
1340 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

Data Reuse Buffer Synthesis Using
the Polyhedral Model

Wim Meeus and Dirk Stroobandt , Member, IEEE

Abstract— Current high-level synthesis (HLS) tools for the
automatic design of computing hardware perform excellently for
the synthesis of computation kernels, but they often do not opti-
mize memory bandwidth. As accessing memory is a bottleneck
in many algorithms, the performance of the generated circuit
could benefit substantially from memory access optimization.
In this paper, we present a method and a tool to automate
the optimization of memory accesses to array data in HLS
by introducing local memory tailored perfectly to store only
the data that are used repeatedly. Our method detects data
reuse in the source code of the algorithm to be implemented
in hardware, selects and parameterizes data reuse buffers, and
generates a register transfer level design of the data buffers
and a matching loop controller that coordinates reuse buffers
and datapath operations. Throughout this paper, the polyhedral
representation is used extensively as it proves to be well suited for
calculations on loop nests and data accesses. As a consequence,
this paper is limited to affine programs which can be represented
in this model. Experiments show that our method outperforms
state-of-the-art academic and commercial HLS tools.

Index Terms— Design methodology, high-level synthesis (HLS),
memory architecture, polyhedral model, stencil computing.

I. INTRODUCTION

H IGH-LEVEL synthesis (HLS) is a recent step in the
design flow of a digital electronic circuit, in which a

design is entered at the algorithmic abstraction level instead of
register transfer level (RTL). The HLS tool translates the algo-
rithm into an RTL design, after which the usual RTL design
flow follows with synthesis, place, and route. Several benefits
arise from starting the design flow at a higher abstraction
level using the HLS, including improved designer productivity,
faster design verification, and the potential of extensive design
space exploration and improved circuit performance with
respect to a hand-crafted RTL design. Many HLS tools are
available and these tools are being introduced in application-
specific integrated circuit and field-programmable gate array
(FPGA) design flows. A more extensive discussion of HLS
can be found in [1] and [2].

In [3], we have shown that some of these tools generate
excellent RTL designs for computation kernels, i.e., accel-
erators for calculation-dominated dataflow type algorithms.
Most of these HLS tools, however, do not optimize memory

Manuscript received March 14, 2017; revised October 31, 2017 and
February 5, 2018; accepted March 11, 2018. Date of publication April 9,
2018; date of current version June 26, 2018. This work was supported by the
European Commission in the context of the H2020 FETHPC EXTRA Project
under Grant 671653. (Corresponding author: Wim Meeus.)

The authors are with the Department of Electronics and Information Sys-
tems, Ghent University, 9000 Ghent, Belgium (e-mail: wim.meeus@ugent.be).

Digital Object Identifier 10.1109/TVLSI.2018.2817159

accesses across loop iterations. This is unfortunate, because
the communication between processing elements (PEs) and
memory is a well-known bottleneck, which limits circuit
performance. Implementing an algorithm in hardware offers
massive parallelism in the PE, but this only improves circuit
performance if the memory system can keep up. Parallelism
and memory access speed do not scale well. This makes
memory operations expensive in terms of circuit performance.

Instruction set processors (ISPs) have caches and scratchpad
memories to alleviate the memory bottleneck. These generic
memory hierarchies perform well for a broad range of applica-
tions, and compilers optimize the application for the available
memory hierarchy. Automatic memory access optimization,
which exists in ISP compilers, was introduced only recently
into HLS tools. In the case of HLS, the application is known
upfront, so in addition to optimizing the application (e.g., for
data locality), the memory architecture can be tailored to the
application for improved performance.

This paper improves the throughput and latency of circuits
generated by HLS by removing unnecessary data transfers
between the circuit and external data memories. To this end,
we propose automated methods to generate efficient local
storage buffers for data that are used multiple times. We first
define classes of data access patterns and then introduce
matching local storage buffers to exploit data reuse. We envi-
sion an architecture as in Fig. 1, consisting of a datapath for
calculations, a memory hierarchy consisting of one or more
data reuse buffers, and a loop controller that coordinates buffer
and datapath operations. The main goal of this paper is to
automate the design flow with the requirement that the gen-
erated design should perform as well as handcrafted or hand-
optimized designs. Compared with earlier work, our
methodology can efficiently handle a broader range of
algorithms.

The contributions of this paper are as follows:
1) an automated method, based on the polyhedral model,

to analyze data reuse in a loop nest and to select an
appropriate reuse buffer template;

2) an automated method to generate instances of data reuse
buffers from the selected templates that exploit data
reuse between array accesses;

3) an automated method to generate loop controllers that
coordinate memory reads and writes and to reuse buffer
operations and loop body execution;

4) experiments showing that our presented method
performs well without the need for manual
optimization.

1063-8210 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5496-3430
https://orcid.org/0000-0002-4477-5313

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1341

Fig. 1. Proposed architecture.

II. DATA REUSE: AN EXAMPLE

To sketch the problem and to introduce our approach,
we discuss a hardware design of a Sobel edge detector. The
Sobel filter is an image processing algorithm shown in Fig. 2.
For the calculation of each Q[r, c], eight input pixels P[][]
are needed. A naive hardware implementation would fetch
eight pixels to produce each output Q[][]. The same pixels
are fetched up to eight times, which is a waste of memory
bandwidth. Surprisingly, this is what some high-end HLS tools
generate.

A more efficient design would fetch each pixel only once
from external memory and store its value locally for reuse
in later calculations. A data reuse buffer as shown in Fig. 3,
consisting of a tapped shift register, can store the pixels for
reuse. Each tap of the shift register corresponds to an array
reference in the source code. Data are shifted into the reuse
buffer in the order in which they are used. With this design,
no memory bandwidth gets wasted. However, implementing
the reuse buffer in RTL and hooking it up to a (potentially
generated) datapath is not trivial. For that reason, we want
to automate the design of such data reuse buffers as well as
matching loop controllers.

III. RELATED WORK

As shown in [4], HLS tools (even high-end com-
mercial ones) may not optimize memory accesses, and
hand-crafted optimization can be difficult with them. An
exception is riverside optimizing configurable computing
compiler (ROCCC) [5] which introduces smart data reuse
buffers [6]. ROCCC is built on the SUIF2 and MachineSUIF
platforms, to which it adds memory access analysis and opti-
mization passes as well as a VHDL code generator. ROCCC
has some major drawbacks: it only works for sliding window
algorithms, it has severe limitations on the input C code,
and the generated design does not scale well with the reuse
distance [3].

Some authors introduce optimized memory architectures at
the algorithmic level, as an optimization of the source code.
The generation of the memory hierarchy is left to the HLS tool.
In [7], methods are presented to optimize both data transfers
from/to the main memory and local storage requirements.
Loop nests get optimized for the available memory resources
and fitting cyclic reuse buffers are generated using HLS.
In Section IX-E, we will demonstrate that this can limit the
final circuit performance significantly.

More recently, polyhedral techniques have been used in
HLS to optimize the source algorithm for data locality, after
which a further optimization step was applied to make the
algorithm more suitable for implementation in custom hard-
ware [8]. Data reuse buffers, either FIFOs or scratchpadlike
memories, are used between data PEs. These buffers could

Fig. 2. Sobel filter.

Fig. 3. Rectangular Sobel edge detector design. Inside the reuse buffer,
rectangles are shift registers with depth as indicated

be adapted for use between a memory and a PE instead of
between PEs. Details on how their buffers are dimensioned
and how they perform are missing.

A thorough analysis of data accesses in algorithms is
presented in [9]. The dataflow analysis covers all possible
cases of data reuse. The data channels that are found can
be implemented in hardware directly. However, the resulting
hardware can be more complex than what we obtain using our
methodology. This paper uses the Sobel edge detector as a
running example. The Sobel part in Fig. 7 of [9] corresponds
with our design of Fig. 3. While our Sobel design has one
input channel and seven internal channels, theirs has nine
input channels (of which three are shown in the figure) and
about 16 internal channels. A design based on the analysis
in [9] would thus contain three times as many FIFOs and also
additional multiplexing between them.

This paper builds on [4], in which methods are described
to find data reuse in a loop nest and to generate the hardware
design of a data reuse buffer and loop controller that coordi-
nates reuse buffer and data processing. We extend this paper
by adding: 1) reuse buffer templates; 2) support for a single
access function; and 3) support for variable reuse distances and
writes in the sliding window case. Similar work is presented
in [10]. Their microarchitecture also contains a chain of
tapped FIFOs to store data for reuse, but they have filters at
each tap to filter the required data. This filtering happens at
runtime. Data are processed when all filters have the required
data. In contrast, we determine at design time when data
will be available at the FIFO’s taps, so we do not need
the filters. Instead, we make use of a loop controller which
coordinates data fetches, FIFO control, and data processing.
Cong et al. [10] prove that their (and our) microarchitecture
has a minimal memory footprint. As we will show, their design
has the same throughput as ours but is considerably larger in
area. In [11], another approach for sliding window-type data
accesses is presented. Algorithms are mapped onto a pipeline
of stencil time-steps, PEs equipped with local data buffering.
The construction of data buffers is hardly discussed, and only
one data access pattern is considered.

1342 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

In some papers, data reuse is considered at a more coarse
level. Loop nests are optimized using loop tiling, and data
reuse is exploited between successive tiles. Reference [12]
discusses the optimization and synthesis of memory accesses
using local data buffers. Their transformations are entirely
at the source level. As mentioned, we will show that this
approach leads to suboptimal results. The methods presented
in [13] are based on loop tiling as well. Local data buffers
are generated so that that they can store all required data
for processing a tile. At the start, loop transformations are
applied to improve data locality and expose parallelism. The
tile size is determined such that the local data buffers fit
in the available on-chip (e.g., FPGA) memory, reducing the
memory requirements if necessary. Data are kept in local
memory while a whole tile is processed, while our method
only keeps data in local memory from the first to the last
access. As a consequence, the memory requirements of the
methods from [13] may be larger than ours. Also in [13], data
reuse is limited to consecutive tiles, which is not a limitation
in this paper.

Systolic arrays [14] represent a different approach for array-
type calculations. They have one PE per result (e.g., N2

PEs for N × N matrix multiplication), such that data can be
consumed as soon as they are available. While systolic arrays
do not need to store source data and intermediate results are
stored inside the PEs, they suffer from bad scalability: the
number of PEs has to scale with the size of the problem and the
data bandwidth requirements are huge (e.g., 2 N data words
per cycle in our matrix multiplication example). Our approach
makes use of a single PE, which avoids scalability problems.
An extension of this paper to a limited number of parallel PEs
is future work.

IV. POLYHEDRAL MODEL

In this paper, the polyhedral model is used to represent the
execution of an algorithm in a geometric way. Its compu-
tational simplicity makes it particularly suitable for analysis
and automatic optimization. For the polyhedral model to be
applicable, loop bounds and array indices must be affine func-
tions of loop variables and constants. This is the case for the
majority of loops and array indices found in algorithms, e.g.,
between 83% and 100% of the array indices of the benchmarks
studied in [15] were affine. An extensive discussion on the
polyhedral model can be found in [16] and [17]. We briefly
discuss the aspects that are key to this paper.

Central to the polyhedral model is the concept of state-
ments. Each statement of a computer program is charac-
terized by a quadruple (D,L,R, θ), denoting its iteration
domain (D), the access functions of written [L (left-hand side)]
and read [R (right-hand side)] data, and its schedule (θ).
The polyhedral model does not define what a statement is,
giving the user the flexibility to define the boundaries of a
statement. For example, statements in the polyhedral model
could correspond with C statements, or with operations in a
C program, or with a sequence of C statements. We make use
of this flexibility to simplify calculations where possible.

Table I shows how the code fragment in Fig. 4 is translated
to the polyhedral model. The iteration domain D of each

Fig. 4. Pseudocode.

Fig. 5. Access functions project iteration domain of data statement 1 on the
data space. Loop variables r and c and array indices i1 and i2. (a) Iteration
domain. (b) A[r+1][c+1]. (c) B[c][5-r].

TABLE I

POLYHEDRAL MODEL OF CODE IN FIG. 4

data statement is the set of integer points contained inside
a polyhedron defined by the loop bounds. The schedule θ of
each statement maps the iterations on a timestamp in a mul-
tidimensional time space. Statements are executed according
to the lexicographic order of their schedule. The schedule is
constructed from the order of the statement in each loop level
and the loop variables, e.g., for data statement 2: the r-loop
is the first statement of the code fragment (1), r loop (r); the
c-loop is the first statement inside the r loop (1), c loop (c);
and data statement 2 is the second statement inside the c
loop (2). The array references define access functions L and
R. The image of an access function is its data domain, i.e., the
set of array indices that are accessed during execution of
the loop nest. Fig. 5(a) shows the iteration domain of data
statement 1, and Fig. 5(b) and (c) shows the data domains
of arrays A and B . The inverse access function determines in
which iteration array elements are accessed. The concatenation
of an inverse access function and the schedule of a statement
are a schedule for data, as it maps data elements to timestamps
when the data are accessed. In other words, array data are
ordered into a stream.

In this paper, we use Jolylib [19], a Java version of
Polylib [20], and iscc from the Barvinok library [18] for
polyhedral calculations. In Table II, we highlight some iscc
syntax.

V. DETAILED PROBLEM DEFINITION

We now present a more detailed definition of our research
question. The starting point of this paper is an algorithm,
expressed as a perfect loop nest in which array data are
accessed. As many general loop nests can be converted into
perfect ones [21], [22], the requirement of a perfect loop nest

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1343

TABLE II

ESSENTIAL ISCC SYNTAX (SEE [18])

is seldom a limitation. The outcome is an RTL design as
in Fig. 3. The data reuse buffers and the loop controller are
generated by our tool, and the datapath is generated using
a commercial HLS tool. The challenges of this paper are as
follows:

1) designing a top level architecture that integrates
the datapath, local data storage, and the loop con-
troller (Section VI);

2) designing reuse buffer templates that are suited for
different types of data access patterns (Section VI);

3) analyzing data reuse and data access patterns in the algo-
rithm to be implemented in hardware (Section VII-A);

4) selecting a suitable reuse buffer design template for the
data access patterns in the algorithm (Section VII-B);

5) parameterizing these templates for the algorithm to be
implemented (Sections VIII and IX);

6) building a loop controller that coordinates data reuse
buffer operations and datapath execution (Sections VIII
and IX).

Rather than designing a solution that works for all the cases,
using a set of templates for generating data reuse buffers
reduces the complexity of the problem. Handling particular
data access patterns separately may be less general, but this
approach has a few advantages. Templates can be fine-tuned
to the specific data access pattern, reducing the latency and
hardware overhead. Also, the design effort can be focused at
those data access patterns that occur frequently. Designing the
templates needs to be done only once. These templates serve
as the input for a software tool that automates the subsequent
tasks. The more templates that are available, the more access
patterns that can be optimized. In this paper, we present two
such templates. A first template matches array references that
have the same access function, which is found in, among
others, matrix multiplication and FIR filters. The second tem-
plate matches the sliding window access pattern with bijective
access functions, which is found in stencil computing. In this
case, an array is accessed with different access functions that
have the same dependence on the loop variables. Developing
additional reuse buffer templates, e.g., to support a sliding
window access pattern with a nonbijective access function, and
access functions that access data in opposite directions (e.g.,
A[i] and A[k − i]), is future work.

Fig. 6. Buffer architecture

In this paper, we do not apply loop transformations to
make the algorithm more suitable for implementation in
hardware. We assume that the source algorithm is already
optimized for hardware implementation. These optimizations,
such as data locality improvement, are discussed extensively
in [7], [9], [13], [16], and [17]. Our flow will generate an
architecture that is tailored to the algorithm as it is given.

It is paramount to clearly distinguish an array reference,
a source code construct indicating an access to array data,
from an array access, which is an actual array read or write
operation that is the result of executing the array reference.
In a loop nest, each array reference causes a series of array
accesses. The access function, defined by the index expres-
sion(s) of an array reference, expresses the relation between
the loop variables and parameters, and the referenced data
element.

VI. PROPOSED ARCHITECTURE

The architecture of our solution, shown in Fig. 1, extends
the architecture from [23]. It has a datapath that executes the
data statements and a loop controller to generate the values of
loop variables and control the datapath operations. We propose
two changes: 1) we consider the whole loop body as one
statement and 2) we add data reuse buffers for array data as
additional components. When the loop body is compiled as
one statement, the loop controller will be simpler as it only
needs to control one data statement, while an HLS tool gets a
larger piece of code for the datapath which enables more opti-
mization. With the addition of the data reuse buffers, external
memory accesses are handled by the loop controller and the
data reuse buffers. In this paper, we make use of Catapult C
from Mentor Graphics to compile the loop body to RTL.

For a circuit that has low latency and high throughput,
the design of the data reuse buffers needs to match the data
access pattern. Our tool uses a number of data reuse buffer
design templates from which it selects and parameterizes
the appropriate one at design time. The templates can be
hand-crafted, because they only need to be designed once.
In Sections VI-A and VI-B, we present templates for two
different data access patterns.

A. Single Access Function

In this data access pattern, all references to an array have
the same access function. This pattern occurs in, for example,
matrix multiplication and correlation. In order to produce the
same data multiple times, the data buffer needs to contain
a loop as in Fig. 6. Data are fetched from external memory
for their first use and kept in the local buffer for subsequent
uses. After their last use, the data are written back to the

1344 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

Fig. 7. Data reuse detection: single access function (iscc syntax: Table II or [18]).

Fig. 8. Data reuse detection: two access functions (iscc syntax: Table II or [18]). Note the different meanings of ∗ in this code: in line 6, it denotes an
intersection between two domains, while in lines 2 and 3, it adds a domain to a mapping.

main memory or discarded from the reuse buffer. This data
access pattern and potential reuse buffer simplifications will
be discussed in Section VIII.

B. Sliding Window Access Pattern

The sliding window access pattern is found in stencil com-
puting. Array references have different access functions, but
these access functions all depend on the loop variables in the
same way. In addition, the access functions must be bijective
over the loop nest. In this pattern, different array references
may access the same data in different loop iterations. All array
references will access the shared data in the same order, but
the accesses will be offset in time. For example, A[i] and
A[i + 1] access the same data in the same order, but (for
incrementing i) A[i + 1] will do that one iteration earlier than
A[i]. In this case, a suitable architecture consists of a sequence
of shift registers and FIFOs, as shown in Fig. 3. The number
and depth of FIFOs and shift registers and the presence of
read and write ports depend on the source algorithm, and will
be discussed in Section IX.

VII. AUTOMATED DESIGN FLOW

The design flow is shown in Fig. 9. First, the algorithm to
be implemented in hardware is searched for data reuse. If data
reuse occurs, and if a matching reuse buffer template is found,
our tool generates RTL code of a fitting reuse buffer instance
from the template. In addition, a loop controller is generated
to coordinate all reuse buffer and datapath operations.

A. Detecting and Organizing Data Reuse

The first part of our automated flow deals with finding
data reuse and organizing array references that share data.
Reuse analysis is done per array, and we assume that no
aliasing between arrays occurs. Two types of data reuse can
occur. A single array reference can access the same data in
different loop iterations, or two array references may access
the same data in either the same or different loop iterations.
Array references to the same array with the same access
function can be considered as one array reference with the
iteration domain as the union of their iteration domains. Array
references that share data can be grouped into reuse sets.
For the first type (one array reference), the reuse detection

Fig. 9. Polyhedral reuse buffer design flow.

algorithm is given in Fig. 7. The example is taken from the
correlation use case, which is discussed in Section VIII-E.
E D is the iteration domain, i.e., (i, j) pairs of iterations of
the loop nest. A1 represents the array index of array A[]. Data
domain DD is the set of elements from A[] that are used in the
loop and is found as the projection of E D on the data space.
In each iteration, one element of A[] is used. If the number of
iterations or the number of pairs in E D [card(E D)] equals
the number of cells of A[] that are accessed, a different cell
of A[] is used in each iteration and no reuse occurs. In that
case, REU SE is zero. If the number of accessed cells of A[]
is smaller than the number of iterations (and REU SE > 0),
some elements of A[] are used in multiple iterations, so data
reuse occurs. Note that, if the loop bounds or access functions
contain parameters whose values are unknown at design time,
evaluating and comparing the cardinality of sets may not be
possible.

The reuse detection algorithm for the second type is shown
in Fig. 8. The intersection of the data domains of two different
array references contains data which are used by both array
references. If this intersection is not empty, data reuse occurs.

B. Reuse Buffer Template Selection
The next step is to find the best fitting reuse buffer template

for each reuse set. The applicability of the reuse buffer

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1345

Fig. 10. Calculating reuse distance (similar to [24]) and fetch/reuse domains for array A of the correlation example (iscc syntax: Table II or [18]).

templates from Section VI can be tested using the polyhedral
representation. To match the single access function template,
the only thing to check is that the access functions of all array
references in the reuse set are the same. To match the sliding
window template, one must check that all access functions
have the same dependence on loop variables and that all access
functions are bijective over their domain.

C. Generating Data Reuse Buffers From the Selected
Templates

From each of the selected reuse buffer templates, the RTL
design is generated, taking the exact data access pattern into
account. This customization is template-specific. In addition to
generating the RTL design of the reuse buffer, this step also
calculates the timing of the buffer’s control signals for later
implementation in the loop controller. Customizing the single
access function template and the sliding window template is
discussed in Sections VIII and IX, respectively.

D. Generating the Loop Controller

From the domains that were calculated during reuse buffer
generation, a loop controller is generated as in [23]. One loop
controller controls all reuse buffers and the datapath. The
loop controller consists of a number of coupled finite state
machines which generate the values of loop variables and the
control signals for reuse buffers and datapath. Details will be
presented in Sections VIII and IX. For the loop controller RTL
code to be efficient, the polyhedral domains sometimes need to
be optimized for implementation in hardware. Optimizations
in, e.g., iscc [18] are instruction processor-oriented and often
are not well-suited for a direct hardware implementation.
We perform a manual cleanup of polyhedral domains, but leave
automation of this step to future work.

VIII. SINGLE ACCESS FUNCTION TEMPLATE

In this section, we discuss the single access function data
reuse buffer template. We assume that the algorithm contains
one or more array references that fit this template. We discuss
the additional polyhedral analysis and a number of use cases,
and we present experimental results.

Fig. 11. Matrix multiplication benchmark.

A. Additional Data Access Pattern Analysis

First, the reuse distance needs to be calculated, as shown
in lines 1–10 of Fig. 10. For the polyhedral representation,
the whole inner loop body is considered as one statement. This
simplifies the polyhedral calculations without loss of accuracy.
In lines 1 and 2, the iteration domain of the loop body and
the access relation are given. The data domain (line 3) is the
projection of the iteration domain onto the data space using
the access function.

The reuse distance calculation, similar to the method
in [24], is presented in lines 4–10. It counts the number
of array cells accessed between two accesses to the same
cell. In lines 4 and 5, LT maps each iteration to all suc-
cessive iterations and L E maps each iteration to all succes-
sive iterations and to itself. In line 6, ACC.ACC−1 maps
iterations to all iterations that access the same data, and
T restricts this to all later iterations that access the same
data. In line 7, M maps iterations to the next iteration that
accesses the same data. In line 8, M−1 maps iterations to
the iteration in which the same data were accessed previously,
and AFT E R_P REV maps iterations to all iterations after the
previous iteration in which the same array cell was accessed.
B E FO RE in line 9 is the inverse of L E . Finally, in line 10,
AFT E R_P REV ∗ B E FO RE maps iterations to the set of
iterations between two successive accesses to the same array
cell, (AFT E R_P REV ∗B E FO RE)∗ACC maps to the set of
array cells accessed in these iterations, and the number (card)
of cells in this latter set is the reuse distance.

The calculated reuse distance may be variable or constant
during loop execution. In the latter case, a design as in
Section VIII-B can be applied, while in the variable reuse
distance case, the more complex design of Section VIII-C
is necessary. Read-only reuse buffers are considered first.
In Section VIII-D, extensions to support a mix of reads and
writes, regardless of constant or variable reuse distance, are

1346 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

Fig. 12. Fixed reuse distance buffer design.

Fig. 13. Triangular matrix multiplication benchmark.

Fig. 14. Reuse buffer design with variable reuse distance.

presented.

B. Reuse Buffer With Constant Reuse Distance

In matrix multiplication (Fig. 11), the reuse distance is
constant for all arrays (100 for A, 10 000 for B , and 1 for
Q in the example). The design of the reuse buffer is shown
in Fig. 12. On their first use, data are read from an external
memory and kept in the active data register for use in the
datapath. After use, all data are shifted into the shift register
that loops back to the input multiplexer. The depth of the
shift register equals the reuse distance minus one. Two signals
control the operation of the reuse buffer: nshi f t is asserted
when new data from the external memory are shifted into the
buffer, and lshi f t is asserted when data from the buffer are
reused. The activity of these control signals is calculated in
lines 11 and 12 of Fig. 10. nshi f t (domain N D) is active
when data are accessed for the first time, and lshi f t (domain
L D) is active in all remaining iterations. If the reuse distance
is equal to one, the length of the shift register becomes zero,
so the shift register, mux, O R gate, and lshift input can all
be omitted and the reuse buffer can be simplified to a single
register.

C. Reuse Buffer With Variable Reuse Distance

When the reuse distance is not constant (e.g., triangular
matrix multiplication as in Fig. 13), a design as in Fig. 14 is
required that uses an FIFO to store data between subsequent
uses. Three control signals are required. nshi f t and lshi f t
are the same as in the constant reuse distance case, with
lshi f t popping data from the reuse FIFO. In addition, rbpush
controls which data are pushed into the FIFO, namely data that

Fig. 15. Reuse buffer design with read/write.

Fig. 16. Write before or after read. (a) Read first: Q must be initialized.
(b) Write first: no initialization of Q required.

Fig. 17. Reuse buffer design with read/write, when no data need to be read
from external memory

will be reused in a later iteration. The calculation of rbpush’s
iteration domain is shown in line 13 of Fig. 10. The maximum
depth of the FIFO is one less than the upper bound of the reuse
distance, as shown in l.14 of Fig. 10.

D. Read/Write Reuse Buffer

The solutions that we have presented so far apply to array
data that are only read during the execution of the algorithm.
Read and write access can be supported with a design as
in Fig. 15 (assuming a constant reuse distance). The interface
to the datapath gets both read and write ports and a write
enable signal. An additional signal is needed to control the
operation to store written data in external memory after the
last write. In the case of a variable reuse distance, the same
modifications as in Section VIII-C can be applied.

For optimal performance, unnecessary reads and writes from
and to external memory must be avoided. If the initial (and
potentially uninitiated) values of array data are not used, as is
the case with Q, these values should not be fetched from
external memory. Whether initial values are used depends on
the first operation: if it is a read, as in Fig. 16(a), the initial
value is used, while in the case of a write [Fig. 16(b)],
the initial value is not used. If all data of an array are written
first, the memory read port can be omitted and the design gets
simplified as in Fig. 17.

The calculation of the control signals’ activity needs to be
modified with respect to the read-only design. Considering

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1347

Fig. 18. Calculating domains for array Q (matrix multiplication example) (iscc syntax [18]).

Fig. 19. Correlation pseudocode.

the loop body as a single statement in the polyhedral rep-
resentation would hide whether the first operation on data
is a read or a write, so individual statements have to be
considered. In Fig. 18, the calculations are shown for array
Q[] of the matrix multiplication case, which we will discuss in
Section VIII-E. Lines 1–5 of Fig. 18 contain the information
from the loop nest: iteration domains, access functions, and
schedules of the array accesses to Q[]. Lines 6–8 calculate
the data domains of written, read, and accessed (read or write)
data. In line 9, the iterations are found in which an element
of Q[] is accessed for the first time. In line 10, we determine
whether there was a write access before the first read access.
In line 11, we determine which data are written before they
are read. These data do not need to be initialized or read
from external memory before use. In line 12, the iterations
are calculated in which data that do need to be fetched from
external memory are accessed for the first time. The iterations
in which data are reused from the buffer are determined in
line 13. Finally, in line 14, we find the iterations in which
elements of Q[] are written for the last time, after which they
can be stored in external memory.

E. Experimental Results

We have studied three common algorithms that each access
multiple arrays using a single access function, representing
a number of different use cases, which can all be optimized
using our method.

1) Correlation (see Fig. 19): The correlation between a
signal A[] and a short pulse B[] to find the index of A[]
where the correlation is maximal. Both arrays are 1-D
and have constant reuse distances. After one iteration

TABLE III

EXPERIMENTAL RESULTS: SINGLE ACCESS FUNCTION.
FPGA RESOURCES: SLICES/DFFS/BLOCKRAMS/DSPS

Fig. 20. Code fragment.

of the outer loop, array A reuses 12 data elements and
gets 1 new element per iteration of the outer loop, while
array B only reuses data.

2) Matrix Multiplication: Q[] = A[]·B[] (see Fig. 11). The
arrays are 2-D. Arrays A and B are read-only and have
constant reuse distances. Array Q is read–write and its
access pattern has a constant reuse distance of one.

3) Matrix Multiplication With an Upper Triangular Matrix:
Q[] = A[]·B[] with A[i][j] = 0 ∀ j < i , which reduces
the number of multiplications as shown in Fig. 13. Only
a little more than half of array A is read. Its access
pattern has a variable reuse distance.

We have compared designs generated by our tool from
unoptimized source code with designs generated using a
commercial HLS tool—Catapult C—from either unopti-
mized or manually optimized code. Table III summarizes the
results. Starting from unoptimized source code, the designs
generated by commercial HLS tools access the memory con-
siderably more than a design generated by our tool, which
can be seen from the right two columns (total number of

1348 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

Fig. 21. Ordering array references A[i + 1][j + 1] and A[i + 1][j] (iscc syntax [18]).

Fig. 22. Reuse distance between P[r + 1][c − 1] and P[r][c + 1].
(a) Rectangular and (b) Nonrectangular data domain. Dotted arrows indicate
access order of P[i1][i2]. Gray and black dots indicate which elements of
A[] are read during algorithm execution, and black dots are the ones between
A[i + 1][j − 1] and A[i][j + 1] at some point. The number of black dots
equals the reuse distance between A[i + 1][j − 1] and A[i][j + 1].

memory accesses and accesses per calculation). Designs with
the commercial HLS tool improve if the source code is
optimized, but for optimal performance, these optimizations
require far from trivial source code changes. Matrix multipli-
cation was optimized by keeping Q[i][j] in a local register
during the k loop (optimization 1) and by explicitly adding
local storage (optimization 2). For correlation, HLS constraints
were used to force Catapult C to map local storage either
as block RAM or in the FPGA fabric. An optimal solution
could not be achieved using blockram. In contrast, our toolflow
produces equally good designs from source code that was not
optimized by hand. The resulting designs meet the same clock
speed target (200 MHz) and use comparable numbers of FPGA
resources.

IX. SLIDING WINDOW TEMPLATE

The sliding window data reuse buffer template applies if
reuse sets were found with access functions that have the
same dependence on loop variables. We discuss the polyhedral
analysis for this template and experimental results from a
number of use cases, such as the Sobel edge detector.

A. Additional Data Access Pattern Analysis

Array references with the same dependence on loop vari-
ables can be ordered according to the time when they access
the shared data. For example, in the loop of Fig. 20, A[i]
accesses each element of A[] one iteration earlier than A[i−1].
We call the ordered reuse set a reuse chain. Using the polyhe-
dral representation, ordering pairs of array references from the
Sobel algorithm (Fig. 2) happen as in Fig. 21. Line 1 defines
the data domain, lines 2 and 3 define the access relations, and
line 4 defines the schedule. In lines 5 and 6, the data domain
is projected onto the schedule domain using the inverse of

Fig. 23. Reuse chain: array references in the boxes and reuse distances above
the arrows.

Fig. 24. Incomplete loop control.

Fig. 25. Correct loop control.

each of the access functions concatenated with the schedule
function. In line 7, LT is a mapping in the schedule space of
a point in time to all later points in time. In line 8, a mapping
M M is defined in the schedule space of the time when A0
accesses data to the time when A1 accesses the same data.
In line 9, we check whether the A1 access was later than the
A0 access (intersection not empty), which defines the order of
these accesses in the reuse chain. The relative ordering of all
pairs of access functions enables our tool to order all of them
as a reuse chain. The first array reference in the reuse chain is
called the head of the reuse chain. We also calculate the spatial
reuse distance of each pair of successive array references in
the chain. The polyhedral calculation of the reuse distance is
graphically represented in Fig. 22 and is similar to the one in
Section VIII-A.

In the Sobel filter example, each pair of references to P[][]
has overlapping data domains, so they form a single reuse set.
Ordering the array references gives a reuse chain as in Fig. 23;
P[r+1][c+1] is the head of the reuse chain. The reuse distance
between each pair of successive array references is given above
the arrows.

If the reuse distance between each pair of successive array
references is constant during loop execution as in Fig. 22(a),
the method described in Section IX-B applies. Otherwise,
the more complex approach of Section IX-C is required.

B. Read-Only Reuse Buffer With Constant Reuse Distances

In this section, we create the hardware design of the data
reuse buffer and a matching loop controller. These are building

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1349

Fig. 26. Calculating data and fetch domains (iscc syntax [18]). A1 is the head of the reuse chain.

blocks that fit into the design in Fig. 1. The reuse chain can
be mapped directly onto a chain of shift registers as in Fig. 3.
For each pair of successive array references in the reuse chain,
a shift register is generated. The array references in the reuse
chain map to the taps before, between, and after the shift
registers, where data are tapped from the reuse buffer to feed
the datapath. The head of the chain maps onto the leftmost tap
where data are fed in from the main memory. The length of
each shift register equals the reuse distance as defined earlier.
Starting from the calculated reuse chain and reuse distances,
our tool generates a synthesizable RTL design of the reuse
buffers. A configurable reuse distance threshold is used to
choose between a register or RAM-based shift registers.

The design of the loop controller is next, which coordinates
the reuse buffer and datapath operations. The pseudocode
in Fig. 24 describes how the loop should execute. In each
iteration, one new data element per reuse chain is fetched from
the main memory, after which the loop body executes. While
the code in Fig. 24 is valid for many loop iterations, a number
of data fetches need to be added for correct execution. In order
to include all necessary data fetches and coordinate them
with loop body execution, the iteration domain is extended as
in Fig. 25. At the start of the loop nest, a number of iterations
are added to load the first two lines of the image into the
buffer (when I ∈ fetch_domain but I /∈ execute_domain).
At the start of the inner loop, two more pixels at the start
of each line are loaded. These additional fetches prefill the
reuse buffer. Once the reuse buffer is filled, the loop body can
be executed to produce a first result. With each subsequent
pixel read, a new pixel can be produced by the datapath (I ∈
fetch_domain and I ∈ execute_domain).

The extended iteration domain is the union of the execute
and fetch domains. The execute domain is the same as the
domain of the original loop nest. The presence of the loop
buffer does not change the number of calculations or the asso-
ciated iterator values. The fetch domain is the iteration domain
of the data fetch operation. We want only the required data
to be fetched from the main memory, data to be fetched only
once, and fed in the right order to the reuse buffer, and before
they are needed by the datapath. Using the access function
of the head of the reuse chain to project the data domain
of the reuse set onto the iteration domain, the desired fetch
domain is found. For the Sobel filter example with rows =
cols = 4, the polyhedral calculations are given in Fig. 26. First,
the iteration domain of the original loop nest (or execution

Fig. 27. Rectangular case: iteration and data domain. (a) Iteration domain.
(b) Data domain. (c) Extended iteration domain.

Fig. 28. Triangular Sobel filter.

domain, line 1) and the access functions (lines 2–9) are given.
The data domain is the projection of the execution domain
using the union of access functions (line 10). The fetch domain
is the projection of the data domain onto the iteration space
using the inverse of the first access function (line 11). Fig. 27
shows a graphical representation of the domains. Fig. 27(a)
represents the iteration domain and Fig. 27(b) represents the
corresponding data domain. The head of the reuse chain is
P[r+1][c+1]. Inverting the access function gives r = i1 − 1
and c = i2−1. Applying the inverse access function to the data
domain gives the fetch domain in Fig. 27(c). The white dots
belong to the fetch domain only, and the black dots belong to
both the fetch and execute domains.

The RTL design of the loop controller is based on [23]. The
controller calculates the values of the loop variables and starts
reuse buffer and datapath operations. The generated designs
are evaluated in Section IX-E.

1350 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

Fig. 29. Reuse buffer for triangular Sobel edge detector. Rectangles with a
number are shift registers with depth as indicated, and FIFOs accommodate
variable reuse distances.

Fig. 30. Reuse buffer for triangular Sobel edge detector. A number of control
signals are shared.

C. Variable Reuse Distance

In some algorithms, the reuse distances are not constant,
e.g., when a triangular 2-D data domain is accessed, or when
the data window is not rectangular. An example is the trian-
gular Sobel filter of Fig. 28. The methods from Section VII-
A to find data reuse and to build the reuse chain are still
valid. The method to calculate the reuse distance will return
either an expression that depends on the iterators or multiple
expressions. The architecture of the reuse buffer still resembles
the one of Section IX-B, but FIFOs are required as in Fig. 29
to accommodate variable reuse distances.

Controlling a reuse buffer with FIFOs is more complex
than without them. The timing of the different shift, push,
and pop signals must be calculated, as well as the maximum
depth of the FIFOs. shift signals of successive shift registers
must be activated at the same time, otherwise data either
get duplicated or lost. The same applies to the pop signal
of an upstream FIFO. At the upstream end of the buffer,
the shift signal must be activated when new data are fetched.
This simplifies the circuit of Fig. 29 to the one shown
in Fig. 30. The push signal is slightly different from its
upstream pop or fetch: it should be activated at the same
time as the upstream pop or fetch (i.e., when data arrive
from the upstream FIFO or shift register), except when no
valid data are available at the input of the FIFO. This only
happens during circuit startup, when shift registers between
FIFOs contain uninitialized data. This means that the push
signal of an FIFO should activate every time the upstream
pop or fetch signal is active except for the first n times,
with n as the total length of the shift registers between the
successive FIFOs.

The overall design is shown in Fig. 31. The controller gen-
erates control signals for fetch, pop, and datapath operations,
of which we need to determine the iteration domains. As in

Fig. 31. Top-level design of the triangular Sobel edge detector, with the
details of the reuse buffer control signals. The sfn blocks suspend the first
n pulses.

Fig. 32. Control signals of the triangular Sobel edge design. (a) Prefill buffer,
(b) fetch and do calculations (one additional fetch and calculation per line),
and (c) fetch additional pixels at the start and end of every line.

the rectangular case, the execute domain is the domain of the
original loop nest, and the fetch domain (i.e., when the fetch
signal must be activated) is found as the inverse projection of
the data domain of the reuse set onto the iteration domain using
the access function of the head of the reuse chain. Similarly,
the iteration domains of each of the pop signals are found by
calculating the inverse projection of the data domain of the
reuse set onto the iteration domain using the access function
associated with the reuse buffer tap right after the FIFO.
Fig. 32 shows the waveforms of the control signals. Three
different phases can be seen: 1) filling the buffer before the
first calculation; 2) fetching a pixel and doing calculations; and
3) fetching additional pixels at the start and the end of every
line, i.e., at the start and the end of the inner loop. In order
to build the hardware design, it is also important to know the
maximum number of data elements in the FIFO. At any time,
the number of data elements in the FIFO equals the number
of pushes minus the number of pops. The maximum number
of data elements is the upper bound over the loop nest.

The triangular Sobel filter of our example has two variable
length sections. The reuse buffer design is shown in Fig. 30.
The algorithm to calculate in which loop iterations data are
fetched from main memory and popped from the FIFOs is
given in Fig. 33. The execution domain (line 1) is now
triangular. The data and fetch domains are found the same
as with a constant reuse distance (lines 2–6). In lines 7 and
8, the pop and push operations of the FIFO between taps
3 and 4 are found by projecting the data domain onto the
iteration space using the inverse of the fourth and third access
functions, respectively. From these, the maximum number of
data elements in the FIFO can be calculated as in line 9. For
the FIFO between taps 5 and 6, the procedure of lines 7–9 must
be repeated with the proper access functions. In Section IX-E,
experimental results are discussed for a number of designs
with variable reuse distances.

D. Adding Writes
Supporting arrays with both read and write accesses require

changes to the reuse buffer itself as well as to the controller.

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1351

Fig. 33. Calculating fetch and pop domains (iscc syntax [18]).

Fig. 34. Read/write register in reuse buffer.

Fig. 35. Read/write register at start of the reuse buffer.

The reuse buffer has to accept data at intermediate points and
modified data need to be written back to the main memory.
As an (artificial) example, we assume a modified Sobel filter
that modifies input pixels P[r+1][c-1] and P[r][c-1].

To enable the reuse buffer to accept writes, the depth of the
shift register or FIFO directly upstream from the tap that has
write accesses is decreased by one, and a register is added
as in Fig. 34. A multiplexer at the data port of the register
selects between data from the reuse buffer or the datapath.
If writes occur at the first tap of the reuse chain, a modified
design is required as shown in Fig. 35. A second modification
is required to write modified data from the reuse buffer into
the main memory. Data could be stored as they leave the reuse
buffer after the last tap, as in Fig. 36. This solution is correct
but introduces unnecessary latency if the last write tap is not
the last tap of the reuse buffer. Writing data directly after the
last write tap as in Fig. 37 improves the latency.

The third modification is related to the loop controller,
which now coordinates two additional operations: writing data
to the main memory and potentially shifting the reuse buffer to
skip data that do not need to be written, as in Fig. 38. The data
domain of the written array elements is called the write data
domain. Projecting the write data domain onto the iteration
space using the inverse access function of the last write tap
gives the write iteration domain. If the reuse buffer contains
only one write tap, the write iteration domain is a subset of the
execution domain. If there are multiple write taps, additional
write cycles after the last loop body execution may be required
to store all the data. The additional shift operations for writing
back data are found by projecting the entire data domain onto
the iteration space using the inverse access function of the last

Fig. 36. Writing data from the end of the buffer (inefficient).

write tap and by limiting this domain to the iterations after the
last loop body execution and up to the last write. This way,
only data that are known to be written by the datapath will be
written to main memory. For this reason, a clean/dirty bit like
in cache memories is not needed.

E. Experimental Results
We compare our design methodology with a few other

approaches. For the evaluation of our methods and our tool,
we have always used unoptimized C code as input. The
reuse buffer and loop controller were generated with our tool,
while the datapath was generated using Catapult C. Note that
the complexity of the reuse buffer design depends on the
complexity of the data access pattern (i.e., the shape and size
of the data window) and not on the complexity of the algorithm
being implemented.

A first set of experiments compares our methodology with
designs that are generated entirely by Catapult C from either
unoptimized or hand-optimized source code of the Sobel filter.
Pixel intensity is represented by 8-bit values. With an unopti-
mized source code, no data reuse happens between successive
iterations. Optimizations to force Catapult C to introduce a
reuse buffer were not trivial. Designs were generated both
with and without pipelining. With pipelining, the Initiation
Interval (II) was optimized to the best that Catapult C could
achieve. The designs were targeted to a Xilinx Virtex 5 FPGA
with a target clock rate of 100 MHz. RTL synthesis was done
using Mentor Precision or Xilinx XPS. For benchmarking,
a 100 × 100 pixel input image was used. One pixel per clock
cycle can be read from or written to the external memories.

For a rectangular data domain, the results of the com-
parison are shown in Table IV. We compare the designs
for performance (lowest II and latency) and area (FPGA
slices, flipflops, and RAM). All 10 000 pixels from the input
image get accessed, which means that the latency is at least
10 000 cycles. We first compare results without pipelining.
With 39 602 cycles of latency, the circuit generated by our
tool largely outperforms the circuit generated using the HLS

1352 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 7, JULY 2018

Fig. 37. Writing data from the last write tap of the buffer.

Fig. 38. Pseudocode of the loop control in the case of read/write array
accesses.

TABLE IV

EXPERIMENTAL RESULTS: RECTANGULAR

from the same source code and is slightly better than the
one generated from HLS and hand-optimized code. The area
is in the same range for all circuits. With pipelining of the
inner loops, the HLS manages to generate a circuit with an
II of 1. The optimization included the implementation of
a reuse buffer in the source code, with some constructs to
get around limitations of Catapult’s scheduler. The latency
of 10 397 cycles is higher than optimal as scheduling fails
when pipelining of the outer loops is attempted. With a reuse
buffer and a pipelined loop controller generated by our tool,
the same II is achieved and the latency is 10 002 cycles.

The comparison for the triangular data domain is shown
in Table V. The minimum latency is, in theory, 5145 cycles.
Without pipelining, our design outperforms the designs gen-
erated entirely with the HLS, even if the source code for
the HLS was optimized. Our design uses 404 FPGA slices,
which is more than the circuit from the HLS. With pipelining,
the latency of our design is close to the theoretic minimum.
As in the rectangular case, Catapult C requires considerable
hand-crafted optimizations to enable pipelining of the inner
loops and is unable to pipeline the outer loop. Simulation has
shown that in this case, the design generated with Catapult C
has a performance penalty of seven clock cycles per iteration
of the outer loop (i.e., about 700 clock cycles in total) with
respect to our design.

A second set of experiments compares this paper with [10].
We have used the same benchmarks: 2-D bicubic interpolation,
2-D and 3-D denoise, 3-D segmentation, and 2-D Sobel
edge detection. The iteration domain was always rectangular,
but the shape of the data windows causes variable reuse

TABLE V

EXPERIMENTAL RESULTS: TRIANGULAR

TABLE VI

EXPERIMENTAL RESULTS: BENCHMARKS

distances in most of the benchmarks. We have targeted a
Xilinx Virtex7 FPGA (XC7VX485T) using the ISE 14.2 tools
with a target clock rate of 200 MHz. The II for all designs
is 1. These designs all have the correct data access pattern,
but they contain a dummy datapath and do not perform the
actual calculations from the algorithm. The results are shown
in Table VI.

All designs meet the target clock rate of 200 MHz and
have an II of 1, so they perform equally well in terms of
speed and throughput. The size of our designs, expressed in
numbers of FPGA slices, is between 68% and 90% smaller
than the designs in [10]. Some of our designs also use fewer
block RAMs (BRAM), which is due to the small size of the
iteration and data domains in these benchmarks, causing small
memories to be synthesized as a distributed RAM instead
of BRAM. With larger iteration domains, the BRAM counts
would be the same.

Both sets of experiments show that our tool performs
better than state-of-the-art commercial and academic HLS
design tools, without requiring the designer to make difficult
optimizations in the source code.

X. CONCLUSION

In this paper, we have presented an automated method to
detect data reuse in a loop nest, to select a data reuse buffer
template and to generate the RTL design of data reuse buffers
from the template that are tuned for the application. The tool
also generates the design of a loop controller that coordinates
calculations and memory operations. Several use cases are
supported, including different data access patterns, constant
and variable reuse distances, as well as mixed read and write
operations. Experiments demonstrate that in comparison with
commercial HLS, our tool does not need manual source

MEEUS AND STROOBANDT: DATA REUSE BUFFER SYNTHESIS USING POLYHEDRAL MODEL 1353

code optimization to achieve an equal or a better circuit
performance.

ACKNOWLEDGMENT

The authors would like to thank Cong et al. [10] for sharing
their benchmarks.

REFERENCES

[1] P. Coussy and A. Takach, “Guest editors’ introduction: Raising the
abstraction level of hardware design,” IEEE Design Test Comput.,
vol. 26, no. 4, pp. 4–6, Jul. 2009.

[2] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design Test Comput., vol. 26, no. 4,
pp. 8–17, Jul./Aug. 2009.

[3] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt,
“An overview of today’s high-level synthesis tools,” Design Autom.
Embedded Syst., vol. 16, no. 3, pp. 31–51, 2012.

[4] W. Meeus and D. Stroobandt, “Automating data reuse in high-level
synthesis,” in Proc. Design Autom. Test Eur. Conf., 2014, p. 298.

[5] University of California at Riverside. Riverside Optimizing Com-
piler for Configurable Computing. [Online]. Available: http://www.
jacquardcomputing.com/roccc

[6] Z. Guo, B. Buyukkurt, and W. Najjar, “Input data reuse in com-
piling window operations onto reconfigurable hardware,” in Proc.
ACM SIGPLAN/SIGBED Conf. Lang., Compil., Tools Embedded
Syst. (LCTES), Jul. 2004, pp. 249–256.

[7] J. Cong, P. Zhang, and Y. Zou, “Optimizing memory hierarchy allocation
with loop transformations for high-level synthesis,” in Proc. 49th Annu.
Design Autom. Conf. (DAC), New York, NY, USA, 2012, pp. 1233–1238.

[8] K. Campbell, W. Zuo, and D. Chen, “New advances of high-level
synthesis for efficient and reliable hardware design,” Integr., VLSI J.,
vol. 58, pp. 189–214, Jun. 2017.

[9] S. Verdoolaege, “Polyhedral process networks,” in Handbook of Signal
Processing Systems, S. Bhattacharrya, E. Deprettere, R. Leupers, and
J. Takala, Eds. New York, NY, USA: Springer-Verlag, 2013.

[10] J. Cong, P. Li, B. Xiao, and P. Zhang, “An optimal microarchitecture
for stencil computation acceleration based on non-uniform partitioning
of data reuse buffers,” in Proc. 51st Annu. Design Autom. Conf. Design
Autom. Conf. (DAC), New York, NY, USA, 2014, pp. 77:1–77:6.

[11] G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto,
and M. D. Santambrogio, “A polyhedral model-based framework
for dataflow implementation on FPGA devices of iterative stencil
loops,” in Proc. 35th Int. Conf. Comput.-Aided Design (ICCAD), 2016,
pp. 77:1–77:8.

[12] C. Alias, A. Darte, and A. Plesco, “Optimizing remote accesses for
offloaded kernels: Application to high-level synthesis for FPGA,” in
Proc. Conf. Design, Autom. Test Eur. (DATE), 2013, pp. 575–580.

[13] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-
based data reuse optimization for configurable computing,” in Proc.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2013, pp. 29–38.

[14] H. Kung and C. Leiserson, “Systolic array apparatuses for matrix
computations,” U.S. Patent 4 493 048, Jan. 8, 1985.

[15] Y. Paek, J. Hoeflinger, and D. Padua, “Efficient and precise array access
analysis,” ACM Trans. Program. Lang. Syst, vol. 24, no. 1, pp. 65–109,
2000.

[16] S. Girbal et al., “Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies,” Int. J. Parallel Program.,
vol. 34, no. 3, pp. 261–317, 2006.

[17] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam, “Putting
polyhedral loop transformations to work,” in Proc. Int. Workshop Lang.
Compil. Parallel Comput. (LCPC), Oct. 2003, pp. 209–225.

[18] S. Verdoolaege. (Jun. 2007). Barvinok: User Guide. [Online]. Available:
http://freshmeat.net/projects/barvinok

[19] Reservoir Labs. Jolylib. Accessed: Mar. 24, 2017. [Online]. Available:
https://www.reservoir.com/

[20] IRISA. Polylib. Accessed: Mar. 24, 2017. [Online]. Available:
http://www.irisa.fr/polylib

[21] R. Sass and M. Mutka, “Enabling unimodular transformations,” in Proc.
ACM/IEEE Conf. Supercomput., Los Alamitos, CA, USA, Nov. 1994,
pp. 753–762.

[22] J. Xue, “Unimodular transformations of non-perfectly nested loops,”
Parallel Comput., vol. 22, no. 12, pp. 1621–1645, 1997.

[23] H. Devos, K. Beyls, M. Christiaens, J. Van Campenhout,
E. H. D’Hollander, and D. Stroobandt, “Finding and applying loop
transformations for generating optimized FPGA implementations,”
in Transactions on High-Performance Embedded Architectures and
Compilers I (Lecture Notes in Computer Science), vol. 4050. Berlin,
Germany: Springer, 2007, pp. 159–178.

[24] S. Verdoolaege. (Dec. 2014). ISCC Tutorial. [Online]. Available: http://
barvinok.gforge.inria.fr/tutorial.pdf

Wim Meeus received the M.Sc. degree in elec-
trotechnical engineering from Ghent University,
Ghent, Belgium, in 1996.

He is currently a Researcher at the Computer
Systems Laboratory, Department of Electronics and
Information Systems, Ghent University. His current
research interests include digital circuit design, high-
level synthesis, and more specifically the automatic
generation of application-specific memory architec-
tures.

Dirk Stroobandt (S’92–M’98) received the Ph.D.
degree in electrotechnical engineering from Ghent
University, Ghent, Belgium, in 1998.

He was a Visiting Researcher at the University
of California at Irvine, Irvine, CA, USA, in 1997,
and at the University of California at Los Angeles,
Los Angeles, CA, USA, from 1999 to 2000. He is
currently a Full Professor at the Computer Systems
Laboratory, Department of Electronics and Infor-
mation Systems, Ghent University, where he also
leads the research group Hardware and Embedded

Systems with interests in semiautomatic hardware design, run-time field-
programmable gate array reconfiguration, and reconfigurable multiprocessor
networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

