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Abstract
Background: De Bruijn graphs are key data structures for the analysis of
next-generation sequencing data. They efficiently represent the overlap between reads
and hence, also the underlying genome sequence. However, sequencing errors and
repeated subsequences render the identification of the true underlying sequence
difficult. A key step in this process is the inference of the multiplicities of nodes and arcs
in the graph. These multiplicities correspond to the number of times each k-mer (resp.
k + 1-mer) implied by a node (resp. arc) is present in the genomic sequence.
Determining multiplicities thus reveals the repeat structure and presence of
sequencing errors. Multiplicities of nodes/arcs in the de Bruijn graph are reflected in
their coverage, however, coverage variability and coverage biases render their
determination ambiguous. Current methods to determine node/arc multiplicities base
their decisions solely on the information in nodes and arcs individually, under-utilising
the information present in the sequencing data.

Results: To improve the accuracy with which node and arc multiplicities in a de Bruijn
graph are inferred, we developed a conditional random field (CRF) model to efficiently
combine the coverage information within each node/arc individually with the
information of surrounding nodes and arcs. Multiplicities are thus collectively assigned
in a more consistent manner.

Conclusions: We demonstrate that the CRF model yields significant improvements in
accuracy and a more robust expectation-maximisation parameter estimation. True
k-mers can be distinguished from erroneous k-mers with a higher F1 score than
existing methods. A C++11 implementation is available at https://github.com/
biointec/detox under the GNU AGPL v3.0 license.
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Background
De Bruijn graphs play a key role in many bioinformatics tools as a data structure to effi-
ciently represent the overlap between sequences. Given a set of sequences S, the de Bruijn
graph’s nodes are defined by the k-mers (subsequences of length k) present in S. Two
nodes u and v are connected by a directed arc when a k + 1-mer exists in S for which the
first k nucleotides coincide with u and the last k nucleotides coincide with v [1]. Often,
linear (i.e. non-branching) chains of nodes are contracted into a single node referred to as
a unitig [2].
When S corresponds to a set of reads, one obtains the read-based de Bruijn graph for

which we define the coverage of a node (resp. arc) as the number of times its k-mer (resp.
k + 1-mer) occurs in the set of reads. Similarly, when S contains a genomic sequence G,
one obtains the genome de Bruijn graph for which we define the multiplicity of a node
(resp. arc) as the number of times its k-mer (resp. k+1-mer) occurs inG. A read-based de
Bruijn graph is a noisy estimate of the (often unknown) genome de Bruijn graph. In real
sequencing experiments, read-based de Bruijn graphs contain many spurious nodes/arcs
that emerge because of sequencing errors and may be missing nodes/arcs due to cover-
age gaps. Our goal is to accurately infer the genome de Bruijn graph from its read-based
approximation. To this end, we wish to label each node (resp. arc) in the read-based graph
with its corresponding multiplicity: true nodes and arcs should be labelled according to
their repeat copy number in G while spurious nodes/arcs should be assigned multiplicity
zero. The multiplicities of nodes and arcs are reflected in their coverage: repeated k-mers
in the genome often have a higher coverage than non-repeated k-mers, while erroneous
k-mers often have very low coverage.
The accurate inference of the multiplicities of nodes and arcs is non-trivial but nev-

ertheless important: it reveals the sequencing errors (i.e. nodes/arcs that were assigned
multiplicity zero) and provides insights into the repeat structure of the genomic sequence.
This problem is therefore a common theme in numerous bioinformatics applications,
such as de novo genome assembly [3], correction of both second and third generation
reads [4–7], de Bruijn graph-guided hybrid assembly methods [8–11] and several variant
calling and variant-aware assembly methods [12–15].
Using a conditional random field (CRF) model, we demonstrate how local coverage evi-

dence observed at each node or arc individually as well as the evidence of the surrounding
neighbourhood can be coupled in a high-dimensional statistical model. Nonetheless, effi-
cient computational methods exist to infer the individual probability distributions for
each random variable present in the model. In the last decade, these types of models
have been primarily used in the field of computer vision and image analysis, where they
facilitated an evolution from heuristic algorithms to a systematic approach by incorpo-
rating contextual constraints [16]. We believe that the use of CRFs on de Bruijn graphs
can facilitate a similar evolution in the analysis of sequencing data. Using our model,
we consistently obtain more accurate multiplicity assignments on both real and simu-
lated data. Moreover, we observe a more robust convergence when learning the model
parameters in an expectation-maximisation (EM) setting. Additionally, because we use a
statistical framework, we obtain a measure of certainty about the assignments.We believe
this methodology can be of use for many tools that rely on de Bruijn graphs. Note that
preliminary results of this work have been presented at the HiTSeq workshop of the 2019
ISMB conference [17].
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k-mer histogram based approach

Baseline methods for the inference of node and arc multiplicities rely on k-mer his-
tograms. A k-mer histogram shows, for each k-mer coverage, the number of k-mers that
occur at that coverage in the data. A mixture of distributions is fit to this histogram,
where each component corresponds to a distinct multiplicity (see Fig. 1a). Each distri-
bution models, for that multiplicity, the natural variability of coverage that occurs in real
sequencing experiments. Using this mixture model, intervals of coverage are selected to
point to a certain multiplicity. This idea is adopted by many tools. For example, certain
Illumina error correction tools (see [18] for a review) rely on k-mer histograms to deter-
mine whether or not a k-mer is erroneous, i.e. whether or not its coverage falls within
the zero-multiplicity interval. Some tools use per-base quality scores to weigh the con-
tribution of each individual k-mer occurrence to its coverage [19]. In the context of de
Bruijn graphs, the information contained in the k-mer histogram is sometimes supple-
mented with graph-topological features: sequencing errors often emerge in the graph as

Fig. 1 Illustration of the issues when assigning multiplicities based only on a k-mer histogram based cutoff. a
A k-mer histogram that consists of a mixture of negative binomial distributions. Each component models the
k-mer coverage variability for a particular multiplicity. The two-sided arrows delineate the coverage intervals
corresponding to a multiplicity estimate. Note how large areas under the curve of a particular multiplicity fall
in an interval of a different estimated multiplicity. b Example genome sequence with corresponding reads
and de Bruijn graph. Nodes and arcs are labelled with their read coverage. Nodes are also labelled with their
corresponding fragment in the genome sequence. Sequencing errors cause spurious nodes and arcs in the
de Bruijn graph, such as node e′ and j. Nodes are encircled according to their true multiplicity (cf. the patterns
in Fig. 1a), all correct arcs have true multiplicity 1. cMost likely multiplicity assignment to nodes and arcs
based on the k-mer histogram in Fig. 1a. This assignment leads to inconsistencies: nodes where there is a
conservation of flow of multiplicity are marked with ✓, nodes where this is violated are marked with ✗. d
Multiplicity assignment such that conservation of flow of multiplicity holds in each node. These assignments
are correct for all nodes and arcs and reveal sequencing errors (nodes/arcs with multiplicity zero) and the
repeat structure of the genome sequence
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short dead ends (tips), when the sequencing error occurs towards the end of a read, or as
short parallel paths (bubbles), when the error occurs near the centre of a read [20–22].
Nevertheless, as exemplified in Fig. 1, inferring multiplicities from a k-mer histogram

is error-prone. Figure 1a shows a mixture model of negative binomial (overdispersed
Poisson) distributions, each corresponding to a specific multiplicity. Intervals of k-mer
coverage are established and assigned a particular multiplicity such that the probability
for that multiplicity value is maximal in the interval. For example, a k-mer with cover-
age [ 1 . . . 3] is assigned multiplicity zero (sequencing error), coverage interval [ 4 . . . 11]
corresponds to multiplicity one (non-repeated sequence), etc. In the example of Fig. 1b,
the nodes and arcs of a de Bruijn graph are labelled with a sampled coverage, in order
to mimic a sequencing experiment. If we now infer the multiplicities using the intervals
of Fig. 1a, we obtain the assignments in Fig. 1c. Not all assignments are correct as some
multiplicity estimates are either too high or too low. This is due to the overlap between
distributions in the mixture model causing some nodes or arcs with ambiguous cover-
age (i.e. coverage near the interval boundaries) to be assigned the wrong multiplicity. The
selection of hard cutoff intervals will therefore always lead to a certain fraction of incor-
rect multiplicity assignments, depending on the degree of overlap between distributions,
which in turn depends on the sequencing depth and coverage variability of the dataset.
To illustrate the practical consequences, a recent survey of Illumina error correction tools
[23] demonstrated that many tools suffer from the deletion of low-coverage true k-mers,
leading to more fragmented assemblies.

Conservation of flow of multiplicity

Within the context of the de Bruijn graph of Fig. 1c, one can immediately verify the pres-
ence of incorrect multiplicity assignments by checking the following criterion at each
node:when all nodes and arcs are correctly labelled with their multiplicity, the multiplicity
of each node equals both the sum of the multiplicities of its incoming arcs and the sum of
the multiplicities of its outgoing arcs. This also holds in the presence of sequencing errors
as the corresponding spurious nodes or arcs have been assigned multiplicity zero. This
property was first noted by Pevzner and Tang [24], who proposed to use maximum-flow
algorithms on pre-corrected de Bruijn graphs to determine the multiplicity of repeats.
A similar technique has been used on string graphs [25] and on error-free weighted
bi-directed graphs [26].
This important property, which we will call ‘conservation of flow of multiplicity’, is also

an important component of our proposed method. Using the conservation of flow prop-
erty, one might decide that a node or arc with a relatively poor coverage that falls in the
zero-multiplicity interval, does have a multiplicity greater than zero because it provides
an essential link in the graph. An example of this is the arc between nodes h and r1 in
Fig. 1b: r1 has strong evidence of being a multiplicity 2 repeated node, both by its own
coverage and by the sum of the estimated multiplicities of its outgoing arcs. The multi-
plicities of its incoming arcs should hence also sum up to 2, which can be achieved by
assigning multiplicity 1 to the arc from h to r1 despite its low coverage. As a second exam-
ple, an erroneous k-mer with relatively high coverage might still be assignedmultiplicity 0
because of flow conservation considerations. In Fig. 1b, once we have established that the
arc from node h to r1 should have multiplicity 1, we notice that the arc from h to j should
be assigned multiplicity 0. This further results into erroneous node j to also be assigned
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multiplicity 0. By imposing the conservation of flow property across all nodes and arcs,
we obtain the correct multiplicity assignment in Fig. 1d.

Methods
Conditional random fields

Conditional random fields (CRFs) are a type of probabilistic graphical models (PGM), i.e.
graph models in which the nodes represent random variables and the edges represent
direct probabilistic interactions between these variables [27]. Note that this graph is dif-
ferent from the de Bruijn graph, even though both graphs share some resemblance. In
case of CRFs, the variables are further divided into a set of observed variables and a set
of unobserved variables whose value we want to infer [28]. Here, the observed variables
X = {X1, . . . ,XN } represent the coverage and the unobserved variables Y = {Y1, . . . ,YN }
represent the multiplicities of nodes and arcs in the de Bruijn graph.
Probabilistic interactions are represented by factors ϕi(Di), whereDi ⊆ X ∪ Y,Di � X,

such that all variables in the scopeDi of ϕi form a clique in the CRF. The joint conditional
probability over all variables is then calculated as

P(Y|X) = 1
Z(X)

M∏

i=1
ϕi(Di),

with Z(X) the partition function that normalises the product of factors such that P(Y|X)

is a probability distribution [27]. By conditioning on X, the modelling of dependencies
between these variables can be avoided and only the conditional dependencies between
the Ys are modelled. We use two types of factors in our model. First, the ‘singleton fac-
tors’ ϕ model the relationship between the coverage observed at a node (resp. arc) and
its multiplicity. Given the coverage, the factor represents a categorical (also called: multi-
noulli) distribution over the different possible multiplicities. Second, the ‘conservation of
flow factors’ ϕflow impose the conservation of flow of multiplicity. Such factor has in its
scope the multiplicity of a particular node as well as all multiplicities of either incoming
or outgoing arcs and assigns a high probability when conservation of flow holds, and a
low probability otherwise. They thus model the relationship between the multiplicity of
a node and the multiplicities of its adjacent arcs. Collectively, the factors allow evidence
(observed coverage) to propagate through the CRF graph. Therefore, the computed mul-
tiplicity assignments will be the result of an interplay between locally observed evidence,
and evidence observed in the surrounding neighbourhood.

From de Bruijn graph to CRF

Because building a CRF for the entire de Bruijn graph would render computations infea-
sible for exact inference techniques, CRFs are built for smaller subgraphs: if we want to
infer the multiplicity of a particular node n in the de Bruijn graph, a neighbourhood of
size s is selected that consists of all nodes that are reachable from node n by a path of
length ≤ s along with all incoming and outgoing arcs of these nodes. For each arc a
in the neighbourhood, the CRF contains variable nodes Ya and Xa, the multiplicity and
observed coverage at that arc, respectively. For each node m in this neighbourhood, the
CRF contains a variable node Ym, the multiplicity of that node. The average coverage of
nodes that contain < 2k k-mers is highly correlated with the coverage observed at their
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adjacent arcs. Therefore, we only add a variable node Xm to represent the observed aver-
age coverage of nodem if this node contains more than 2k k-mers. Because the time and
memory requirements of the subsequent inference algorithm depend on the number of
possible values for the variables, we restrict Val(Y ) to [max(0,mopt−α),mopt+α], where
α is a tuneable parameter (default value: α = 2) and mopt is the most likely multiplicity
for Y based on the locally observed coverage X. Figure 2 shows a de Bruijn graph with a
selected neighbourhood of size 1 and its corresponding CRF.

Singleton factors For each X and Y corresponding to an arc or node in the de Bruijn
graph, a singleton factor ϕ(Y ,X) : Val(Y ,X) �→ R+ is created that reflects the probability
that an arc/node has multiplicitym given the observed coverage C:

ϕ(m,C) = wmPm(X = C), X ∼ Negative Binomial

To estimate these probabilities, a mixture model of negative binomial distributions is fit-
ted to the k-mer histogram for nodes and the k + 1-mer histogram for arcs such that
each component in the mixture corresponds with a multiplicitym. As opposed to Poisson
distributions that take only a single parameter λ and assume the mean and variance are
equal, negative binomial distributions aremore flexible as they are able tomodel data with
larger variation. The negative binomial distribution is traditionally parameterised using
parameters r and p, however, in the context of this work, we use parameters λ = pr

1−p
(mean) and f = 1

1−p (overdispersion factor). The variance is then equal to f λ. As p → 0
(in which case f → 1) and r → ∞ such that λ = pr

1−p remains constant, the negative
binomial distribution converges to a Poisson distribution with mean λ.
For m = 0 the mean of the negative binomial λ0 is estimated as the mean coverage of

the erroneous k-mers. We also estimate λ, the mean coverage of k-mers with multiplicity
1. For each multiplicity m ≥ 1 the negative binomial then has mean mλ. Additionally,
overdispersion factors f0 for the error-distribution and f for the distributions representing
m ≥ 1 are estimated based on the variance in the data. Finally, each negative binomial
is weighted according to the estimated number of k-mers with that multiplicity in the
dataset, wm.

Fig. 2 De Bruijn graph of Fig. 1b. In the de Bruijn graph a neighbourhood of size 1 around node r4 was
selected and the CRF corresponding to this neighbourhood is shown. Nodes Yn in the CRF correspond to
nodes n in the de Bruijn graph, while the Ya-nodes correspond to the arcs in the de Bruijn graph. Here, each
node Y is connected to a node X by an edge arising from a singleton factor ϕ which contains the information
about the coverage of that node or arc in the de Bruijn graph. Note, however, that a node that contains fewer
than 2k k-mers will not have such corresponding X and factor ϕ. All connections between Y-nodes arise from
conservation of flow factors. The two cliques arising from the flow through r4 are shown explicitly
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Conservation of flow factors For each Yn of node n in the de Bruijn graph, two con-
servation of flow factors are created: one for its incoming arcs and one for its outgoing
arcs. These factors have in their scope the corresponding CRF-node Yn and all Ya
corresponding to incoming resp. outgoing arcs of node n. E.g. for the incoming arcs:

ϕflow(mn, {ma}a∈in(n)) =

⎧
⎪⎨

⎪⎩

1, mn = ∑
a∈in(n)

ma

ε, mn �= ∑
a∈in(n)

ma

Factors ϕflow(Yn, {Ya}a∈in(n)) : Val(Yn, {Ya}a∈in(n)) �→ R+ assign a value of 1 to cases
where the sum of multiplicities of the incoming resp. outgoing arcs is equal to the
multiplicity of the node and a low value ε 
 1 (default: 10−7) otherwise.
Whereas the singleton factors provide local evidence, the conservation of flow factors

direct towards a multiplicity assignment that is consistent with the property of flow of
multiplicity for all nodes and arcs in the CRF.

Inference

The product of all factors is the joint probability of the multiplicities over all nodes and
arcs in the selected neighbourhood. To determine the probabilities over the possible mul-
tiplicities of a specific node n (or arc a) we need to calculate P(Yn|X) = ∑

Y\Yn P(Y|X).
We use the variable elimination algorithm for PGMs with a ‘min-neighbours criterion’
to select the elimination order [27]. This algorithm performs an exact calculation of the
probabilities. This solver was implemented in log-space to avoid numerical underflow.
Supplementary Section 1, Additional File 1 contains an example.

Parameter estimation using expectation-maximisation

The parameters of the mixture model need to be estimated from the data. These param-
eters can be computed using the multiplicities of the nodes/arcs in the de Bruijn graph,
which are also unknown.We therefore use the expectation-maximisation (EM) algorithm:
during the E-step, the multiplicities of nodes and arcs are inferred using the current
model parameter estimates; during the M-step, the parameter values are updated using
the newly inferred multiplicities, weighted by their probability. Convergence is obtained
when the estimated multiplicity of a pre-specified fraction (default: 0.001) of the nodes
and arcs no longer changes between consecutive E-steps.
The parameters of the mixture model are the following: the means of the negative

binomial distributions λ and λ0, the overdispersion factors f and f0 that determine the
variance, and the weights wm for all multiplicities. Since nodes correspond to (concate-
nated) k-mers, whereas the arcs correspond to k + 1-mers, the underlying distributions
differ slightly. Therefore, all parameters are estimated separately for the nodes and the
arcs of the de Bruijn graph. To avoid complex numerical computations associated with
the maximum likelihood estimators, we make use of the method of moment estimators.
The exact formulas are provided in Supplementary Section 2, Additional File 1.
The mixture model parameters are estimated using only a small subset of the nodes

and arcs in the de Bruijn graph (default: 10.000 nodes and 10.000 arcs). This leads to a
significant speedup and still provides accurate estimates for the model parameters.
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Using quality scores

Instead of counting the occurrence of each k-mer in the dataset, we use weighted counts
based on the quality scores of the nucleotides in the k-mer. Such weighted counts are
called q-mers and were first introduced in the read corrector Quake [19]:

q-mer count = score(k-mer) =
k∏

i=1
qual(xi)

Because erroneously called nucleotides often have a low quality score, k-mers that over-
lap with such nucleotides will have a lower q-mer count, whereas k-mers containing only
correct nucleotides will still have a q-mer count close to one. As a consequence, the
distributions representing the erroneous nodes/arcs and the distributions that represent
multiplicitym ≥ 1 overlap less.
Note that the negative binomial distribution is a discrete probability distribution and

is thus only defined for integer counts. However, by replacing the factorials in the dis-
crete probability mass function (pmf) with Gamma distributions we obtain a pmf that is
applicable to continuous data and coincides with the original pmf in the discrete points.

The full pipeline

BCALM 2 [29] is used to build a compacted de Bruijn graph from raw sequencing
data, i.e. a de Bruijn graph in which all linear paths have been concatenated into sin-
gle nodes called unitigs. BCALM 2 is capable of constructing de Bruijn graphs even for
large genomes with relatively low memory requirements. For all results presented in this
paper we use k-mer size k = 21. Unless mentioned otherwise, we use BCALM 2 with
the -abundance-min=2 option to remove all k-mers that occur only once in the reads.
BCALM 2 outputs a de Bruijn graph which serves as input for Detox, the tool in which
we implemented the proposed CRF model. Detox uses three stages. In stage 1, the q-mer
(or optionally: k-mer) coverages of all nodes and arcs in the graph are computed. In the
stage 2, the mixture model parameters are estimated using the expectation-maximisation
algorithm. Finally, in stage 3, the multiplicities of all nodes and arcs in the de Bruijn graph
are inferred using CRFs. These multiplicities are written to disk. Detox is implemented in
C++11 and uses threads for parallelisation. We refer to Supplementary Section 7, Addi-
tional File 1 for a discussion of the choice and default value of the most important input
parameters.

Results
Worked example

To gain some intuition, we present a specific case in which the CRF framework outper-
forms a k-mer cutoff methodology. Figure 3 shows a subgraph of the de Bruijn graph,
built from the P. aeruginosa dataset (real data, subsampled to 30×). We infer the multi-
plicity of node n1 (with a true multiplicity of 1) using our proposed CRF methodology
for different neighbourhood sizes s. At neighbourhood size s = 0, the inferred multiplic-
ity is solely based on the (average) k-mer coverage observed at node n1 and hence, the
CRF method degenerates to the k-mer cutoff methodology. With larger neighbourhood
sizes (s ≥ 1), the CRF model also incorporates the coverage observed at nodes (and their
adjacent arcs) in the neighbourhood of node n1. After applying the variable elimination
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Fig. 3 Subgraph of the de Bruijn graph built from the real P. aeruginosa dataset (30×). Nodes and arcs are
labelled with their (average) coverage. The fitted node and arc models are shown on the left. The nodes of
the graph are coloured according to their true multiplicity. The neighbourhoods of size 1, 2 and 3
surrounding node n1 are shown as coloured ellipses. The inset table shows the categorical distribution
P(Yn1 ) of the multiplicities {0,1,2} for node n1 for different neighbourhood sizes. For small neighbourhoods
(sizes 0 and 1), node n1 (incorrectly) appears to represent a sequencing error due to its relatively low
coverage. At neighbourhood sizes 2 and 3, the CRF model has enough information to (correctly) infer
multiplicity 1 for node n1 with high probability

algorithm, we obtain a categorical (multinoulli) distribution over the different multiplici-
ties for node n1 (see inset table of Fig. 3). The estimatedmultiplicity is then simply the one
with the highest probability. These probabilities thus provide a measure of confidence.
The issue in the subgraph of Fig. 3 is that part of the path of the genome through

n18,n9,n3,n1,n2,n5 has low coverage. If we only consider individual coverages, node n1
incorrectly appears to be a sequencing error whereas its true multiplicity is 1. Similarly,
nodes n2 and n3 appear to have multiplicity 1 whereas their true multiplicity is 2. Because
all three nodes suffer from low coverage, a CRF with a neighbourhood of size s = 1
does not yet improve the multiplicity estimation. On the contrary, it increases the prob-
ability of a zero multiplicity for node n1 because the evidence of a multiplicity of 1 for
nodes n2 and n3 is consistent with a zero multiplicity for node n1. However, when using
a neighbourhood of size s ≥ 2, the CRF also incorporates information about parts of the
path with higher coverage. Particularly, the coverage observed at arc a18→9 suggests a
multiplicity 1 for node n9 (which itself has ambiguous coverage) and hence, in combina-
tion with evidence for multiplicity 1 for node n7, a multiplicity 2 for node n3. Similarly,
it becomes clear that also node n2 has multiplicity 2. Ultimately, a consistent multiplicity
assignment can only be obtained when node n1 is (correctly) assigned a multiplicity of 1.
As we incorporate even more information at neighbourhood size s = 3, this belief is fur-
ther strengthened and the CRF model infers the correct multiplicity with a high degree of
confidence.
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Table 1 Illumina datasets used in this paper

Organism Reference ID Ref. size Accession no. Model Read length Reference

S. enterica NC_011083.1 5.1 Mb SRR1206093 MiSeq 2 × 250 bp [30]

P. aeruginosa NC_002516.2 6.3 Mb ERR330008 MiSeq 2 × 150 bp [31]

C. elegans WBcel235 100.3Mb SRR5865874 HiSeq 2000 2 × 100 bp [32]

A. thaliana TAIR10.1 119.4Mb ERR1913320 NextSeq 500 2 × 150 bp -

H. sapiens GRCh38 3099.8Mb ERR194147 HiSeq 2000 2 × 100 bp [33]

Multiplicity assignment performance

To evaluate the overall performance of the proposed CRF methodology, we consider five
real Illumina datasets (two bacterial and three eukaryotic – see Table 1). To assess the
impact of coverage depth, each dataset was downsampled to different coverage depths of
10×, 25× and 50×. Using BCALM 2, compacted de Bruijn graphs (k = 21) were built
for the 15 resulting datasets. BCALM 2 was configured to discard k-mers that occur only
once in the data. As such, we obtained de Bruijn graphs with a number of nodes ranging
between 20 220 (S. enterica, 10×) and 254.7 million (H. sapiens, 50×). For all nodes and
arcs, the quality score weighted coverage was computed.
We inferred the node multiplicities using the CRF methodology for different neigh-

bourhood sizes s (0, 1, 3 and 5). For all organisms, except H. sapiens, we inferred the
multiplicity of all nodes in the graph. To avoid excessive runtimes, the multiplicity for H.
sapiens was inferred for one million randomly sampled nodes. Table 2 shows the node

Table 2 Estimation of the node multiplicity in de Bruijn graphs (k = 21) built from real Illumina data
for 5 organisms (2 bacteria, 3 eukaryotes)

10× 25× 50×
s node acc. k-mer acc. node acc. k-mer acc. node acc. k-mer acc.

P. aeruginosa 0 84.31 96.47 95.02 98.72 97.47 99.21

1 92.85 98.80 98.27 99.49 98.89 99.46

3 93.91 98.96 98.60 99.50 99.13 99.52

5 94.11 98.94 98.74 99.51 99.17 99.51

S. enterica 0 84.50 96.46 93.65 98.25 95.96 98.53

1 88.81 97.18 94.98 98.39 96.44 98.60

3 89.41 97.18 95.27 98.45 96.53 98.63

5 89.55 97.22 95.32 98.46 96.57 98.64

C. elegans 0 68.65 93.93 80.69 96.42 87.35 97.10

1 78.90 96.48 86.47 97.77 90.74 98.05

3 81.02 97.21 87.16 98.01 91.27 98.24

5 81.29 97.18 87.32 98.05 91.25 98.25

A. thaliana 0 67.84 89.10 82.20 96.16 89.91 97.05

1 73.67 94.64 85.45 96.83 91.27 97.54

3 73.92 95.26 85.83 97.09 91.46 97.71

5 73.93 95.43 85.68 97.17 91.56 97.70

H. sapiens 0 75.26 92.27 83.29 94.67 88.09 95.51

1 80.68 93.92 85.66 95.23 89.23 95.83

3 81.33 94.56 86.12 95.50 89.52 95.95

5 81.57 94.71 86.26 95.58 89.59 95.97

The datasets were downsampled to coverage depths of 10×, 25× and 50×. For H. sapiens, the multiplicity was inferred for one
million randomly sampled nodes; for all other datasets the multiplicity was inferred for all nodes. The node (resp. k-mer) accuracy
refers to the percentage of nodes (resp. k-mers) in the de Bruijn graph that were assigned the correct multiplicity. The accuracy
improves when using CRFs with increasing neighbourhood size s
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(resp. k-mer) accuracy as the percentage of nodes (resp. k-mers) that were assigned the
correct multiplicity. For all organisms and for all coverage depths, the CRF methodol-
ogy (neighbourhood size s > 0) outperforms the baseline methodology (neighbourhood
size s = 0) by a significant margin. With increasing neighbourhood size s, the accuracy
increases with which CRFs assign multiplicities. Most of this gain is already realised for
small values of s (e.g. s = 1), indicating that the coverage information of nodes and arcs
within close proximity of a node (resp. arc) is most informative to correctly assign the
multiplicity of that node (resp. arc).
With higher coverage depth, there is less overlap between the coverage distributions

associated with the different multiplicities and hence, node multiplicities can be assigned
more easily. The CRFmethod therefore proves especially useful at low ormoderate cover-
age depths. For example, for C. elegans at 10×, the node accuracy improves from 68.65%
(s = 0) to 81.29% (s = 5), an improvement of 12.64 percentage points. Nevertheless, even
at 50× coverage depth, the use of CRFs yield improvements in node accuracy of 1.5 to 4
percentage points.
In all cases, the k-mer accuracy is higher than the node accuracy (Table 2). Inferring the

multiplicity is easier for nodes that contain more k-mers, or in other words, nodes that
represent longer unitig sequences. In those cases, the coverage of a node is averaged over
a larger number of k-mers, and hence, due to the central limit theorem, it has a higher
probability of being closer to the mean coverage for the corresponding multiplicity.
Correctly inferring the multiplicity becomes increasingly difficult for higher multiplic-

ity values (Supplementary Tables 1 and 5, Additional File 1). In Supplementary Table 1,
Additional File 1, we provide confusion matrices for the different organisms, coverage
depths (10× and 50×) and neighbourhood sizes (s = 0 and s = 5). Each column of a
confusion matrix corresponds to all nodes with a specific true multiplicity (0 to 5) and
shows how the estimated multiplicities are distributed. For all organisms, the majority of
nodes in the de Bruijn graph represents either a sequencing error or a non-repeated true
sequence. Especially for those nodes, estimating the multiplicity appears relatively easy.
However, the correct multiplicity inference for nodes that represent repeated sequences
is difficult, even at a high coverage depth. For those nodes, the use of CRFs significantly
boosts accuracy. For example, for C. elegans (50 ×), without the CRF method (s = 0) only
54.5% (267 985 out of 429 137) of the nodes with truemultiplicity 2 are correctly classified;
this figure increases to 83.7% (411 764 out of 429 137) with CRFs (s = 5). Hence, even
if the coverage of a repeated node is ambiguous (or even misleadingly high or low), the
CRF method can often still correctly infer the correct multiplicity from its surrounding
context.
We also assessed the proposed CRF model using simulated Illumina data that was gen-

erated using the ART tool. We used the same organisms, coverage depths and parameter
settings as for the real data. Supplementary Table 4, Additional File 1 shows the node and
k-mer accuracy. Again, the use of CRFs leads to improved multiplicity estimations in all
cases and this effect increases with increasing values for the neighbourhood size s. In gen-
eral, the accuracies obtained on simulated data are higher than those obtained for real
data. There are several reasons for this. Real data may suffer from coverage biases that are
not fully captured by read simulation tools. More importantly, establishing the ground-
truth node and arc multiplicities is more difficult for real data. Due to the presence of
genetic variation (single nucleotide polymorphism, copy number or structural variation),
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the sequenced individuals may not be a 100% match with their reference genome. More-
over, the samples may include reads that originate from extra-chromosomal DNA (e.g.
a plasmid in A. thaliana) for which the ground-truth multiplicity labelling cannot accu-
rately be done using the reference genome. For example, from the confusion matrix for
S. enterica (Supplementary Table 1, Additional File 1), one observes 2779 nodes with an
estimated multiplicity > 5 but for which the true multiplicity is 0. Clearly, these nodes
represent DNA that is present in the sample, but not in the reference genome. One should
take these considerations into account when interpreting the accuracy values in Table 2.
As a final note, the use of the CRF model reduces the number of iterations needed for

the EM algorithm to converge (see Supplementary Tables 2-3, Additional File 1). During
the E-step, node and arc multiplicities are inferred using the current estimation of the
model parameters. Subsequently, during the M-step, the model parameters are updated.
Clearly, more accurate multiplicity inference during the M-step leads to a more rapid
convergence. In certain cases, we found that the EM-algorithm did not converge when
not using the CRF methodology (s = 0), e.g., for H. sapiens (10 ×). In that case, the
distributions that correspond to the error nodes and multiplicity 1 nodes are difficult to
distinguish. In contrast, when using CRFs (neighbourhood sizes s > 1), the EM-algorithm
always converged to the correct model, even for low coverage depths.

Comparison to existing methods

We are unaware of existing tools to determine multiplicities of nodes and arcs in de
Bruijn graphs. To compare with existing methods we consider a subproblem of multiplic-
ity determination, i.e. the classification of k-mers into trusted (multiplicity m ≥ 1) and
untrusted (multiplicity m = 0) k-mers. This task is an essential subtask of many error
correction tools.
Quake [19] discerns trusted from untrusted k-mers by fitting a mixture of distributions

to the q-mer histogram. Next, a q-mer cutoff value is determined below which a k-mer
has an α times higher chance to belong the error distribution than to the true distribution.
We ran Quake v.0.3.5 with default parameters to produce a coverage cutoff value and
then used Jellyfish v.1.1.12 to partition the k-mers into trusted and untrusted subsets. We
also compare to BayesHammer [34], a method that uses sequence similarity and Bayesian
subclustering techniques on a Hamming graph of k-mers. Trusted k-mers are determined
as the centre of these clusters. We used BayesHammer as a submodule of SPAdes v.3.13.1
with default parameters.
For each method, we compute the number of true positives (TP, erroneous k-mers cor-

rectly classified), true negatives (TN, true k-mers correctly classified), false positives (FP,
true k-mers incorrectly labelled as untrusted) and false negatives (FN, erroneous k-mers
incorrectly labelled as trusted). We then compute the sensitivity, specificity and F1 score
as follows:

sensitivity = TP
TP + FN

specificity = TN
TN + FP

F1 score = 2TP
2TP + FP + FN
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Table 3 shows the sensitivity, specificity and F1 score obtained by Quake, BayesHammer
and our proposed CRF method (Detox). At 10× coverage, BCALM 2 was configured to
retain all k-mers as we noted that filtering the k-mers that occur only once caused a
significant number of false positives. Also note that for H. sapiens, only the reads that
map to chromosome 21 were used because BayesHammer required more memory than
the available 256 GB RAM to handle human genome scale datasets.
For all organisms and coverage depths, Detox attains the highest F1 score. Both Quake

and BayesHammer appear to be conservative methods: they have a high specificity at
the cost of a low sensitivity. For Quake, a higher q-mer cutoff value would result in a
higher sensitivity, at the cost of a lower specificity. However, we emphasise that the higher
F1 score for Detox is not solely due to the fact that Quake may select a (too) low q-mer
cutoff value. This is illustrated in Fig. 4, where we zoom in on the q-mer histogram of
the P. aeruginosa 25× coverage dataset. The red line shows the q-mer cutoff point that
yields the highest F1 score. Methods such as Quake classify all k-mers with a coverage
below this cutoff value as untrusted and all other k-mers as trusted. In contrast, our CRF
model is able to infer that certain k-mers with a coverage below the cutoff value have a
true multiplicity = 1. Conversely, the CRF model can deduce that k-mers with a cover-
age above the cutoff value correspond to sequencing errors. In other words, a node that is
assigned multiplicity zero might have a higher coverage than a node that is assigned mul-
tiplicity one. This unique property explains the higher classification accuracy obtained by

Table 3 Sensitivity, specificity and F1 score for the classification of k-mers into trusted and untrusted
subsets

10× cov 25× cov 50× cov

sens spec F1 sens spec F1 sens spec F1

S. enterica

Quake 0 100 0 93.77 100 96.78 99.31 99.97 99.65

BayesHammer 98.22 99.42 98.81 99.22 99.98 99.60 99.42 99.98 99.71

Detox 98.46 99.21 98.82 99.51 99.95 99.74 99.75 99.96 99.87

P. aeruginosa

Quake 4.64 100 8.88 80.58 100 89.24 98.08 100 99.03

BayesHammer 99.07 99.64 99.11 99.25 99.99 99.62 99.23 100 99.61

Detox 99.23 99.69 99.25 99.80 99.97 99.88 99.90 99.97 99.94

C. elegans

Quake n/a n/a n/a n/a n/a n/a 91.68 99.94 95.65

BayesHammer 96.64 98.71 97.40 96.49 99.88 98.18 96.34 99.95 98.13

Detox 99.20 98.96 98.87 99.81 99.69 99.82 99.91 99.68 99.91

A. thaliana

Quake 0 100 0 94.20 99.99 97.01 99.00 99.96 99.49

BayesHammer 96.34 98.52 96.93 95.88 99.84 97.84 95.11 99.96 97.49

Detox 98.36 97.68 97.68 99.42 99.40 99.49 99.70 99.54 99.76

H. sapiens chr. 21

Quake n/a n/a n/a 25.06 99.46 39.88 48.96 99.86 65.7

BayesHammer 84.62 99.05 90.53 88.9 99.79 94.01 90.8 99.84 95.12

Detox 90.09 98.39 92.88 95.84 98.47 97.04 97.5 98.41 98.2

Quake and BayesHammer were run with default settings. Our CRF method (Detox) was run at neighbourhood size s = 3. For C.
elegans at 10× and 25× coverage and H. sapiens, chr. 21, Quake was unable to identify a cutoff and hence, no results are shown
(n/a). The highest values are shown in boldface
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Fig. 4 Part of the q-mer histogram of the real P. aeruginosa (25×) dataset. The red line shows the optimal
coverage cutoff value. The purple shaded area represents nodes with a coverage below this cutoff value that
have true multiplicity 1 whereas the green shaded area represents nodes with a coverage above the cutoff
that have true multiplicity 0. These nodes represent false positives and false negatives respectively when
using a cutoff-based method. In contrast, the CRF model is able to correctly classify the majority of nodes
(lighter shaded purple and green areas)

Detox. Indeed, Fig. 4 illustrates that most k-mers with ambiguous coverage are correctly
classified.

Runtime performance

The runtime of the CRF methodology to infer the multiplicity of a node (or arc) depends
on the total number of nodes and arcs in its neighbourhood as well as the degree of con-
nectivity of this subgraph. Linear subgraphs give rise to CRFs that can be solved in a time
proportional to the number of nodes and arcs in the subgraph, whereas densely connected
subgraphs yield CRFs that may require a solution time that is exponential in the total
number of nodes and arcs. We emphasise, however, that for a fixed value of the neigh-
bourhood size s, the total number of nodes and arcs in a subgraph is bounded, and hence,
the runtime to infer the multiplicity for a particular node or arc is O(1). Therefore, the
runtime to infer the multiplicity of all nodes (resp. arcs) in de Bruijn graph scales linearly
with the number of nodes (resp. arcs).
Table 4 lists the average number of nodes and arcs in a subgraph for different genomes

(50× coverage depth) and different neighbourhood sizes s as well as the total runtime
to infer the multiplicity for 10 000 randomly selected nodes using a single core of a 24-
core AMD EPYC 7451 CPU with a base clock frequency of 2.3GHz. With increasing
neighbourhood size s, the number of nodes and arcs in the subgraph increases rapidly.
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Table 4 Performance assessment for multiplicity inference using CRFs

avg. no. avg. no. runtime

s of nodes of arcs (10k nodes)

P. aeruginosa 0 1.0 0.0 0.024 s

1 3.1 6.0 0.566 s

3 11.9 20.8 3.5 s

5 28.7 49.4 18.0 s

C. elegans 0 1.0 0.0 0.028 s

1 3.8 10.8 1.292 s

3 23.7 66.1 46.3 s

5 77.1 210.0 257 s

H. sapiens 0 1.0 0.0 0.047 s

1 4.4 14.4 1.974 s

3 32.7 103.9 76 s

5 115.0 345.7 605 s

For different organisms (at 50× coverage depth) and neighbourhood sizes s, the average number of nodes and arcs in a
neighbourhood are listed as well as the runtime to infer the multiplicity of 10 000 nodes using a single CPU thread

Genomes with a complex repeat structure such as H. sapiens give rise to larger and more
densely connected subgraphs for which the corresponding CRF solution requires a longer
runtime.
Recall that most of the accuracy gains of the CRF methodology are already obtained for

s = 1 (see Table 2). In that case, the CRF includes coverage information of, depending on
the genome, 3–5 nodes and 6–15 arcs. Using all 24 cores of the AMD EPYC 7451 CPU,
the multiplicity of all 254.7 million nodes in theH. sapiens de Bruijn graph (50× coverage
depth) can be inferred in roughly 1 h and 20 min, illustrating that the CRF methodology
is applicable to even the most challenging genomes. For such large-scale de Bruijn graphs,
the use of higher values for s should likely be restricted to a subset of nodes, e.g. the nodes
for which the multiplicity is ambiguous, to avoid excessive runtimes. Bacterial genomes
do not suffer from this restriction. Even for s = 5, the multiplicity of all 169 028 nodes in
the de Bruijn graph of P. aeruginosa can be inferred in only 27.2 s, using 24 CPU cores.

Discussion
Many genome analysis tools such as de novo genome assemblers, read correction tools
and variant callers rely on de Bruijn graphs to represent the underlying genomic sequence.
To obtain an informative de Bruijn graph representation, it is important to accurately
determine the multiplicities of its nodes and arcs. Nodes/arcs that are assigned multiplic-
ity zero reveal sequencing errors, while higher-order multiplicities provide insight into
the repeat structure of the graph.
We used conditional random fields (CRFs) to incorporate contextual information on

neighbouring nodes/arcs in a de Bruijn graph and demonstrated that the CRF model sig-
nificantly improves the accuracy with which multiplicities are assigned for a wide range
of organisms and different coverage depths. For the specific subtask of classifying k-mers
into trusted and untrusted subsets, the CRF model outperformed two existing methods:
one based on q-mer histograms and one based on clustering of k-mers by sequence simi-
larity. Moreover, the use of CRFs in an EM setting provides for a robust estimation of the
parameters of the distributions that underlie the k-mer or q-mer histogram.
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Several improvements to the CRF model can be considered as future work. First, the
CRF model currently does not take the ploidy of the underlying genome into account.
In the case of a diploid organism such as H. sapiens, k-mers that represent heterozygous
variants should be assigned a multiplicity of one half. In the current implementation, the
flow of conservation rule forces the multiplicity of one allele to one and the other allele to
zero. Second, the computational performance of themethod could likely be improved.We
demonstrated that the use of neighbourhood size s = 1 is feasible for human genome scale
datasets, however, runtime increases rapidly for larger values of s. Several options exist.
One may consider a dynamic selection of s, where larger values for s are used only for a
subset of nodes/arcs whose accurate multiplicity determination is difficult (e.g. because of
ambiguous coverage) or crucial (e.g. during repeat resolution) and resort to smaller values
of s (even s = 0) for the cases where the multiplicity can be unambiguously derived from
the locally observed coverage. Alternatively, the use of approximate inference techniques
could be researched. As opposed to the variable elimination algorithm, approximate infer-
ence techniques may not yield exact numerical results, but can be more computationally
efficient.

Conclusions
In this paper, we provided a method to improve one particular subtask of sequence
analysis using de Bruijn graphs. It remains to be demonstrated that more accurate mul-
tiplicity determination can also lead to improved practical bioinformatics tools. We plan
to develop a de Bruijn graph cleaning tool that makes use of the multiplicities inferred by
the CRF model. In combination with an accurate sequence-to-graph alignment tool, this
should yield highly accurate short read or hybrid long read error correction tools. Finally,
it would be interesting to investigate twowhat extent accuratemultiplicity estimates could
improve the repeat resolution step during de novo genome assembly.
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