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Abstract. Building structures is a remarkable collective process but its
automation remains an open challenge. Robot swarms provide a promis-
ing solution to this challenge. However, collective construction involves
a number of difficulties regarding efficient robots allocation to the differ-
ent activities, particularly if the goal is to reach an optimal construction
rate. In this paper, we study an abstract construction scenario, where a
swarm of robots is engaged in a collective perception process to estimate
the density of building blocks around a construction site. The goal of this
perception process is to maintain a minimum density of blocks available
to the robots for construction. To maintain this density, the allocation
of robots to the foraging task needs to be adjusted such that enough
blocks are retrieved. Our results show a robust collective perception that
enables the swarm to maintain a minimum block density under different
rates of construction and foraging. Our approach leads the system to
stabilize around a state in which the robots allocation allows the swarm
to maintain a tile density that is close to or above the target minimum.

1 Introduction

Building structures are among the most remarkable production processes we hu-
mans undertake. However, it is both costly and time-consuming. Consequently,
integrating robots into construction processes can be of great benefit. Social in-
sects provide important examples of collective behaviors such as creating large
complex structures. These stem from simple behaviors of agents without cen-
tralized control or pre-planning. One prominent example is termites: millions of
small insects successfully self-organize to build massive, complex mounds that
sometimes exceed 12 m in height.

Inspired by natural swarms, researchers have started looking into swarm
robotics systems that are able to construct increasingly complex structures [1,2,38].
Similar to social insects, construction by a robot swarm involves agents arranging
building materials in an environment to form structures. To do so, usually robots
coordinate through stigmergy. In contrast to direct communication, stigmergy
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enables the coordination of the agents’ activities through changing their shared
environment [32,5,8]. Upon sensing such environmental changes, the agents con-
clude their next activity. For example, the availability of building material pro-
vides a cue for robots, triggering their decision-making process. Nevertheless, in
some situations, stigmergy may not be a sufficient or appropriate means of com-
munication; in these cases, direct communication becomes necessary to exchange
particular pieces of information for successful task completion.

We base our study on the Swarm Robotics Construction System (SRoCS) [3],
a simulation of which is shown in Fig. 1(a). In this system, robots use computer
vision to monitor other robots’ actions, and based on these observations, they
perform predefined construction actions that advance to complete a partially
built structure. In this paper, we consider a scenario where a swarm is divided
into two groups of robots. The first group is responsible for exploring the envi-
ronment, finding building material in form of building blocks, and transporting
it to the construction site. This behavior is referred to as the foraging task. The
second group is responsible for assembling the foraged blocks into a structure.
This behavior is referred to as the construction task. We consider two groups of
robots since some robots must remain in the cache area over extended periods
of time to estimate the tile density. This estimation is paramount to effectively
allocating the robots between the foraging and construction tasks.
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Fig. 1. A structure being built using the swarm robotics construction system: (a) in
the ARGoS simulator, and (b) an abstraction of the environment with the cache area
(pink), and building blocks (black).

In this study, we focus on the region surrounding the construction site where
blocks can be temporarily placed for construction. We call this the cache area
(pink in Fig. 1). In order for construction robots to perform their task efficiently,
there must be enough blocks in the cache area. Such blocks are discovered and
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transported to the cache by the foraging robots. The goal in this study is to main-
tain an amount of blocks that maximizes the rate of construction. To achieve
this, the swarm must find a suitable allocation between the robots adding blocks
to the cache area (i.e., robots in the foraging task) and the robots removing
blocks from the cache area (i.e., robots in the construction task) such that a
certain amount of blocks is always preserved in the cache. To achieve this proper
allocation, the construction robots need to collectively perceive the number of
blocks in the cache area. This estimate helps the individual robots switch to
foraging when the estimate drops below a given threshold, or to continue esti-
mating otherwise. This collective perception process is highly challenging as it is
performed in a dynamic environment, where the number of blocks in the cache
area changes continuously. To address this challenge, we consider an abstraction
of the construction scenario, where we can focus on the collective perception
and decision-making dynamics involved in finding a suitable robots allocation
between the two tasks. We use a homogeneous swarm, in which all robots are ca-
pable of performing either the construction task or the foraging task. The robots
performing the construction task can communicate with each other if they are
within range. Differently, robots performing the foraging task are unable to in-
teract with the robots in the cache and vice versa. Once a robot switches to the
foraging task, it always returns to the construction task with a new block after
a period of time spent on foraging. Finally, the building material is assumed to
be homogeneous and the maximum rate at which the building blocks can be
attached to a structure is constant throughout the experiment.

The results of our collective perception process show that a swarm can col-
lectively estimate and track the state of a dynamic environment, and use this
information to find a suitable allocation between tasks. Furthermore, we show
how parameters of the task and of the environment influence the accuracy of the
collective perception process. Consequently, we discuss how our controller could
be modified so that it is more resilient to these parameters. The remainder of
this paper is organized as follows. In the next section, we provide a brief overview
of the literature on collective perception and decision-making. In Section 3, we
detail the robots’ behavior and the abstract environment in which we evaluate it.
In Section 4, we summarize and discuss the key results. We conclude this paper
in Section 5. The data generated by this research is available online as a project
on the Open Science Framework.3 This project includes all software components
and documentation required to reproduce and to extend this research [15].

2 Related Work

In robot swarms, collective decision-making has been extensively researched
[10,12,21,22,25,27,28,29,33,34,37], due to its essential role in a wide range of
tasks including foraging, flocking, and construction. In general, two types of
system outputs are associated with a collective decision-making process: (i) a
consensus in which the swarm agrees on a single option [35], and (ii) a division

3 Project on the Open Science Framework: https://osf.io/n7kr3/

https://osf.io/n7kr3/
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of the swarm among different tasks—i.e., task allocation—[6,19,24,16]. The goal
of the swarm in the consensus-achievement is to converge as quickly as possible
on one option, referred to as a symmetry-breaking decision [11,18], or to converge
on the best option as quickly as possible, referred to as a value-sensitive decision
[23,9]. In the case of task allocation, the goal of the swarm is to maximize the
system performance by minimizing the idle time of individual robots.

In this study, we tackle a specific process of collective decision-making that is
referred to as collective perception. Collective perception is a process, in which
the robots are engaged in perceiving an environmental stimulus collaboratively
[30,36,14,31]. In general, robots need to perceive particular signals in their envi-
ronments to make decisions based on the perceived values. We assume that the
environments where robot swarms are deployed are large so that the perception
of a single robot is far from sufficient to sense a system-wide stimulus—i.e., a
stimulus that spreads across a large space of the environment. This motivates
the need for collective perception, where robots combine their perceptions in a
distributed manner, and self-organize to act as a single unit.

Collective perception is observed in social insects such as honeybees, where
individuals tend to evaluate, for instance, queuing delays to optimize their task
allocation [26]. Also bee foragers transfer their nectar load to multiple receivers
suggesting the use of this behavior to estimate the environmental nectar flow [13].
These studies inspired collective perception in artificial systems such as robot
swarms. For example, authors in [30] developed a bio-inspired algorithm en-
abling a robot swarm to aggregate at two locations, where the size of each group
corresponds to the size of the selected location. In [36], the authors use a robot
swarm to collectively decide which of two colors is the most represented in a
pattern drawn on arena ground. The algorithm developed in [36] was tested
for benchmarking and generalization in [4] across a larger number of patterns
(nine). Contrary to [36], the authors in [4] find that the difficulty of the collective
perception process doesn’t depend mainly on the ratio of one color to the other,
but on the distribution of each color in the environment. The authors in [7] pro-
posed a distributed Bayesian algorithm to solve the collective perception task of
a similar two-color environment. They define the speed vs. accuracy trade-off of
the collective perception as a multi-objective optimization problem. Addition-
ally, the authors have shown that it is possible to guarantee the accuracy of the
collective perception, at the cost of decision time.

None of the aforementioned algorithms, however, support collective percep-
tion in a dynamic environment, where the perceived features change over time.
Dynamic environments impose a serious challenge to collective perception al-
gorithms, i.e. the rate at which the swarm reaches a consensus vs. the rate at
which the environment changes. Also, contrary to other algorithms, our collec-
tive perception algorithm attempts to estimate absolute values of the perceived
feature (e.g., the percentage of a particular color), instead of merely providing a
decision on its relative properties (e.g., color x is represented more than color y).
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3 The Model

We approach the collective construction problem using an abstract model, as
depicted in Fig. 1(b). In the abstract model, we focus on the cache area, in
which building blocks are modeled as 2D tiles. These tiles are moved from the
foraging area to the cache area by robots performing the foraging task. Robots
that are allocated to the construction task, explore the cache area and pick up
tiles (when encountered) and use these to build a structure. We omit the details
of the foraging process, and instead we replace it by a stochastic process that
characterizes the retrieval of tiles. We define a lower-bound density of tiles in the
cache area that we call the target density Γ . This density enables us to minimize
the idle time of constructing robots—i.e., to maximize the construction rate. We
assume the density Γ to be known and provided to the swarm. The goal of the
swarm is to allocate the robots to the foraging and construction tasks so that Γ
is satisfied and maintained in the cache area.

3.1 The Retrieval Process of Tiles

We model the output of the foraging process—i.e., the retrieval of tiles—using
a renewal process. This is a sequence of random variables, which are referred to
as the arrival times, at which a repeating event occurs—i.e., retrieving a tile.
The inter-arrival time is the period between two consecutive events, these in our
study are two consecutive retrieval of tiles. We model these inter-arrival times
by sampling from an exponential distribution with the density function:

fT =
1

λf
e
− 1
λf

T
, (1)

where the parameter λf is the average time a robot spent foraging before re-
turning to the cache area with a new tile. Modeling the inter-arrival times to be
exponentially distributed results in the renewal process to be a Poisson process,
a common way to model arrival events [39,20,17]; therefore, the average number
of tiles retrieved by foraging robots within the time period δt is given by:

〈Mi(δt)〉 =

⌊
δt

λf

⌋
Nf−→c(δt), (2)

where Nf−→c(δt) is the number of robots switching from foraging to construction
in the time interval δt. The value of this variable changes over time as a function
of the number of robots in the cache and the estimated and target tile density.

3.2 The Simulated Environment

To evaluate our collective perception process, we use the ARGoS simulator to
create a 4×4 m2 arena that is divided into 2500 tiles. We run experiments with
80 robots that can drive around the arena, avoid obstacles such as walls and each
other, sense whether or not they are driving over a shaded tile, and communicate
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with each other over wifi. We restrict the communication distance of the robot
to be a maximum of one meter to prevent global communication in the swarm.

We simulate a robot switching to the foraging task by removing it from the
simulation and setting up a countdown timer that is initialized following Eq. (1).
The mean of this distribution λf in Eq. (1) is one of the key parameters which
we vary in our experiments. Once the timer reaches zero, we simulate the robot
switching back to the construction task by adding it back into the simulation.
Using this strategy, the foraging robots are unable to communicate with the
robots performing the construction task, which is consistent with our scenario.

When a robot returns from the foraging task, a cell in the arena is shaded
to represent the tile this robot retrieved. We follow a probabilistic approach to
place the retrieved tile in the cache. Our approach has the effect of creating
clusters of tiles in the cache area (see Fig. 2). This is achieved by increasing the
probability to select a candidate location x by a factor of κ = 5 for each tile that
is adjacent (max. 8 tiles) to the location x. Hence candidate locations with more
tiles in the neighborhood have a higher probability to be selected. Performing
construction—i.e. removing a block from the cache and attaching it to a hypo-
thetical structure—is simulated by a tile being unshaded. This transition occurs
whenever a robot moves off a tile and onto another tile. The maximum number
of tiles that can be unshaded per second is the construction limit ξc, which is
another key parameter that we vary in our experiments. A full simulation run
with default parameters is hosted on Open Science Framework.4

Fig. 2. Screenshot of a simulation in the cache that shows the tiles clustering effect.
The magenta lines represent the communication links between the robots.

3.3 The Robot Behavior

A robot moves through the cache in a straight line unless it encounters an
obstacle. In case of an obstacle, the robot turns on the spot until its heading is

4 Complete run of a simulation (video): https://osf.io/6mgys/

https://osf.io/6mgys/
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clear. When the robot is not avoiding obstacles, it samples the ground beneath
it to determine whether it is on top of a tile. The robot keeps track of the total
number of samples it has taken and the number of times a sample was taken
on a tile. In addition to these counts, the robot’s memory also contains a table
that records these counts received from the robot’s neighbors. An entry in this
table contains three fields: (i) the neighbor’s total number of samples, (ii) the
neighbor’s number of samples taken over a tile, and (iii) a time-to-live value that
is used to drop the neighbor’s entry from the table when its value reaches zero.

At each time step, a robot adjusts the table in its memory by decrementing
the time-to-live field for each entry. It then sends this table with an additional
entry, representing its sample counts, to all of the robot’s direct neighbors. The
time-to-live value in this additional entry is initialized to its maximum value.
When a direct neighbor receives this information, it updates its table by replacing
the contents of each neighbor’s entry with the one with the highest time-to-live
value found among the existing entries in its table and the entries from the
received messages. In this way, each robot always has the most up-to-date entry
for each robot that it has recently communicated with. This time-to-live value
is also used to avoid loops and to prevent duplicate entries in a robot’s table.

After a robot has updated its table, it uses both its local sample counts and
the sample counts from its neighbors to estimate the tile density. To compute
this estimate 〈γi(t)〉 the robot i constructs a weighted average, in which the con-
tribution of each entry (neighbor j’s information) is weighted by (i) the number
of samples that neighbor has taken and (ii) the hop distance of that neighbor
(calculated from the time-to-live field). This average includes i’s own sample
counts weighted by the number of samples i took and a hop distance of one.

〈γi(t)〉 =
ωi(t)γi(t) +

∑
j∈Ni ωj(t)γj(t)

ωi(t) +
∑

j∈Ni ωj(t)
, (3)

where Ni is the set of robot i’s direct neighbors, and γi(t) is the tile density
measured locally by robot i and defined as:

γi(t) =
ci(t)

si(t)
(4)

where ci(t) is the number of samples taken by robot i while driving over tiles,
and si(t) is the total number of samples taken by robot i. The weight ωi assigned
to the locally-measured density by robot i in Eq. (3) is defined as:

ωi(t) = si(t)hij(t) (5)

where hij(t) is the hop distance between robot i and robot j. The weighted
average increases the influence of robots that have sampled larger areas of the
arena and that are further away. The latter weighting makes the swarm more
resilient against over-estimating the tile density which would otherwise occur
due to the clustering of tiles.

After estimating the density of tiles, each robot i decides probabilistically to
switch from the construction to the foraging task, as long as 〈γi(t)〉 is lower than
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the target density Γ . The switching probability Prc−→f
i (t) of robot i at time step

t is proportional to the difference between robot i’s estimate and Γ :

Prc−→f
i (t) =

{
η|Γ − 〈γi(t)〉| if〈γi(t)〉 < Γ

0 otherwise,
(6)

where η is a design parameter used to keep Prc−→f
i (t) in the interval [0, 1].

4 Results and Discussion

We have investigated the performance of the collective perception process as well
as the robots’ task allocation for different experiment configurations. Specifically,
our results were obtained over the following set of parameters: (i) the mean for-
aging time λf (tested values λf ∈ {5, 10, 20}), (ii) the lower-bound of the target
density Γ (tested values Γ ∈ {0.1, 0.3, 0.4}), (iii) the construction limit ξc (tested
values ξ ∈ {5, 10, 20}), and (iv) the constant η in the switching probability as
defined in Eq. (6) (tested values η ∈ {0.1, 0.15, 0.2}). We have published the data
from these experiments online [15]. The evaluation of our approach spans over
four metrics. The first is the time trajectory of the density of tiles ρgt(t), which is
the ground truth; the second is the time trajectory of the swarm estimate ρs(t);
the third is the time evolution of the individual deviation from the swarm esti-
mate of the tile density: ∆i(t) = |〈γi(t)〉 − ρs(t)|; and the fourth illustrates how
the robots allocation to construction and foraging evolves over time. We run all
experiments for 2 500 seconds (12 500 time steps) with a swarm size of 80 robots
and average the results of each experiment across 30 runs. In the following we
discuss our findings over a subset of the parameters’ tested values.

Let us start with the first metric, tile density. Fig. 3 shows that the swarm
was able to increase the tile density in the cache area and keep it above the target
density Γ for Γ ∈ {0.3, 0.4}. The swarm estimate is initially in full agreement
with the ground truth as both start at 0 tiles. Over time, the swarm estimate
ρs(t) stabilizes around the target density Γ , with a minority of robots (see the
standard deviation) estimating the tile density to be higher than Γ . This minor-
ity acts to reduce the number of robots sent to retrieve tiles, while the majority
acts to increase this number, leading the ground truth to a value higher than
the target density. The interplay of these two groups in the swarm causes both
the swarm estimate and ground truth to stabilize with the ground truth higher
than the swarm estimate. We also notice that increasing the mean foraging time
(λf ∈ {10, 20}) leads to a slower increase in ρgt(t). This is because higher values
of λf imply longer periods between the retrieval of tiles, on average. Further-
more, we see that for a specific target density Γ , ρs(t) seems to be maintained
across different values of λf and ξc. This suggests that the collective perception
process is relatively robust to both parameters. This robustness implies that
our algorithm is suitable for real-world construction tasks, where complicated
foraging that takes longer to find building materials, or prolonged assembly of
building material does not affect the collective perception performance.
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Fig. 3. Tile density for η = 0.2 and target density (a) Γ = 0.3 and (b) Γ = 0.4: swarm
estimate ρs(t), ground truth ρgt(t) (averaged across 30 runs).

Fig. 4 illustrates the mean individual deviation 〈∆i(t)〉 from the swarm es-
timate for different target densities Γ ∈ {0.3, 0.4}, mean foraging times λf ∈
{10, 20}, and construction limits ξc ∈ {10, 20}. Our results show robustness of
the individual deviation with regard to changes in these parameters, with a max-
imum average deviation of 0.15 (〈∆i(t)〉 ≤ 0.15). Such a small variance 〈∆i(t)〉
indicates a strong agreement between the individual and the group estimate.

Finally, Fig. 5 shows the fraction of robots allocated to foraging over time.
At the beginning, all 80 robots are in the cache area for all experiment config-
urations. Thus, initially, there is a jump in the number of robots leaving from
the construction task to the foraging task. This jump is due to the low swarm
estimate ρs(t) of the tile density during the first 100 seconds of the experiments
(see Fig. 3). During this initial period, the estimate ρs(t) of the swarm remains
consistently below the target density. Hence the condition 〈γi(t)〉 < Γ is true for
a large majority of the robots, that then switch to the foraging task following
Eq. (6) with a relatively high probability. The magnitude of the spike increases
with the mean foraging time λf . This is due to the longer time it takes for the
robots to arrive back from the foraging area, and thus for the tile density and the
swarm estimate to rise. Nevertheless, as soon as the swarm estimate stabilizes
and the ground truth of tiles in the cache reaches or exceeds its target ρgt(t) ≥ Γ ,
the fraction of the foraging robots starts to drop until it stabilizes, leading the
system into an equilibrium state with respect to the robots allocation. The drop
takes longer time for larger λf . Furthermore, the fraction of robots that continue
foraging is higher for higher Γ values. This is because tiles need to be retrieved
at a faster rate. Additionally, the fraction of foraging robots is higher for larger
λf given the same Γ . This is due to the slower rate of tile retrieval when λf is
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Fig. 4. Average individual deviation 〈∆i(t)〉 from swarm estimate ρs(t) for η = 0.2
and target density (a) Γ = 0.3 and (b) Γ = 0.4 (averaged across 30 runs).
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Fig. 5. Fraction of foraging robots for η = 0.2 and target density (a) Γ = 0.3 and
(b) Γ = 0.4 (averaged across 30 runs).

larger. Thus, this slower rate pushes more robots to foraging while the robots
that remain in the cache are performing construction and estimating the tile
density 〈γi(t)〉 for a longer time.
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5 Conclusions

We studied an abstract scenario of a collective construction process by a robot
swarm in a dynamic environment. In this scenario, we focused on the cache
area—i.e., an area that surrounds the construction area—, where blocks are
modeled as tiles that appear through foraging and disappear through construc-
tion. Robots can switch between two tasks: foraging and construction. Foraging
robots explore the foraging area and retrieve the building material, while con-
struction robots conduct a collective perception process to maintain a minimum
tile density in the cache. The details of the foraging task are abstracted away
and it is modeled using a Poisson process which delivers tiles with a specific rate
(1/λf ) to the cache. This enabled us to focus on research questions concerning
the design of a task allocation mechanism that exploits collective perception
in a dynamic environment. In future work, we plan to simulate a detailed for-
aging process. The collective perception process aims to assign robots to the
foraging task to increase the tiles retrieval rate whenever the density in the
cache drops below the target density Γ—i.e., the required lower-bound on the
tile density. Robots in the cache rely on both their samples and the samples
of their neighbors to compute an estimate of the tile density. This estimate is
computed as a weighted average that assigns higher importance to (i) robots
that are further away, making the swarm more resilient to over-estimation or
under-estimation due to the clustering of tiles; (ii) robots with larger samples,
as these contributions are more representative. Robots use their estimate from
Eq. (3) to probabilistically decide whether to switch to the foraging task or to
continue estimating/performing the construction task.

Our results show that the proposed collective perception process leads to a
proper robots allocation, which in turn guarantees a minimum tile density in
the cache. This allocation changes as a function of the average time it takes a
robot to find and retrieve a tile λf , and the target density Γ . Furthermore, our
results show a strong agreement between the individual estimate 〈γi(t)〉 and the
swarm estimate ρs(t), with a maximum variance of 0.15. This study is a first
step towards designing collective perception processes in dynamic environments,
in which the perceived feature (e.g., tile density) changes over time and the goal
is to estimate its absolute value. In future work, we plan to study the influence of
the size and update rate of the robots’ memorized samples on the performance
of the perception process. We also intend to extend the proposed algorithm to
enable the swarm to maintain a tile density close to its target.
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