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Abstract

Recent advances in DNA sequencing methods revolutionized biology by providing highly

accurate reads, with high throughput or high read length. These read data are being used

in many biological and medical applications. Modern DNA sequencing methods have no

equivalent in protein sequencing, severely limiting the widespread application of protein

data. Recently, several optical protein sequencing methods have been proposed that rely

on the fluorescent labeling of amino acids. Here, we introduce the reprotonation-deprotona-

tion protein sequencing method. Unlike other methods, this proposed technique relies on

the measurement of an electrical signal and requires no fluorescent labeling. In reprotona-

tion-deprotonation protein sequencing, the terminal amino acid is identified through its

unique protonation signal, and by repeatedly cleaving the terminal amino acids one-by-one,

each amino acid in the peptide is measured. By means of simulations, we show that, given a

reference database of known proteins, reprotonation-deprotonation sequencing has the

potential to correctly identify proteins in a sample. Our simulations provide target values for

the signal-to-noise ratios that sensor devices need to attain in order to detect reprotonation-

deprotonation events, as well as suitable pH values and required measurement times per

amino acid. For instance, an SNR of 10 is required for a 61.71% proteome recovery rate

with 100 ms measurement time per amino acid.

Introduction

Proteins form the core of many biological processes such as cell metabolism, cell signaling, cell

adhesion, immune responses, etc. The absence, presence or modifications of proteins can thus

have various biological or clinical implications [1]. Therefore, the accurate identification of

proteins present in a sample can provide information on biological systems, complementing

genomics and transcriptomics profiling. Specific protein sequencing applications include for

example clinical proteomics, microbial analysis, molecular diagnostics for health monitoring,

functional proteomics, bioreactor monitoring and organ monitoring [2–7]. The most com-

mon genomic sequencing methods yield short and highly accurate reads with a high through-

put, but these methods do not easily translate to proteomics. Second generation DNA (and

RNA) sequencing methods [8] typically rely on polymerase chain reaction (PCR) to copy

DNA molecules, thus forming clusters of identical DNA molecules. When using fluorescent
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labels to identify nucleotides, all DNA molecules within a cluster collectively emit a strong

fluorescent signal, leading to highly accurate optical methods. For proteins, no similar copying

mechanism exists. As such, next-generation protein sequencing will likely be more similar to

third generation DNA sequencing [9, 10] (single molecule sequencing—SMS), in which indi-

vidual DNA molecules are sequenced without amplification. Recent advances in the develop-

ment of these SMS methods allow for the generation of very long DNA reads with a high

throughput. In this respect, contemporary methods for protein sequencing are significantly

more limited.

Protein sequencing methods

Three established protein identification methods can be discerned, each with their own limita-

tions. First, Edman degradation subjects a peptide to consecutive steps of degradation, allow-

ing to break down and identify the sequence one amino acid at a time. However, this method

suffers from a very low throughput and only works for short peptides. Second, immunoassays

rely on antibodies to identify proteins. However, these assays require the development of spe-

cific antibodies for each protein or protein modification of interest. Finally, mass spectrome-

try-based methods offer high throughput and require no application-specific antibody design.

However, due to the high complexity of protein samples, mass spectrometry often fails to cor-

rectly resolve all proteins in a sample. Additionally, mass spectrometry requires expensive and

large equipment.

As such, a sequencing method that offers high throughput, high adaptability, high accuracy,

and a low cost is not yet available. However, in recent years, several novel protein sequencing

techniques have been proposed, based on optical imaging of fluorescently labeled molecules.

Although promising, these methods are currently not yet well-established.

In the fluorosequencing technique [11], a specific set of amino acids is fluorescently labeled.

Through Edman degradation of peptides with a fluorescently labeled reagent, amino acids are

removed one by one, and the fluorescence signal is recorded. Removing a fluorescently labeled

amino acid changes the overall fluorescence intensity of the molecule, allowing for the identifi-

cation of that amino acid. The pattern of degradation events combined with changes in fluo-

rescence intensity allows for identification of peptides in a sample, using a reference database.

Similarly to the fluorosequencing technique, a set of amino acids is fluorescently labeled for

sequencing based on fingerprinting [12]. However, the protein is not digested into peptides

nor degraded. Instead, the polypeptide is guided through a Caseinolytic protease X pore pro-

tein. This allows for the sequencing of much longer polypeptides than is possible using Edman

degradation. In this method a small subset of amino acids is labeled, for example cysteine and

lysine. The measured signal is then a list of occurrences of these amino acids, with their relative

distances. This allows for the identification of the polypeptides in a sample using a reference

database. In a third method, N-terminal amino acid binding proteins (NAABs) bind to a ter-

minal amino acid of a peptide. Fluorescent labels on the NAABs can then be used to determine

binding events and their duration. In this method [13, 14] several (17) NAABs are used con-

secutively, with each NAAB having different binding affinities for the different terminal amino

acids. In this way, two types of information are obtained: (1) which NAABs bind to the termi-

nal amino acid, and (2) how long they were bound. After obtaining this information for an

entire set of NAABs, the terminal amino acid is removed, for example by Edman degradation.

This information can then again be used to identify the peptide using a reference database.

Finally, protein sequencing through peptidase degradation subjects the peptide to consecutive

degradation events, while measuring the time it takes for the peptidase to degrade each amino
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acid. The degradation happens through the binding and cleaving of a fluorescently labeled

peptidase to the N-terminal amino acid of the peptide [15].

Protonation-based protein sequencing

Here, we propose and computationally assess protein sequencing through reprotonation-

deprotonation. In this method, we observe the repeated binding and release of a proton in

either the N-terminal amine (-NH2) or C-terminal carboxyl (-COOH) group of the peptide.

• N-terminal amine: -+NH3Ð -NH2 + H+

• C-terminal carboxyl: -COOHÐ -COO- + H+

These reaction rates depend on the pH of the solution, and on the unique pKa value of the

terminal amino acid. Table 1 provides a list of the pKa values for each of the 20 amino acids. In

other words, measuring the average time that the amino acid spends in a certain protonation

state allows for its identification.

Fig 1 provides an overview of the reprotonation-deprotonation sequencing method we

envision. Proteins are denatured and digested into peptides through the use of an endopepti-

dase. To obtain N-terminal peptides of proteins only, the protease cleavage of the protein sam-

ple is combined with an N-terminal peptide separation chromatography technique [17] such

as for example COFRADIC [18]. Chromatographically separating the signature N-terminal

peptides from the protease-digested protein sample allows to significantly reduce the peptide

sample complexity while still allowing identification of the original proteins. This technique is

applied in mass spectrometry-based proteomics [17]. N-terminal peptides are anchored to a

substrate, by either one of their terminal amino acids or by a cysteine. In order to obtain

approximately a single molecule on a single sensor device a Poissonian single molecule deliv-

ery technique is used [19]. Such technique leads to a random distribution of the amount of

Table 1. The pKa values for the amine groups, carboxyl groups, and side chains that are used in these simulations for the different amino acids [16].

1-letter code amino acid carboxyl pKa amine pKa sidechain pKa

A Alanine 2.35 9.87

C Cysteine 2.05 10.25 8.00

D Aspartic Acid 2.10 9.82 3.86

E Glutamic Acid 2.10 9.47 4.07

F Phenylalanine 2.58 9.24

G Glycine 2.35 9.78

H Histidine 1.77 9.18 6.10

I Isoleucine 2.32 9.76

K Lysine 2.18 8.95 10.53

L Leucine 2.33 9.74

M Methionine 2.28 9.21

N Asparagine 2.02 8.80

P Proline 2.00 10.60

Q Glutamine 2.17 9.13

R Arginine 2.01 9.04 12.48

S Serine 2.21 9.15

T Threonine 2.09 9.10

V Valine 2.29 9.72

W Tryptophan 2.38 9.39

Y Tyrosine 2.20 9.11 10.07

https://doi.org/10.1371/journal.pone.0238625.t001
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macromolecules per sensor limited by Poissonian statistics with a theoretical maximum sin-

gle-molecule occupancy of 37%. A higher single molecule occupation can be obtained for an

optimized delivery technique [20]. Molecules can be bound covalently to a surface for instance

with Cu-free strain-promoted azide alkyne click chemistry (SPAAC).

Changes in electrical charge due to the reprotonation-deprotonation of the free terminal

amino acid are measured. These measurements provide information on the fraction of time

the free terminal amino acid spends in a protonated state. In turn, this allows to determine the

pKa value and hence identifies the amino acid. Using peptidase degradation or Edman degra-

dation, the free terminal amino acid is removed and the subsequent amino acid in the peptide

can be identified. Edman degradation makes use of a harsh acid catalysis step. Chip making

materials such as carbon nanotubes and silicon oxide are chemically resistant. An enzyme

Edmanase has been proposed [21] to carry out Edman degradation without the harsh acid

catalysis step which improves the compatibility with low adsorption detection surfaces.

The electrical signal resulting from reprotonation-deprotonation events is weak and

depends on the length of the peptide under consideration, due to shielding. Additionally, the

time in between successive reprotonation-deprotonation events is in the order of microsec-

onds or shorter. However, it is possible to observe these events for an arbitrary amount of

time. In accordance with the central limit theorem, these repeated measurements of the repro-

tonation-deprotonation events at a single proton binding site allow for a highly accurate deter-

mination of the average duration of protonation states, and hence pKa values. These repeated

observations offer a major accuracy advantage compared to methods where only a single

observation is made for each terminal amino acid. Cleaving the free terminal amino acid can

Fig 1. Protein sequencing based on reprotonation-deprotonation detection. Proteins are denatured and digested into peptides

through the use of an endopeptidase. These peptides are anchored to a substrate, by either one of their terminal amino acids or by a

cysteine. Changes in electrical charge due to the reprotonation-deprotonation of the free terminal amino acid are measured at this

anchor point. These measurements provide information on the fraction of time the free terminal amino acid spends in a protonated

state. In turn, this allows to determine the pKa value and hence identifies the amino acid. By repeatedly cleaving the terminal amino acid,

each amino acid in the peptide can be identified in this way.

https://doi.org/10.1371/journal.pone.0238625.g001
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be achieved using Edman degradation or a peptidase. Edman degradation allows for a precise

control over the measurement times, whereas in the peptidase method this happens at random

times and the average time depends on the peptidase concentration.

The N-terminal amine group and the C-terminal carboxyl group of a peptide are not the

only sources of reprotonation-deprotonation events in a peptide. Several amino acids (cyste-

ine, aspartic acid, glutamic acid, histidine, lysine, arginine and tyrosine) have side chains that

can also bind and release a proton (Table 1). These side chain reprotonation-deprotonation

events result in additional signals that are superposed on the signal of interest. The side chain

pKa values are all significantly higher than the terminal carboxyl group pKa values, but some

of the side chain pKa values are similar to the terminal amine group pKa values. Therefore, in

the remainder of this work, we identify amino acids through their carboxyl group pKa values,

as this reduces the impact of side chain reprotonation-deprotonation events on the signal.

Hardware to detect reprotonation-deprotonation

Realizing a sensor that can monitor the protonation state of a single molecule is an outstanding

challenge. Xiao et al. report on a conductance titration measurement of a single peptide [22].

Their pH-dependent measurement reflects the effect of reprotonation-deprotonation of the

amine and carboxyl groups of a single peptide. One of the relatively more established options

to detect a single elementary charge of a molecule is the electrolytically gated Field Effect Tran-

sistor (FET). In such a device the gate electrode consists of an electrolyte and the ions of the

electrolyte charge the gate electrode. The gate electrode bias controls the electrical current in

the semiconductor channel. This channel is also sensitive to charges of molecules brought

closely to the interface of the channel with the liquid electrolyte. The detection of a single

molecule with a FET has been demonstrated by making use of Carbon Nanotube Field Effect

Transistors (CNTFETs) [23–27]. By recombinantly modifying two amino acid residues in the

protein lysozyme, Choi et al. produced protein variants that differ in charge by elementary

units N = -2, -1, 0, 1, and 2. Carbon nanotube FETs were able to distinguish these elementary

charge differences, indicating that carbon nanotubes have the potential to monitor the proton-

ation-deprotonation of amino acids [24].

The functioning of an electrical sensor for reprotonation-deprotonation is illustrated in Fig

2. Due to screening by the electrolyte, the signal generated by a charge near the FET channel’s

surface is expected to decrease exponentially with its distance from the channel’s surface. Such

exponential dependence has been observed for DNA hybridization [28]. The reprotonation-

deprotonation signal of the terminal amino acid may be recorded by making use of a nanoscale

electrolytically gated field effect transistor with a peptide closely bound to the FET’s channel.

In this work, the critical requirements for such a sensor device to allow our protein sequencing

method are deduced.

Results and discussion

Through computer simulations, the feasibility of reprotonation-deprotonation sequencing is

explored. For these simulations the following scenario is considered. A mixture of proteins is

digested into peptides using an endopeptidase. A single peptide is bound onto a sensor device.

As argued before, we opt to bind peptides with their N-terminal amino acid to the anchor

point to reduce the impact of side chain protonation events. This leaves the carboxyl group

of the C-terminal amino acid free for reprotonation-deprotonation events. Alternatively, the

peptides can be anchored with cysteine binding, but this method has not been explored here.

The peptides on the substrate are suspended in a solution with known pH and the voltage is

sampled at the anchor point at a particular frequency. In this work, we measure at 10 MHz.
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A Python simulator was implemented to generate a signal from which amino acids are then

identified. The signal consists of a high voltage when a proton is bound (on-state) and a low

voltage otherwise (off-state) (see Fig 3). In particular, the change in voltage in the underlying

signal is proportional to the change in charge at the protonation site. For the carboxyl group,

the high voltage state is the neutral state (-COOH), while the low voltage state is the negatively

charged state (-COO-), i.e. we consider “the voltage difference between the on-state and the

off-state.” For the amine group the model is straightforward: the high voltage state is the posi-

tively charged state (-+NH3), and the low voltage state is the neutral state (-NH2). As such,

deprotonation is the transition from on-state to off-state, and reprotonation is the transition

from off-state to on-state. In the case of a carboxyl group this corresponds with a negative

charge for the off-state and a neutral charge for the on-state, whereas for the amine group this

corresponds with a neutral charge for the off-state and a positive charge for the on-state. The

transition rates between these states depend on the terminal amino acid’s pKa value, the pH

value of the solution, and the times between transitions follow an exponential distribution. To

generate realistic signals, we superimpose 1/f noise with a user-defined signal-to-noise ratio.

Additionally, side chain contributions are added to the overall signal. Finally, we also take into

account the shielding, which depends on the distance between the protonation site and the

anchor point of the peptide. This shielding effect increases with the length of the peptide

under consideration. Detailed descriptions of the simulator as well as the signal processing

algorithm are provided in the Methods section.

Sequencing isolated amino acids

In this section, the feasibility of de novo protein sequencing based on reprotonation-deproto-

nation sequencing is explored. Single amino acids were sequenced in isolation, i.e. the amino

acid signal is not simulated in the context of a peptide. The heatmaps in this section sort

amino acids based on their expected on-time, i.e. the expected time that the amino acid is in a

protonated state, since amino acids with similar expected on-times are more likely to be con-

fused than amino acids with very different expected on-times. Certain amino acids yield a sec-

ondary signal when they have a side chain. The expected on-time takes into account both the

main as well as the side chain reprotonation-deprotonation events. As a result, the order of

amino acids can vary between heatmaps (depending on the pH of the solution). Each entry

Fig 2. The functioning of an electrical sensor for reprotonation-deprotonation. (a) Illustration of the modulation of

the channel current by an elementary charge in an electrolytically gated FET. (b)Illustration of the reading out of

reprotonation-deprotonation behavior of a peptide by a field effect transistor device. Here, a carbon nanotube device

example is given. Signal strength decreases exponentially with distance from the channel’s surface. The pKa can be

deduced from the observed average on-time.

https://doi.org/10.1371/journal.pone.0238625.g002
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[i, j] in a heatmap represents the fraction of signals simulated for amino acid i that were identi-

fied as amino acid j. As such, the values in a row sum to 100%, but the values in a column need

not. In this section, we also consider clusters of amino acids, in such a way that amino acids in

the same cluster are harder to distinguish with the reprotonation-deprotonation sequencing

method, than amino acids in distinct clusters. A cluster is a set of amino acids. In the following

each cluster is denoted by a minimal sequence that contains the amino acids of the cluster, for

example {C, P, N} will be written as CPN for the sake of brevity.

As a baseline scenario, we consider the simulation of the reprotonation-deprotonation of

the acidic carboxyl group at pH 3.0, for a measurement time of 100 ms per amino acid, at a sig-

nal-to-noise ratio of 10 (see Fig 4). Certain amino acids, such as phenylalanine, threonine and

tryptophan are correctly identified in almost 100% of the cases, whereas it is more difficult to

disambiguate between other amino acids. We generated seven clusters (F, CPN, T, QRKYS,

MVAGIL, WD, and HE) in such a way that each amino acid has a probability of at least 95% to

Fig 3. The simulation model. There are two states for a given terminal amino acid, and two transitions between these states. A third

transition (enzyme cleaving, not shown) leads from the states of the current terminal amino acid to the states of the next, by cleaving

the terminal amino acid from the peptide. The amount of time spent in alternating on- and off-states constitutes the measured

signal. These on- and off-times are exponentially distributed.

https://doi.org/10.1371/journal.pone.0238625.g003
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be identified as a member of the correct cluster. These clusters are already informative: by con-

sidering amino acids in the same cluster as indistinguishable and by considering tryptic pep-

tides with maximum length of 50, out of the 19,886 proteins in the H. sapiens database, only

322 proteins (1.6%) can not be uniquely identified with these seven clusters. In contrast, the

fluorosequencing approach results in clusters K, DE, Y, W, and FCPNTQRSMVAGILH,

which leaves 1,018 proteins (5.1%) not uniquely identifiable. The C-K fingerprinting approach

resulting in clusters C, K, and FPNTQRYSMVAGILWDHE, is unable to uniquely identify

9,529 proteins (47.9%).

Heatmaps for lower SNR values 5 and 2 are shown in Fig 5. Unsurprisingly, a lower SNR

leads to a lower identification accuracy. At SNR 2, we obtain only three clusters of amino acids

(FCPNTQRKYSMVAGIL, WD, HE).

Fig 4. Heatmap for isolated amino acid identification. Each entry is the fraction of signals generated for that row’s amino acid identified as that

column’s amino acid. The heatbar shows the interpretation of the colours in the heatmap as percentage of identifications. Sequencing simulations were

done for the carboxyl terminal group, at pH 3.0, for 100 ms measurement time per terminal amino acid and an SNR of 10. The average identification

accuracy is 59.90%. With 7 clusters (F, CPN, T, QRKYS, MVAGIL, WD, HE), the cluster identification accuracy is>95%.

https://doi.org/10.1371/journal.pone.0238625.g004
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Fig 6 contains heatmaps for measurement times of 1000 ms and 10 ms per amino acid,

respectively. These figures confirm that longer measurement times lead to higher accuracies:

they allow more samples to be taken from the signal, and more samples lead to better estimates

of the average on-time. With a sufficiently long measurement time per amino acid, many

small clusters of amino acids can be reliably discerned. In particular, with 10 ms measurement

time, the identification accuracy is 32.94% and only 3 clusters can be discerned, while with

1000 ms measurement time, the identification accuracy increases to 79.50%, and the number

of discernable clusters increases to 11. This demonstrates that the ability of the method to con-

trol the measurement time is a significant advantage.

Heatmaps for different pH values are shown in Fig 7. While the difference in average identi-

fication accuracy is rather small, there is a clear effect on the reliable identification of specific

amino acids. These heatmaps show how pH can affect the identification rate. At low pH (1.0),

amino acids with a low pKa value can be more reliably discerned, whereas at a relatively high

pH (4.0), it is more easy to discriminate between amino acids with a high pKa value. In general,

the pKa values can be estimated more precisely when the pH value is close to the pKa value

and the carboxyl group spends roughly half of the time in either protonated or deprotonated

Fig 5. Heatmaps for isolated amino acid identification for SNR values 5 and 2. A heatmap for SNR 10 is shown in

Fig 4. (left) With an SNR of 5, the average identification accuracy is 33.80%. With 4 clusters (FCPNTQRKYSMV,

AGIL, WD, HE) the cluster identification accuracy is>95%. (right) With an SNR of 2, the average identification

accuracy is 18.60%. With 3 clusters (FCPNTQRKYSMVAGIL, WD, HE), the cluster identification accuracy is>95%.

Sequencing simulations were done for the carboxyl terminal group, at pH 3.0, for 100 ms measurement time per

terminal amino acid.

https://doi.org/10.1371/journal.pone.0238625.g005

Fig 6. Heatmaps for isolated amino acid identification for measurement times per amino acid of 1000 ms and 10

ms. A heatmap for measurement time of 100 ms is shown in Fig 4. (left) With a measurement time of 1000 ms, the

average identification accuracy is 79.50%. With 11 clusters (PN, QRK, YS, VAGIL, HE, and 6 singletons) the cluster

identification accuracy is>95%. (right) With a measurement time of 10 ms, the average identification accuracy is

32.94%. With 3 clusters (FCPNT, QRKYSMVAGIL, and WDHE), the cluster identification accuracy is>95%.

Sequencing simulations were done for the carboxyl terminal group, at pH 3.0, and an SNR of 10.

https://doi.org/10.1371/journal.pone.0238625.g006
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state. If the pH is much lower than the pKa value, then the carboxyl group will be in the on-

state for the majority of the time. As a result, there will be fewer (but longer) on-time events

within a certain fixed measurement time, yielding less accurate estimates for the average on-

time and hence less accurate pKa estimates. In addition, one risks missing deprotonation

events shorter than the time in between samples. An analogous reasoning can be made when

the pH is much higher than the pKa value. In the presence of side chains, the optimal pH

might still be different from the average pKa of the amino acids: it can be beneficial to select a

very low pH (e.g. 1.0), such that side chains (with pKa at least 3.86) will rarely deprotonate,

reducing signal disturbance. On the other hand, these simulations do not take into account the

effect that such an acidic environment can have on the peptide and on the device itself.

Sequencing peptides

In this section, the sequencing of peptides using the reprotonation-deprotonation is explored,

in the context of reference-based identification. This means that we select that peptide from a

reference database of known peptides, that was most likely to have generated the observed

(simulated) signal. We focus on N-terminal tryptic peptides that were derived from human

proteins. Electrical signals for peptides were simulated for various parameter settings. Protein

identification is simply based on the identification of unique N-terminal peptides. Because not

all human proteins have a unique N-terminal peptide, protein identification accuracy will

always be lower than the peptide identification accuracy.

When sequencing peptides, the SNR varies between consecutive amino acids in a peptide

due to shielding. The longer the distance between the anchoring point of the peptide and the

proton binding site, the weaker the signal. As such, the SNR is modeled using two parameters:

1. the initial SNR, i.e. the SNR at the peptide anchoring point, and

2. the shielding factor, i.e. a decreasing function that depends on the peptide length d.

The shielding factor is an abstraction that can take into account various physical properties

of the system, such as the Debye length, or peptide movement. The shielding factor used in

these simulations is of the form exp ð� w
ffiffiffi
d
p
Þ, where χ is a positive constant. The square root of

the number of amino acids (
ffiffiffi
d
p

) is an approximation of the distance between the proton bind-

ing site and the anchor point, assuming a worm-like chain behaviour with a relatively low

Fig 7. Heatmaps for isolated amino acid identification at pH 1.0 and 4.0. A heatmap for pH 3.0 is shown in Fig 4.

(left) With pH 1.0, the average identification accuracy is 65.50%. With 10 clusters (HQRKDYS, VAGIL, and 8

singletons) the cluster identification accuracy is>95%. (right) With pH 4.0, the average identification accuracy is

40.80%. With 5 clusters (FCPNTQRKYSMVAGIL, and 4 singletons), the cluster identification accuracy is>95%.

Sequencing simulations were done for the carboxyl terminal group, for 100 ms measurement time per terminal amino

acid, and an SNR of 10.

https://doi.org/10.1371/journal.pone.0238625.g007

PLOS ONE The feasibility of protonation-based protein sequencing

PLOS ONE | https://doi.org/10.1371/journal.pone.0238625 September 11, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0238625.g007
https://doi.org/10.1371/journal.pone.0238625


persistence length, which is a common model for peptide movement [29]. In order to study

the impact of side chain signal interference, we consider both the cases of bound and free side

chains. In the former, the side chains are assumed to be bound to molecules that block side

chain reprotonation-deprotonation, thus preventing any signal interference. In the latter, side

chains can freely reprotonate-deprotonate.

The baseline simulation uses the following parameters: 100 ms measurement time per

amino acid, pH 2.5, shielding factor exp ð� 0:2
ffiffiffi
d
p
Þ (see Methods), initial SNR 10, and bound

side chains. Fig 8 shows peptide recovery rates per peptide length and correctly identified

peptide counts with these parameters. All other simulations in this section vary only a single

parameter from this baseline. The baseline scenario shows a very good peptidome recovery

rate (90.69%). With increased measurement times of 1000 ms per amino acid, also most short

peptides can be correctly identified and the overall peptidome recovery rate increases further

(96.69%). In contrast, shorter measurement times (10 ms) lead to less accurate identification

of peptides of all sizes (peptidome recovery rate 73.82%). Fig 8 also shows the negative impact

of the presence of side chain signals on the ability to correctly identify peptides with the cur-

rent identification method. In principle, the superposed side chain signal could be treated as

additional information that can be leveraged to improve identification accuracy. We did not

pursue this idea further and we treat the superposed signal originating from free side chains as

noise.

Fig 9 shows peptide identification results per peptide length with shielding parameter values

of 0.1, 0.2, and 0.4. In principle, the shielding parameter is a property of the system and can

only be controlled to a limited extent. The baseline shielding parameter χ = 0.2 is an approxi-

mation derived through the formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s � p � 2

p
=lD, in which s is the amino acid size, p is the

peptide persistence length, and λD is the Debye length in room temperature water with a salin-

ity of 10mM. Halving the shielding parameter χ from 0.2 to 0.1 does not have a significant

effect on the identification accuracy, except for a small improvement for the longest peptides

(>30 amino acids). However, when increasing χ to 0.4, the shielding becomes very strong and

the peptidome recovery rate is greatly reduced (23.61%).

Peptide identification results per peptide length with initial signal-to-noise ratios of 100, 10,

5, and 2 are shown in Fig 10. With an SNR of 100, peptide identification is slightly better than

in the baseline scenario with an SNR of 10. Lowering the SNR has a bigger impact: an SNR of 5

significantly lowers the accuracy of the peptide identification, and with an SNR of 2, almost

none of the peptides can be correctly identified. As such, an SNR of at the very least 5 is a solid

target for the reprotonation-deprotonation device development.

This target SNR (5) is further explored in Fig 11, by extending the measurement time to

1000 ms and 10 s. As seen in Fig 8, a longer measurement time per amino acid can improve

the peptidome recovery rate significantly. With SNR 5, the peptidome recovery rate improves

from 45.66% at 100 ms to 70.97% at 1000 ms and to 87.69% at 10 s measurement time per

amino acid. Measuring for even longer could potentially further improve peptide identifica-

tion, but this was not simulated due to excessive computation costs.

Table 2 shows an overview of the proteome recovery rate of all simulations. Since cor-

rectly identified peptides lead to correctly identified proteins, there is a strong correlation

between the peptidome recovery rates (PeRR) and proteome recovery rates (PRR). A signifi-

cant fraction of the proteome can however not be identified, because their terminal peptides

are not unique in the proteome. As such, Table 2 also shows the “unique PRR”, i.e. the PRR

limited to those proteins that can be uniquely identified based on their N-terminal tryptic

peptides. This metric is closely related to the peptidome recovery rate, but is limited to the

peptides that are relevant for protein identification. The best possible protein recovery rate
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when identifying proteins based on their N-terminal tryptic peptides corresponds with a

unique PRR of 100% and a PRR of 65.42% for this data set. The results show that blocking

side chains, longer measurement times per amino acid, weaker shielding and a higher SNR

all result in a higher peptide and proteome recovery rates. In particular, blocking side chains

Fig 8. Peptide identification fraction: Baseline scenario, free side chains, and shorter and longer measurement time per amino acid. (top) The

fraction of correctly identified peptides for each peptide length. The legend additionally contains the peptidome recovery rate (PeRR). (bottom) The

total peptide count for each peptide length, and the count of correctly identified peptides. The simulation uses the following parameters: 100 ms

measurement time per amino acid, pH 2.5, shielding factorexpð� 0:2
ffiffiffi
d
p
Þ, initial SNR 10, and bound side chains, i.e. additional molecules are attached

to the side chains, and no side chain signal is generated. In these simulations three variants on this baseline scenario are also included: (1) free side

chains is the scenario of unbound side chains that can freely emit a signal, (2) the measurement time per amino acid is reduced to 10 ms instead of 100

ms, and (3) the measurement time per amino acid is increased to 1000 ms instead of 100 ms.

https://doi.org/10.1371/journal.pone.0238625.g008
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dramatically increases the unique PRR from 35.37% to 93.35%. This is equivalent to 10×
fewer unidentified proteins among those that are uniquely identifiable. Similarly, increasing

the measurement time per amino acid from 10 ms to 100 ms increases the unique PRR from

76.64% to 93.35%, and decreasing the shielding factor from exp ð� 0:4
ffiffiffi
d
p
Þ to exp ð� 0:2

ffiffiffi
d
p
Þ

increases the PRR from 15.26% to 93.35%. An even larger increase in unique PRR (1.92% to

Fig 9. Peptide identification fraction: Shielding factor. (top) The fraction of correctly identified peptides for each peptide length. The legend

additionally contains the peptidome recovery rate (PeRR). (bottom) The total peptide count for each peptide length, and the count of correctly

identified peptides. The simulation uses the following parameters: 100 ms measurement time per amino acid, pH 2.5, initial SNR 10, and bound side

chains. In this simulation the shielding factors are respectively exp ð� 0:1
ffiffiffi
d
p
Þ, exp ð� 0:2

ffiffiffi
d
p
Þ, and exp ð� 0:4

ffiffiffi
d
p
Þ, the other parameters are the same as

in the baseline Fig 8.

https://doi.org/10.1371/journal.pone.0238625.g009
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93.35%) can be seen when increasing the initial SNR from 2 to 10. Further increasing the

initial SNR to 100 only provides a minor improvement in PRR. The positive effect of longer

measurement times on identification accuracy is further shown in the settings with initial

SNR 5 and measurement times 100 ms, 1000 ms, and 10 s, raising the unique PRR from

48.25% to 74.23% and 87.09%, respectively.

Fig 10. Peptide identification fraction: Initial SNR. (top) The fraction of correctly identified peptides for each peptide length. The legend additionally

contains the peptidome recovery rate (PeRR). (bottom) The total peptide count for each peptide length, and the count of correctly identified peptides.

The simulation uses the following parameters: 100 ms measurement time per amino acid, pH 2.5, shielding factorexpð� 0:2
ffiffiffi
d
p
Þ, and bound side chains.

In these simulations the initial SNR are respectively 100, 10, 5, and 2, the other parameters are the same as in the baseline Fig 8.

https://doi.org/10.1371/journal.pone.0238625.g010
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Empty entries in the parameter columns indicate that the same values were used as in the

baseline simulation. “PRR” is the proteome recovery rate over the entire proteome, “Unique

PRR” is the proteome recovery rate limited to those proteins that have a unique N-terminal

tryptic peptide. Proteins that do not have a unique N-terminal tryptic peptide can never be

correctly identified using this method.

Fig 11. Peptide identification fraction: Initial SNR 5 with long measurement time. (top) The fraction of correctly identified peptides for each

peptide length. The legend additionally contains the peptidome recovery rate (PeRR). (bottom) The total peptide count for each peptide length, and the

count of correctly identified peptides. The simulation uses the following parameters: pH 2.5, shielding factorexpð� 0:2
ffiffiffi
d
p
Þ, and bound side chains. In

these simulations the initial SNR is 5 and the measurement times are respectively 100 ms, 1000 ms, and 10 s per amino acid, the other parameters are

the same as in the baseline Fig 8.

https://doi.org/10.1371/journal.pone.0238625.g011
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Conclusion

We propose protonation-based protein sequencing, which identifies the terminal amino acid

by measuring the alternation between protonated and deprotonated states of the terminal

amino acid. Unlike other recently proposed methods, this method does not rely on optical

imaging. As a result, this method does not suffer from loss of accuracy due to inefficient

labeling or photobleaching. However, other disturbances of the signal occur. First, side chain

reprotonation-deprotonation emits a secondary signal with a higher amplitude than the main

signal. This leads to a significant decrease in accuracy with the identification method that we

applied in this work. More sophisticated techniques could be developed to accurately discern

the main signal from the side chain signals. As a matter of fact, the side chains could actually

contribute to a more precise identification of the amino acids in the peptide, at a higher data

processing cost. Second, the shielding of the electrical signal by the electrolyte can have a sig-

nificant impact on the identification accuracy of long peptides. The first measurements associ-

ated with amino acids at a long distance from the peptide anchoring point result in a very

weak signal. Still, the later measurements in these peptides occur near to the binding point and

thus yield stronger signals. The identification method could be further improved by taking this

into account and assigning a higher weight to the most accurate signals. Furthermore, the sig-

nal-to-noise ratio has a major impact on the ability to correctly discern peptides, as evidenced

by a proteome recovery rate (PRR) of 61.71% with SNR 10 and a PRR of 31.57% with SNR 5,

both with 100 ms measurement time per amino acid. Longer measurement times per amino

acid lead to accurate estimations of the on-off-signal. Therefore, even with a relatively low ini-

tial SNR of 5, the proteome recovery rate can be increased significantly by increasing the mea-

surement time per amino acid: from PRR 31.57% at 100 ms to PRR 56.98% at 10 s.

In this work, we implemented a simulator that takes these disturbances into account, how-

ever, some additional biases and sources of noise may be present in an actual realization of a

reprotonation-deprotonation protein sequencing device. We have shown that a noisy reproto-

nation-deprotonation signal can result in highly accurate protein identification, by using

many repeated measurements to get an accurate estimation of the terminal amino acid pKa

value. A successful implementation of this sequencing method, with a sufficiently high signal-

to-noise ratio, e.g. 5, will require further advances in chip design. However, the realization

of this sensor can lead to satisfactory proteome identification as put forward in this work.

Furthermore, the fast and accurate determination of protein sequences with reprotonation-

deprotonation sequencing can potentially scale to massively parallel sequencing with a high

Table 2. Overview of Proteome Recovery Rates (PRR) for different simulation parameters.

Side chains Time per amino acid Shielding factor Initial SNR PRR Unique PRR

Baseline blocked 100 ms expð� 0:2
ffiffiffi
d
p
Þ 10 61.07% 93.35%

Side chains free 23.14% 35.37%

Time per amino acid 10 ms 50.51% 77.21%

1000 ms 64.49% 98.59%

Shielding factor expð� 0:1
ffiffiffi
d
p
Þ 61.88% 94.59%

expð� 0:4
ffiffiffi
d
p
Þ 11.30% 17.27%

Initial SNR 100 61.71% 94.33%

5 31.57% 48.25%

2 1.25% 1.92%

SNR 5 and time 1000 ms 5 48.57% 74.23%

10 s 5 56.98% 87.09%

https://doi.org/10.1371/journal.pone.0238625.t002
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throughput. As such, the successful execution of this sequencing technique will elevate proteo-

mics to the level of reference-based genomics, with high throughput and sensitivity. With fur-

ther improvements to the basic peptide identification scheme shown here, the reprotonation-

deprotonation protein sequencing method could also be used for accurate de novo desequen-

cing of peptides and proteins.

Methods

In this section, the simulation approach is described. Proteins from a database are digested in
silico into peptides, and for these peptides a signal set is generated. This electrical signal could

be stored in its entirety and used for identification. However, at a rate of 10 MHz and a 4 byte

floating point value per data point, this results in 40 MB of data per second for each signal.

This could be prohibitive when scaling this method to large samples with many proteins.

Another approach is to only store summary statistics of the signal. Here, the signal is processed

in chunks of a fixed duration (e.g. 1 ms), for which the average on-fraction is computed. Only

this on-fraction is stored, resulting in a sizable reduction in required bandwidth and storage.

To compute the on-fraction, first the window is processed with a median filter (default filter

size of 3) to remove any obvious outliers. Then, the average of the maximal and minimal volt-

age in the filtered window is used as a threshold value, and the fraction of data points with a

higher voltage is the on-fraction. This results in a list of on-fractions per amino acid, and due

to the short duration of each chunk, this list may cover a wide range of values. The final on-

fraction for the amino acid is then obtained by taking the median value from this list of on-

fractions.

To identify peptides, the signal is first processed as described above: the median on-fraction

of chunks is kept for each amino acid. For each amino acid the expected on-fraction is calcu-

lated based on the pKa and pH, and this information is then used to determine the most likely

peptide in a reference database that resulted in the given signal. Proteins can be identified

based on peptides unique to that protein, i.e., if a peptide only occurs in a single protein of the

reference database. If such a peptide is identified, then the corresponding protein, or a novel

protein, must be present in the original sample.

In the presence of side chains, the measured on-fraction can be affected. If the pH of the

solution is significantly higher or lower than the pKa of the side chain, then the side chain is

almost always in a fixed state, i.e. protonated or deprotonated, and this is not an issue. The

only way to lock all side chains in this manner without also removing the main reprotonation-

deprotonation signal, is by selecting a very acidic pH (<1) and measuring the reprotonation-

deprotonation of the carboxyl group. Such a low pH is unlikely to be feasible in practice. How-

ever, since there are basic and acidic side chains, at any given pH, at least some of them are

unlikely to change states in any given measurement at a fixed pH. An alternative approach is

to effectively block the sidechain reprotonation-deprotonation signal by binding another mol-

ecule to it. In practice, these blocking molecules do not have 100% binding efficiency, and

some side chain reprotonation-deprotonation signals will remain present in the measured

signal.

Data

Simulations were performed using H. sapiens protein data retrieved through UniProt. The

reviewed Swiss-Prot data was used, rather than the unreviewed TrEMBL data. In total, this

amounts to 19,886 H. sapiens proteins. Protein sequences were converted in silico to peptides

with an endopeptidase, e.g. trypsin, cyanogen bromide, or Glu-C.
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Evaluation metrics

Monte Carlo simulations of sequencing experiments provide artificial measurement data from

which the original peptide is then identified. Several metrics are used to evaluate the identifica-

tion accuracy. All reported metrics are averaged over 1000 simulation runs. The peptidome

recovery rate (PeRR) is the ratio of correctly identified peptides and the total number of gener-

ated signals, for the entire peptide database. The proteome recovery rate (PRR) is determined

in an analogous manner as the ratio of the correctly recovered proteins and the total number

of simulated proteins. Note that only N-terminal and C-terminal peptides are used to identify

proteins. As some proteins do not have a unique terminal peptide, they cannot be uniquely

identified. Such cases are counted as incorrectly identified proteins.

Simulation process

On-times and off-times are simulated based on the pH value of the solution and the pKa values

of the amino acids. The pKa values for the amine groups, carboxyl groups and side chains that

are used in the simulations are shown in Table 1. Different pKa values have been reported for

the same amino acids [30]. In practice, the pKa of amino acids are site-specific, i.e. they depend

on the location of the peptide in the protein [31]. Using a more advanced identification algo-

rithm this can be taken into account by learning the pKa values based on known peptide

databases.

The electrical signal is simulated, taking into account several sources of noise. The individ-

ual components whose sum constitutes the simulated signal are:

1. the reprotonation-deprotonation of the terminal amino acid,

2. the reprotonation-deprotonation of any side chains in the peptide, and

3. the noise inherent to the system.

The relative power of these different subsignals is determined by two simulation parame-

ters: (1) the initial signal-to-noise ratio (SNR) S, and (2) the shielding factor exp(−χf(d)). The

initial SNR S is the SNR for a reprotonation-deprotonation event at a distance 0 of the anchor

point of the peptide. The signal amplitude decreases with the distance from the anchor point

as controlled by the shielding factor. For the dth amino acid, starting from the anchor point,

the average amplitude of the reprotonation-deprotonation signal is given by Sexp(−χf(d)),

with f some monotonically increasing function, and χ a constant positive shielding parameter.

This effectively reduces the SNR for amino acids that are further removed from the anchor

point.

Underlying terminal reprotonation-deprotonation signal. The underlying reprotona-

tion-deprotonation signal consists of consecutive low and high voltages, where the change in

voltage is approximately proportional to the change in charge at the protonation site on the

peptide. The low voltage corresponds with an off-state (-COO- or -NH2) and the high voltage

corresponds with an on-state (-COOH or -+NH3). Note that the voltage difference between

the on-state and the off-state is considered. In particular, the high voltage state for the carboxyl

group is the neutral state (-COOH), while the low voltage state is the negatively charged state

(-COO-). The transition rates between both states are called kon and koff. Here, kon is the transi-

tion rate from off-state to on-state in Hz, and as such the expected off-time is 1/kon seconds.

Analogously koff is the transition rate to the off-state, and the expected on-time is 1/koff sec-

onds. By definition of the pKa, if pH = pKa, then koff = kon and the system will be in the on-

state for 50% of the time. In these simulations, the average off-time is fixed at 1MHz [32];

depending on the sequencing environment other values might be more appropriate. If this
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value is changed, and the signal rate and sequencing time are scaled accordingly, then all simu-

lation results are unaffected. Together with the pKa and pH of the solution, this leads to the fol-

lowing transition speeds between states:

• on! off: koff = 106+ pH−pKa Hz,

• off! on: kon = 106 Hz.

If the pH is decreased (resp. increased), i.e. the solution becomes more acidic (resp. basic),

then the system will be in the on-state for a larger (resp. smaller) fraction of the time. This is

reflected in the formula for koff: a lower pH decreases the transition speed from on to off. On-

and off-times are the amount of time between events in a Poisson point process, i.e. the associ-

ation and dissociation events occur continuously, independently and at a constant average rate

(kon and koff). As a result these times are exponentially distributed as follows:

1. on-time� Exp(koff), and

2. off-time� Exp(kon),

where Exp(k) is the exponential distribution with rate parameter k and probability density

function f(x) = ke−kx. The on-time distribution has rate parameter k = koff, while the off-time

distribution has rate parameter k = kon. The underlying terminal reprotonation-deprotonation

signal is then simulated by alternately drawing from the on- and off-distributions. Fig 12

shows an example signal obtained in this manner.

The amplitude of the signal in Fig 12 is primarily based on the shielding factor exp(−χf(d))

and the distance of the amino acid to the anchor point. On top of this shielding, there is a

source of normal noise added to the amplitude of each state. This extra uncertainty is related

to for example the movement of the peptide in the solution. The amplitude as a function of (1)

d the 1-based index of the terminal amino acid, (2) the shielding factor exp(−χf(d)), and (3)

the normal noise standard deviation σ, is given by:

A ¼ sNð exp ð� wf ðdÞÞ; s2Þ:

In the simulations σ is always fixed to 0.1.

Sidechain reprotonation-deprotonation signal. The sidechain reprotonation-deproto-

nation signals are entirely analogous to the terminal reprotonation-deprotonation signal, the

only differences are (1) the on-times are determined by the pKa of the sidechain, and (2) the

average amplitude depends on the location of the sidechain in the peptide, i.e. it does not nec-

essarily originate from the terminal amino acid position. Sidechains can have acidic or basic

pKa values.

Signal rate

Another simulation parameter is the signal rate r, by default r = 10MHz. This rate determines

the time between each sample of the signal. If the sampling rate is too low events can be

missed. If for example a certain reprotonation-deprotonation signal switches on and off

between two sample points, then the resulting on-state will not be present in the signal. The

probability of missing an event depends on (1) the duration of the event, and (2) the sampling

rate r. Depending on the method that is used to identify the signal, missing events do not have

to be inherently problematic. When identification is based on average on-time, and on- and

off-states are accurately identified, then sampling for a longer time will always result in a better

approximation of the true average on-time. However, for a lower sampling rate r a longer sam-

pling time will be required to achieve the same accuracy.
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1/f Noise

The electrical noise is assumed to be 1/f noise, also known as flicker noise and pink noise. The

noise is simulated with the Voss-McCartney algorithm. This algorithm adds several sources of

white noise to emulate pink noise. The pink noise is then rescaled linearly to have the desired

power, as prescribed by the SNR parameter S. Fig 12 shows an example signal with the adi-

tional inclusion of 1/f noise. The figure shows how noise can lead to false on- and off-events.

Further sources of noise can occur in practice, thermal noise for example has not been

included in these simulations.
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