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Abstract—Internet of Things (IoT) applications that value long
battery lifetime over accurate location-based services benefit from
localization via Low Power Wide Area Networks (LPWANs) such
as LoRaWAN. Recent work on Angle Of Arrival (AoA) estimation
with LoRa enables us to explore new optimizations that decrease
the estimation error and increase the reliability of Time Differ-
ence Of Arrival (TDoA) methods. In this paper, particle filtering
is applied to combine TDoA and AoA measurements that were
collected in a dense urban environment. The performance of
this particle filter is compared to a TDoA estimator and our
previous grid-based combination. The results show that a median
estimation error of 199 m can be obtained with a particle filter
without AoA, which is an error reduction of 10 % compared to
the grid-based method. Moreover, the median error is reduced
with 57 % if AoA measurements are used. Hence, more accurate
and reliable localization is achieved compared to the performance
of other baseline methods.

Index Terms—IoT, LPWAN, LoRaWAN, TDoA, AoA, Particle
filter

I. INTRODUCTION

As the Internet of Things (IoT) becomes more relevant for
use cases such as electric metering, smart farming, manufac-
turing automation and asset tracking, an increasing amount
of devices becomes interconnected. It is often required that
these IoT devices operate continuously on a single battery for
years on end. Additionally, users want to keep track of the
devices’ current location to add context information to their
data, e.g by using Global Navigation Satellite System (GNSS)
receivers. However, adding a GNSS receiver to a battery-
powered device often opposes the low-power requirements of
an IoT use case. Also, GNSS can not be used for localization in
indoor environments. Therefore, energy-efficient alternatives
such as wireless localization methods via Low Power Wide
Area Networks (LPWANs), e.g. Sigfox and LoRaWAN, are
being investigated. Although localization via these networks
generally results in high estimation errors compared to GNSS
solutions, they are a better option for IoT use cases that cover
both indoor as outdoor scenarios which favor battery lifetime
over location accuracy.

In order to estimate the location of a transmitting LPWAN
device, wireless localization methods take advantage of the
signal’s physical characteristics. With Sigfox data from our
openly available LPWAN dataset, we have evaluated methods
that are based on Received Signal Strength (RSS) measure-
ments [1]. This research has shown that widely used RSS-
based methods such as trilateration and proximity result in a

mean estimation error of 721 m to 880 m when implemented in
an large urban Sigfox network [2]. With RSS fingerprinting,
a lower mean estimation error of 322 m was achieved, but
it has to be noted that building and maintaining a finger-
printing database on such a large scale is a very laborious
task [3]. Time-based localization methods can lead to lower
estimation errors, because they are less susceptible to noisy
measurements. Podevijn et al. evaluated Time Difference Of
Arrival (TDoA) localization in multiple scenarios with a public
LoRaWAN network, and found that it is feasible to obtain a
median error of 200 m [4]. By taking previous location esti-
mates into account, and adding a map-based filter, the median
error decreased to 75 m. Moreover, the 90th percentile error of
the walking scenario was reduced from 579 m to 177 m. This
clearly illustrates that adding filtering algorithms to wireless
localization improves the accuracy of the location estimates. A
third localization option is Angle Of Arrival (AoA). With an
antenna array at the receiving LPWAN gateway, it is possible
to estimate the direction of a wireless signal and hence, two
arrays suffice to compute a location estimate. Unfortunately,
the cost and complexity of deploying AoA location estimation
systems at the receiver side is considered a major challenge
for AoA-based localization. However, a cost-efficient AoA unit
for localization in IoT applications has been presented in our
recent work [5]–[8].

Because of these recent AoA accomplishments, we are a
able to start experimenting with AoA localization for Lo-
RaWAN [8]. In this paper, we present the implementation
of a particle filter that combines TDoA measurements from
a public LoRaWAN network with AoA estimates that were
collected with our own unit. This way, we aim to achieve more
reliable localization with lower estimation errors. The accuracy
of the particle filter is compared to a grid-based approach
which is introduced in previous work [9]. For the first time,
the grid-based combination of TDoA and AoA is evaluated
with real measurements instead of simulations. To the best of
our knowledge, this is the first time that real AoA LoRaWAN
measurements are evaluated in a localization algorithm.

The remainder of this paper is structured as follows: Sec-
tion II lists related work regarding LoRaWAN, TDoA, AoA
and particle filtering. Section III describes the collected dataset
and the implementation of the particle filter. Also, we briefly
recap the grid-based combination that will be used as a
baseline in our comparison to the particle filter. Section IV



shows the results of this comparison, which are discussed in
Section V. Finally, we conclude the paper and introduce our
future work in Section VI.

II. RELATED WORK

In this section, more details are given about the current state
of the art on TDoA and AoA localization with LoRaWAN.
Additionally, a brief explanation about particle filtering is
provided.

A. LoRaWAN

LPWANs allow IoT devices to communicate their sensor
data over ranges of multiple kilometers while maintaining a
low power consumption. This is possible because LPWAN
transmitters are designed to send only small payloads, which
limits the required operating bandwidth. Generally, a trade-off
between communication range and data rate has to be consid-
ered when implementing an LPWAN in an IoT application.

LoRaWAN is an LPWAN which uses a Chirp Spread
Spectrum (CSS) based modulation named LoRa, and operates
in the license free 868 MHz and 915 MHz bands in Europe
and the US respectively. With a so called ’spreading factor’
that tunes the LoRa modulation, a balance between range and
data rate is regulated. A low spreading factor allows a data
rate of up to 37.5 kbps, but limits the communication range to
5 km. Increasing the spreading factor results in a range of up to
15 km, but decreases the data rate to 300 bps [10]. Of course,
the communication also strongly depends on the environment
type. Urban environments will have smaller ranges due to
the limited Line Of Sight (LOS) between transmitter and
receiver. LoRaWAN end devices do not connect to a single
receiving gateway. Instead, all gateways within the devices’
communication range receive and forward the signal to a
LoRaWAN server. Consequently, localization techniques such
as trilateration and multilateration can be applied because
multiple measurements of one signal are available.

B. Time Difference of Arrival

For time-based localization methods, it is crucial that the
time of arrival of a transmitted signal is accurately detected
at the receivers. This is not possible for Ultra Narrowband
(UNB) networks such as Sigfox, because the rising edge of
the signal pulse can not be determined accurately enough [11].
LoRaWAN has a bandwidth of 125 kHz to 250 kHz, which
makes it a suitable candidate for time-based localization. For
LoRaWAN specifically, TDoA algorithms are a popular low-
power approach. Since the transmitting device does not have
to be in sync with the gateways, there is no need to add
synchronization hardware that would drain the battery. Via a
network of precisely synchronized gateways, the location of
a LoRaWAN transmitter can be calculated based on the time
difference of arrival relative to a reference gateway. This time
difference between a pair of gateways can be represented by a
hyperbolic curve that shows all possible transmitter locations.
At least three curves are required to find a reliable intersection
which represents the location estimate, therefore the time of

arrival from at least four receiving gateways is needed. The
error of the TDoA location estimate strongly depends on the
timestamp precision of the receiving gateways. Because radio
signals propagate at light speed, the estimation error can go up
to 300 m if a gateway provides a timestamp with a precision
of 1 µs.

Experiments in an outdoor public LoRaWAN network have
shown that commercial TDoA solvers can locate a mobile de-
vice with a median error of 200 m without additional tracking
algorithms [4]. Other research demonstrated that static devices
can be located with an accuracy of around 100 m [12].

C. Angle of Arrival

As previously discussed, LPWAN devices operate with
small bandwidths to transmit their payloads. Therefore, ac-
curate timestamp detection for time-based localization is not
guaranteed. Accordingly, the localization accuracy of the time-
based approach can be very low. In contrast to time-based
localization, AoA-based localization techniques are indepen-
dent of the timestamp precision at the receiving gateways.
Instead, they estimate the angle between the transmitter and
the receiver by measuring the phase of the received signal
at different points in space using array antennas. Multiple
spatially distributed array antennas are required to provide
a location estimate of the transmitting device. With an AoA
estimation method, every array antenna system can provide
the direction of the received signals with respect to its own
location [13]. Combining the direction information, either by
a triangulation process or probabilistic models, can provide a
location estimate of the transmitting device [14], [15]. AoA
estimation techniques have the potential to provide accurate
localization solutions for IoT applications [15]. However, to
the best of our knowledge, commercially available AoA-
based localization systems do not yet exist. This absence
can be attributed to the complexity that is associated with
implementing them. Nevertheless, hardware and software so-
lutions have recently been introduced to reduce the cost and
complexity of deploying AoA-based localization techniques
for IoT applications [5]–[7].

Recently, RTL-Array has been introduced as a low cost AoA
estimation unit for IoT applications [8]. The angular estima-
tion accuracy of the RTL-Array was verified in an anechoic
chamber for 6 antenna elements. The estimated AoA accuracy
was below 1 degree in the 868 MHz band. For the research that
we present in this paper, a single RTL-Array with 8 antenna
elements is deployed to estimate the AoA of the received LoRa
signals in an outdoor Non Line Of Sight (NLOS) environment.
Furthermore, the estimated AoA values are used as input data
for a particle filter. It is worth mentioning that the conventional
Beamforming (CBF) technique has been utilized to estimate
the AoA of the received signal. More information regarding
the different AoA estimation techniques can be found in our
recent work [13].



D. Particle filtering

With Bayesian filtering, the state of a time-varying system
that is observed with noisy measurements can be estimated
by collecting dynamic variables such as speed, orientation
and position. There is a very wide range of applications that
benefit from Bayesian filtering, e.g. brain imaging, biological
processes, telecommunication, GNSS, navigation with inertial
sensors, etc. Bakkali et al. studied the performance of Lo-
RaWAN for indoor localization with a Kalman filter, which is
a type of Bayesian filtering. In a small indoor environment,
a mean estimation error of 1.72 m was achieved with NLOS
RSS measurements [16].

Particle filtering is another variation of Bayesian filtering
that uses Monte Carlo approximations to represent a target
distribution. This is done via a set of particles which are
distributed according to the target density. Each particle in the
distribution has a weight which is updated according to the
probability that the particle corresponds with a measurement,
e.g. the time of arrival at a receiving LPWAN gateway.
Through Sequential Importance Resampling (SIR), particles
with small weights are removed and particles with large
weights are duplicated. [17].

For this research, we implement a bootstrap particle fil-
ter that uses TDoA and AoA measurements to update and
resample the weights of the particles. The details of our
implementation can be found in Section III-C.

III. METHODS

First, this section describes where and how we collected
TDoA and AoA measurements that are used as input for the
particle filter. Second, we explain the grid-based approach to
which we later compare the results of the particle filter imple-
mentation. Third, we discuss the particle filter implementation
itself.

A. Dataset

In our previous work, we collected large LPWAN datasets
with ground truth information, to provide researchers with
a tool to develop and evaluate their localization methods
for IoT applications [1]. Although the latest version of this
dataset contains precise timestamps that can be used for TDoA
localization, it does not incorporate AoA measurements that
are required for this research. Therefore, new data had to
be gathered. Our initial plan was to do so via The Things
Network (TTN), which is a global community-based Lo-
RaWAN network [18]. We installed LoRaWAN gateways in
and around Antwerp, Belgium and connected them to TTN,
but unfortunately, our gateways do not always forward their
received data. Hence, we collected 388 TDoA measurements
in the city center of Antwerp using a public LoRaWAN
network that is operated by Proximus, a national LoRaWAN
network provider. In Figure 1a, gateway locations of the
Proximus network in and around Antwerp are illustrated.
The gateways that are shown in this figure have received
one or more of our transmitted messages, and are spread
in an area of over 426 km2. The LoRaWAN transmission

locations of our experiment cover only a minor part of this
large area. Specifically, the 19 locations that are depicted in
Figure 1b cover a total area of 0.4 km2. While walking a
trajectory in this area, we stopped at each location and sent
twenty LoRaWAN messages with spreading factor 12. For all
messages, the public LoRaWAN network provides timestamps
from the receiving gateways with nanosecond precision. These
measurements are used in both the grid-based approach as in
the particle filter, which are explained in Section III-B and
Section III-C respectively.

Apart from the TDoA measurements, we gathered AoA
measurements on the same 19 locations. The location of the
AoA unit is displayed as a red marker in Figure 1b. We
collected AoA measurements for each of location, and merged
them with the TDoA measurements for the same location af-
terwards. Since the AoA unit is still in an experimental stage, it
is not possible to continuously record and process LoRaWAN
signals. Due to this limitation, only ten measurements were
obtained per location. In order to have an angle estimate that
can be merged with each of the TDoA measurements, we
used each angle estimate twice. The focus of this research
is to combine TDoA and AoA data to reduce estimation
errors and increase estimation reliability. Details about the
AoA estimation algorithm itself will not be discussed in this
paper, but can be found in [13].

B. Grid-based combination of TDoA and AoA

In our previous work, we proposed a grid-based approach
to combine TDoA and AoA measurements in a LoRaWAN
network [9]. To demonstrate this method, we simulated 10 000
LoRaWAN messages which were received by two TDoA-
enabled gateways ’RX 1’ and ’RX 2’, which are both illus-
trated in Figure 2. Additionally, we assumed that ’RX 1’ is
also able to calculate an AoA estimate. With this research,
we illustrated that it is feasible to estimate the location
of a transmitter using only a limited amount of receiving
gateways. The grid-based combination includes three steps:
first, the measurements of two synchronized gateways are
used to calculate a TDoA probability density map. This map
displays a long hyperbolic curve that represents all possible
location estimates for the LoRaWAN transmitter. Second, the
associated measurement at the AoA gateway draws another
probability density map, where locations that match the AoA
estimation get the highest probability. Third, the TDoA and
AoA probability maps are added to each other, resulting in
a new map in which the cells where the TDoA hyperbola
intersect with the AoA estimate get the highest probability.
Hence, a location estimate is obtained using a limited amount
of receivers. The complete method is briefly summarized in
Figure 2.

C. Particle Filter

In order to combine the TDoA and AoA measurements, we
apply a bootstrap particle filter. Our implementation consists
of four main steps which are summarized in Algorithm 1, and
explained in detail in this subsection.



(a) The locations of the public LoRaWAN gateways that re-
ceived the transmissions and provided us with timing informa-
tion.

(b) The area where LoRaWAN messages were transmitted.
Circles indicate the transmission locations, and the location pin
shows the location of our AoA unit.

Fig. 1: (a) The area that is covered by the receiving TDoA gateways. (b) The measurement locations and the location of the
AoA unit.

(a) TDoA

(b) AoA

(c) TDoA + AoA

Fig. 2: Illustration of the grid-based method. The TDoA map
in (a) is combined with the AoA map in (b). The resulting
map in (c) is used to calculate the final location estimate.

Algorithm 1 Particle filter

Input: N LoRaWAN messages
1: Initialize M particles
2: for i← 1 to N do
3: Predict new particle states
4: Update particle weights
5: Resample
6: end for

Firstly, a set of particles has to be initialized a single time.
This step is summed up in Algorithm 2. A TDoA estimator
that is introduced by Li et al. is applied to the first LoRaWAN
message in the dataset [19]. This results in an initial location
estimate µ that is used as the mean of a normal distribution.
As we have seen in Section II-B, a median localization error
of 200 m is feasible to obtain through TDoA localization with
LoRaWAN. Therefore, we use a standard deviation of 300 m
for the normal distribution, so that the initial estimate lies
within a safe error margin. Subsequently, M particles are
initialized, and a location ρ for each of them is randomly
drawn from the distribution. Furthermore, each particle is
assigned a speed ν, direction θ and a weight ω. Our dataset was
collected on foot, so it is logical that the motion model for the
particles is chosen accordingly. Hence, the speed of a particle
is randomly sampled from a uniform distribution ranging
from 0 m/s to 1.5 m/s. Similarly, a particle’s direction is a
uniform random variable between 0 degrees and 360 degrees.
In this stage, all particles will have the same weight of 1/M .
Figure 3a is a visual representation of the initialization. The
ground truth measurement location is displayed as a green
location pin, and particles are shown as colored circles with
lines. These lines illustrate the speed and direction of each



(a) Initialization of a set of 1000 particles
around an initial TDoA estimate.

(b) The particle set after three iterations of
updating and resampling.

(c) After the resampling step in (b, new
particle states are predicted.

Fig. 3: A visual representation of the particle filter implementation, where particles are shown as colored circles with lines.
The speed and direction of a particle are shown by its line, whereas color indicates its weight: the lighter the color, the higher
the weight. The ground truth measurement location is shown as a green location pin. The location estimate after resampling,
only shown in (b), is displayed as a red pin.

particle, whereas the weight is shown in the color of each
particle. Initially, all particles will be shown in the same color,
since they all have the same weight. In Figures 3b and 3c,
which will be explained next, it becomes clear that lighter
colors indicate particles with higher weights.

Algorithm 2 Initialize M particles

1: for i← 0 to M do
2: ρ ∼ N (µ, 300 m)
3: ν ∼ [0, 1.5] {[m/s]}
4: θ ∼ [0, 360] {[degrees]}
5: ω = 1/M
6: particlesi = [ρ, ν, θ, ω]
7: end for

Secondly, Algorithm 3 explains how the new state of each
particle is predicted. We iterate over the LoRaWAN messages
in the dataset and calculate the time difference ∆t between
the current and previous message. Because we have to take
sudden changes in motion of the LoRaWAN transmitter into
account, random noise is added to the speed and direction
of each particle. The new speed of each particle is randomly
chosen from a normal distribution with the previous speed as
mean value, and a standard deviation of 0.5 m/s. The only
limitation is that the new particle speed has to stay within
the initial bounds of 0 m/s and 1.5 m/s. Similarly, a normal
distribution with the previous particle direction as the mean
value and ∆t∗10 degrees as the standard deviation, is used to
determine a new random direction. Now that both speed and
direction are altered, a new particle location can be calculated
based on ∆t. Figure 3c shows how the prediction step looks
like. New speeds and directions are chosen for the particles
of Figure 3b, and particles are moved to new locations based
on these new values and ∆t.

Thirdly, the weights of all particles are updated, as clari-
fied in Algorithm 4. This is done by comparing the list of

Algorithm 3 Predict new particle states

Input: ∆t
1: for i← 0 to M do
2: particlesi,ν ∼ N (particlesi,ν , 0.5)
3: particlesi,θ ∼ N (particlesi,θ, (10 ∗∆t))
4: Move particlesi,ρ in new direction θ with a distance

of ∆t ∗ ν
5: end for

timestamps as well as the AoA estimate α of a LoRaWAN
message. First, a list of time differences ∆τ between all
receiving gateways and the first gateway is derived from the
timestamps. Then, we look at the location of each particle
and calculate the distance to the receiving gateways. Hence, a
theoretical time of flight between the particle and each of the
gateways can be calculated and subsequently, a similar list of
time differences ∆τp is acquired. With this information, we
are able to determine the probability of a particle’s predicted
measurements matching with the actual time measurements.
The probability is calculated by comparing with a normal
distribution with mean ∆τ . The standard deviation of the
distribution is set to 1.8 µs, as our previous experiments with
the public LoRaWAN network in Antwerp demonstrate that
the timing error is normally distributed with a mean of 0 µs,
and a standard deviation of 1.8 µs [20]. The resulting value
xTDoA is multiplied with the current weight of the particle. In
a similar way, the difference between the actual angle estimate
α and the angle between a particle and the AoA unit αp
is calculated and used in Gaussian distribution to determine
how likely it is that they match. We chose to set the standard
deviation of the distribution to 3 degrees, since prior technical
tests with the AoA unit indicated that it is feasible to obtain
an angle estimate within this margin. Again, the resulting
value xAoA is multiplied with the particle’s weight. After all



particles have been updated, we normalize them by dividing
their weight by the sum of all particle weights.

Algorithm 4 Update particle weights

Input: ∆τ, α
1: for i← 0 to M do
2: xTDoA = N ((∆τ −∆τp), 1.8)
3: particlesi,ω = particlesi,ω ∗ xTDoA
4: xAoA = N ((α− αp), 3)
5: particlesi,ω = particlesi,ω ∗ xAoA
6: end for
7: for i← 0 to M do
8: particlesi,ω/ = sum(particlesω)
9: end for

Finally, the particles are resampled in Algorithm 5 based on
their updated weights. A random variable β is selected from a
uniform distribution between zero and twice the value of the
largest weight in the particle set. Moreover, two values j and
sum are initialized as zero. As long as β is larger or equal
than the sum value, j is increased by 1 and sum is increased
with the with the weight of the particle at index j. When sum
exceeds β, the particle at index j is selected for resampling.
As a result, particles with high weights will populate a new set
of M particles more often than particles that have with lower
weights. Additionally, a location estimate is computed in this
step by taking the mean location of all particles in the new
set. Figure 3b shows the particle set after a few iterations of
predicting and resampling. Particles with a light color have
higher weights than those with a darker color. The green
location pin shows the ground truth TX location, whereas the
red pin indicates the location estimate after resampling. In this
figure, the spatial distribution of the particles clearly shows the
effect of the AoA estimates on the particle filter’s measurement
model.

Algorithm 5 Resample

1: j = 0
2: sum = 0
3: for i← 0 to M do
4: β ∼ ([0, 2 ∗max(particlesω)] + i)/M
5: while β >= sum do
6: j = (j + 1) mod M
7: sum = sum+ particlesj,ω
8: end while
9: Resample particlesj

10: end for
11: return location estimate

There are a few important differences between this par-
ticle filter and the grid-based approach from Section III-B.
Firstly, the particle filter employs all available TDoA and
AoA information, whereas the grid method uses only two
TDoA-enabled gateways and one AoA estimate. Secondly,
the probabilistic combination of TDoA and AoA works in
a different way. In the grid method, a hyperbolic curve is

calculated via a least-squares TDoA solver, and the geographic
coordinates of this curve are used as the mean of a Gaussian
distribution. Although the particle filter also applies a Gaussian
distributions, it uses the time and angle measurements itself as
the mean instead of the location estimate that resulted from a
solver. This way, the uncertainty of the measurements is taken
into account. Both methods will be evaluated and compared
to each other in Section IV.

IV. RESULTS

In this section, we list the results of our research in some
comprehensive plots and tables. A more detailed discussion of
the results is provided in Section V.

As explained in Section III-A, the dataset contains 388
LoRaWAN messages which in turn have an amount of TDoA
measurements that can vary from one message to another, and
a single AoA estimate. In Figure 4, the amount of TDoA
measurements per message, as well as the mean amount per
location are shown. On average, the LoRaWAN messages
are received by 6.32 gateways from the public LoRaWAN
network.

0 50 100 150 200 250 300 350 400
Message count

0

2

4

6

8

10

# 
TD

O
A

 m
ea

su
re

m
en

ts
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Locations

Mean per location
# TDOA measurements

Fig. 4: The number of receiving TDoA gateways of each
LoRaWAN message.

Every LoRaWAN message has exactly one AoA estimate,
their errors are depicted in Figure 5. The mean AoA error is
6.37 degrees, with a standard deviation of 3.05 degrees. 95 %
of the estimation errors lie within 12.02 degrees. This plot also
illustrates the precision of the AoA estimations. We can see
that the estimations at locations with LOS tot the AoA unit
(i.e. locations 2, 18 and 19) are very stable, whereas NLOS
locations such as location 7 and 16 have less precise estimates.

The dataset is used to compare three localization methods.
First, TDoA localization is applied without adding AoA in-
formation. For this purpose, we employ the same solver that
we use to initialize a particle set [19]. This method resulted
in 274 locations estimates with a median error of 331 m, and
a 95th percentile of 1167 m. Second, the grid-based approach
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Fig. 5: The AoA estimation error of each LoRaWAN message.
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each method.

of Section III-B returned 319 estimates with a median error of
221 m, and a 95th percentile of 657 m. Finally, we assess the
results of the particle filter implementation. When no AoA data
is used, only one message did not return a location estimate.
The median error here was 199 m, and the 95th percentile error
was 347 m. After adding AoA information, the median error
drops to 94 m and the 95th percentile error to 297 m. Clearly,
the particle filter with AoA outperforms the other methods in
our comparison, both in accuracy as in reliability.

Figures 6 and 7 compare the estimation errors of these
methods. Table I provides a concise overview of the amount of
returned estimates per method as well as the mean, median and
95th percentile error of each method. Furthermore, we plotted
the errors for each message in Figure 8 to show a time lapse
of the estimation errors. The plot indicates that the TDoA and

PF PF AOA TDOA Grid

0

200

400

600

800

1000

1200

Es
tim

at
io

n 
er

ro
r [

m
]

Fig. 7: Boxplot of the estimation errors for each method.
Outliers are excluded from the plots.
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Fig. 8: A general comparison of the accuracy and reliability
of each method by showing the estimation errors for each
message in the dataset.

grid-based results have a lot of uncertainty compared to the
particle filter results, this observation is confirmed by the 95th
percentile errors in Table I. If a location estimate could not be
obtained, the line plot is interrupted at that message. Because
the outliers of the TDoA and grid-based methods obscure the
results of the particle filter in Figure 8, a similar plot that only
shows the particle filter results is given in Figure 9.

V. DISCUSSION

In Section III-A, we explained how we have collected TDoA
measurements via a public LoRaWAN network. The dataset
that we now use contains 388 LoRaWAN messages which
were sent using spreading factor 12, only a few seconds
between subsequent messages at a location. Because of the
duty cycle limitations of LPWAN, it is not feasible to do this
in a real IoT application. However, for now we only want to
evaluate the localization algorithms.



TABLE I: The localization results of four methods.

Amount of estimates Mean error [m] Median error [m] 95th percentile [m]
TDoA 274 455 331 1167
Grid-based TDoA + AoA 319 286 221 657
Particle filter without AoA 386 189 199 347
Particle filter with AoA 387 122 94 297
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Fig. 9: We compare the performance of the particle filter by
plotting the estimation errors for each message in the dataset.
Both the errors with and without AoA data are shown.

Furthermore, we used our own AoA unit to obtain angle
estimates for each of the measurement locations. This data was
collected simultaneously with our first TDoA data via TTN,
on the 19 measurement locations from Figure 1. The workflow
of the AoA unit and the AoA estimation algorithms are not
discussed here, since it does not lie within the scope of this
paper. The interested reader is referred to our related work on
AoA in Section II-C. Due to the aforementioned technical dif-
ficulties with our gateways, the initial dataset that we collected
was unusable. Luckily, we were able extract the AoA data and
merge it with the new TDoA measurements that were collected
at a different date at the exact same locations. For now, the
AoA unit has some technical limitations that we have to take
into account for our experiments. As mentioned before, it is
not yet possible to continuously record and process LoRaWAN
signals. Therefore, only ten AoA estimates are calculated for
each location. Since we have twenty LoRaWAN messages per
location, AoA estimates were re-used to complete the dataset.
We believe that this will only have a limited impact on the
results, since no AoA estimate is re-used more than once.
Further analysis on this will be done after new datasets have
been collected in our future work. Also, the AoA unit has a
limited range in NLOS environments such as the area where
we collected the data. This is why the measurement locations
are all within 600 m from the unit.

Next, we discuss the localization methods that we evaluated

with the dataset. First, we validated a TDoA estimator pro-
posed by Li et al. [19]. For the 388 messages, the estimator
returned 274 location estimates, which covers 71 % of the
dataset. This is mainly because, like many TDoA solvers, this
estimator requires at least four receiving gateways to compute
a result. Figure 4 shows that not every entry in the dataset
contains this many measurements. The TDoA solver resulted
in a mean error of 445 m, and a 95th percentile error of 1167 m.
We see in Figures 7 and 8 that this method is less accurate
than the other methods in the comparison.

Secondly, we test the grid-based approach that we simulated
in our previous work [9]. A mean error of 286 m and a 95th
percentile error of 657 m were achieved with this method.
Although the mean error is reduced with 37 % compared to
the previous TDoA results, Figure 8 indicates that there is
still a lack of accuracy. Also, only 82 % of the messages in
the dataset resulted in a location estimate. Thus, the reliability
of this method has increased with 11 % compared to the TDoA
solver. The first reason is that at least two TDoA measurements
have to be available to draw an hyperbolic curve, otherwise the
method fails. The second reason is that it is not always possible
to draw a hyperbolic curve because of geometric constraints. A
few important comments must be made on these results. First,
the grid-based method makes use of only the first two receiving
TDoA gateways, and one gateway, whereas other methods
employ as much input data that they can get. Second, the
locations of the TDoA and AoA gateways are of importance
for this method. In our previous simulations, we assume that
the AoA gateway is at the exact same location as the TDoA
reference gateway, which results in an optimal overlap of a
hyperbolic curve and an angle estimate [9]. However, this
is not the case for the dataset in this research, as we could
not install the AoA unit at one of the public LoRaWAN
gateway locations. As a result, the overlapping area on the
probability density grid is larger, and the errors are higher as
well. Therefore, we will re-evaluate this approach as soon as
we have installed the AoA unit at one of our own gateway
locations.

Lastly, the particle filter method with and without AoA
estimates is evaluated. The estimation errors are significantly
lower compared to the previous methods, especially if AoA
data is used. As the first message in the dataset is used to
initialize the particle set, no location estimate is calculated.
Hence the particle filter with AoA returned an estimate for all
messages except the first one. The particle filter without AoA
returned one less estimate, since one of the messages in the
dataset contains no TDoA measurements. Therefore, there was
no information to update and resample the particles. Our cur-
rent implementation does not return a location estimate in this



case. However, a particle filter could still return an estimate
by updating the particles with uniformly distributed weights.
Adding this functionality to our future implementation will
require only a minor effort.

For the particle filter without AoA, a mean error of 189 m
and a 95th percentile of 347 m was obtained. For the particle
filter with AoA, a mean error of 122 m and a 95th percentile of
297 m was obtained. Hence, adding AoA to the particle filter
leads to a 35 % decrease of the mean location error. Compared
to the TDoA and grid-based methods, the mean location error
was decreased with 73 % and 57 % respectively. Furthermore,
the particle filter with AoA was able to calculate an estimate
for all 388 LoRaWAN messages, whereas the TDoA solver
could do this for only 274 of them. The grid-based method
could calculate an estimate for 319 messages. Clearly, the
particle filter is the most reliable method in this comparison.

An important factor that determines the performance of
the particle filter is the initialization step. In the current
implementation, a Gaussian distribution is applied around
an initial TDoA solver estimate, with a standard deviation
of 300 m. However, if the initial estimate would be closer
to the solvers’ 95th percentile error of 1167 m, there is a
significant risk that many particles are initiated in the wrong
area, or that they are at least very sparsely distributed, given
a computationally feasible amount of particles. Additionally,
particles miss the opportunity of being initiated close the the
ground truth location if the location estimate has a low error.
Therefore, instead of using a fixed initial standard deviation, a
more reliable method should be implemented. One possible
method is to calculate a confidence radius for the initial
estimate based on the available measurements, and then using
this confidence radius as the standard deviation of the normal
distribution.

Because a particle filter takes the previous states of its par-
ticles into account, outliers occur far less frequently compared
to the previous methods. As can be seen in Figure 9, outliers
mostly arise at the first transmitted message of a location. A
logical explanation for this is that there is a relatively big time
difference between the last message of a location and the first
message of the next location. Hence, the particles will move
further away from each other, resulting in more uncertainty
for the next location estimate. In many cases, the estimation
errors decrease after the first estimate at a location, because
the particles start to converge again. For some locations, errors
increase after the first estimate. This could be caused by higher
AoA errors, or a lower amount of receiving TDoA gateways at
those locations. Further research is required to state this with
certainty.

Finding a clear correlation between the location estimation
errors of Figure 9, the amount of TDoA measurements and
the AoA errors in Figures 4 and 5 is not self-evident. For
example, the errors of locations 10 and 18 show that an above
average amount of TDoA measurements and a below average
AoA estimation error does not necessarily result in accurate
estimation errors. On the other hand, less TDoA gateways or a
high AoA error do not always result in a the opposite, as seen

in the particle filter with AoA plot of location 5. Therefore, our
future work includes studying the quality of our measurements
to see if a more distinct correlation can be observed. For
now, we do not filter any input data in the particle filter, so
TDoA measurements with an inaccurate timestamp could have
a negative effect on the resulting location estimate.

VI. CONCLUSION

As stated in the introduction of this paper, our goal was
to achieve reliable localization with low estimation errors
by combining LoRaWAN TDoA and AoA measurements by
means of a particle filter. Compared to a regular TDoA
solver, the mean error of the particle filter implementation
with AoA is 73 % lower, whereas the 95th percentile error
is 74 % lower. Moreover, the particle filter was able to obtain
a location estimate for every LoRaWAN message, contrary to
the TDoA solver which only returned a location estimate for
71 % of the messages. The grid-based combination performs
better than the TDoA solver, but is still outperformed by the
particle filter which has a mean location error reduction of
57 % and a reliability increase of 21 % compared to the grid-
based method. Concisely, the particle filter surpasses the other
methods in both reliability as accuracy, since estimates with
lower errors are maintained even when no location can be
estimated through the TDoA or grid-based methods. Another
important achievement is the use of real AoA data instead of
simulations. To the best of our knowledge, we are the first
to implement real AoA data for localization in LoRaWAN
networks.

Nevertheless, our future work includes a lot of possible
optimizations that could further improve the results of the
particle filter. First, the input data for the particle filter can
be improved. Apart from TDoA and AoA, RSS will be added
to the measurements. We intend to make use of our own
gateways to collect these measurements, so that we could
not only to evaluate the localization algorithms, but also the
effect of physical changes in the network, e.g. the locations of
the gateways. As previously mentioned in the discussion, we
intend to filter the TDoA data to remove inaccurate timestamps
from the measurements. Also, we want to expand the AoA
data, so that it not only includes an azimuth angle, but also
the elevation.

Of course, the elevation estimate is only useful if the eleva-
tion angle between a particle location and the AoA gateway
location can be calculated. To do this, map information has
to be included to estimate the altitude of a particle. This map
information will be used for many more optimizations. For
example, the particles can be redistributed so that they are only
located on roads, and their motion model can be adapted to
speed limits and other traffic information. Additionally, we will
analyze how to detect when the application context switches
and change the measurement and motion models of the particle
filter accordingly, e.g. when the context switches from walking
to driving a vehicle. To do so, we will collect data in a realistic
IoT application that keeps LPWAN limitations such as duty
cycle regulations into account.
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