Interestingly, beta cell-selective MHC-I knockout in mice
[35] protects against diabetes but not insulitis, suggesting that
MHC-I-interacting CD8+ T cells exert a late pathogenic role,
consistent with their final involvement in beta cell cytotoxicity.
The antigen specificity of these T cells has been explored with
T cell receptor (TCR)-transgenic NOD mouse studies, which
suggest a variable pathogenic potency of different T cell
clonotypes. Indeed, diabetes development is accelerated by
some TCRs, such as the CD4+ TCRs BDC-6.9 [36]
(recognising a proinsulin/islet amyloid polypeptide hybrid
peptide [37]) and 4.1 of unknown specificity [38] and the
CD8+ islet-specific glucose-6-phosphatase catalytic-subunit
related protein (IGRP)206–214-reactive 8.3 TCR [38]). Others
do not accelerate diabetes development (i.e. the CD4+ TCR
BDC-2.5 reactive to a proinsulin/chromogranin-A hybrid
peptide [37]), unless on a NOD/scid immunodeficient back-
ground [39], and the CD8+ InsB15-23-reactive G9C8 TCR,
which requires prior InsB15-23 immunisation [40]).

Reports analysing Tregs concluded that, while the frequen-
cy of circulating forkhead box P3 (FOXP3)+CD4+ Tregs is
unaltered in type 1 diabetes, their regulatory activity is dimin-
ished [41]. This alteration reflects both a reduced suppressive
function of Tregs [42], sometimes associated with increased
secretion of proinflammatory cytokines (IFN-γ, IL-17) [41,
43], and an increased resistance of conventional T cells to
suppression [44]. Treg dysfunction is partly genetically
imprinted (e.g. through IL2RA polymorphisms leading to
unstable FOXP3 expression under limiting IL-2 concentra-
tions [41]). It is also highly heterogeneous across individuals
and largely overlapping with non-diabetic control individuals,
possibly pointing to Treg-driven disease endotypes. Similarly,
IL-10-polarised islet-reactive CD4+ T cells were enriched in
healthy donors and individuals with type 1 diabetes of later
onset [45], who may be representative of T1DE2 [13].

AgainstAnimal models of autoimmune diseases were initially
produced by immunisation with organ extracts or antigens
(e.g. for multiple sclerosis (1933) [46], orchitis, thyroiditis
[47], adrenalitis, rheumatoid arthritis [48]). Despite a better
knowledge of target antigens, similar immunisations of non-
transgenic animals never provided an equivalent model of
experimental insulitis/diabetes, possibly reflecting the require-
ment for beta cell dysfunction. The BioBreeding rat provides
another spontaneous animal model of human type 1 diabetes.
Interestingly, it harbours a profound systemic T cell lympho-
penia, including near absence of CD8+ T cells, which, despite
some CD8+ T cell infiltration in islets [49], is required for
spontaneous diabetes development [50].

CD8+ T cell clones recognising preproinsulin [51], IGRP
[52] and zinc transporter 8 [53] epitopes can lyse beta cells
in vitro. However, we documented that T cell clones from
healthy donors display similar cytotoxic potency [53].
Although this similarity could reflect the long-term in vitro

Summing up: Most histopathological arguments 
suffer from sampling bias but are rather against a 
primary pathogenic role for T cells in T1DE2, while 
evidence is more substantial in T1DE1.
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stimulation of these clones, erasing ex vivo differences, it
demonstrates that islet-reactive CD8+ T cells from any indi-
vidual can be differentiated into cytotoxic effectors. Albeit this
does not negate a pathogenic role for T cells, it does not
provide supportive evidence either, as frequently claimed.
Moreover, most in vitro cytotoxic experiments [51, 52]
employed high effector/target ratios (10/1 to 25/1) compared
with those observed in situ in the pancreas [8].

These results mirror recent observations by us [53–55] and
others [56–58] that islet-reactive CD8+ T cells circulate at
similar frequencies in healthy individuals and individuals with
type 1 diabetes. It is unclear whether the same applies to CD4+

T cells. These reports detected CD8+ T cells using HLA-I
multimers (i.e. independent of their functional phenotype),
while a functional ELISpot readout of IFN-γ secretion repeat-
edly documented disease specificity [51, 53, 59, 60]. Thus,
islet-reactive CD8+ T cells may differ according to disease
status in terms of functional profile (e.g. exhaustion) rather
than frequency [57, 61] and in their capacity to home to the
pancreas, where their density is enriched in donors with type 1
diabetes [53, 54]. This difference in homing may point to the
heightened vulnerability of stressed/senescent beta cells as an
important driver [1, 62, 63]. Overall, these results open key
questions to better understand T cell autoimmunity and
biomarkers but do not offer arguments either for or against a
primary pathogenic role for T cells.

Human T cell adoptive transfer into immunodeficient mice
was not diabetogenic (e.g. using an IGRP-reactive CD8+ T cell
clone [52]). Although TCR-transgenic CD4+ T cells recognising
the HLA-DQ8-restricted INSB9-23 epitope transferred into HLA-
DQ8-transgenic mice reconstituted with human thymus and
CD34+ cells induced diabetes [64], they required strong priming
conditions (i.e. multiple low-dose streptozotocin and INSB9-23
peptide immunisation). Streptozotocin-induced beta cell death
and antigen release may provide the beta cell dysfunction signal
needed for efficient T cell priming.

Clinical evidence

For Islet autoantibodies appear before disease onset [5] and are
produced by B cells, thus implying a helper role provided by
CD4+ T cells. Eight case reports documented disease relapse in
non- or minimally immunosuppressed recipients with type 1

diabetes 6–12 weeks after pancreas transplantation from non-
diabetic HLA-identical siblings, with no relapse observed under
immunosuppression [65]. Conversely, a case report described
disease development 4 years after non-T cell-depleted HLA-
identical bone marrow transplantation from a donor with type
1 diabetes [66].

Among the panoply of immunotherapeutic agents trialled in
individuals with new-onset type 1 diabetes, four have shown
some effect on C-peptide preservation: LFA-3-Ig (alefacept)
[67], CTLA-4-Ig (abatacept) [68], anti-CD20 (rituximab) [69]
and anti-CD3 monoclonal antibodies [70–73]. Apart from the
anti-B cell agent rituximab, all target mainly T cells, arguing
for T cell-driven mechanisms targetable by drugs. Interestingly,
superior clinical benefit is often observed in children [67, 69, 70,
72], who may represent the more T cell/B cell-driven endotype
T1DE1. Concordantly, individuals diagnosed at younger ages
generally lose C-peptide secretion more rapidly and the fast-
progressing subgroup displays age-dependent blood gene
expression and cell count profiles that are higher for B cells
and lower for neutrophils [7]. Moreover, individuals with higher
pre-treatment B cell counts achieve superior C-peptide preserva-
tion after rituximab treatment [7], exemplifying the relevance of
disease endotypes to select ion of more-targeted
immunotherapies.

Against The limited and partial improvements observed in
immunotherapy trials starkly contrast with the more significant
benefits achieved in other autoimmune diseases. Examples of
mainstay disease-modifying therapies include the following:
IFN-β, glatiramer, dimethyl fumarate, sphingosine-1-phosphate
receptor modulators and antibodies to very late antigen-4 and
CD20 for multiple sclerosis [74]; and methotrexate, TNF and
IL-6 inhibitors, rituximab and abatacept for rheumatoid arthritis
[75]. However, all these agents perform much better when given
early in the disease course, at a stage that might correspond to the
preclinical phase of type 1 diabetes.

A recurrent observation from immunotherapy trials in indi-
viduals with new-onset diabetes is that the effect on C-peptide
preservation is limited to the first months of treatment and
resumes its decline thereafter [76]. While this may indicate a
need for prolonged treatment, it could also reflect targeting of
only the T cell pathogenic component, leaving others, possibly
related to beta cells [1], free to drive further disease progres-
sion. However, trials with putative beta cell-protective agents
(e.g. glucagon-like peptide-1 agonists) have so far failed to
deliver significant clinical benefits, or to convincingly ascribe
any such benefit to beta cell protection [77].

Summing up: Studies documenting Treg dysfunction 
and variable degrees of exhaustion of conventional T 
cells offer arguments for a role of human T cells. 
Arguments from ex vivo and in vitro human studies
and in vivo ‘humanised’ mice are instead rather 
neutral or against such a role on its own and suggest 
an additional requirement for beta cell dysfunction.

Summing up: Clinical evidence is mostly in favour of 
a pathogenic role for T cells and limited immuno-
therapeutic efficacy may be improved by endotype-
based stratification and earlier treatment.
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Incomplete knowledge of islet antigens

� Need for a comprehensive identification

� Need for a stringent degree of evidence (i.e. natural processing and presentation by beta cells/antigen-presenting 
cells and recognition by T cells)

Gaps to be addressed: Which islet-reactive T cells are pathogenic? Do they infiltrate the pancreas? Do target anti-
gens differ according to age of onset?  

Technologies to identify and isolate islet-reactive T cells

� Functional readouts (cytokine production, proliferation, upregulation of activation markers): more sensitive (lower 
T cell avidity threshold needed) but less specific (bystander activation of other T cells); alter the ex-vivo T cell 
phenotype; miss functionally silent T cells (e.g. anergic, exhausted); may miss Tregs

� ‘Structural’ readouts (binding of HLA-I/II multimers): less sensitive (higher T cell avidity threshold needed) but 
more specific; maintain the ex vivo T cell phenotype; detect T cells independently of their function, including Tregs

� Functional/structural readouts: may reduce the drawbacks of each

Gaps to be addressed: How does the frequency and/or function of circulating islet-reactive T cells differ between 
individuals with type 1 diabetes and healthy individuals? How do they differ according to age of onset? 

Addressing Koch’s postulate no. 1: Islet-reactive T cells must be present in all diseased individuals, but not in healthy 
ones. Currently: CD8+ T cells are present in the blood of any individual but are enriched in the pancreas of individuals 
with type 1 diabetes; unclear for CD4+ T cells

Addressing Koch’s postulate no. 2: Islet-reactive T cells can be isolated from diseased individuals. Currently: Also
from healthy individuals (both CD4+ and CD8+ T cells) 

Different pathogenic/regulatory/homing potential?

Most studies are performed on peripheral blood

� Need to expand studies on pancreatic lymph nodes and islets

� Need to expand the scope of these studies: definition of antigen specificity (TCR sequencing/re-expression, in 
situ HLA-I/II multimer staining); more in-depth phenotyping (single-cell transcriptomics, laser-capture micro-
dissection)

� Need assays to follow disease dynamics vs the static snapshot of histopathology: pancreas tissue slices, islet 
microfluidic and biosensor platforms

Gaps to be addressed: How do circulating and tissue T cells differ? Are all pancreas-infiltrating T cells reactive to islet 
antigens? Are they antigen-experienced, tissue-resident, cytotoxic? Can they migrate between islets, can they 
serially kill multiple beta cells over time?

T cell and beta cell functional studies are often performed in isolation

� Need for in vitro and in vivo models of T cell/beta cell crosstalk

Gaps to be addressed: How do beta cells modulate their autoimmune vulnerability? How do T cells modulate beta 
cell dysfunction? Can we identify clinically relevant beta cell-protective agents?

Addressing Koch’s postulate no. 3: Type 1 diabetes must be induced when islet-reactive T cells are inoculated into a 
healthy host. Currently: One clinical case report; poor induction in humanised mouse models

Are multiple islet-reactive T cell specificities needed for efficient beta cell destruction? Initial beta cell damage/dys-
function required?

Addressing Koch’s postulate no. 4: Islet-reactive T cells must be recoverable from inoculated hosts. Currently: Not 
attempted in the clinical case report; postulate fulfilled in humanised mouse models despite poor diabetes induction

Technical limitations in the study of islet-reactive T cells that hamper 
definition of their pathogenic role and fulfilment of Koch’s postulates
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Gaps in knowledge preventing conclusive
evidence of the pathogenic role of T cells

The fulfilment of Koch’s postulates for a pathogenic role for T
cells is currently incomplete, partly due to technical limitations
hindering progress (see Text box: ‘Technical limitations in the
study of islet-reactive T cells that hamper definition of their path-
ogenic role and fulfilment of Koch’s postulates’). Conceptually,
our understanding remains limited at two levels. First, it is not
clear how environmental factors trigger T cell engagement. Most
candidates (e.g. enteroviral infections and nutrients disrupting the
gut barrier and/or microbiota composition) could exert their
effects on both T cells and beta cells. Thus, the relative weight
and temporal sequence of these effects would clarify whether T
cell engagement represents a primary causative event or a
bystander consequence of beta cell dysfunction, and whether
such engagement affects disease initiation and/or progression/
amplification.We also need to better understand the intermediate
steps (e.g. metabolic and inflammatory derangements)
connecting environmental triggers with T cell recruitment, and
the innate-adaptive immune crosstalk. Second, differences in the
frequency and/or phenotype of circulating islet-reactive T cells
between diabetic and healthy donors are rather subtle if not
absent altogether. We need to better understand the features of
this universal state of ‘benign’ autoimmunity, how it is lost and
its relationship with age. To this end, a detailed description of T
cell modifications along the natural history of disease is required
but remains largely unexplored in peripheral blood and even
more so in the pancreas. Very few organ donors analysed are
positive for multiple autoantibodies (stage 1 disease), and none
are representative of stage 2 with initial dysglycaemia. We can
speculate on whether insulitis may represent a transient phase in
disease progression. Its near absence in stage 1 donors may thus
reflect a relatively late autoimmune acceleration during stage 2
that we are presently missing.

Conclusion

Figure 1 summarises the available evidence for or against a
primary pathogenic role for T cells in type 1 diabetes. While
most of the evidence favours such a role, some does not provide
the support often given as granted. Histopathological evidence
yields a more conflicting picture. Although biased by some
limitations inherent to these studies, they suggest the existence
of two age-related endotypes. Clinical evidence of faster beta
cell loss and superior benefit of immunotherapeutic interven-
tion in individuals with younger-onset diabetes further support
this endotype view. Several technical limitations and gaps in
knowledge need to be filled to gauge T cell involvement
according to age and disease endotypes. Type 1 diabetes may
be a case of one name but two diseases (i.e. younger-onset with
primary T cell-driven mechanisms and older-onset with

primary beta cell-drivenmechanisms) leading to similar clinical
presentations but requiring different treatments.
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