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Abstract—Condition monitoring is an important asset in the
industry to improve the safety and efficiency of the production
chain. However, in heavy machinery – such as edge trimmers in
steel mills – it is often impractical and unsafe to install intrusive
sensors to get the data needed for condition monitoring. Non-
intrusive monitoring techniques based, e.g., on acoustic data
captured by microphones placed in the vicinity of the assembly
being monitored are attractive options. Our application deals
with the acoustic monitoring of rotational blades cutting steel
strips at high speeds. Knowing the correct period of the cutting
process is important for quality evaluation purposes. We propose
two novel robust methods to estimate the periodicity based on
the audio captured by a microphone near the blades. One is
an improved autocorrelation function and the other is based
on linear regression, both using incorporating an novel test
for the correctness of the estimated period. We compare our
methods against the standard autocorrelation-based periodicity
measurement techniques on real data recordings. The proposed
method estimates the correct period about 87% of the time,
compared to an accuracy of only 51% using standard periodicity
measurement approaches.

Index Terms—Period estimation, linear regression, autocor-
relation, condition monitoring, non-intrusive system parameter
estimation

I. INTRODUCTION

Condition monitoring is an important asset in the industry
to improve the safety and production chain efficiency. We are
working on a particular aspect of this in the steel industry.
Here, in the manufacture of the steel plates and coils, an
edge trimming line is used in the final stages for cutting the
steel roll to its final size. The waste portions are chopped into
strips of uniform length for recycling. This chopping of the
waste is done by a rotational blade assembly. In Fig. 1a an
edge trimming line is schematically depicted and in Fig. 1b a
graphic of the chopper blades is shown.

The cutting of steel wears the blades out very quickly,
and being able to predict any kind of failures of the cutting
equipment is a big benefit. However, for such industrial
machinery it is often impractical to integrate sensors into
the core of the machine, due to the infrastructure that is
already in place for safety and/or operational reasons. In
these situations, non-intrusive sensors such as microphones or
cameras need to be used. Here we deal with the monitoring of

(a) A simplified schematic of the
edge trimming line

(b) The
chopper
blades

Fig. 1: The edge trimming line is shown in (a). In (b), a side
view of the chopper blades are shown.

the chopper blades of a process line that trims different steel
types with thicknesses ranging from about 3 to 8 millimeter.
For this we use a microphone mounted half a meter from
the chopper blades. To facilitate temporal cut localization for
further processing, the period between two cuts is estimated.
However, the cutting is not guaranteed to be perfectly periodic
due to play of the waste.

Period estimation has been tackled in literature using several
different techniques and for different use cases. Periodicity
mining algorithms, such as in [1], [2], attempt to extract the
period of periodic patterns from a simplified sequence obtained
by mapping the time series data. This mapping, often referred
to as symbolization, compresses the signal in time domain,
inevitably lowering the sample accuracy that can be achieved.
The autocorrelation (AC) function is also extensively used for
period estimation. For example, it can be used to extract the
pitch period of speech signals by finding the highest peak
in the AC. In [3], a weighted AC function is used. The
weighting is done using the average magnitude difference
function (AMDF) which has a notch where the lag is equal
to the period. However, depending on the state of the blades,
both AC and AMDF would either find the interval between
two cuts or that of a full rotation, and is thus not reliable. In
[4], Nishiguchi and Kobayashi propose an improved algorithm
making use of the AC function for estimating the interval
between pulses of a pulse train. However, this is not applicable
to our recordings because there is no established way of
converting the audio into a pulse train.
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In this work we propose two novel methods to estimate the
interval between two cuts, the first based on the AC function
and the other based on linear regression (LR). To improve the
robustness of the approaches and to further reduce errors in the
period estimate, several candidate period values are computed
and a so-called variance test test is applied to determine the
best estimate.

The paper is organized as follows: Section II describes the
signal model and a standard method for period estimation
using the AC function. In section III we propose an improved
AC function, together with a method to test the correctness of
an estimate of the period. Based on this, we next propose a
new method using linear regression in section IV. Section V
demonstrates how both proposed methods can be combined.
The results are discussed in section VI and finally, section VII
presents the conclusions and future work.

II. PERIOD ESTIMATION

Period estimation attempts to extract the period T from a
periodic signal. The estimated period T̂ is given by T̂ = T−ε ,
with ε the error between the estimate and the correct period.
A. Signal model

The cutting of steel in our situation produces a periodic
signal when the speed is constant. During a cut, the captured
audio signal has high energy and thus also high magnitude
peaks. This can be seen in Fig. 2, where the cut regions
are marked in grey in the time domain signal on top. In the
spectrogram below, the high energy regions can be seen as
bright vertical strips. The audio signal s(n) (captured at a
sample rate of fs = 48 kHz) thus has a period given by
the interval between two cuts, denoted as T . Each periodic
segment is referred to as an epoch. Depending on the condition
of the blades, the individual epochs may be slightly irregular
with respect to each other, but the pattern will still repeat
over the full rotation of the blade assembly. Further, one full
rotation of the blade assembly will cut the steel E times,
where E indicates the number of blades in the assembly. Thus
a rotation consists of E epochs, referred to as a sweep. In
some cases, the control algorithm changes the speed of the
choppers slightly, however this change cannot be detected from
the measured speed data itself. This results in the signal not
being perfectly periodic but near-periodic.

B. Standard autocorrelation

Autocorrelation is widely used to extract the period of a
periodic signal. The discrete AC function is given by

Rss(τ) =
∑
n

s(n)s(n+ τ) , (1)

with τ denoting the lag between the original and the shifted
version of the signal. The estimate of the period T̂ is given by
the lag τ that corresponds with the highest magnitude peak of
the AC of a periodic signal, i.e. τ ' T .

T̂ = argmax
τ

Rss(τ) (2)

The Rss(τ) depends on the magnitude of the signal so it can
be biased by the high-energy parts of the signal that do not

Fig. 2: A periodic segment with a length of 5 epochs, where
one epoch is the same length as the period T . The top shows
the time domain signal where the cutting of the steel is marked
in grey. The bottom graph shows the spectrogram of the signal.
The signal is very noisy and this noise is extremely non-
stationary due to constantly falling scrap metal and other noise
sources. Further, note that the time axis of the top plot is in
number of epochs, while it is in seconds for the spectrogram.
This gives an idea of the time scales involved.

come from the cutting but are caused by the background noise.
This makes the period estimation difficult. Another drawback
of the AC is that the lag which corresponds to the biggest peak
is not necessarily the period of the signal, but rather an integer
multiple of it, especially when the signal is quasi-periodic as
is the case here. This phenomenon is known as ”octave error”
[5]. Also, for small values of the lag τ , the correlation will be
significantly higher than the peak where τ ' T , which means
that finding small periods becomes less reliable. To prevent
this, a priori knowledge of the maximum chopper speed, which
corresponds to the minimal period Tmin = 3000, is used
to limit the search range to τ ≥ Tmin. The standard AC is
contrasted with our proposed method in the results section.

III. IMPROVED AUTOCORRELATION FUNCTION

One of the shortcomings of the AC function is that it is
possible that the peak corresponds with an integer multiple
of the period rather than the period itself. Here we propose
an improved AC (IAC) method to determine the best period
estimate from a set of K candidate periods. These candidates
are given by T̂k = T̂ /k, for k = 1, . . . ,K, where T̂ is the
initial estimate obtained from (2). However, the search range
is further constrained to 4 · Tmin ≤ τ ≤ K · Tmin.

A. Matrix representation of a periodic signal
The first step of this approach is a transformation of the

one-dimensional periodic signal s(n) into a two-dimensional
matrix S(T̂ ).The transformed matrix S(T̂ ) has dimensions
(N × L), with N = bT̂ c the number of samples per epoch,
and L = Ns/bT̂ c the number of epochs. b•c denotes the floor
function. This means that the lth column of S(T̂ ) corresponds
to the lth epoch of s(n). If the transformation is performed
using the correct period T , i.e. S(T ), then all epochs will
be perfectly aligned. For this we exploit the fact that the
signal segment should ideally (in noiseless conditions) exhibit
a region of high intensity in the vicinity of a cut and low
energy elsewhere. Thus, if the signal is ”epoched” at the
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correct period, all the high-intensity segments would line up
across the different epochs. When T has a nonzero fractional
part {T}, one sample is removed every {T}−1 epochs to
correct for this. Also, to ensure that the high energy regions are
primarily in the middle of the epoch, the signal is shifted by
the circular mean of the maxima positions of each epoch. Such
a corrected matrix |S(T )| is shown in Fig. 3 (a). The dark line

Fig. 3: The absolute matrix representation |S(T̂ )| of a periodic
signal with period T = 13+1/7. The hatched region above the
dashed line is where no samples are removed, the other pixels
above this line are the samples that are removed to correct for
the fractional period. In (a), T̂ = T , in (b) there is an error
ε = 0.2 and in (c) the error is equal to 1.

indicates regions of high intensity and is horizontal because
the transformation was done with the correct period T . In (b),
the line has a slope due to the error ε = 0.2 that is introduced.
This means that for every epoch 0.2 samples are moved to
the next epoch. After 10 epochs, the high magnitude region
will have moved up by 2 full samples. The error is increased
to ε = 1 in (c), causing the line to wraparound from top to
bottom.

B. Variance test
The alignment of the high intensity regions around the cut

can be used to check the correctness of the period. When
the high intensity line is horizontal, the maxima positions
of each epoch will be roughly equal. On the other hand,
when there is a slope (indicating inaccurate T̂ ), the maxima
positions will be spread out. This means we can select the
best period estimate based on the variance of the maxima
positions of the transformation S(T̂ ). The maxima positions
of a transformation by T̂ is given by

yk(l) = argmax
n

∣∣∣Sn,l(T̂k)∣∣∣ ∀ l ∈ 1, . . . , L , (3)

where Sn,l(T̂ ) indicates a single sample of the matrix S(T̂ ) at
the nth sample of the lth epoch. Testing the period estimates
T̂k is thus possible by calculating the normalized variance

νk =
var(yk)

T̂ 2
k

. (4)

The variance is normalized to ensure it is comparable for
different periods. The best estimate T̂ is thus the one for which
νk is smallest: T̂ = T̂k′ , k

′ = argmink νk.
In figure 4, the normalized variance is plotted in function

of the estimated period T̂ . The normalized variance is signifi-
cantly lower when the period is equal to the correct period T .
Ideally, the normalized variance should be high everywhere

other than the correct period. However, as T̂ increases, the
normalized variance decreases. This is likely due to the fact
that the normalized variance is calculated with fewer maxima
positions for larger values of T̂ .

Fig. 4: A plot of the normalized variance in function of the
period. T = 7870 is the correct period, where the variance is
at its lowest. However, as the estimate period T̂ increases, the
normalized variance decreases, which is undesirable.

IV. LINEAR REGRESSION APPROACH
In the previous section we see that the matrix representation

can be used to determine whether the period is correct or not,
based on the slope of the line. If the period is not correct the
line has a slope which is equal to the error ε. This means that
when we can estimate the slope, we can find the correct period
by simply calculating T = T̂ + ε.

Therefore we introduce a new method that does not rely
on the AC but on linear regression (LR). Another advantage
of this LR approach is that it only relies on the position of
the high intensity regions and not on the exact magnitude.
Thereby, this approach is less biased by signal segments
which are heavily corrupted by noise (unlike the AC method).
However, the initial period estimate needs to be within a
certain range of the correct period for this method to converge.
Here too we make use of a priori information to limit the
range of possible period candidates between Tmin and Tmax.
To cover any period T within this range, we make use of K
initial period estimates T̂ (0)

k . Finally, the variance test proposed
before can be used here as well to select which period estimate
is the best.
A. Transformation in terms of sweeps

Since epochs can be irregular with respect to each other
depending on the state of the blades, it is of interest to
work with sweeps rather than epochs. This results in the
transformation S(ET̂ ) of size

(
bET̂ c × L

)
with E being the

number of epochs in one sweep. To simplify the mathematical
expressions, S(ET̂ ) is further partitioned into E parts forming
a tensor of size (N × L× E) denoted as S′(T̂ ). The element
S′n,l,e(T̂ ) of tensor S′(T̂ ) refers to the sample at position n

of the eth epoch of sweep l.
Each partition has a line similar to before, but unlike the

previous case, the line is formed by the cuts of a single
blade instead of all 5 blades. However, since the signal is
transformed by ET̂ = E(T − ε), the error ε is multiplied by
E as well, resulting in a slope that is E times bigger. The
period correction thus becomes

T = T̂ +
m

E
, (5)

with m the slope of the lines.
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B. Wraparound removal
Linear regression requires the lines to be straight without

wraparound, otherwise the fitted line will be nowhere near the
correct slope. To do this we find a rough estimate of the slope
by looking at the difference of the maxima positions between
consecutive sweeps. The maxima positions are now defined as

Yl,e = argmax
n

|S′n,l,e(T̂ )|+ (e− 1)N , (6)

for all epochs e = 1, . . . , E in all sweeps l = 1, . . . , L. The
added term (e − 1)N is there so that the maxima position is
relative to the start of the sweep rather than the start of the
epoch. The difference Dl,b between each maximum and the
closest maximum of the next sweep is then given by

Dl,e = Yl+1,β − Yl,e , (7)

with β = argminj |Yl,e − Yl+1,j | for j = 1, . . . , E. The
wraparound effect will cause many of the differences D to
be the wrong slope, however, the most frequently occurring
slope d will most likely be close to the correct slope, which is
used to update the estimated period to a better period estimate

T̂ (i+1) = T̂ (i) +
d

E
, (8)

with •(i) denoting the iteration. Repeating this step can
improve the period estimate further since there will be less
wraparound, and thus the differences D will be less affected
by it.

Wraparound can only be removed when the initial error is
not too high. This means that the range in which an initial
period T̂

(0)
k must lie is given by

[
T − Tαmax

2 , T + Tαmax

2

]
,

with αmax = 1
E . This range is referred to the convergence

region. The bounds of the convergence region are defined due
to the fact that when the absolute error is larger than T

E , the
slope will be more than half the period. However, because we
find the difference between the closest consecutive maxima,
the slope cannot be larger than half the period.

Given we know the convergence range, a set of initial peri-
ods T̂ (0)

k can be defined to cover the search range [Tmin, Tmax]
so that at least one of the initial periods will converge to the
actual period T . To minimize the number of initial periods, and
thus also the computational complexity, we use the following
function T̂

(0)
k = Tmin · (1 + α)k−1, with k = 1, . . . ,K and

0 < α < αmax a measure of how densely the initial periods
are chosen within the given range. Choosing a small value for
α increases computation time, however, a too large value of
α may risk missing the value in the range of the true period.
We have empirically found α = 1

2.5E good for our purpose.

C. Period fine tuning using linear regression

Now that there is at least one period estimate where the
wraparound is successfully removed, linear regression can be
used to find the slope m more accurately to improve this period
estimate further. Here we also make use of the transformation
based on sweeps S′(T̂ ) and the maxima positions Y given
in (6). This gives us E sets of points that lie in a line over
all sweeps. Each set corresponds to one epoch. The slope of

these lines will be the same since the speed of the choppers
is constant, so we want to find the shared slope m. The y-
intercept however, will be different for each set of points, and
is thus a row vector of length E denoted by cT .

The slope m can be derived from the least squares equation

J =

E∑
e=1

L∑
l=1

(
Y ′l,b − Yl,b

)2
, (9)

where we try to minimize the squared difference between the
line Y ′ = mX + cT and the maxima positions Y . By the
standard formulae for linear regression, the slope m for which
J is minimum is given by

m =

∑
b cov(X,Y )∑
b var(X)

, (10)

with X and Y the x and y coordinates of the maxima
positions. The estimated period is corrected by the slope m as
defined in (5).

The wraparound removal and the period fine tuning steps
are done for all K initial period estimates. Subsequently, we
can use the variance test proposed in III-B, to select the best
period estimate.

V. COMBINED PERIOD ESTIMATION METHOD

We now have two period estimation algorithms, one uses an
improved autocorrelation method and the other makes use of
linear regression. Both these methods utilize the variance test
to determine the best period estimate from a set of estimates.
The variance test is completely separate from the method used
to estimate the periods, and thus can also be used to determine
the best period estimate from two or more estimates obtained
using different methods. This hybrid period estimation method
is just that, where we select the best estimate of either the IAC
or LR approach as the one with the lowest variance.

VI. RESULTS

In this section we discuss and compare the results from our
novel proposed methods based on improved AC and LR, as
well as the standard AC method. The data used for evaluation
are 102 periodic regions taken from 80 real recordings. A
second order, zero phase high-pass filter with a cutoff of
100Hz is applied on the raw signal, which is then squared
and followed by a recursive smoothing filter with smoothing
parameter α = 0.98. The number of blades in the assembly
E is equal to 5. The periodic regions are of varying length,
ranging from around 50 epochs to 2000 epochs, with most of
the regions being around 300 epochs long. These methods are
evaluated using the ground truth data obtained by converting
the speed of the chopper into the period in samples. Based on
the matrix representation, we can determine the accuracy of
the different period estimation methods, but also that of the
ground truth (GT). We find that the GT slightly varies around
the real period with about 10 samples. For this reason, the
interpretation of these results should be done with caution.

In Fig. 5, the results of AC, IAC and LR are plotted
against the GT period. We see that the improved AC and the
LR method have a significantly larger number of correctly
estimated periods (i.e. points that lie on the x1 line). The
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standard AC has a substantial amount of estimations on the
x5 line, i.e. estimating the sweep, but also other multiples of
the GT period. This is not the case for IAC and LR, but do
suffer from estimations that are half of what they should be.

Fig. 5: A comparison between the AC and the two novel
proposed methods IAC & LR, plotted against the ground truth
(GT) period. The lines mark different multiples of the GT.

The detection rates for different multiples of the ground
truth are summarized in table I. It shows the number of
estimations that are within 100 samples of a multiple of the GT
period. Here we clearly see the improvement that IAC gives
over AC. Nearly all estimates of AC that are multiples of the
GT period are correctly estimated by IAC. The LR method
also does not seem to suffer from estimating multiples of the
GT period and has more correct estimates than IAC. We can
also see that the combined method has an even higher accuracy
rate than either IAC or LR of around 87%.

/2 x1 x2 x3 x4 x5 other
AC 0 52 7 1 1 34 7

IAC 8 79 0 0 0 5 10
LR 4 86 0 0 1 0 11

Combined 7 89 0 0 0 3 3

TABLE I: The detection rates of the different algorithms. It
shows the number of estimations that are within 100 samples
of a multiple of the ground truth (GT) period.

It is further important to note that from the correctly
estimated periods of the standard AC method, 4 are incorrectly
estimated by both the proposed methods, and thus also by the
combined method. This means that in some cases the variance
test does not always perform optimally.

The RMSE of the correctly estimated periods is 19.2
samples for AC, 17.8 for IAC, 19.7 for LR and 18.4 for the
combined method. To get a better idea of the accuracy, we
used the matrix representations to manually check the error.
We find that the absolute error is less than 6 samples for the
combined method when the signal has 100 or more epochs.
For signals that only have around 40 epochs, the error goes up
to 70 samples. Two of these matrix visualizations are shown
in Fig. 6. (a) shows a short periodic region, while (b) shows a
near-periodic but longer region. The upward bend indicates a
speed reduction but this only accounts for a change in period
of 3 samples (=62.5ms). Here the estimated period is the
average period of the signal.

Fig. 6: The matrix representation S(T̂ ) of two recorded
signals. In (a), the signal is perfectly periodic but short. It
is harder to estimate the period of short segments. Here the
error is about 70 samples. The signal in (b) is near-periodic,
with a deviation of about 3 samples.

VII. CONCLUSIONS

Period estimation in low SNR conditions is not a trivial
problem. We exploited the high intensity region around a cut
to align the different epochs of the recorded signal in a 2-
D representation. We further proposed a novel method for
period estimation based on linear regression as well as an
improved AC method. Also, a test to assess the correctness of
the period is proposed using the variance statistic. Results of
real recordings demonstrate that the combined method of the
two newly proposed algorithms can estimate the period very
accurately 87% of the time, compared to about 51% using the
standard AC method. These results can possibly be improved
further by applying stationary noise suppression algorithms
to enhance the signal, such as [6], [7]. Also outlier removal
algorithms can be used to improve the accuracy and detection
rates. This will be studied in future work.
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