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Abstract: This study analyzes the impact of land use/land cover (LULC) changes on the hydrology
of the dry Afromontane forest landscape in northern Ethiopia. Landsat satellite images of thematic
mapper (TM) (1986), TM (2001), and Operational Land Imager (OLI) (2018) were employed to assess
LULC. All of the images were classified while using the maximum likelihood image classification
technique, and the changes were assessed by post-classification comparison. Seven LULC classes
were defined with an overall accuracy 83–90% and a Kappa coefficient of 0.82–0.92. The classification
result for 1986 revealed dominance of shrublands (48.5%), followed by cultivated land (42%). Between
1986 and 2018, cultivated land became the dominant (39.6%) LULC type, accompanied by a decrease
in shrubland to 32.2%, as well as increases in forestland (from 4.8% to 21.4%) and bare land (from 0%
to 0.96%). The soil conservation systems curve number model (SCS-CN) was consequently employed
to simulate forest hydrological response to climatic variations and land-cover changes during three
selected years. The observed changes in direct surface runoff, the runoff coefficient, and storage
capacity of the soil were partially linked to the changes in LULC that were associated with expanding
bare land and built-up areas. This change in land use aggravates the runoff potential of the study
area by 31.6 mm per year on average. Runoff coefficients ranged from 25.3% to 47.2% with varied
storm rainfall intensities of 26.1–45.4 mm/ha. The temporal variability of climate change and potential
evapotranspiration increased by 1% during 1981–2018. The observed rainfall and modelled runoff

showed a strong positive correlation (R2 = 0.78; p < 0.001). Regression analysis between runoff and
rainfall intensity indicates their high and significant correlation (R2 = 0.89; p < 0.0001). Changes
were also common along the slope gradient and agro-ecological zones at varying proportions. The
observed changes in land degradation and surface runoff are highly linked to the change in LULC.
Further study is suggested on climate scenario-based modeling of hydrological processes that are
related to land use changes to understand the hydrological variability of the dry Afromontane
forest ecosystems.
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1. Introduction

Forests provide multitudes of essential ecosystem services [1], such as soil nutrient cycling,
build-up of organic matter, and water retention. Forest biodiversity losses may seriously jeopardize the
functioning of forest ecosystems, and consequently the ability of forests to provide ecosystem services [2].
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In the past few decades, tropical landscapes were facing critical environmental challenges [3,4] that
were related to rapid land use and land cover (LULC) change, such as massive deforestation and land
conversion. The Forest Resource Assessment (FRA) that was completed by Food and Agriculture
organization (FAO) in 2005 and preliminary results of FRA 2015 [5] indicate that, on a global scale, the
total forest area continues to decrease by 3.1%, which is about 0.6% per year from 2000 to 2005 [3,6]
and 3.3% per year from 2010 to 2015 [5]. Deforestation continues at the highest rates across the tropics,
and FRA estimates for 1990–2005 suggest annual rates of deforestation at 0.9% in South and Southeast
Asia, 1.2% in Central America, 0.45% in South America, and 0.62% in Africa [3]. This means that,
on average, each year from 1990 to 2015, an area of 4128–3999 million ha, which is above 3.1% of
the tropical forest, was lost [3]. The change in land use is considered to contribute to 20% of global
greenhouse gas emissions [7,8]. In particular, forest degradation in sub-Saharan Africa is the main
source of land-based emissions [9,10].

According to Pielke [11], LULC changes influence climatic and weather conditions, ranging from
local to global levels. Biophysical factors, such as topography, soil type, and seasonal rainfall, as well
as demographic, political, economic, and social factors combined together lead to large changes in land
use in East Africa, and these trends are expected to continue into the future [3,5]. Similarly to the above
studies, Ethiopia is experiencing significant LULC dynamics, such as land conversion from natural
vegetation to agricultural and urban areas [12–15]. The problem is more severe in the highlands, which
account for 44% of the country’s landmass and they have been cultivated for centuries [16–24]. Land
use dynamics during 1975–2016 in India reported that agricultural land increased by 18%, whereas
forest land and rangeland decreased by 7% and 10%, respectively [25]. Specifically, in the northern
highlands of Ethiopia, increasing land degradation due to the loss of the remnant forests, which are
found in sacred and inaccessible places [26] and cultivation of the sloppy lands [19] aggravates runoff

and reduces the infiltration capacity of the area. The change in land use is considered to contribute to
20% of global greenhouse gases emissions [7,8]. Land cover change is defined as the change in land
cover and its associated properties over time [27,28]. LULC change constitutes one of the fundamental
environmental problems in Ethiopia [29–32]. For example, a study in the Afar region of northern
Ethiopia reported that the invasion of Prosopis juliflora increased at annual rates of 31,127 ha, while
grassland and bush-shrub-woodland declined at 19,312 ha and 10,543 ha, respectively [31].

The findings of Palma et al. [33] also indicate that land use changes have the potential to affect
landscape hydrology, thereby aggravating runoff. The hydrological response is a combined indicator
of the watershed condition and significant changes in LULC, reflecting the overall health and function
of a semi-arid watershed [34]. Other studies [18,19,35] showed that the simulated impact of climate
change on hydrological processes significantly varies, depending on the climate model and emission
scenarios, in addition to geographical variation [36,37].

The alteration of tropical landscapes, primarily the conversion of natural forests to agriculture or
pasture [11], directly influence the hydrology of the landscape, and the relative impacts of different
potential drivers of these extreme events on the hydrological cycle are still debated. External factors
include meteorological variations, which result in periods of increased extreme events or climatic
non-stationarity. The internal factors include abstractions and discharges in the river, land use change,
and modification of the river flow channel.

LULC changes significantly affected regional hydrology [38–41], and consequently the delivery of
ecosystem services [42,43] and climate processes. The impact of LULC on environmental processes is
not universal and it depends on the local context of a particular region [44]. Gebremicael et al. [45]
revealed that more than 72% of the northern Ethiopian landscape was significantly altered during
1972–2014 in the head water of the Tekeze-Atbara Basin. A study by Guzha et al. [46] in East Africa has
shown that forest cover loss increased the annual discharges by 16% and surface runoff by 45%. Bewket
and Sterk [47] showed that changes in land management practices are the main factors of variability in
water availability in Ethiopia. In particular, Gebresamuel et al. [13] have reported that the changes in
LULC decreased the water-storage capacity of soils by 1.63 mm/y at Gum Selassa and 1.09 mm/y at
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Maileba of northern Ethiopia, with a corresponding increase in the surface runoff by 2.7 mm/y and
2.3 mm/y, respectively. The other concern is the effect of global climate change, mainly relating to the
patterns and amounts of rainfall in the upper catchment areas, which directly affect runoff patterns [48].
Significant variation in evapotranspiration occurs due to LULC accompanied with the leaf area index
change [49]. Generally, land use change can lead to a significant change in groundwater recharge and
base flow [50], flood frequency and interval [51], peak runoff [52], and total suspended sediment and
nutrient concentration [53]. Land restoration has been successful in improving the vegetation cover,
and consequently the hydrological processes of degraded landscapes [47]. For example, the restoration
of steep hillsides enhances the initial retention capacity of the soil, thereby limiting the runoff curve
number [13,35,54–56].

Physically based distributed hydrological models have become important for the understanding
of fundamental physical processes that underlie the hydrological cycle and developing scenario-based
solutions to adverse changes in forest hydrology at different spatial scales [57]. The development of
satellite remote sensing is important for modelling capabilities to evaluate and predict the hydrological
consequences of land-use change at multiple scales. For example, the conceptual and empirical
foundations of the soil conservation service curve number (SCS-CN) method have been applied to
a wide range of catchments across the world to assess the effects of land cover change on surface
runoff [27,58–64]. The runoff coefficient forecasts direct surface runoff volume for a given rainfall event
and estimates the volumes and peak rates of surface runoff in catchments [58]. The rainfall-runoff

relations within a watershed are primarily driven by the relationship of factors, such as climate, land
cover, and soil [36–39]. The SCS-CN model expresses runoff volume as a function of rainfall volume,
hydrologic storage, and initial abstraction [65]. The CN value depends on the land surface features
and hydrological soil conditions of the entire watershed.

The original SCS-CN method computes direct runoff by only considering the available rainfall on
the current day without taking the effect of the moisture available prior to the storm into consideration.
In contrast, the curve numbers are sensitive to antecedent conditions [66]. The existing SCS-CN method
does not contain any expression for time, and it ignores the impact of rainfall intensity and its temporal
distribution. There is no explicit provision for spatial scale effects either. The other demerits of the
existing SCS-CN method are the absence of clear guidance on how to vary the antecedent moisture
conditions and the fixing of initial abstraction ratio 0.2, preempting a regionalization that is based on
geological and climatic settings [67].

Research on runoff patterns in response to land cover dynamics allows for the assessment of
sustainability of land use systems in dry areas, as the runoff reflects the ecological state of the entire
watershed. Modeling allows evaluating long-term hydrological consequences of LULC change in dry
Afromontane forests and provides quantitative information for land use planning and water resources
management. However, developing countries face difficulties in different aspects of hydrological
modeling research, such as the availability of continuously measured data. Therefore, combining
the remote sensing technique, point-based meteorology data, and hydrological modeling can help
in understanding and evaluating the existing LULC conditions of the undulating and mountainous
dry Afromontane forests. This information can also be employed to forecast the likely effects of
any potential changes in land cover on water resource systems. Hence, such a study has practical
relevance for devising strategies and policies for sustainable land and water use. No studies have
been published to date combining the remote sensing technique and evapotranspiration and modeled
surface hydrology information in forest areas of the dry Afromontane forest in northern Ethiopia, to
the best of our knowledge.

The dry Afromontane forest landscape in northern Ethiopia is characterized by prolonged dry
seasons, under conditions of low humidity, high air temperatures, and drying up of seasonal rivers
and streams due to natural and human-induced factors [55,68]. Some studies on streamflow patterns
with respect to land cover dynamics enabled the assessment of sustainability of land use systems,
because stream flows are reflections of the ecological state of the entire watershed [47,55,69,70].
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However, little is known regarding land use dynamics with respect to catchment hydrology [47,69],
soil degradation [71], soil properties, and surface runoff [13] in Ethiopia. This study integrated
high-resolution temporal LULC maps that were derived from satellite imagery with hydrological
modeling to evaluate long-term hydrological consequences of LULC change in dry Afromontane
forests and provide quantitative information for land use planning and water resource management. In
particular, we aimed to adapt the conventional SCS-CN model by incorporating the variation of daily
curve numbers with respect to the variability of antecedent rainfall, potential evapotranspiration (PET)
with integrated LULC change images, and grid-based hydrological soil texture classification groups
(HSG). The modified SCS-CN-based models provide a hydrologically sound procedure for a more
accurate representation of the catchment behavior through analysis of the hydrological response of
LULC changes, as indicated by their impact on the PET and runoff coefficient in the dry Afromontane
forest landscape of northern Ethiopia.

2. Materials and Methods

2.1. Study Area Description

Topographically, northern Ethiopia is characterized by an undulating to steep terrain that is
frequently divided by stream incisions. Thus the northern Ethiopian climate exhibits extreme climatic
variations within short distances, from very dry tropical to sub-humid and subtropical to highly-moist
tropical climates. The average annual rainfall varies from 200 mm in the arid lowlands to over 2200 mm
in parts of the southwestern highlands. The mean annual temperatures vary from above 35 ◦C in the
lowlands to less than 15 ◦C in the highland areas.

The estimated area of Ethiopian drylands is over 75 million ha, which accounts for about 66–72%
of the total area of the country [72–74]. The study area lies between 39◦10′E–40◦02′34.08”E and
12◦53′29.76”N–12◦′2.88”N (Figure 1). The study was carried out in two neighboring fragmented state
forests of Hugumburda Grat Kahisu and the Tabotat natural forest areas of northern Ethiopia. This
priority state forest has a minimum mean annual temperature range between 6.3 ◦C and 20.6 ◦C. The
maximum mean annual temperature ranges from 15.1 ◦C to 29.7 ◦C. The mean annual rainfall ranges
between 350 mm to more than 1000 mm (Table 1) in the lowland of Raya Azebo and the highlands of
Korem districts, respectively. Mixed farming systems dominate the local agricultural activity. The
dominant food crops grown are Zea mays, Sorghum bicolor, Triticum durum, Eragrostis tef, Hordeum
vulgare, Pisum sativum, and Cicer arietinum. High-value tree crops, such as Mangifera indica, Persea
americana, Carica papaya, and Psidium guajava, in the lowland and Malus domestica in the highlands of
the Endamohoni and Offla districts are produced in large quantities. Cattle, sheep, goats, equines
(donkey, horse, mule), and camel are the major livestock species reared.
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Figure 1. Digital elevation model of the study area and stream network of the dry Afromontane 
forest landscape in northern Ethiopia. 
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Figure 1. Digital elevation model of the study area and stream network of the dry Afromontane forest
landscape in northern Ethiopia.

Table 1. Mean climate data from 1981–2018 years of the study area.

Month Average
Temperature (◦C)

Min. Temperature
(◦C)

Max. Temperature
(◦C)

Precipitation
(mm)

January 15.5 6.8 24.2 22.98
February 15.7 7.4 24.1 13.6

March 17.1 8.8 25.4 60.2
April 17.8 10.3 25.4 81
May 19.4 10.3 28.5 61.13
June 20.6 11.5 29.7 46.6
July 19.3 13.3 25.3 231.4

August 18.5 12.3 24.7 280.4
September 18 10.6 25.4 82.12

October 16.3 7.5 25.1 47.7
November 15.9 6.4 25.4 20.6
December 15.1 6.3 24 44.3

The indigenous dry Afromontane forests of Northern Ethiopia are dominantly characterized by
Juniperu sprocera, Olea europaea subsp. cuspidata, Maytenus arbutifolia, Maytenus senegalensis,
Dodonaea angustifolia, Hagenia abyssinica, Bersama abyssinica, Acacia abyssinica, and Podocarpus
falcatus in the highlands and midlands, while various Acacia species dominate the lowlands.

2.2. Methodology

2.2.1. Remote Sensing Data Collection and Processing

Satellite images for the years 1986, 2001, and 2018 were acquired to analyze the spatio-temporal
patterns of the LULC of the fragmented state forests of Hugumburda Grat Kahisu and Tabotat natural
forest areas. Landsat 5-Thematic mapper (TM) and Landsat-8 Operational Land Imager (OLI) images
for the selected years were obtained from the US Geological Survey (USGS) Centre for Earth Resources
Observation and Science (EROS), found in http://glovis.usgs.gov/. A brief description of the collected

http://glovis.usgs.gov/
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satellite images, including satellite and sensors used, resolution, acquisition date, 168/051 path/row of
each images for each period is summarized in Table 2. Data acquisition was entirely conducted during
the dry season to avoid phenological effects and ensure cloud-free images.

Table 2. Landsat images used for the analysis of land use and land cover (LULC) (Source: http:
//glovis.usgs.gov).

Sensor Month/Day/Year Resolution Path /Row

Landsat 5 TM 12/15/1986 30 m 168/51
Landsat 5 TM 01/28/2001 30 m 168/51
Landsat 8 OLI 01/13/2018 30 m 168/51

Remotely sensed data were pre-processed while using ERDAS Imagine 2015 software. Image
rectification, restoration, enhancement, classification, and accuracy assessment were conducted using
this software. ArcGIS 10.6 and ENVI 5.3 software were employed for managing, analyzing, combining,
and mapping spatial data.

The analysis was performed on freely available satellite imagery products from Landsat 5 and
Landsat 8 OLI at 30 m resolution. Spatial and temporal data from remote sensing integrated to World
Geographic Coordinate System (GCS WGS 1984) was used to illustrate the Ethiopian administrative
boundaries. The study aimed to determine the hydrological response of the fragmented state forests of
northern Ethiopia to the dynamic LULC. Satellite images for a dry month have been considered for
analysis to avoid seasonal factors, such as phenological effects. LULC information was then extracted
while using the supervised maximum likelihood classification method by collecting 350 ground control
points (GCP) for training signature generation and another 350 GCPs for accuracy assessment. Soil data
were derived from the initial soil map, which are available online from the International Soil Reference
and Information Centre (ISRIC) SoilsGrid250 [75] and modified based on the study area characteristics.

2.2.2. Data Acquisition and Processing

Stow [76] stated that accurate per-pixel registration of multi-temporal remote sensing data is
essential for change detection analysis, since possible registration errors might be interpreted as
LULC changes, leading to an overestimation of the actual change. In this study, image pre-processing
(geometric and atmospheric corrections and topographic and temporal normalizations) was performed
for all LULC maps. All of the satellite images and digitized ancillary paper maps were georeferenced
to a common coordinate system while using the topographic map at 1: 50,000 scale, the Universal
Transverse Mercator (UTM) map projection (Zone 37), and WGS 84 datum in ArcGIS 10.6 and Erdas
Imagine 2015.

The digital elevation model (DEM) of the Hugumburda Grat Kahisu state forest was downloaded
from the SRTM (http://gdem.erssdac.jspacesystems.or.jp/) with a resolution of 30 m. The downloaded
tiles were merged using mosaic capabilities of Arc GIS 10.6 to form a single DEM of the study area since
30 by 30 DEM resolution of SRTM is usually stored as tiled datasets. DEM was used to simulate the
stream network and delineate the watershed into a series of interconnected sub-basins. The soil map,
available online from ISRIC SoilsGrid250 [75], was modified based on the study area characteristics
that were provided by the National Meteorological Agency (NMA). The climatic data, such as daily
precipitation, as well as minimum and maximum temperature, were collected from Korem meteorology
stations located within the state forest.

Climate data were provided by the National Meteorological Agency (NMA). The temporal climatic
data used for this study were daily precipitation and daily minimum and maximum temperature
collected at Korem and Hashengie meteorology stations located within the state forests.

http://glovis.usgs.gov
http://glovis.usgs.gov
http://gdem.erssdac.jspacesystems.or.jp/


Remote Sens. 2019, 11, 1905 7 of 29

2.2.3. Land Cover Dynamics

Supervised classification was used to classify the LULC change of the areas in the northern
Ethiopian mountainous ecotones. A total of seven LULC classes, namely shrubland, grassland, bare
land, forest, cultivated land, water bodies, and built-up areas were specified. All seven classes were
identified in all the images for the selected study years in a consistent manner. For training points,
more than 250 sample plots per LULC class were randomly assigned. Simple random sampling
was employed to generate reference data while using high resolution Google Earth images and
expert knowledge.

Accuracy assessment was conducted on the resulting classified imagery. This process includes
generating a set of points in the classified imagery and comparing them with actual points on the
ground through field work using GPS point-based sampling. GPS points for each land cover class
were collected at the field level to complete the accuracy assessment. The LULC classification assigned
to each pixel was then compared with the same location on the reference sources to determine whether
the classification result was accurate. Field visits were conducted from December 2018 to February
2019 for collecting data on the existing land use type. A transect line was laid across the gradient
with a distance of 2 × 2 km2 between the plot and randomly among the transect lines. More than
750 sample plots were gathered while using GPS with a plot size of 30 × 30 m2 by assuming the pixel
size of the Landsat data for the undulating mountainous areas of HGK state forest in northern Ethiopia.
These ground truthing data were used to train the maximum likelihood classifier (MLC) classifier. This
gradient classification method allocates all of the pixels in a dataset to clusters that are defined by the
mean value of the training datasets. The actual classification was carried out after the training data had
been established (half of the sample data) and the MLC algorithm that was selected for the classification.
MLC uses a parametric statistical approach to prepare the probability density distribution functions
for each individual class [11,77]. Hence, MLC considers not only the cluster center, but also its shape,
size, and orientation [78,79]. The assumption of most MLCs is that the statistics of the clusters have a
‘normal’ (Gaussian) distribution. The data that were collected during ground truthing were stored in
Excel and converted to shape files using Arc GIS 10.6 software, after which they were used for LULC
classification, analysis, and accuracy assessments in ERDAS 2015 version software.

Figure 2 illustrates the overall conceptual frame work we followed to assess and estimate the
annual runoff using SCS-CN curve number model.
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2.3. Estimation for Runoff Response

Long-term hydro-meteorological data is required to understand the hydrological response of a
catchment. However, hydrological data is often lacking in the developing world, and particularly
in the study area in Hugumburda Grat Kahisu and Tabotat fragmented natural forests of northern
Ethiopia. In the absence of sufficient hydrological data, empirical models, such as SCS-CN (USDA,
2004b, 2004a), are used as a substitute [13,54,80]. The SCS-CN method is based on the water balance
equation and two fundamental hypotheses. The first hypothesis equates the ratio of actual amount
of direct surface runoff Q to the total rainfall P (or maximum potential surface runoff) to the ratio of
actual infiltration F to the amount of the potential maximum retention S. The second hypothesis relates
the initial abstraction Ia to the potential maximum retention S. This study applied the same method to
estimate the direct runoff response. The model quantifies the effect of changes in rainfall and land
cover on the hydrological response of the dry Afromontane forest-based catchments.

Although direct runoff estimation is usually carried out at two abstraction ratios i.e., 0.05 and
0.2, studies on the highlands of northern Ethiopia [54,80,81] recommended λ = 0.05 as an optimum
initial abstraction ratio that is based on least squares fitting for most experimental plots. The model’s
statistical algorithm can be written as:

Qd =
(P− IaS)2

(P + (1− Ia)S)
, when p > IaS (1)

Qd = 0 when P < IaS (2)

Ia = λS (3)

Where Qd is the estimated runoff (mm), P is the measured daily rainfall (mm), Ia is the initial
abstraction (mm), λ is the initial abstraction ratio, and S is the maximum water retention parameter
(mm) determined from the weighted CN value. S is related to the dimensionless runoff curve number
(CN), which is given by the equation below.

S =
25400

CN
− 254 (4)

Here, S is the maximum water retention parameter (mm) and CN is the weighted curve number
that is calculated while using the equation below, based on the storm-event method [82], which is a
data-derived value that varies according to the rainfall [58,81].

CN =
A1CN1 + A2CN2 + A3CN3 . . .+ AnCNn

A1 + A2 + A3 . . .+ An
(5)

Here, A1, A2, A3, . . . , and An are the areas of hydrological groups that a given land cover falls
into, and CN1, CN2, CN3, . . . , and CNn are the corresponding curve numbers.

2.4. Hydrologic Soil Group (HSG) Classification

The HSG of the study area was adopted from the classification that was employed in the USA
developed by Cronshey [83], which is based on the infiltration rate controlled by the soil profile
(Table 3). Technical Release 55 (TR-55) of urban hydrology for small watersheds presents the hydrologic
soil group type according to the surface soil texture. Sand, loamy sand, and sandy loam belong to type
A of HSG, silt loam and loam belong to type B of HSG, sandy clay loam belongs to type C of HSG, and
clay loam, silty clay loam, sandy clay, silty clay, and clay belong to type D of HSG (Table 4).
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Table 3. Classification of hydrologic soil groups.

Soil Group Characteristics

A Low overland flow potential, high minimum infiltration capacity even when thoroughly wetted (> 0.76 cm/h)
Deep, well, to excessively drained sands and gravel.

B

Moderate minimum infiltration capacity when thoroughly wetted (0.13–0.76 cm/h)
Moderately deep to deep

Moderately to well drained
Moderately fine to moderately coarse grained (e.g., sandy loam).

C Low minimum infiltration capacity when thoroughly wetted (0.13–0.38 cm/h)
Moderately fine to fine grained soils or soils with an impeding layer (fragipan).

D

High overland flow potential
Very low/minimum infiltration capacity when thoroughly wetted (<0.13 cm/h)

Clay soils with high swelling potential
Soils with permanent high-water table
Soils with a clay layer near the surface

Shallow soils over impervious bedrock.

Source: Dingman [84].

Table 4. Runoff curve numbers for antecedent moisture condition (AMC II) for the study area.

Land Use Type Texture HSG CN Area LU%

Bare Clay D 89 160
Bare Clay loam D 89 370
Bare Loam B 82 2

Sub Total 532 0.96

Built-up Clay D 98 71
Built-up Clay loam D 98 257

Sub Total 328 0.59

Cultivation Clay D 91 10,117
Cultivation Clay loam D 91 12,262
Cultivation Loam B 81 72
Cultivation Sandy clay A 72 5
Cultivation Sandy clay loam C 88 6

Sub Total 22,462 40.53

Forest Clay D 83 2677
Forest Clay loam D 83 9470
Forest Sandy clay loam C 77 6

Sub Total 12,153 21.93

Grass Clay D 80 532
Grass Clay loam D 80 1011
Grass Sandy clay A 39 3

Sub total 1546 2.79

Shrub Clay D 89 4770
Shrub Clay loam D 89 13,490
Shrub Loam B 79 2
Shrub Sandy clay A 68 13
Shrub Sandy clay loam C 86 4

Sub Total 18,279 32.98

Water Clay D 100 37
Water Clay loam D 100 82

Sub Total 119 0.21

Total 55,419 100
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2.5. Data Analysis

Model input data of historical daily rainfall and temperature data of 1981–2018 were used to
generate climatological data sets for input into the model. The mass curve method [85,86] was
employed to verify the consistency of rainfall values. As indicated by Garg [86], all input data
were rendered into a grid format, and the isohyetal method was used to interpolate the areal
rainfall. Table 1 summarizes the data sources and data collection methods for the input variables.
Furthermore, the Mann–Kendall test and linear regression test have been applied to analyses of
historical trends, while Pettitt’s test was applied to detect the change point of the runoff response
dataset. Evapotranspiration-runoff, rainfall-runoff, and land cover-runoff relationships were also tested
while using the linear regression method.

3. Results

3.1. Topographical Classification and Elevation Map of the Catchment

The study area has been classified into six basic slope classes: 0–15% (flatland), 15–30% (gentle),
30–45% (intermediate), 45–60% (slightly steep), 60–75% (steep), and 75–90% (very steep). Figure 3a,b
shows that the catchment elevations vary between 1444 m in the eastern part to 3699 m in the northern
part of the catchment. The minimum slope is between 0% and 71.88%, and the average slope change is
from 17.47% to 38.62%, the highest being 71.88% (Figure 3b). Figure 3a indicates that the areas of the
low elevation (1410–1452.22 m) may be flooded during heavy rainfall periods.
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3.2. LULC Dynamics of the Dry Afromontane Forests of HGK State Forest

The most dominant LULC types in 1986, 2001, and 2018 were shrubland, cultivated land, forest
land, grassland, water, and built-up area, respectively (Table 5). In 1986, the highest portion of the
total area was covered by shrubland (48.51%), followed by cultivated land (48.54%) and 4.72% of high
forest (Figs. 4). Grassland (2.25%), the water body (lake Hashengie: 2.44%), and built-up area shared
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0.05% of the total area (Table 5). In the year 2001, cultivated land (36.79%), followed by shrubland
(33.49%), were the dominant LULC types, in 2018, the largest portion of the land was cultivation area
(39.56%), followed by shrubland (32.18%) and forest land (21.40%) (Table 5). Grasslands, bare land,
and built-up area accounted for 2.75%, 0.94%, and 0.58%, respectively (Figure 4). Forest land cover
increased from 4.7% to 21.4% during 1986–2018 in the study area at the expense of shrubland, owing
to the community-based environmental protection effort in the region and the national state policy.
This finding is supported by Berhane et al. [39], who reported that forest cover of 35.1%, followed
by shrubland (30.14%), occupied the largest portion of the land between 1985 and 2015, indicating
an increment of forest cover (714 ha) and grassland (75 ha) in the Hugumburda forest of northern
Ethiopia [13,39,47]. However, Haregeweyn et al. [44] reported the major increments of cultivated
land by 15.4% and settlements 9.9% at the expense of shrubland and grazing lands over the period of
1976–2003 in the Gilgel Tekeze catchment in the highlands of Northern Ethiopia [44,45].

Table 5. Land use and land cover (LULC) dynamics of the dry Afromontane forest.

LULC Class Percentage of Land Cover (%) Change

1986 2001 2018 1986–2018 1986–2001 2001–2018

Bare 0.00 0.24 0.94 +0.94 +0.24 +0.70
Built-up 0.05 0.30 0.58 +0.53 +0.25 +0.28

Cultivation 42.02 36.79 39.56 −2.46 −5.24 +2.77
Forest 4.72 23.87 21.40 +16.68 +19.14 +2.47
Grass 2.25 2.73 2.75 +0.49 +0.48 +0.02
Shrub 48.51 33.49 32.18 −16.33 −15.02 −1.31
Water 2.44 2.59 2.60 +0.16 +0.15 +0.01

Total 100 100 100

The overall statistical accuracy assessment was performed on the resulting classified imagery.
This process involves generating a set of points in the classified imagery and comparing them with
actual points on the ground through field work with an accuracy of 83–90% and a Kappa coefficient of
0.82–0.92 of these LULC maps.
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3.3. Hydrological Soil Group (HSG)

Hydrologic soil groups (HSG), along with land use, management practices, and hydrologic
conditions, determine the soil cover complexes and their associated runoff curve numbers. The study
area consists of ‘A’, ‘B’, ‘C’, and ‘D’ hydrologic soil groups (HSG) (Tables 3 and 4, Figure 5). HSG
‘D’ covered the highest portion throughout the area, followed by ‘B’, ‘C’, and ‘A’ groups comprising
99.84%, 0.13%, 0.02%, and 0.01% of total area, respectively. This result indicates that most of the soils in
HGKF have very low or minimum infiltration capacity when thoroughly wetted, which makes them
vulnerable to runoff.
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Kahisu state forest landscape.

Similar to this, the study by Berhanu et al. [87] also confirmed that HSG classified HSG-A dominated
the areal coverage (with 48.2%), followed by HSG-B (30%) and HSG-D (21.6%) for all Ethiopia. In line
with these findings, a study from the Kharadya mill watershed, India, by Ningaraju et al. [88], found
that HSG of ‘A’, followed by ‘D’ and ‘B’ type, consisted of 58.63%, 38.26%, and 3.11% of the total area
in the watershed, respectively.

3.4. CN Number of the Area Based on Their DEM

Analysis of the CN number (Table 4 and Figure 6) indicates that the type of land use will determine
the nature of the relationship between runoff CN and land use change. CN is a relative measure of
retention of water by a given soil vegetation complex and it takes values from 0 to 100. The runoff

generation relies on the CN values, which are a function of AMC, slope, soil type, and land use. The
CN values of the HGK state forest, varying from 39 to 100, reflect the runoff potential. Low CN values
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mean that the surface has high potential to retain water, whereas high values indicate that the rainfall
can only be stored to a limited extent. The curve number (CN) is a hydrologic parameter that is
used to describe the stormwater runoff potential for drainage areas, and it is a function of land use,
hydrological soil type, DEM, and soil moisture. The weighted values of curve number for the AMC
conditions of the study area are calculated as per SCS. The CN values that are shown in Figure 6 and
Table 4 were used to estimate the runoff for 38 years of the watershed. The monthly and annual runoff

values are obtained from the daily runoff results. Land use and land cover has influenced surface
runoff generation in a given area to a greater extent. Land-use type explains the difference in surface
runoff CNs significantly better when compared with the hydrological soil group. The increased surface
runoff causes different types of erosion, as rill and sheet erosion intensify, while gullies expand, leading
to reduced soil depth and water retention capacity of the soil. This finding is in line with previous
findings [13,35,54] of studies that were conducted in northern Ethiopia. Moreover, it verified that areas
with less vegetation cover are exposed to high surface runoff and low retention capacity. In the study
area, there is an obvious increase of both direct surface runoff and runoff coefficient over time from
1986 to 2018.
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3.5. Annual Runoff Coefficient Potential

The temporal distribution of annual runoff depths is displayed in Figures 7 and 8, where the
mean annual potential discharge of 31.6 mm per year was estimated during the period from 1981 to
2018. A large variation from the minimum annual potential runoff of 17.6 mm/year in the forest to
the maximum amount of 40 mm/year in some areas that are usually occupied by rainfed agricultural
activities was observed. This means that the runoff derived by SCS-CN method is a function of the
runoff potential, which can be expressed in terms of the runoff coefficient (ratio between the runoff

(Q) and rainfall (RF)) categorized in three basic classes of severity to runoff and soil erosion, i.e.,
high (>35%), moderate (20–35%), and low (<20%). This result is consistent with the study at [89]
Kali Watershed in India. Furthermore, another study by Blokhuis [90], noted that the lowest annual
runoff potential was observed in the forest area, which dominates the reddish sandy clay soils and
it produced the minimum potential of runoff, i.e., 13 mm/year to 32 mm/year. This was due to the
fact that sandy soil has high infiltration rates and also because the dense canopy of trees increases the
rainfall interception and water losses through evapotranspiration.
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Figure 8. Annual rainfall dynamics in relationship to discharge and potential evapotranspiration
(PET) (where Nprec is normalized precipitation, Qd is discharge, and NPET is normalized potential
evapotranspiration).
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3.6. Impact of Rainfall and PET on Runoff Discharge

Table 6 presents the result of linear regression models. The F-test estimate of the linear regression
models is significant at less than the 1% probability level, which indicates the sufficient modeling
accuracy (F = 63.48; p < 0.000%). Of the hypothesized three explanatory variables, two of them were
found to significantly determine the probability of precipitation.

Table 6. Impact of rainfall and potential evapotranspiration on runoff coefficients.

Variable Coefficients(B) Std. Error T Sig.

Constant 0.290 0.80 3.640 0.001
Rainfall 0.837 0.061 10.754 0.000

PET −0.240 0.095 −2.533 0.016

Regression (Sum of Squares) 814 0.00
Residual (Sum of Squares) 133 0.00

F-test 63.482

Rainfall: The rainfall-runoff relationship in the HGK forest area was analyzed while using the
SCS-CN method. The regression result shows that the coefficient of rainfall is positive and significant
at less than 1% probability level for discharge. All other factors being kept constant, the increase
of rainfall results in the probability of discharge increase by 83.7%. This implies that rainfall has a
higher probability of influencing the discharge. This finding is similar to those of Refs. [13,35,54,55] in
northern Ethiopia.

PET: The regression result shows that the coefficient of PET is negative and significant at P < 0.05
probability level for discharge. Maintaining all other factors as constant, an increase in PET causes
a 24% decrease in the probability of discharge. This implies that PET has a lower probability of
influencing discharge than rainfall. This finding is similar to that of Ref. [91] in the US watershed.

3.7. Relationship of Runoff with Climatic Factors

The correlation between runoff and climatic factors, such as RF, PET, Min T, and Max T, of the
fragmented forest catchment attributes was performed (Appendix A; Table 7). The results show that
rainfall is positively and strongly correlated (P < 0.000), while PET and Max T are negatively and
significantly (P < 0.05) correlated with discharge. The correlation analysis revealed a strong relationship
(R2 = 78.4; P = 0.000) between the modeled point-data derived rainfall and runoff estimated by the
SCS-CN method.

Table 7. Pearson’s coefficient of correlation between discharge and climatic parameters.

Year Rainfall Q PET Min To Max To

Year
Pearson Correlation 1

Sig. (2-tailed)

Rainfall
Pearson Correlation .361* 1

Sig. (2-tailed) .026

Q Pearson Correlation .263 .863** 1
Sig. (2-tailed) .110 .000

PET
Pearson Correlation .032 −.076 −.264 1

Sig. (2-tailed) .848 .648 .021

Min T
Pearson Correlation −.044 −.271 −.061 −.385* 1

Sig. (2-tailed) .795 .100 .715 .017

Max T
Pearson Correlation .032 −.076 −.264 1.000** −.385* 1

Sig. (2-tailed) .848 .648 .109 .000 .017

N 38 38 38 38 38 38

* Correlation is significant at the 0.05 level (2-tailed); ** Correlation is significant at the 0.01 level (2-tailed).
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3.8. Annual Rainfall Dynamics in Relationship to Discharge and PET

The temporal variability of runoff due to climate variability is presented in Figure 8, Table 7, and
Appendix B, showing the extent of annual rainfall dynamics in relationship to Q and PET. The average
change in PET increased by a 1% during 1981–2018.

3.9. Linear Regression Analysis Between Runoff and Rainfall Intensity

The runoff varied from 25.68 mm/h to 56.4 mm/h for events of high intensity (storm intensities:
52.11–81.77 mm/h) and from 11.19 mm/h to 24.69 mm/h for events of low intensity (storm intensities:
26.07–45.38 mm/h). With high-intensity rainfall, the runoff coefficients ranged from 25.3% to 47.21%
(Appendix B). Figure 9 shows the strong positive correlation between runoff (dependent variable) and
rainfall intensity (independent variable). The regression equation allows for an estimate to be made
regarding the runoff.
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4. Discussion

Land use change has a significant impact on the hydrological and ecological processes of the
study area of watershed. Our findings indicate a change in LULC between 1986 and 2018, of about
32.33% of the study area, where an increase in the forest land by 16% and bare land by 0.94% was
estimated, totaling about 9000 ha, mainly at the expense of the shrubland. Similar studies in northern
Ethiopia [24,39,55,70] also showed significant LULC alterations and transformations since the late 1950s.

The dynamics of LULC change depicts a crucial environmental alteration, which has pronounced
impacts on human livelihoods, particularly the developing countries, such as Ethiopia. This research
is the combination of an empirical land use change model and an event scale, rainfall-runoff model to
quantify the impacts of potential land use change on the storm-runoff generation in the HGK state
forest area of northern Ethiopia. Land-use and land-cover changes direct impacts on the hydrological
cycle [7,92], by causing floods, droughts [93], and changes in river and groundwater regimes [21,22],
and they can affect water quality. Therefore, in this study, covering the time period from 1986 to
2018, we employ the SCS-CN model either static (one land use map) or dynamic (land use updates)
representation of LULC. The two scenarios provided annual data on LULC changes that served as
an input for the dynamic model runs. In the HGK state forest watershed, dynamic LULC changes
were revealed during the study period. The major change was the increase of forest cover, which
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was due to the reforestation and forest conservation program that was implemented in northern
Ethiopia since 2000. The bare land area also showed a slight increase at the expense of the area of
open shrubland. This LULC dynamics appears to have affected the stream flow of the watershed.
During the period between 1981 and 2018, the total discharge of the land scape increased at a rate of
0.78 mm per annum, whereas rainfall only increased at a rate of 0.27 mm per annum. This increase in
the discharge was caused by increasing the bare land area at the expense of slight increase of rainfall,
increased transpiration losses due to the increased tree cover and a decreased contribution from the
base flow, as revealed by the analysis of extreme low flows (Table 8). The detected increase in the
surface runoff can be expected given the significant LULC changes that were revealed in the watershed.
Girmay et al. [13] also showed that changes in land use/cover decreased the water storage capacity of
soils by a factor of 1.63 with a corresponding increase in the surface runoff by a factor of 2.7 at Gum
Selassa, northern Ethiopia. The increased evapotranspiration losses and the decline in base flow are
both associated with changes in the land cover of the watershed and/or watershed degradation. The
other contributing factor for the decreased stream flow, particularly during the dry season, has been
the increased water abstraction to be expected from the increased human and livestock populations in
the watershed. The study by Gebremiceal et al. [94] in the Geba catchment of northern Ethiopia that
with an increase of agricultural land by 42% and a decrease of natural vegetation cover by 36%, the
average median monthly flow during the wet season increased by 4% and the dry months decreased
by 23%, after continued LULC changes.

In the Chemoga watershed in northern Ethiopia, Bewket and Sterk [47] showed that the total
stream flow decreased at a rate of 1.7 mm/y during the dry season and attributed development partially
to changes in LUC and/or to land degradation of the watershed [47,69]. This could explain the decrease
in base flow in the Chemoga watershed during the dry season [47]. Similar to this finding, in China, a
3% increase in streamflow for the whole watershed from 1984 to 2010 was observed due to the long
term impact of LULC [95]. Appendix B describes that, during the 1981–2018 period, the stream flow
increased in accord with a slight increase in rainfall, however the rate of increase in the stream flow
was less than that of the rainfall (Figures 9 and 10; Table 8). This suggests the significance of exhaustion
of the groundwater, which is to be explained by increased water use by the increased vegetative cover
in the watershed that occurred between 1981 and 2018, and/or the increased water abstraction. A
similar study [47,69] observed that a large volume of surface runoff occurs during storm events.
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Table 8. Characteristics of monthly and annual rainfall P and stream discharge flow (Q) in Hugumburda Grat Kahisu state forest Northern, Ethiopia (1981–2018).

January Februay March April May June July August September October November December Annual Average

Discharge
flow (Q)

Mean 0.053 0.153 0.518 0.888 0.784 0.15 2.89 2.99 0.382 0.26 0.07 0.07 0.78
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 6.36 13.13 32.50 45.75 40.06 27.03 56.40 37.69 18.63 27.04 13.18 15.29 56.40

Std. Error of Mean 0.008 0.03 0.075 0.11 0.09 0.05 0.19 0.12 0.04 0.05 0.018 0.0208 0.026

Rainfall

Mean 0.51 0.76 1.56 2.44 2.11 0.65 6.42 7.07 1.70 1.02 0.47 0.38 2.11
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum 18.92 30.59 53.06 68.04 61.69 48.68 81.77 60.82 37.26 48.68 30.67 31.97 81.77

Std. Error of Mean 0.054 0.09 0.17 0.23 0.200 0.098 0.37 0.29 0.1242 0.12 0.064 0.061 0.057
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5. Conclusions

Our study provides evidence of the significant LULC change in the watershed between the years
1986, 2001, and 2018. The decrease in shrubland and grassland was accompanied by an increase
in forest land, bare land, and built up areas. These changes may influence the overall ecosystem
functioning. Our findings indicate that these LULC changes have a significant effect on the generation
of surface runoff, namely direct surface runoff, runoff coefficient, and storage capacity of the soil in the
study watershed in northern Ethiopia.

The study area was classified into three hydrologic soil groups based on the results of soil
classification and land use types, being texturally dominated by 99.84% of clay loam type HSG of “D”
class. This indicates that the study area has a minimum infiltration capacity when thoroughly wetted,
and thus it is increasingly vulnerable to runoff. The runoff for different LULC classes revealed that the
wet season flow increased for the most recent year, which is attributed to the conversion of shrublands
to bare land and agriculture.

Rainfall was shown to have a positive and strong correlation (P < 0.000) with runoff, while PET
and Max T were negatively (P < 0.05) correlated with discharge. Northern Ethiopia dry Afromontane
ecosystems are characterized with an erratic rainfall and high potential evapotranspiration, which is
very susceptible to drought. Therefore, this finding concludes the long-term LULC change influence
the hydrology of the entire dry Afromontane forest landscape. There is a need to devise mechanisms
for increasing its resilience to adverse hydrological changes emanating from LULC changes since the
HGK state forest is characterized as a semiarid land ecotone with high evapotranspiration climatic
regime, scarcity of surface water, and rainfed agriculture. In this regard, the results of the SCS-CN
model provide some relevant information for land use planning, and watershed and water resource
management. In particular, considering the high runoff potential revealed, soil water conservation
structures (e.g., percolation ponds) for the upper catchment are recommended. Continued change
in the LULC is becoming a serious threat to the Hugumburda Grat Kahisu reservoir forest area. The
LULC change should be controlled, and measures need to be likewise taken for the stabilization of the
negative land cover changes.

In addition to the runoff response focused in this study, the response of sediment dynamics to
LULC change and its relevance to the landscape management is useful to consider in future studies.
Soil water conservation structures, such as dip trench on farm land, percolation ponds, series pond,
small scale check dam, subsurface ditch, and percolation tanks, are suggested policy implications in
the watershed for sustainable water resource development of the Hugumburda Grat Kahisu reserved
state forest of northern Ethiopia. Further investigation is also suggested on the climate scenario-based
modeling of hydrological processes that are influenced by land use changes, which can improve the
understanding of hydrological variability of dryland forest ecosystems.
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Appendix A

Model Summary

Model R
R

Square
Adjusted R

Square
Std. Error of
the Estimate

Change Statistics
R Square
Change

F
Change

df1 df2
Sig. F
Change

1 .885a .784 .772 .113235 .784 63.482 2 35 .000

a. Predictors: (Constant), PET, Rainfall
b. Dependent Variable: Q

ANOVA Table

Model
Sum of
Squares

df Mean Square F Sig.

1
Regression 1.628 2 0.814 63.482 .000
Residual 0.449 35 0.013

Total 2.077 37

a. Dependent Variable: Q
b. Predictors: (Constant), PET, Rainfall

Model
Unstandardized Coefficients

Standardized
Coefficients t Sig.

B Std. Error Beta

1
(Constant) 0.290 0.080 3.640 0.001

Rainfall 0.837 0.078 0.847 10.754 0.000
PET −0.240 0.095 −0.200 −2.533 0.016
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Appendix B

Year Q Rainfall Year Q Rainfall Year Q Rainfall Year Q Rainfall

1981 Mean 0.33 1.89 1991 Mean 0.66 1.75 2001 Mean 0.87 2.61 2011 Mean 0.69 2.19

Std. Error of Mean 0.06 0.21 Std. Error of Mean 0.17 0.34 Std. Error of Mean 0.17 0.39 Std. Error of Mean 0.15 0.34

Maximum 11.01 26.07 Maximum 28.88 48.84 Maximum 27.02 48.67 Maximum 24.69 45.38

1982 Mean 0.51 1.70 1992 Mean 0.77 2.23 2002 Mean 0.59 1.92 2012 Mean 0.68 2.17

Std. Error of Mean 0.12 0.28 Std. Error of Mean 0.18 0.36 Std. Error of Mean 0.18 0.35 Std. Error of Mean 0.15 0.34

Maximum 21.66 40.12 Maximum 32.50 53.06 Maximum 45.62 70.34 Maximum 25.84 46.79

1983 Mean 0.45 1.67 1993 Mean 0.62 2.15 2003 Mean 0.74 2.36 2013 Mean 0.59 2.02

Std. Error of Mean 0.11 0.27 Std. Error of Mean 0.13 0.33 Std. Error of Mean 0.16 0.37 Std. Error of Mean 0.13 0.32

Maximum 19.00 36.79 Maximum 26.52 48.05 Maximum 26.00 47.42 Maximum 19.05 38.25

1984 Mean 0.22 1.17 1994 Mean 0.84 2.43 2004 Mean 0.52 1.74 2014 Mean 0.74 2.31

Std. Error of Mean 0.06 0.18 Std. Error of Mean 0.18 0.39 Std. Error of Mean 0.12 0.30 Std. Error of Mean 0.18 0.37

Maximum 18.86 36.61 Maximum 29.87 52.11 Maximum 25.68 47.02 Maximum 32.85 55.19

1985 Mean 0.60 1.67 1995 Mean 0.84 2.42 2005 Mean 0.73 2.33 2015 Mean 0.32 1.48

Std. Error of Mean 0.17 0.33 Std. Error of Mean 0.18 0.40 Std. Error of Mean 0.16 0.36 Std. Error of Mean 0.07 0.23

Maximum 40.06 61.69 Maximum 29.39 51.53 Maximum 37.69 60.82 Maximum 11.72 28.24

1986 Mean 0.84 2.28 1996 Mean 0.87 2.55 2006 Mean 0.95 2.43 2016 Mean 0.91 2.46

Std. Error of Mean 0.20 0.39 Std. Error of Mean 0.17 0.39 Std. Error of Mean 0.24 0.44 Std. Error of Mean 0.21 0.42

Maximum 46.60 68.98 Maximum 27.91 49.74 Maximum 56.40 81.77 Maximum 38.44 61.68

1987 Mean 0.53 1.70 1997 Mean 0.89 2.21 2007 Mean 0.73 2.42 2017 Mean 0.79 2.61

Std. Error of Mean 0.13 0.29 Std. Error of Mean 0.22 0.43 Std. Error of Mean 0.15 0.35 Std. Error of Mean 0.17 0.37

Maximum 26.05 45.47 Maximum 39.54 63.43 Maximum 36.91 59.91 Maximum 40.69 64.25

1988 Mean 0.82 2.44 1998 Mean 0.83 2.80 2008 Mean 0.57 1.85 2018 Mean 0.87 2.67

Std. Error of Mean 0.19 0.37 Std. Error of Mean 0.16 0.38 Std. Error of Mean 0.13 0.31 Std. Error of Mean 0.17 0.37

Maximum 43.30 65.32 Maximum 23.68 44.54 Maximum 27.24 48.50 Maximum 48.69 68.25

1989 Mean 0.67 1.70 1999 Mean 0.75 2.42 2009 Mean 0.51 1.54 Total Mean 0.67 2.11

Std. Error of Mean 0.18 0.35 Std. Error of Mean 0.15 0.36 Std. Error of Mean 0.13 0.30 Std. Error of Mean 0.03 0.06

Maximum 45.75 68.04 Maximum 27.22 48.90 Maximum 21.21 41.03 Maximum 56.40 81.77

1990 Mean 0.53 1.54 2000 Mean 0.72 2.52 2010 Mean 0.72 2.40

Std. Error of Mean 0.14 0.30 Std. Error of Mean 0.14 0.34 Std. Error of Mean 0.14 0.35

Maximum 37.85 59.19 Maximum 28.45 50.39 Maximum 21.76 41.73
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