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1. INTRODUCTION 

   Neural networks have been studied by numerous 

researchers during the recent years due to their wide range of 

applications, Du et al. (2014), Yuhas et al. (2012), Cochocki 

et al. (1993). Dynamical stability is an important issue in the 

performance analysis of neural networks. Among the notions 

that were used to define the stability of neural networks, the 

exponential stability is frequent, because of including the 

exponential convergence in the evaluation of stability rate.  

  Appearing of time-delay in the dynamical equations of 

neural networks makes their stability analysis more 

challenging. Several criteria were proposed in the literature 

for instance, Song et al. (2013), Gao et al. (2013), Shen et al. 

(2008), He et al. (2007), to check the stability of delayed 

neural networks by including the information of their 

structures in the construction of LKF and using innovative 

computational techniques to derive stability condition in 

terms of linear matrix inequalities. In Zhang et al. (2014), the 

research on stability of continuous-time recurrent neural 

networks was surveyed and the recent results in the case of 

constant and variable delay in recurrent neural networks were 

discussed and compared. In Zeng et al. (2006), delay-

independent stability criteria was developed for neural 

networks with time-varying delay. However, the mentioned 

approach leads to conservative result compared to the delay-

dependent methods in which the value of delay is 

incorporated directly in the stability conditions.  

    In order to decrease the conservativeness of the delay-

dependent stability results, two main directions were 

followed recently. First, in the method of free weighting 

matrices, some free matrix variables are added to the stability 

measures to improve their effectiveness by adjustable 

variables. Second, in delay partitioning approach, the delay 

interval is divided into some subintervals in order that more 

information of the varying delay and more free variables can 

be used. By combining the mentioned ideas with the 

innovative augmented LKFs, new analysis methods for 

delayed neural networks have been proposed. In both of the 

above mentioned schemes, conservativeness of the stability 

test is decreased at the expense of more unknown parameters 

involved in the final sufficient condition.     

    A new augmented LK functional was proposed in Kwon et 

al. (2013), to establish a less conservative stability criterion in 

terms of LMIs. In Xie et al. (2014), by using the delay-

partitioning method and the reciprocally convex technique, 

less conservative stability criteria were obtained for neural 

networks with time-varying delays in terms of LMIs. In Zhou 

et al. (2014), for recurrent neural networks with time-varying 

delays, a novel LKF was introduced; furthermore, 

reciprocally convex approach was used to improve stability 

criteria which are derived in terms of LMIs. By construction 

of an augmented LKF based on delay partitioning idea, the 

problem of exponential stability analysis of neural networks 

with time varying-delay was investigated in Hua et al. (2011). 

Second order convex combination approach was employed in 

Huaguang et al. (2013), for stability analysis of neural 

networks with time-varying delay. By using the LKF method, 

novel stability criteria were derived in Liu G. et al. (2013), 

for robust stability analysis of uncertain stochastic neural 

networks of neutral-type with interval time-varying delays. In 

Liu C. et al (2013), the stability of Hopfield neural networks 

with time delay and variable-time impulses was addressed. In 

Zhang et al. (2013), new sufficient conditions were extracted 

in terms of LMIs to guarantee that the neutral-type delayed 

projection neural network is globally exponentially 

convergent to the optimal solution. The problem of stochastic 

stability was investigated in Ma et al (2015), for perturbed 

chaotic neural networks with mixed time-delays and 

Markovian jumping parameters by employing suitable LKF. 

    In this paper, a less conservative stability criterion is 

introduced for neural networks with time-varying delays. 

Inspired by Sun et al. (2010), triple-integral term is utilized in 
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in terms of LMIs to guarantee that the neutral-type delayed 

projection neural network is globally exponentially 

convergent to the optimal solution. The problem of stochastic 

stability was investigated in Ma et al (2015), for perturbed 

chaotic neural networks with mixed time-delays and 

Markovian jumping parameters by employing suitable LKF. 

    In this paper, a less conservative stability criterion is 

introduced for neural networks with time-varying delays. 

Inspired by Sun et al. (2010), triple-integral term is utilized in 
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LKF. Moreover, quadruple-integral terms together with other 

new augmented terms are added to the energy functional to 

bring more degree of freedom in the final stability condition. 

Motivated by Park et al. (2011), the convex combination 

approach is employed to reduce the parameters of the 

stability test. The new exponential stability condition is 

derived in the form of LMIs. The main advantage of the 

proposed stability condition is to reduce simulatanously the 

conservativeness and complexity of the stability test; i.e. by 

the proposed method, much larger allowable delay bound is 

achieved while lighter computational burden is needed, 

compared to some of recent methods in Xu et al. (2006), 

Shen et al. (2008) and Wu et al. (2008), Hua et al. (2011), 

Huaguanget al. (2013), which analyze the stability of neural 

networks with variable delay. Two comparative numerical 

examples are presented to demonstrate that the proposed 

method can lead to less conservative results compared to 

some of existing approaches in the literature. 

    Notations: In this paper, ℜ denotes the real numbers set. 

The symbol * stands for the symmetric block in the 

symmetric matrices. I is the identity matrix of the appropriate 

dimensions. The notation 𝑃𝑃 > 0 (respectively, 𝑃𝑃 ≥ 0) means 

that 𝑃𝑃 is real symmetric and positive definite (respectively, 

positive semidefinite). The superscript T stands for the 

matrix transposition. 𝑐𝑐𝑐𝑐𝑐𝑐 { } shows the column vector 

composed of the elements in the bracket. 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{ }   
symbolizes a diagonal matrix of elements in the bracket.  𝑒𝑒𝑑𝑑 
represents block entry matrices, for instance 𝑒𝑒8

𝑇𝑇 =
[0 0 0 0 0 0 0 𝐼𝐼 0 0 0]. 
 

2. PROBLEM FORMULATION 

 Consider the dynamical model of neural network with time-

varying delay as follows: 

�̇�𝑥(𝑡𝑡) = −𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑥𝑥(𝑡𝑡)) + 𝐶𝐶𝐵𝐵(𝑥𝑥(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))                 (1) 

where, 𝑥𝑥(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)]𝑇𝑇 ∈ ℜ𝑛𝑛 and 𝐵𝐵(𝑥𝑥(𝑡𝑡)) =
[𝐵𝐵1(𝑥𝑥1(𝑡𝑡)), 𝐵𝐵2(𝑥𝑥2(𝑡𝑡)), … , 𝐵𝐵𝑛𝑛(𝑥𝑥𝑛𝑛(𝑡𝑡))]𝑇𝑇 ∈ ℜ𝑛𝑛 are the neuron 

state and neuron activation vectors, respectively. 𝐴𝐴 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝑑𝑑𝑖𝑖} is diagonal matrix with 𝑑𝑑𝑖𝑖 > 0. The matrices 𝐵𝐵 and 

𝐶𝐶 are the connection weight matrix and the delayed weight 

matrix, respectively. The time-varying delay 𝜂𝜂(𝑡𝑡) satisfies the 

following conditions: 

0 ≤ 𝜂𝜂(𝑡𝑡) ≤ 𝜂𝜂,    0 ≤ �̇�𝜂(𝑡𝑡) ≤ 𝜇𝜇                                              (2) 

wherein, 𝜂𝜂 and 𝜇𝜇 are constant known values that denote the 

upper bounds of delay and delay rate, respectively. 

Activation function 𝐵𝐵𝑖𝑖(. ), for 𝑑𝑑 ∈ {1,2, , ⋯ , 𝑛𝑛} is supposed to 

be bounded, satisfying the following inequality: 

0 ≤ 𝐵𝐵𝑖𝑖(𝑦𝑦1) − 𝐵𝐵𝑖𝑖(𝑦𝑦2)
𝑦𝑦1 − 𝑦𝑦2

≤ 𝐿𝐿𝑖𝑖                                                          (3) 

where, 𝐿𝐿𝑖𝑖, for 𝑑𝑑 ∈ {1,2, ⋯ , 𝑛𝑛} is positive scalar. Assume that 

there exists a vector 𝑥𝑥∗ = [𝑥𝑥1
∗, 𝑥𝑥2

∗, … , 𝑥𝑥𝑛𝑛
∗ ] ∈ ℜ𝑛𝑛 which 

satisfies: 

𝐴𝐴 𝑥𝑥∗(𝑡𝑡) = 𝐵𝐵 𝐵𝐵(𝑥𝑥∗(𝑡𝑡)) + 𝐶𝐶 𝐵𝐵 (𝑥𝑥∗(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))                      (4) 

So, 𝑥𝑥∗ is called the equilibrium point of neural network (1). 

By employing the transformation 𝑧𝑧 = 𝑥𝑥 − 𝑥𝑥∗, the dynamical 

equation of neural network in (1) is changed into the 

following: 

�̇�𝑧(𝑡𝑡) = −𝐴𝐴𝑧𝑧(𝑡𝑡) + 𝐵𝐵𝑑𝑑(𝑧𝑧(𝑡𝑡)) + 𝐶𝐶𝑑𝑑(𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))                  (5) 

In which, 

𝑧𝑧(𝑡𝑡) = [𝑧𝑧1(𝑡𝑡), 𝑧𝑧2(𝑡𝑡), … , 𝑧𝑧𝑛𝑛(𝑡𝑡)]𝑇𝑇 ∈ ℜ𝑛𝑛 

𝑑𝑑(𝑧𝑧(𝑡𝑡)) = [𝑑𝑑1(𝑧𝑧1(𝑡𝑡)), 𝑑𝑑2(𝑧𝑧2(𝑡𝑡)), … , 𝑑𝑑𝑛𝑛(𝑧𝑧𝑛𝑛(𝑡𝑡))]𝑇𝑇 ∈ ℜ𝑛𝑛 

𝑑𝑑𝑖𝑖(𝑧𝑧𝑖𝑖(𝑡𝑡)) = 𝐵𝐵𝑖𝑖(𝑧𝑧𝑖𝑖(𝑡𝑡) + 𝑧𝑧𝑖𝑖
∗) − 𝐵𝐵𝑖𝑖(𝑧𝑧𝑖𝑖

∗), 𝑑𝑑 = 1,2, … , 𝑛𝑛 

where, 𝑧𝑧𝑖𝑖
∗ is the 𝑑𝑑 th element of the equilibrium point vector 

in the new coordinate. Regarding (3) and the transformation 

𝑧𝑧 = 𝑥𝑥 − 𝑥𝑥∗, the function 𝑑𝑑𝑖𝑖(𝑧𝑧𝑖𝑖), for 𝑑𝑑 ∈ {1,2, ⋯ , 𝑛𝑛}  satisfy 

the following: 

0 ≤ 𝑑𝑑𝑖𝑖(𝑧𝑧𝑖𝑖)
𝑧𝑧𝑖𝑖

≤ 𝐿𝐿𝑖𝑖,     𝑑𝑑𝑖𝑖(0) = 0,   ∀𝑧𝑧𝑖𝑖 ≠ 0,                                (6) 

    Before proceeding further, the following definition and 

Lemmas are introduced: 

Definition 1: The neural network in (1) is exponentially stable 

with the exponential convergence rate 𝑘𝑘, if there exist 

positive constant values 𝛾𝛾  and  𝑘𝑘, stasifying:  

‖𝑧𝑧(𝑡𝑡)‖ ≤ 𝛾𝛾 𝛹𝛹𝑒𝑒−𝑘𝑘𝑘𝑘,       𝛹𝛹 = max
−𝜂𝜂≤𝜃𝜃≤0

‖𝑧𝑧(𝑡𝑡)‖ ∀𝑡𝑡 > 0              (7) 

Lemma 1 (Jensen’s Inequality): Suppose 𝜂𝜂 ∈
ℜ and 𝑥𝑥(𝑡𝑡)𝜖𝜖ℜ𝑛𝑛, for any positive definite matrix 𝑃𝑃 the 

following inequality holds: 

−𝜂𝜂 ∫ �̇�𝑥𝑇𝑇(𝑠𝑠)𝑃𝑃�̇�𝑥(𝑠𝑠)𝑑𝑑𝑠𝑠 ≤ [ 𝑥𝑥(𝑡𝑡)
𝑥𝑥(𝑡𝑡 − 𝜂𝜂)]

𝑇𝑇
[−𝑃𝑃 𝑃𝑃

𝑃𝑃 −𝑃𝑃]𝑘𝑘
𝑘𝑘−𝜂𝜂 [ 𝑥𝑥(𝑡𝑡)

𝑥𝑥(𝑡𝑡 − 𝜂𝜂)]. 

Lemma 2  Park et al. (2011): Suppose 𝜂𝜂 ∈ ℜ and  𝑥𝑥(𝑡𝑡)𝜖𝜖ℜ𝑛𝑛, 

for any matrices 𝑄𝑄 = 𝑄𝑄𝑇𝑇 > 0 and 𝑆𝑆 the following inequality 

holds: 

−𝜂𝜂 ∫ �̇�𝑥𝑇𝑇(𝑠𝑠)𝑄𝑄�̇�𝑥(𝑠𝑠)𝑑𝑑𝑠𝑠 ≤
𝑘𝑘

𝑘𝑘−𝜂𝜂
 

− [ (𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))𝑇𝑇

(𝑥𝑥(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)) − 𝑥𝑥(𝑡𝑡 − 𝜂𝜂))𝑇𝑇]
𝑇𝑇

[ 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑄𝑄] 

    [ (𝑥𝑥(𝑡𝑡) − 𝑥𝑥(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))𝑇𝑇

(𝑥𝑥(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)) − 𝑥𝑥(𝑡𝑡 − 𝜂𝜂))𝑇𝑇] 

where, 

    [ 𝑄𝑄 𝑆𝑆
𝑆𝑆𝑇𝑇 𝑄𝑄] ≥ 0. 

3. MAIN RESULTS  

Note By presenting an appropriate LKF, a new delay-

dependent sufficient condition is derived in Theorem 1 to 

check the exponential stability of the neural network (1). 

Theorem 1: For the given 𝜂𝜂, 𝜇𝜇, 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶, the system (1) 

with the time-varying delay satisfying (2) is exponentially 

stable with the exponential convergence rate 𝑘𝑘,  if there exist 

arbitrary matrices 𝑀𝑀,  𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, symmetric matrices  𝑃𝑃 > 0,
𝑇𝑇 > 0, 𝑄𝑄 > 0,    𝑋𝑋1 > 0,    𝑋𝑋2 > 0,   𝑅𝑅1 > 0,  𝑅𝑅2 > 0, 𝑈𝑈 > 0 
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and diagonal matrices  𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛} ≥ 0, 𝑅𝑅 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛} ≥ 0 and 𝑆𝑆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} ≥ 0 

with appropriate dimensions such that the LMIs (8)-(9) hold: 

[𝑋𝑋1 𝑆𝑆1
∗ 𝑋𝑋1

] ≥ 0,   [𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] ≥ 0,   [𝑅𝑅1 𝑆𝑆3
∗ 𝑅𝑅1

] ≥ 0                  (8) 

  𝛺𝛺 < 0                                                                                            (9) 

wherein, 

𝛺𝛺 = 𝛬𝛬 + 𝜂𝜂2(𝑒𝑒1𝑋𝑋1𝑒𝑒1
𝑇𝑇 + 𝑒𝑒4𝑋𝑋2𝑒𝑒4

𝑇𝑇) + 𝜂𝜂4

4 (𝑒𝑒1𝑅𝑅1𝑒𝑒1
𝑇𝑇 + 𝑒𝑒4𝑅𝑅2𝑒𝑒4

𝑇𝑇) + 

        + 𝜂𝜂6

36 𝑒𝑒4𝑈𝑈𝑒𝑒4
𝑇𝑇 − 𝑒𝑒−2𝑘𝑘𝑘𝑘 ([𝑒𝑒6

𝑇𝑇

𝑒𝑒7
𝑇𝑇]

𝑇𝑇
[𝑋𝑋1 𝑆𝑆1

∗ 𝑋𝑋1
] [𝑒𝑒6

𝑇𝑇

𝑒𝑒7
𝑇𝑇] 

        − [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇]
𝑇𝑇

[𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇])                 (10) 

        −𝑒𝑒−2𝑘𝑘𝑘𝑘 ( [𝑒𝑒8
𝑇𝑇

𝑒𝑒9
𝑇𝑇]

𝑇𝑇
[𝑅𝑅1 𝑆𝑆3

∗ 𝑅𝑅1
] [𝑒𝑒8

𝑇𝑇

𝑒𝑒9
𝑇𝑇]      

+ (𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑅𝑅2 (𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑇𝑇) 

−𝑒𝑒−2𝑘𝑘𝑘𝑘(𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)𝑈𝑈(𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)𝑇𝑇 

with, 

𝛬𝛬 = 𝜋𝜋 + 𝛼𝛼 + 𝛼𝛼𝑇𝑇                                                               (11) 

in which, 

𝛼𝛼 = [𝑀𝑀𝑀𝑀   0   0   𝑀𝑀   0   0   0   0   0  − 𝑀𝑀𝑀𝑀  − 𝑀𝑀𝑀𝑀] 

𝜋𝜋 = [
𝜋𝜋1 𝜋𝜋2 𝜋𝜋3 𝜋𝜋4
∗ 𝜋𝜋5 𝜋𝜋6 𝜋𝜋7
∗
∗

∗
∗

𝜋𝜋8
∗

𝜋𝜋9
𝜋𝜋10

] 

𝜋𝜋1 = [
𝜋𝜋111 0 𝑃𝑃23

𝑇𝑇 + 𝜂𝜂𝑃𝑃24
𝑇𝑇 + 𝑃𝑃13 + 2𝑘𝑘𝑃𝑃12

∗ −(1 − 𝜇𝜇)𝑇𝑇11 0
∗ ∗ −𝑃𝑃23

𝑇𝑇 − 𝑃𝑃23 − 𝑄𝑄11 + 2𝑘𝑘𝑃𝑃22

] 

𝜋𝜋2 = [
𝑃𝑃11 + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑄𝑄12 𝑃𝑃12 𝜋𝜋213

0 0 0
𝑃𝑃12

𝑇𝑇 𝑃𝑃22 − 𝑄𝑄12 −𝑃𝑃33 − 𝑃𝑃24 + 2𝑘𝑘𝑃𝑃23

] 

𝜋𝜋3 = [
𝑃𝑃33 + 𝜂𝜂𝑃𝑃34

𝑇𝑇 − 𝑃𝑃14 + 2𝑘𝑘𝑃𝑃13 𝜋𝜋312 𝜋𝜋313
0 0 0

−𝑃𝑃33 − 𝑃𝑃24 + 2𝑘𝑘𝑃𝑃23 −𝑃𝑃34 + 2𝑘𝑘𝑃𝑃24 𝜋𝜋333

] 

𝜋𝜋4 = [
2𝑘𝑘𝐷𝐷 + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑇𝑇12 + 𝐿𝐿𝑅𝑅 0

0 −(1 − 𝜇𝜇)𝑇𝑇12 + 𝐿𝐿𝑆𝑆
0 0

] 

𝜋𝜋5 = [
𝑒𝑒2𝑘𝑘𝑘𝑘 0 𝑃𝑃13

∗ −𝑄𝑄22 𝑃𝑃23
∗ ∗ −𝑃𝑃34 − 𝑃𝑃34

𝑇𝑇 + 2𝑘𝑘𝑃𝑃33

] 

𝜋𝜋6 = [
𝑃𝑃13 𝑃𝑃14 𝑃𝑃14
𝑃𝑃23 𝑃𝑃24 𝑃𝑃24

−𝑃𝑃34 − 𝑃𝑃34
𝑇𝑇 + 2𝑘𝑘𝑃𝑃33 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34

] 

𝜋𝜋7 = [
𝐷𝐷 0
0 0
0 0

] 

𝜋𝜋8 = [
−𝑃𝑃34 − 𝑃𝑃34

𝑇𝑇 + 2𝑘𝑘𝑃𝑃33 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34
∗ 2𝑘𝑘𝑃𝑃44 2𝑘𝑘𝑃𝑃44
∗ ∗ 2𝑘𝑘𝑃𝑃44

] 

𝜋𝜋9 = [
0 0
0 0
0 0

],  

𝜋𝜋10 = [𝑒𝑒2𝑘𝑘𝑘𝑘𝑇𝑇22 − 2𝑅𝑅 0
∗ −(1 − 𝜇𝜇)𝑇𝑇22 − 2𝑆𝑆] 

𝜋𝜋111 = 𝑃𝑃13 + 𝑃𝑃13
𝑇𝑇 + 𝜂𝜂(𝑃𝑃14 + 𝑃𝑃14

𝑇𝑇 ) + 2𝑘𝑘𝑃𝑃11 + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑇𝑇11 

            + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑄𝑄11 

𝜋𝜋213 = 𝑃𝑃33 + 𝜂𝜂𝑃𝑃34
𝑇𝑇 − 𝑃𝑃14 + 2𝑘𝑘𝑃𝑃13 

𝜋𝜋312 = 𝜋𝜋313 = 𝑃𝑃34 + 𝜂𝜂𝑃𝑃44 + 2𝑘𝑘𝑃𝑃14 

𝜋𝜋333 = −𝑃𝑃34 + 2𝑘𝑘𝑃𝑃24 

where, 

𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 𝑃𝑃13 𝑃𝑃14
∗ 𝑃𝑃22 𝑃𝑃23 𝑃𝑃24
∗
∗

∗
∗

𝑃𝑃33
∗

𝑃𝑃34
𝑃𝑃44

] , 𝑇𝑇 = [𝑇𝑇11 𝑇𝑇12
∗ 𝑇𝑇22

],                  (12) 

𝑄𝑄 = [𝑄𝑄11 𝑄𝑄12] 
Proof: Construct the LKF candidate as follows: 

𝑉𝑉(𝑧𝑧𝑡𝑡) = 𝑉𝑉1(𝑧𝑧𝑡𝑡) + 𝑉𝑉2(𝑧𝑧𝑡𝑡) + 𝑉𝑉3(𝑧𝑧𝑡𝑡) + 𝑉𝑉4(𝑧𝑧𝑡𝑡) + 𝑉𝑉5(𝑧𝑧𝑡𝑡)       (13) 

with, 

𝑉𝑉1(𝑧𝑧𝑡𝑡) = 𝑒𝑒2𝑘𝑘𝑡𝑡𝜉𝜉𝑇𝑇(𝑡𝑡)𝑃𝑃𝜉𝜉(𝑡𝑡) + 2 ∑ 𝑑𝑑𝑖𝑖𝑒𝑒2𝑘𝑘𝑡𝑡 ∫ 𝑑𝑑𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑧𝑧𝑖𝑖(𝑡𝑡)

0

𝑛𝑛

𝑖𝑖=1
 

𝑉𝑉2(𝑧𝑧𝑡𝑡) = 𝑒𝑒2𝑘𝑘𝑘𝑘 ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘 [ 𝑧𝑧(𝑠𝑠)
𝑑𝑑(𝑧𝑧(𝑠𝑠))]

𝑇𝑇
𝑇𝑇 [ 𝑧𝑧(𝑠𝑠)

𝑑𝑑(𝑧𝑧(𝑠𝑠))] 𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡−𝑘𝑘(𝑡𝑡)
 

               +  𝑒𝑒2𝑘𝑘𝑘𝑘 ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘 [𝑧𝑧(𝑠𝑠)
�̇�𝑧(𝑠𝑠)]

𝑇𝑇
𝑄𝑄 [𝑧𝑧(𝑠𝑠)

�̇�𝑧(𝑠𝑠)]  𝑑𝑑𝑠𝑠𝑡𝑡
𝑡𝑡−𝑘𝑘  

𝑉𝑉3(𝑧𝑧𝑡𝑡) = 𝜂𝜂(∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘𝑧𝑧𝑇𝑇(𝑠𝑠)𝑋𝑋1𝑧𝑧(𝑠𝑠)
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝑘𝑘
𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 

                 + ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑠𝑠)𝑋𝑋2�̇�𝑧(𝑠𝑠)
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝑘𝑘
𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑)                                    

𝑉𝑉4(𝑧𝑧𝑡𝑡) = 𝜂𝜂2

2 (∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘𝑧𝑧𝑇𝑇(𝑠𝑠)𝑅𝑅1𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡+𝜆𝜆

0

𝛽𝛽

0

−𝑘𝑘
 

                + ∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑠𝑠)𝑅𝑅2�̇�𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑)                          
𝑡𝑡

𝑡𝑡+𝜆𝜆

0

𝛽𝛽

0

−𝑘𝑘
 

𝑉𝑉5(𝑧𝑧𝑡𝑡) = 𝜂𝜂3

6 ∫ ∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑡𝑡)𝑈𝑈�̇�𝑧(𝑡𝑡)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡+𝜑𝜑

0

𝜆𝜆

0

𝛽𝛽

0

−𝑘𝑘
 

in which, 𝜉𝜉(𝑡𝑡) is defined as follows:  

𝜉𝜉(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐 {𝑧𝑧(𝑡𝑡), 𝑧𝑧(𝑡𝑡 − 𝜂𝜂), ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠, ∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝑘𝑘

𝑡𝑡

𝑡𝑡−𝑘𝑘
} 

Note that regarding (6), 𝑉𝑉1 is positive as required. Before 

proceeding, the  following notation is introduced: 

2016 IFAC TDS
June 22-24, 2016. Istanbul, Turkey

132 132



 Arash Farnam et al. / IFAC-PapersOnLine 49-10 (2016) 130–135 133 

 

     

 

and diagonal matrices  𝐷𝐷 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {𝑑𝑑1, 𝑑𝑑2, … , 𝑑𝑑𝑛𝑛} ≥ 0, 𝑅𝑅 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑛𝑛} ≥ 0 and 𝑆𝑆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} ≥ 0 

with appropriate dimensions such that the LMIs (8)-(9) hold: 

[𝑋𝑋1 𝑆𝑆1
∗ 𝑋𝑋1

] ≥ 0,   [𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] ≥ 0,   [𝑅𝑅1 𝑆𝑆3
∗ 𝑅𝑅1

] ≥ 0                  (8) 

  𝛺𝛺 < 0                                                                                            (9) 

wherein, 

𝛺𝛺 = 𝛬𝛬 + 𝜂𝜂2(𝑒𝑒1𝑋𝑋1𝑒𝑒1
𝑇𝑇 + 𝑒𝑒4𝑋𝑋2𝑒𝑒4

𝑇𝑇) + 𝜂𝜂4

4 (𝑒𝑒1𝑅𝑅1𝑒𝑒1
𝑇𝑇 + 𝑒𝑒4𝑅𝑅2𝑒𝑒4

𝑇𝑇) + 

        + 𝜂𝜂6

36 𝑒𝑒4𝑈𝑈𝑒𝑒4
𝑇𝑇 − 𝑒𝑒−2𝑘𝑘𝑘𝑘 ([𝑒𝑒6

𝑇𝑇

𝑒𝑒7
𝑇𝑇]

𝑇𝑇
[𝑋𝑋1 𝑆𝑆1

∗ 𝑋𝑋1
] [𝑒𝑒6

𝑇𝑇

𝑒𝑒7
𝑇𝑇] 

        − [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇]
𝑇𝑇

[𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇])                 (10) 

        −𝑒𝑒−2𝑘𝑘𝑘𝑘 ( [𝑒𝑒8
𝑇𝑇

𝑒𝑒9
𝑇𝑇]

𝑇𝑇
[𝑅𝑅1 𝑆𝑆3

∗ 𝑅𝑅1
] [𝑒𝑒8

𝑇𝑇

𝑒𝑒9
𝑇𝑇]      

+ (𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑅𝑅2 (𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑇𝑇) 

−𝑒𝑒−2𝑘𝑘𝑘𝑘(𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)𝑈𝑈(𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)𝑇𝑇 

with, 

𝛬𝛬 = 𝜋𝜋 + 𝛼𝛼 + 𝛼𝛼𝑇𝑇                                                               (11) 

in which, 

𝛼𝛼 = [𝑀𝑀𝑀𝑀   0   0   𝑀𝑀   0   0   0   0   0  − 𝑀𝑀𝑀𝑀  − 𝑀𝑀𝑀𝑀] 

𝜋𝜋 = [
𝜋𝜋1 𝜋𝜋2 𝜋𝜋3 𝜋𝜋4
∗ 𝜋𝜋5 𝜋𝜋6 𝜋𝜋7
∗
∗

∗
∗

𝜋𝜋8
∗

𝜋𝜋9
𝜋𝜋10

] 

𝜋𝜋1 = [
𝜋𝜋111 0 𝑃𝑃23

𝑇𝑇 + 𝜂𝜂𝑃𝑃24
𝑇𝑇 + 𝑃𝑃13 + 2𝑘𝑘𝑃𝑃12

∗ −(1 − 𝜇𝜇)𝑇𝑇11 0
∗ ∗ −𝑃𝑃23

𝑇𝑇 − 𝑃𝑃23 − 𝑄𝑄11 + 2𝑘𝑘𝑃𝑃22

] 

𝜋𝜋2 = [
𝑃𝑃11 + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑄𝑄12 𝑃𝑃12 𝜋𝜋213

0 0 0
𝑃𝑃12

𝑇𝑇 𝑃𝑃22 − 𝑄𝑄12 −𝑃𝑃33 − 𝑃𝑃24 + 2𝑘𝑘𝑃𝑃23

] 

𝜋𝜋3 = [
𝑃𝑃33 + 𝜂𝜂𝑃𝑃34

𝑇𝑇 − 𝑃𝑃14 + 2𝑘𝑘𝑃𝑃13 𝜋𝜋312 𝜋𝜋313
0 0 0

−𝑃𝑃33 − 𝑃𝑃24 + 2𝑘𝑘𝑃𝑃23 −𝑃𝑃34 + 2𝑘𝑘𝑃𝑃24 𝜋𝜋333

] 

𝜋𝜋4 = [
2𝑘𝑘𝐷𝐷 + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑇𝑇12 + 𝐿𝐿𝑅𝑅 0

0 −(1 − 𝜇𝜇)𝑇𝑇12 + 𝐿𝐿𝑆𝑆
0 0

] 

𝜋𝜋5 = [
𝑒𝑒2𝑘𝑘𝑘𝑘 0 𝑃𝑃13

∗ −𝑄𝑄22 𝑃𝑃23
∗ ∗ −𝑃𝑃34 − 𝑃𝑃34

𝑇𝑇 + 2𝑘𝑘𝑃𝑃33

] 

𝜋𝜋6 = [
𝑃𝑃13 𝑃𝑃14 𝑃𝑃14
𝑃𝑃23 𝑃𝑃24 𝑃𝑃24

−𝑃𝑃34 − 𝑃𝑃34
𝑇𝑇 + 2𝑘𝑘𝑃𝑃33 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34

] 

𝜋𝜋7 = [
𝐷𝐷 0
0 0
0 0

] 

𝜋𝜋8 = [
−𝑃𝑃34 − 𝑃𝑃34

𝑇𝑇 + 2𝑘𝑘𝑃𝑃33 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34 −𝑃𝑃44 + 2𝑘𝑘𝑃𝑃34
∗ 2𝑘𝑘𝑃𝑃44 2𝑘𝑘𝑃𝑃44
∗ ∗ 2𝑘𝑘𝑃𝑃44

] 

𝜋𝜋9 = [
0 0
0 0
0 0

],  

𝜋𝜋10 = [𝑒𝑒2𝑘𝑘𝑘𝑘𝑇𝑇22 − 2𝑅𝑅 0
∗ −(1 − 𝜇𝜇)𝑇𝑇22 − 2𝑆𝑆] 

𝜋𝜋111 = 𝑃𝑃13 + 𝑃𝑃13
𝑇𝑇 + 𝜂𝜂(𝑃𝑃14 + 𝑃𝑃14

𝑇𝑇 ) + 2𝑘𝑘𝑃𝑃11 + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑇𝑇11 

            + 𝑒𝑒2𝑘𝑘𝑘𝑘𝑄𝑄11 

𝜋𝜋213 = 𝑃𝑃33 + 𝜂𝜂𝑃𝑃34
𝑇𝑇 − 𝑃𝑃14 + 2𝑘𝑘𝑃𝑃13 

𝜋𝜋312 = 𝜋𝜋313 = 𝑃𝑃34 + 𝜂𝜂𝑃𝑃44 + 2𝑘𝑘𝑃𝑃14 

𝜋𝜋333 = −𝑃𝑃34 + 2𝑘𝑘𝑃𝑃24 

where, 

𝑃𝑃 = [
𝑃𝑃11 𝑃𝑃12 𝑃𝑃13 𝑃𝑃14
∗ 𝑃𝑃22 𝑃𝑃23 𝑃𝑃24
∗
∗

∗
∗

𝑃𝑃33
∗

𝑃𝑃34
𝑃𝑃44

] , 𝑇𝑇 = [𝑇𝑇11 𝑇𝑇12
∗ 𝑇𝑇22

],                  (12) 

𝑄𝑄 = [𝑄𝑄11 𝑄𝑄12] 
Proof: Construct the LKF candidate as follows: 

𝑉𝑉(𝑧𝑧𝑡𝑡) = 𝑉𝑉1(𝑧𝑧𝑡𝑡) + 𝑉𝑉2(𝑧𝑧𝑡𝑡) + 𝑉𝑉3(𝑧𝑧𝑡𝑡) + 𝑉𝑉4(𝑧𝑧𝑡𝑡) + 𝑉𝑉5(𝑧𝑧𝑡𝑡)       (13) 

with, 

𝑉𝑉1(𝑧𝑧𝑡𝑡) = 𝑒𝑒2𝑘𝑘𝑡𝑡𝜉𝜉𝑇𝑇(𝑡𝑡)𝑃𝑃𝜉𝜉(𝑡𝑡) + 2 ∑ 𝑑𝑑𝑖𝑖𝑒𝑒2𝑘𝑘𝑡𝑡 ∫ 𝑑𝑑𝑖𝑖(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑧𝑧𝑖𝑖(𝑡𝑡)

0

𝑛𝑛

𝑖𝑖=1
 

𝑉𝑉2(𝑧𝑧𝑡𝑡) = 𝑒𝑒2𝑘𝑘𝑘𝑘 ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘 [ 𝑧𝑧(𝑠𝑠)
𝑑𝑑(𝑧𝑧(𝑠𝑠))]

𝑇𝑇
𝑇𝑇 [ 𝑧𝑧(𝑠𝑠)

𝑑𝑑(𝑧𝑧(𝑠𝑠))] 𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡−𝑘𝑘(𝑡𝑡)
 

               +  𝑒𝑒2𝑘𝑘𝑘𝑘 ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘 [𝑧𝑧(𝑠𝑠)
�̇�𝑧(𝑠𝑠)]

𝑇𝑇
𝑄𝑄 [𝑧𝑧(𝑠𝑠)

�̇�𝑧(𝑠𝑠)]  𝑑𝑑𝑠𝑠𝑡𝑡
𝑡𝑡−𝑘𝑘  

𝑉𝑉3(𝑧𝑧𝑡𝑡) = 𝜂𝜂(∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘𝑧𝑧𝑇𝑇(𝑠𝑠)𝑋𝑋1𝑧𝑧(𝑠𝑠)
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝑘𝑘
𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 

                 + ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑠𝑠)𝑋𝑋2�̇�𝑧(𝑠𝑠)
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝑘𝑘
𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑)                                    

𝑉𝑉4(𝑧𝑧𝑡𝑡) = 𝜂𝜂2

2 (∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘𝑧𝑧𝑇𝑇(𝑠𝑠)𝑅𝑅1𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡+𝜆𝜆

0

𝛽𝛽

0

−𝑘𝑘
 

                + ∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑠𝑠)𝑅𝑅2�̇�𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑)                          
𝑡𝑡

𝑡𝑡+𝜆𝜆

0

𝛽𝛽

0

−𝑘𝑘
 

𝑉𝑉5(𝑧𝑧𝑡𝑡) = 𝜂𝜂3

6 ∫ ∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑡𝑡)𝑈𝑈�̇�𝑧(𝑡𝑡)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡+𝜑𝜑

0

𝜆𝜆

0

𝛽𝛽

0

−𝑘𝑘
 

in which, 𝜉𝜉(𝑡𝑡) is defined as follows:  

𝜉𝜉(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐 {𝑧𝑧(𝑡𝑡), 𝑧𝑧(𝑡𝑡 − 𝜂𝜂), ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠, ∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝑘𝑘

𝑡𝑡

𝑡𝑡−𝑘𝑘
} 

Note that regarding (6), 𝑉𝑉1 is positive as required. Before 

proceeding, the  following notation is introduced: 
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𝜁𝜁(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐  {  𝑧𝑧(𝑡𝑡), 𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)), 𝑧𝑧(𝑡𝑡 − 𝜂𝜂),  �̇�𝑧(𝑡𝑡),  �̇�𝑧(𝑡𝑡 − 𝜂𝜂),
∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠,𝑡𝑡

𝑡𝑡−𝜂𝜂(𝑡𝑡)   ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠,   ∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑,𝑡𝑡
𝑡𝑡+𝛽𝛽

0
−𝜂𝜂(𝑡𝑡)

𝑡𝑡−𝜂𝜂(𝑡𝑡)
𝑡𝑡−𝜂𝜂

∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑,𝑡𝑡
𝑡𝑡+𝛽𝛽

−𝜂𝜂(𝑡𝑡)
−𝜂𝜂  𝑔𝑔(𝑧𝑧(𝑡𝑡)), 𝑔𝑔 (𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))  } . 

    Taking the time derivative of the  𝑉𝑉(𝑧𝑧𝑡𝑡) along the 

trajectories of (1) yields: 

�̇�𝑉(𝑧𝑧𝑡𝑡) = �̇�𝑉1(𝑧𝑧𝑡𝑡) + �̇�𝑉2(𝑧𝑧𝑡𝑡) + �̇�𝑉3(𝑧𝑧𝑡𝑡) + �̇�𝑉4(𝑧𝑧𝑡𝑡) + �̇�𝑉5(𝑧𝑧𝑡𝑡)       (14) 

Each term of (14) is upper bounded as follows: 

�̇�𝑉1(𝑧𝑧𝑡𝑡) ≤ 2𝑘𝑘𝑒𝑒2𝑘𝑘𝑡𝑡𝜉𝜉𝑇𝑇(𝑡𝑡)𝑃𝑃𝜉𝜉(𝑡𝑡) + 2𝑒𝑒2𝑘𝑘𝑡𝑡𝜉𝜉̇𝑇𝑇(𝑡𝑡)𝑃𝑃𝜉𝜉(𝑡𝑡) + 

               4𝑘𝑘𝑒𝑒2𝑘𝑘𝑡𝑡𝑔𝑔𝑇𝑇(𝑧𝑧(𝑡𝑡))𝐷𝐷𝑧𝑧(𝑡𝑡) + 2𝑒𝑒2𝑘𝑘𝑡𝑡𝑔𝑔𝑇𝑇(𝑧𝑧(𝑡𝑡))𝐷𝐷�̇�𝑧(𝑡𝑡)   (15) 

�̇�𝑉2(𝑧𝑧𝑡𝑡) ≤ 𝑒𝑒2𝑘𝑘𝜂𝜂𝑒𝑒2𝑘𝑘𝑡𝑡 ([ 𝑧𝑧(𝑡𝑡)
𝑔𝑔(𝑧𝑧(𝑡𝑡))]

𝑇𝑇
𝑇𝑇 [ 𝑧𝑧(𝑡𝑡)

𝑔𝑔(𝑧𝑧(𝑡𝑡))] 

          + [𝑧𝑧(𝑡𝑡)
�̇�𝑧(𝑡𝑡)]

𝑇𝑇
𝑄𝑄 [𝑧𝑧(𝑡𝑡)

�̇�𝑧(𝑡𝑡)])                                                                           

          −𝑒𝑒2𝑘𝑘𝑡𝑡(1 − 𝜇𝜇) [ 𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡))
𝑔𝑔(𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))]

𝑇𝑇

𝑇𝑇 [ 𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡))
𝑔𝑔(𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))]                       

         −𝑒𝑒2𝑘𝑘𝑡𝑡 [𝑧𝑧(𝑡𝑡 − 𝜂𝜂)
�̇�𝑧(𝑡𝑡 − 𝜂𝜂)]

𝑇𝑇
𝑄𝑄 [𝑧𝑧(𝑡𝑡 − 𝜂𝜂)

�̇�𝑧(𝑡𝑡 − 𝜂𝜂)]                                 (16) 

�̇�𝑉3(𝑧𝑧𝑡𝑡) = 𝜂𝜂2𝑒𝑒2𝑘𝑘𝑡𝑡(𝑧𝑧(𝑡𝑡)𝑇𝑇𝑋𝑋1𝑧𝑧(𝑡𝑡) + �̇�𝑧𝑇𝑇(𝑡𝑡)𝑋𝑋2�̇�𝑧(𝑡𝑡)) 

     −𝜂𝜂(∫ 𝑒𝑒2𝑘𝑘𝑘𝑘𝑧𝑧𝑇𝑇(𝑠𝑠)𝑋𝑋1𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

𝑡𝑡−𝜂𝜂
+ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑠𝑠)𝑋𝑋2�̇�𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠)

𝑡𝑡

𝑡𝑡−𝜂𝜂
 

             ≤ 𝜂𝜂2𝑒𝑒2𝑘𝑘𝑡𝑡(𝜁𝜁𝑇𝑇(𝑡𝑡)𝑒𝑒1𝑋𝑋1𝑒𝑒1
𝑇𝑇𝜁𝜁(𝑡𝑡) + 𝜁𝜁𝑇𝑇(𝑡𝑡)𝑒𝑒4𝑋𝑋2𝑒𝑒4

𝑇𝑇𝜁𝜁(𝑡𝑡))       

−𝑒𝑒2𝑘𝑘(𝑡𝑡−𝜂𝜂)𝜁𝜁𝑇𝑇(𝑡𝑡) ([𝑒𝑒6
𝑇𝑇

𝑒𝑒7
𝑇𝑇]

𝑇𝑇
[𝑋𝑋1 𝑆𝑆1

∗ 𝑋𝑋1
] [𝑒𝑒6

𝑇𝑇

𝑒𝑒7
𝑇𝑇]                               

+ [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇]
𝑇𝑇

[𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇]) 𝜁𝜁(𝑡𝑡)         (17) 

provided that: 

[𝑋𝑋1 𝑆𝑆1
∗ 𝑋𝑋1

] ≥ 0,     [𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] ≥ 0 

�̇�𝑉4(𝑧𝑧𝑡𝑡) = 𝜂𝜂4

4 𝑒𝑒2𝑘𝑘𝑡𝑡 (𝑧𝑧𝑇𝑇(𝑡𝑡) 𝑅𝑅1𝑧𝑧(𝑡𝑡) + �̇�𝑧𝑇𝑇(𝑡𝑡) 𝑅𝑅2�̇�𝑧(𝑡𝑡))                

 − 𝜂𝜂2

2 (∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘𝑧𝑧𝑇𝑇(𝑠𝑠)𝑅𝑅1𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑                      
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝜂𝜂
 

+ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑠𝑠)𝑅𝑅2�̇�𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑)                                 
𝑡𝑡

𝑡𝑡+𝛽𝛽

0

−𝜂𝜂
 

≤  𝜂𝜂4

4 𝑒𝑒2𝑘𝑘𝑡𝑡(𝜁𝜁𝑇𝑇(𝑡𝑡)𝑒𝑒1𝑅𝑅1𝑒𝑒1
𝑇𝑇𝜁𝜁(𝑡𝑡) + 𝜁𝜁𝑇𝑇(𝑡𝑡)𝑒𝑒4𝑅𝑅2𝑒𝑒4

𝑇𝑇𝜁𝜁(𝑡𝑡)) 

−𝑒𝑒2𝑘𝑘(𝑡𝑡−𝜂𝜂)𝜁𝜁𝑇𝑇(𝑡𝑡)([𝑒𝑒8
𝑇𝑇

𝑒𝑒9
𝑇𝑇]

𝑇𝑇
[𝑅𝑅1 𝑆𝑆3

∗ 𝑅𝑅1
] [𝑒𝑒8

𝑇𝑇

𝑒𝑒9
𝑇𝑇]                            

  +(𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑅𝑅2(𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑇𝑇)𝜁𝜁(𝑡𝑡)       (18) 

on the condition that: 

 [𝑅𝑅1 𝑆𝑆3
∗ 𝑅𝑅1

] ≥ 0 

�̇�𝑉5(𝑧𝑧𝑡𝑡) = 𝜂𝜂6

36 𝑒𝑒2𝑘𝑘𝑡𝑡�̇�𝑧𝑇𝑇(𝑡𝑡)𝑈𝑈�̇�𝑧(𝑡𝑡) 

         − 𝜂𝜂3

6 ∫ ∫ ∫ 𝑒𝑒2𝑘𝑘𝑘𝑘�̇�𝑧𝑇𝑇(𝑡𝑡)𝑈𝑈�̇�𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑               
𝑡𝑡

𝑡𝑡+𝜆𝜆

0

𝛽𝛽

0

−𝜂𝜂
 

             ≤ 𝜂𝜂6

36 𝑒𝑒2𝑘𝑘𝑡𝑡(𝜁𝜁𝑇𝑇(𝑡𝑡)𝑒𝑒4𝑈𝑈𝑒𝑒4
𝑇𝑇𝜁𝜁(𝑡𝑡))                                               

               −𝑒𝑒2𝑘𝑘(𝑡𝑡−𝜂𝜂)𝜁𝜁𝑇𝑇(𝑡𝑡) (𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9) 𝑈𝑈               

     (𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)
𝑇𝑇

𝜁𝜁(𝑡𝑡)                                              (19) 

    It should be noted that the details of manipulation to obtain 

inequality (15) can be found in [30]; also, inequalities in (16), 

(17) and (18) come from using Lemmas 1 and 2.  

   The terms 𝜃𝜃𝑖𝑖 s, for 𝑖𝑖 = 1,2  which are equal to zero are 

defined as follows: 

𝜃𝜃1(𝑡𝑡) = 2𝑒𝑒2𝑘𝑘𝑡𝑡𝜁𝜁𝑇𝑇(𝑡𝑡)𝑀𝑀[�̇�𝑧(𝑡𝑡) + 𝐴𝐴𝑧𝑧(𝑡𝑡) 

              −𝐵𝐵𝑔𝑔(𝑧𝑧(𝑡𝑡)) − 𝑐𝑐𝑔𝑔(𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))] = 0                    (20) 

𝜃𝜃2(𝑡𝑡) = 2𝑒𝑒2𝑘𝑘𝑡𝑡[𝑧𝑧𝑇𝑇(𝑡𝑡) 𝐿𝐿𝑅𝑅 𝑔𝑔(𝑧𝑧(𝑡𝑡)) − 𝑔𝑔𝑇𝑇(𝑧𝑧(𝑡𝑡)) 𝑅𝑅 𝑔𝑔(𝑧𝑧(𝑡𝑡)) 

       +𝑧𝑧𝑇𝑇(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)) 𝐿𝐿𝑆𝑆  𝑔𝑔(𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡)))                       

−𝑔𝑔𝑇𝑇 (𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡))) 𝑆𝑆𝑔𝑔(𝑧𝑧(𝑡𝑡 − 𝜂𝜂(𝑡𝑡))) = 0             (21) 

  Regarding (15)-(21), the following is obtained: 

�̇�𝑉(𝑧𝑧𝑡𝑡) + ∑ 𝜃𝜃𝑖𝑖(𝑡𝑡)
2

𝑖𝑖=1
≤ 𝑒𝑒2𝑘𝑘𝑡𝑡 𝜁𝜁𝑇𝑇(𝑡𝑡) { 𝛬𝛬 + 𝜂𝜂2(𝑒𝑒1𝑋𝑋1𝑒𝑒1

𝑇𝑇 + 𝑒𝑒4𝑋𝑋2𝑒𝑒4
𝑇𝑇) 

+ 𝜂𝜂4

4 (𝑒𝑒1𝑅𝑅1𝑒𝑒1
𝑇𝑇 + 𝑒𝑒4𝑅𝑅2𝑒𝑒4

𝑇𝑇) + 𝜂𝜂6

36 𝑒𝑒4𝑈𝑈𝑒𝑒4
𝑇𝑇                                

−𝑒𝑒−2𝑘𝑘𝜂𝜂([𝑒𝑒6
𝑇𝑇

𝑒𝑒7
𝑇𝑇]

𝑇𝑇
[𝑋𝑋1 𝑆𝑆1

∗ 𝑋𝑋1
] [𝑒𝑒6

𝑇𝑇

𝑒𝑒7
𝑇𝑇]                                               

+ [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇]
𝑇𝑇

[𝑋𝑋2 𝑆𝑆2
∗ 𝑋𝑋2

] [(𝑒𝑒1 − 𝑒𝑒2)𝑇𝑇

(𝑒𝑒2 − 𝑒𝑒3)𝑇𝑇])                            

              − 𝑒𝑒−2𝑘𝑘𝜂𝜂([𝑒𝑒8
𝑇𝑇

𝑒𝑒9
𝑇𝑇]

𝑇𝑇
[𝑅𝑅1 𝑆𝑆3

∗ 𝑅𝑅1
] [𝑒𝑒8

𝑇𝑇

𝑒𝑒9
𝑇𝑇] 

            +(𝜂𝜂𝑒𝑒1 − 𝑒𝑒6 − 𝑒𝑒7)𝑅𝑅2(𝜂𝜂𝑒𝑒1 − 𝑒𝑒6−𝑒𝑒7)𝑇𝑇 )                   

            −𝑒𝑒−2𝑘𝑘𝜂𝜂(𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)𝑈𝑈(𝜂𝜂2

2 𝑒𝑒1 − 𝑒𝑒8 − 𝑒𝑒9)𝑇𝑇  } 𝜁𝜁(𝑡𝑡)
=  𝑒𝑒2𝑘𝑘𝑡𝑡𝜁𝜁𝑇𝑇(𝑡𝑡)𝛺𝛺𝜁𝜁(𝑡𝑡)                                                                   (22) 

If 𝛺𝛺 < 0, then �̇�𝑉(𝑧𝑧𝑡𝑡) < 0 ; so, by the Lyapanov-Krasovskii 

argument the exponential stability of the system (1) is 

guaranteed.  

    Remark 1: The novelty of the introduced LKF in (13) is 

threefold. First, the quadruple-integral term is employed in 

the energy functional. Second, by including the integral term 
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∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡+𝛽𝛽

0
−𝜂𝜂  in 𝜉𝜉(𝑡𝑡), quadratic terms with respect to it 

are created in 𝑉𝑉(𝑧𝑧𝑡𝑡). Third, differently from Wu et al. (2008), 

Hua et al. (2011), Huaguanget al. (2013), the state 𝑧𝑧 is 

imported in the integrand of the double-integral term and also 

triple-integral term. 

     The combination of the quadruple-integral with quadratic 

terms containing ∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡+𝛽𝛽

0
−𝜂𝜂  leads to the noticeable 

reduction of the conservativeness in the obtained stability 

measure. Furthermore, the existence of the quadruple-integral 

and the quadratic term with ∫ ∫ 𝑧𝑧(𝑠𝑠)𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡+𝛽𝛽

0
−𝜂𝜂  permits to 

handle triple-integral of the state 𝑧𝑧. 

    Remark 2: Unlike Wu et al. (2008), Hua et al. (2011) that 

employ free weighting matrices to handle the integral terms 

coming from the derivative of LKF, the inequality presented 

in Lemma 2 was employed in extracting the proposed 

criterion. It is worth mentioning that alternative approaches 

exist in the literature to reduce the complexity of stability 

condition while preserve its conservativeness; for instance in 

Li et al. (2011), improved stability test was proposed with 

lighter computational burden for linear discrete-time systems 

with time-varying delay. 

     Remark 3. For the more general case that the lower bound 

of the time-varying delay is non-zero, the lower bound of 

delay interval can be included in the lower limits of the 

integral terms in the augmented LKF in (13) as done in Liu 

Y., Wang Z., Liang J. et al. (2009) and Liu Y., Wang Z. et al. 

(2009) for discrete-time case to obtain delay-range-dependent 

stability criterion. 

 

3. NUMERICAL EXAMPLES 

   Two numerical examples are represented to compare the 

results of the proposed method with some of existing ones. 

The LMI Toolbox of Matlab
®
 is utilized to solve the LMI 

feasibility problems, Gahinet et al (1995). Maximum 

allowable delay bound (MADB), which is defined as the 

maximum delay value that retains the stability of the system, 

is the common measure to evaluate the performance of 

stability tests of delay systems in the literature. MADBs are 

reported to compare the conservativeness of the prposed 

stability test to rival ones. 

Example 1: Consider the delayed neural network (1) with the 

following parameters, Hua et al. (2011): 

𝐴𝐴 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{1.2769, 0.6231, 0.9230, 0.4480} 

𝐵𝐵 = [
−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394

−0.1311
−0.0860
0.3253

−0.3824
−0.9534

−0.5785
−0.5015

] 

𝐶𝐶 = [
0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495

−2.0413
2.6117
0.5179

−0.3788
1.1734

−0.8428
−0.2775

] 

𝐿𝐿1 = 0.1137, 𝐿𝐿2 = 0.1279, 𝐿𝐿3 = 0.7994, 𝐿𝐿4 = 0.2368 

It’s assumed that the exponential convergence, 𝑘𝑘 is zero to 

fairly compare the results of Theorem 1 with the schemes in 

Xu et al. (2006), Shen et al. (2008), Wu et al. (2008), Hua et 

al. (2011), Huaguanget al. (2013). The computed MADBs 

obtained from different methods are shown in Table 1. 

 

Table 1.  MADBs Computed from different methods with 

various values 𝝁𝝁 for Example 1 

𝜇𝜇 0.1 0.5 0.9 

Xu (2006) 3.3039 2.5376 2.0853 

Wu (2008) 3.7525 2.7353 2.2760 

Shen (2008) 4.4288 4.0089 3.2900 

Hua (2011) 5.7803 4.6949 3.6639 

Huaguang 

(2013) 
6.4371 4.9210 3.9103 

Theorem1 7.4104 5.4626 4.2031 

 

Example 2: Consider the delayed neural network (1) with the 

following parameters [21]: 

𝐴𝐴 = [3 0
0 4] ,   𝐵𝐵 = [ 0 −1

−1 −1] , 𝐶𝐶 = [ 0 0.1
−0.1 0 ]                 

𝐿𝐿1 = 3,    𝐿𝐿4=4                                                                       

It’s supposed that the exponential convergence, 𝑘𝑘 equals 0.8 

to properly compare the results of Theorem 1 with Xu et al. 

(2006), Zheng et al. (2009), Wu et al. (2008), and Hua et al. 

(2011). The computed MADBs obtained from different 

methods for are shown in Table 2. The symbol ‘’-‘’ in Table 

2 means that the corresponding method is not feasible to 

determine the stability of the system. 

 

Table 2.  MADBs Computed from different methods with 

various values 𝝁𝝁 for Example 2 

𝜇𝜇 0.8 0.9 0.95 

Zheng (2009) - - - 

Xu (2006) 1.2977 0.9880 0.8519 

Wu (2008) 1.3521 1.1032 0.9913 

Hua (2011) 1.8654 1.6104 1.4030 

Theorem 1 2.4743 2.1607 1.8911 

 

Tables 1 and 2 clearly verify that the proposed method leads 

to less conservative results compared to the approaches listed 

in them.  

5.  CONCLUSION 

   In this paper, a new approach has been proposed to analyze 

the exponential stability of the neural networks with time-

varying delay, by constructing an appropriate augmented 

LKF including quadruple-integral term. In order to reduce the 

parameters needed for stability analysis, convex combination 

approach has been employed. A new delay-dependent 

stability condition has been derived in terms of linear matrix 

inequalities. Two numerical examples have been given to 

demonstrate that the proposed criterion is less conservative 

compared to some of the existing approaches in the literature. 
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