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A B S T R A C T   

Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hor-
mones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member 
of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the 
development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of 
glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the 
need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this 
goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent 
comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis 
by detailing GR’s genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a 
discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further 
zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and high-
lighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorti-
coid resistance in patients remains an important challenge as this would result in a timelier treatment reor-
ientation and reduced glucocorticoid-instigated side effects.   

1. Introduction 

Synthetic glucocorticoids (GCs), such as dexamethasone and 
prednisone, are an integral part of the treatment of multiple mye-
loma (MM), acute lymphoblastic leukemia (ALL) and chronic lym-
phocytic leukemia (CLL)[1,2]. GCs are steroidal hormones exerting 
pro-apoptotic and anti-proliferative actions on lymphoid malignant 
cells[1,3–5]by binding to the glucocorticoid receptor (GR), a tran-
scription factor of the nuclear receptor superfamily[6]. In the ab-
sence of ligand, GR is predominantly localized in the cytoplasm 
and part of a multiprotein complex that includes chaperones (e.g. 
Hsp90) and immunophilins (e.g. FK506-binding protein 51, 
FKBP51), which help maturing the receptor into a high-affinity state 
for GC binding[7,8]. Upon GC stimulation, GR undergoes a con-
formational change together with a reshuffling of the multiprotein 
complex to mediate GR translocation into the nucleus[9]. Following 
translocation, GC-bound GR exerts genomic mechanisms in-
cluding both GR-mediated activation of target genes (e.g. GILZ) 

and GR-mediated repression of transcription factor-driven (e.g. NF- 
κB, AP-1) gene expression (e.g. IL-6) [10]. The plethora of me-
chanisms by which GR mediates these genomic actions where 
extensively reviewed elsewhere [11,12]. Two of many possible 
mechanisms are the binding of GR homodimers to glucocorticoid 
response elements (GRE) on the DNA of target genes (gene acti-
vation) [13] and GR monomer binding to a DNA-bound transcrip-
tion factor without contacting DNA itself (tethering, gene repres-
sion) [14]. 

Besides the genomic mechanisms, which typically take place 
over the course of hours, GCs also rely on fast (seconds, minutes) 
non-genomic mechanisms to trigger the apoptotic cascade. The 
latter mechanisms, independent of transcription, may include cy-
tosolic GR that translocates into mitochondria, interactions of GCs 
with a membrane-bound GR, GR-independent actions of GCs on 
e.g. cellular membranes and interaction of cytosolic GR with sig-
naling pathway molecules[15,16,4]. Nevertheless, GR can also use 
its transcriptional activity to modulate downstream effects in 
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signaling pathways. 
In this review, we will give an extensive overview of the cur-

rently known mechanisms governing GC-mediated apoptosis and 
present the major problems associated with prolonged GC treat-
ment, being the GC-related side effects and the emergence of GC 
resistance. Despite the plethora of studies that have been under-
taken to resolve the underlying mechanisms governing GC re-
sistance, all patients receiving long-term GC treatment are still 
becoming GC resistant over time. In this review, we therefore also 
summarize a wealth of data on GC resistance mechanisms in 
lymphoid malignancies and link them to novel treatment strategies 
that should emerge from these insights. 

2. GC-induced apoptosis in lymphoid malignancies 

Although the mechanisms underlying GC-induced apoptosis 
remain incompletely resolved to this day, it was established that 
GCs rely primarily on the intrinsic mitochondrial apoptotic pathway 
for their lympholytic actions, rather than on the extrinsic apoptotic 
pathway[4,17–21]. Briefly, the intrinsic pathway is activated by 
external stimuli (e.g. GCs, toxins, radiation) and is characterized by 
the disruption of the mitochondrial membrane, mediated by pro- 
apoptotic Bcl-2 family members. This results in the release of cy-
tochrome C and apoptotic peptidase-activating factor 1 (Apaf-1) 
from the mitochondria, thereby activating the initiator caspase 9 
and the formation of the apoptosome[22–24]. The extrinsic 
pathway, however, involves extrinsic ligands (e.g. FasL, TRAIL) that 
stimulate membrane-bound death receptors of the TNF super-
family, leading to the formation of the death-induced signaling 
complex (DISC) and the activation of the initiator caspase 8[22–24]. 
Both pathways converge at the execution stage, characterized by 
the activation of executioner or effector caspases (3, 6 and 7). The 
latter caspases activate endonucleases, which degrade chromo-
somal DNA and cause chromatin condensation, and proteases, to 
degrade nuclear and cytoskeletal proteins, ultimately leading to 
disruption of the cytoskeleton, cell shrinkage and disintegration of 
the cell into apoptotic bodies[22,24]. Finally, phosphatidylserines, 
which are normally present on the inner plasma membrane, will 
externalize on the surface of apoptotic cells, which facilitates 
phagocytic uptake. GCs rely both on their genomic and non- 
genomic action mechanisms as well as on crosstalk with signaling 
pathway molecules to induce apoptotic cell death (Fig. 1), which 
are discussed in the following sections. Although a plethora of 
studies are centered around mitochondrial apoptosis, we will also 
briefly discuss the involvement of autophagy and necroptosis[25]in 
GC-induced cell killing as mechanisms that are increasingly 
gaining attention. Note that we refer to MM cell lines as MM cells, 
while studies or experiments with primary cells are explicitly 
mentioned as such. We apologize to all authors whose work we 
could not include due to space constraints. 

2.1. Genomic mechanisms of GC-induced apoptosis 

GR-mediated gene activationis essential for the initiation of GC- 
induced apoptosis, as the latter was blocked in the presence of 
actinomycin D and cycloheximide, thereby showing the need for de 
novo transcription and translation[19]. The expression of the pro- 
apoptotic Bcl2 family member Bim was upregulated by GCs in both 
MM, ALL, CLL and lymphoma cell lines and in primary CLL and ALL 
patient samples[26–33], although there was no GRE in the pro-
moter of the Bim gene[34,35]. Rather, GCs were shown to upre-
gulate the expression of the transcription factor (TF) FOXO3a, 
which in turn induces the expression of Bim[36,37]. In addition, a 
role for the TFs Runx2 and c-Jun in Bim transcription was sug-
gested, as Bim expression and subsequent apoptosis of ALL cells 
were decreased in cells harboring dysfunctional c-Jun and in cells 

in which Runx2 was knocked down[30]. As another indirect me-
chanism, GC treatment upregulated miR-103 expression in GC- 
sensitive ALL cells, which reduced c-myc expression, in turn de-
creasing the miR-18a and miR-20a levels and ultimately leading to 
elevated GR and Bim expression, respectively[38]. Still, in support 
of GR as a direct regulator, Jing et al. reported a novel GR binding 
site in an intronic region of the Bim gene. Hereto, GR was only 
recruited in the GC-sensitive ALL patient-derived xenografts (PDX) 
[29]. 

To trigger apoptosis, Bim needs to be activated via phosphor-
ylation, which is mediated by GSK3 via non-genomic mechanisms 
(seesection 2.2). Activated Bim promotes oligomerization of the 
pro-apoptotic Bax and Bak proteins, either through direct interac-
tion or by inhibiting the association between Bak and the anti- 
apoptotic Bcl-2 protein by downregulation of Bcl-2 (Fig. 1,Table 1) 
[39,40]. Yet, GC-induced apoptosis in primary CLL cells was shown 
to result from increased association between Bim and Bcl-2, 
leading to activation of Bax and Bak, rather than from a direct in-
teraction of Bim with Bax and Bak[32]. Bax/Bak oligomers are es-
sential for inducing mitochondrial permeability through the for-
mation of a mitochondrial pore that enables the release of 
cytochrome C and Smac/DIABLO, which in turn triggers apoptosis 
[39,41]. In 2016, Smac mimetics were found to be effective against 
different ALL subtypes, and their addition to conventional thera-
pies including Dex improved the in vivo efficacy of the latter[42,43]. 

The direct GR target gene GILZ, which harbors 6 GRE elements 
in its promoter[44], is also involved in GC-mediated apoptosis 
[2,19,45–47]. Transgenic mice overexpressing GILZ in the T-cell 
lineage, showed a reduced number of double positive thymocytes 
[47]. Moreover, primary thymocytes from these GILZ transgenic 
mice showed augmented apoptosis, which was due to reduced 
levels of anti-apoptotic Bcl-XL and increased caspase 8 and 3 ac-
tivation[47]. In primary mouse spleen T cells and thymocytes, GILZ 
was also shown to directly interact with Ras, thereby forming a 
trimeric complex that also includes Raf [45]. In this way, GILZ di-
minished Ras/Raf signaling and thus decreased the activation of 
downstream ERK1/2 and Akt signaling, and of retinoblastoma (Rb) 
phosphorylation and cyclin D1 gene transcription, together sup-
porting the anti-proliferative actions of GILZ[45]. Furthermore, GILZ 
overexpression in neutrophil-like cells enhanced apoptosis by in-
creasing caspase 3, 9 and 8 activation, by decreasing the mi-
tochondrial membrane potential and by inducing phosphorylation 
and subsequent proteasomal degradation of the anti-apoptotic 
protein Mcl-1[48]. GILZ expression was also increased by GCs in 
MM cell lines and primary MM cells, while GILZ knockdown de-
creased GC-induced apoptosis in MM cells[46]. Moreover, the 
combination of PI3K/Akt inhibitors and GCs augmented GILZ ex-
pression levels and enhanced MM cell apoptosis[46]. Kervoëlen 
et al. further showed that GR expression is crucial for GC-induced 
apoptosis in (primary) MM cells and that GR and GILZ levels are 
strongly correlated[49]. Silencing GILZ in MM cells strongly atte-
nuated Dex-induced apoptosis and impaired Bim upregulation and 
blocked Bcl-XL downregulation[49]. 

In addition to Bim and GILZ, several other GC-responsive genes 
were linked to GC-mediated cell killing. These comprise amongst 
others the suppressor of AP-1 regulated by interferon (SARI)[50], 
the redox-regulating tumor suppressor thioredoxin-interacting 
protein (TXNIP)[51,52], the tumor suppressor zinc finger and BTB 
domain containing 16 (ZBTB16)[52], the pro-apoptotic Noxa[53], 
the pro-apoptotic Bcl-2 modifying factor (Bmf)[54], the serine pro-
tease granzyme A[55,56]and the G-protein coupled receptor T cell 
death-associated gene 8 (TDAG8)[57]. Besides direct (immediately 
regulated) GR target genes, a plethora of late GC responsive genes 
have been identified to contribute to GC-induced cell killing[58]. 

GR-mediated gene repressioncan also contribute to GC-in-
duced cell death (Fig. 1). Indeed, GCs inhibit TF-driven (e.g. NF-κB, 
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AP-1, c-myc) gene expression of anti-apoptotic genes, cell cycle 
promoting genes, pro-inflammatory cytokines, glycolysis pro-
moting genes and adhesion molecules to mediate GC-induced 
apoptosis [2,17,18,59]. For instance, GCs can interfere with the 
expression of TNFα, IL-1β, IL-6, MCP-1, ICAM, VCAM, which are 
also implicated in MM pathology, as they all contain NF-κB and/or 
AP-1 binding sites [60,61]. Therefore, it is conceivable that GCs not 

only target the malignant myeloma cells, but also affect the 
stromal cells by interfering with the activation of pro-survival sig-
naling pathways in bone marrow stromal cells (BMSCs) and with 
the adhesion of MM cells to BMSCs and the extracellular matrix. 
Although studies directly supporting this hypothesis are largely 
lacking, Salem and coworkers demonstrated that the combination 
of Dex and Bortezomib enhanced MM cell killing in the presence of 
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Fig. 1. Mechanisms of GC-induced apoptosis in lymphoid malignancies. Upon GC treatment, GR becomes activated, undergoes a conformational change and 
translocates to the nucleus to fulfill the genomic mechanisms. On the one hand, GC-activated GR can promote the transcription of pro-apoptotic genes (e.g. Bim, 
GILZ) and genes involved in G1-S cell cycle arrest (e.g. p27). On its turn, GILZ can form a cytosolic trimeric complex with the Ras and Raf oncogenes, herby blocking 
ERK1/2 and Akt signaling. GILZ also promotes the phosphorylation of anti-apoptotic Mcl-1, which triggers its proteasomal degradation, and contributes to a lowering 
of the mitochondrial membrane potential and activation of the caspase cascade. On the other hand, GR can inhibit transcription factor (TF)-driven (NF-κB, AP-1) gene 
expression of survival (e.g. Bcl-XL) and cell cycle promoting genes (e.g. cyclin D3), pro-inflammatory genes (e.g. IL-6), glycolysis genes (e.g. LDHA) and cell adhesion 
molecules (e.g. ICAM). GC-bound GR modulating signaling pathways also contributes to cell killing and is mediated amongst others by p38, cAMP and GSK3. GR can 
activate p38, which in turn can phosphorylate GR at Ser 211. p38 also stimulates the activitation of Bim and inhibits Bcl-2 via phosphorylation. cAMP and GSK3β 
both upregulate Bim expression, while GSK3β can also promote Bim activation. In turn, activated Bim promotes heterodimerization of Bax and Bak and inhibits 
interaction of Bak with Bcl-2. GSK3β can also phosphorylate VDAC, which disturbs its interaction with hexokinase 2 (HK2), and phosphorylate Bax, which leads to its 
activation. Non-genomic mechanisms include e.g. translocation of GR into mitochondria. Ensuing, mitochondrial GR can decrease the mitochondrial membrane 
potential. Together, these signals induce the release of cytochrome C and Smac/DIABLO from the mitochondria, triggering the caspase cascade which ultimately 
results in apoptosis of the cell. 

Table 1 
Bcl-2 family members and their action mechanism.     

Action Mechanism Members  

Pro-apoptotic[40,210] Executioners; oligomerize and permeabilize the mitochondrial outer membrane by pore formation Bax, Bak  
Activators; bind executioners and stimulate their activation Bim, Bid, Puma  
Sensitizers; bind to anti-apoptotic proteins by sequestration hereby inactivating them Bad, Noxa, Bmf 

Anti-apoptotic[40,210] Inhibit the activator and executioner pro-apoptotic proteins by sequestration Bcl-2, Bcl-XL, Mcl-1 
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BMSCs and that the ionizing radiation-induced IL-6 secretion of 
BMSCs was inhibited [62]. Mechanistically, in MM cells, Borte-
zomib induced IκBα breakdown, but this was overruled by the Dex- 
mediated increase in IκBα protein levels, resulting in inhibition of 
NF-κB activity and cell killing of even Bortezomib-resistant MM 
cells [62]. 

Concerning anti-apoptotic proteins, GC treatment was shown to 
decrease Bcl-2 and Bcl-XL levels in 17 and 16 out of 28 ALL pa-
tients, respectively[63]. In extension, Makert et al. demonstrated 
that combined treatment of Dex with Venetoclax, a Bcl-2 inhibitor 
in phase I trials for MM, strongly enhanced cell death in MM cell 
lines and MM patient samples[64]. In line herewith, the group of 
Rosen identified that Bcl-XL and ribonucleotide reductase 2 
(RRM2), an essential protein in nucleic acid production, DNA re-
plication and repair, were repressed by GCs in GC-sensitive MM1.S 
cells[65]. In absence of treatment, knockdown of either Bcl-XL or 
RRM2 increased cell death in both GC-sensitive MM1.S and GC- 
resistant MM1.R cells, suggesting that both proteins are necessary 
for cell survival[65]. 

GCs mediate G1 arrest by decreasing the expression of c-myc, 
cyclin-dependent kinase 4 (CDK4), CDK6, cyclin D3 and by inducing 
the CDKi p21 and p27[66,67]. Kullmann and coworkers corrobo-
rated that Dex-induced cell cycle arrest resulted from p27 upre-
gulation and cyclin D3 downregulation and preceded apoptosis in 
CEM ALL and murine lymphoma cells[68]. Mechanistically, Dex 
only modestly elevated p27 mRNA levels, yet, increased the half- 
life of p27, which explained the high protein levels of p27 upon Dex 
treatment[68]. Dex also decreased the mRNA and protein levels of 
Skp2, the negative regulator of p27[68]. Furthermore, in GC-sen-
sitive ALL cells, miR-103 was upregulated and reduced the ex-
pression of CDK2 and its cyclin E1 target, hereby halting cell pro-
liferation[38]. 

GCs also decrease the expression of several glycolytic genes as 
a mechanism that contributes to GC-induced apoptosis[69–72]. In 
ALL cells, GCs blocked glucose consumption, utilization and up-
take, the latter by decreasing the levels of the glucose transporter 
GLUT1. This lead to inhibition of glycolysis, which in turn stimu-
lated GC-induced cell death of ALL cell lines and primary ALL cells 
[69]. ALL cells cultured in low glucose medium were also more 
susceptible to GC-induced apoptosis, indicating that glucose levels 
may influence this process[69]. GCs were also demonstrated to 
decrease the expression of the glycolytic enzyme hexokinase 2 
(HK2) in ALL cells[71]. This mechanism prevents HK2 binding to the 
mitochondrial voltage dependent anion channel (VDAC), which 
destabilizes the mitochondrial membrane potential and promotes 
apoptosis[73]. In CLL cells, GCs also decreased the levels of pyr-
uvate by diminishing the expression and activity of the glycolytic 
enzyme pyruvate kinase M2 (PKM2)[70]. GCs also inhibited the 
anaerobic sequence of glycolysis in CEM ALL cells by decreasing 
the production of lactate[71]. The conversion of pyruvate to lactate 
by lactate dehydrogenase (LDHA) represents the final step of gly-
colysis under anaerobic circumstances and serves to proceed with 
glycolysis and ATP generation, also when mitochondrial activities 
decline. GCs inhibit this back-up cell survival step by reducing the 
mRNA levels of the glycolytic enzymes LDHA[71]. 

2.2. Non-genomic mechanisms of GC-induced apoptosis 

GR-independent actions.GCs promote K+efflux in thymocytes 
and T-ALL CEM cells[19]. K+efflux was linked to apoptosis in lym-
phoma cells as this resulted in increased DNA fragmentation and 
caspase 3 activation[74]. GCs also elevate cytosolic 
Ca2+concentrations in thymocytes, lymphoma cells and B lym-
phoblasts[19], giving rise to the activation of calmodulin 
(Ca2+binding protein), which was reported to mediate DNA frag-
mentation and thus contributes to GC-induced apoptosis[75,76]. 

GCs also induce the production of reactive oxygen species (ROS) 
and thereby create oxidative stress[2,19]. For instance, in the ab-
sence of oxygen, Dex-induced apoptosis is inhibited in immature 
mouse thymocytes[77]. In analogy herewith, also in breast cancer 
cells, the levels of ROS and reactive nitrogen species (RNS) were 
increased upon cortisol treatment to induce DNA damage[78]. GC 
treatment of thymocytes also drives increased production of cer-
amide via a mechanism that involves protein kinase C[18,79], and 
inhibition of ceramide production was shown to inhibit GC-induced 
apoptosis[79]. Together, Ca2+mobilization and the production of 
ROS and ceramide, which all originate from the mitochondria, may 
lead to the activation of GSK3[2], a key cytoplasmic protein in GC- 
mediated apoptosis (Fig. 1)[31,33,80]. 

Mitochondrial GR(mitoGR) may be responsible for mediating 
the mitochondrial effects of GCs[2,81], such as Ca2+mobilization, 
ROS and ceramide production[82], as a putative mitochondrial lo-
calization signal (MLS) was identified in the N-terminal part of the 
GR ligand binding domain (LBD)[83]. Sionov et al. further proposed 
that heat-shock proteins assist in the translocation of GR into mi-
tochondria[83], as the GR MLS overlaps with one of the Hsp90 
binding sites and as the mitochondrial import receptor Tom70 in-
teracts with Hsp70 and Hsp90 at the outer mitochondrial mem-
brane[84,85]. Mitochondrial translocation of GR was further shown 
to depend on the cell type and GC responsiveness of the cells. In 
GC-sensitive thymoma cells, GR translocated to both the nucleus 
and the mitochondria following Dex treatment, while their GC-re-
sistant counterparts displayed only nuclear translocation of GR 
upon Dex treatment[83]. Moreover, selective overexpression of 
mitoGR in lymphoma cells is enough to instigate apoptosis[83], 
yet, in an endogenous context GR translocation into mitochondria 
is necessary but not sufficient for GC-induced apoptosis to occur 
[4]. In double positive thymocytes, translocation of GR into mi-
tochondria decreases the mitochondrial membrane potential, 
which results in the release of cytochrome C and Smac/DIABLO 
from the mitochondria, in turn fueling the apoptotic cascade[86]. 
Dex treatment of thymocytes from 4-week old mice resulted in Bax 
accumulation in mitochondria and association of mitochondrial GR 
with Bak, Bim and Bcl-XL. In line, elevated cytochrome C release 
and increased caspase 3, 8 and 9 activity were monitored in Dex- 
treated thymocytes[87]. 

2.3. GR crosstalk with signaling pathways drives GC-induced 
apoptosis 

Crosstalk between GR and the kinome plays a prominent role 
in GC-induced apoptosis. Modulation of downstream effects in 
signaling pathways is either accomplished by cytosolic GR that 
directly interacts with signaling molecules (e.g. GSK3α, via non- 
genomic actions) or requires GR transcription regulatory activity. 
Because the outcome of both mechanisms is the modulation of 
signaling pathways, they are gathered under the same umbrella. 

Burwick et al., for instance, identified that Dex treatment in-
creased the phosphorylation of eIF2α in MM1.S cells, which in-
hibited translation initiation [88]. Pharmacological induction of 
eIF2α phosphorylation using BTdCPU further induced cell death in 
Dex-responsive and Dex-resistant MM cell lines and primary MM 
cells. Even co-cultures of Dex-sensitive or Dex-resistant MM cell 
lines with BM stromal or endothelial cells were not able to protect 
the MM cells from a killing by BTdCPU [88]. 

Combined stimulation of GR and cAMP signaling induced more 
pronounced Bim expression in GC-sensitive and GC-resistant ALL 
cell lines. Pro-apoptotic Bad was also considerably more induced 
by this combination in GC-sensitive and -resistant MM cell lines, 
but not in GC-sensitive or -resistant ALL cells lines[89]. In line 
herewith, the cAMP analog, 8-CPT-cAMP increased Bim expression 
and enhanced GC-mediated apoptosis in GC-sensitive CEM-C7-14 
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and GC-resistant CEM-C1-15 ALL cell lines[28]. The cAMP-inducer 
forskolin in combination with Dex also synergistically enhanced 
cell killing of (primary) MM cells, an effect that was mediated by 
increased Bim levels[90]. 

GCs were also found to trigger p38 phosphorylation in ALL and 
lymphoma cells, which resulted in stimulation of GC-induced 
apoptosis (Fig. 1)[91]. In turn, p38-induced phosphorylation of GR 
Ser211 was at least in part responsible for promoting apoptosis, as 
mutation of Ser to Ala strongly reduced GR transcriptional activity 
and apoptosis[91]. Besides GR Ser211 phosphorylation, p38 further 
stimulates GC-induced apoptosis by additional indirect mechan-
isms. Indeed, p38 activation can also positively contribute to 
apoptosis by activation of Bim extra-long (Bim-EL), 1 out of 3 Bim 
isoforms, via phosphorylation of Ser65[92], or by inducing Ser87 
and Thr56 phosphorylation of Bcl-2, which resulted in decreased 
anti-apoptotic potential of the latter[93]. Moreover, p38 activation 
was also reported to be necessary for Foxo activation and sub-
sequent induction of Bim transcription[94]. Interestingly, in a 
lymphoma cell line, the GR and PR antagonist RU486 increased p38 
and JNK phosphorylation, yet, only p38 activation was associated 
with RU486-induced apoptosis[95]. 

GSK3 was also identified as a crucial factor for mediating GC- 
induced apoptosis in thymocytes, lymphoma cells, ALL and MM 
cells, as a specific GSK3 inhibitor strongly attenuated GC-induced 
apoptosis in these cells[80]. GSK3 is a serine and threonine kinase 
that is expressed as 2 isoforms, GSK3α and GSK3β, and regulates 
many substrates (e.g. glycogen synthase, c-myc, cyclin D1) and TFs 
(e.g. NF-κB, NFAT, STATs) [2,96]. GSK3α and GSK3β can be in-
hibited by phosphorylation of Ser21 and Ser9, respectively, medi-
ated amongst others by Akt, SGK1, PKC and PKA [2], while GC 
treatment decreased Ser9 phosphorylation as a means to keep 
GSK3β active [80]. Moreover, in absence of GC, GSK3α is bound to 
GR, while it is released from GR upon GC treatment, which con-
curred with GR Ser211 phosphorylation, although a GSK3 inhibitor 
did not affect GR Ser211 phosphorylation [80]. Once released, 
GSK3α and also GSK3β can interact with Bim in thymocytes and T 
cells, possibly leading to its activation (Fig. 1) [80]. In addition, 
GSK3 inhibition was shown to inhibit GC-induced Bim expression 
in lymphoma and CLL cells [31,33]. Besides activation and upre-
gulation of Bim, GSK3 was also suggested to stimulate apoptosis 
by phosphorylation of Bax [97] and VDAC [73]. In steep contrast, 
depending on the cellular context, GSK3 was also shown to pro-
mote cell proliferation and survival both in lymphoid malignancies 
and solid cancers [98–100]. 

2.4. How do autophagy and necroptosis modulate GC-induced cell 
death? 

Autophagy is a dynamic process in which damaged cellular 
contents (e.g. organelles, misfolded proteins) are encapsulated 
into autophagosomes for subsequent fusion with lysosomes, re-
sulting in cargo degradation by lysosomal enzymes[101]. In ALL 
cells, Dex was shown to trigger autophagy, which preceded 
apoptosis[102]. Inhibition of autophagy by knockdown of Beclin1 
even blocked Dex-mediated apoptosis in ALL cells[102], demon-
strating the interconnection between autophagy and Dex-induced 
cell killing. In contrast, others demonstrated that pharmacological 
inhibition of autophagy sensitized GC-resistant lymphoma cell 
lines towards Dex-induced cell killing, hereby identifying autop-
hagy as a contributing mechanism to GC resistance[103]. These 
studies illustrate that the role of autophagy in GC-mediated cell 
killing is ambiguous and needs further mechanistic clarifications. 

Necroptosis, a form of programmed necrosis[104], was also 
linked to GC-induced cell killing. Indeed, the Bcl-2 antagonist 
obatoclax sensitized multidrug-resistant childhood ALL cells to 
GCs by activation of autophagy-dependent necroptosis, which was 

explained by reduced association of Beclin1 with anti-apoptotic 
Mcl-1 and reduced mTOR activity[105]. Dex combined with the 
mTOR inhibitor rapamycin mediated autophagy-dependent cell 
killing that was accompanied by expression of the necroptosis 
markers receptor-interacting protein (RIP-1) kinase and cylin-
dromatosis[105]. Combining Dex with the Smac mimetic BV6 also 
triggered necroptosis in ALL cells in which caspase activation is 
blocked. Prior to cell death, this combination treatment triggered a 
drop in the mitochondrial membrane potential, ROS production 
and Bak activation[106]. Remarkably, upon knockdown of RIP-3 or 
MLKL, both critical proteins for necroptosis, ALL cells were pro-
tected against the above-mentioned Dex/BV6-induced mitochon-
drial events[106], showing that mitochondrial dysfunction may fuel 
necroptosis. 

3. Major problems associated with prolonged GC treatment 

Despite that GCs are effective mediators of lymphoid malignant 
cell apoptosis, prolonged GC treatment is hampered by two main 
problems (Fig. 2): 1) detrimental GC-mediated side effects and 2) 
the emergence of GC resistance. Indeed, over time the desired 
therapeutic effects are dampened and patients transition towards 
full-blown GC resistance, which is currently inevitable in many 
patients receiving long-term GC treatment. Paradoxically, the 
phenomenon of patient’s malignant cells becoming resistant to 
GC-mediated cell killing, is not mirrored by a disappearance of the 
GC-related side effects. Remarkably, side effects instigated by GCs 
persist, confirming that GC resistance is a highly tissue-specific 
event[107]. In the following sections, we will briefly describe the 
GC-related side effects before scrutinizing the mechanisms gov-
erning GC resistance in lymphoid malignancies. 

3.1. Side effects 

The first major problems associated with prolonged GC treat-
ment are the GC-associated side effects, which drastically hamper 
patient quality of life. These include osteoporosis, skin thinning/ 
striae, muscle atrophy, hyperglycemia exacerbating to diabetes 
mellitus, disturbed wound healing, psychological disturbances 
(anxiety, irritability, severe mood swings, depression), hyperten-
sion, increased risk of infections, suppression of the HPA-axis, 
cardiovascular complications including hypertension, weight gain, 
abnormal fat redistribution, glaucoma, cataract, peptic ulcers and 
growth retardation in children[11,12,108,109]. The time of occur-
rence and severity of the side effects is different between in-
dividuals (Fig. 2) and is dependent on the dose, duration, the type 
of GC (different potencies) and the route of administration 
[108,109]. Mechanistically, the GC-related side effects were gen-
erally considered to arise from GR-mediated gene activation, al-
though this is an oversimplified model. Nevertheless, while several 
GC-related side effects do associate with GR-mediated gene acti-
vation, e.g. diabetes and hypertension, others are solely the result 
of GR-mediated gene repression, e.g. HPA suppression and in-
creased risk of infections, or even attributed to both GR gene ac-
tivation and repression, e.g. osteoporosis[109–111]. An extensive 
overview of the mechanisms underlying the many GC-related side 
effects is beyond the scope of this review, hence, we will only 
describe the molecular basis of diabetes, osteoporosis and muscle 
wasting as these are prominent in e.g. multiple myeloma. 

3.1.1. GC-induced hyperglycemia and diabetes 
Hyperglycemia is a recognized side effect in ALL patients 

treated with GCs. In children with ALL, the complications asso-
ciated with hyperglycemia are increased susceptibility to bacterial, 
viral and fungal infections[112]. Prolonged GC therapy can induce 
hyperglycemia in patients, which can evolve to diabetes mellitus, 
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or can complicate maintenance of glycemic control in diabetic 
patients[110]. Indeed, high GC levels give rise to decreased glucose 
uptake in muscle and adipose tissue, to reduced pancreatic β-cell 
insulin production and diminish the effectiveness of insulin to limit 
glucose production in the liver (insulin resistance) [110,113–115]. 
Moreover, GCs promote gluconeogenesis in the liver by GC-in-
duced upregulation of enzymes involved in this process, including 
tyrosine aminotransferase (TAT), glucose-6-phosphatase (G6P) 
and phosphoenolpyruvate carboxykinase (PEPCK). GC-instigated 
glucose production is then followed by increased glycogen storage 
in the liver, driven by GC-mediated activation of glycogen synthase 
[110,113]. Together, these GR gene activation-steered mechanisms 
lead to a deregulated carbohydrate metabolism. 

3.1.2. GC-induced osteoporosis 
GCs also exert adverse effects on bone, more specifically, bone 

formation is decreased by suppression of osteoblast proliferation 
and activity and bone resorption is increased by activation of os-
teoclasts[110,116,117]. Remarkably, GC-induced osteoporosis was 
identified as the most common type of secondary osteoporosis 
[116]and is linked to a high risk of bone fractures[110]. In a group of 
approximately 300 childhood ALL patients, a high incidence of 
osteonecrosis (10%) was found during GC therapy, which was 
significantly associated with polymorphisms in the gene coding for 
pro-apoptotic Bim[118]. 

Mechanistically, both GR-mediated gene activation and gene 
repression are involved in GC-induced osteoporosis. On the one 
hand, GCs stimulate the expression of RANKL, which promotes 
osteoclast differentiation and activity, and inhibits osteoclast 
apoptosis[117]. In addition, the expression of OPG, the soluble 
decoy receptor for RANKL which prevents its binding to RANK on 
osteoclasts, is inhibited by GCs via GR-mediated gene repression 
[110,116]. The effects of GCs on bone are comparable to the bone 
disease that is observed in MM[119], and both result in an in-
creased RANKL/OPG ratio, which contributes to osteoporosis. GCs 
also increase osteoclast activity by decreasing gastrointestinal 
Ca2+absorption and increasing urinary Ca2+excretion, which trig-
gers osteoclast-mediated bone resorption[110,117]. 

On the other hand, GCs suppress bone formation by triggering 
apoptosis of osteoblasts and osteocytes, by inhibiting growth fac-
tors (e.g. IGF-1, TGFβ) that are important in bone homeostasis, and 
by HPA suppression of adrenal sex hormones [110,117]. Besides 
their action on osteoclasts and osteoblasts, GCs also reduce the 
expression of bone-forming ECM proteins, including osteocalcin 
and collagen type I [109,110,120], the latter by promoting the 
synthesis of interstitial collagenase [121]. 

3.1.3. GC-induced muscle wasting 
Excess GCs fulfill catabolic effects on skeletal muscle by sti-

mulating proteolysis and amino acid export, and by inhibiting 
protein synthesis. Moreover, GCs block glucose uptake and gly-
cogen synthesis in muscle[122]. It was demonstrated that GCs in-
hibit the IGF-1/insulin/PI3K/Akt signaling pathway to decrease 
glucose uptake, glycogen synthesis and protein synthesis in 
muscle[115,122,123]. In addition, studies suggest that GC-induced 
skeletal muscle proteolysis occurs via proteasomal degradation, 
more specifically, via the E3 ubiquitin ligases atrogin-1 and MuRF- 
1. The expression of both atrogin-1 and MuRF-1 is suppressed by 
Akt and stimulated by FOXO TFs and GCs are thought to indirectly 
affect the expression of these E3 ligases by inactivation of Akt and 
by upregulation of FOXO TFs[122,124,125]. GCs can also increase 
the expression of myostatin, a muscle growth inhibitor[126]. In 
vivo studies in skeletal muscle showed that myostatin not only 
inhibits protein synthesis but is also able to increase the expres-
sion of atrogenin-1 and MuRF-1[127,128]. In line herewith, GC- 
mediated muscle wasting did not occur in mice lacking myostatin 
or MuRF1[129]. 

3.2. GC resistance 

In the context of lymphoid malignancies, GC insensitivity or 
resistance can be defined as the inability of malignant cells to 
undergo apoptosis in response to GC treatment[130], and re-
presents the second major GC-related problem. In general, GC 
resistance can be caused by mutations and polymorphisms or can 
be acquired during treatment[131]. 

GR gene mutations are rarely de novo and are often induced by 
other treatments (e.g. chemotherapy) during the disease course 
[130,132]. A 2016 analysis of 31 relapsed ETS variant TF 6 (ETV6)/ 
RUNX1 positive ALL samples showed that deletions in the GR gene 
(NR3C1) were linked to a subsequent relapse and occurred more 
frequently in poor responders to relapse treatment[133]. In a MM 
patient with multi-drug (including GCs) refractory extramedullary 
disease, Egan and coworkers identified a point mutation in GR 
(G369A) which was associated with drug resistance[134], yet, GR 
mutations were not reported in other MM genomes[135–137]. Al-
though earlier studies showed that GC resistance in patient sam-
ples was generally not caused by GR gene mutations[138–140], a 
study from 2020 in ALL may shift this view. In a group of 103 pa-
tients with relapsed ALL, including 87 patients with B-ALL and 16 
with T-ALL, 12 genes displayed relapse-specific alterations among 
which GR and the closely related mineralocorticoid receptor (MR). 
The overall prevalence of these gene mutations was 17% in very 
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of GC resistance 

timelier treatment
reorientation 

reduce GC-related
side effect suffering  

sensitive
resistant

sensitive resistant

sensitive
resistant

onset GC resistance
pt1 pt2

sensitization 
sensitization 

onset side effects
pt1 pt2

duration side effects 

full-blown GC resistance

Fig. 2. Prolonged GC treatment results in side ef-
fects and GC resistance. Long-term GC treatment 
leads to a gradual decrease in GC responsiveness. 
After a while, the balance that dictates GC respon-
siveness starts to tip to a more GC resistant pheno-
type. This moment is defined as the onset of GC re-
sistance, of which the exact time point strongly 
differs between patients (pt). Characterizing this 
intermediate phase offers the advantage of a timelier 
identification of when a patient is becoming GC re-
sistant. In turn, this would enable a faster reor-
ientation of a patient’s treatment protocol and 
would reduce the suffering of the GC-instigated side 
effects. Sensitization of the cells towards GC re-
sponsiveness is likely more easily achieved at this 
onset stage compared to cells that have progressed 
to full-blown GC resistance, where the balance has 
completely tipped over to resistance. Moreover, GC- 
related side effects typically emerge early on, with 

interpatient variability in both the onset time and the severity of the side effects. Of note, even though the cells have become resistant to GC-induced apoptosis, side 
effects may persist, which argues for the tissue-specificity of GC resistance. 
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early relapse, 65% in early relapse and 32% in late relapse[141]. 
Remarkably, relapse-specific GR mutations were mainly located in 
the DNA-binding domain (DBD) (3/7 mutations) and the N-terminal 
domain (NTD) (3/7 mutations) and almost completely abolished GR 
transcriptional activity, whilst the sole mutation in the LBD reduced 
GR’s activity by half[141]. 

Besides GR gene mutations, inter-individual differences in GC 
sensitivity in the general population are partly attributed to poly-
morphisms in the GR gene[142]. Several single nucleotide poly-
morphisms (SNPs) in the GR gene are associated with either in-
creased or decreased GC sensitivity and are present in at least 1% 
of the population[132,143,144]. For instance, the ER22/23EK poly-
morphism consists of two linked single nucleotide Arg(R) to Lys(K) 
mutations in codons 22 and 23 of exon 2, and was linked to de-
creased GC sensitivity[145]. Interestingly, ER22/23EK carriers show 
a favorable metabolic profile, exemplified by increased insulin 
sensitivity and lower cholesterol levels, and an improved cardio-
vascular profile, as shown by decreased C-reactive protein (CRP) 
levels[142,145,146]. This polymorphism was shown to result in 
decreased GR transactivation in PBMCs from ER22/23EK carriers 
that were treated with Dex[147], which was mechanistically ex-
plained by increased levels of the transcriptionally less active GRα- 
A isoform compared to the GRα-B isoform [148]. In contrast, the 
N363S polymorphism, which is present in codon 363 of exon 2 of 
the GR gene, is linked to increased GC sensitivity, but also to ele-
vated body mass index and coronary heart disease and decreased 
bone mineral density [149]. Molecularly, N363S was linked to in-
creased transcriptional activation upon Dex treatment [147], and it 
was suggested that the asparagine (N) to serine (S) substitution 
might contribute to improved GR coregulator interactions [142]. 
Other polymorphisms in the GR gene include BclI, which is also 
linked to increased GC sensitivity, and the allele A3669G, which is 
associated with increased stability of GRβ mRNA and elevated GRβ 
protein expression [142,150]. The BclI GR variant was reported in 
adult ALL patients, yet, was not found to be associated with GC 
responsiveness [151]. In another study, the presence of the BclI GR 
polymorphism in ALL patients was rather linked to more frequent 
GC-related side effects [152]. In addition, a GR SNP analysis 
(N363S, ER22/23EK, BclI) in a cohort with 346 ALL patients showed 
that none of the patients with a N363S, ER22/23EK or BclI SNP 
displayed a poor response to prednisone [153]. A study from 2018 
addressed the problem that data in the past years on the relevance 
of GR SNPs in the GC sensitivity of ALL appear inconclusive [154], 
which can be partly due to differences in the type of synthetic GCs 
and the cell types (cell lines vs PBMCs) that were used in these 
studies. The same authors also identified an additional GR pro-
moter region SNP (rs72555796, in the 5’ flanking region of exon 
1A), which was markedly associated with prednisolone and Dex 
responsiveness [154]. 

Polymorphisms in genes that encode 11β-hydroxysteroid de-
hydrogenases (11β-HSDs), enzymes known to be involved in (in) 
activating GCs (see also acquired GC resistance), were also iden-
tified to regulate the intracellular availability of endogenous and 
certain synthetic GCs [155]. Also FKBP5 gene polymorphisms were 
described and were associated with differential FKBP5 upregula-
tion upon GR activation and a subsequent altered GC responsive-
ness [156]. Alleles linked to increased FKBP5 expression following 
GR activation were described to evoke GC resistance, presumably 
by FKBP5-mediated inhibition of GR activation and translocation, 
and reduced the negative feedback of the HPA axis in healthy in-
dividuals [156]. Mulligan et al. further identified in tumor samples 
of relapsed MM patients that NRAS mutations (affecting N-Ras, a 
protein that regulates cell division) decreased the response rates to 
bortezomib, yet, not the responsiveness to high-dose Dex [157]. 
However, the group of Meijerink discovered in 2016 that a mutation 
in any of the genes of the IL-7 receptor (IL-7R) signaling pathway, 

including IL-7R, JAK1, JAK3, NF1, NRAS, KRAS and Akt, are as-
sociated with GC resistance and poor outcome in T-ALL patients 
[158]. Along the same lines involving changed kinase activities, in 
GC-resistant B-ALL the receptor tyrosine kinase FLT3 was shown to 
be constitutively activated because of a point mutation and an in-
ternal tandem duplication in FTL3, which was absent in the corre-
sponding GC-sensitive clones [159]. Gradual GC resistance was 
thus shown to select for cells with a distinct oncogenic genetic 
background [159]. 

Acquired GC resistance emerges over time because the un-
derlying disease process finds mechanisms to evade GC-induced 
apoptosis[160]. The mechanisms underpinning acquired GC re-
sistance are nevertheless divergent and often cell-type specific[19], 
which contributes to the heterogeneity in GC responsiveness ob-
served in patients (Fig. 2)[161,162]. Several mechanisms focus on 
GR itself and include decreased affinity of GR for GCs, decreased 
GR levels due to a negative feedback loop of GR, altered GR post- 
translational modifications (PTMs) and impaired GR translocation, 
and altered expression of the transcriptional and translational 
isoforms[3,19,107,130,160,163,164]. Other mechanisms that con-
tribute to GC resistance involve inhibitory cross-modulation of TFs 
(e.g. NF-κB), decreased GC availability, altered expression of cor-
egulators, increased levels of GR (co)chaperones or immunophilins 
(e.g. Hsp90, FKBP5), signaling pathway interactions, a disturbed 
balance between pro- and anti-apoptotic proteins, metabolic 
changes, epigenetic changes and the BM microenvironment that 
confers resistance to therapy [2,20,130,160,164–166]. These me-
chanisms will be further discussed in-depth in the following sec-
tions and are summarized in Table 2. 

3.2.1. Decreased GR levels 
Although GR auto-induction upon GC treatment, via a GRE in 

the GR promoter, was linked to sensitivity towards apoptosis in 
ALL cells[19,130,167], Tissing and colleagues showed that this GC- 
induced GR upregulation occurred regardless of the GC sensitivity 
or resistance of the primary ALL patient samples[168]. Instead, a 
negative feedback loop of GCs and GR, which serves as the ubi-
quitous safety mechanism to prevent GC overstimulation in normal 
cells, is a more likely contributing mechanism to induce GC re-
sistance over time in malignant cells[19,130]. Emphasizing its re-
levance, this negative feedback loop of GR can be mediated by 
several mechanisms, including reduced GR transcription via tran-
scriptional initiation inhibition[150], diminished GR mRNA stability 
due to the presence of AU-rich elements (AREs) in the 3’UTR of the 
GR mRNA, and decreased GR protein stability due to targeting of 
GR for proteasomal degradation[19,131]. The mechanism behind 
transcriptional initiation inhibition involved a long-range interac-
tion between GC-bound GR recruited to a nGRE in exon 6 of the GR 
gene and a GR-NCOR1-HDAC3 repression complex at the tran-
scription start site, explaining how a constitutive GR gene repres-
sion upon prolonged GC treatment may contribute to GC re-
sistance[150]. In line herewith, Sanchez-Vega et al. demonstrated 
in three MM cell lines, of which two parallel the emergence of GC 
resistance (MM1.S, MM1.RE, MM1.RL), a gradual decrease in GR 
mRNA levels. This mRNA decline is caused by a block in tran-
scriptional elongation, which impaired recruitment of RNA pol II on 
exon 3 in the resistant variant[169]. 

Concerning GR activity in GC resistance, Bachmann et al. 
showed using a primary ALL xenograft mouse model that GC-re-
sistant tumors harbor functional GR that still translocates to the 
nucleus, binds to GREs and induces GILZ mRNA expression upon 
GC treatment[139]. In contrast, prolonged Dex treatment of T-ALL- 
bearing mice was inseparably connected with the emergence of a 
GC-resistant subpopulation, of which approximately 30% dis-
played decreased GR protein levels[170]. A comparable proportion 
of human relapsed T-ALLs also showed markedly lower GR levels 
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as well as an attenuated transcriptional response following Dex 
treatment[170]. In line herewith, GR expression in ALL cells posi-
tively correlated with GC sensitivity and clinical outcome, while 
vice versa, deletion of GR was associated with GC resistance, both 
in ALL cell lines and xenografts[171]. Heuck and colleagues further 
showed that at baseline, low GR expression levels further nega-
tively impacted progression-free survival (PFS) and overall survival 
(OS) in myeloma patients, and that post-relapse survival was ne-
gatively affected by low GR expression[172]. This is in agreement 
with an in vitro study where a screening of approximately 9500 
compounds against a GC-resistant T-ALL cell line was performed 
and which resulted in the discovery of compound J9[173], which 
was able to restore GC sensitivity in these cells by upregulation of 
GR[173]. In contrast, the sensitizing effect of compound J9 could 
not be demonstrated in a panel of Dex-resistant and Dex-sensitive 
ALL xenografts[174]. 

Together these studies indicate that it is important not to fall 
below a certain threshold level of GR, yet, that this factor is in-
sufficient to reliably predict GC responsiveness. GR also needs to 
be transcriptionally active and even this might, at a certain time 
during disease progression, fall short of inducing an efficient GC- 
mediated apoptosis in lymphoid malignant cells. GR auto-induc-
tion, as observed in ALL, may be regarded as a positive feedback 
loop to support GR signaling, however, current literature suggests 
that this does not necessarily correlate with GC responsiveness of 
the cells towards cell killing and has not been reported in all lym-
phoid malignancies. Vice versa, the negative feedback loop of GR 
in, for instance, multiple myeloma cells also occurs regardless of 
whether the cells are susceptible to GC-mediated cell killing. 
Although the negative feedback loop entails a general mechanism 
to protect all body cells from overstimulation with (endogenous) 
GCs, it may be possible that certain lymphoid malignancies have 
been reprogrammed to have a constitutive negative feedback loop 
of GR. 

3.2.2. Decreased affinity of GR for GCs, decreased GC availability 
and altered chaperone levels 

GC resistance in patient-derived samples appears not widely 
associated with drastic mutations in the GR gene itself 
[139,140,175], yet, one report demonstrates that the Δ702 GR LBD 

mutant, which is one of the only in vivo confirmed acquired mu-
tations, displayed decreased affinity for binding GCs in cells from a 
GC-resistant ALL patient [20,140]. Another example of this prin-
ciple is in the context of asthma, as few reports in lymphoid ma-
lignancies focus on the affinity of GR for GCs. IL-2 and IL-4 treat-
ment of PBMCs, isolated from patients with GC-resistant asthma, 
was shown to reduce GR’s binding affinity for GCs [176]. 

GCs can passively diffuse across the cell membrane, however, 
evidence from murine T-lymphoma cells suggests that the ex-
pression of the P-glycoprotein MDR1, a multidrug efflux pomp and 
a member of the ATP-binding cassette (ABC) family of transporters, 
is increased. As such, GCs can be transported out of the cell, as 
such contributing to GC resistance[164,177]. In MM cell lines, 
MDR1 was also shown to be responsible for mediating drug re-
sistance to GCs and natural products[178]. Beesley et al. further 
found that upregulation of the multidrug transporter ABCC9 was 
associated with both methylprednisone and Dex resistance in T- 
ALL cell lines[138]. 

Intracellular GC availability and activity is further regulated by 
11β-HSDs [155]. Although this mainly holds true for endogenous 
cortisol/cortisone and not for synthetic Dex, also synthetic pre-
dnisone (inactive) and prednisolone (active) are interconverted by 
these enzymes [179]. Sai and colleagues reported that Dex even 
elevated 11β-HSD1 (GC-activating) mRNA levels in GC-sensitive 
ALL cells, which were diminished by Dex in GC-resistant ALL cells 
[180]. These authors further showed that the 11β-HSD2 (GC-in-
activating) levels were higher in GC-resistant ALL cells than in GC- 
sensitive ALL cells [179], exemplifying the potential involvement of 
11β-HSDs in GC resistance. In a 2020 follow-up study in ALL patient 
samples (n=37), decreased 11β-HSD1 and/or increased 11β-HSD2 
expression levels were found to be associated with GC resistance 
at diagnosis [181]. This suggests that 11β-HSDs levels may be 
useful predicators of GC responsiveness, yet, studies in larger 
patient groups are warranted. 

The proteins of the GR chaperone complex play vital roles in GR 
maturation, ligand binding affinity and nuclear translocation. 
Hence, theoretically speaking, alterations in the expression levels 
of the different chaperones may also indirectly contribute to GC 
resistance[107,130,155,164]. Out of 9 leukemic GC-resistant cell 
lines only 2 exhibited aberrant Hsp90 levels and very low Hsp70 

Table 2 
Mechanisms of GC resistance in lymphoid malignancies     

Factor Mechanism Refs  

GC availability Increased expression levels of multidrug efflux pumps, resulting in export of GCs out of the cell [164,177,178] 
Elevated 11β-HSD2/11β-HSD1 ratio and thus diminished GC activity [179,180] 

Affinity Decreased affinity of GR for GCs [20,140,176] 
GR chaperones Altered levels of Hsp90, Hsp70, FKBP51/2 [182–184] 
GR levels Auto-induction hampered [168] 

Negative feedback loop of GR [19,130,131,150,169–171] 
GR mutations and polymorphisms [133,134,141,153,154] 

GR PTMs Impaired GR translocation, decreased GR stability, reduced GR transcriptional activity [53,186–189] 
GR isoforms Altered expression levels of transcriptional or translational GR isoforms, giving rise to reduced 

transcriptional activity or decreased potential to induce apoptosis 
[151,154,190–195,197–199] 

Coregulators Qualitative and quantitative differences in coregulators, altered availability of coregulators, giving 
rise to altered transcriptional activity of GR 

[150,208,209] 

Crosstalk with TFs Increased levels and/or activity of pro-survival and pro-inflammatory TFs that inhibit GR’s repressive 
action 

[201,203–206] 

Apoptotic proteins Disturbed balance between pro- and anti- apoptotic proteins [29,32,53,139,211–213] 
Pathway interactions Crosstalk with signaling pathways leading to apoptosis inhibition, e.g. increased ERK, JNK, PI3K/Akt, 

mTOR, CDK4, CDK6, JAK/STAT3, LCK signaling pathway activation 
[26,41,46,158,214,215,217–220,222–228] 

Metabolism Deregulated metabolism that supports survival, e.g. increased glycolysis, FA oxidation and oxidative 
phosphorylation 

[70,99,138,229–231] 

Epigenetics Aberrant miRNA expression levels which promote decreased GR levels and survival [244–247,247,247−250] 
Altered DNA methylation and HMT activity [234–237,239] 
Altered HDAC expression [240,241] 

Microenvironment Soluble factor-mediated drug resistance [254–256] 
Cell adhesion-mediated drug resistance [257–260] 
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levels[182]. In another study lack of association between Hsp90 
expression and GC resistance was confirmed in patient-derived 
ALL samples[183]. In line with these findings, Tissing et al. studied 
the levels of different GR (co)chaperones in ALL patient samples, 
including among others Hsp70, Hsp90, FKBP51, FKBP52 and p23, 
and found no significant differences in chaperone levels between 
in vitro GC-sensitive or GC-resistant ALL patients[184]. Regardless 
of their GR chaperoning function, Hsp70 and Hsp90 inhibitors 
harbor anti-myeloma activity as both proteins are survival factors 
in MM by acting as chaperones in the unfolded protein response 
and were also shown to confer resistance to Bortezomib[185]. 

3.2.3. Altered GR PTMs and impaired GR translocation 
GR PTMs influence different aspects of GR action, including 

subcellular localization, GR stability and transcriptional activity, 
and hereby represent likely mediators of GC resistance. As a ne-
gative feedback loop of GR is implicated in decreased GC respon-
siveness (seesection 3.2.1)[19,131], GC-induced GR ubiquitination, 
which targets GR for proteasomal degradation[186], is equally 
likely involved in GC resistance. In addition, in a study from 2020, 
the ubiquitin ligase RNF6 was demonstrated to induce atypical 
K63-linked polyubiquitination of GR in myeloma cells[187]. Instead 
of hampering GR functionality, this modification unexpectedly 
promoted GR’s transcriptional activity and increased, un-
expectedly, the expression levels of the anti-apoptotic genes Bcl- 
XL and Mcl-1. In extension, RNF6 overexpression promoted MM 
cell survival and induced resistance to GC-induced MM cell killing 
[187]. 

Concerning phosphorylation, Lynch and coworkers showed 
that GR Ser211 phosphorylation is predominant in GC-sensitive 
CEM-C7-14 ALL cells, while GR Ser226 phosphorylation, mediated 
by JNK and which enhances nuclear export of GR[188], is more 
frequent in GC-resistant CEM-C1-15 ALL cells[53]. In intrinsically 
GC-resistant primary CLL cells, elevated phosphorylation of in-
hibitory GR Ser226 residues were observed compared to GR 
Ser211 sites[189]. Yet, Ibrutinib, a bruton’s tyrosine kinase in-
hibitor, sensitized these circulating CLL cells to Dex-induced 

apoptosis, increased GILZ expression and GR Ser211 phosphor-
ylation and inhibited GR Ser226 phosphorylation. Nevertheless, 
besides Ibrutinib, additional JAK inhibition was necessary to obtain 
the aforementioned effects when studied in presence of the mi-
croenvironment[189]. 

3.2.4. Altered expression of GR isoforms 
Alternative splicing of GR precursor mRNA generates 5 tran-

scriptional isoforms: GRα, GRβ, GRγ, GR-A and GR-P (Fig. 3), which 
differ in their transcriptional activity [132], hence, altered expres-
sion levels of GR isoforms may play a role in GC resistance. A study 
from 2018 with over 70 B-cell precursor ALL cell lines established 
from patients examined the contribution of the 5 GR splicing var-
iants to GC-induced apoptosis and pinpointed GRα as the most 
crucial GR isoform [154]. Nevertheless, elevated levels of the 
dominant-negative GRβ isoform were reported in several lymphoid 
malignancies [19,132,190]. Low GRβ/GRα were even shown to 
correlate with prednisolone-induced apoptosis in patient-derived 
ALL cells [191]. However, controversy remains regarding the 
functional consequences of elevated GRβ levels [19,132], as several 
other studies could not find a correlation between GRβ levels and 
GC resistance in primary ALL samples [190,192]. In contrast, ele-
vated GRγ levels did correlate with GC resistance in ALL samples 
[190,193]. In the myeloma context, of all transcriptional GR isoform 
levels determined in GC-sensitive, early and late GC-resistant MM 
cells GRβ was the least expressed isoform throughout and GRγ 
was only detectable in the sensitive and early resistant cells [194]. 
GR-P was found to be the predominant isoform in the late resistant 
MM cells and GR-A was only detectable in the early resistant MM 
cells [194]. In contrast, GR-P expression did not correlate with GC 
resistance in primary ALL cells [192]. In 2015, two studies tried to 
correlate the levels of the GR transcriptional isoforms with the ALL 
disease stage. Sun and coworkers showed that initially GRα/GRγ 
and GRα/GR-P levels were higher than upon relapse and complete 
remission, whereas GRγ/GR-P levels were higher in complete re-
mission than initially and upon relapse [195], yet, no relapse-spe-
cific GR isoform was designated by these authors. Bedewy et al. 
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Fig. 3. Transcriptional and translational GR isoforms. Alternative splicing of the GR pre-mRNA results in 5 transcriptional isoforms: GRα, GRβ, GRγ, GR-A, GR-P. 
Alternative translation initiation of GRα gives rise to an additional eight translational isoforms, GRα-A, GRα-B, GRα-C1/C2/C3, GRα-D1/D2/D3 that differ in their 
NTD. NTD, N-terminal domain; DBD, DNA-binding domain; HR, hinge region; LBD: ligand-binding domain. 
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further reported in ALL patient samples that GRα expression was 
associated with complete remission, while GC-resistant patients 
and non-responders showed higher GRγ expression [151]. 

Alternative translation initiation from GRα mRNA gives rise to 
additional translational isoforms of which the N-terminal domains 
differ in length (Fig. 3). These include GRα-A, GRα-B, GRα-C1/C2/C3 
and GRα-D1/D2/D3 [196], which were shown to have divergent 
abilities to mediate GC-induced apoptosis in different cell line 
models [197,198]. For instance, Wu and co-workers found that Dex 
could not induce apoptosis in Jurkat ALL cells that exclusively 
expressed the GRα-D isoforms [198]. In contrast to the other 
translational isoforms, GRα-D was also unable to repress the anti- 
apoptotic Bcl-XL, cIAP1 and survivin, and could not inhibit NF-κB 
activity, exemplifying that GRα-D can contribute to the resistance 
of cells towards GC-induced apoptosis [199]. Further studies in 
primary cells seem needed to resolve the role of the translational 
isoforms in GC responsiveness. 

3.2.5. Altered GR transcriptional activity and coregulator levels 
Although GR inhibits transcription driven by TFs such as NF-κB 

and AP-1, the latter TFs can in turn repress GR-mediated gene 
expression [200]. Therefore, enhanced NF-κB and AP-1 expression 
may play a role in GC resistance by promoting the transcription of 
cytokines, survival genes and adhesion molecules [107,163,164]. 
For instance, it was demonstrated that NF-κB protected MM cells 
against Dex-mediated cell death by expression of IL-6 [201]. Con-
cerning AP-1, logic programming, based on regulatory networks 
and the gene expression profiles of 602 MM patients and 9 healthy 
controls, revealed low activity of the AP-1 heterodimer Jun/Fos in 
almost all MM patients compared to controls and identified low 
FOXM1 activity in a subgroup of MM patients, which was asso-
ciated with a trend of longer OS [202]. The group of Demonacos 
even identified Ets related gene (Erg) and AP-1 as markers for GC 
responsiveness in ALL cell lines, as GC treatment decreased acti-
vated c-Jun (phospho-c-Jun) in GC-sensitive cells and elevated Erg 
levels in GC-resistant cells [203]. In the same study, combined Dex 
and Erg inhibition also stimulated apoptosis in GC-sensitive and 
GC-resistant ALL cells, while Dex and JNK inhibition only enhanced 
apoptosis in GC-sensitive ALL cells [203]. In addition, Fan et al. 
showed that JunB, another AP-1 family member, was rapidly in-
duced when MM cells were co-cultured with BM stromal cells. 
Knockdown of JunB not only inhibited MM cell proliferation and 
survival, but also reestablished Dex sensitivity in Dex-resistant MM 
cells [204]. 

Small molecule inhibitors that target eukaryotic initiation factor 
4 (eIF4) halted cell survival and Dex resistance in MM cell lines and 
primary MM cells by decreasing c-myc and Mcl-1 pro-survival 
factors[205]. In 2020, an integrated bioinformatics analysis re-
vealed c-myc as the core gene in the protein-protein interaction 
network that was resolved to characterize GC resistance in ALL 
[206], making c-myc inhibitors potential therapeutic strategies to 
combat ALL[207]. 

Concerning coregulators, the corepressor NCOR1 was men-
tioned before to be part of a transcriptional repression complex 
that blocks GR gene expression, as an indirect contributory me-
chanism to GC resistance upon prolonged GC treatment[150]. 
Complementary herewith, in an ALL cell line, knockdown of a 
protein involved in the stabilization of nuclear hormone repressor 
complexes, TBL1XR1, resulted in decreased GR chromatin re-
cruitment by increased levels of NCOR1 and HDAC3[208]. Com-
parison of the endogenous GR coregulator profiles of GC-sensitive 
to -resistant ALL cell lines using coregulator peptide arrays showed 
that GC resistance in the CEM-C1-15 cells is partially mediated by 
quantitative differences in the GR coregulator profile rather than 
qualitative differences[209]. 

3.2.6. Disturbed balance and interaction between pro- and anti- 
apoptotic proteins 

As GC-induced apoptosis is largely driven by stimulation of pro- 
apoptotic and inhibition of anti-apoptotic Bcl-2 family proteins 
(Table 1), a deregulation of these Bcl-2 family rheostats can lead to 
GC resistance[19,40,164,165,210]. A systematic analysis of the GC 
regulation of the Bcl-2 family members in ALL patient samples, 
revealed that triggering pro-apoptotic Bim and to a lesser extent 
Bcl-2-modifying factor (Bmf) was sufficient for GC-induced apop-
tosis, while the anti-apoptotic proteins were not consistently 
downregulated by GCs, although their overexpression did delay 
GC-induced cell death[211]. By using GC-resistant ALL xenografts, 
GC resistance was further linked to a decreased ability to induce 
Bim expression, although GR was still transcriptionally active, as 
evidenced by induction of GILZ[139]. Moreover, Jing et al. showed 
that opposite regulation of Bcl-2 and Bim in ALL determined the 
extent of GC-induced apoptosis. Indeed, persistent MYB expres-
sion in GC-resistant ALL PDXs resulted in sustained Bcl-2 expres-
sion and blockade of apoptosis, while absence of GR binding to an 
intronic Bim GR binding site resulted in Bim silencing and GC re-
sistance[29]. In a follow-up study, a high-throughput screening for 
GC sensitizing agents identified the small molecule GCS-3 to spe-
cifically synergize with GCs to induce cell killing in GC-sensitive 
and -resistant xenografts resembling B-ALL and T-ALL[212]. The 
combination of GCs and GCS-3 decreased c-myc expression and 
markedly elevated Bim expression[212]. 

Lynch and coworkers further showed that stimulation or in-
hibition of apoptosis in GC-sensitive CEM-C7-14 and GC-resistant 
CEM-C1-15 cells, respectively, was determined by the equilibrium 
between pro-apoptotic Noxa and anti-apoptotic Mcl-1 gene ex-
pression, which was shown to be influenced by the GR phos-
phorylation status[53]. In GC-resistant mixed lineage leukemia 
(MLL)-rearranged ALL cells, the Mcl-1 inhibitors gossypol and AT- 
101 sensitized these cells to GCs, yet, not by decreasing Mcl-1 le-
vels, but by upregulation of pro-apoptotic Bim and Bid[213]. In CLL 
cells, siBim treatment reduced GC-mediated upregulation of Bim 
and induced resistance to GC-triggered apoptosis in GC-sensitive 
cells, resulting from a failure of Bim/Bcl-2 complexes to activate 
Bax and Bak[32]. 

Together, this shows that the balance between the levels of pro- 
and anti-apoptotic proteins as well as the interactions between the 
Bcl-2 family members[40,210]co-dictate whether a cell undergoes 
GC-induced apoptosis or becomes GC resistant, with Bim as a 
crucial determinant[29,212]. 

3.2.7. Signaling pathway interactions 
GR-mediated apoptosis also involves the crosstalk with other 

signaling pathways (Fig. 4), which can in turn influence GC re-
sponsiveness[2,19]. Concerning MAPKs, the balance between anti- 
apoptotic JNK and ERK signaling and pro-apoptotic p38 signaling 
was shown to determine the responsiveness of ALL cell lines to 
GC-induced apoptosis[214]. This is exemplified by GC-resistant 
CEM-C1-15 cells which harbored high constitutive JNK activity and 
Dex-induced ERK activity, and displayed low Dex-induced p38 ac-
tivity[214]. In line herewith, inhibition of ERK and JNK or activation 
of PKA reestablished GC sensitivity in 7/8 GC-resistant, GR-con-
taining cell lines that represent several lymphoid cell lines (e.g. 
MM, lymphoma, ALL), which concurred with increased Bim, GR 
and phospho-Ser211 GR levels[26]. In contrast to the above-men-
tioned role of JNK in GC resistance, low-dose anisomycin, a pro-
tein synthesis inhibitor and an agonist of p38-MAPK and JNK, 
combined with Dex sensitized GC-resistant CEM-C1 cells to Dex by 
inducing caspase 3 cleavage, upregulation of Bim, p21 and p27 and 
by decreasing Mcl-1, Bcl-2, c-myc and cyclin D1 levels[215]. Com-
bined anisomycin and Dex treatment increased GR, p38-MAPK and 
JNK activity, which was halted by the GR antagonist RU486[215]. 
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Also, ERK-mediated phosphorylation of Bim lead to Bim inactiva-
tion in ALL cells, while combination of Dex and a MEK/ERK in-
hibitor resulted in Bim accumulation, Bax and Bak activation and 
cytochrome C release[41]. In line herewith, the MEK inhibitor tra-
metinib in combination with Dex showed synergistic cell killing in 
KRAS mutant myeloma cell lines, which was accompanied by in-
creased Bim and decreased Mcl-1 expression[216]. Jones et al. also 
identified the MAPK pathway to evoke prednisone resistance in 
pedriatic ALL, while knockdown of the MAPK pathway member 
MEK4 sensitized GC-resistant ALL cells to prednisone by increasing 
GR levels[217]. Matched diagnosis and relapse samples also 
showed increased ERK activity and an enhanced response to MEK 
inhibition upon relapse[217]. 

Piovan et al. identified Akt as a driver of GC resistance in T-ALL, 
as Akt blocked GR gene expression and induced Ser134 phos-
phorylation which blocks GR nuclear translocation[218]. Inhibition 
of Akt with MK2206, however, reversed GC resistance in vitro and 
in vivo and sensitized T-ALL cells to GCs[218]. Different PI3K/Akt 
inhibitors could also increase GILZ expression in MM cell lines and 
clinical samples, while combination of Dex with PI3K/Akt inhibitors 
strongly elevated GILZ expression and enhanced apoptosis[46]. 
Yet, exogenous IL-6 and IGF-1, activators of the PI3K/Akt pathway, 
could inhibit GC-induced and PI3K/Akt inhibitor-mediated GILZ 
upregulation[46]. In 2016, Oppermann et al. also found that PI3K 
inhibitors increased Dex-induced apoptosis in CLL cells[219]. Pa-
tient-derived T-ALL cells treated with GCs in combination with a 
MEK, Akt, mTOR or dual PI3K/mTOR inhibitor strongly enhanced 
GC-induced apoptosis[158]. A pan PI3K p110 inhibitor and an iso-
form-selective dual γ/δ PI3K p110 inhibitor were further shown to 
restore GC sensitivity in B-ALL cells by reinstating GR nuclear 
translation and alleviating microenvironment-induced GC re-
sistance [220]. In a shRNA screen that was designed to identify 
genes that characterize the GC cell killing response in B-ALL, GCs 
remarkably repressed key factors both in early B-cell development 
and B-cell receptor signaling genes, highlighting that B-cell 

development and GC efficacy are closely intertwined [58]. This 
seminal study also showed that inhibition of lymphoid-specific 
PI3Kδ, which is at the crossroads between IL-7R and pre-B-cell re-
ceptor signaling pathways, promoted GC-mediated transcription to 
synergistic cell killing of both sensitive and resistant B-ALL cell 
lines and patient cells [58]. In line herewith, a study from 2020 
agrees that in the presence of IL-7, GCs paradoxically induced GC 
resistance in one-third of primary ALL cells and normal thymocytes 
by upregulation of the IL-7R, which gave rise to STAT5 signaling 
and upregulation of Bcl-2 [221]. 

In support of the advantage of combination strategies, the 
mTOR inhibitor rapamycin induced growth arrest but not apoptosis 
in GC resistant CEM-C1 cells, while combination of Dex and rapa-
mycin upregulated GR and pro-apoptotic Bim levels, evoked 
apoptosis and enhanced cell cycle arrest in CEM-C1 cells[222]. Yet, 
rapamycin alone could induce apoptosis in primary MM cells and 
sensitized MM cell lines and primary cells to GC-mediated apop-
tosis, which was accompanied by reduced cyclin D2 and survivin 
levels[223]. Interestingly, the rapamycin and Dex combination 
could also suppress the anti-apoptotic effects of exogenously 
added IL-6 and IGF-1[223]. Gu et al. further showed that lymphoma 
cells that are resistant to GCs and rapamycin alone, were sensitized 
to the combination treatment with rapamycin and Dex, which lead 
to apoptosis and cell cycle arrest[224]. These effects were medi-
ated by blocking mTOR/p70S6K signaling, in turn leading to the 
halted glycolysis and autophagy induction[224]. In 2016, Hall and 
coworkers demonstrated that a dual PI3K/mTOR inhibitor en-
hanced Dex-induced apoptosis in both ALL cell lines and primary 
cells, and in an in vivo T-ALL PDX model by increasing Bim ex-
pression and downregulation of Mcl-1[225]. 

High expression levels of CDK4 and CDK6 were also identified 
in a cohort of pediatric B-ALL patients[226]. Use of the CDK4/CDK6 
inhibitor ribociclib in combination with Dex strongly reduced pro-
liferation and enhanced cell killing of two Dex-resistant B-ALL cell 
lines and primary B-ALL cells[226]. 
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Fig. 4. Simplified overview of signaling pathways. (Left) Cytokines can trigger the activation of the NF-κB signaling pathway. The activation of the IKK complex leads 
to phosphorylation and subsequent proteasomal degradation of IKBα, releasing NF-κB (p65, p50) to translocate into the nucleus and promote gene transcription. 
(Center) Growth factors typically activate receptor tyrosine kinases (RTKs), which can trigger mitogen-activated protein kinase (MAPK) signaling pathways. Three 
main families of MAPKs exist, including the extracellular-signal-regulated kinases (ERKs), Jun amino-terminal kinases (JNKs) and (stress-activated protein kinases) 
p38 MAPKs. Each cascade starts with the activation of the MAPK kinase kinase (MAPKKK, e.g. Raf), which in turn fuels the successive activation of the MAPK kinase 
(MAPKK, e.g. MEK1/2) and MAPK (e.g. ERK1/2). Each MAPK has specific (sometimes overlapping) cytoplasmic and nuclear targets, resulting in the described 
biological effects. (Right) Growth factors can also trigger the activation of phosphatidylinositol-3-kinase (PI3K) and overcome PTEN's blockade on the conversion of 
phosphotidylinositol 4,5-bisphosphate (PIP2) to phosphotidylinositol 3,4,5-triphosphate (PIP3), hereby stimulating the activation of PDK1, in turn eliciting suc-
cessive activation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR), giving rise to diverse biological functions. 
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Lymphocyte cell-specific protein tyrosine kinase (LCK) was 
further found to be hyperactivated in prednisone poor responder T- 
ALL patients, giving rise to IL-4 overexpression, which in turn 
triggered resistance to Dex[227]. LCK inhibitors in combination 
with Dex, however, reverted the GC resistant phenotype in GC- 
resistant cell lines and ex vivo patient cells[227]. 

Intrinsic GC resistance in pediatric T-ALL was shown to be 
present in both early thymic precursor (ETP) T-ALLs and non-ETP 
T-ALLs at diagnosis[228]. The latter subgroup displayed high JAK/ 
STAT signaling activity upon IL-7 administration, while inhibition 
of JAK/STAT or removal of IL-7 sensitized these T-ALLs to GCs, in 
part by lowering Bcl-2 activity[228]. 

Together, these studies highlight both the complexity of sig-
naling pathway regulation and the potential of targeting the ki-
nome in lymphoid malignancies. Specifically, the connection be-
tween GC resistance and Akt/mTOR axis deregulation appears to 
be a common theme across lymphoid malignancies. 

3.2.8. Deregulated metabolism 
Several studies support that GCs can alter the metabolism of 

lymphoid malignant cells, for instance, by inhibiting glycolysis, 
which positively contributed to GC-induced apoptosis[69,71]. This 
also suggests that GC resistance can emerge from a deregulated 
metabolism[70,138]. Beesley and colleagues could correlate GC 
resistance in T-ALL cells with enhanced metabolism at multiple 
levels, e.g. upregulation of glycolysis, oxidative phosphorylation, 
glutamine metabolism and cholesterol synthesis[138]. In a follow- 
up study, the oxidative phosphorylation inhibitor oligomycin was 
shown to synergize with GCs to sensitize previously GC-resistant 
cells to cell death[229]. A similar synergism was observed with GCs 
and the cholesterol metabolism inhibitor simvastatin[229]. 

Furthermore, GC-resistant ALL cells were reported to have a 
higher glucose demand than GC-sensitive cells[99]. Interestingly, 
combining GCs with 2-deoxy-D-glucose, a glycolysis inhibitor in 
solid tumors, synergistically decreased the viability of GC-resistant 
ALL cells[99]. Yet, the action mechanism of 2-deoxy-D-glucose in 
ALL cells was to inhibit N-linked glycosylation, which lead to ab-
normal protein folding and promoted ER stress and the induction 
of the unfolded protein response[99,230]. In 2018, elevated levels 
of the glycolytic enzyme enolase 2 (ENO2) were also demonstrated 
in relapsed ALL patients[231]. In line herewith, overexpression of 
ENO2 in ALL cells promoted cell proliferation and glycolysis, the 
latter evidenced by increased mRNA levels of GLUT1, LDHA and 
pyruvate kinase M2 (PKM2) and lead to GC resistance[231]. Besides 
that, a CRISPR/Cas9-based screen was used to search for tran-
scriptional targets of the B-lymphoid transcription factors IKZF1 
and PAX5. The results showed that GR, the glucose feedback 
sensor TXNIP and the cannabinoid receptor were central effectors 
of the energy deprivation that was enforced by IKZF1 and PAX5 in 
B-ALL[232]. A strong synergistic cell killing was observed when 
glucocorticoids were combined with TXNIP or cannabinoid re-
ceptor agonists or with AMPK inhibitors, suggesting that the latter 
may function as therapeutic (co-)targets[232]. 

In primary CLL cells, GCs were shown to induce PPARα ex-
pression and fatty acid (FA) oxidation and adipocyte-derived lipids 
and lipoproteins inhibited GC-induced cell death, suggesting that 
FA oxidation may contribute to GC resistance [70]. In line herewith, 
inhibitors of PPARα or FA oxidation blockers augmented Dex-in-
duced cell killing in patient-derived CLL xenografts [70]. In contrast, 
another study showed that polyunsaturated fatty acids increased 
the GC sensitivity of MM cells by induction of p53 and miR-34a, of 
which the latter was connected to suppression of anti-apoptotic 
Bcl-2 [233]. 

Besides blocking glycolysis and stimulating FA oxidation, GC 
treatment elevated the expression of glutamine-ammonia ligase 
(GLUL), an ammonium scavenger that promotes the production of 

glutamine, in GC-sensitive but not in GC-resistant ALL cells[72]. In 
GC-treated GC-sensitive ALL cells, removing glutamine or adding 
dimethyl α-ketoglutarate, which is converted in cells into α-ke-
toglutarate, increased glutamate production, diminished glutamine 
uptake and reduced the Dex-induced LC-II accumulation (autop-
hagic flux) as well as caspase 3 cleavage [72]. Together, this in-
dicates that glutamine metabolism influences autophagy and 
possibly the onset of GC-induced cell killing. 

3.2.9. Epigenetic changes 
DNA methylation and histone modifying enzymes, such as 

histone methyltransferases (HMTs) and histone deacetylases 
(HDACs), have emerged as crucial determinants of GC respon-
siveness[234–236]. Treatment of GC-resistant CEM-C1-15, Molt-4 
(both ALL) and RPMI-8226 (MM) cell lines with a DNA demethy-
lating agent restored GC-induced apoptosis in these cell lines[237]. 
This altered epigenetic state also induced p38 activation in all 3 cell 
lines, changed the expression of GR coregulators in RPMI-8226 
cells, and increased GR function, GR protein levels and GR phos-
phorylation in CEM cells[237]. Sequencing of matched diagnosis 
and relapse samples from ALL patients identified mutations in the 
transcriptional coactivator and HAT CREB-binding protein (CREBBP 
or CBP) in approximately 18% of relapse cases, which functionally 
impaired histone acetylation as well as GR-mediated transcription 
of target genes, suggesting that these mutations may steer therapy 
responsiveness[238]. An analysis of the GC sensitivity of 444 newly 
diagnosed ALL patients further revealed a high expression of 
caspase 1 and its activator NLRP3, a component of the inflamma-
some, in GC-resistant ALL cells[234]. This was caused by lower 
methylation of the corresponding promoters of these inflamma-
some components, which resulted in GR cleavage, decreased GR 
transcriptional activity and increased GC resistance[234]. 

Lymphocyte-specific open chromatin domains were identified 
in 2018 to be crucial for GC-induced apoptosis of ALL cells[235]. At 
these open chromatin domains, GR collaborated with CTCF, a 
chromatin architectural protein, to trigger DNA looping. The latter 
was halted in GC-resistant ALL and non-lymphoid cells because of 
increased DNA methylation[235]. In AML cells, ASH2L, a core 
subunit of a H3K4-specific MLL/SET HMT complex, was shown to 
interact with the unliganded GR through chromatin looping and 
resulted in a remarkable Bcl-XL upregulation[239]. Dex treatment, 
however, nullified this interaction, which lead to reduced Bcl-XL 
expression and ultimately the induction of cell death[239]. In 2019, 
the group of Pufall applied a functional genomics approach to re-
solve GC resistance in B-ALL and found that the transcriptional 
coactivators EHMT2, EHMT1 and CBX3 are crucial for effective GC- 
mediated apoptosis[236]. In relapsed B-ALL, however, EHMT1 and 
EHMT2 were phosphorylated by Aurora kinase B, preventing CBX3 
recruitment and hereby suppressing GR-mediated gene activation 
of pro-apoptotic genes[236]. 

The pan-HDAC inhibitor (HDACi) SAHA, which did not synergize 
with Dex, induced apoptosis in GC-sensitive and GC-resistant cells 
to a similar extent, yet, through different death pathways[240]. In 
CEM-C7 cells, SAHA activated the extrinsic pathway, while in CEM- 
C1 cells SAHA achieved cell death by a combination of the intrinsic 
mitochondrial pathway and caspase-independent apoptosis[240]. 
Furthermore, high levels of HDAC4 were linked to poor response to 
prednisone in ALL patients[241]. In primary MM cells, HDAC1-3, 
HDAC4, HDAC6 and HDAC11 transcript levels were elevated com-
pared to normal plasma cells and were correlated with a shorter 
PFS in patients[242]. In addition, Vogl et al. studied in a phase I/II 
trial the combination of the HDAC6i ricolinostat with bortezomib 
and Dex in relapsed and refractory myeloma[243]. This combina-
tion was found to be safe, well-tolerated and active, showing the 
potential of HDAC6i in MM therapy[243]. 

miRNAs can lower GR levels and hereby influence GC 
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responsiveness. For instance, miR-130b overexpression in MM1.S 
cells resulted in decreased GR levels, diminished GC-induced GILZ 
induction and inhibition of GC-mediated apoptosis[244]. miR-142- 
3p was also shown to be upregulated in T-ALL cell lines and pri-
mary T-ALL cells from patients and decreased GR protein levels 
and cAMP/PKA activity, while a miR-142-3p inhibitor could effec-
tively revert GC resistance due to elevated GR levels and cAMP/ 
PKA activity[245]. Liang and coworkers further found miR-124 was 
upregulated in ALL patients which responded poorly to prednisone 
[246]. miR-124 evoked GC resistance by stimulating proliferation, 
inhibiting apoptosis and decreasing the expression of GR[246]. In 
contrast, several miRNAs, such as miR-185-5p, were reported to 
sensitize GC-resistant cells to GCs, by increasing apoptosis and cell 
cycle arrest, and by augmenting GR expression[247]. 

miRNAs also influence GC-induced apoptosis and resistance by 
targeting pro- and/or anti-apoptotic proteins. For instance, over-
expression of the miR-17~92 cluster was shown to reduce Bim in-
duction and inhibited GC-induced apoptosis, while GC treatment 
decreased miR-17~92 expression in a murine T-cell lymphoma cell 
line[248]. miR-150-5p was further identified as a GC-inducible 
miRNA in GC-sensitive MM1.S but not in GC-resistant MM1.R cells, 
although overexpression of miR-150-5p did not trigger cell death in 
MM1.S or MM1.R cells in absence of GCs[249]. Nevertheless, low 
dose GC combined with miR-150-5p overexpression in MM1.S cells 
resulted in sensitization to GC therapy[249]. Another example is 
miR-221-222, which targeted the pro-apoptotic p53-upregulator 
modulator of apoptosis (PUMA) and induced Dex resistance in 
MM1.S cells, while anti-miR-221-222 partially restored Dex sensi-
tivity of MM1.R cells[250]. Increased levels of miR-221-222 were 
even detected in MM cells derived from patients upon relapse 
compared untreated controls, suggesting an even broader role for 
miR-221-222 in MM drug resistance[250]. In line herewith, GC 
sensitivity was inversely correlated with miR-221-222 levels in MM 
cell lines[251]. miR-221-222 inhibited the autophagy-related gene 
12 (ATG-12)/p27-mTOR autophagy pathway and hereby conferred 
GC resistance in MM cells[251]. 

3.2.10. BM environment-induced drug resistance 
Both soluble factor-mediated drug resistance (SFM-DR) and cell 

adhesion-mediated drug resistance (CAM-DR)[252,253]contribute 
to bone marrow microenvironment-induced drug resistance. Con-
cerning SFM-DR, autocrine IL-6 production and/or IFNα induced 
resistance to dexamethasone-induced apoptosis in MM cells 
[254,255]. Liu and coworkers further showed that 90 days after 
withdrawal of Dex, an IL-6-dependent Dex-resistant mouse B cell 
hybridoma (7TD1-Dex) became sensitive again to the growth in-
hibiting and apoptotic effects of Dex, hereby showing that sensi-
tization to Dex therapy is possible [256]. 

CAM-DR in MM results from adhesive interactions between MM 
cells and BM stromal cells and/or extracellular matrix components 
[252,253]. Therefore, several adhesion molecules are involved in 
this process: integrins (VLA-4, VLA-5, β1 integrins, β7 integrins), 
syndecan-1 (CD138), CD44, LFA-1, VCAM-1, ICAM-1 and MUC-1 
[253]. For example, VLA-4 induces resistance to vincristine, a cell 
cycle-dependent chemotherapeutic, and dexamethasone, which 
could be overcome by bortezomib-induced VLA-4 downregulation 
[257]. Adhesion of MM cells to stromal cells further resulted in IL-6- 
induced PD-L1 expression on MM cells. This not only increased 
myeloma cell proliferation, but also induced resistance to dex-
amethasone and melphalan, and blunted the anti-tumor T cell re-
sponse [258]. Moreover, Wang et al. found that miR-21 expression 
in myeloma cells was upregulated upon adhesion to BM stromal 
cells, which resulted in significantly reduced Dex-induced apop-
tosis [259]. Furthermore, anti-adhesion treatments, such as Nata-
lizumab, which binds α4 integrins and inhibits MM cells from in-
teracting with BMSCs and the ECM, not only inhibited MM cell 

proliferation and angiogenesis, but also enhanced the MM cell 
killing activity of dexamethasone [260]. 

4. Conclusions and future perspectives 

Given the extensive number of factors that can contribute to GC 
resistance, GC resistance is clearly not governed by one single 
mechanism, but by several mechanisms acting consecutively or 
alternating to achieve full-blown resistance. Interpatient variability 
in the underlying mechanisms is also to be expected, as both the 
GC dose and the duration of GC therapy is often different between 
patients, in turn affecting the moment of onset and the degree of 
GC resistance (Fig. 2). Frontline technologies such as single cell 
RNA-sequencing will further help dissecting the gradual emer-
gence and inherent heterogeneity of GC resistance. Indeed, this 
technology has characterized the inter-patient and intra-patient 
heterogeneity in multiple myeloma and was able to pick up rare 
circulating tumor plasma cells, hereby opening perspectives for 
accurate liquid biopsies in myeloma[261]. 

Concerning the mechanisms underpinning GC-induced cell 
killing and GC resistance, the exact pinpointing of mechanisms that 
are common or specific to each malignancy remains to be estab-
lished. Multicentric large-scale gene expression studies with pri-
mary cells from different types of lymphoid malignancies at diag-
nosis seem to be instrumental in resolving these long-standing 
questions. GC-responsive genes identified at a treatment-naïve 
stage should be further compared in longitudinal patient samples 
to establish the evolution of (potential target-specific) GC respon-
siveness across disease stages (relapse/refractory setting) and 
disease types, hereby taking into account the complexity that GCs 
are always combined with other treatments. Noteworthy, intrinsic 
disease heterogeneity as well as intra-patient heterogeneity com-
plicate these analyses. Disease-intrinsic differences may also un-
derlie why GCs are more effective in certain lymphoid malig-
nancies and why GC resistance mechanisms exhibit a cell type- 
specific component. Therefore, multicentric, disease-spanning ap-
proaches as proposed above may be a good first step to resolve 
some of these conundrums. 

Nevertheless, we may conclude that having sufficient levels of 
transcriptionally active GR remains an essential characteristic to 
achieve and maintain GC-induced cell death. Yet, the markers to 
identify GR transcriptional activity in hematological disorders are 
scarce and seem to be often limited to GILZ, which, as our literature 
overview reveals, does not always correlate well with GC cell 
killing capacities. Besides that, seminal studies from the last five 
years have added DNA methylation and altered HMT levels and/or 
activity to the list of crucial contributors to GC responsiveness 
[235,236]. A growing number of studies have also put miRNAs 
forward as biomarkers for GC treatment response and, more 
generally for diagnosis and disease classification, yet, the lack of 
standardization in miRNA detection still limits their widespread use 
[262]. Although there are currently limited strategies to ther-
apeutically target miRNAs, it seems worth exploring more deeply 
whether miRNAs can be pinpointed as critical regulators of GC 
sensitivity. Signaling pathway molecules that are implicated in GC 
resistance (e.g. PI3K/Akt/mTOR axis deregulation) may particularly 
be of clinical relevance, especially since the therapeutic targeting of 
some molecules within this protein class has been demonstrated 
before as a viable means to overcome GC resistance. 

Pioneering studies in ALL that compare different disease 
stages, i.e. from diagnosis to (multiple) relapse(s)[263–265], have 
identified genetic changes, deregulated pathways and gene ex-
pression profiles that are specific for disease stages. Yet, in the 
context of combination treatments, specific GC resistance sig-
natures have so far not been unambiguously distinguished from 
overall therapy resistance signatures. Therefore, despite a plethora 
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of relevant and insightful studies and intense efforts to resolve GC 
resistance, there is still no clinical test that specifically identifies GC 
resistance in patients. Even so, all patients receiving long-term GC 
treatment will eventually transition towards full-blown GC re-
sistance and suffer too long from the GC-related side effects, ar-
guing for tissue-specific GC resistance. Hence, early and reliable 
identification of GC resistance in patients remains an important 
challenge that needs to be tackled[266], as this would allow a faster 
reorientation of a patient’s treatment protocol. Ex vivo GC and drug 
testing may provide a viable means to optimize the treatment 
schedule, especially in the relapsed or refractory setting[267]. Of 
note, once GC treatment ceases, e.g. when a patient is cured or 
when GCs are omitted from a certain treatment cocktail, it remains 
to be determined whether spontaneous sensitization to GC treat-
ment after long-term GC withdrawal can be achieved. Finally, es-
tablishing relevant GC resistance models[268]and finding alter-
native strategies to strengthen the pro-apoptotic action of GCs by 
partially rewiring GR action using novel therapeutic concepts[269] 
or drug repurposing approaches represents another important 
challenge, especially given the continued widespread use of GCs in 
lymphoid malignancies. 
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