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Abstract

The increasing popularity of video gaming competitions, the so called eSports, has contributed to the rise of a new
type of end-user: the passive game video streaming (GVS) user. This user acts as a passive spectator of the gameplay
rather than actively interacting with the content. This content, which is streamed over the Internet, can suffer from
disturbing network and encoding impairments. Therefore, assessing the user’s perceived quality, i.e. the Quality of
Experience (QoE), in real-time becomes fundamental. For the case of natural video content, several approaches already
exist that tackle the client-side real-time QoE evaluation. The intrinsically different expectations of the passive GVS user,
however, call for new real-time quality models for these streaming services. Therefore, this paper presents a real-time
Reduced-Reference (RR) quality assessment framework based on a low-complexity psychometric curve-fitting approach.
The proposed solution selects the most relevant, low-complexity objective feature. Afterwards, the relationship between
this feature and the ground-truth quality is modelled based on the psychometric perception of the human visual system
(HVS). This approach is validated on a publicly available dataset of streamed game videos and is benchmarked against
both subjective scores and objective models. As a side contribution, a thorough accuracy analysis of existing Objective
Video Quality Metrics (OVQMs) applied to passive GVS is provided. Furthermore, this analysis has led to interesting
insights on the accuracy of low-complexity client-based metrics as well as to the creation of a new Full-Reference (FR)
objective metric for GVS, i.e. the Game Video Streaming Quality Metric (GVSQM).

Keywords: Game video streaming (GVS), Quality of Experience (QoE), predictive modelling, objective quality
assessment, curve-fitting, Game Video Streaming Quality Metric (GVSQM)

1. Introduction

The increasing interest in video gaming competitions
(the so-called eSports) has risen the growth of the passive
game video streaming (GVS) community, in which the end
user is only watching the gameplay provided by other play-
ers instead of interactively participating [1]. This commu-
nity has become so large that game-related live-stream web
services have rapidly gained in popularity [2]. The most
well-known example of such a platform is Twitch, with
over 100.000.000 of unique users on a monthly basis [3].
These streaming services involve, however, network and
video encoding related impairments such as delay, packet
loss, jerkiness, frame rate or bitrate [4] that could nega-
tively influence the user’s perception of the service, i.e.
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the Quality of Experience (QoE) [5]. In order for internet-
based GVS providers to be competitive with each other,
it is thus of great interest to assess the perceived quality
of the end-user in real-time. Based on these observations,
multiple parameters, such as capacity and latency, could
be adapted to maximize the end-user quality within the
constraints of the platform, such that customers can be
kept as satisfied as possible [6].

Given the humanly essence of perception, QoE has
been traditionally measured by means of subjective ex-
periments. During these, human observers score the con-
tent, leading to the so-called Mean Opinion Scores (MOS)
[7]. Although being very accurate, these subjective tests
are most often performed in limited laboratory environ-
ments and have high costs in terms of time, money and
effort. In addition, MOS cannot straightforwardly be ap-
plied for real-time quality evaluation [7], which is essen-
tial for the real-time assessment in online streaming en-
vironments. Although continuous subjective evaluation
methods exist (i.e. Single Stimulus Continuous Quality
Evaluation (SSCQE), Double Stimulus Continuous Qual-
ity Evaluation (DSCQE)...)[8], these methods tend to be
too intrusive for the end-user. As a matter of fact, they
require the adaptation of a slider (or similar) for the real-
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time indication of the perceived image quality. Especially
in the case of interactive gaming, this is a problem as it
prohibits the user to interact naturally with the game at
hand. Even in the passive case, however, continuous evalu-
ation methods distract the user from fully focusing on the
provided gameplay. As such, subjective evaluations are
not well suited for real-time quality assessment, which is
an important condition in order to maximize the perceived
quality of the end-user.

Alternatively, Objective Video Quality Metrics
(OVQMs) are often used to model the quality of natural
videos. These metrics aim at mathematically describing
the subjective, human perception of visual quality by
end-users as closely as possible. This is done based on
numeric, visual characteristics of the received content
as well as objective system factors, e.g. related to the
network. According to their requirements, three types
of models can be distinguished: Full-Reference (FR),
Reduced-Reference (RR) and No-Reference (NR)-models
[5, 9]. FR-models calculate a quality metric by means of
a mathematical comparison between the original and the
distorted video. These approaches are however impracti-
cal in client-server based scenarios, as simultaneous access
of both the original and distorted content is required [5].
The former is inaccessible at the client-side, however, due
to the inevitable distortions that come with compression
and network transmission. NR-models, on the other
hand, attempt to estimate the quality of the content
only based on the distorted video, at the cost of lower
correlation with subjective scores but ruling out the
problem of simultaneous access [5]. RR-metrics hold the
middle between both as the original, undistorted content
is compressed by calculating a number of features (i.e.
low-complexity NR measurements) which can be sent
over a side-channel to the client (using a limited part of
the available bandwidth). This allows comparison with
the distorted content to make a quality estimation [5].
Their correlation with MOS is usually better than their
NR counterparts, but still significantly lower than FR
solutions.

To provide a solution to the conflicting requirements
of accuracy and computational complexity, either subjec-
tive scores or objective FR metrics are typically predicted
from both encoding and/or network-related NR/RR met-
rics in order to make real-time quality estimations [5, 10–
12]. Most of these approaches are applied to the case of
natural videos, i.e. non-synthetic videos with real-life con-
tent, real actors etc. [13], often resulting in rather complex
and computationally expensive relationships between the
input features, i.e. the Quality of Service (QoS), and QoE
[10, 11, 14, 15]. However, the expectations of passive GVS
are intrinsically different (e.g., more attention to moving
objects, different perception of synthetic content, higher
sensibility to fluidity...). As a result, it is important to un-
derstand whether the modelling approaches and accuracy
levels of objective metrics for natural videos still hold for
the passive GVS case. If this is the case, it is of great

interest to investigate whether the typical characteristics
of game video content can be exploited to obtain more
straightforward, computationally friendly quality assess-
ment methods than the often complex models applied for
natural videos. If this is not possible, a need arises for
alternative models focusing on the passive GVS end-user.

The goal of this work is therefore to provide an end-to-
end solution for the real-time objective quality assessment
of passive GVS. This solution consists of a RR framework
based on a psychometric curve-fitting approach running
on low-complexity, client-based objective metrics. As the
most relevant metric will heavily depend on the video type
[16–18], the presented end-to-end model includes a server-
based pre-processing method. In this method, the best
suited low-complexity metric (in terms of accuracy) is se-
lected for each GVS sequence type being offered. In this
paper, the working principles of this approach are pre-
sented. To illustrate its performance, the approach is ap-
plied to the Gaming VideoSET [19], a large dataset in-
cluding subjectively scored sequences of passive GVS. To
provide the accuracy analysis (the server-based method),
19 NR/RR features are selected, both on the pixel and bit-
stream level. In addition, 4 objective FR metrics are also
put to the test with regard to the evaluation of their accu-
racy to subjective perception. As an output to the analy-
sis, a game classifier is proposed and a customized FR met-
ric for GVS, i.e. the Game Video Streaming Quality Met-
ric (GVSQM), is created. Finally, the psychometric curve
fitting approach is created and evaluated by benchmarking
it (i.e. comparing to a certain subjective or objective FR
ground truth) against both objective state-of-the-art FR
metrics and subjective MOS. Furthermore, its accuracy is
compared to two Machine Learning (ML) approaches of-
ten applied to natural videos: Decision Regression Trees
(DRTs) and Artificial Neural Networks (ANNs).

The remainder of this paper is organized as follows. In
Section 2, the related work within the field of predictive
QoE modelling for GVS is presented and the shortcom-
ings of the existing approaches are addressed. Section 3
provides a high-level overview of the theoretical approach
followed. Next, a description of the used dataset is pro-
vided in Section 4. Section 5 highlights the most important
results of the correlation analysis on a set of objective met-
rics often used for natural video quality estimation. The
resulting game classifier as well as a customized, objective
FR metric (GVSQM) are discussed as well. In Section 6,
the proposed psychometric curve-fitting approach is fur-
ther explained and evaluated and a comparison with other
modelling approaches often applied in literature is pro-
vided. In Section 7, a short discussion is given on the pros
and cons of the proposed approach in comparison with ex-
isting solutions. Section8, at last, provides a summary of
the most important findings of this work, together with a
few future research directions that could prove to be in-
teresting extensions to the obtained results.
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Table 1: Overview of the related work. The interaction type (Int.) is
indicated with I for interactive and P for passive. Type indicates the
nature of the metric presented in the study. None indicates that only
a subjective study was performed, without proposing an objective
metric. In addition, the considered distortions are indicated.

Authors Int. Type Distortions
Clincy et al. [20] I None

• Latency
• Packet loss

Huang et al. [21] I None
• Bitrate
• Framerate
• Resolution
• Delay

Jarschel et al. [22] I None
• Delay
• Packet loss

Slivar et al.
(2015) [16]

I NR
• Bitrate
• Framerate

Slivar et al.
(2016) [17]

I NR
• Bitrate
• Framerate

Slivar et al.
(2018) [18]

I None
• Bitrate
• Framerate

Wang et al. [23] I NR
• Bitrate
• Framerate
• Resolution
• Compression
• Bandwidth lim-

itation
• Delay
• Jitter
• Packet loss

Zadtootaghaj et
al. [24]

I FR
• Bitrate
• Framerate

Barman et al.
(2018) [25]

P None Compression

Barman et al.
(2018) [26]

P NR Compression

Barman et al.
(2019) [27]

P NR Compression

Göring et al. [28] P NR Compression

2. Related work

Only a limited number of studies exists up till now
within the research field of visual quality modelling for
GVS. An overview of these studies is provided in Table 1.
As indicated in the previous Section , a distinction can be
made between interactive and passive GVS.

Clincy et al. [20] present a study on the influence of
network distortions on the client-side QoE in interactive
GVS. The graphical part of the QoE is modelled in terms
of packet loss while the interaction is measured in terms
of the network latency. Their results show that both
have a significant impact on QoE, but that the impact
of packet loss is higher than the impact of latency. More-
over, the user tolerance to network distortions is shown to
be lower for high-paced games such as First-Person Shoot-
ers (FPSs) in comparison with slower-paced games such as
role-playing games (RPGs).

Huang et al. [21] perform a correlation analysis on the
encoding bitrate, framerate and resolution at the encoding
level combined with the network delay as a measurement
for the interaction quality in an interactive GVS scenario.
Their main conclusion is that resolution has a lower im-
pact on the end-user QoE in comparison with the other
measurements.

Jarschel et al. [22] show that the influence of the game
type is less pronounced for network-related distortions in
interactive GVS. Their correlation analysis shows that
both network delay and packet loss have an important
impact on the end-user QoE in terms of MOS, whereas
the game genre and the skill of the particular player seem
negligible.

Slivar et al. [16] attempt to model the visual QoE of
interactive GVS purely on bitrate and framerate. These
metrics are related to MOS using a linear regression
method. The results show a heavy dependency on the
game genre, with (rather limited) correlations ranging
from 0.676 to 0.808 from game to game. In a second study
[17], they did an attempt to improve their results by in-
cluding a spatio-temporal characterization of the game as
well as additional encoding characteristics. These features
were related to MOS using a polynomial regression ap-
proach, resulting in increased correlations ranging from
0.782 to 0.986, but still heavily depending on the type of
game. In a successive, third study [18], research is per-
formed towards the most optimal encoding strategy given
a particular game genre and some player-related character-
istics, e.g. the experience in playing games of the end user.
The resulting correlations with MOS show once again a
heavy dependency on the type of game.

Wang et al. [23] propose a piece-wise linear metric for
interactive GVS, based on bitrate, framerate, resolution,
the video codec characteristics, available bandwidth, delay,
jitter and packet loss. This metric is then polynomially
fitted to subjective MOS, resulting in a 0.92 correlation.
These results are based on a rather limited dataset, how-
ever, that consists of only three different games (a RPG, a
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racing game & a sports game), 2 resolutions, 2 framerates
and 2 delay values combined with a larger set of 8 Packet
Loss Ratios (PLRs), ranging from 0 to 8 %.

Zadtootaghaj et al. [24] propose a metric for interac-
tive GVS by including Peak Signal-to-Noise Ratio (PSNR)
alongside bitrate and framerate in the set of input features.
They propose a linear combination of polynomial and ex-
ponential expressions, resulting in correlations between
0.89 and 0.91 to MOS, depending on the game type. It
should be remarked, however, that the study has only been
performed on a dataset consisting of two games (Grand
Theft Auto V & Project Cars), 2 bitrates and 4 framer-
ates, thus only providing a total of 16 testing conditions.
In addition, it has to be noted that the inclusion of PSNR
in the feature set makes the model FR by construction,
making it unusable in live-streaming scenarios.

On the topic of passive GVS, Barman et al. [25], per-
form a correlation analysis of multiple FR metrics (PSNR,
Structural Similarity Index (SSIM), Visual Information Fi-
delity (VIF) and Video Multimethod Assessment Fusion
(VMAF)) to MOS, for videos with different degrees of
compression. Their results show average correlations of
0.70, 0.52, 0.67 and 0.88 respectively. In a second study
[26], they present a modelling approach in which a Sup-
port Vector Regression (SVR) is used to forge a quality
metric based on a set of NR-metrics. This set includes
features such as blockiness and noise combined with a
spatio-temporal characterization of the particular game.
The model is trained on sequences annotated with VMAF,
which is a FR-metric created by Netflix [29], resulting in
a 0.98 correlation. Furthermore, a correlation of 0.89 with
MOS is obtained. It should be noted, however, that the
VMAF to MOS correlation tends to differ from a high
0.97 correlation value to a more limited 0.8 correlation,
depending on the encoding characteristics. The encoding
bitrate is a factor that has not been researched as the main
focus lays on the resolution. Therefore, one might ques-
tion how representative the end-user quality assessment of
the first study [25] is towards scenarios with heavy com-
pression. Furthermore, it highlights the need for a more
stable FR-metric tailored to the specific context of GVS.
In a third, subsequent study [27], they present two qual-
ity predicting models for passive GVS, i.e. No-Reference
Gaming Video Streaming Quality Index (NR-GVSQI) and
No-Reference Gaming Video Streaming Quality Estimator
(NR-GVSQE). The NR-GVSQI model is based on an ANN
and is used to predict subjective MOS scores. It takes a
set of 15 NR features as an input, covering bitrate, resolu-
tion, Spatial Information (SI), Temporal Information (TI)
and a variety of both spatial and temporal distortion met-
rics. Their model is evaluated on two separate datasets
and shows correlations of 0.87 and 0.89 to MOS. The NR-
GVSQE model uses a SVR to predict objective FR VMAF
scores. A similar set of features is taken as the input. The
results show correlations up to 0.97 to VMAF and 0.91 to

MOS.

Göring et al. [28], at last, present a NR approach
for passive GVS, based on a set of features includ-
ing the Fast Fourier Transform (FFT), SI, TI, blocki-
ness, blockmotion, staticness, temporal features based on
cuboid slices, Natural Image Quality Evaluator (NIQE)
and Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE). These features are fed to a temporal pooling
entity based on mean and standard deviation calculations.
The resulting values are used as input to a Random Forest
(RF) benchmarked with VMAF to build the actual model.
Their results show correlation values up to 0.96 to VMAF
and 0.91 to subjective MOS as evaluated on the publicly
available dataset of Barman et al. [19].

As can be concluded from the above overview, the
amount of related work within the topic of GVS quality as-
sessment is rather limited. In addition, the majority of the
presented studies tends to research end-user perception in
interactive rather than passive GVS. Visual satisfaction is
an important part of the user’s QoE in interactive scenar-
ios, along with delay. Therefore, it gives important indica-
tions for the visual perception of its passive counterpart.
However, due to the fundamental differences between both
scenarios, both perceptions cannot just be equated. As
the user acts as a spectator rather than a player in passive
GVS, it can be assumed that he/she keeps a more general
overview of the received content in comparison with the
active user. The latter probably focuses more on certain
aspects within the content of the stream, such as his/her
personal avatar. Therefore, it is useful to investigate how
this perception changes for the passive case of GVS.

A second, important conclusion is that no objective, FR-
metric seems to exist that is known to provide satisfying
results towards the assessment of end-user perception of
GVS. Instead, objective metrics constructed for the natu-
ral video case are often applied for game-related, synthetic
content despite their varying performance for this partic-
ular case.

Furthermore, it has to be pointed out that a significant
part of the studies that try to relate the computation-
ally less expensive NR/RR-metrics to an objective or sub-
jective benchmark, are almost all focusing on bitstream-
based methods. In addition, these studies show either lim-
ited performance or high performance on limited datasets.
Furthermore, the role of the human visual system (HVS)
characteristics within the end-user perception is rarely in-
vestigated.

At last, it has to be emphasized that most studies claim
that the type of game under scrutiny plays an important
role in the end-user perception of the content as well as the
objective modelling of these subjective scores. In what way
this game-type should be defined and incorporated within
the modelling approach is an open research question, how-
ever.

Therefore, this work researches the establishment of an
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Figure 1: Schematic illustration of the presented end-to-end solution.

end-to-end solution for the real-time quality assessment of
streamed game videos. To this end, a low-complexity psy-
chometric curve-fitting approach (incorporating the char-
acteristics of the HVS) is proposed that is based on a set
of NR and RR features. These features include both pixel
and bitstream-based NR and RR metrics. The best suited
metric for the fit is selected based on a low-complexity
game classifier. Afterwards, the obtained model’s perfor-
mance is benchmarked against a customized, FR GVS-
metric.

3. A psychometric curve-fitting approach for qual-
ity assessment of passive GVS

Figure 1 presents an overview of the theoretical end-
to-end solution. As can be seen, the live game video se-
quences, which are also recorded and stored in a database
on the server side, are encoded to a game video stream
which is sent by the Game Video Server over the network
to the Game Video Client. As a result of this transmis-
sion, visual impairments occur that could negatively influ-
ence the end-user’s perceived quality. In order to model
this quality degradation, an offline Server-side analysis
of the stored game video content is performed to estab-
lish an appropriate curve-fitting model. To this end, the
impairments resulting from a multitude of encoding and
network circumstances are simulated by means of an En-
coder & Network simulator. Upon the resulting, impaired
video sequences, a multitude of computationally efficient
real-time NR/RR features is calculated alongside a set of
more complex FR metrics. Both are subjected to a per-
formance evaluation, including analysis towards correla-

tion and DRT feature weights. Based on the results of
this analysis, a game classification method can be derived
using a limited amount of NR-features. Afterwards, the
most suiting NR/RR feature for curve-fitting is selected
based on the resulting class. A psychometric curve can
than be fitted through this particular feature against a
quality benchmark chosen based upon the performance of
the FR-metrics. The particular feature x along with the
resulting, fitted curve Q(x) is then sent to the client-side
where it can be used for real-time quality assessment. This
is done by recalculating x on a regular base upon the re-
ceived live-stream after which Q(x) can be evaluated in the
resulting value to obtain an estimation of the client-side
perceived quality.

The remainder of this Section provides an in-depth de-
scription of the working principles of both the online client-
based quality assessment method and the offline server-
side pre-processing methodology.

3.1. Real-time model assessment

Figure 2 shows the typical, general relationship between
a certain impairment and the end-user’s perception. Three
major areas can be distinguished [30]:

• Area 1 (Constant perception): The occurring degree
of impairment is low enough, such that a slight in-
crease or decrease of this particular impairment has
little to no effect on the perceived quality [30].

• Area 2 (Decreasing perception): The degree of im-
pairment grows above a certain threshold x1 after
which the perceived end-user quality tends to decrease
rather fast [30].
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Figure 2: Typical, general relationship between the degree of impair-
ment and the perceived quality in a multimedia service[30].

• Area 3 (Unacceptable quality): : After the degree of
impairment exceeds a certain threshold x2, the quality
experienced by the user becomes so low that the user
considers it as being unacceptable and decides to leave
the system [30].

Due to this typical, psychometric impairment-quality
relationship, sigmoidal curves are often applied to these
kinds of curve-fitting approaches. This is because of their
asymptotic behaviour in the neighbourhood of either very
high or very low values of the variable under scrutiny, and
their fast decreasing/increasing characteristic for medium
values of the selected feature. Alternatives include expo-
nential functions, whereas the values are clipped at the
minimum and maximum quality value that can be ob-
tained, or even a straightforward linear fit in some cases.

Equation 1 shows Equations for the sigmoidal (Qs(x)),
exponential (Qe(x)) and linear (Ql(x)) functions.

Qs(x) = 1

(1+αs exp(−βsx))
1
γs

Qe(x) = αe exp(βex)
Ql(x) = αlx+ βl

(1)

Hereby, the linear and exponential curve are clipped at
0 and 1. Note that the exponent 1

γs
in the denominator

of the sigmoid curve has been added to allow to tune the
speed at which the curve is increasing from 0 to 1. The
weights αi, βi and γi, i = l, e, s, are calculated during the
curve-fitting procedure such that the difference between
the curve and the training points, e.g. expressed in Mean
Squared Error (MSE), is minimized. It can be observed
that these curves provide output values between 0 and 1
by definition, according to the normalized benchmarks. As
a result, no constant terms are included in the Equations,
as all other properties of the curves can be tweaked using
the already provided parameters.

Heuristics are needed, however, to apply a curve-fitting
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Figure 3: Illustration of the curve shift estimation procedure.

approach in practice. The placement of the curve within
the impairment-perception plane, for instance, is often de-
pending on the dataset, the game type or even the partic-
ular sequence as human perception tends to be relative to
a certain reference, rather than an absolute value. There-
fore, in order to effectively assess the quality of a live game
stream on the client-side, a starting point, i.e. an anchor
point, of the psychometric curve is needed. To this extent,
the following approach is proposed, which is illustrated in
Figure 3. If one assumes that the game sequence labeled
as Sequence 2 is the current, real-time behaviour of the
live-stream, while Sequence 1 is a recording of the same
game (but a different part of the content) saved within the
server’s database, the former’s psychometric curve can be
estimated on the latter’s one. By measuring one or two
seconds of the particular feature on the live-stream and
comparing the feature value with a similar sequence of the
particular game in the server’s database, an estimation can
be made of the shift that should be applied to the fitted
curve (through the server data) to obtain the estimated
curve of the real-time stream.

Another phenomenon that can occur is a dependency
of the curve on the resolution. This can be easily solved,
however, by fitting and sending one curve per supported
resolution. On the client-side, the appropriate curve can
easily be selected based on the resolution of the received
stream. Specific experimentation and results concerning
the curve-fitting procedure are provided in Section 6.

3.2. Server features accuracy and psychometric classifica-
tion

Given the presented curve-fitting approach of the previ-
ous Section, the question remains how to select a certain
feature for a particular game to fit a curve through. There-
fore, a server-side pre-processing step is taken. On the
server-side of the presented architecture, low-complexity
features are calculated on a regular basis upon the fre-
quently arriving game recordings within the database.
These can be bitstream-based methods such as bitrate and
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resolution as outputted by the encoder and/or network
simulator, but also pixel-based features calculated upon
the distorted content are possible. Furthermore, a set of
FR-benchmarks are calculated in order to be able to train
the model.

A thorough performance analysis of these NR/RR fea-
tures and FR metrics in terms of correlation with subjec-
tive scores (e.g. MOS) is performed. These correlations
are calculated for each metric on the dataset as a whole,
as well as per game and for the multiple bitrate-resolution
encoding pairs to obtain a genuine view on the perfor-
mance of these metrics over the different conditions. This
is also schematically shown in Figure 1. The resolution-
bitrate performance is visualized in correlation heatmaps.
These heatmaps are created in a cumulative fashion. This
means that the correlation value shown at resolution r and
bitrate b is calculated over all data points d for which res-
olution rd ≤ r and bitrate bd ≤ b. This is done to make
sure that enough data can be found to calculate a reli-
able correlation value upon, as correlations calculated on
too little data might draw a distorted picture of the un-
derlying relationships. In addition, it allows to analyse
existing trends which could help to provide additional un-
derstanding on how far they correlate when evaluated on
bitrates and resolutions. One heatmap per video is created
to be able to assess the per content correlation over these
parameters. The correlation values themselves are eval-
uated using the Pearson Correlation Coefficient (PCC),
which measures the linear correlation between two sets of
N data points ~x and ~y as the ratio between the sample
co-variance of the two variables to the product of their
sample standard deviations [31], i.e.

PCC(~x, ~y) =

∑N−1
i=0 (xi − x̄)(yi − ȳ)√∑N−1

i=0 (xi − x̄)2
√∑N−1

i=0 (yi − ȳ)2
(2)

with xi and yi the individual data points of the two sets
~x and ~y, respectively, and x̄ and ȳ their respective means.
The resulting value is a decimal number between -1 and
1, where -1 and 1 indicate a strong negative or positive
correlation respectively, and 0 no correlation at all [31].
Note that the Spearman’s Rank Order Correlation Coef-
ficient (SROCC) provides a valuable alternative to PCC.
The latter is preferred, however, as the presented analy-
sis aims at providing insight in the linear trends between
variables rather than the monotony of their relationship.

In order to obtain additional insight in which NR/RR
features have the highest impact to distinguish between
high and low end-user quality, DRTs are trained upon the
recordings of each game. This is also illustrated in Fig-
ure 1. Hereby, the subjective MOS scores are used as the
benchmark. The DRT searches for the input feature and
the splitting point within this feature’s range that mini-
mizes a certain error function over the resulting subsets of
the data. The chosen error function f(S1, S2) is the sum
of the MSEs between predictions and benchmarks of both

subsets S1 and S2, i.e.

f(S1, S2) =
1

#S1

∑
yi∈S1

(yi− ȳ1)2+
1

#S2

∑
yi∈S2

(yi− ȳ2)2 (3)

with #S1 and #S2 the resulting number of data points
in subsets S1 and S2, respectively, and ȳk the average of
the benchmarks in Sk, k = 1, 2, functioning as an out-
put for that particular subset. The same approach can
recursively be followed until only one data point remains
within each subset. These are called the leafs of the tree.
When used as an actual prediction model, this behaviour
is unwanted as it results in heavy overfitting behaviour and
therefore in poor performance on unseen data. Therefore,
a lower bound is often set to the degree of impurity, i.e.
the error function, to deny a subset of being split if this
would mean that the set bound would be surpassed. As
the DRTs are, in first instance, only used to gain insight in
the data rather than an actual modelling approach, how-
ever, trees can be allowed to grow completely.

Based on the results of this analysis, classes of games
can be identified with similar relevant features when it
comes to distinguishing between higher and lower bench-
marks using DRTs. The games within each class can then
be compared in terms of their spatio-temporal character-
istics in order to obtain an objective classifier using only a
few, low-complexity NR-features. Low-complexity, unsu-
pervised clustering algorithms, e.g. k-means, can typically
be used to this extent. More detailed results of this ap-
proach are provided in Section 5.2.

To this extent, a need arises for an objective, FR metric
that could provide overall good performance. Therefore,
based on the results of the performance analysis of stan-
dard, natural-video FR metrics for the particular case of
GVS, the decision can be made whether one or more ex-
isting metrics prove to be accurate enough for application
in the GVS case. If not, a new metric could be forged
out of the existing metrics, whereas the new metric should
show good performance both in terms of correlation accu-
racy and stability over the multiple distortion conditions.
The resulting FR-metric can then be used to benchmark
a dataset in order to evaluate the performance of the pro-
posed model. In the most general case, this customized
metric should take the psychometric characteristics of hu-
man perception, as discussed in the previous Section, into
account, i.e.

FRGVS =

N−1∑
i=0

αi · fi(FRi) (4)

with {FRi|i = 0, ..., N − 1} a set of existing FR quality
metrics and {fi|i = 0, ..., N − 1} a set of psychometric
functions. The latter can be either exponentials, logistic
curves, combinations of both or even nothing more that
the identity function. Further experimentation and results
towards the analysis of existing metrics, as well as the
creation of a customized metric are provided in Section 5.3.

7



Table 2: Overview of the Gaming VideoSET characteristics. The
games and bitrates indicated in bold are provided with MOS [19].

Games Counter Strike: Global Offensive (CSGO),
Diablo III (Diablo), Defense of the Ancients
2 (DotA2), FIFA 17 (FIFA), H1Z1: Just
Survive (H1Z1), Hearthstone (HS), Heroes
Of The Storm (HOTS), League of Legends
(LoL), Project Cars (PC), PlayerUnknown’s
BattleGround (PUBG), StarCraft2 (SC2), World
of Warcraft (WoW)

Duration 30 s
Frame 30 fps
Encoding CBR
Metrics SpEED-QA, PSNR, SSIM, VMAF
MOS 90 videos, 5-point ACR scale, single-stimulus

Resolution
[Pixels]

& Bitrate
[kbps]

• 640x480: 300, 400, 600, 900, 1200, 2000,
4000

• 1280x720: 500, 600, 750, 900, 1200, 1600,
2000, 2500, 4000

• 1920x1080: 600, 750, 1000, 1200, 1500, 2000,
3000, 4000

4. Dataset

The dataset used for the research is the Gaming
VideoSET [19]. It consists of 24 unimpaired recordings
from 12 games (2 recordings per game), spanning different
game genres [19]. These games are the following:

• Counter Strike: Global Offensive (CSGO): Realis-
tic FPS from 2012 in which two teams (terrorists &
counter-terrorists) with conflicting goals, such as det-
onating/disarming a bomb or capturing/protecting a
flag, fight each other [19].

• Diablo III (Diablo): A 2012 fantasy RPG in an iso-
metric perspective in which players fight monsters in
dungeons allowing them to upgrade their chosen char-
acter over time [19].

• Defense of the Ancients 2 (DotA2): An online mul-
tiplayer game from 2013 in an isometric perspective,
taking place in a fantasy battle arena and very pop-
ular in eSports competitions. Each player controls a
single avatar from a five-a-side team. Two teams fight
one against another in order to destroy the opponents
base as fast as possible [19].

• FIFA 17 (FIFA): One of the famous realistic soccer-
simulating games from Electronic Arts, released in
2016. Players can play soccer matches against the
built-in Artificial Intelligence (AI) but also against
other players, both offline and online [19].

• H1Z1: Just Survive (H1Z1): Survival game from
2015, situated in a realistic, post-apocalyptic setting
and third-person view. Goal is to take back control
in a world being overtaken by zombies [19].

• Hearthstone (HS): Spin-off tabletop card game from
the popular fantasy World of Warcraft (WoW) games,

Table 3: Set of calculated NR/RR features.

Type Name Acronym
NR-B Encoding bitrate BR

Encoding resolution RES
Scene Complexity [32] SC
Level of Motion [32] LOM

NR-P Mean amount of blurriness [33] MBLU
Variance of blurriness [33] VBLU
Mean blur ratio [33] MBLR
Variance of the blur ratio [33] VBLR
Mean amount of noise [33] MNO
Variance of noise [33] VNO
Mean noise ratio [33] MNOR
Variance of the noise ratio [33] VNOR
Mean blockiness [34] MBLK
Variance of blockiness [34] VBLK
Spatial Information [35] SI
Temporal Information [35] TI
Jerkiness [36] JER
Variance of the Motion Intensity [36] VMI

RR SpEED-QA [9] SPEEDQA

Table 4: Set of FR metrics being evaluated.

Name Acronym
Peak Signal-to-Noise Ratio PSNR
Structural Similarity Index SSIM

Video Quality Metric VQM
Video Multimethod Assessment Fusion VMAF

released in 2014. This title features a turn-based card
game in a fantasy setting [19].

• Heroes Of The Storm (HOTS): Real-time action strat-
egy game from 2015 in an isometric perspective, sit-
uated in a fantasy battle arena setting. Similar to
DotA2, 2 five-a-side teams try to destroy each other’s
bases [19].

• League of Legends (LoL): A fantasy battle-arena game
in an isometric perspective, released in 2009, and sim-
ilar to both DotA2 and HOTS. It is very popular in
eSports and one of the most played games worldwide.
Furthermore, it is intensively watched on passive GVS
platforms such as Twitch [19].

• Project Cars (PC): A very realistic, racing simulator
game from 2015, offering a wide choice in possible
cars, tracks and camera perspectives [19].

• PlayerUnknown’s BattleGround (PUBG): An online
multiplayer battle game from 2017. The game is sit-
uated in a first-person realistic setting, with the con-
cept consisting of a large group of players (max. 100)
being dropped randomly on an island. Goal is to find
weapons and equipment in order to eliminate other
players. The last one standing wins the game [19].

• StarCraft2 (SC2): Fantasy real-time strategy game
in an omnipresent perspective, released in 2010 and
popular in eSports competitions. Players create bases
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and units and try to destroy the opponent’s equip-
ment [19].

• WoW: A well-known fantasy-style Massive Multi-
player Online Role-Playing Game (MMORPG) from
2004 in an isometric perspective. Each player creates
his own avatar that can evolve over time by complet-
ing certain tasks in both competitive and co-operative
settings [19].

For each game, both recordings span a 30-second times-
pan and were losslessly captured in 1080p resolution and
30fps in RGB-format. Afterwards, they were converted to
YUV-format. Out of these 24 recordings, 576 impaired
MP4-encoded game video streams were created using 24
different bitrate-resolution combinations [19], as shown in
Table 2. The encoding is performed at Constant Bit Rate
(CBR), which is common behaviour for GVS, because
streamed gaming videos often have fast alternating peri-
ods of high action and rather static gameplay. Variable Bit
Rate (VBR) encoding could therefore result in end-user
stall of the stream, which is highly unwanted [37]. In addi-
tion, each of these impaired sequences was annotated with
the frequently used FR-metrics PSNR, SSIM and VMAF
and an additional RR-metric, being Spatial Efficient En-
tropic Differencing for Quality Assessment (SpEED-QA).
Moreover, a subset of 90 video streams was annotated with
subjective MOS (indicated in bold in Table 2) [19]. A total
of 25 test subjects, with a median age of 29 and covering
different demographic backgrounds, scored the sequences
in a single-stimulus approach on a 5-point Absolute Cate-
gory Rating (ACR) scale [19].

5. Experimental accuracy analysis of OVQMs

This Section investigates the accuracy of objective met-
rics for GVS, based on the methodology presented in Sec-
tion 3.2. To this extent, the small dataset consisting of
90 entries annotated with the ground-truth MOS is used.
First, an overview is given of the features and FR quality
metrics being calculated (Section 5.1). Next, the obtained
results for the NR/RR features are discussed after which
a game classifier is proposed (Section 5.2). Furthermore,
a similar accuracy analysis is performed and discussed for
the FR metrics as well (Section 5.3). Based on these re-
sults, a custom, objective metric suited to GVS is con-
structed. In Section 5.4, at last, a brief summary of the
most important conclusions of this analysis is given.

5.1. NR/RR

Features & FR quality metrics
Next to the encoding bitrate, resolution and the SpEED-

QA RR-metric already included in the dataset, an addi-
tional set of features is calculated to represent each video.
This resulting set of features is presented in Table 3. First,
the game video streams are analyzed in terms of their
spatio-temporal information. This is done both on the

pixel-based level (NR-P) in terms of Spatial (SI) and Tem-
poral Information (TI) and on the bitstream level (NR-
B) based on Scene Complexity (SC) and Level of Motion
(LoM) [32]. The last two can be directly obtained from the
FFmpeg-client [38]. Furthermore, a set of frame-by-frame
pixel-based NR-metrics (results of which are considered as
features) is calculated upon the distorted streams. These
metrics include measurements of motion, blurriness, noise,
blockiness and jerkiness. Each of these features, as well as
the pre-calculated FR quality metrics, are normalized to
the [0, 1] interval in order not to favour one metric over
another in distance based methods.

In addition to PSNR, SSIM and VMAF, the Video Qual-
ity Metric (VQM) [39] is calculated over each video se-
quence using the open-source MATLAB implementation
provided by the Institute for Telecommunication Sciences
(ITS) [40]. As VQM is intrinsically a measurement of qual-
ity degradation between 0 and 1, each of the videos is anno-
tated with 1−VQM to obtain a metric of quality, consistent
with the other FR metrics. For the remainder of this work,
every reference to VQM, actually means 1 − VQM. The
resulting set of objective FR metrics is shown in Table 4.

5.2. Evaluation of NR/RR features

In Table 5 the most important results of the correla-
tion analysis are given per game and overall for the con-
sidered NR/RR-features to MOS. First of all, it is worth
mentioning that SpEED-QA shows the strongest overall
correlation with a PCC of -0.761. It is interesting to see,
however, that SpEED-QA shows reasonable results for all
games except HS. Only a value of -0.300 is obtained for
this particular game. On the other side, strong correla-
tions can be seen for SI, SC and MNO (0.968, 0.942 and
-0.959 respectively), while the performance of these fea-
tures is far more limited for the other games. Opposite
behaviour is observed for JER. To further analyze this be-
haviour, the bitrate-resolution heatmaps are interpreted
as well. In Figure 4, a subset of the NR/RR features with
strong correlation to either one or multiple games is shown.
Bitrate-resolution pairs for which no correlation value is
given indicate that the correlation was calculated over ei-
ther 1 (undefined) or 2 (1 by definition) data points. As
a result, bitrates 300 and 500 are not included in the Fig-
ure (both only have one data point per game). They are in-
cluded in the calculation of the correlation values, though.
Both JER and SpEED-QA, for example, show strong neg-
ative correlations over all conditions for all games except
HS. For higher resolutions of HS, correlation is almost non-
existing. Remarkably enough, HS even shows positive cor-
relation for the lowest 640× 480 resolution. On the other
hand, high and low overall correlations can be noticed for
the SC and MNO features, respectively. These correla-
tions are rather stable over the different encoding condi-
tions, whereas PCC values of these features are heavily
changing over the multiple bitrates and resolutions for the
other games. These observations provide a strong indica-
tion that the type of game might be an important factor
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Table 5: Overview of the PCCs, per game and calculated over the whole dataset, between the NR/RR-features and MOS. The best and worst
performing one (in absolute value) per game and overall are indicated in blue italic and red bold, respectively.

Game VBLU MBLR SI TI MNO VNO MNOR SC LOM VBLK JER SPEEDQA
CSGO -0.358 0.444 0.329 -0.352 -0.783 0.399 -0.589 0.398 0.491 -0.267 -0.920 -0.865
FIFA 0.938 0.774 0.669 -0.414 -0.352 0.007 -0.684 0.662 0.896 -0.796 -0.886 -0.841
H1Z1 -0.065 -0.436 0.094 0.434 -0.504 0.733 -0.699 0.435 0.556 -0.291 -0.954 -0.925
HS 0.092 0.931 0.968 -0.287 -0.959 0.923 0.040 0.942 0.660 -0.515 -0.092 -0.300
LoL 0.077 0.809 0.436 -0.548 -0.727 0.596 -0.565 0.631 0.675 -0.488 -0.725 -0.814
PC -0.594 0.345 0.354 -0.412 -0.611 0.464 0.192 0.253 0.322 -0.701 -0.941 -0.941
Overall -0.240 0.060 0.508 -0.291 -0.444 0.060 -0.308 0.572 0.530 -0.388 0.044 -0.761
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Figure 4: PCCs between four selected NR/RR features (SPEEDQA, JER, SC & MNO) and MOS for each of the six subjectively annotated
games. Green means full correlation (PCC=1), dark blue full anti-correlation (PCC=-1) and red no correlation at all (PCC=0).

to be considered when modelling the end-user’s perceived
QoE. Moreover, it shows that, depending on the game, ei-
ther temporal or spatial characteristics of the stream have
a more important influence in the user’s perception.

In addition to the above, a per-game DRT has been
constructed, with MOS as a benchmark, and the weights
put on the multiple features have been analyzed. The re-
sults show that each of the obtained trees tends to put a
rather high weight (≥ 0.7) on one specific feature. This
feature differs, however, depending on the game at hand.
By means of illustration, the distribution of the feature
weights for the particular cases of FIFA and HS is shown
in Figure 5. For 4 out of 6 games, being FIFA, H1Z1,
LoL and PC, SpEED-QA turns out to be the most im-
portant feature when differentiating between higher and
lower subjective scores. For CSGO, JER seems to be the
most important feature, while HS is heavily depending on
SC. Note that the feature with the highest weight is not
necessarily the feature with the highest PCC to MOS as
indicated in Table 5. This is because the presented DRT
uses MSE as the error function (Equation 3). As high PCC
does not necessarily imply low MSE and vice versa, slight
differences between both approaches might occur. Based
on the obtained results, a heuristic distinction between

three game classes can be made.

• Class 0: HS

• Class 1: FIFA, H1Z1, LoL & PC

• Class 2: CSGO

To obtain a more objective, game-independent classifi-
cation, two spatial (SI & SC) and three temporal charac-
teristics (TI, LoM and Mean Motion Intensity (MMI)) are
investigated, where MMI is the mean-squared difference
of adjacent frames averaged over the game video [36]. As
can be seen from Figure 6, in which the data points are
manually labeled with the classes derived from the DRT
analysis, MMI on its own proves to be sufficient to pro-
vide a distinction between the multiple classes. A k-means
classifier, with k = 3, that works solely on the MMI char-
acteristic is therefore proposed as a classifying approach.
The resulting classification, shown in Figure 7, indicates
a 93,3 % resemblance with the manually annotated case.
The fact that MMI proves to be sufficient to distinguish
between different types of games, in combination with the
leading features obtained from the DRT analysis leads to
a rather interesting conclusion. The more motion is con-
tained within a specific stream, e.g. CSGO, the more tem-
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Figure 5: Illustration of the distribution of the DRT feature weights
for the particular cases of FIFA and HS

poral artifacts such as jerkiness play a role in the end-user’s
QoE. Moreover, the (limited) difference between the man-
ual annotation and the k-means classifier indicates that
the encoding conditions itself also play their role in this.
Spatial detail, on the other side, takes the upper hand in
games with little motion, as is the case for HS. SpEED-QA
holds the middle between both as it includes both spatial
and temporal characteristics, making it the ideal metric for
video sequences with medium MMI. This is an interesting
observation, as similar approaches for natural videos show
far more complex relationships between NR/RR features
and end-user QoE, often resulting in black-box, ML-based
modeling approaches.

Note that the application of k-means throws two addi-
tional questions when scaled to real-life applications. The
first question to be answered is at which frequency the clus-
tering mechanism should be re-trained in order to adapt
the classifier to newly added and/or deleted game video se-

Figure 6: Two-dimensional distribution of the game videos within
the bitrate-Mean Motion Intensity (MMI) plane. The data points
are manually labeled with the classes derived from the DRT analysis.
Blue is class 0, yellow class 1 and green class 2.

Figure 7: Two-dimensional distribution of the annotated classes of
the game videos within the bitrate-MMI plane after k-means (k = 3)
clustering. The resulting classification shows a 93,3 % resemblance
with the manually annotated case.

quences. This is of course highly dependent on the rate at
which gaming videos are added/removed from the server
database. As long as the number of videos used as train-
ing set for the classifier is high enough relative to the total
amount of videos in the database, no re-iteration of the al-
gorithm is needed (as the influence on the cluster centers
is assumed to be limited) and the classifier can be used as
such. Once this ratio exceeds a certain threshold, retrain-
ing is required. Further experimentation on larger datasets
is needed, however, to derive an exact value for this par-
ticular threshold. Next, it should be noted that the use
of k-means introduces a dynamic threshold in the classifi-
cation procedure. In some cases (e.g. when no low MMI
games such as HS are present) this could lead to misclassi-
fication. Given the application of the proposed framework
(i.e. streaming of gaming videos rather than actual cloud
gaming), however, it is not too far fetched to assume that
the server database will cover a rather large and varied set
of gaming video genres and thus, MMI values.

5.3. Evaluation of FR metrics

A similar analysis is performed for each of the four
FR-metrics, as shown in Table 6. It can be seen that
each of them provides a reasonable overall correlation with
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Figure 8: PCCs between the four considered FR metrics (PSNR, SSIM, VQM & VMAF) and MOS for each of the six subjectively annotated
games. Green means full correlation (PCC=1), dark blue full anti-correlation (PCC=-1) and red no correlation at all (PCC=0).

Table 6: Overview of the PCCs, per game and calculated over the
whole dataset, between the four FR-metrics and MOS. The best and
worst performing metric per game and overall are indicated in blue
italic and red bold, respectively.

Game PSNR SSIM VQM VMAF
CSGO 0.88 0.934 0.94 0.847
FIFA 0.926 0.95 0.89 0.934
H1Z1 0.594 0.961 0.965 0.765
HS 0.925 0.987 0.368 0.968
LoL 0.781 0.901 0.845 0.919
PC 0.775 0.953 0.96 0.79
Overall 0.741 0.79 0.825 0.864

MOS, with PCCs varying from 0.741 (PSNR) to 0.864
(VMAF). Furthermore, it is worth noting that for 3 out
of 6 games, VQM tends to provide the best performance,
hereby clearly outperforming VMAF for the game at hand.
Deviant behaviour can again be observed for the HS game,
with only a 0.368 correlation of VQM to MOS while its
VMAF counterpart obtains a high 0.968 PCC. Somewhat
surprisingly, SSIM also shows rather high, per game cor-
relations. Sometimes, it is even performing better than
both VQM and VMAF, as is the case for FIFA and H1Z1.
This might be an indication of the fact that the structural
information in a video sequence plays a far more impor-
tant role towards end-user QoE for synthetic game content
than is the case for natural videos.

Figure 8 shows the bitrate-resolution correlation results
for each of the games. An interesting conclusion is that
VMAF, the metric with the best overall performance, only
tends to show this performance for high bitrates and low
resolutions, while performance is dropping heavily for the
opposite case. Again, HS shows to be the exception with
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Figure 9: Scatterplots, showing the relationship between the four
objective FR metrics and subjective MOS.

rather stable behaviour of the VMAF-metric. VQM, on
the other hand, shows high and stable correlation values
for all games except HS. For the latter, VQM shows a
heavy drop in performance for higher resolutions. As could
already be seen from Table 6, SSIM shows somewhat sur-
prisingly to be the most stable metric over the encoding
conditions, only showing a performance drop worth men-
tioning for the lowest bitrates and highest resolution of
LoL.

PCC gives an objective indication on the linear rela-
tionship between two variables, but does not provide an
indication on over- and underprediction, whatsoever. So,
this behaviour is worth analyzing as well. Figure 9 shows
scatterplots for each of the four considered FR metrics
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Figure 10: Illustration of the per-class MSEs between the four ob-
jective FR metrics and subjective MOS.

towards MOS. It can be seen that PSNR tends to con-
sistently underpredict the MOS scores, while SSIM shows
the opposite behaviour with FIFA as its most important
exception. VQM shows, apart from HS, rather accurate
predictions for the lower regions of the MOS scores, but
tends to drop in performance for higher ones. VMAF has
the most accurate performance, although it can be noted
that higher MOS-scores seem easier to predict than lower
ones. Given the fluctuating behaviour of these metrics,
both in terms of PCC and over/underprediction, it is of
great interest to construct an accurate, objective score to
be used as a benchmark such that it shows both accurate
prediction results without over- or underpredicting while
maintaining stability over a multitude of encoding condi-
tions.

Therefore, the accuracy of the FR-metrics in terms of
the MSE towards MOS is investigated per class as obtained
using the MMI-classifier. The results, shown in Figure 10,
illustrate that VMAF has a significantly lower MSE for
the game within class 0, i.e. HS. For class 1 and 2, both
VQM and VMAF show reasonable performance, Based on
this behaviour, an objective metric, which is called the
GVSQM, is proposed that equals a per-class weighted com-
bination of VQM and VMAF. The following combinations
turn out to minimize the MSE with MOS.

GVSQM =

 VMAF if class = 0
0.584 · VQM + 0.416 · VMAF if class = 1
0.706 · VQM + 0.294 · VMAF if class = 2

(5)

As the calculation of the proposed metric relies on a
prior classification of the game at hand, however, it cannot
be used independent of the dataset being studied, which is
unpractical. One can notice from Equation 5, though, that
the relative weight of the VQM-metric within the GVSQM
calculation tends to increase with increasing class number

Table 7: Overview of the per-class and overall performance of the
GVSQM metric, both in terms of PCC and MSE to MOS.

Class PCC MSE
0 0.964 0.004
1 0.929 0.009
2 0.933 0.008

Overall 0.939 0.008

and thus with increasing MMI. Based on this observation,
the GVSQM metric is made dataset-independent by using
the MMI feature of the sequence at hand as a weight in
the equation, i.e.

GVSQM = MMI ·VQM + (1−MMI) ·VMAF (6)

This metric shows an overall PCC of 0.939 and 0.008 MSE
to MOS. The performance metrics separated per class are
similar, as can be seen from Table 7.

Furthermore, as can be seen from Figure 11, GVSQM
shows much more stable behaviour over the multiple
games, bitrates and resolutions as was the case for PSNR,
VQM and VMAF (Figure 8). Only for SSIM, similar sta-
bility can be noticed. However, SSIM is heavily suffering
from overprediction, as is illustrated in Figure 9. This is
not the case for GVSQM, though, as one can notice in
Figure 12. In addition, GVSQM shows similar behaviour
for both the lower and higher regions of the subjective
MOS, contrary to VQM and VMAF. As such, GVSQM
proves to be a more accurate and stable metric for GVS
in comparison with existing state-of-the-art video metrics.
This allows GVSQM to be used as a benchmark in real-
world GVS quality assessing frameworks, as the real-time
collection of MOS is infeasible.

5.4. Conclusion

To summarize, it could be stated that a straightforward
psychometric curve-fitting approach through one specific
feature should be sufficient to model the ground-truth
quality. This feature is either SC, SpEED-QA or JER,
for classes 0, 1 and 2 respectively, given the high weights
they receive from the DRT analysis. The class of the game
video recording at hand can be determined based on the
MMI based classifier, derived in Section 5.2.

6. Evaluation of the NR/RR psychometric curve-
fitting approach

This Section provides the evaluation of the proposed
psychometric curve-fitting approach. This is done in four,
subsequent phases. First, accuracy is evaluated by a psy-
chometric fit of the selected features (i.e. SC, SpEED-QA
and JER) directly to MOS (Section 6.1). Second, this sub-
jective benchmarking is evaluated against objective, FR
metrics (Section 6.2). Both evaluations are performed on
the small, subjectively annotated dataset of 90 records. Fi-
nally, the scalability of the approach is evaluated upon the
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Figure 11: PCCs between the GVSQM metric proposed in Equation 6 and MOS for each of the six subjectively annotated games. Green
means full correlation (PCC=1), dark blue full anti-correlation (PCC=-1) and red no correlation at all (PCC=0).
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Figure 12: Scatterplot showing the relationship between the objec-
tive, GVSQM metric and subjective MOS.

full dataset of 576 datapoints, using an objective bench-
mark (Section 6.3). At last, a comparison of the presented
curve-fitting approach with two other prediction mecha-
nisms is provided (Section 6.4).

For the first three phases, both PCC and MSE are in-
cluded to assess the performance of the proposed model.
This is done because PCC gives information on the linear
relationship between two variables, while MSE is a mea-
surement for the amount of over- or underprediction when
combined with PCC. These metrics are gathered using
stratified k-fold Cross-Validation (CV). Unlike standard k-
fold, the data points within each fold are chosen such that
they are evenly distributed over the 0 to 1 scale of the
(normalized) benchmark. This is done to avoid that the
particular model is fitted on data points falling within a
small interval of the benchmark range, therefore resulting
in low performance on other benchmark intervals [31]. To
ensure this stratified behaviour, the benchmarks li ∈ [0, 1]
are mapped to n bins bi = [ in ,

i+1
n ], i = 0, ..., n − 1, with

n = 4 in this particular case. Afterwards, the data points
within each fold are chosen at random, but such that each
bin is more or less evenly represented.

6.1. Accuracy analysis: benchmarking against MOS

To gather insight in the accuracy and applicability of
the proposed curve-fitting procedure, the approach is first
benchmarked directly to the ground-truth quality, i.e.
MOS. In Table 8 the resulting performance for each of the
classes and each of the investigated psychometric curves

Table 8: Overview of the obtained PCC and MSE scores towards
MOS by applying a psychometric curve fitting approach

Linear Exponential Sigmoid
Class PCC MSE PCC MSE PCC MSE

0 0.955 0.007 0.929 0.026 0.963 0.004
1 0.882 0.016 0.904 0.014 0.904 0.014
2 0.978 0.021 0.964 0.026 0.982 0.019

Overall 0.873 0.016 0.852 0.019 0.883 0.013

(linear, exponential and sigmoidal) is shown, both in terms
of PCC and MSE as averaged over the multiple test folds.
It can be seen that a sigmoid function is showing the best
performance for each of the classes, although leveled by
the exponential curve for class 1. Especially for class 0, a
curve fitting approach on a single feature (SC in this case)
shows rather high performance with an obtained MSE as
low as 0.004. In Figure 13, a scatterplot showing the re-
lationship between the predicted and true MOS using the
best performing, sigmoidal curve fitting approach is shown.
To this extent, the prediction values for each test fold and
each class are collected and displayed using different colors
per class and different symbols per game.

6.2. Robustness analysis: benchmarking against objective
metrics

As subjective scores are typically not freely available for
a large set of video recordings, the curve-fitting is typically
performed against an objective benchmark. Therefore, the
outcome of this approach in relation to the ground-truth
MOS is analyzed in this Section.

In Table 9, the obtained PCC and MSE to MOS are
shown after applying a curve-fitting approach to each of
the objective, FR benchmarks. This is done for each class,
as well as overall. The curve is chosen to be a sigmoid, as
it shows the best performance based on the results from
the previous Section. The best and worst values for each
metric and each class, as well as overall, are indicated in
italic blue and bold red, respectively. It can be seen that
both PSNR and SSIM show rather low performance in
terms of MSE to MOS, with high values up to 0.100 in the
worst case. This is a clear indication for over- or underpre-
diction, which is in line with the results from Section 6.1.
This can also be noticed from the scatterplots in Figure 14,
showing the predicted, objective metrics against the actual
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Figure 13: Scatterplot showing the relationship between the pre-
dicted and true MOS using a sigmoid curve fitting approach. The
prediction values for each test fold and each class are collected and
displayed using different colors per class and different symbols per
game.

Table 9: Overview of the obtained PCC and MSE towards MOS
by applying the psychometric curve-fitting approach to the objective
benchmarks being indicated. The best and worst value of each metric
are indicated per class, as well as overall, in blue italic and red bold
respectively.

Class 0 Class 1 Class 2 Overall

PCC MSE PCC MSE PCC MSE PCC MSE

PSNR 0.928 0.059 0.860 0.077 0.800 0.092 0.747 0.076

SSIM 0.934 0.096 0.853 0.036 0.873 0.100 0.785 0.058

VQM 0.675 0.030 0.887 0.018 0.912 0.012 0.858 0.019

VMAF 0.936 0.007 0.866 0.019 0.870 0.021 0.871 0.017

GVSQM 0.936 0.007 0.884 0.014 0.909 0.013 0.903 0.012

MOS for each of the sequences. For both PSNR and SSIM,
the same over-/underpredicting behaviour as indicated in
Section 5.3 can be noticed.

When using VQM as a benchmark to predict MOS, on
the other hand, acceptable performance is obtained. VQM
is even showing the best results for class 2 both in terms
of PCC and MSE, although closely chased by GVSQM.
It has to be noted, however, that VQM shows a severe
performance drop for class 0 games, which is in line with
the results from the correlation analysis presented in Sec-
tion 5.2. VMAF shows the most stable performance of the
4 natural video FR benchmarks, with acceptable PCC and
MSE for each of the classes, as well as overall. GVSQM,
however, at least matches this performance for every case
and even shows improved overall performance with a 0.032
gain in PCC and 0.005 drop of MSE in comparison with
VMAF. As a result, GVSQM shows to be the best bench-
mark, both in terms of linearity and accuracy of the pre-
diction. This can also be concluded from the scatterplots
in Figure 14.

6.3. Scalability analysis

As was proven in Section 6.2, GVSQM shows to be
the most promising metric in terms of PCC and MSE
to MOS. This Section investigates whether the proposed
curve-fitting approach can be scaled to the full dataset us-
ing GVSQM as the benchmark. First, some adaptations
to the previously presented curve-fitting will need to be
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Figure 14: Scatterplots showing the relationship between the pre-
dicted, objective benchmark and the true MOS for that particular
sequence, using a sigmoidal curve-fitting approach.

made after which the obtained results are discussed. Af-
terwards, DRTs and ANNs are applied to investigate how
this approach performs in comparison with other common
applied models in literature (Section 6.4).

In order to apply the curve-fitting approach, two addi-
tional problems are encountered on the full dataset that
were previously hidden due to the small amount of data
in the subjectively annotated set of 90 points. First of
all, as can be seen from Figure 15a for the SC feature of
the HS game, the curves show both a horizontal and a
vertical shift depending on the resolution of the particu-
lar game stream, whereas higher resolutions induce higher
GVSQM scores. Furthermore, a horizontal shift of the
per-resolution curves can be observed that depends on the
particular game video recording. More specifically, this
shift is clearly a result of the difference in MMI between
both recordings, as is shown in Figure 15b. Similar be-
haviour is concluded from other games and classes as well.
Both problems are solved as described in Section 3.1.

Here, instead of MOS, we predict GVSQM scores apply-
ing the curve-fitting approach with the selected features
(SC, SpEED-QA, and JER). Table 10 shows the result-
ing overall PCC and MSE of this curve-fitting approach,
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Figure 15: Visualization of the shifted curves, depending on both
the resolution (a) and the MMI of the particular game recording (b),
here shown for the specific case of the HS game. The red-colored
datapoints in Figure 15b (with lowest MMI) are the recordings used
for the analysis in Section 5.

Table 10: Overview of the per-class and overall performance of the
curve fitting approach.

Class PCC MSE
0 0.973 0.002
1 0.941 0.020
2 0.916 0.007

Overall 0.914 0.008

as well as the subdivision per class. Hereby, it should be
noted that game recordings of which the data points span
multiple classes are classified fully to the class that includes
the most points after applying the k-means classifier. This
is done to provide the model with enough data points to
fit a reliable curve. As such, more reliable results will be
obtained relative to a real-life case, than when a curve is
fitted to only two or three data points, which would show
an unrealistic decrease in performance. This is only needed
within the limitations of the dataset under scrutiny, how-
ever, as real-life GVS databases can be assumed to cover
enough video recordings per class such that class changes
are not needed.

In Figure 16, scatter plots are provided showing the re-
lationship between the predicted and the true GVSQM
values for each of the three classes. It can be seen that
class 1 shows a rather high MSE of 0.02 in comparison
with its neighbouring classes, despite its 0.941 PCC. As
shown in Figure 16, this is a result of a consistent under-
prediction of the model, which is not the case for the other
classes. Possible explanations for this behaviour might be
that the SpEED-QA curves show a more complex transfor-
mation than a straightforward shift or that the proposed
shift estimation is insufficient for this particular class.

6.4. Alternatives to curve-fitting

To obtain more insight in the accuracy and scalabil-
ity of the proposed framework, a comparison is provided
with two alternative prediction mechanisms. A first, al-
ternative approach makes use of a white-box DRT to cap-
ture the relationship between NR/RR-features and the
GVSQM benchmark. Note that this is not exactly the
same procedure as described in Section 3.2, as additional
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Figure 16: Scatterplot showing the relationship between the pre-
dicted and true values of the GVSQM metric using the curve fitting
approach. The scatter plots are subdivided by class.

measures are taken to avoid overfitting. To this extent, a
certain amount of impurity, i.e. MSE, is allowed within the
trained tree. This value is optimized using 5-fold stratified
CV on the dataset. Both the approach with one DRT for
all data as the approach with one DRT per class are inves-
tigated. In addition, the influence of the presence/absence
of SpEED-QA as a feature is researched. Table 11 shows
the obtained PCC and MSE for both the ”one-tree-for-all”
and the ”one-tree-per-class” approaches with and without
the inclusion of SpEED-QA in the feature set. In Fig-
ure 17, scatter plots are provided showing the relationship
between the predicted and true values of the GVSQM met-
ric using a ”one-tree-for-all” approach. Both the cases with
and without the inclusion of SpEED-QA (thus creating a
RR and NR approach respectively) are shown. It can be
seen that a one-tree-per-class approach is showing better
performance than the one-tree-for-all approach, although
the gain is limited with 0.925 against 0.913 PCC for the
RR case and 0.918 against 0.910 PCC for the NR case.
The overall MSEs for all cases are similar. Furthermore,
as one could expect, the RR approach is performing bet-
ter than its NR counterpart. Again, the gain is limited,
however. Somewhat surprisingly, it can be noticed that
the class 2 performance is suffering the most from the ex-
clusion of SpEED-QA from the feature set, with a 0.027
drop in PCC for the one-tree-for-all approach and a 0.018
drop in the one-tree-per-class case.

In a second alternative modelling attempt, an ANN is
proposed. The activation function(s), learning rate, num-
ber of hidden neurons and number of hidden layers are cho-
sen or optimized using a grid-search, by cross-validating on
the data with 5 folds. MSE is once again chosen as the
error function to be minimized. For the NR case (without
SpEED-QA), a network with 2 hidden layers, 47 nodes
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Table 11: Overview of the obtained PCC and MSE scores towards
GVSQM for each of the three classes by applying a DRT-based ap-
proach.

One DRT for all One DRT per class

With

SpEED-QA

Without

SpEED-QA

With

SpEED-QA

Without

SpEED-QA

Class PCC MSE PCC MSE PCC MSE PCC MSE

0 0.91 0.007 0.90 0.008 0.94 0.005 0.93 0.006
1 0.93 0.006 0.91 0.007 0.91 0.008 0.91 0.009
2 0.91 0.009 0.89 0.010 0.92 0.007 0.90 0.008
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Figure 17: Scatterplot showing the relationship between the pre-
dicted and true values of the GVSQM metric using a ”one-for-all”
DRT-based approach. Both the model with and without the RR
SpEED-QA metric are shown.

per hidden layer, a 0.001 learning rate combined with a
sigmoid activation function in the first layer and Rectified
Linear Units (ReLUs) in the second shows to be optimal.
In the RR case (with SpEED-QA), this changes towards 4
hidden layers and 29 hidden neurons per layer. The learn-
ing rate and activation functions are the same, i.e. one
layer with a sigmoid and three with a ReLU.

The prediction results of each of the five test folds being
used in the CV approach have been gathered and com-
pared with the GVSQM benchmark. This is again done
in terms of overall PCC and MSE as well as per class.
Table 12 shows the overall performance for both the RR
and NR model as well as per class. In Figure 18, scatter
plots are provided showing the relationship between pre-
dicted and true values for both models, split per game.
It can be seen that the RR model shows a rather stable
performance over the three game classes, with a constant

Table 12: Overview of the per-class and overall performance of the
ANN model, both with and without the inclusion of the SpEED-QA
RR metric.

With SpEED-QA Without SpEED-QA
Class PCC MSE PCC MSE

0 0.951 0.004 0.948 0.004
1 0.952 0.004 0.959 0.003
2 0.954 0.004 0.922 0.007
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Figure 18: Scatterplot showing the relationship between the pre-
dicted and true values of the GVSQM metric using an ANN ap-
proach. Both the model with and without the RR SpEED-QA metric
are shown.

0.004 MSE and PCC values around 0.95. The NR model
shows a performance comparable to the RR model, with
on overall PCC of 0.946 and MSE of 0.005 in comparison
with values of 0.953 and 0.004 for the RR case. Similar
to the DRT-based modelling approach, class 2 games (i.e.
high MMI) show to suffer the most from the removal of
SpEED-QA, showing a 0.032 drop in PCC and 0.003 in-
crease in MSE in comparison with the class 2 performance
in the RR case.

7. Discussion

Table 13 shows an overview of the results obtained by
the multiple modelling approaches in terms of the over-
all PCC and MSE to GVSQM. In terms of accuracy, the
ANN approach seems the most obvious choice with high
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Table 13: Summary of the performance of the multiple modelling
approaches in terms of the overall PCC and MSE to GVSQM

Model PCC MSE
ANN (RR) 0.953 0.004
ANN (NR) 0.946 0.005
One DRT for all (RR) 0.913 0.007
One DRT for all (NR) 0.910 0.008
One DRT per class (RR) 0.925 0.007
One DRT per class (NR) 0.918 0.007
Curve-fitting 0.914 0.008

PCC and low MSE values in the order of 0.95 and 0.005
respectively. In addition, the full NR approach shows only
limited performance drop in comparison with the RR one,
making it possible to calculate the quality estimation com-
pletely at the client-side without putting additional load
on the server. The drawback, however, is the fact that an
ANN approach requires a rather large set of NR-metrics
to be calculated in real-time, which might be computa-
tionally unacceptable for most devices. Furthermore, the
regular server-side re-training of the model on the large
and ever growing video stream dataset might be a costly
procedure.

The DRT approach, on the other hand, reaches accept-
able overall PCCs between 0.910 and 0.925 and MSEs be-
low 0.01, even in the NR case. However, this approach still
requires the real-time, client-side calculation of a rather
large NR feature set, although being much more scalable
to large datasets for server-side re-training due to the mod-
els inherent logarithmic complexity (linear in worst case).

The proposed curve-fitting approach has as its most im-
portant advantage that it can be implemented with lim-
ited computational requirements of the client side, as only
a single, real-time feature needs to be calculated. Despite
its simplicity, it still maintains a rather high performance
with a PCC of 0.914 and a MSE of 0.008 between predicted
and true GVSQM. In addition, as was indicated in Table 9,
an overall PCC of 0.903 and MSE of 0.012 to MOS are
obtained by fitting the curve against GVSQM. Note that
this RR curve-fitting approach is clearly outperforming the
RR SpEED-QA metric, which only shows a -0.761 PCC to
MOS. In addition, it is even outperforming the FR metrics
in terms of overall correlation, whereas VMAF showed the
best overall performance with a 0.864 PCC. On the down-
side, it has to be said that the shifting behaviour of the
curves requires a rather heuristic estimation of which fur-
ther research is needed to investigate its generalization to-
wards other datasets. Moreover, as anchor points need to
be transmitted and because the SpEED-QA feature seems
unavoidable for class 1 games, this approach is RR by con-
struction. However, MSEs up to 0.02 with the benchmarks
are observed in worst case scenarios, which are assumed to
be acceptable for most applications.

8. Conclusions

The main contribution of this scientific work is the
proposition of an RR end-to-end solution for the real-
time quality assessment of streamed game videos. It in-
cludes a low complexity curve-fitting approach, which is
constructed based on a thorough performance analysis of
objective metrics, often used for natural video quality as-
sessment. The results show that this performance depends
heavily on the game type under observation. It has been
revealed that a single NR feature, i.e., MMI, is sufficient
to identify three different classes of games. In addition,
each class has its own leading feature (JER, SpEED-QA
or SC) that correlates strongly to MOS, allowing for an ac-
curate quality assessment using a curve-fitting approach.
Furthermore, a customized objective FR metric tailored
to passive GVS has been created. This metric, called
GVSQM, can be calculated as a weighted combination of
VQM and VMAF, with the MMI acting as the weight.
In addition, a comparison with other predictive models
shows that the curve-fitting approach is the most promis-
ing in terms of scalability and computational complexity,
but tends to show slightly lower accuracy than DRTs and
ANNs. A PCC of 0.914 and MSE of 0.008 between pre-
dicted and true GVSQM is still obtained, however, re-
sulting in a PCC of 0.903 and MSE of 0.012 when com-
pared with a MOS benchmark. The DRT’s higher ac-
curacy comes with higher computational complexity and
lower scalability and interpretability (ANN), however, and
the calculation of a rather large set of real-time feature cal-
culations on the client device (both ANN & DRT).

When it comes to further extensions to this work, it has
to be said that qualitative, subjectively annotated GVS
datasets are rather scarce in existing literature. Therefore,
the creation of additional, possibly larger datasets could
be interesting to further validate the applicability of the
proposed framework as well as the objective GVSQM met-
ric. In addition, such datasets would provide a more stable
base for the further exploration of the GVS topic. Another
proposed direction of research is to investigate whether or
not the visual perception of an interactive gamer changes
in comparison with the passive spectator. It could, for ex-
ample, be possible that the active gamer lies more focus on
a certain hotspot within the video, e.g. his/her personal
avatar, while the non-interactive user keeps a more general
overview of the stream. Furthermore, as Virtual Reality
(VR) applications are gaining more and more attention for
gaming purposes, the extension of this research towards
this multimedia platform should be investigated as well.
One can assume, for example, that given the hemispheri-
cal nature of VR, visual artifacts in the neighbourhood of
the user’s current focus point will contribute more nega-
tively to the QoE than distortions close to the edge of the
user’s Field of View (FoV).
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QoE: Towards the Impact of Frame Rate and Bit Rate on
Cloud Gaming, in: 2018 Tenth International Conference on
Quality of Multimedia Experience (QoMEX), 2018, pp. 1–6.
doi:10.1109/QoMEX.2018.8463416.

[25] N. Barman, M. G. Martini, S. Zadtootaghaj, S. Möller, S. Lee, A
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