Geochemical processes controlling the groundwater chemistry and fluoride contamination in the aquifer systems on the eastern, western and northern flanks of Mount Meru, Tanzania

George BENNETT

Introduction

Arusha volcanic region in northern

Tanzania

- Groundwater source of drinking water
 - ♣ High F⁻ conc.
- Dental and skeletal fluorosis

Location of Mount Meru in Arusha region, Tanzania. (Source: modified after Wikimedia; commons.wikimedia.org)

Methods

Two field campaigns;

- July September 2017
- March September 2018

Methods

158 water samples

Dominant ions: Sodium (Na⁺) and bicarbonate (HCO₃⁻)

0

NaHCO₃ type water

Average pH value = **7.8**

Alkaline groundwater

High values of \mathbf{F}^- were recorded

```
Range: 0.15 – 301 mg/l
```

Average value = **23 mg/l**

Median value = **10 mg/l**

F⁻ concentration

• 91% of samples (143 samples)

above 1.5 mg/l (WHO limit for drinking water)

• **9%** of samples **(15** samples**)**

- below 1.5 mg/l

Springs at higher elevations on Mount Meru

- **F:Cl ratios**
 - 99% of samples (156 samples) F:Cl > 0.10

• 1% of samples (2 samples) – F:Cl < 0.10

→ **F**⁻ is derived from **chemical weathering of rocks**

Correlation analysis

Significant **positive linear correlations** of F^- with HCO_3^- , Na^+ , K^+

and pH

• Weathering of silicate minerals

Na-K-rich volcanic rocks

 $\alpha = 0.05$; *r*- correlation coefficients; *n*=158

	r	p-value
HCO_3^-	0.38	9.97E-07
Na ⁺	0.46	1.27E-09
K^+	0.47	7.45E-10
pН	0.33	2.00E-05 11

Significant **negative linear correlation** of F⁻ with Ca²⁺

- Calcite precipitation
- Dissolution of fluorite (CaF₂)

$$\alpha = 0.05$$
; *r*- correlation coefficients; *n*=158

F⁻ (mg/l) **increase** with a **decrease** in elevation

F⁻ ≤ 1.5

1.5 < F⁻ ≤ 4.0

4.0 < F⁻ ≤ 10

 $10 < F^{-} \le 50$

 $50 < F^{-} \le 100$

 $100 < F^{-} \le 200$

 $200 < F^- \le 300$

Geological formations

- Debris avalanche deposits Nzd₁, Nzd₂
- Mantling ash Nvf
- Pyroclastics with nephenelitic and phonolitic lavas Nvm
- Nephelinite lavas and breccias Nvm₁

- F⁻ conc. vs Geology
- Lower F⁻ values
 - Pyroclastics with nephenelitic and phonolitic lavas
 - Nephelinite lavas and breccias
- Higher F⁻ values
 - Debris avalanche deposits
 - Mantling ash deposits

Conclusion

Chemical evolution of groundwater;

Weathering and dissolution of silicate minerals

Chemical weathering of Na-K-feldspars

• Calcite precipitation and dissolution of fluorite (CaF₂)

Conclusion

Factors controlling **F**⁻ concentrations in groundwater;

- Nature of the geological formations
- Long residence time

Recommendation

For safe drinking water

 Tapping water from the springs with lower F⁻ values

Thank You

Email: George.Bennett@UGent.be

Ash cone, Mount Meru (Picture by George Bennett)¹⁹

22/08/2014 08:20