

Introduction to AAM technology

Lecture notes of the DuRSAAM training course held January 2020

Edited by Stijn Matthys and Alessandro Proia

Introduction to AAM technology

Lecture notes of the **DuRSAAM training course** held January 2020

Dursham The PhD Training Network on Durable, Reliable and Sustainable Structures with Alkali-Activated Materials

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 813596 DuRSAAM.

© 2020, "Introduction to AAM technology" by Frank Dehn, John Provis, Guang Ye, Stijn Matthys and Alessandro Proia

ISBN 9789082526813

D/2020/15076/01

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). The policy of this license is specified at https://creativecommons.org/licenses/by-nc-sa/4.0/

This work contains information put forth in the framework of a training course. Reasonable efforts have been made to publish proper information, but the authors and editors cannot assume responsibility for the validity and accuracy of all materials or the consequences of their use. The authors and editors have attempted to avoid any copyright material or to trace the copyright holders and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please contact us via the DuRSAAM web site so that we may rectify in any future version.

Visit DuRSAAM web site at http://www.dursaam.eu

Contents

Fore	eword	ii
Contributors		iii
1.	Outline	1
2.	Cements and the need for improvements	5
3.	Alternative cements, what is available?	
4.	Cement characterisation	50
5.	Standardisation of cements and concretes	68
6.	Mechanical Properties of AAM concretes	
7.	Durability testing of concretes	91
8.	Modelling of AAM concretes	
9.	Shrinkage of AAM concretes	
10.	Fibre-reinforced AAM concretes	
11.	AAM lab work	210
Abo	ut the teachers	
Abo	ut DuRSAAM	215

Foreword

The design, durability and performance of structures play a crucial role in fostering societal and economic growth. Concrete structures are used extensively for buildings, transport, infrastructure and maritime applications. By using concrete extraordinary structures can be realised, and these are often designed for long service lives to gain optimal value from the material, environmental, intellectual and financial input into the making of the structure. Although concrete has a fairly limited environmental impact per cubic meter used, concrete is also one of the most frequently used building materials. In Europe, around 4 tonnes of concrete per capita are consumed annually. This makes that concrete is often associated with durability issues and huge environmental costs, for example as the cement industry accounts for about 8% of global anthropogenic carbon dioxide emissions.

There is a clear demand for a new, sustainable generation of construction materials, since Ordinary Portland Cement (OPC)-based concrete cannot meet all the challenges of modern society concerning durability and sustainability. A number of more eco-friendly concrete technologies have appeared over the years, among which a growing interest in concrete technology based on alkali-activated materials (AAM), sometimes also referred to as geopolymers. AAM materials can represent a valuable alternative to OPC for a more sustainable built environment.

This eBook has been made in the framework of the European Training Network on Durable, Reliable and Sustainable Structures with Alkali-Activated Materials (DuRSAAM), which organized a training course on AAM technology held at Karlsruhe Institute of Technology 27-29 January 2020. This open source book collects the lecture notes by the teachers of this training course and provides building professionals and stakeholders new insights on alkaliactivated concrete as an emerging building technology.

> Stijn Matthys Alessandro Proia Ghent, 2020

Contributors

Frank Dehn

(Course host, teacher)

Institute of Concrete Structures and Building Materials - Materials Testing and Research Institute Karlsruhe Institute of Technology, Germany

John Provis

(Course scientific coordinator, teacher)

Department of Materials Science and Engineering The University of Sheffield, UK

Guang Ye

(Teacher)

Department Materials, Mechanics, Management & Design Technical University Delft, The Netherlands

Alessandro Proia

(DuRSAAM management assistant)

Department of Structural Engineering and Building Materials Ghent University, Belgium

Stijn Matthys

(DuRSAAM action coordinator)

Department of Structural Engineering and Building Materials Ghent University, Belgium

1. Outline

Stijn Matthys

Concrete is a popular and efficient building material. However, being used that widely all over the world, its environmental impact sums up to large numbers. The upside of this observation is that when improving the environmental impact of concrete, significant improvements can be made in terms of for example reducing carbon dioxide emissions and using less primary raw materials. There are various options to reduce the environmental impact of concrete further, including more efficient cement production, use of recycled aggregates, use of blended cements via secondary cementitious materials and the use of alternative binders. One of these alternative binder technologies is alkali-activated materials (AAM).

The information bundled in this eBook is that of a 3-day course, formatted as a training school open to researchers, practicing engineers, etc., in fact, for all those who want to obtain profound starting knowledge on AAM technology. The original training course, specifically developed and delivered collaboratively by the DuRSAAM action, was held at the Karlsruhe Institute of Technology (KIT), spring 2020. A course introduction video is provided <u>here</u> (time to watch 4 minutes).

The **outline** of the teaching material bundled in this book, is as follows:

- ➔ "The cement perspective" (Chapters 2 till 4):
 - Cements and the need for improvements
 - Alternative solutions, including alkali-activated materials
 - Cement characterisation
- ➔ "The concrete perspective" (Chapters 5 till 7):
 - Standardisation of cements and concretes
 - Mechanical properties of AAM concretes
 - Durability testing of concrete and their applicability to AAM
- → "Further into the details" (Chapters 8 till 10):
 - Modelling of AAM concretes
 - Shrinkage of AAM concretes
 - Fibre-reinforced AAM concretes
- → "Hands-on" (Chapter 11):
 - AAM lab work

The **aim** of the teaching material is to impart basic understanding as well as up-to-date knowledge about AAM binders and concretes. The specific **learning objectives** are as follows:

- ✓ Understanding about traditional cement versus this new binder technology.
- ✓ Obtaining insight into the workability, mechanical and durability behaviour of AAM concretes.
- ✓ Build knowledge on AAM technology and about how these binders and concretes behave compared to traditional hydraulic cements and concretes, respectively.

✓ Being able to position the emerging AAM technology and its application amongst other construction technologies, and to recognize its value for circular concrete.

In short, for the reader of this eBook to grasp the AAM binder technology for concrete construction.

A **brief description of AAM concrete**, sometimes also referred to as geopolymer concrete, is given as follows. The composition of traditional concrete and AAM concrete is analogous, as indicated in Figure 1.1. The cement is replaced in AAM concrete by mineral powders (fineness comparable to cement) that will harden by activating these mineral powders with an aqueous solution of alkalis, in contrast to cement that only needs water to harden. Therefore, both concrete types use an alternative chemical route to hydrate into an overall similar artificial rock, based on C(A)SH-like compounds (calcium (alumino)silicate hydrates).

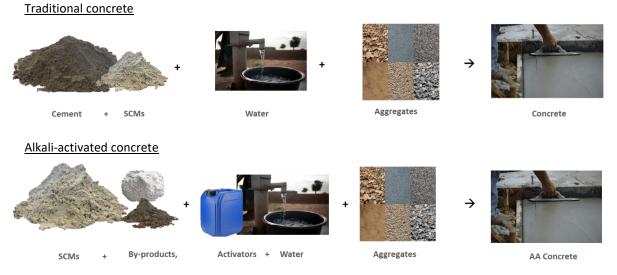


Figure 1.1 – Composition of traditional versus AAM concrete

The binder component of AAM concrete are mineral powders (called 'precursors'), which are activated by means of alkalis (called 'activators). The mineral powders are industrial by-products such as metallurgical slags, combustion ashes and calcined clays, of which some of them have already a tradition to be used as secondary cementitious materials (SCMs) in blended cements. The dosage of these mineral powders, which act as binders instead of cement, is slightly higher than for traditional concrete. As an order of magnitude, the dosage is around 400 kg per m³ of concrete, but depends on the specific mix. Various chemical components can be used for the alkalis, but often a combination of sodium silicate (water glass) and sodium hydroxide is used. The dosage in terms of dry mass of alkalis is, for example, an order of magnitude of 5 mass% with respect to the binder content, for an AAM concrete based on blast furnace slag. The further mix proportioning in terms of fine (sand) and coarse aggregates is the same as with traditional concrete and is performed on the basis of optimal packing distribution. In this respect, is also possible to use recycled or artificial aggregates in AAM concrete. The application of a hybrid solution of concrete with a low dosage of cement and a high dosage of by-products additionally activated, belongs further to the options.

AAM concrete is compatible with current solutions for reinforcing concrete (reinforcing steel, fibre reinforced concrete,...) and pilot projects with AAM concrete have already been realized in various countries. The characterization and application of AAM concrete is however less advanced than traditional concrete, and the regulatory framework is still limited. Like for traditional reinforced or prestressed concrete, AAM concrete mixes are designed to have good workability, mechanical performance and durability:

- The workability of AAM concrete is generally somewhat more viscous and hardens faster, whereby attention is given in the mix design to obtain a sufficient workable time for the fresh concrete.
- High compressive strengths are generally easy to achieve, but requires attention in the mix design and curing to keep shrinkage deformations under control.
- Due to its generally denser microstructure, AAM concretes have the ability to achieve strong durability properties. On the other hand, the chemical structure of AAM concrete and traditional concrete is not identical, so that further durability tests are recommended to characterize the durability of AAM concrete mixes. In general terms, the durability of AAM concrete is comparable to that of a cement-based concrete, although there might be differences (e.g. carbonation resistance of AAM concrete may be slightly less, resistance to chloride penetration slightly better).
- A common concern of engineers considering AAM concretes for the first time is damage by ASR (alkali-silica reaction). This durability aspect has been examined by various researchers and has not been reported as a problem so far. This is attributed to the fact that alkalis are not freely available in the hardened concrete, but participate in the chemical processes that allow AAM concrete to harden.

In addition to workability, strength and durability, AAM concretes have a lower environmental impact. This is at one hand due to the fact that Portland clinker based cement, with its relatively high environmental impact, is avoided and on the other hand because less primary raw materials are used. The exact gain in environmental impact is not always straightforward to establish, because this depends on (1) the details of the AAM concrete composition, (2) the type of cement based concrete used as a reference for comparison (e.g. concrete based on CEM I or CEM III), and (3) to which extent the environmental impact of the by-products are allocated to its originating production or to the AAM concrete. Under the assumption that mainly the environmental impact of the grinding of the mineral powders is assigned to the AAM concrete and if reference to concrete types with high Portland clinker amounts, values are mentioned of an environmental gain of 50% and more, in terms of carbon footprint. Furthermore, in terms of end-of-service-life, AAM concrete is recyclable and reusable according to common practices. This has been reported, though studies in this respect are still limited.

By-products for AAM concrete are selected or blended with care, to come to proper mix proportions and to exploit the reactivity of the by-products. It might also be of interest to apply beneficiation treatments on the by-products, to purify them from e.g. valuable metals and to make sure that there is no potential leaching of harmful elements. Environmental permits to use some types of by-products as constituent for concrete might be applicable, depending on national legislation. Much more information on AAM binders and concretes, in a wider context of concrete technology, is provided in the following chapters. For further reading on AAMs, also reference is made to the RILEM Handbook "Alkali Activated Materials: State of the Art Report, RILEM TC 224 AAM", ISBN 978-94-007-7671-5. A link to this handbook is provided <u>here</u>.

2. Cements and the need for improvements

John Provis

In this chapter an introduction is given to Portland cement and secondary cementitious materials to create blended cements. The cement hydration is discussed as well as some sustainability considerations with respect to cement usage. The shift from a single universal cement to an array of cement types is highlighted and taken.

Portland cement, blended cements, and the need for improvements

Prof. John Provis Department of Materials Science & Engineering University of Sheffield <u>i.provis@sheffield.ac.uk</u>

Cements (of various types)

What I will cover today:

- Portland cement production & mineralogy
- Portland cement hydration reactions & products
- Supplementary cementitious materials
- Introduction to AAMs and a few other non-Portland cements
- Characterisation of complex materials (e.g. cements) materials science techniques

Portland cement

• Definition:

"A hydraulic cement capable of setting, hardening and remaining stable under water. It consists essentially of hydraulic calcium silicates, usually containing calcium sulfate".

- The basis of almost every (>95%) concrete used worldwide
- The closest thing to magic the human race has ever invented..?

What is in Portland cement?

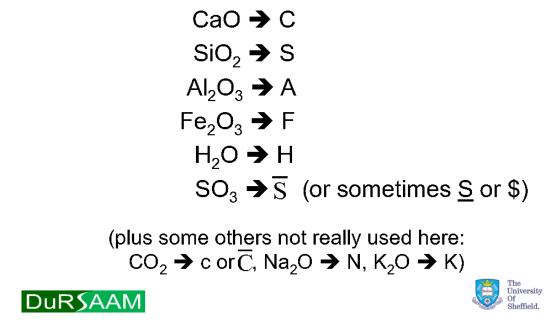
- Cement clinker
 - Tricalcium silicate ("alite"), 3CaO·SiO₂
 - Dicalcium silicate ("belite"), 2CaO·SiO₂
 - Tricalcium aluminate ("aluminate"), $3CaO \cdot Al_2O_3$
 - Tetracalcium aluminoferrite, $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$
 - ("ferrite solid solution" composition can vary)

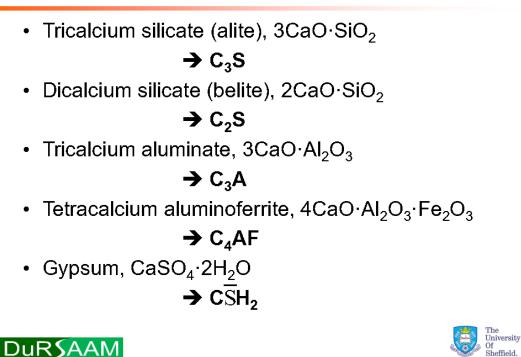
→ made from limestone and clays in a kiln, then ground to a fine powder

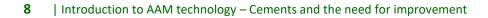
• Gypsum, $CaSO_4 \cdot 2H_2O$

→ added during grinding DuRSAAM

Developed 200 years ago...


- 1824, Joseph Aspdin, Leeds, UK
 - British Patent #5022, "Artificial Stone"
 - Developed & improved later, including by his son William Aspdin
 - Louis Vicat (France) worked at a similar time, as did others
 - First standard specification 1859, London
 Metropolitan Board of Works (London sewers)
- · Similar materials used by the Romans
 - Used natural resources (volcanic soil & lime),
 - no kilns, but basic chemistry is similar




Cement chemistry notation

Abbreviations for all those ugly formulas

Using this to abbreviate the compounds...

Making cement

- Limestone: CaCO₃
- Clay/shale/sand/etc: supply Al₂O₃, SiO₂, Fe₂O₃
- Heat to ~1400°C in a rotary kiln

 $CaCO_3 \rightarrow CaO + CO_2$

- Oxides combine to form clinker phases http://www.youtube.com/watch?v=n-Pr1KTVSXo
- CO₂ emissions ~0.8 kg per kg cement
 ~50% from fuel, ~50% from chemistry
- ~4 Gt cement produced worldwide p.a.
- \rightarrow ~8% of global human-derived CO₂

DuRSAAM

University Of

Normal clinker composition

- C₃S ('alite')– about 60% (45-75%) – Gives early (< 7 days) strength development
- C₂S ('belite')– about 20% (7-32%) – Gives long-term strength gain
- C₃A ('aluminate') about 10% (0-13%) – Regulates initial setting
- C₄AF ('ferrite') about 10% (0-13%)
 - Similar products to C₃A, but reacts slower and doesn't contribute much strength
 - Important in controlling melting in the kiln
 - Gives grey colour
 - ("White Portland cement" has low C₄AF content)

The calcination process

• [Image deleted for copyright reasons]

See: P.C. Aitcin, Binders for Durable and Sustainable Concrete, Taylor & Francis, 2007

Phase diagram – CaO-Al₂O₃-SiO₂

• [Image deleted for copyright reasons]

See: Y. Waseda & J.M. Toguri, The Structure and Properties of Oxide Melts, World Scientific, 1998

Effect of Fe on melting (liquidus)

• [Image deleted for copyright reasons]

See: A. Kondratiev & E. Jak, Fuel 80(2001):1989-2000

Cement hydration

- · Mixing cement with water makes it react
 - Particles dissolve
 - lons rearrange in solution phase
 - Solid hydrate phases solidify and give strength
- Reaction process is hydration, not drying
 - Water forms an essential part of the solid phases in hardened cement
 - Drying is very bad for fresh cement
 - → slows or stops reactions, causes cracking and loss of strength

The important hydrate phases

- Calcium silicate hydrate (C-S-H)
 - Formed by hydration of C₃S and C₂S
 - Non-crystalline (amorphous/disordered)
 - Porous on nanometre length scale
 - No fixed chemical composition, but often written as approximately 1.6CaO·SiO₂·1.8H₂O

(you may also see it given as $3CaO \cdot 2SiO_2 \cdot 3H_2O$, which is similar)

 Fills a lot of the space in hardened binders

See: I.G. Richardson, Cement & Concrete Research 29 (1999):1131-1147

C-S-H(I) and C-S-H(II)

- Two main types of C-S-H exist (we think)
 - Differing in structure, C/S ratio and solubility
 - Based on structure of tobermorite: a crystalline, fibrous chain silicate mineral (rare in nature, found in N. Ireland)
 - (C-S-H(II) resembles a different chain silicate: jennite, $Ca_9Si_6O_{18}(OH)_6\cdot 8H_2O)$
 - Tobermorite is $Ca_5Si_6O_{16}(OH)_2 \cdot 4H_2O C/S$ ratio 5/6 is lower than in C-S-H
 - 'dreierketten' structure ('*drei*' = 3) in kinked chains

 Breaking some of the chains (removing Si sites) gives a disordered structure – this is C-S-H(I)

The important hydrate phases

- Calcium hydroxide (portlandite, Ca(OH)₂)
 - By-product of C₃S and C₂S hydration, because these have more Ca than can be accommodated in C-S-H
 - Makes large crystallites (tens of microns)
 - Doesn't contribute to strength
 - Holds internal pH high to help durability
 - Tends to grow around aggregate particles – "interfacial transition zone"

DuRSAAM

See: P.G. Stuztman, Materials Science of Concrete (2000):59-72

The important hydrate phases

- Ettringite $(C_3 A \cdot 3C\overline{S} \cdot 32H)$ (F can also replace some of the A)
 - Also called "AFt" (with "t" for tri-sulphate)
 - Formed by reaction of C₃A with water and gypsum
 forms very early in reaction process
 - Needle-shaped crystals (pic previous slide)
 - Interlocking of needles contributes to initial setting
 - Mostly converted to AFm at longer ages
 - If not enough (or no) gypsum is added, ettringite can't form → 'flash set'

The important hydrate phases

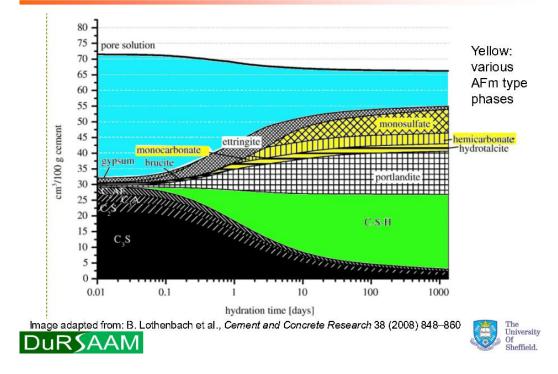
• AFm phase (approximately $C_3 A \cdot C\overline{S} \cdot nH$)

(or some of the sulphate can be replaced by carbonate and/or hydroxide)

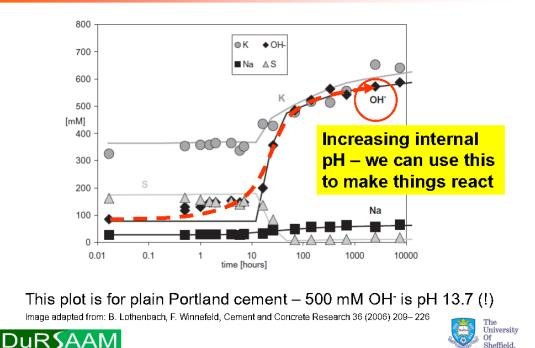
- 'm' for 'monosulphate'
- n usually 11-14
- Forms more gradually during hydration
- Ettringite can convert to AFm at later ages
- Important phase, but can also cause durability problems (sulphate attack)

Seee: http://www.nanocem.org/fileadmin/nanocem_files/documents_viaFTP/TRANSCEND/posters/P13_project.pdf

Reaction of phases over time


 Cement phases react at different rates – C₃S and C₃A fastest, some of the cement stays unreacted for a very long time

See: B. Lothenbach et al., Cement and Concrete Research 38 (2008) 848-860



Formation of hydrate phases

Pore fluid chemistry in hydrating cement

Supplementary cementitious materials

- "SCMs" for short
- Any mineral component blended with cement that reacts to alter the properties of the binder
 - Aggregates aren't SCMs
 - Organic admixtures aren't SCMs
 - Most SCMs are pozzolans (see next slide)
- Can be added to improve performance, improve sustainability, and/or reduce cost
 - Sometimes may be able to do all of these at once..!

DuRSAAM

The pozzolanic reaction

- Blend cement with other sources of SiO₂, with or without additional Al₂O₃
 - Waste or geological materials cheap and low-CO $_{\rm 2}$
- These react with CH to form more C-S-H
 - Fills pore spaces at longer age, refines pores
 - Improves strength and durability

Approximately:

CH + *n***S** + *x***A** → **C**-(**A**)-**S**-**H** ($n \sim 1.6, 0 \le x < 0.1$)

 Pozzolanic reaction is usually slower than cement hydration

→Need cement hydration to generate high internal pH first

Substitution by pozzolans usually reduces early strength

- Ground granulated* blast furnace slag

 Abbreviated BFS, GGBFS, GBFS, or just 'slag'
 (*or pelletised but must be cooled rapidly)
- Calcium alumino-silicate glass
 - By-product of iron manufacturing (see next slide)
 - So useful that it's not really 'waste' any more
 - Composition similar to clinker, but less Ca
- Reacts by a process similar to pozzolanic reaction to form C-S-H
 - Classified separately because it's more reactive

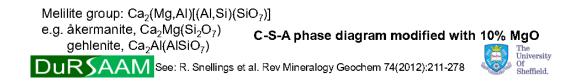
(and 'better') than normal pozzolans

DuRSAAM

Slag in iron-making

- Reduction of Fe₂O₃ to Fe, and purification
- CaCO₃ added to convert ore impurities to liquid slag
 - Impurities mainly silicates
 - Chemistry carefully controlled for pure Fe
 [Image deleted for copyright reasons]
- Rapid cooling of slag gives glassy structure
 - If slow-cooled, it crystallises
 → unreactive, used as aggregate in road-building

DuRSAAM


See: http://www.chemguide.co.uk/inorganic/extraction/iron.html

Slag chemistry

- CaO (30-50%)
- SiO₂ (28-38%)
- Al₂O₃ (8-24%)
- MgO (1-18%)
- S²⁻ (0.5-2%) (changes redox environment in blended cement)

[Image deleted for copyright reasons]

Slag reduces early strength, increases final strength

[Image deleted for copyright reasons]

DURSAAM See: R. Snellings et al. Rev Mineralogy Geochem 74(2012):211-278

Main benefits: improved durability

Portland cement (CEM I)

• [Image deleted for copyright reasons]

Portland cement + ~70% slag (CEM III/B)

Curing duration (days)

See: J.M. Ortega et al. Constr Build Mater 27(2012):176-183

Fly ash (UK name: Pulverised fuel ash, PFA)

- · Waste from coal-fired electricity generation
 - Mineral matter from within the coal particles
 - Mainly derived from clays, bits of carbonate minerals, etc., heated to ~1600°C+ as coal is burnt
 - When coal is burned, some of these impurities melt, go up out of the furnace with flue gases, and cool to form glassy particles
 - (other parts go out the bottom \rightarrow "bottom ash")
 - Filters in the chimneys collect the ash
 - (>500 million tonnes p.a. produced worldwide)
 - Generally fine (<100 μ m) particles size fraction <45 μ m is the most reactive

Understanding ash reactivity

- Fly ash is a mixture of glass and crystalline phases
 - Glass is mostly aluminosilicate, with Ca, Mg, K, Na, Fe
 - Main crystalline phases in siliceous (ASTM class F) FA are mullite (3Al₂O₃·2SiO₂), quartz, and Fe oxides/spinels
 - Main crystalline phases in calcareous (ASTM class C) FA are CaO, MgO, CaSO₄, alkali sulfates, Fe₂O₃/Fe₃O₄, maybe C₃A or C₁₂A₇
 - Also can be some contamination with Cr, Hg, Cd, Zn etc.
- · Not all fly ash is usable in concrete
 - If too much unburned carbon, can soak up important organic additives ('admixtures' – see later in semester)
 - Recent 'shortages' in UK & US relate to high percentage of off-specification ash being produced

Particle morphology is important

- Particles mainly spherical
- Many are also hollow (wholly or partially)

[Image deleted for copyright reasons]

[Image deleted for copyright reasons]

S. Kumar & R. Kumar, Ceram Int 37(2011):533-541

F. Goodarzi & H. Sanei, Fuel 88(2009):382-386

Fly ash glass chemistry

- Interparticle heterogeneity
- Intraparticle heterogeneity
- Fe³⁺ sites (substitution for Al³⁺?)
- Role of alkali metals
- Role of Ca²⁺
- Aluminosilicate glass immiscibility

How does fly ash react in cements?

• Mainly the pozzolanic reaction:

 $Ca(OH)_2 + xSiO_2 + yAI_2O_3 \rightarrow C-(A)-S-H$

- Forms Al-substituted C-S-H
- Up to ~20% of Si in C-S-H can be replaced by Al within the tobermorite-like structure
- Any extra reactive AI can also form calcium aluminate hydrate phases (AFm mostly)
- · Reaction is fairly slow
 - Needs high OH⁻ concentration (generated by plenty of cement hydration) to really make it start reacting
 - After a few weeks, pH inside cement reaches ~13, which is enough to make fly ash start to dissolve
 - Some parts of the ash will never react

Natural pozzolanic material ("P" in EN 197)

- Volcanic soils tend to have reactive components
- Basis of Roman concretes (as mentioned before) - original "pozzolan" was volcanic soil from Pozzuoli, Italy
- This behaves similarly to fly ash glasses in reacting with cement
 - Now widely used in Portland cement blends, but very variable in properties & performance
- Geologically altered (aged) pozzolans can also react. but usually slower than glassy (fresh) pozzolans
 - Partially crystallised (often into hydrous minerals) by geological processes - less reactive
 - Can be calcined for more reactivity ("Q" in EN 197)

Compositions of reported natural pozzolans

[Image deleted for copyright reasons]

Usually also: ~15% Al₂O₃, ~10% (CaO+MgO)

DURSAAM See: R. Snellings et al. Rev Mineralogy Geochem 74(2012):211-278

University

Calcined clay (Q in EN 197)

- Heat-treatment of clays at ~600-800°C gives a disordered, reactive phase
 - Kaolinite clay → metakaolin
 - Halloysite clay → metahalloysite (...&etc.)
- · Highly reactive
- Al-rich (Si/Al~1)
- Pozzolanic
- Also makes AFm – e.g. in ternary blends with limestone ("LC3")

Problem – particle shape

- · Metakaolin particles are plate-shaped
 - High surface area
 - Take up a lot of water in a cement blend, make flow properties worse
 - Limits usage to ~20% in most blended cements

[Image deleted for copyright reasons]

- Flash calcination can reduce this problem
- Valuable in refining pore network structure – increases durability of concretes
- Ternary blends "LC3" in Cuba,
 India, China, etc. with CaCO₃

DURSAAM B.B. Sabir et al., Cem Concr Compos 23(2001):441-454

Silica fume ("D" in EN 197)

- By-product of semiconductor Si or ferrosilicon alloy manufacture
- · Also called 'microsilica'
- Pozzolanic reaction, CH + $xS \rightarrow$ C-S-H
- Very small SiO₂ particles, ~0.2 μm diameter
 - Powder handling challenges...
 - Tend to agglomerate
 - High water demand can't use >10%
 - Accelerates cement hydration (next slide)
 - Densifies pore structure, reduces permeability → improves concrete durability

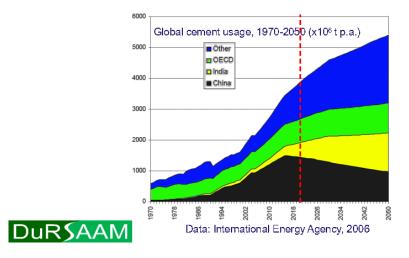
Rice hull (rice husk) ash

- Rice husk waste is burned as fuel, remnant ash is mainly silica in small particles
- Another fairly pure source of SiO₂
 - Often has some crystalline SiO₂ and some unburned carbon, though
 - Particles are mainly porous, which tends to increase the water demand of the cement
- Much cheaper in most parts of the world
 - Lots of developing countries which need cements have a lot of rice husks, not much semiconductor manufacturing...

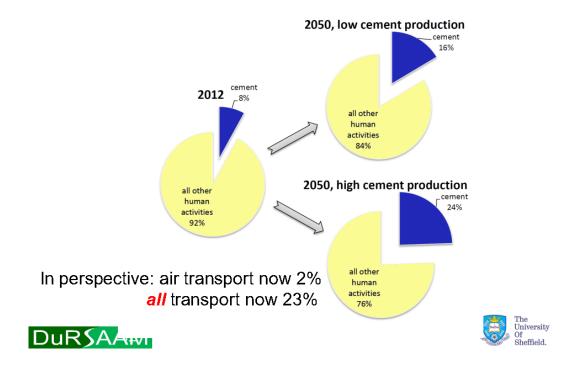
DuRSAAM

Limestone

- Calcium carbonate, CaCO₃
- Not technically a pozzolan, but can act in some similar ways to improve cements
- Used as an ingredient in the kiln, but can also add extra (unburned) limestone to cement
 - Usually very finely ground for reactivity
- · Cheapest of all mineral admixtures
- Small amounts (<5%) can give improved properties
 - Makes extra AFm phases (monocarbonate)
 - Any more than this doesn't react reduces strength
 - Synergy with metakaolin as mentioned previously


DuRSAAM

Sustainability in construction materials


Cement manufacture causes ~8% of CO₂ emissions worldwide

- ~0.8 ton of CO₂ per 1 ton of cement
- Global market will double by 2050

A major global issue

Some potential impacts

Waste

Respiratory effects

Raw materials

Land use

• Etc...

Ecotoxic substances

- Global climate change
- Ozone depletion
- Acidification of waters
 Ionising radiation
- Eutrophication
- Summer smog
- Winter smog
- · Heavy metals
- · Carcinogenic substances

Calculating and somehow totalling these impacts is a contentious issue...

Why is this important to engineers?

- To design a 'sustainable concrete', we need to define what we mean by 'sustainable'!
 - Just CO₂ emissions? Resource depletion? etc...
- Durability of concrete is very significant in a lifecycle analysis
 - But most life-cycle practitioners are essentially accountants, not specialists in a material
- Allocation of environmental impacts to wastes/byproducts/secondary products is important
 - Can also be very controversial! (and philosophical)
 - Decisions made in this area often by regulators can determine the overall viability of new products/processes

Shorter-term possibilities

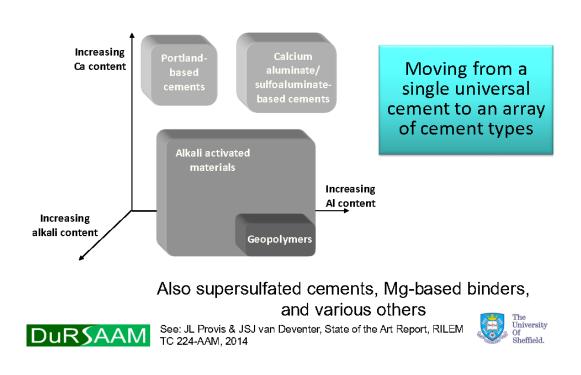
- More efficient Portland cement processes
 - Kilns newer 'dry process' is more efficient
 - Heat recovery, integration & recycling
 - Grinding
- Blended cements
- · Alternative fuels for kilns
- Modification of clinker chemistry to reduce processing temperature
- Some (more mature) non-Portland cement binders

Limited scope for more direct efficiency gains...

• [Image deleted for copyright reasons]

Longer-term possibilities

- Some (less-mature) non-Portland cement binders
- Carbon capture and storage
- Oxygen-fired kilns
- Multi-cyclone precalciner kilns
- Fluidised bed kilns or other alternative calcination processes
- Advanced grinding technologies
- Alternative raw materials for cement kilns


What is the answer?

- Portland cement production is already pretty efficient
 - Not much scope for further savings there
 - Blended cements are being developed further
 - Limitations on the availability of some of the blending components
- The way forward: a toolbox approach
 - The right cement for the right application
 - Portland and non-Portland cements
 - Clinker-based and non-clinker-based binders

Traditional and non-traditional cements

3. Alternative cements, what is available?

John Provis

In this chapter an overview is provided of different alternative cements, including alkaliactivated binders. The basics are discussed of a set of 8 non-Portland cements which have been put forth as non-traditional cements.

Alternative cements – what is available?

Prof. John Provis Department of Materials Science & Engineering University of Sheffield <u>i.provis@sheffield.ac.uk</u>

Non-Portland cements

- Useful in specific circumstances
- · Can be more environmentally efficient
- Can give improved technical properties particularly resistance to chemical attack
- Each produced in much lower volumes than Portland cement
- Some can be processed and placed using the same technology as Portland cement concretes
 - This is highly desirable people don't like to replace familiar things with unfamiliar things!
- Most require some special attention in formulation and/or curing for good performance The University Or Sheffield.

Alkali-activated cements

- Aluminosilicate materials + alkaline solution ("activator") – can use blast furnace slag, coal fly ash, natural pozzolans, calcined clays (see last lecture on blended cements for more info on these materials)
 - $-\sim$ 60-90% less CO₂ emissions than Portland cement
 - Main drawback: need for an alkaline solution
 - Commercial production in Eastern Europe, China, Australia, increasingly in UK/EU

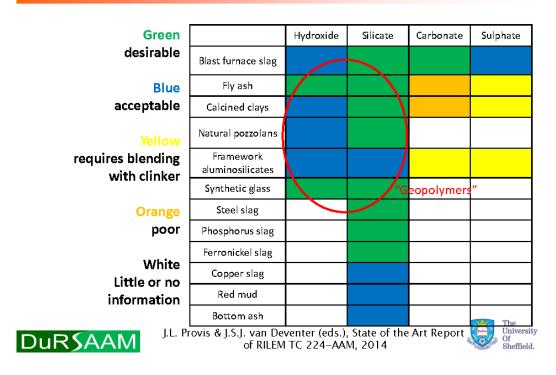
University Of

heffield.

Alkali-activated binders - Why?

- Common SCMs (fly ash, slags, metakaolin etc.) can be used directly in alkali-activation
 - These are less reactive than clinker, so reaction with water is slow

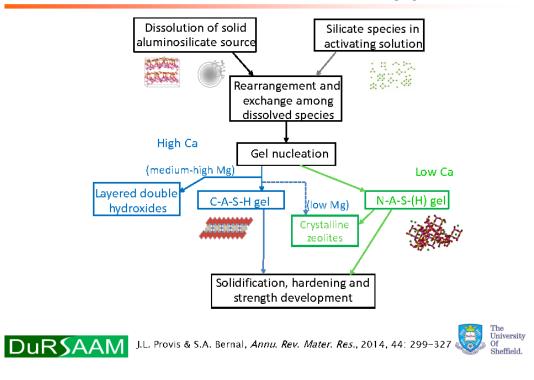
→ Chemical activation needed

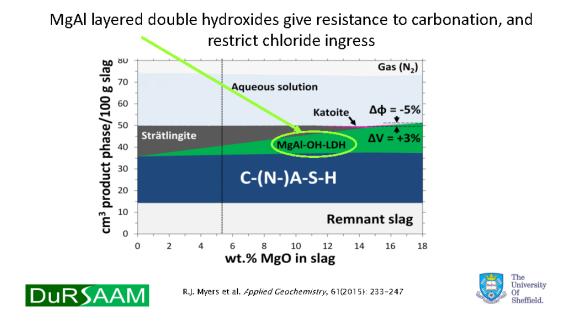

- High-volume blended cements can use PC clinker as activator but it is not optimised for this task!
 - Clinker components & gypsum balanced to give optimal rheology, reaction & strength when used alone
 - If another material dominates, this is no longer optimal

→ Why not use a purpose-designed alkali activator instead?

DuRSAAM

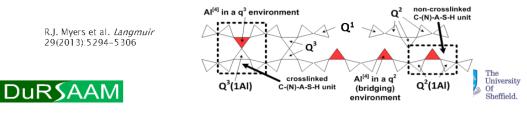
Versatility of alkali activation


Two basic types of material


- High-calcium and low-calcium ("geopolymer") AAMs
- Classified together because reaction process is similar
 - Interaction of an alkali source (usually liquid) with an aluminosilicate powder
- Binding phases can be very different, depending on calcium content/availability
- Sometimes (with high Ca) gives C-S-H type phases, sometimes very different products (N-A-S-H)

DuRSAAM

How does the reaction happen?



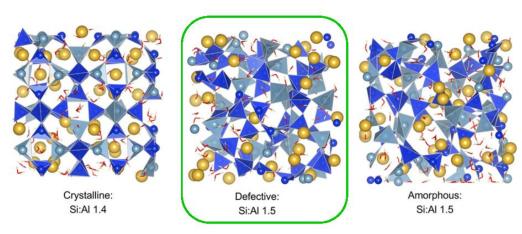
Gel chemistry – C-A-S-H gel

 Alkali activation with more calcium – main binder product is Al-substituted C-S-H (C-A-S-H) type gel:

(0.6-1.6)CaO·(0-0.3)Al₂O₃·SiO₂·(1.0-1.6)H₂O

- Compared to PC hydration products: Lower C/S ratio (PC has 1.6), higher Al content (PC usually has <0.04)
- Alkalis can be sorbed on gel, or free in the pore solution
- Secondary phases can include hydrotalcite, zeolites (or N-A-S-(H)), AFm phases
- Bound water gives strong space-filling effects
- Can also be cross-linked tobermorite-type structures (Q³)

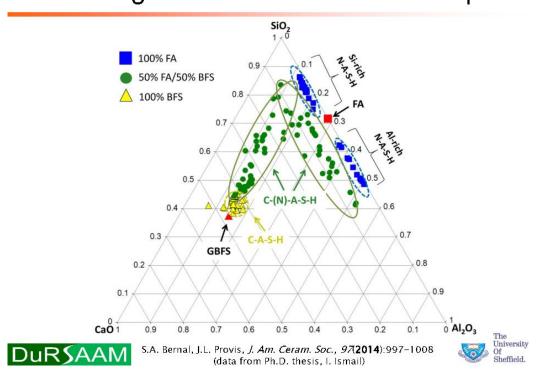
Gel chemistry – N-A-S-(H) gel


- Alkali activation with low calcium gives, as the main binding product, a 'geopolymer' (N-A-S-(H)) gel: Na₂O·Al₂O₃·(2-6)SiO₂·(0-0.5)H₂O
 - Highly crosslinked (Q⁴) framework structure similar to a zeolite ("pre-zeolitic"?)
 - Little chemically bound water almost of the water is held in pores not in the gel itself
 - This is good for fire resistance don't need to destroy the gel to remove water
 - But tends to give high permeability
 - Also generally has good acid and sulfate resistance
 - Low Ca content means usual mechanisms observed in PC aren't a problem

DuRSAAM

R.J. Myers et al. *Langmuir* 29(2013):5294-5306; J.L. Provis et al. *Cem Concr Res* 42(2012):855-864

Modelling N-A-S-(H)



Partially disordered – not fully amorphous – structure gives the best match to experimental results

F. Lolli et al. ACS Appl. Mater. Interf. 10(2018): 22809-20

Different gels can co-exist in one sample

Some of the reactions...

(note – not written balanced!)

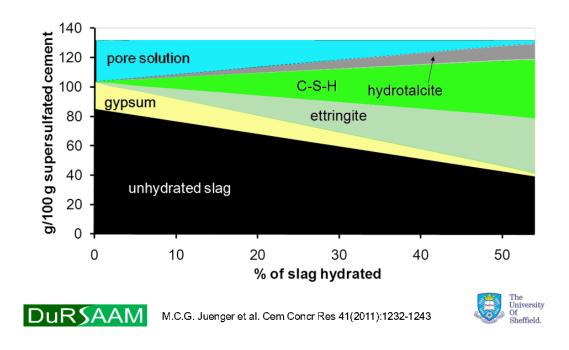
- · Alkali-activation of aluminosilicates
 - NS + AS + H \rightarrow N-A-S-(H)
 - NH + AS → N-A-S-(H) (lower Si/Al ratio)

(S/A ratio can be ~2-6; N-A-S-(H) gel and/or zeolites)

- Alkali-activation of slag
 - NS (or NH) + C-A-S (slag) + H → C-(N)-A-S-H
 - Nc + C-A-S (slag) + H → Cc + C-(N)-A-S-H
 - Mg + Al from slag + OH⁻ → hydrotalcite (layered Mg-Al hydroxide/carbonate)
- Low heat of reaction (~10-50% cf. Portland cement)

Current/ongoing issues

- Workability control organic admixtures used in Portland cement don't work well
- · Needs careful curing to keep water in
- Understanding steel corrosion chemistry
- Controlling shrinkage
- Standards environment restrictive
- Competing with an extremely successful commodity product!


Supersulphated cement

- BFS + calcium sulfate (hydrous or anhydrous) + ~5%
 Portland cement clinker almost AAM chemistry?
- Developed in Germany ~1909, based on high-Al (~14% Al₂O₃) slags
 - Al levels of slags dropped ~1960s, the cements stopped working so well, standards were withdrawn
 - Now coming back into use, standards have been rewritten and approved in EU
- C-S-H, ettringite, hydrotalcite as main binding phases
 - Pore solution pH lower than Portland cement
 - Low heat of hydration
 - Large ettringite needles

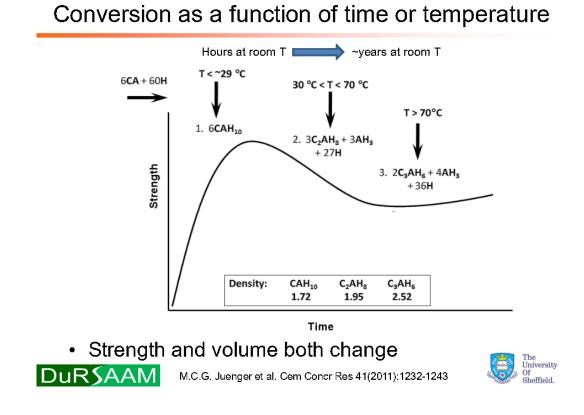
Phase evolution in supersulphated cement

Properties

- Fairly long initial setting times
- Somewhat slower strength development, but 28day strengths similar to Portland cement
- · Careful curing is very important
 - Not suited to heat curing, because ettringite degrades at high temperatures
- Very good sulphate resistance
 Ettringite can't be further attacked by sulphates
- Low porosity generally good durability
- Very low CO₂ emissions
- Drawbacks: limited availability of the correct slags

Calcium aluminate cement

- CAC (also high-alumina cement HAC, trade name Ciment Fondu or SECAR)
 - Special type of clinker
 - Used since 1908 (developed by Lafarge)
 - High early strength (90% of final strength after 24 h) used in prestressed components
- Sometimes has catastrophic strength loss if used under the wrong conditions \rightarrow "conversion"
 - Banned in structural applications in many places
 - Very sensitive to water content
 - Expensive retrofitting (or demolition) of many buildings has been required



The University

Converted strength

- Depends strongly on w/c ratio
 - w/c Converted strength as % of initial
 - 0.30 55-70
 - 0.35 45-60
 - 0.40 35-50
 - 0.50 25-40
 - 0.60 15 - 30
 - 0.70 5 - 20
- Suggestions to use low w/c and design to converted strength as final material strength?

DUR SAAM I. Odler, Special Inorganic Cements, Taylor & Francis, 2000

Warm, wet environments make it worse

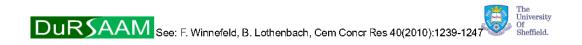
 Stepney School swimming pool roof structural beams

Useful in some specific applications

- Refractory cements (up to 1800°C)
- Rapid-hardening mortars
- Pipes
- Flooring
- Used in many cement blends
- Potentially lower CO₂ emissions than Portland cement (lower Ca content)
- Bauxite is generally more expensive than most cement ingredients
 - not ideal for bulk concreting

DuRSAAM

Calcium sulphoaluminate cement


- Very popular in China 'Third Cement Series' (TCS) - not so widely used elsewhere
- Clinkers based on the phase ye'elimite, C₄A₃S
 - Generally together with belite, with or without $C_{a}AF$
 - Made from limestone, silica, bauxite and CaSO₄ or replace some of these by wastes for lower cost
 - Fe in some bauxites leads to C₄AF component
- Interground with gypsum
- Cements are rapid-hardening, high-strength, can be designed to expand upon hydration
- Moderate pore solution pH

 Processed at slightly lower T than PC clinker DuRSAAM

Phase assemblage

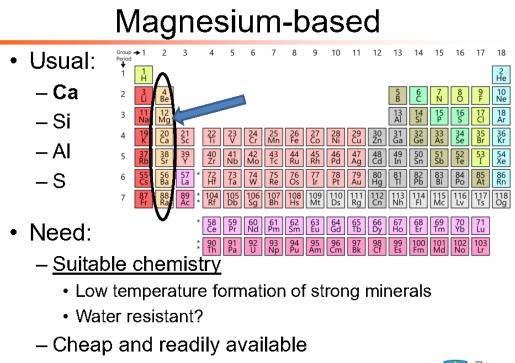
[Image deleted for copyright reasons]

Adjustable

- Varying expansion depending on gypsum added (and water)
- Enables self-stressing concrete production

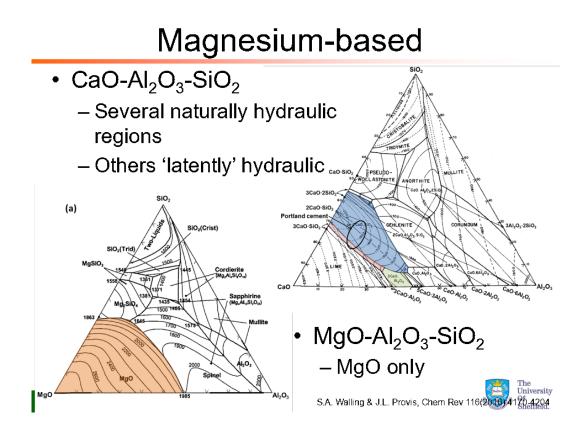
 Reducing cracking during drying shrinkage
 Pipes, water towers, runways, etc.
- Also used in floor screeds and other niche applications
- Lower CO₂ emissions: made using CaSO₄ and lower production temperature

- Can use some waste materials (i.e. red mud)



Carbonation-curing cements

- New high-profile development, e.g. "Solidia Cement" and competitors
- Produce a mixture of CS and C₃S₂, react with water and high-pressure CO₂
- Binder product phases are silica gel and CaCO₃
 - C-S-H isn't stable at such high CO₂ concentrations
- Mostly useful for precasting need to apply the CO₂ from a cylinder, can't just


Dur concrete of this type

University

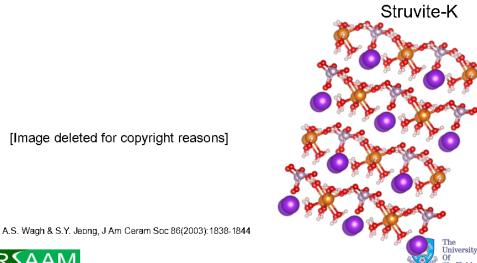
Magnesium phosphate cement

- Acid-base chemistry
- MgO + soluble acid phosphate
- Originally designed as refractory cements
 - Initially a sprayable composition
 - Quick setting, so began to be sold as rapidrepair cements by early 1970's

FebSET 45

Can drive over it after 45 minutes Can be used down to temperatures of -20°C

DuR


https://www.everbuild.co.uk/product/febset-45/

Magnesium phosphate cement

Acid-base chemistry

e.g. MgO + KH_2PO_4 + $5H_2O \rightarrow MgKPO_4 \cdot 6H_2O$

Magnesium phosphate cement

- Form a crystalline binder need correct stoichiometry to get desired products
 - Unreacted MgO issues?
 - Phosphate efflorescence
- Also substitute for both Mg and K sites
 - Replace some Mg²⁺ with Ca²⁺ (but reaction is very fast) or Fe²⁺ (but reaction is very slow)
 - Replace some K⁺ with Na⁺, Cs⁺, or H⁺
- Workability control can be challenging
 - Not really proposed for use in large-scale concreting
 - Binds to steel

Magnesium silicate cement

 First seen as a degradation product in sea walls and from sulfate attack:

 $\text{C-S-H} + \text{MgSO}_4 \rightarrow \text{CaSO}_4 + \text{SiO}_2 + \text{Mg(OH)}_2 \rightarrow \text{CaSO}_4 + \text{M-S-H}$

- Interest in 1980's as a refractory binder
- Cement interest mid 2000's in China
 MgO + silica fume + industrial by-products
- · High water demand and expensive precursors
- Chemistry not well described in the scientific literature
 - Appears to be a type of poorly crystalline serpentine / phyllosilicate (e.g. lizardite / talc)

Magnesium silicate cement

 "Novacem" (Imperial College spin-off) – high publicity, no longer produced, but interesting anyway

– "carbon negative cement"

- Binding gel is magnesium silicate hydrate (M-S-H), similar to C-S-H
 - M/S ratio lower than C/S ratio of C-S-H, strength and stability generally lower
- Carbonates by CO₂ uptake from the atmosphere gains strength from MgCO₃ formation
- · Salts added to increase internal RH
 - Aided formation of $MgCO_3 \cdot 3H_2O$
- · Related to this: "Reactive magnesia" cements

Magnesium oxychloride cement

- Main binder phase 5Mg(OH)₂·MgCl₂·8H₂O, but many other phases exist
- · Wide range of filler materials
 - Granite, sawdust, ivory dust [Image deleted for copyright reasons]
- Variants use sulphate instead of chloride, or zinc instead of magnesium – this can enhance the water resistance
 - Magnesium oxysulfate
 - Cupric oxychloride
 - Zinc oxychloride

Magnesium oxychloride cement

- Renewed interest
 - Lower CO₂ (disputed)
 - Use of local natural resource (usually MgCl brine)
- Qinghai salt lakes (China)
- Dead sea (Israel / Jordan) →
- Salt lake (Utah)

Fire resistance (~35% hydrated water by weight)
 MgO refractory, high melting temperature

Image from Wikimedia commons

Magnesium oxychloride cement

- Niche uses:
 - Temporary oil-well cements
 - Stabilising salt mines
 - Dry-wall (replacing gypsum)
 - Industrial flooring

[Image deleted for copyright reasons]

Endlager Asse II: Aktueller Stand der Arbeiten zur Stabilisierung und sicheren Schließung; BfS (2010)

[Image deleted for copyright reasons]

https://www.eurolit.gr/magnesite.html

4. Cement characterisation

John Provis

In this chapter an introduction is provided to the characterisation of cements. Typically a combination of techniques are used to characterize the cement powder by means of experimental testing. Various techniques are discussed in terms of principles of the test method and characterized binder properties.

Introduction to characterisation of cements

Prof. John Provis Department of Materials Science & Engineering University of Sheffield <u>i.provis@sheffield.ac.uk</u>

What do you need to know?

- There are many analytical tools which are available, and each gives different information
- It is very rare, in modern materials science, to get important results using only one technique
 - Combining techniques will give you more information
 - Approach the same question from different angles
- It is essential to understand the techniques you use
 - Even if a technician is running the instrument for you, you need to know what they do, and why
 - Know the limitations of your data what can it not tell you? Why?

DuRSAAM

Comments on testing...

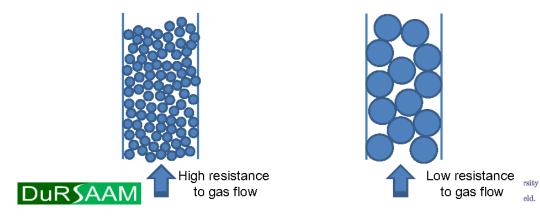
"It is very important to understand the philosophy of testing. Only people ignorant of the true situation regard a test result as an accurate portrayal of the property tested. Unfortunately, this tends to include many people in authority such as specifiers, controllers, and legal people."

(KW Day, J Aldred & B Hudson, *Concrete Mix Design, Quality Control and Specification*, 4th ed. 2014, CRC Press)

Testing cement powders

- When producing any industrial product, it is essential to provide reliable performance
- For materials used in construction, and the oil industry, this is a major safety consideration

Main initial acceptance tests


- Composition does it contain the correct components?
 - Wet chemical (or XRF) and Bogue analysis
 - Increasingly, XRD for quality control
- Particle size will it react at the correct speed?
 - Blaine fineness
 - Gas sorption and BET method for surface area
 - Laser granulometry

Blaine fineness

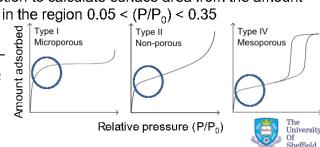
- Measure the flow of a gas through a packed bed of particles
 - This relates to the particle size smaller particles have smaller inter-particle spaces, which give more resistance to gas flow

The Blaine apparatus

 $http://www.controls-group.com/backend/prodotti/img_upload/img_big/1203191126100_1_62_10041_a_62_10041_c.jpg$


• [Image deleted for copyright reasons]

Assumptions in the Blaine method


- The equation used in Blaine calculations (Carman-Kozeny eqn.) is only true for single-sized spheres
 - Calculate a surface area from comparison to a known reference material – assume similar shapes
 - Cementitious powders are never single-sized, and rarely spheres (only fly ash has spherical particles)
 - Use empirical correction factors to work-around problems
- Neglects any internal surface area
 - Fly ash has hollow particles, and sponge-like unburned carbon particles – very high actual surface area, but not seen in Blaine method

Nitrogen sorption (BET method)

- Brunauer-Emmett-Teller (J. Am. Chem. Soc, 1938)
 → calculation of surface area from gas sorption
- Usually use N₂ as probe gas, sometimes Ar or H₂O (but H₂O is difficult for cements)
- At low T (liquid N₂), the gas condenses on the surface of a solid sample with increasing pressure
 - Assumed to form a monolayer first and identify the point at which the monolayer is complete from the sorption isotherm
 - Can use this assumption to calculate surface area from the amount of gas condensation in the region $0.05 < (P/P_0) < 0.35$
 - P₀ is the saturation pressure of the gas – which is 1 atm for N₂ at 77 K (normal test conditions)

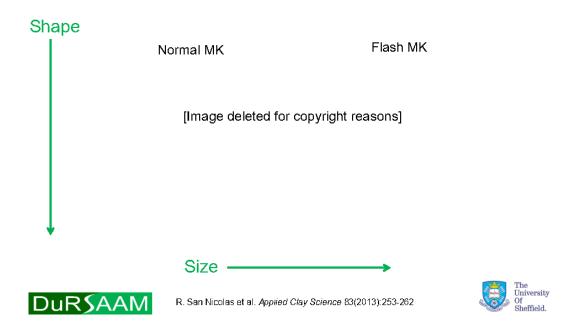
DuRSAAM

The University Of

Particle sizing by laser scattering

- Use a laser in the visible light region light scatters from particles according to size
 - (→Bragg's Law, as in XRD)
 - Convert scattering/diffraction patterns to particle size distribution information
 - Need to know refractive index of the particles
 - Also assumes spherical particles (no good for metakaolin)
- Need to disperse the particles before analysis wet or dry methods possible
 - Ultrasound normally used for dispersion
 - Difficult to adequately disperse silica fume

Other relevant particle sizing techniques


- Sieving simplest method
 - Need to de-agglomerate particles from each other
 - Not useful for very fine particles
 - Mainly used for aggregate grading
 - SCMs often have a single sieve residue requirement in standards (e.g. fly ash/metakaolin not more than 34% retained on 45 μm sieve, ASTM C618)
- Microscopy/image analysis direct method
 - Optical microscopy or SEM
 - <u>– Can do</u> shape analysis as well as size

The University Of

Example of size and shape analysis by scanning electron microscopy - metakaolin

Hydration/reaction - measuring by heat release

- Most important reactions in cement hydration are exothermic (release heat)
 - True for PC and almost all alternative cements
- →cumulative heat released is a good way of measuring the extent of hydration/reaction
- Can ideally see distinct peaks for each process in the reaction sequence
- Two main ways to do this:
 - Isothermal calorimetry
 - Semi-adiabatic calorimetry

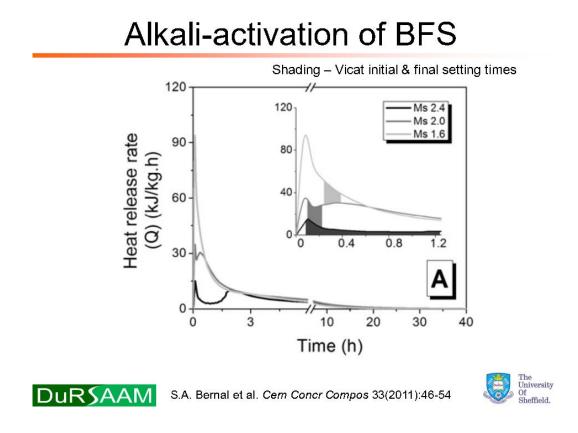
Isothermal calorimetry (ICC)

- Hold a sample at constant temperature
 T-controlled metal block, or oil or water bath
- Measure heat released by sample

 Measure voltage, calibrate to convert to heat flow
 Report either differential or cumulative data
- Sample size up to a few grams

 (new instruments ~200 g for concrete testing)
- Difficult to measure very early stages
 Internal or external mixing?

DuRSAAM


C₃S hydration measured by ICC

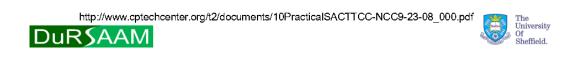
• [Image deleted for copyright reasons]

J.W. Bullard et al. Cem Concr Res 41(2011):1208-1223

Semi-adiabatic calorimetry

 Measure temperature inside a (mostly insulated) sample as a function of time

- Use this to describe rate of reaction


- Advantages
 - Represents conditions inside large concrete blocks
 - Can use much larger samples than ICC
- Disadvantages
 - Can't convert directly to heat evolution
 - Reactions all happen at different temperatures activation energy effects can be significant
 - Temperature can change by as little as a few °C, or as much as >30°C, depending on sample setup

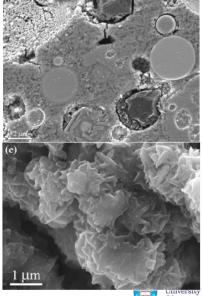
Example of data for PC hydration

• [Image deleted for copyright reasons]

Main materials science techniques

- Mechanical properties testing
- Microscopy
 - Looking at arrangements of phases in space: optical microscopy, SEM, TEM
- Diffraction
 - Looking at arrangements of atoms (crystal structures)
- Spectroscopy
 - Looking at bonds between atoms: FTIR
 - Looking at local environments of atoms: NMR

Mechanical properties testing


- Strength (compressive, flexural, tensile)
- Hardness (Vickers, nanoindentation)
- Standard procedures for testing each particular type of material
 - The standards describe specimen geometry, test equipment, rate of application of load, etc.
 - Always test by a standard method or you won't be able to compare with other people's results
 - Always test a 'representative' number of specimens (the standards say how many to use), and report mean and standard deviation

DuRSAAM

Scanning electron microscopy

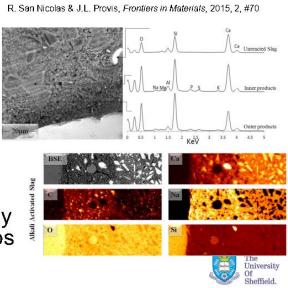
- Scan an electron beam across the surface
 of a sample
 - Can measure backscattered electrons (BSE)
 - Showing structures in a polished surface), or...
 - Can measure secondary electrons (SE)
 - showing topography of a surface

R.R. Lloyd et al. J. Mater. Sci. 44(2009):620

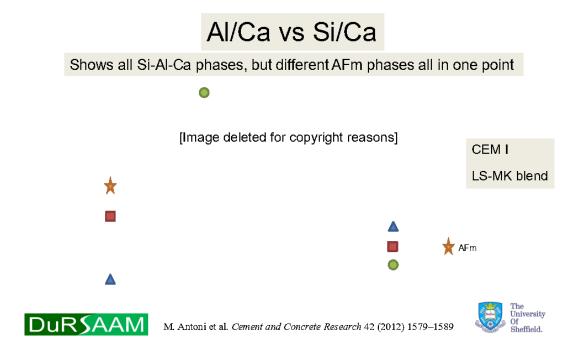
Of Sheffield

Transmission electron microscopy

- Measure electrons travelling through a very very thin sample
 - Highest resolution of all of these techniques
 - Sample preparation can be very difficult, beam can also damage the sample
 - Interpretation of images can also be difficult



See: I.G. Richardson, Cem. Concr. Compos. 22(2000):97-113


Elemental compositions

- SEM and TEM can be coupled with energydispersive X-ray spectroscopy (EDS or EDX)
- Gives composition at one position in the sample
- Definition of 'one position' depends on the instrument setup
- Or can collect at many points and make maps

Elemental correlation mapping

Elemental correlation mapping

S/Ca vs Al/Ca

[Image deleted for copyright reasons]

Shows AI/Ca ratio of C-A-S-H, distinguishes AFt, and can separate different AFm phases from each other

(plots are for cement being attacked by an external sulfate source, presented in terms of depth from the surface, showing AFm conversion to AFt as the paste is damaged)

DuRSAAM W. Kunther et al. Cement and Concrete Research 44 (2013) 77–86

Diffraction

- X-ray diffraction (XRD) most commonly used in lab analysis of cements
 - Can also use neutrons (on a dedicated beamline), or electrons (in a TEM)
 - All work on the same principle Bragg's Law
 - Gives a 'fingerprint' for a crystal structure

What to do with this ...?

- Identify phases search/match in databases
 - Commercial: ICDD Powder Diffraction File (PDF)
 - Free online: <u>http://rruff.geo.arizona.edu/AMS/amcsd.php</u>
 - Sometimes it's easy... Single phase, simple crystal structures (NaCl here)

[Image deleted for copyright reasons]

http://universe-review.ca/I13-04-XRD.jpg

- Complex phase mixtures in most cements
- Each phase has a 'fingerprint' in XRD
- Not very helpful for C-S-H or N-A-S-H, though

A diversion – what is "amorphous"?

• [Image deleted for copyright reasons]

C. Meral et al. Cem Concr Res 41(2011):696-710

Spectroscopy - NMR

- Nuclear magnetic resonance (NMR)
 - Needs a nucleus with a non-zero spin selective for specific isotopes

i.e. Can see ²⁹Si (~4% of all Si), not ²⁸Si (~96%), similarly can see ¹³C (1.1%) but not ¹²C (98.9%)

- → can use this to selectively 'label' the parts of a molecule/structure that you want to see
- · Relatively easy for liquid samples
 - More difficult for solids; need to spin the sample very rapidly (>5 kHz) to get sharp peaks

DuRSAAM

How it works (in very simplified form)

- Measures density of electrons around a nucleus

 response to a (pulsed) magnetic field 'resonance'
- Compare against a reference compound to say whether an element in your sample has more or less electron density
 - This tells about chemical bonding environments
 - Neighbouring atoms either donate or withdraw electron density from the atom of interest
- · In cements, most useful for analysis of H, AI, Si
 - Still possible but trickier: Mg, O, Na, K
 - Very difficult to get useful information: S, C, Ca
 - Tends to get messed up by Fe broadens the spectra

Final comments on characterisation

- Cements are nasty to characterise by most techniques
- More expensive toys won't necessarily give better information

- More useful to be clever than rich!

 Excellent advice on sample preparation and instrument setups etc.: *A Practical Guide to Microstructural Analysis of Cementitious Materials* (K Scrivener, R Snellings, B Lothenbach)

5. Standardisation of cements and concretes

John Provis

In the construction sector standards and product certification are often applicable. When using novel binder and concrete technologies, existing standards might not always be fully applicable or adapted yet. Nevertheless, though new concrete technologies might be out of scope of existing standards, this does not prevent that they can be already used to some respect. A discussion in this respect is given in this chapter.

Standardisation of cements & concretes

Prof. John Provis Department of Materials Science & Engineering University of Sheffield <u>i.provis@sheffield.ac.uk</u>

Standardisation of cement & concrete

 IMPORTANT NOTE: The majority of tables and extracts from standards documents within this set of slides are too small to read all the details. This is intentional – I don't want you to sit memorising these tables!

 \rightarrow Understand the significance of the things that are in them, rather than the exact numbers/details.

 Note also that every time you use a standard in your professional work, you should obtain the newest version of it to ensure that it hasn't changed.

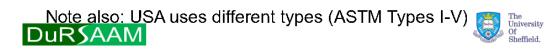
DuRSAAM

European approach to specifying cement/concrete

- A family tree of standards
- Controlled by cement and concrete industry
- Cascading set of requirements for materials to be used in concrete
 - Hopefully not conflicting with each other..!
 - Many testing methods are integrated into material standards

Types of Portland cement

- British & European Standard BS EN 197-1
- 27 sub-types of cement, 5 categories:
 - CEM I Portland cement (≥95% Portland clinker)
 - CEM II Portland-composite cement


(65-94% Portland + 1 pozz./limestone)

- CEM III Blastfurnace cement (5-64% Portland + slag)

- CEM IV Pozzolanic cement (45-89% Portland + 1 pozz.)

CEM V Composite cement

(20-64% Portland + slag + 1 other SCM)

Cements standards

 Prescriptive standards – 27 different types of cement are listed in the standard (EN 197-1)

[Image deleted for copyright reasons]

Allowed certain combinations of SCMs

• [Image deleted for copyright reasons]

See: http://www.cemnet.com/content/uploads/images/3994c1c4-8914-4e83-805f-aface7eef086.jpg

Each is also given a strength class

 28 d compressive strength, mortar with ratio 3:1 sand:cement, w/c 0.50, 40 mm pseudo-cubes*

*produced as 40x40x160 mm prisms, broken in flexion then ends tested as 'cubes'

> L: Low N: Normal R: Rapid (high early strength)

 Full name of product includes cement type and strength class – e.g. CEM II/B-V 42.5 N
 DURSAAM

Concrete classes

- 'Strength classes' also defined for concretes, based on 28-day cube & cylinder strengths

 E.g. C40/50 : 40 MPa cylinder, 50 MPa cube @28d
- 'Exposure classes' are used to describe the environments in which concretes are used – each environment type is defined
- Each country in Europe then has rules about which cement types, and which minimum cement contents and strength grades, can be used in each exposure class

DuRSAAM

Assume high strength, low w/c \rightarrow good durability

 Define maximum w/c ratio, minimum strength class, minimum cement content for each type of exposure – assumed to give sufficient performance

How can a new material be used ..?

- Add it to the EN standard?
 - Extremely slow
 - Standards committees controlled by producers of existing materials
 - National appendix (or guideline) is a way into this
- European Technical Assessments
 - Product-based specifications, funded by producers of the new product, issued by national approved authorities
 - Products are deemed to be acceptable across EU
- National specification (e.g. UK "PAS" system)
 Publicly Available Specification not legally a standard
- Outside the standard? Alternative applications. The University OurSAAM

Target the right application

- Specialty products often have purposewritten, performance-based standards
 - Roof tiles
 - Masonry blocks
 - Paving slabs
 - Tile grouts
 - Etc…
- Waste immobilisation
 - Nuclear waste industry in the UK only requires 0.7 MPa @ 28 d, but has a lot of other requirements instead of strength

DuRSAAM

ASTM approach to standards

- · Prescriptive standards
 - ASTM C150 Portland cement (defines 5 types of cement)
 - ASTM C595 Blended hydraulic cements
- Performance-based standard
 - ASTM C1157 'Standard
 Performance Specification for
 Hydraulic Cement'

ASTM C150

- Prescriptive standard for cement composition, defines clinker composition (next slide)
 - Contrast to BS EN approach, where clinker composition is barely described beyond 'it is Portland cement clinker'

ASTM cement typesdeted for copyright reasons] (would all be classified as CEM I in UK/EU)

ASTM C1157

• [Image deleted for copyright reasons]

Comments on C1157

- Pure performance-based standard
 Very few prescriptive requirements
- Not yet really trusted in practice
- Seen as a way forward for alternative cements – we want to follow a similar route
 - Main question: are the tests any good? see last two lectures...
 - Useless to base a standard on tests that don't apply to the materials we want to test... see lectures on testing methods!

Standardisation of AAMs

- A recent example, PAS 8820:2016 (BSI) –
 "Construction materials Alkali-activated cementitious material and concrete – Specification"
- World-first, UK standardisation process for alkaliactivated materials
 - Performance-based specification for alkali-activated cements and concretes ("AACMs")
 - Testing methods, quality criteria, etc.
 - Bagged cement, ready-mix concrete,
 - precast elements

The PAS 8820 approach

- Performance based specification
- 'AACM' binder chemistry described very broadly
 - Minimal prescription required to avoid overlap with BS EN 197-1 cement classes → no more than 5% PC
- Following established UK practice where possible
- Basic philosophy design a 'reference concrete' to the BS 8500 exposure class regulations, and test in parallel
 - Reference should have chemistry as close as possible to the AACM (i.e. maximum use of same SCMs)
 - Specified suite of durability tests, same for both materials
 - AACM concrete must perform at least as well as the concrete of known (assumed?) good performance

Where does this lead?

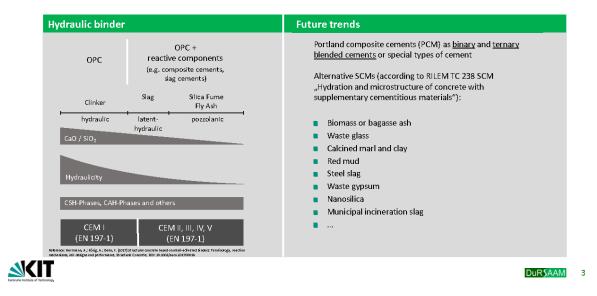
- Intended to be a very conservative approach
- Conformity & identity testing required strength & flow
- Tests follow established methods where possible
 - Most require adaptation for application to AACMs
- For all concretes:
 - ASR (RILEM AAR-3)
 - freeze-thaw (HETEK/Borås)
 - sulfate including permeability (ASTM C1012 & BS EN 12390-8)
- For reinforced concretes, also: (non-accelerated tests)
 - carbonation (DD CEN/TS 12390-10)
 - chloride ingress (DD CEN/TS 12390-11)

6. Mechanical Properties of AAM concretes

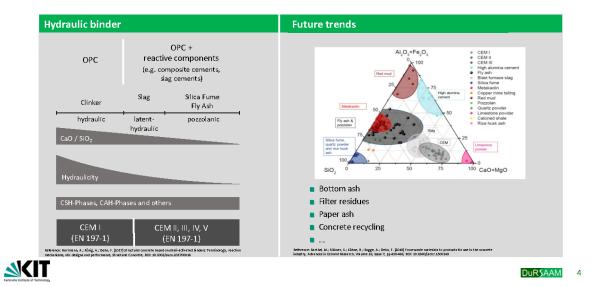
Frank Dehn

Given the somewhat different chemical composition of AAM concretes, it is of interest to look into its mechanical performance, and to compare it with relationships provided in existing standards for traditional concrete. This chapter looks into typical strength parameters for concrete, as well as their development over time. Also long-term sustained stress, resulting in creep strains, is discussed.

Mechanical Properties of AAM concretes


Prof. Dr.-Ing. Frank Dehn DuRSAAM – Course on "AAM Technology"

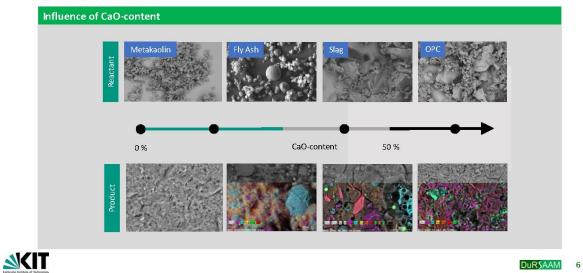
27-29 January 2020



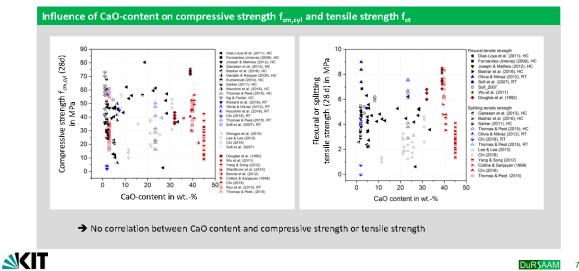
DuRSAAM - H2020-MSCA-ITN-2018-813596

Alternatives to cement

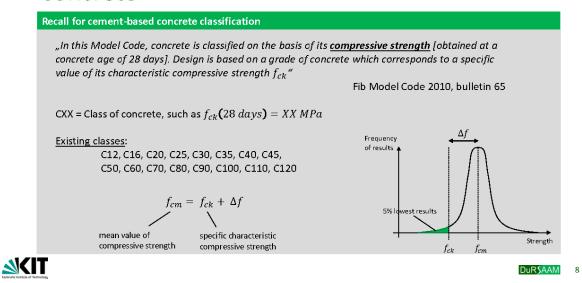
Alternatives to cement

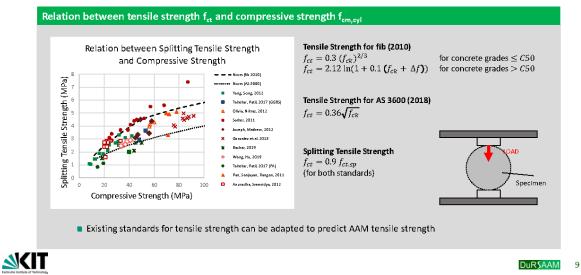


Alternatives to cement

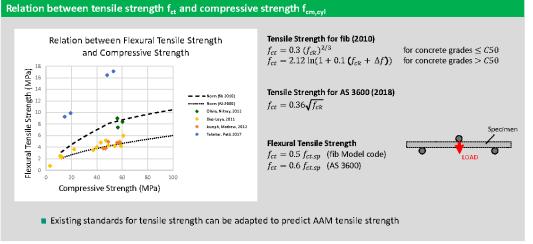

Classification following the chemical composition	
Alkali-activated binder (<u>exemplarily</u>)	
e.g. Geopolymers CaO-content > 10 m% CaO-content ≤ 10 m%	Polycondensation (+) Sialate alumosilicate
	polymer network Silicon or Aluminium, Si/Al>=1
Polymerisation / Polycondensation	Oxygen Sodium or Potassium
CAH- / CSH-Phases Alumosilicates Alkali-activated slag, SiO ₂ -rich alkali-activated CaO-rich alkali-activated Fly Ash, alkali- Fly Ash activated Metakaolin	 A Geopolymers is understood as a family of mineral binders whose amorphous to semi-crystalline, 3D alumosilicate network is comparable to that in an artificial zeolite Binder designation refers to the formed reaction phases
<u>skit</u>	Dursaam

5

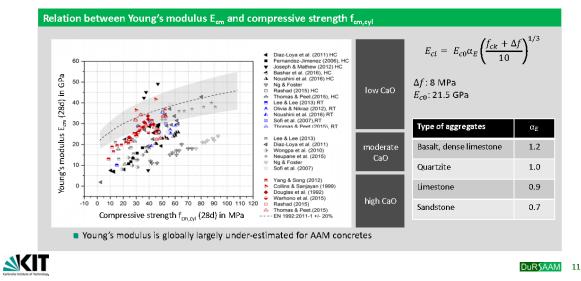

Chemical composition and Mechanical properties



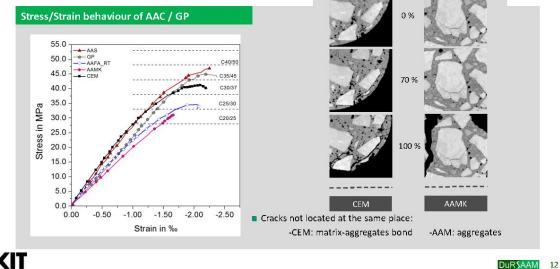
Chemical composition and Mechanical properties

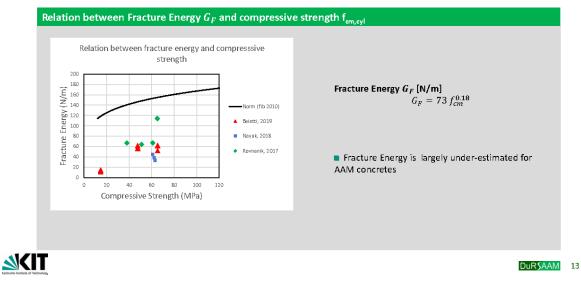


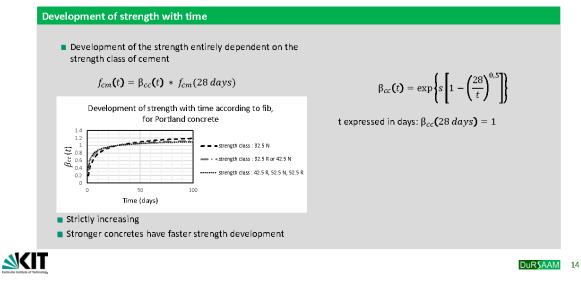
Using existing standards for cement-based concrete

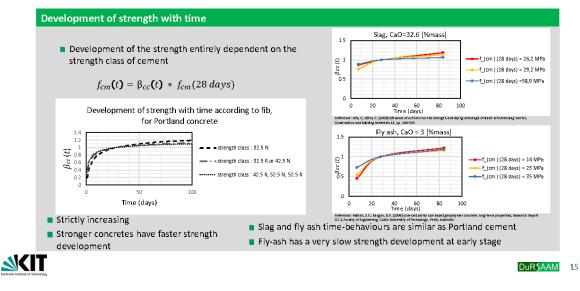


Using existing standards for cement-based concrete

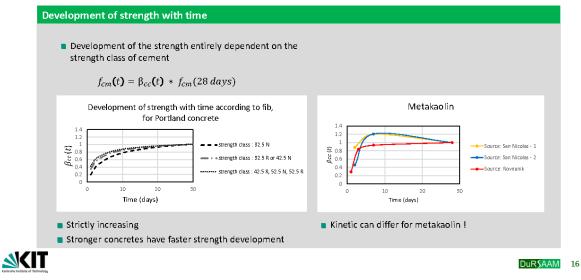


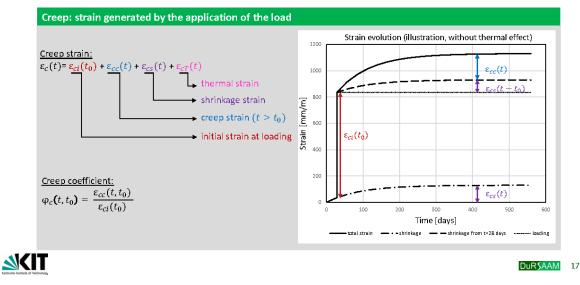

DuRSAAM 10

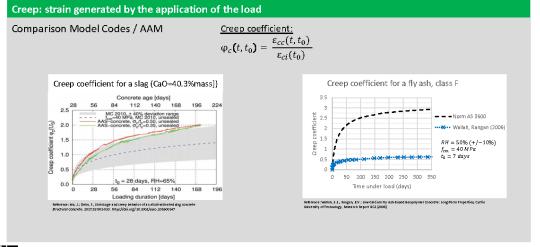

Using existing standards for cement-based concrete



Carbruhe Institute of Technology,



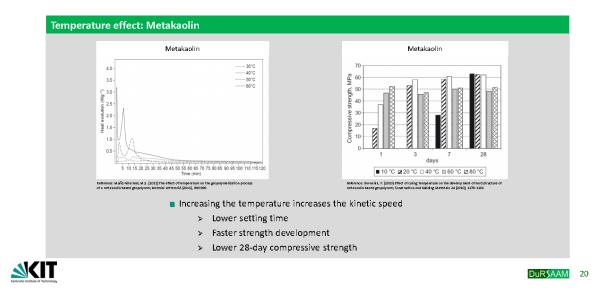

Using existing standards for cement-based concrete



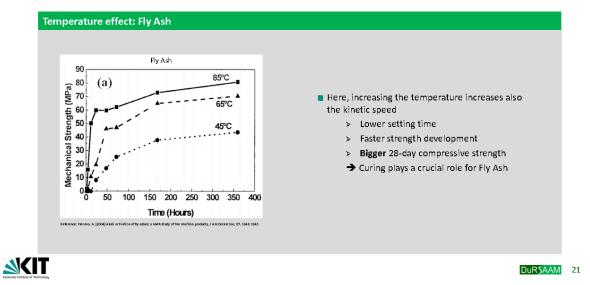
Using existing standards for cement-based concrete

Using existing standards for cement-based concrete

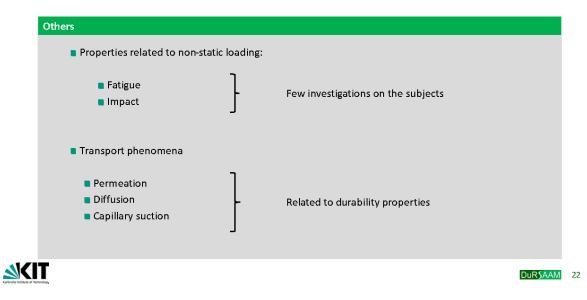
Karlaruhe institute of Technology.


DuRSAAM 18

o: can we use standards for cement-based concrete to AAM?	
Mechanical Property	Correlation with $f_{\it cm}$ given by standards
Tensile Strength f_{ct}	Standards adapted
Young's modulus E	No real correlation
Fracture Energy G_F	Small correlation, standard largely underestimate the value
Development of strength $f_{cm}(t)$	 Slag & Fly Ash: development similar as with cement Metakaolin: different kinetic
Creep	New norm to create



DuRSAAM 19


Other physical insights

Other physical insights

Other physical insights

John Provis

In view of the service life of concrete structures, it is important that concretes are made durable. Different durability issues can become apparent in (reinforced) concrete. It is important to also understand how the durability of concrete is tested, so to understand if test methods remain suited to verify the durability behaviour of AAM concrete.

Durability testing of concretes

Prof. John Provis Department of Materials Science & Engineering University of Sheffield <u>i.provis@sheffield.ac.uk</u>

A few things can go wrong with concrete...

- structural loading
- impact damage
- plastic shrinkage
- plastic settlement
- thermal contraction
- chemical/self-desiccation shrinkage
- drying shrinkage
- movement resulting from the use of a moisture sensitive aggregate
- chloride induced corrosion
- carbonation induced corrosion
- freeze–thaw attack
- external sulphate attack
- external acid attack
- oxidation of iron sulphide minerals in aggregates resulting in internal sulfuric acid
- alkali–silica reaction (ASR)
- delayed ettringite formation (DEF)
- scaling due to salt crystallisation
- attack by organics

DURSAAM D.W. Hobbs, International Materials Reviews, 2001, 46(3):117-144.

How to stop damage?

- Undamaged concrete stops steel from rusting
 - Chloride, acid, or carbonate can cause corrosion
 - Need to stop these getting into the concrete

→ Reduce permeability

- Permeability depends on porosity, porosity depends on water content

→ Reduce water/binder ratio for better durability

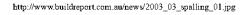
- This is of course an oversimplification, but actually not a very bad one
 - Chemical additives (superplasticiser/high range water reducer) can help reduce w/c while retaining good flow

Transport-related durability

- Key issue here is usually chloride
 - Chloride exposure doesn't affect the binder chemistry very much, but makes steel rust
 - A little bit of binding of CI⁻ in AFm phases, but no damage to C-S-H or other hydrates
- Chloride permeability is assumed in many cases to be the key factor limiting concrete service life
 - Particularly in North America & northern Europe salts applied to concrete for de-icing
 - Marine conditions are also problematic
- Need to understand how, and how rapidly, the chloride will move through the pore network of the

What helps to keep chloride out?

- Dense binder
 - Low water/cement ratio
 - Lots of C-S-H
 - Refined pore structure (small, tortuous pores)
- Pozzolanic reactions really help this in the long term
 - Producing more C-S-H from portlandite (portlandite doesn't restrict chloride movement)
 - Extra AFm phases help a little, but not as much as C-S-H



Chloride corrosion

- Cold and warm environments
- Steel rusts, expands, cracks concrete

http://www.efcweb.org/efcweb_media/Bilder/WP11/ KorroMeer.jpg

[Images deleted for copyright reasons]

Testing chloride penetration

- Simplest methods "ponding" tests
 - Make a concrete cylinder or slab, put a pool of chloride solution (usually NaCl) on top, and wait
 - After several months (6-24), measure how far the chloride has travelled into the material
- Advantage generally very accurate
- Disadvantage very very slow
 - Need to get answers faster than this
 - Use electricity to force chloride to move faster, and use this to calculate material parameters (diffusion coefficient)

Rapid Chloride Permeability Test

 ASTM C1202 – apply a voltage and measure current passed by the specimen in 6 h, use this as a measure of permeability

DuRSAAM http://www.concrete.org/FAQ/files/082006-figure1.png

But what is it really measuring?

- Charge passed depends on multiple factors:
 - Partly due to chloride moving in to the specimen
 - Partly due to dissolved ions in the pore solution moving under the applied electric field
- Test is actually a resistivity/conductivity test
 - Measuring the electrical properties of the specimen, and assuming that this relates to chloride diffusion
- · For materials with similar chemistry, this can be true
 - Changing chemistry will change pore fluid conductivity
 - Test can't be used to compare materials with different chemistry, but is useful for *quality control* of one material
 - Resistivity tests sometimes used non-destructively in the field, but can have errors from temperature or humidity

Better methods are becoming available

- Becoming more popular hybrid methods
 - E.g. NordTest NTBuild 492 (recommended as an EN standard by an EU project)
 - Use electrical acceleration of chloride migration, but measure actual chloride depth at end of test
- Give the advantage of a 24-hour testing time, but without needing to assume things about the resistivity of the material
 - Can compare different types of cements
 - More reproducible (RCPT test has a ±42% error margin according to ASTM standard)
- But all use fully saturated (underwater) material no splashing/drying effects

Sulphate attack on Portland cement

- Internal sulphate attack
 - Sulphates present within concrete causing phase evolution after a long time
- External sulphate attack (more common)
 - Sulphates from the environment entering material and causing phase changes
- In both cases, AFm → AFt conversion is the key mechanism
 - External MgSO_4 also causes decalcification of C-S-H to form M-S-H and gypsum
- Result is expansion and cracking
- Use slag blends or low-C₃A clinker to resist it

Causes severe cracking

http://static7.theconstructor.org/wp-content/uploads/2010/04/image55.png http://www.understanding-cement.com/sulfate.html

http://www.cementaid.ie/about.html

http://www.isse.org.uk/index.php/survey/salt-analysis-side

Testing sulphate resistance

- · Immerse the concrete in a sulphate-rich solution (usually 5% Na_2SO_4)
 - Measure specimen length regularly
- · Testing for conversion of AFm to AFt phases, which causes expansion
 - Not enough to fully explain expansion, but important

[Image deleted for copyright reasons]

University

Sulphate-resistant cements

 Low C₃A content, or high slag in PC blend - Favour formation of C-S-H rather than AFm phases, so don't expand

[Image deleted for copyright reasons]

DURSAAM W. Kunther et al., Cement and Concrete Research 46 (2013) 23–29

Thaumasite sulphate attack

- Relatively rare worldwide, important in UK conditions
- Needs cool (4-10°C), wet conditions, with both carbonate and sulphate
- Thaumasite: Ca₃Si(OH)₆(SO₄)(CO₃)·12H₂O
 - C-S-H converted to thaumasite becomes 'mush'

 No strength at all – soft https://www.youtube.com/watch?v=AFRYPVHRjLw

[Images deleted for copyright reasons]

Buried sample 3 years exposure

http://www.sheffield.ac.uk/polopoly_fs/1.142963!/file/05.pdf http://www.sheffield.ac.uk/cmru/research/thaumasite/index

The University Of Sheffield

Alkali-aggregate (alkali-silica) reactions

- Portland cement contains a small quantity of alkalis (Na and K)
 - Remains in the pore solution upon hydration
 - Pore solution pH is very high
- If the aggregate is unreactive (e.g. quartz), this is fine
- If the aggregate contains reactive (e.g. glassy, opal etc.) components, it can be attacked by the pore solution

- Chemical reaction at the aggregate surface

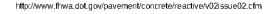
DuRSAAM

Alkali-silica reaction products

• Makes an expansive, white silicate gel product

[Images deleted for copyright reasons]

Abdelrahman et al. Constr Build Mater 95(2015):406


https://www.vdz-online.de/en/services/research-and-technology/concreteand-constituents/asr-alkali-silica-reaction/alkali-kieselsaeure-reaktion/

How is it identified?

- Reaction of alkalis with silica from aggregates causes concrete to expand
- · Characteristic 'map-cracking' on surface

http://fsel.engr.utexas.edu/research/iac-rcbeams/index.cfm

Alkali-aggregate testing

- Test the aggregate, the cement, or both?
- Which test?
 - Appendix X1.3 of ASTM C33 lists 8 different methods for combinations of cement, SCM and siliceous aggregates (plus 3 more for carbonate aggregates)
- UK approach follows BRE Digest 330 (4 parts)
 - Limits on alkali content of concrete based on aggregate reactivity classification (low/normal/high) from rock type
 - Concrete prism test (similar to ASTM method below) if uncertain – 12 months duration
 - Most cements sold in the UK are low-alkali if not, need to calculate concrete alkali content (some complexity...)
 - Blending with slag or pozzolans helps protect from damage

Testing alkali-aggregate reaction quickly?

- ASTM C1260, mortar bars in 40 g/L NaOH at 80°C, measure expansion at 16 days
- Because alkali concentration is so high, there is no influence from the alkalis in the cement
 - Really only an aggregate test, arguably not related to cement properties at all?
 - Well known to give false positives extremely aggressive test
- Advantage is that it is fast, and widely used – but used far beyond its scope, e.g. for^[Image deleted for copyright reasons] cement testing...

DuRSAAM

Testing both aggregate and cement?

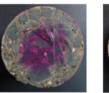
- ASTM C1293 concrete prism test
 - Extra alkali added into the cement (double the limit of 0.60% Na₂Oe), then store at 38°C for 1 year (to show excessive expansion), or 2 years (to show no expansion problems) → Slow
 - Can also test the use of pozzolans or slag to reduce expansion – but alkali levels are artificially high anyway
- Considered the most reliable test, but also very slow

http://www.fhwa.dot.gov/pavement/concrete/reactive/issue01.cfm

Carbonation testing

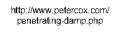
 Interaction with atmospheric CO₂ can cause problems – CO₂ acts as an acid

 $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$, portlandite consumed


- Reduces the alkalinity (pH) of the cement, which can induce corrosion of the steel reinforcing
- Extreme cases of carbonation can also show damage (decalcification) in C-S-H phases
- Happens fastest at intermediate humidity (~65%) or under wet-dry cycling
- Generally want to measure the depth of CO₂ penetration into the concrete
 - Rate of ingress under natural conditions is ~mm/yr, so use higher CO₂ concentrations to accelerate the test

Measuring carbonation

- Phenolphthalein is a useful indicator of pH change
 - Pink when conditions are alkaline (pH >12)
 - Colourless when pH drops below 9
 - Colour change corresponds well to 'danger levels' for alkalinity in concrete leading to steel corrosion
- Measure depth of CO₂ ingress after exposure to elevated concentration, and scale this to predict performance in natural conditions
 - This is the main limitation on concrete service life in
- many warm climate areas without marine exposure DUR SAAM


S.A. Bernal et al. Cement & Concrete Research, 41(2011):1-8

Freeze-thaw damage

- Very similar mechanisms for bricks, concrete, and porous building stones
- When it freezes, water expands ~9%
 - salt makes this worse more dramatic volume change
 - external surface of the material is damaged/removed

http://www.expertsmind.com/questions/density-ofwater-in-relation-to-temperature-30125050.aspx

http://www.concrete-experts.com/pages/ft.htm

Freeze-thaw testing

- Many tests, none universally accepted
- · Samples usually cylinders or slabs
- Freeze-thaw cycle repeatedly (e.g. +4/-18°C every 4 h, or +20/-18°C every 24 h)
 - Tens to hundreds of cycles used
 - Measure changes in elastic modulus, dimensions, mass (material scaled from surface)
 - Sometimes just give a visual rating of damage
- Tests are generally very harsh cf. normal UK environmental conditions

How to protect? – Air entrainment

- Put appropriately sized bubbles (< 1 mm, a few % by volume, well spaced) into concrete
 - Gives the water space to expand into as it freezes

[Image deleted for copyright reasons]

Activities of RILEM TC 247-DTA (2012-9)

- Analyse available durability testing methods applied to alkali-activated materials (AAMs) in key areas:
 - Chloride
 - Sulfate
 - Carbonation
 - Freeze-thaw/frost-salt
 - ASR
- Generate recommendations for which test methods should be applied to AAMs
- Round-robin test 19 labs, 12 countries returned results
- · All testing the 'same' concretes
 - Same mix designs, same precursors, same activator chemistry

DUR vis A al Materials & Structures 52(2019):#99; G.J.G. Gluth et al., Materials & Structures under rev

Underlying question

- Testing the tests not specifically the materials so mix designs are not intended to be "optimised"
- 2 mix designs for GGBFS, 2 for fly ash, 1 for metakaolin
 - Targeting one of expected good performance, one of expected less-good performance

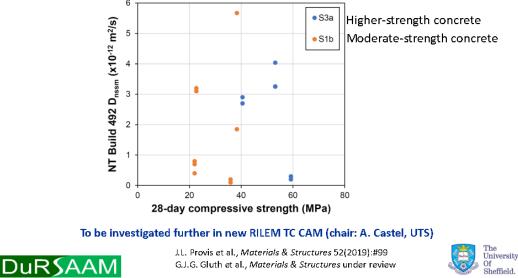
→ Can the tests, as specified in existing standards, distinguish a 'good' from a 'less good' AAM?

J.L. Provis et al., *Materials & Structures* 52(2019):#99 G.J.G. Gluth et al., *Materials & Structures* under review

Chloride - all mixes @ 28 d

Mix	NT Build 443 D _{nss} (x10 ⁻¹² m²/s)		NT Build 492 D _{nssm} (x10 ⁻¹² m²/s)	
	Mean	Range	Mean	Range
S1b	0.66	0.62 – 0.69	1.80	0.1-5.67
S3a	1.12	0.95 - 1.2	2.25	0.3 - 4.04
FA2	45.9	42 - 67	34.1	25.3 - 46.0
FA8	79	39 - 99	61.4	32.8 - 86.2
MK	77	59 (>95)	117.0	79.1 - 163.8

- NT Build 492 (migration) within-lab reproducibility is generally better than ±15% across 2 or 3 samples
- Ranking of 'good' and 'less good' mixes not in agreement with expectations from strength and mix design for slag mixes
 - NT Build 443 (ponding) shows lower-strength S1b with less chloride ingress cf. higher-strength S3a – paste volume is determining factor?
- ASTM C1202 RCPT gave very scattered results not recommended



J.L. Provis et al., *Materials & Structures* 52(2019):#99 G.J.G. Gluth et al., *Materials & Structures* under review

Can we relate durability to strength?

No direct correlation between chloride migration and compressive strength for two alkali-activated slag concretes

Brief summary of other TC findings

- Accelerated carbonation at 1% CO₂ gave mostly the same rank order of samples as natural carbonation
 - Alkali washout important for outdoor carbonation, rate is reduced cf. sheltered conditions
- Sulfate damage in all tests with Na₂SO₄ is limited, MgSO₄ is more aggressive
 - Difficult to set 'zero' point for length measurement
- ASR tests show no problems of inducing reaction in unreactive aggregates
 - Some expansion can be induced with very reactive aggregates, as expected for any concrete/mortar
- Freeze-thaw and frost-salt tests require more work, but salt effects are important

DuRSAAM

G.J.G. Gluth et al., *Materials & Structures*, under review; F. Winnefeld et al., *Materials & Structures*, in preparation

General comments on testing AAMs

- · Be careful with curing regimes
 - When changing binder chemistry, are the specified curing conditions still optimal (or even relevant?)
- Be careful with sample pre-conditioning
 - Blended cements can crack under the harsh drying regimes specified for pure OPC
- Be careful with differential ageing of specimens in long-duration tests
- · Look at precision statements of the tests

Concluding comments

- We need to be very careful when applying standardised testing methods
 - many of them are actually testing quite different things compared to what they claim to test
 - → must understand what the test is really testing!
- Test methods vary in usefulness and applicability
 Usually, the fastest methods are the least accurate
- It is worthwhile to use multiple methods to test important parameters
- Some tests are mainly useful for quality control between batches in a production run, not as an absolute measure of the properties of a material

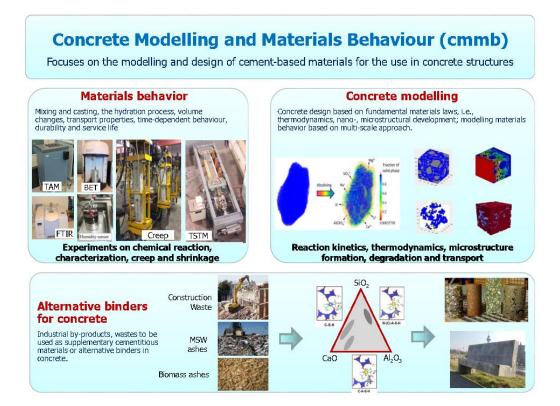
8. Modelling of AAM concretes

Guang Ye

In this chapter the hydration mechanisms and the resulting microstructure of concrete is considered, looking especially on how to model this. Both Portland cement and alkali-activated materials are considered.

DuRSAAM PhD training Network

Hydration and Microstructure Modelling


of

Portland cement and alkali-activated materials

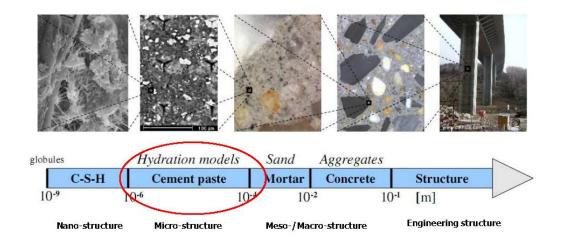
Dr. Guang Ye, associate professor Concrete Modelling and Materials Behaviour (cmmb) Microlab/Section Materials and Environment TU Delft, The Netherlands

Goal of this lecture

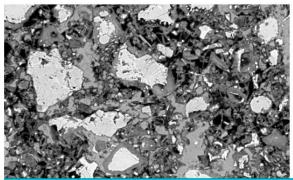
- To provide basic knowledge on modelling of reaction process and microstructure formation of Portland cement paste and alkali-activated materials
- To introduce cement hydration and microstructure model HYMOSTRUC3D and alkali-activated materials model GeoMicro3D

Outline of the lecture

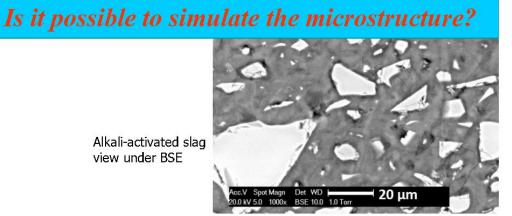
- Introduction
- Cement hydration and microstructure models
- Numerical framework for alkali-activated materials

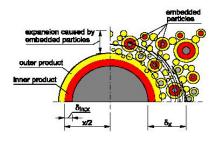

DuRSAAM

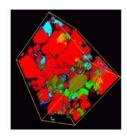
Introduction



Multi-scale features of concrete






OPC paste viewed under BSE

Cement hydration models - history

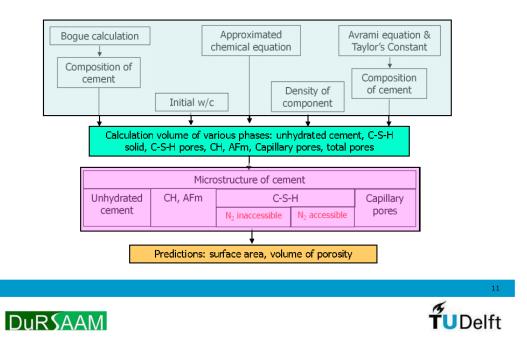
HYMOSTRUC (van Breugel) 1991

CEMHYD3D (Bentz) 1994

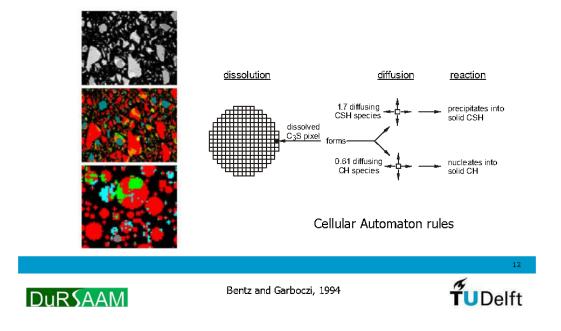
μic (Shashank) 2008

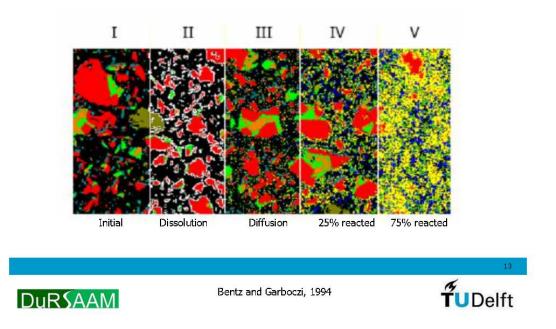
Modelling Cement Hydration and Microstructure Formation

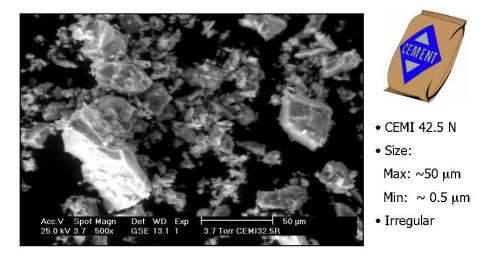
What are we going to simulate?


- What is the <u>shape and length scale</u> of each phases and how the phases are connected? \leftarrow Nucleation and growth

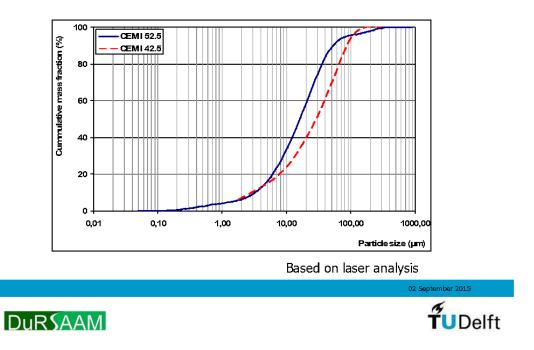
02 September 2010


TUDelft


Jenning's approach (1986)


NIST's approach: Pixel (CEMHYD3D) model

NIST's approach: Pixel (CEMHYD3D) model


Cement particles – shape and size distribution

DuRSAAM

Cement particles – shape and size distribution

Cement chemical composition

The principal oxides in clinker of Portland cement clinker

analyte (Oxide)	weight (%)
CaO	64.4
SiO2	20.36
Al ₂ O ₃	4.96
Fe ₂ O ₃	3.17
K ₂ O	0.64
Na ₂ O	0.14
SO3	2.57
MgO	2.09
TiO ₂	0.35
Mn ₂ O ₃	0.14
P ₂ O ₅	0.18
LOI	0.88
free CaO	0.6
total	99.7

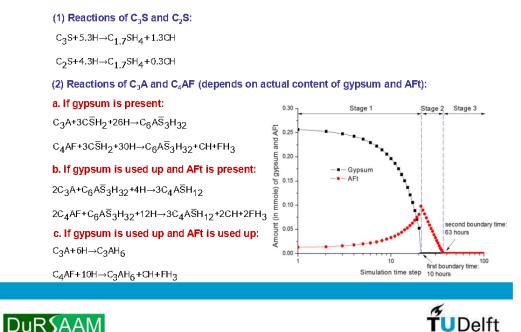
A example of CEMI 42.5N

16

Cement chemical composition

Main constituents

- [• Tricalcium silicate 3CaO·SiO₂ (C₃S) → Alite
- Dicalcium silicate $2CaO \cdot SiO_2(C_2S) \rightarrow Belite$
- Tricalcium aluminates 3CaO·Al₂O₃ (C₃A)
- Calcium ferroaluminate 4CaO·Al₂O₃·Fe₂O₃ (C₄AF).
- Gypsum CaSO₄·2H₂O (C<u>S</u>H₂)


Bogue equation [Taylor 1989]

- C₃S = 4.07 CaO (7.60 SiO₂+ 6.72 Al₂O₃ + 1.43 Fe₂O₃ + 2.85 SO₃)
- $C_2S = 2.87 \text{ SiO}_2 0.754 \text{ } C_3S$ $C_3A = 2.65 \text{ } Al_2O_3 1.69 \text{ } Fe_2O_3$
- $C_4AF = 3.04 \text{ Fe}_2O_3$

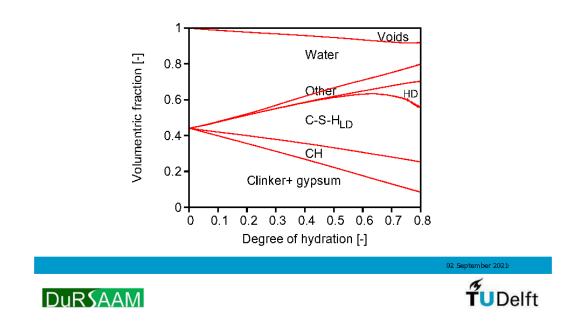
Stoichiometry of cement hydration


Degree of hydration

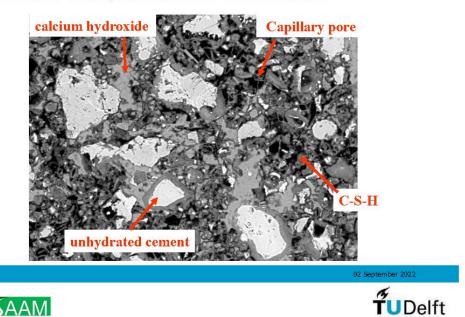
Degree of hydration a(t) [-], is defined as the ratio of the amount of cement that has reacted at time t relative to the original amount of cement

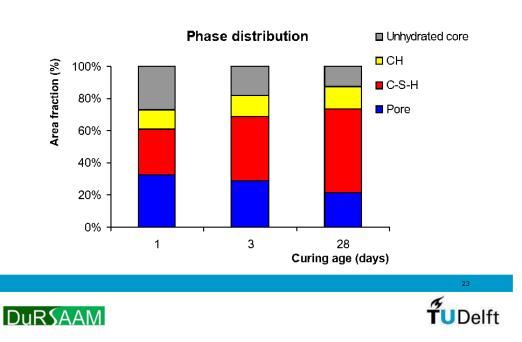
 $\alpha(t) = \frac{amount \ cf \ cement \ that \ has \ reacted \ at \ time \ t}{total \ amount \ cf \ cement \ at \ time \ t = 0}$

Degree of hydration – experiments

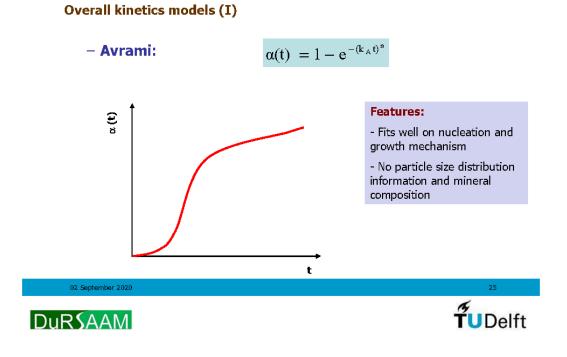

That depends on the accuracy of $\boldsymbol{Q}_{\text{pot}}$ of $\boldsymbol{W}_{n,\text{pot}}$

Q(t), total heat release at time t (Cal) Qpot, potential total heat (Cal/1g cement) W_n (t), Non-evaporable water at hydration time t (g) $W_{n,\,pot}$ potential Non-evaporable water content (g/1g cement)



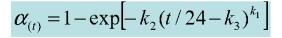

What and how much of the phases ?

The shape and length scale of each phases and how the phases are connected


Phases distribution

Hydration and microstructure modeling of Portland cement

- Hydration kinetics: particle kinetics, particle kinetics, integrated kinetics
- 3D Microstructure building up


Modelling of hydration and kinetics

Modelling of hydration and kinetics

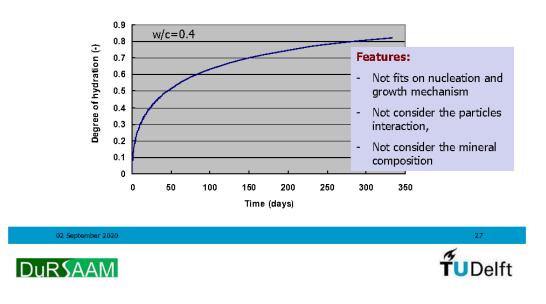
Overall kinetics models (II)

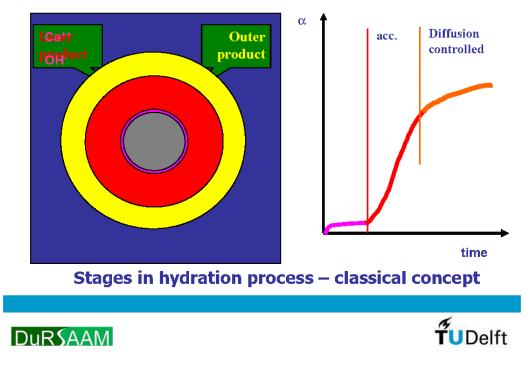
- Taylor (1987)

Where:

- K1, k2 and k3 are three characteristic parameters (dimensionless), list in table
- t = hydration time (in hour)

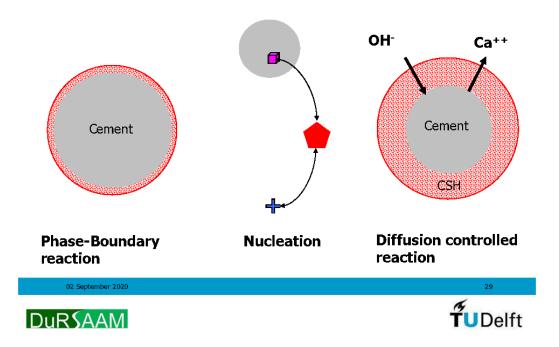
k1	k2	k3
0.46	0.12	0

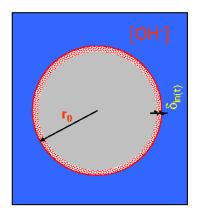

TUDelft



Modelling of hydration and kinetics

> Overall kinetics models (II)


- Taylor (1987)


Particle kinetics – Different mechanisms

Particle kinetics – different mechanisms

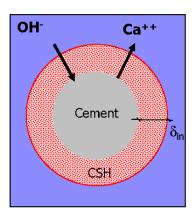
Particle kinetics – different mechanisms

Phase-Boundary reaction

For **a spherical particle** with radius $r_0=x/2$ of the reactant and penetration depth $\delta_{in}(t)$, the degree of hydration is:

$$\alpha_{x;\delta_{in}} = 1 - \left[1 - \frac{\delta_{in;x}(t)}{r_0}\right]^3$$

the penetration depth $\delta_{in}(t)$ is


$$\delta_{in;x}(t) = k \times t = r_0 \times \left[1 - (1 - a_{x;\delta_{in;x}})^{\frac{1}{3}}\right]^{\frac{1}{3}}$$

DuRSAAM

TUDelft

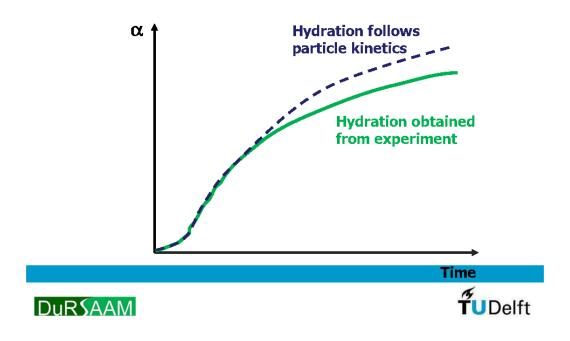
Particle kinetics – different mechanisms

Diffusion controlled reaction

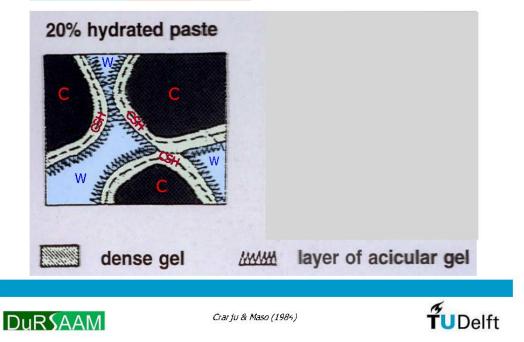
$$[1 - (1 - a_x)^{\frac{1}{3}}]^N = \frac{2.k.t}{r_0^2}$$

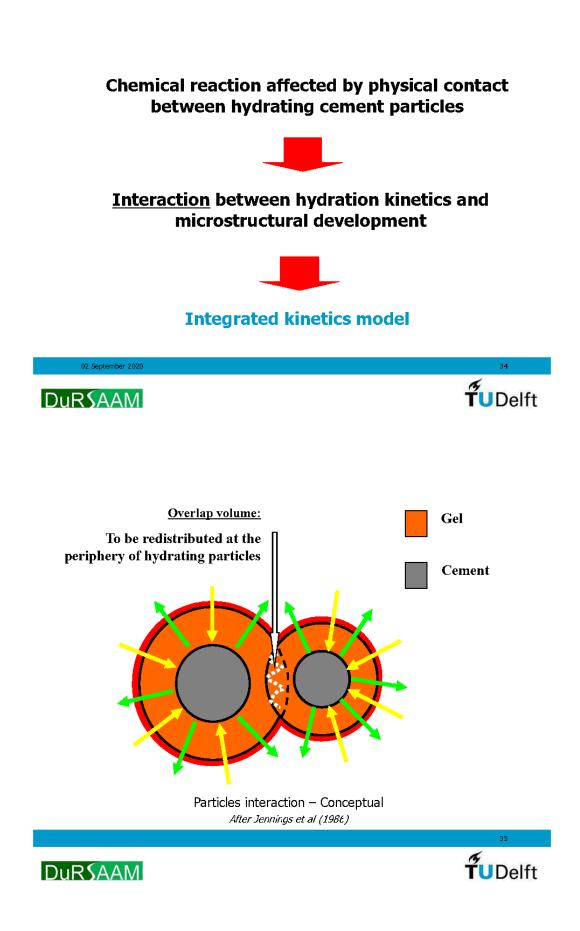
• Ginstling and Brownshtein

$$\left[1 - \frac{2a_x}{3}\right] - \left(1 - a_x\right)^{\frac{2}{3}} = k.$$

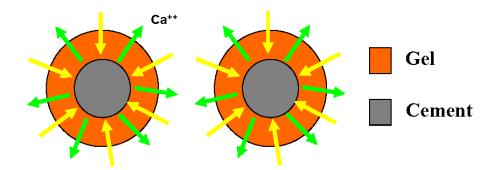

• Carter

$$[1+(v-1)\times a_x]^{\frac{2}{3}}+(v-1)\times(1-a_x)^{\frac{2}{3}}-v=kt$$

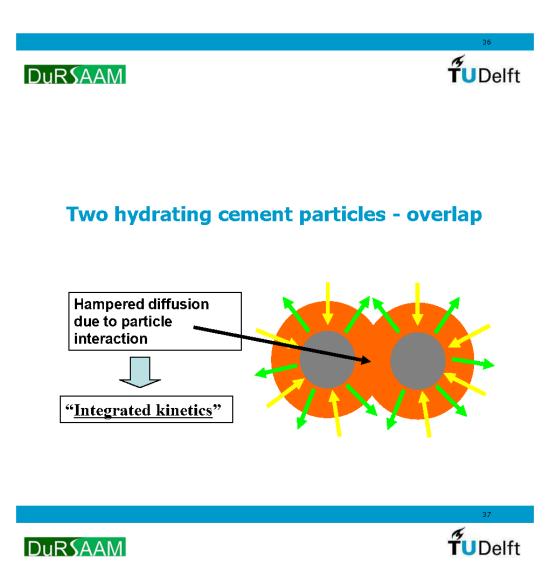

 $\nu,$ the ratio of the v. of the reaction products relative to that of the dissolved part of the reactant $$_{31}$$

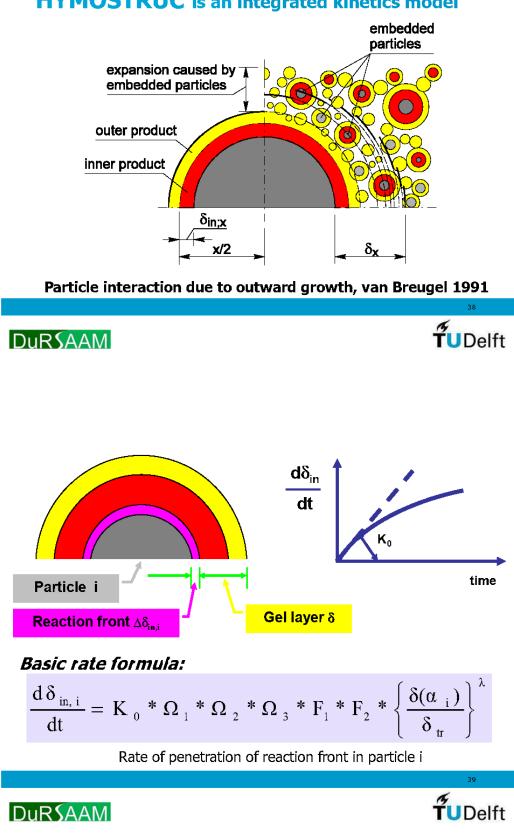


Particle kinetics – there is a limitation



Particle interaction – Schematic





Two hydrating cement particles - apart

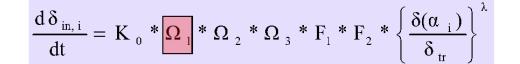
Diffusion-controlled hydration of individual grains

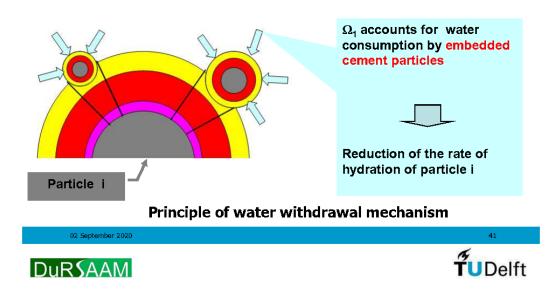
HYMOSTRUC is an integrated kinetics model

$$\frac{d\delta_{in,i}}{dt} = K_0 * \Omega_1 * \Omega_2 * \Omega_3 * F_1 * F_2 * \left\{\frac{\delta(\alpha_i)}{\delta_{tr}}\right\}^{\lambda}$$

K₀ = basic rate factor: function of C₃S content

$\Omega_{1,2,3}$ = factors allowing for state of water in the system


- 1. water withdrawal mechanism
- 2. amount of water
- 3. distribution of water in pore system
- **F**_{1.2} = factors allowing for effects of temperature
 - 1. Arrhenius function
 - 2. Coarseness of pore structure


 δ_{tr} = transition thickness: phase-boundary \longrightarrow diffusion

 α_i = degree of hydration of particle i

DuRSAAM

3D Microstructure simulation

Input parameters

- ✓ Particle size distribution of the cement particles
- ✓ Water/cement ratio
- Clinker composition of the cement
- Reaction temperature
- Size of calculation body

Particle size distribution

 The cumulative particle size distributions of cement are described using the Rosin-Rammler function

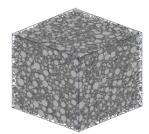
 $G_{cem}(x) = 1 - \exp(-b_{cem}x^{n_{cem}})$

- The cement mass and volume of the fraction Fx

$$W_{cem}(x) = \gamma \times b_{cem} \times n_{cem} \times x^{n_{cem}-1} \times e^{-b_{cem} x^{n_{cem}}}$$

$$V_{cem}(x) = \frac{W_{cem}(x)}{\rho_{cem}}$$

– The number of particles Nx in fraction Fx


$$N_{cem,x} = \frac{V_{cem,x}}{v_{cem,x}} = \frac{\gamma \times b_{cem} \times n_{cem} \times x^{n_{cem}-1} \times e^{-b_{cem} x^{n_{cem}}}}{\frac{\pi \times x^3}{6} \times \rho_{cem} \times 10^{-12}}$$

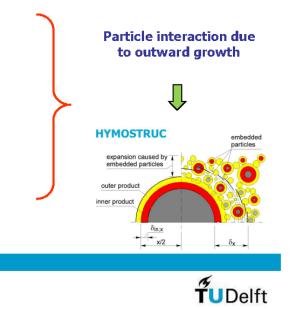
Particle size distribution

- » Particle size distribution
- » w/c
- » Simulation body (shape and size)

• Number of cement particles

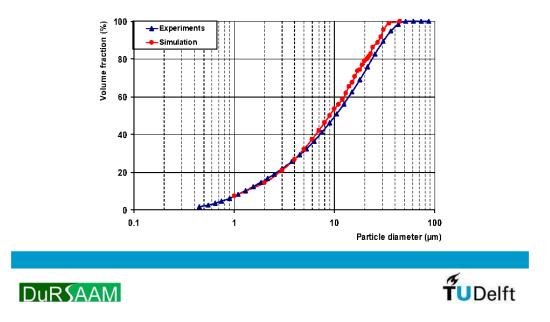
Particles random distribution

Integrated kinetics – HYMOSTRUC3D

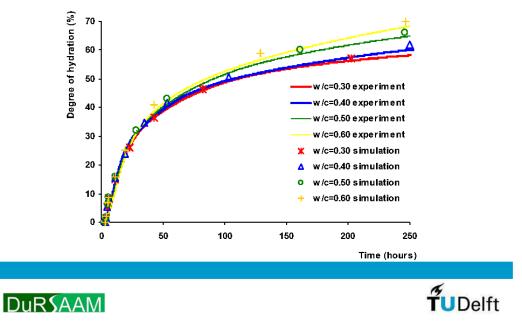

» w/c

DuRSAAM

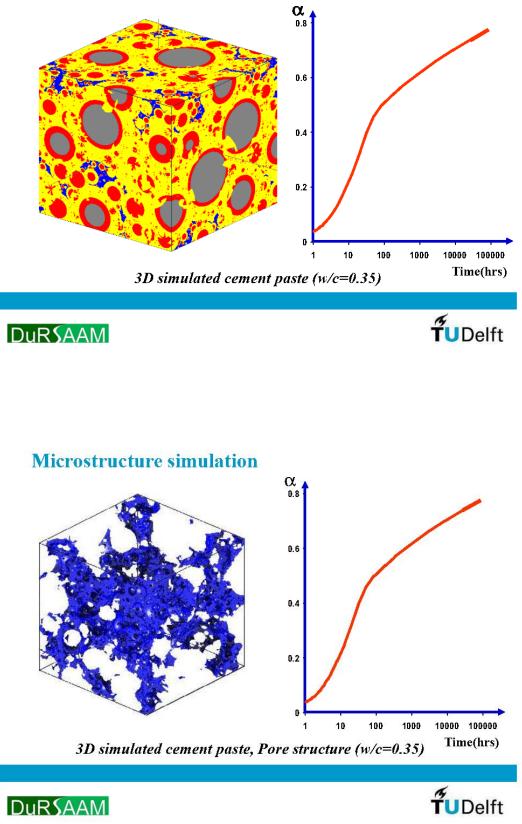
- » Particle size distribution
- » Simulation body (shape and size)

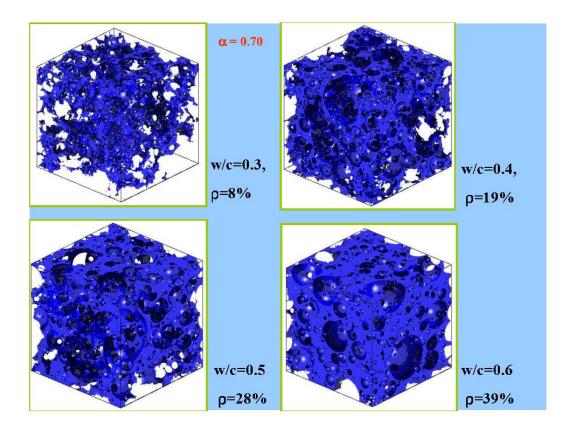

+

- » Clinker composition
- » Mixture composition
- » Reaction temperature

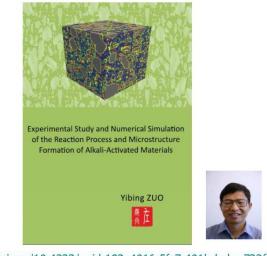

3D Microstructure simulation

Check the particle size distribution with experiments




3D Microstructure simultion

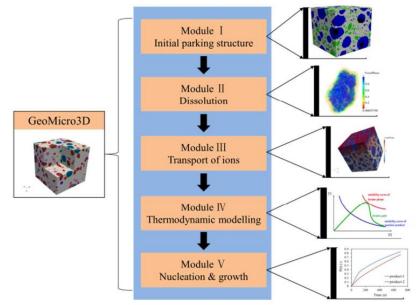
Check predicted degree of hydration with experiments



Reaction and Microstructure Simulation of Alkali-activated Materials (AAM)

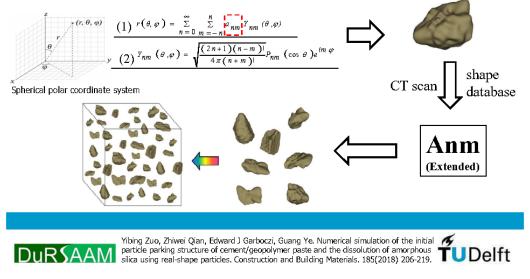
https://doi.org/10.4233/uuid:193a4016-5fc7-401b-babe-722ff6a95a6c

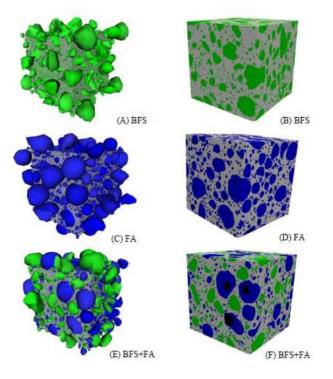
Comparison between AAM and OPC


	AAM	OPC
Binder	aluminosilicate precursors, such as slag, fly ash(reactivity/amorphous content)	ordinary Portland cement (C ₃ S, C ₂ S)
Liquid	alkaline activator, such as sodium hydroxide, sodium silicate(nature and concentration)	water
Reaction products	high-Ca AAM: C-(N-)A-S-H, Ht, C ₄ AH ₁₉ , C ₃ AH ₆ , C ₂ ASH ₈ low-Ca AAM: N-A-S-H, zeolites such as hydroxysodalite, zeolite P, Na-chabazite	C-S-H, CH, AFt, AFm
Microstructure formation	heterogeneous (sodium hydroxide), homogeneous (sodium silicate)	heterogeneous

DuRSAAM

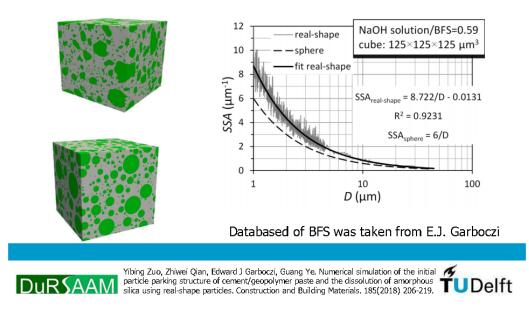
Reaction and Microstructure simulation - GeoMicro3D

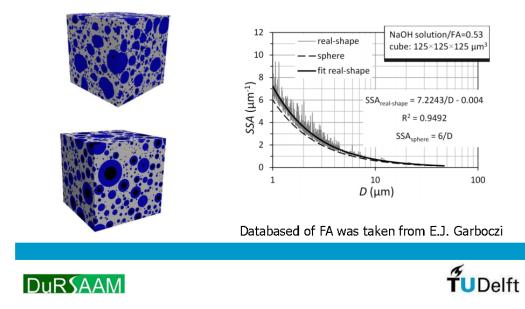




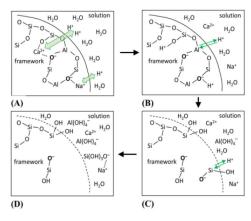
Module I: Initial particle parking structure

- Real shape particles


Spherical harmonic expansion: a set of spherical harmonic coefficients, $a_{nm},\, is$ used to describe the irregular shape


Module I: Initial particle parking structure

- Real shape particles, and spherical particles of BFS


Module I: Initial particle parking structure

- Real shape particles, and spherical particles of fly ash

Module II: Dissolution

- Dissolution of Al, Si, Ca...from precursor

(A) Alkali and alkali-earth metal elements are initially dissolved from the surface through metal/proton exchange reactions.

- (B) The hydrolysis of Al-O bonds starts
- (C) The bonds of Si-O start to break

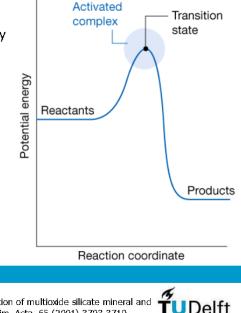
(D) Tetrahedrally coordinated Al and Si in the framework are released into the solution

Schematic illustration of the dissolution of aluminosilicate glass (P. Duxson, J.L. Provis)

DuRSAAM

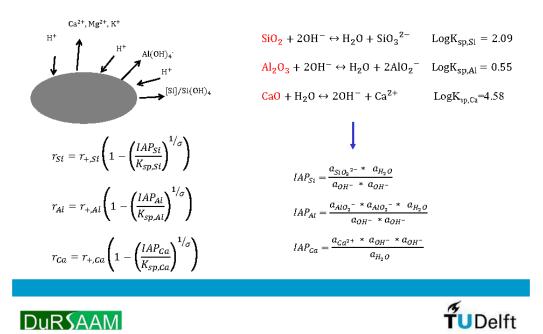
Module II: Dissolution

According to transition state theory, the dissolution rate of glass can be described by

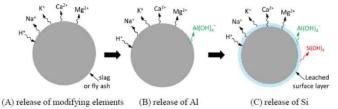

$$r = r_{+} \left(1 - exp\left(-\frac{A^{*}}{\sigma_{RT}} \right) \right)$$

- σ the ratio of the rate of dissolution of the *activated complex*
- A*, the chemical affinity

$$A^* = -RTln\left(\frac{IAP}{K_{sp}}\right)$$


iAP - the ion activity product Ksp - the solubility product

$$r = r_+ \left(1 - \left(\frac{IAP}{K_{sp}} \right)^{1/\sigma} \right)$$


DURSAAM E.H. Oelkers, General kinetic description of multioxide silicate mineral and glass dissolution, Geochim. Cosmochim. Acta, 65 (2001) 3703-3719.

Module II: Dissolution

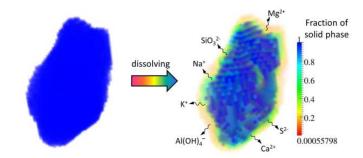
Module II: Dissolution

- Depression of dissolution rate by aluminium species:

-The initially released Al species were absorbed to the leached surface layer and **slowed down the dissolution of fly ash** in the sodium hydroxide activated fly ash system

The depression of the dissolution rate of quartz is related to **the adsorption of Al(OH)**^{4–} **at silanol sites on the surface of quartz** (Bickmore et al):

$$r_{Si,with} = r_{Si,without} (1 - \theta_{Al})$$
$$\theta_{Al} = \frac{bC_{Al}}{(1 + bC)(1 + kNBO/T)} \theta_{Al,max}$$


$$r_{Si} = r_{+,Si} \left(1 - \left(\frac{IAP_{Si}}{K_{sp,Si}} \right)^{1/\sigma} \right) (1 - \theta_{Al})$$

 $\theta_{A'}$ is the fraction of the quartz surface that is passivated

$$\theta_{Al,max} = -0.177 pH + 3.23$$

Module II: Dissolution

- Implementation by LB - dissolution amount

Dissolved amount of elements at one lattice Boltzmann time step: $\Delta n_{X,i} = r_{X,i}T_0L_0^2$ The total dissolved amount: $\Delta N_X = \sum_{i=1}^6 \Delta n_{X,i}$

DuRSAAM

DuRSAAM

Module III: Transport

- Transport of aqueous ions: LB approach
- □ At the microscopic level, a fluid made up of <u>particles</u> can move randomly in all directions as a result of <u>collisions of particles</u> with other <u>particles</u>. The probability of these particles' position in the physical space is dynamically described by the <u>continuous Boltzmann equation</u>:

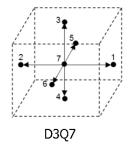
$$\frac{\partial f}{\partial t} + \xi \cdot \frac{\partial f}{\partial x} + F \cdot \frac{\partial f}{\partial u} = \Omega(f)$$

$$\Omega(f) = -\frac{1}{\tau} (f - f^{eq})$$

TUDelft

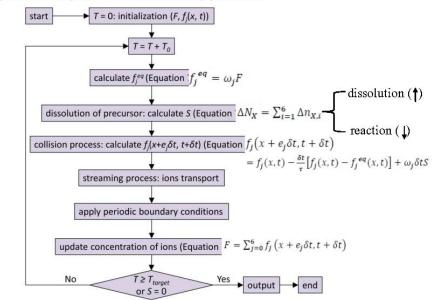
Module III: Transport

- Transport of aqueous ions: LB approach
- □ By discretizing the physical space with regular lattice nodes, the lattice Bhatager-Gross-Krook (BGK) equation can be:


$$f_j(x+e_j\delta t,t+\delta t)=f_j(x,t)-\frac{\delta t}{\tau}[f_j(x,t)-f_j^{eq}(x,t)]+\omega_j\delta tS$$

Where, and is the non-equilibrium and equilibrium particle distribution function respectively. δt is the time step, ϵj is the microscopic velocity at location x at time t and in velocity direction j, and wj is the weighting factor in the velocity direction j. S is the source term to consider the influence of dissolution.

$$f_i^{eq} = \omega_i F$$


Ion concentration F in the lattice node:

$$F = \sum_{i=0}^{6} f_i \left(x + e_i \delta t, t + \delta t \right)$$
 for D3Q7

Module III: Transport

Microstructure simulation - GeoMicro3D

- Dissolution

An example:

the activation energies of Si is 8.3×10^4 J/mol, the activation energies is Al 8.01×10^4 J/mol, the activation energy of Ca = 1.36×10^4 J/mol. the value of σ was taken as 1 in the model.

The diffusion coefficients and the activation energy of diffusion of ions [Huang, Cussler]

Ions		AlO ₂				K^+	Na ⁺	OH
$D_{\rm ref} (\times 10^{-9} {\rm m}^2/{\rm s})$	0.7 ^a	0.6 ^b	0.72	0.71	1.01°	1.96	1.33	5.28
E_{diff} (×10 ⁴ J/mol) ^d	2.46	2.04	2.32	1.26	1.43	1.60	1.67	1.80

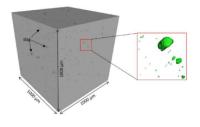
a. This value was taken from the diffusivity of $H_2SiO_4^{2-}$;

b. This value was taken from the diffusivity of AI^{3+} ;

c. This value was taken from the diffusivity of SO_4^{2-} ;

d. The activation energy of diffusion of aqueous ions were calculated based on [175-177].

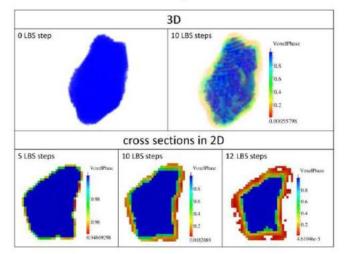
DuRSAAM



Microstructure simulation - GeoMicro3D

- Dissolution

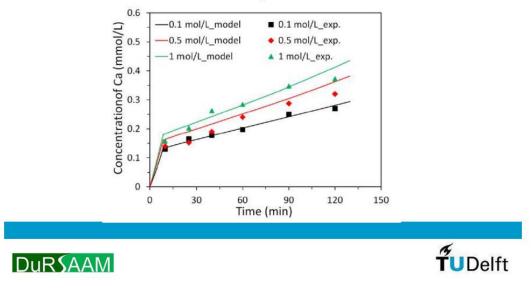
Simulation of the dissolution of slag in alkaline solution


- Sodium hydroxide solution with alkali concentrations of 0.1, 0.5 and 1 mol/L
- -4.9992×10^{-7} g of slag was parked in a cube of 1000 μm \times 1000 μm \times 1000 μm , equivalent to 0.1 g slag in 200 mL NaOH solution.
- -Resolution of digitized slag: 2 μ m × 2 μ m × 2 μ m.
- The specific surface area of the digitized slag:
 0.249 m²/g.
- -Assume the ions in the liquid nodes were evenly distributed into the solution in each LB step.

Microstructure simulation - GeoMicro3D

- Dissolution

Simulation of the dissolution of slag in alkaline solution



Progressing dissolution front as a function of lattice Boltzmann simulation

Microstructure simulation - GeoMicro3D

- Dissolution

Simulation of the dissolution of slag in alkaline solution - Ca concentration

Thermodynamic modelling

- When aluminosilicate precursors are contacted with an alkaline activator, their constituents start to dissolve, → an increase of the concentrations of aqueous ions in solution (red curve, kinetics).
- When the concentrations of the aqueous ions increase to a certain level, the solution is saturated or supersaturated, → precipitate and form solid reaction products.

- Two kinds of thermodynamic interactions:

- i. Between the precursors and the solution, continuously releasing elements into solution.
- Between the solution and the solid reaction products, leading to growth of the solid reaction products.

DuRSAAM

Module IV: Chemical reaction

• Thermodynamic modelling for C-(N-)A-S-H gel in AA-slag

Chemical reactions and solubility products (Log Ksp) at 25 °C and 1 bar for C-(N-)A-S-H and hydrotalcite-like phases (Myers, Bernal and Provis, CCR 66 (2014) 27-47)

Solids	Dissociation reactions	Log Ksp
CNASH_ss	model [69]	8
5CA	(CaO) _{1.25} ·(Al ₂ O ₃) _{0.125} ·(SiO ₂)·(H ₂ O) _{1.625}	-10.75
	$\leftrightarrow 1.25 \text{Ca}^{2+} + \text{SiO}_3^{2-} + 0.25 \text{AlO}_2^{-} + 0.25 \text{OH}^{-} + 1.5 \text{H}_2 \text{O}$	
INFCA	(CaO) · (Al ₂ O ₃) _{0.15625} · (SiO ₂) _{1.1875} · (H ₂ O) _{1.65625} +0.68750H ⁻	-8.90
	\leftrightarrow Ca ²⁺ + 1.1875SiO ₃ ²⁻ + 0.3125AlO ₂ ⁻ + 2H ₂ O	
5CNA	(CaO) _{1.25} · (Na ₂ O) _{0.25} · (Al ₂ O ₃) _{0.125} · (SiO ₂) · (H ₂ O) _{1.25}	-10.40
	$\leftrightarrow 1.25 \text{Ca}^{2+} + \text{SiO}_3^{2-} + 0.25 \text{AlO}_2^{-} + 0.5 \text{Na}^{+} + 0.750 \text{H}^{-} + \text{H}_2 \text{O}$	
INFCNA	(CaO) · (Na2O) 0.34375 · (Al2O3) 0.15625 · (SiO2) 1.1875 · (H2O) 1.3	-10.00
	\leftrightarrow Ca ²⁺ + 1.1875SiO ₃ ²⁻ + 0.3125AlO ₂ ⁻ + 0.6875Na ⁺ +	
	1.3125H ₂ 0	
INFCN	$(CaO) \cdot (Na_2O)_{0.3125} \cdot (SiO_2)_{1.5} \cdot (H_2O)_{1.1875} + 0.3750H^-$	-1 0.70
	\leftrightarrow Ca ²⁺ + 1.5SiO ₃ ²⁻ + 0.625Na ⁺ + 1.375H ₂ O	
T2C*	$(CaO)_{1.5} \cdot (SiO_2) \cdot (H_2O)_{2.5} \leftrightarrow 1.5Ca^{2+} + SiO_3^{2-} + OH^- + 2H_2O$	-11.60
T5C*	$(CaO)_{1.25} \cdot (SiO_2)_{1.25} \cdot (H_2O)_{2.5} \leftrightarrow 1.25Ca^{2+} + 1.25SiO_3^{2-} + 2.5H_2O$	-10.50
TobH*	$(\text{CaO}) \cdot (\text{SiO}_2)_{1.5} \cdot (\text{H}_2\text{O})_{2.5} + \text{OH}^- \leftrightarrow \text{ Ca}^{2+} + 1.5\text{SiO}_3^{2-} + 3\text{H}_2\text{O}$	-7.90
MA-OH-LL	DH_ss model [54]	
M ₄ AH ₁₀	$(MgO)_4 \cdot (Al_2O_3) \cdot (H_2O)_{10} \leftrightarrow 4Mg^{2+} + 2AlO_2^- + 6OH^- + 7H_2O$	-49.70
M ₆ AH ₁₂	$(MgO)_6 \cdot (Al_2O_3) \cdot (H_2O)_{12} \leftrightarrow 6Mg^{2+} + 2AlO_2^- + 100H^- + 7H_2O_2^-$	-72.02
M ₈ AH ₁₄	$(MgO)_{8} \cdot (Al_{2}O_{3}) \cdot (H_{2}O)_{14} \leftrightarrow 8Mg^{2+} + 2AlO_{2}^{-} + 14OH^{-} + 7H_{2}O$	-94.34

Thermodynamic model for the N-A-S-H gel in AA-Fly ash

Chemical reactions and solubility products (Log Ksp) at 25 °C and 1 bar for N-(C-)A-S-H

Solids	Dissociation reactions	Log K _{sp}
NASH_1-1 ^a	$(Na_2O)_{0.5} \cdot (Al_2O_3)_{0.5} \cdot (SiO_2)_1 \cdot (H_2O)_1 + 2OH^-$ $\leftrightarrow SiO_2^{-} + AlO_2^- + Na^+ + 2H_2O$	-6.51
NASH_2-1	$(Na_2O)_{0.5} \cdot (Al_2O_3)_{0.5} \cdot (SiO_2)_2 \cdot (H_2O)_1 + 4OH^-$ $\leftrightarrow 2SiO_3^{2^-} + AlO_2^- + Na^+ + 3H_2O$	-8.01
NASH_3-1	$(Na_2O)_{0.5} \cdot (Al_2O_3)_{0.5} \cdot (SiO_2)_3 \cdot (H_2O)_1 + 60H^-$	-9.51
NASH_4-1	$\leftrightarrow 3SiO_{3}^{2^{-}} + AlO_{2}^{-} + Na^{+} + 4H_{2}O$ (Na ₂ O) _{0.5} (Al ₂ O ₃) _{0.5} (SiO ₂) ₄ (H ₂ O) ₁ + 8OH ⁻	-11.01
NCASH_1-0.1	$\leftrightarrow 4\text{SiO}_{2}^{2^{-}} + \text{AlO}_{2}^{-} + \text{Na}^{+} + 5\text{H}_{2}\text{O}$ (Na ₂ O) _{0.05} ·(CaO) _{0.45} · (Al ₂ O ₃) _{0.5} ·(SiO ₂) ₁ ·(H ₂ O) ₁ + 2OH ⁻	-8.51
NCASH_2-0.1	$\leftrightarrow \operatorname{SiO}_{3}^{2^{-}} + \operatorname{AlO}_{2}^{-} + 0.45\operatorname{Ca}^{2^{+}} + 0.1\operatorname{Na}^{+} + 2\operatorname{H}_{2}\operatorname{O}^{-} (\operatorname{Na}_{2}\operatorname{O})_{0.05} \cdot (\operatorname{CaO})_{0.45} \cdot (\operatorname{Al}_{2}\operatorname{O}_{3})_{0.5} \cdot (\operatorname{SiO}_{2})_{2} \cdot (\operatorname{H}_{2}\operatorname{O})_{1} + 4\operatorname{OH}^{-}$	-10.01
NCASH_3-0.1	$\leftrightarrow 2\text{SiO}_{3}^{2^{-}} + \text{AlO}_{2}^{-} + 0.45\text{Ca}^{2^{+}} + 0.1\text{Na}^{+} + 3\text{H}_{2}\text{O} \\ (\text{Na}_{2}\text{O})_{0.05} \cdot (\text{CaO})_{0.45} \cdot (\text{Al}_{2}\text{O}_{3})_{0.5} \cdot (\text{SiO}_{2})_{3} \cdot (\text{H}_{2}\text{O})_{1} + 60\text{H}^{-}$	-11.51
NCASH_4-0.1	$\leftrightarrow 3\text{SiO}_3^{2^-} + \text{AlO}_2^- + 0.45\text{Ca}^{2^+} + 0.1\text{Na}^+ + 4\text{H}_2\text{O} \\ (\text{Na}_2\text{O})_{0.05} \cdot (\text{CaO})_{0.45} \cdot (\text{Al}_2\text{O}_3)_{0.5} \cdot (\text{SiO}_2)_4 \cdot (\text{H}_2\text{O})_1 + 80\text{H}^-$	-13.01
	$\leftrightarrow 4SiO_3^{2-} + AlO_2^{-} + 0.45Ca^{2+} + 0.1Na^{+} + 5H_2O$	

a. The first and second number after N(C)ASH represent the molar ratio of Si/Al and Na/Al in the solid solution member, respectively.

Module IV: Chemical reaction

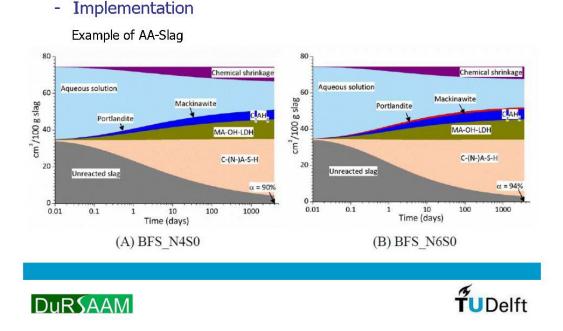
- Degree of reaction

The degree of reaction of slag or fly ash (a(t)) can be calculated as the ratio of cumulative heat release at time t (Q(t)) to the total heat release (Q_{max})

$$\alpha(t) = \frac{Q(t)}{Q_{max}}$$

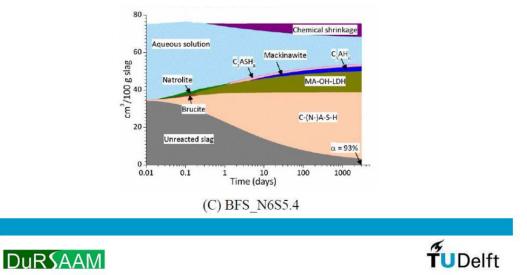
 $Q_{(t)}$ can be described using an exponential function as follows

$$Q(t) = Q_{max} \exp(-(\frac{\lambda}{t})^{\beta})$$


- Implementation

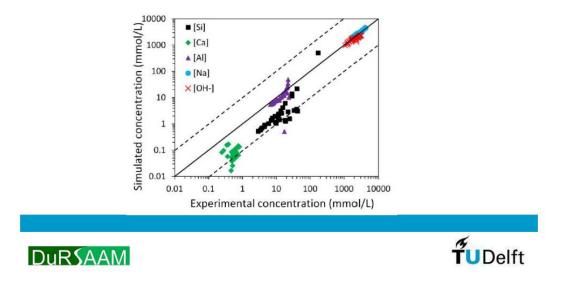
DURSAAM

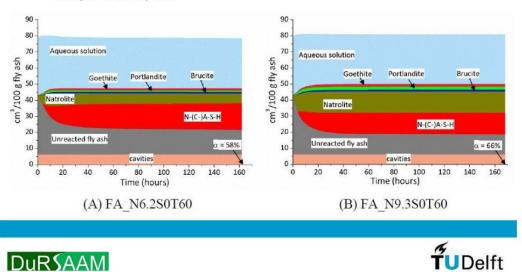
- GEM-Selektor V3 was used for performing thermodynamic calculations
- The CEMDATA07 thermodynamic database was used as the basis thermodynamic database
- The thermodynamic models for the C-(N-)A-S-H gel, N-A-S-H gel and hydrotalcite-like phase, and the thermodynamic data for zeolite phases are added to the basis thermodynamic database for thermodynamic modelling of the reactions in AAMs.



Module IV: Chemical reaction

- Implementation

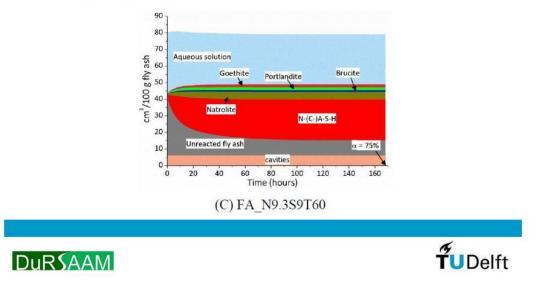

Example of AA-Slag



Module IV: Chemical reaction

- Implementation

Example of AA-Slag


- Implementation

Example of AA-Fly ash

Module IV: Chemical reaction

- Implementation

Example of AA-Fly ash

Module V: Nucleation and growth

Simulation of the nucleation

The probability P(t) that at least one critical nucleus has formed in a time interval Δt

$$P(\Delta t) = 1 - \exp(-J \cdot V \cdot \Delta t)$$

where ${\it V}$ is the solution volume within which the nucleus forms and ${\it J}$ is the nucleation rate

$$J(S) = A \cdot S \cdot \exp(-\frac{B}{\ln^2 S})$$

where A is the kinetic parameter, S is the supersaturation ratio and B is the thermodynamic parameter of nucleation.

DuRSAAM

Module V: Nucleation and growth

Simulation of the nucleation

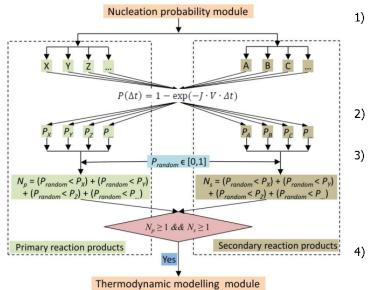
The thermodynamic parameter B for heterogeneous nucleation is expressed with the following equation

$$B = \frac{4}{27} \frac{c^3 \cdot v^2 \cdot \gamma_{ef}^3}{k_B^3 \cdot T^3}$$

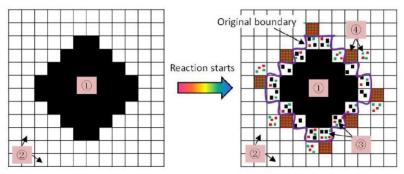
where c is a shape factor ((36n)1/3 for spheres and 6 for cubes), v is the molecular volume of the phase, kB is the Boltzmann constant and T is the absolute temperature. yef is the effective interfacial energy, where $\gamma ef = \psi \gamma$ with activity factor $0 < \psi < 1$. For homogeneous nucleation $\psi = 1$.

The interfacial energy is calculated using the following equation

$$\gamma = \beta_N \cdot k_B \cdot T \cdot \frac{1}{v^{2/3}} \cdot \ln(\frac{1}{N_a \cdot v \cdot c^*})$$


where β_N is a numerical factor ($\beta_N = 0.514$ for spherical nuclei), N_a is Avogadro's number and c^* is the molar solubility.

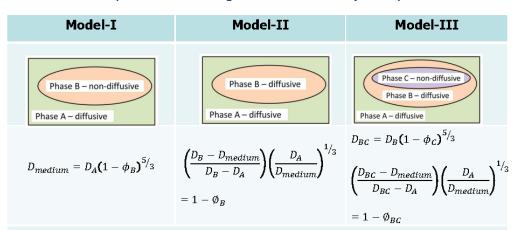
Module V: Nucleation and growth


- Flowchart of nucleation probability module

- 1) Calculate the nucleation probabilities, P_{χ_r} , P_{γ} and P_{Z} for primary reaction products and P_{Ar} , P_{B} and P_{C} for secondary reaction products.
- 2) Generate a random probability $0 \le P_{random} \le 1$.
- Calculate the numbers (i.e. N_p and N_s) of primary reaction products and secondary reaction products that are predicted to nucleate, respectively.
- If N_p ≥ 1 and N_s ≥ 1, then the thermodynamic modelling module is called.

Module V: Nucleation and growth

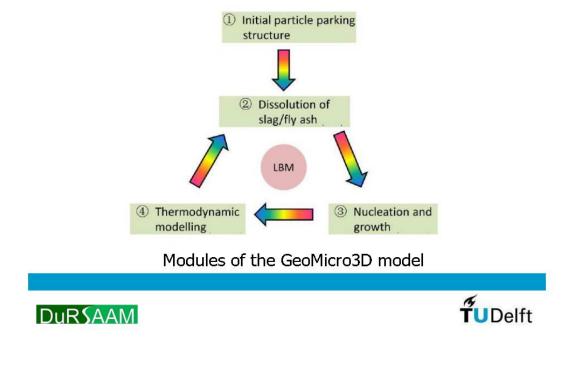
- Diffusivity of ions through lattice nodes

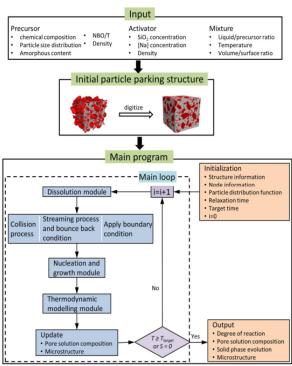

Schematic representation of the diffusion of ions through different lattice nodes in 2D. In the graph black, white, red and green represent precursor, solution, primary reaction products and secondary reaction products, respectively. (1) and (2) represent precursor and solution nodes, respectively. (3) represents nodes where precursor may dissolve and reaction products may precipitate, and (4) represents nodes that are completely or partially filled with reaction products.

Module V: Nucleation and growth

Diffusivity of ions through lattice nodes (voxel)

where D_{Ar} D_{Br} D_{BC} and D_{meaium} are the diffusivities of ions in phase A, phase B, phases BC and the medium, respectively. φ_B is the volume fraction of phase B in the medium, φ_C is the volume fraction of phase C in the phases B and C. φ_{BC} is the volume fraction of phases B and C in the medium


Module V: Nucleation and growth


- The primary reaction products, i.e. the C-(N-)A-S-H gel and the N-A-S-H gel, are diffusive for ions.
- The secondary reaction products, i.e. crystalline phases, are nondiffusive for ions.

Relative diffusivity of ions through the C-S-H gel

Ions	Relative diffusivity	Ref.
Cl-	0.0025	[E. Garboczi]
H ₂ O	0.001	[S. Kamali-Bernard]
Electron	0.00775	[H. Ma]

Description of the lattice node	Selection of the model				
Contains one diffusive phase, i.e. solution, and one non-	Model-I				
diffusive phase, i.e. slag or/and secondary reaction products					
Contains two diffusive phases, i.e. solution and primary	Model-II				
reaction products					
Contains one non-diffusive phase, i.e. slag or/and secondary	Model-III				
reaction products, and two diffusive phases, i.e. solution and					
primary reaction products					

The overall flowchart of the GeoMicro3D model.

- An example of simulation of alkali-activated slag

Simulation parameters

- Mixture					
Sample	Precursor	Na2O	SiO2	<i>Msb</i>	Curing temperature
BFS_N4S0	slag	4	0	0	20 °C
BFS_N6S0	slag	6	0	0	20 °C
BFS_N6S5.4	slag	6	5.4	0.93	20 °C

water-to-slag ratio = 0.4

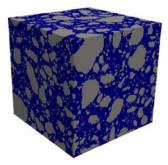
- Diffusivities of ions	in solution and	l activation energy	of diffusion of	f ions
-------------------------	-----------------	---------------------	-----------------	--------

Ions		AlO ₂	Ca ²⁺	Mg ²⁺	S ²⁻	K^+	Na ⁺	OH-
$D_{\rm ref} (\times 10^{-9} {\rm m^2/s})$	0.7^{a}	0.6^{b}	0.72	0.71	1.01°	1.96	1.33	5.28
E_{diff} (×10 ⁴ J/mol) ^d	2.46	2.04	2.32	1.26	1.43	1.60	1.67	1.80

a. This value was taken from the diffusivity of $H_2SiO_4^{-2}$;

b. This value was taken from the diffusivity of Al3+;

c. This value was taken from the diffusivity of $\mathrm{SO_4^{2-}}$;

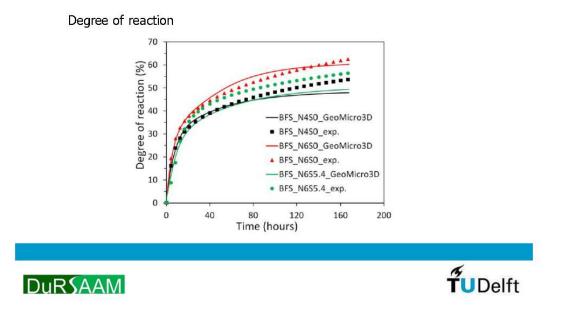

d. The activation energy of diffusion of aqueous ions were calculated based on [175-177].

- Kinetic parameter A

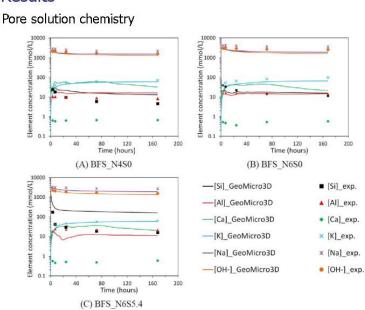
	C(N)ASH_ss	M ₄ AH ₁₀	M_6AH_{12}	$\mathrm{M}_{8}\mathrm{AH}_{14}$	C3AH6	C2ASH8	СН	Natrolite
$A (m^{-3}s^{-1})$	4.24×10 ⁷	4.71×10 ⁻²⁶	4.71×10 ⁻⁵¹	4.71×10 ⁻⁷¹	27.6	0.101	4.71×10 ⁹	9.62×10 ³

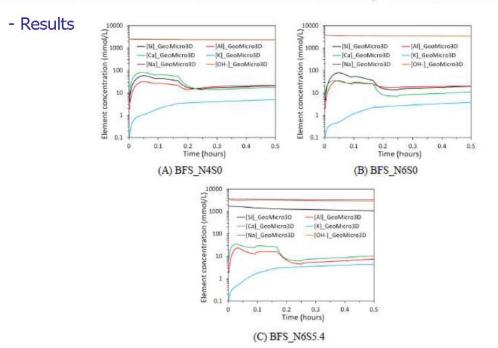
Reaction and microstructure simulation by GeoMicro3D

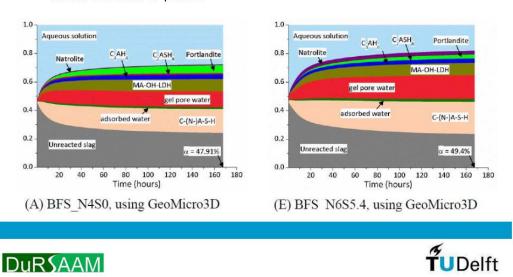
- An example of simulation of alkali-activated slag Simulation parameters



Simulated initial particle parking structure of slag in alkaline. In the graph, blue and gray represent activator and slag, respectively. The size of the cubic unit cell is 125 μ m \times 125 μ m \times 125 μ m. The digitization resolution is 1 μ m \times 1 μ m \times 1 μ m.

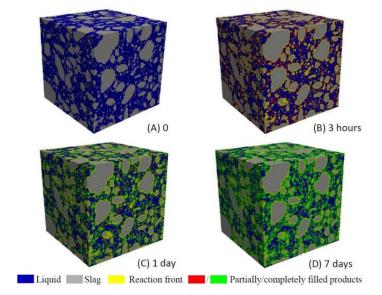



- Results


Reaction and microstructure simulation by GeoMicro3D

- Results

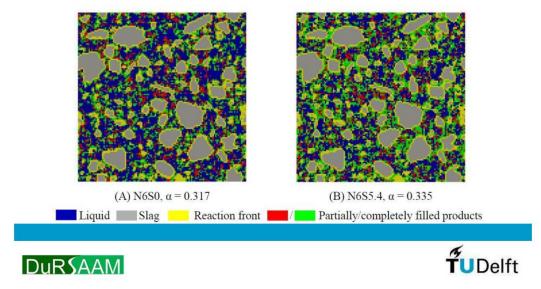
Reaction and microstructure simulation by GeoMicro3D



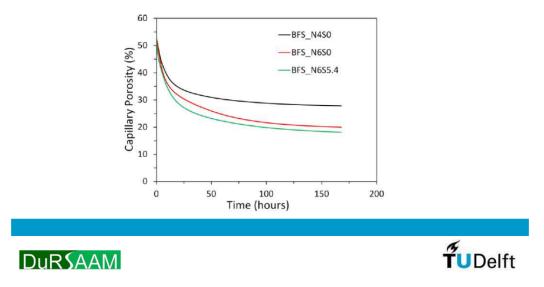
- Results

Volume evolution of phases

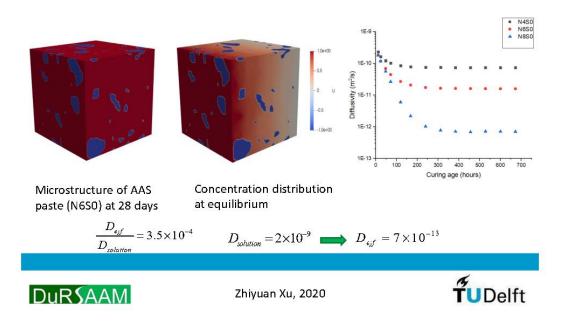
- Results


Microstructure development

Reaction and microstructure simulation by GeoMicro3D



Microstructure development



- Results

Volume evolution of phases

Application: Diffusion in alkali-activated slag paste

Guang Ye

AAM concrete by nature might sometimes be more sensitive to shrinkage and it is important to consider this in the mix design and curing conditions. In this chapter first a discussion is provided on different forms of shrinkage, how they can be characterized via testing and what can be done to mitigate excessive shrinkage. Secondly, this discussion is continued looking especially into autogenous shrinkage of AAM concrete.

DuRSAAM PhD training Network

Shrinkage

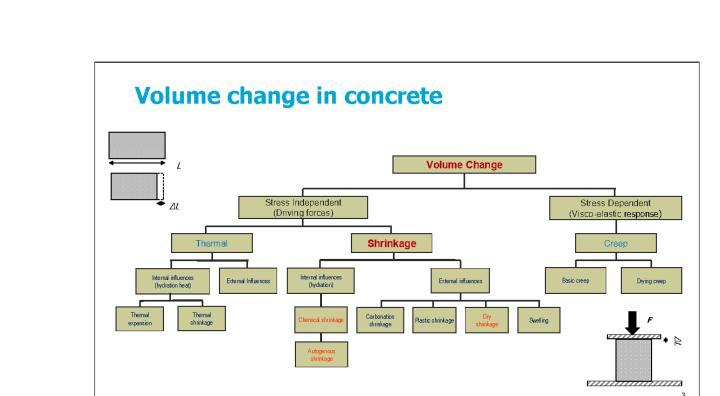
of

Portland cement paste and alkali-activated materials

Dr. Guang Ye, associate professor Concrete Modelling and Materials Behaviour (cmmb) Microlab/Section M&E TU Delft, The Netherlands

30 Jan 2020 @KIT

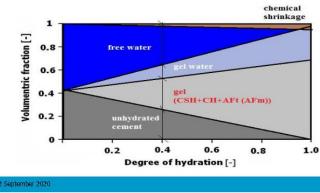
DuRSAAM


Content

• Introduction of chemical shrinkage, autogenous shrinkage and dry shrinkage in cementitious materials

TUDelft

- Mechanism
- Test method
- Mitigation
- · Autogenous shrinkage of Alkali activated concrete
 - Mechanism
 - Test method
 - Cracking potential
 - Mitigation


DuRSAAM

Chemical shrinkage

Definition

The absolute volume of cement and water is greater than the eventual hydration products due to chemical reactions forming new products of higher density than original reactants.

 $2C_3S + 5.6H \rightarrow C_3S_2H_3 + 2.6CH$ $2C_2S + 3.6H \rightarrow C_3S_2H_3 + 0.6CH,$

 $C_3A + 3CSH_2 + 26H \rightarrow C_6AS_3H_{32}$ (AFt) $2C_3A + C_6AS_3H_{32} + 4H \rightarrow 3C_4ASH_{12}$ (AFm)

 $\mathsf{C_4AF} + 3\mathsf{C}\underline{\mathsf{S}}\mathsf{H}_2 + 3\mathsf{OH} \rightarrow \mathsf{C_6}(\mathsf{A},\mathsf{F})\underline{\mathsf{S}}_3\mathsf{H}_{32} + (\mathsf{A},\mathsf{F})\mathsf{H}_3 + \mathsf{CH}$ $\mathsf{C_4AF} + \mathsf{C_6(A,F)}\underline{\mathsf{S}_3}\mathsf{H}_{32} + 2\mathsf{CH} + 2\mathsf{3H} \rightarrow \mathsf{3C_4(A,F)}\underline{\mathsf{SH}_{18}} + \mathsf{(A,F)}\mathbf{H_3}$


DURSAAM

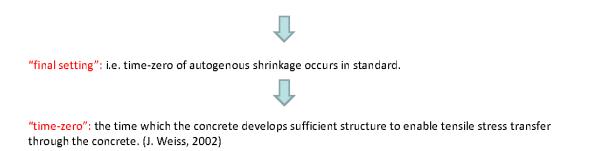
Chemical shrinkage - Volume of chemical shrinkage (V_{cs}) **Powers's Model** According to Powers, the chemical shrinkage of 1 g of cement at complete hydration is 0,064 cm³. $V_{cs} = \frac{0.064m_c}{V_c + V_w}$ Then: the volume fraction of chemical shrinkage is: **Powers's Model** $=\frac{0.064m_c(1-p)}{V_c}$ Assume: Mass of dry cement m_c Density of dry cement $\rho_c = 3.15 \text{ g/ cm}^3$ Mass of waters m_w Vw $\begin{array}{l} \rho_w = 1.00 \text{ g/ cm}^3 \\ \text{Vc} = m_c \, / \, \rho_{cem} \end{array}$ Density of water $= 0.064 \rho_{c}(1-p)$ Volume of dry cement $Vw = m_w / \rho_w$ Volume of water Vc = 0.2(1 - p)Water/cement by mass w/c Then: Volume of cement paste Vc+Vw If the degree of hydration is α , then w chemical shrinkage (V_{cs}) is: $p = \frac{v_w}{V_c + V_w} = \frac{c}{\left(\frac{w}{c} + \frac{\rho_w}{\rho_{cem}}\right)}$ Initial porosity p: V_c → $1-p = \frac{1}{V_c + V_w}$ $V_{cs} = 0.2(1-p) \alpha$

Chemical shrinkage

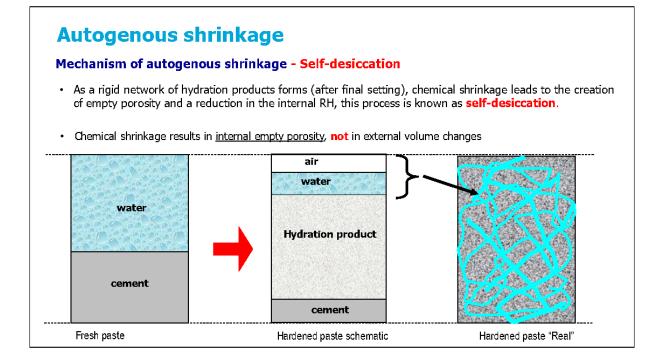
ASTM C1608 - Standard Test Method for Chemical Shrinkage of Hydraulic Cement Paste

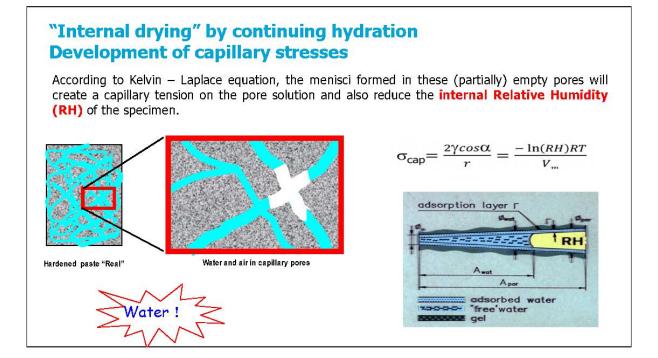
Autogenous shrinkage

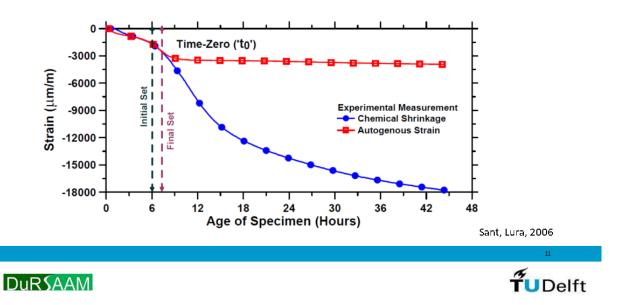
02 September 2020



Introduction


Definition of autogenous shrinkage


By ASTM C1698-09 \rightarrow The bulk strain of a sealed specimen of a cementitious mixture, not subjected to external forces and under constant temperature, measured from the time of final setting until a specified age.


TUDelft

DuRSAAM

Chemical shrinkage and autogenous shrinkage

Autogenous shrinkage

Volume change of cement paste due to self-desiccation - macroscopy scale

$ \begin{array}{ll} R &= universal gas constant: 8.13 J/mol & constant \\ T &= temperature in K & constant or variable \\ M &= molar weight of water & constant \\ v_w &= specific volume of absorbed water & constant \\ RH &= relative humidity & changing with \alpha \\ \mathfrak{\beta} &= compressibility coefficient of the specimen & changing with \alpha \\ & (\alpha &= degree of hydration) \end{array} $

DuRSAAM

Autogenous shrinkage

Early age autogenous shrinkage test for cement paste

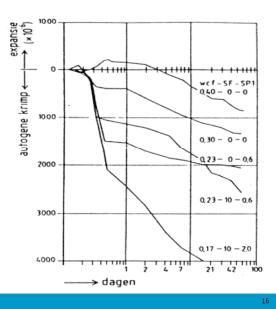
- ASTM C1698 standard originally developed by Jensen and Hansen.
- Three sealed corrugated moulds of 440 mm×Φ28.5 mm for each mix composition, T=20 °C.

Factors affecting autogenous shrinkage

Autogenous shrinkage is strongly correlated to the hydration process

<u>Substantial</u> autogenous shrinkage occurs in mixtures with <u>low</u> water/cement ratio

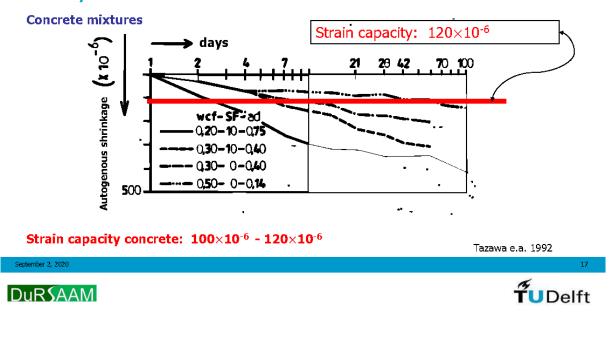
September 2, 2020

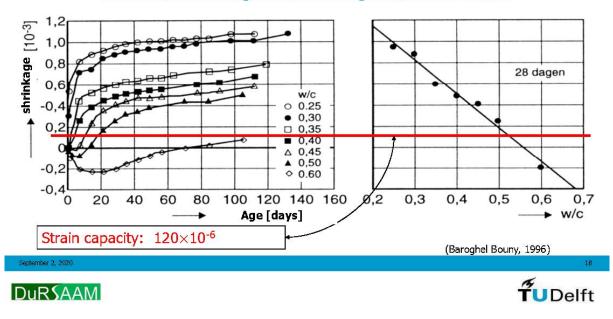


15

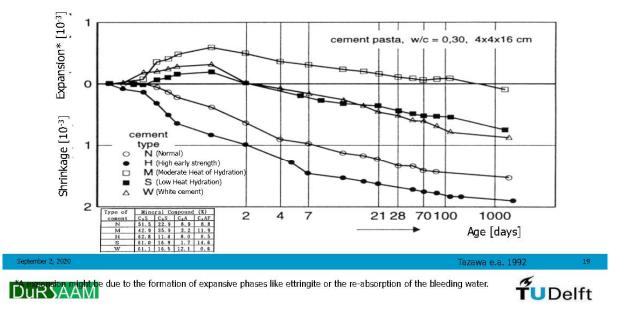
Water/cement ratio

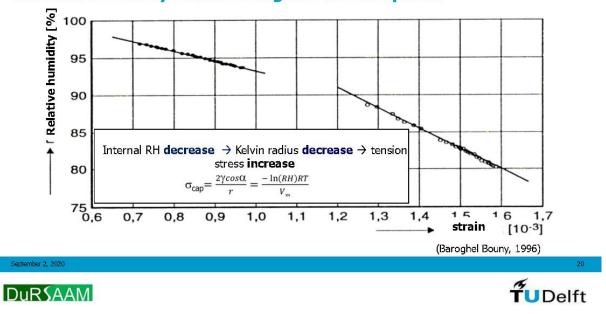
Autogenous shrinkage of cement paste


w/c	<u>Silica ume</u>			
0.40	0			
0.30	0			
0.23	0			
0.23	10 %			
0.17	10 %			
Tazawa e.a. 1992				

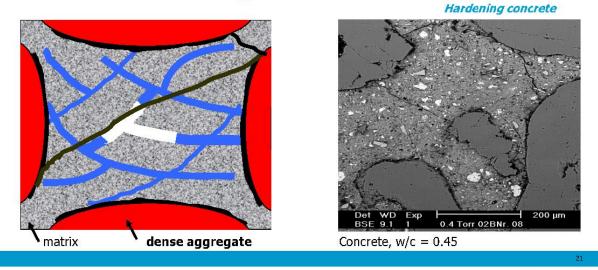


DuRSAAM

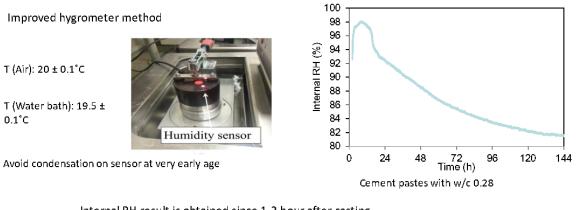

Water/cement ratio



Effect w/c on autogenous shrinkage. w/c 0.25 to 0.60



Relative humidity vs. Shrinkage of cement paste



Relative Humidity can be measured

Internal RH result is obtained since 1-2 hour after casting

DuRSAAM

*H Huang, G Ye, Examining the "time-zero" of autogenous shrinkage in high /ultrahigh performance cement pastes, CCR 97 (2017), 107-114

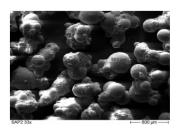
Mitigating Autogenous shrinkage

Possible solution to reduce autogenous shrinkage (AS)

Internal RH decrease \rightarrow Kelvin radius decrease \rightarrow tension stress increase

$$\sigma_{\rm cap} = \frac{2\gamma \cos\alpha}{r} = \frac{-\ln(RH)RT}{V_m}$$

Lower tension stress \rightarrow bigger Kelvin radius \rightarrow higher internal RH

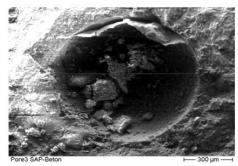

Mitigating Autogenous shrinkage

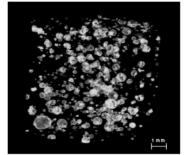
Internal Curing Technology

> Super Absorbent Polymers (SAP) (Jensen & Hansen, 2001, ...)

> Light weigh aggregates (van Breugel, 1998, Bentur, Igarishi, & Kovler, 1999, ...)

> Shrinkage reducing agents (Lange, 2004, Sato 2009, ...)

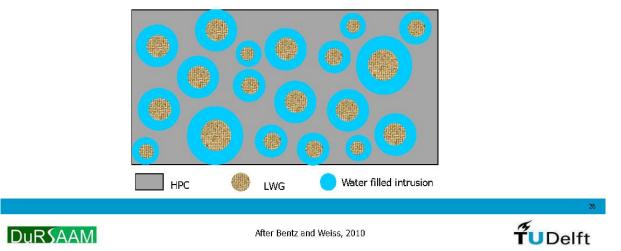



DuRSAAM

Mitigating Autogenous shrinkage

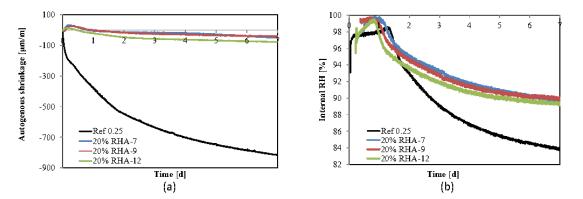
Super Absorbent Polymers (SAP)

Mechtcherine et al 2008



Mitigating Autogenous shrinkage

Light Weigh Aggregates (LWG) for HPC

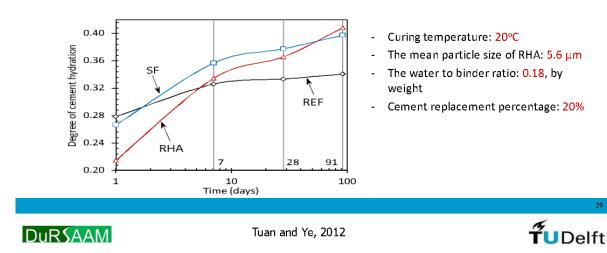


Mitigating Autogenous shrinkage

Image: Constraint of the second se

Light Weigh Aggregates (LWG) for UHPC

Mitigating Autogenous shrinkage



Using RHA as an example on Mitigating the autogenous shrinkage

Cement pastes incorporating RHA with different particle sizes (a) autogenous shrinkage since the onset of selfdesiccation; (b) internal RH change since casting.

RHA can reduce the AS

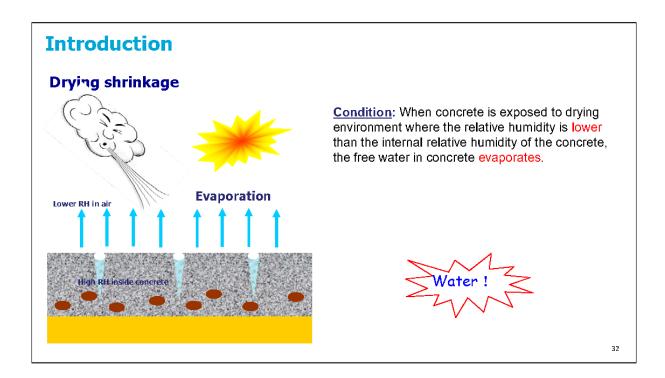
Degree of hydration show the consequence of internal curing by RHA

Drying shrinkage

02 September 2020

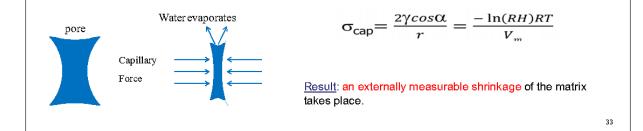
DuRSAAM

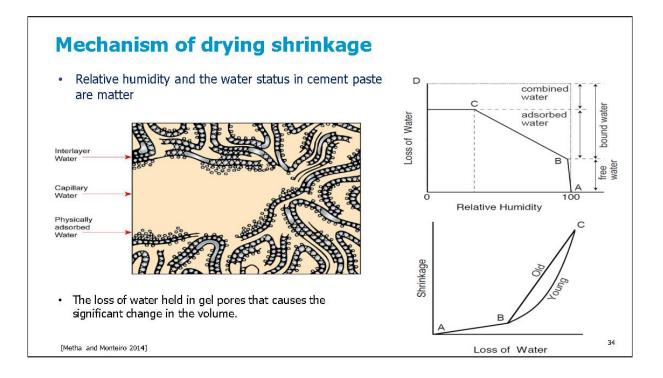
Introduction


Definition of drying shrinkage

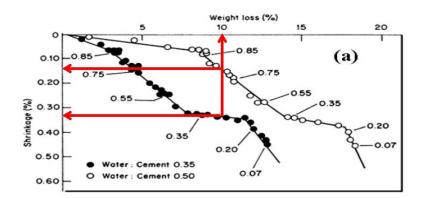
- As the volume reduction that concrete suffers as a consequence of the moisture migration when exposed to a lower relative humidity environment than the initial one in its own pore system.
- Dry shrinkage is independent of applied loads
- Dry shrinkage is the time-dependent strain measured in an unloaded and unstrained specimen at constant temperature.

31



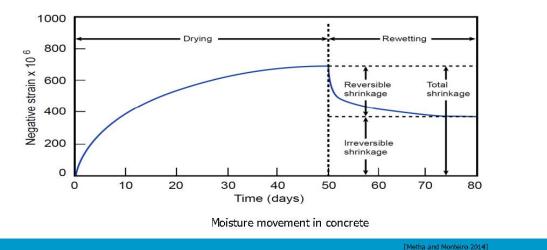

Mechanism of drying shrinkage

Capillary tension


Action: underpressure is generated in the pore water because of the existence of menisci of liquid/vapour interfaces. To balance this underpressure, compressive stress acts on the solid materials and leads to contraction of the paste.

According to Kelvin – Laplace equation, the menisci formed in these (partially) empty pores will create a capillary tension within the pore solution and also reduce the **internal RH** of the specimen.

Drying shrinkage vs. water loss



Typical drying shrinkage vs. water loss curves: for different w/c ratios highlighting measured RH at each point during the drying process of a HCP (data by Roper, 1966; taken from Bazant, 1988)

DuRSAAM

Drying shrinkage - Test method of cement mortar

Comparator (accuracy 0.001mm)

The length and mass were monitored at regular time intervals.

ASTM C175

20 °C

_

First 7 days sealed curing at

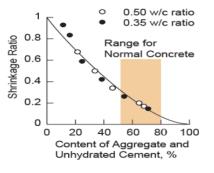
room with 50% RH and 20 °C

Test was carried out in a

TUDelft

37

DuRSAAM

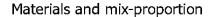

Factors affecting drying shrinkage

Materials and mix-proportion

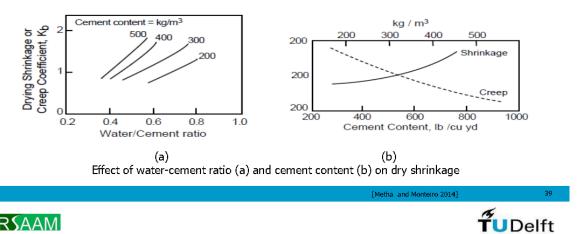
Powers, 1961

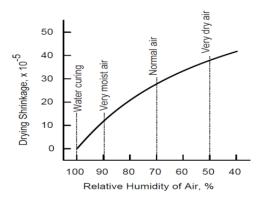
$$\frac{S_c}{S_p} = (1 - g)^n$$

 \mathcal{S}_{σ} shrinkage of concrete \mathcal{S}_{ρ} shrinkage of cement paste g, the volume fraction of aggregate in concrete



Metha and Monteiro 2014]


TUDelft

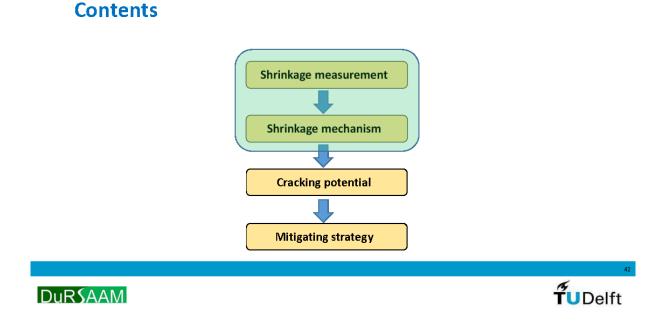

- Cement content and water/cement ratio

Factors affecting drying shrinkage

Humidity

Influence of the relative humidity on drying shrinkage

and Monteiro 2014]


Autogenous shrinkage and cracking potential

of

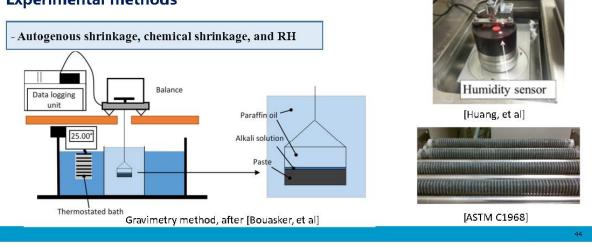
Alkali activated concrete

Raw Materials

Chemical compositions of slag and fly ash measured with XRF

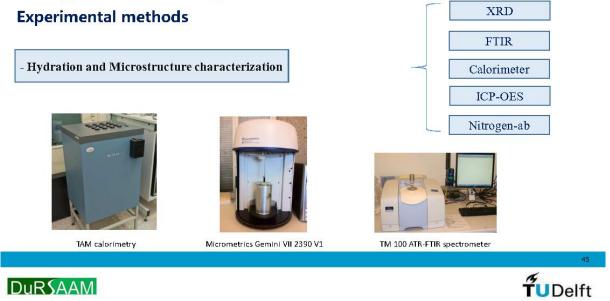
	SiO2	Al ₂ O ₃	CaO	MgO	Fe ₂ O ₃	SO3	K ₂ O	TiO2	Other	LOI		D50
Slag	31.77	13.25	40.50	9.27	0.52	1.49	0.34	0.97	0.21	1.31	Slag	18.3 µm
Fly ash	56.8	23.8	4.8	1.5	7.2	0.3	1.6	1.2	1.6	1.2	Fly ash	$48.1\;\mu m$

43


TUDelft

Mixture proportions of AAS pastes with and without MK

Mixt	ure	Slag (g)	Fly ash (g)	SiO ₂ (mol)	Na ₂ O (mol)	H ₂ O (g)
AAS		1000	-	1.146	0.76	384
AASE		500	500	1.146	0.76	384

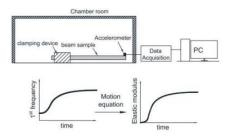

Experimental methods

DuRSAAM

Autogenous shrinkage mechanism

Experimental methods

- Setting, compressive strength, flexural strength and elastic modulus



Automatic Vicat apparatus

DuRSAAM

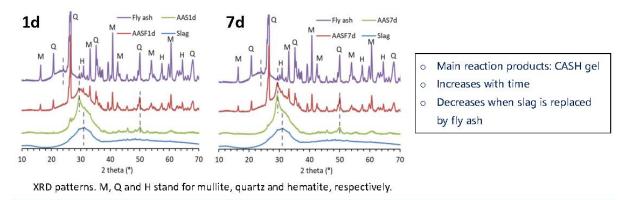
E-modulus testing setup

Autogenous shrinkage mechanism

0 -1000 Autogenous shrinkage (μm/m) Vicat setting time of the pastes (min). -2000 Mixture OPC0.4 AAS AASF -3000 63 Initial setting 25 240 -4000 **Final setting** 35 103 340 -5000 OPC0.4 -6000 AASE AAS -7000 Time (days)

Setting time & autogenous shrinkage

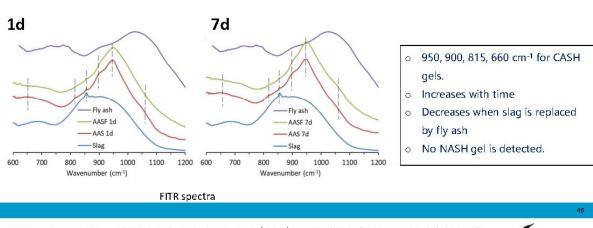
Autogenous shrinkage of AAS and AASF pastes in comparison with OPC paste.


Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

47

Chapter 3 Autogenous shrinkage mechanism

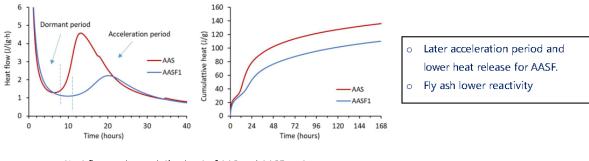
Microstructure characterization



DuRSAAM

Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

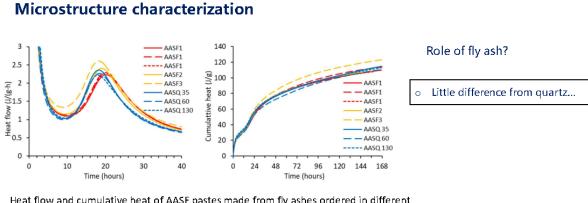
Autogenous shrinkage mechanism


Microstructure characterization

DuRSAAM

Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

Microstructure characterization


Heat flow and cumulative heat of AAS and AASF pastes

DuRSAAM

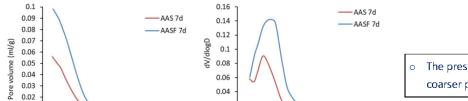
Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

Autogenous shrinkage mechanism

Heat flow and cumulative heat of AASF pastes made from fly ashes ordered in different batches and AASQ pastes where fly ash is replaced by quartz with different particle sizes.

DuRSAAM

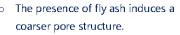
Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107



51

Microstructure characterization

10 100 Pore diameter (nm)


0.06

0.04

0.02

0

1

Pore size distribution of for AAS and AASF

1000

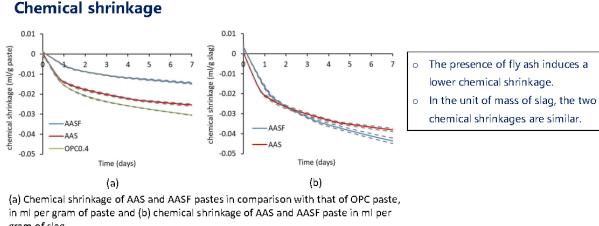
DuRSAAM

0.03

0.02

0.01 0

1

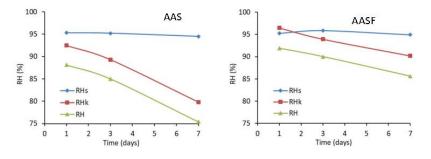

Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

10 100 Pore diameter (nm)

1000

Autogenous shrinkage mechanism

gram of slag.


DuRSAAM

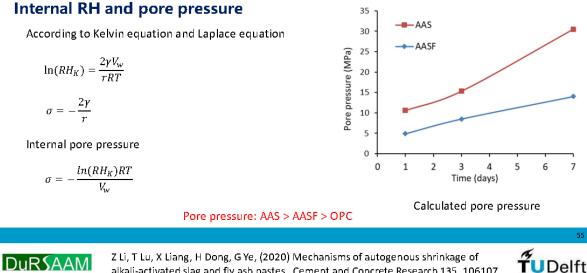
Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

53

Internal RH and pore pressure

Internal RH results of AAS and AASF

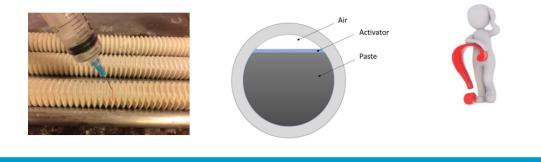
 $RH_K = RH/RH_S$


- RH is the measured RH in paste, -
- RH_s is due to the dissolved salts
- in the pore solution RH_{κ} is due to the curvature
- effect of the liquid-gas menisci

DURSAAM

Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

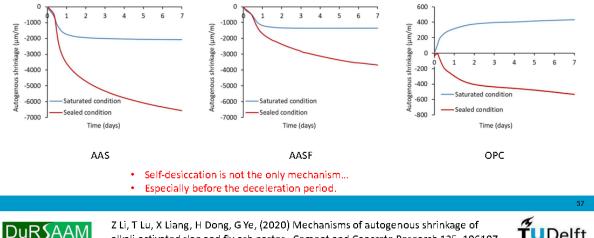
Autogenous shrinkage mechanism



Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

Internal RH and pore pressure

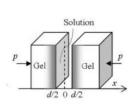
Is pore pressure the only driving force of autogenous shrinkage?

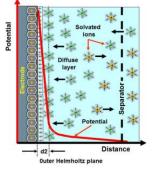


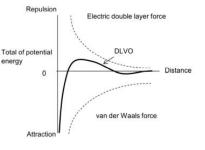
Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of DURSAAM alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

Autogenous shrinkage mechanism

Shrinkage under saturated condition



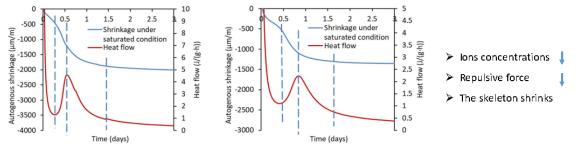



Chapter 3 Autogenous shrinkage mechanism

Possible mechanism

DLVO theory (van der Waals and Double-layer force)

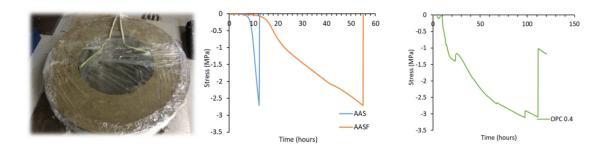
Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107


Autogenous shrinkage mechanism Possible mechanism Force in sub-micro/nm level: > DLVO theory fail at small pores and high ions concentrations > Non-DLVO force such as steric-hydration force plays more important role Solution Repulsive force/Radius, F/R (mN m⁻¹) (A) N6S5.4 -N8S5.4 Concentration of Si (mmol/L) Gel Gel 100 m (m) M AAAJA d/2 0 d/2 10 0. 200 400 600 800 50 Time (hours) Distance, D (nm) [Israelachvili, 2011] [Zuo et al. CCR. 2019]

Z Li, T Lu, X Liang, H Dong, G Ye, (2020) Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes, Cement and Concrete Research 135, 106107

Possible mechanism

Shrinkage of AAS (left) and AASF (right) under saturated condition, plotted together with the reaction heat

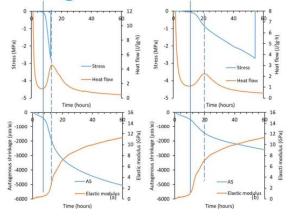

DuRSAAM

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

TUDelft

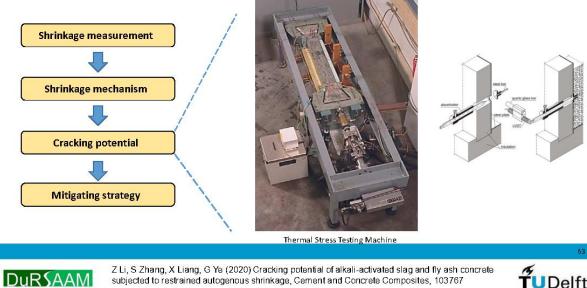
Autogenous shrinkage induced stress

Paste, by ring test:

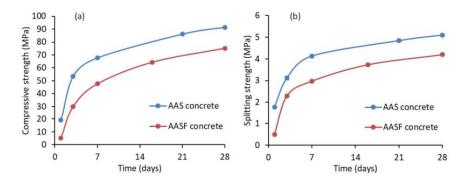


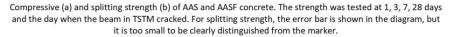
Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

Autogenous shrinkage induced stress

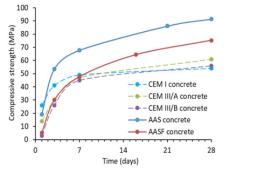

Autogenous shrinkage -induced stress plotted together with reaction heat , autogenous shrinkage (AS) and elastic modulus of (a) AAS and (b) AAS F. 0 h of all the curves represents the moment of adding activator into the precursors. The solid line and the dashed line indicate the start of the acceleration period and the peak ing time of the reaction heat, respectively.

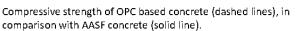
Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

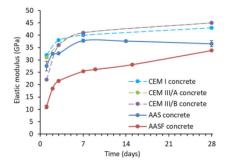



Cracking potential of geopolymer concrete

Compressive and splitting strength of geopolymer concrete

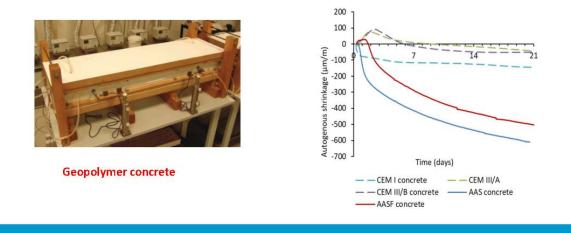





Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

Compressive and splitting strength of geopolymer concrete

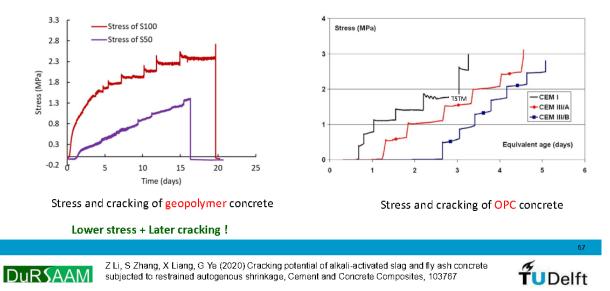
Elastic modulus of AAM concrete (solid lines), in comparison with OPC based concrete (dashed lines)

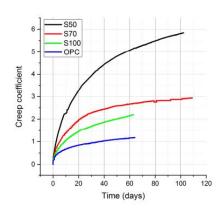

DuRSAAM

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

65

Autogenous shrinkage of geopolymer concrete

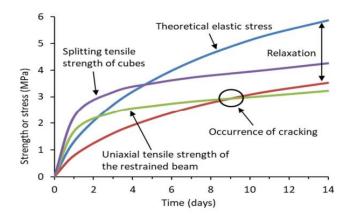



Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

TUDelft

Autogenous shrinkage induced stress – TSTM test

Creep of Geopolymer Concrete



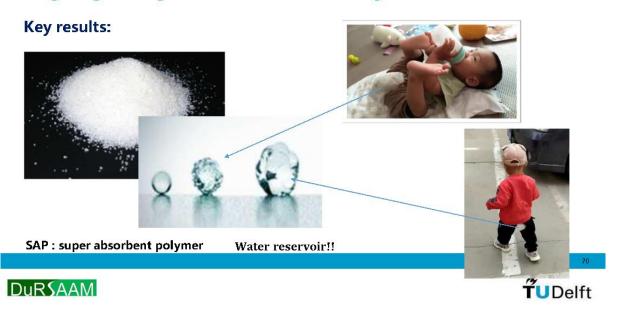
(S0 = 100%FA, S30 = 30%BFS+70%FA......, S100=100%BFS)

DuRSAAM

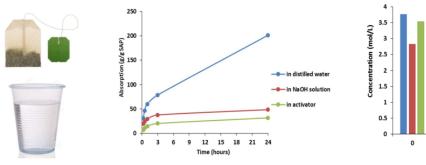
A. Kostiuchenko et al. (15th ICCC and 73th RILEM week, 2019)

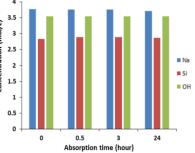
Cracking potential of Geopolymer Concrete

Stress development and the resultant cracking of concrete due to restrained shrinkage



Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767


TUDelft


Mitigating strategies. Part 1: Internal curing

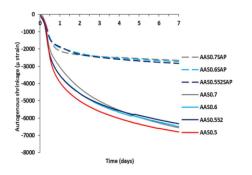
Mitigating strategies. Part 1: Internal curing

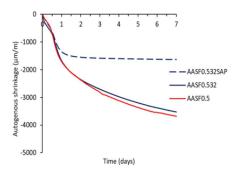
Key results:

Absorptions of SAP in distilled water, NaOH solution and activator.

lons concentrations before and after absorption

DuRSAAM


Z Li, M Wyrzykowski, H Dong, J Granja, M Azenha, P Lura, G Ye (2020) Internal curing by superabsorbent polymers in alkali-activated slag, Cement and Concrete Research 135, 106123



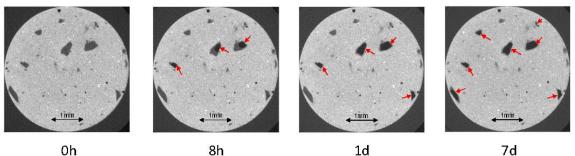
71

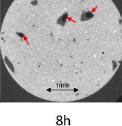
Mitigating strategies. Part 1: Internal curing

Key results:

Autogenous shrinkage of AAS paste with and without SAP

Autogenous shrinkage of AASF paste with and without SAP


DuRSAAM


Z Li, M Wyrzykowski, H Dong, J Granja, M Azenha, P Lura, G Ye (2020) Internal curing by superabsorbent polymers in alkali-activated slag, Cement and Concrete Research 135, 106123

Mitigating strategies. Part 1: Internal curing

Key results:

1d

7d

Z Li, M Wyrzykowski, H Dong, J Granja, M Azenha, P Lura, G Ye (2020) Internal curing by superabsorbent polymers in alkali-activated slag, Cement and Concrete Research 135, 106123

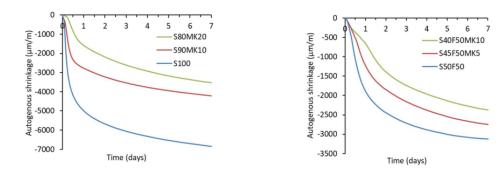
Mitigating strategies. Part 2: Adding MK

Key results:

Mixture proportions of AAS and AASF pastes with and without MK.

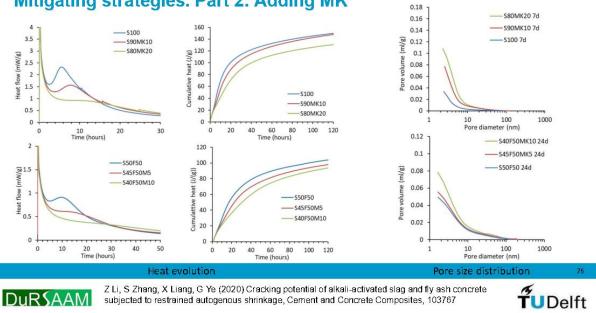
Mixture	Slag (g)	Fly ash (g)	MK (g)
S100	1000	-	-
S90MK10	900	-	100
S80MK20	800	-	200
S50F50	500	500	-
S45F50MK5	450	500	50
S40F50MK10	400	500	100

DuRSAAM

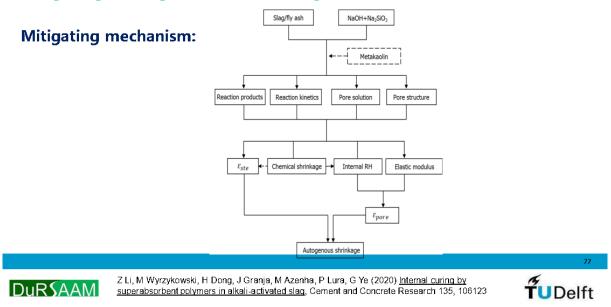

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

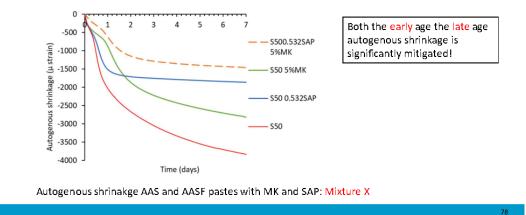
Mitigating strategies. Part 2: Adding MK

Key results:


DuRSAAM

Autogenous shrinkage of AAS and AASF pastes with and without MK

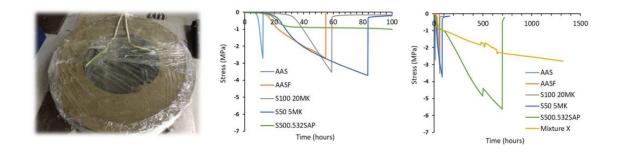

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767


Mitigating strategies. Part 2: Adding MK

Mitigating strategies. Part 2: Adding MK

Mitigating strategies. Part 2: Adding MK

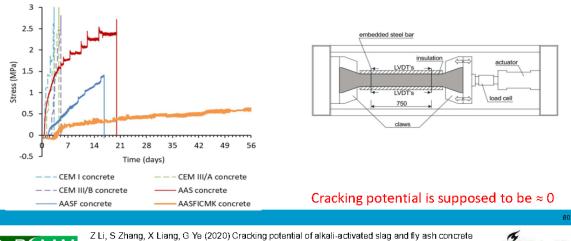
Combine SAP + MK:



DuRSAAM

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

TUDelft


Cracking potential by ring test (paste)

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash concrete subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

Cracking potential by TSTM (concrete)

DuRSAAM

Z Li, S Zhang, X Liang, G Ye (2020) Cracking potential of alkali-activated slag and fly ash conc subjected to restrained autogenous shrinkage, Cement and Concrete Composites, 103767

10. Fibre-reinforced AAM concretes

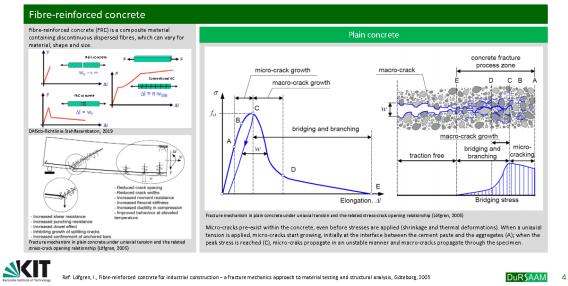
Frank Dehn

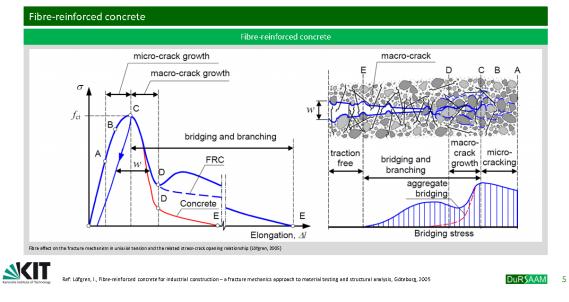
Fibre reinforced concretes have become more and more popular of the last decades. This type of concrete is reinforced with short fibres, to improve the post-cracking toughness of the concrete. In this chapter fibre reinforced concrete is discussed both from the perspective of concretes based on ordinary Portland cement and alkali-activated materials.

Fibre-reinforced concretes OPC vs AAMs

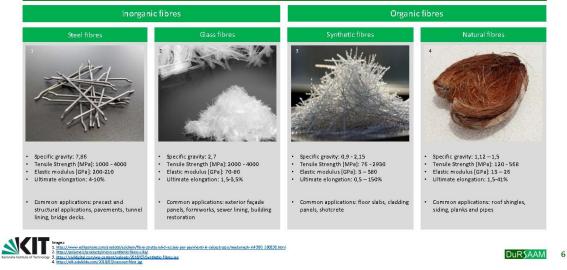
Prof. Dr.-Ing. Frank Dehn DuRSAAM – Course on "AAM Technology" 27-29 January 2020

DuRSAAM - H2020-MSCA-ITN-2018-813596

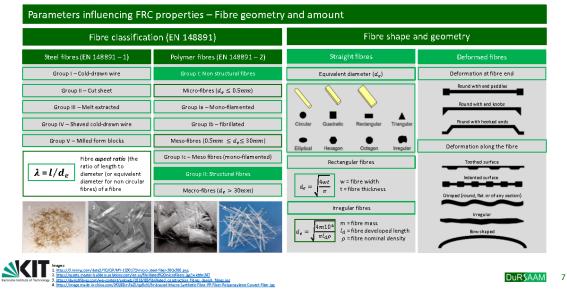

Introduction


Introduction

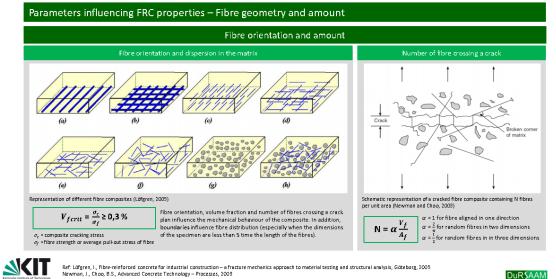
Definition



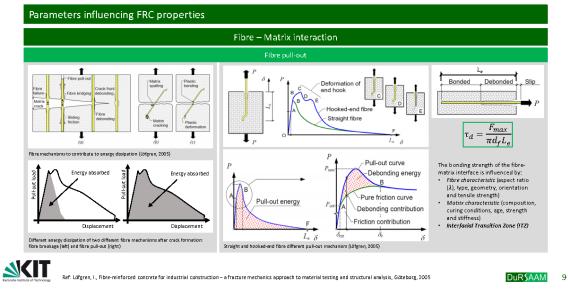
Definition



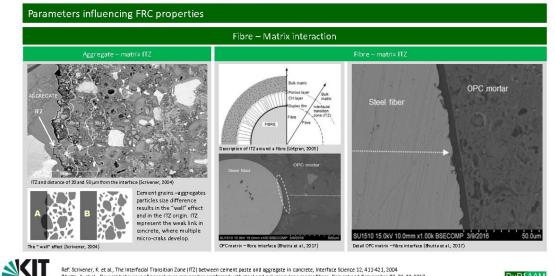
Fibre types and properties


Parameters influencing FRC properties – Fibre material

Fibre types and properties

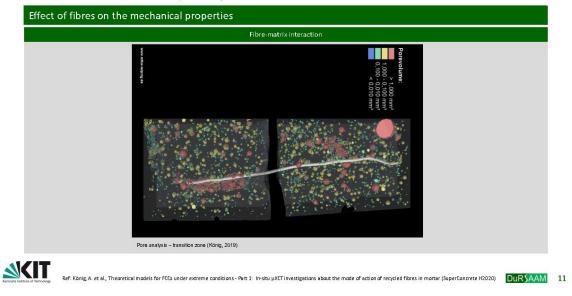


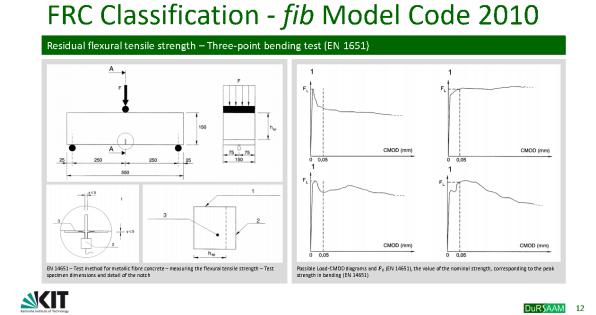
Fibre types and properties

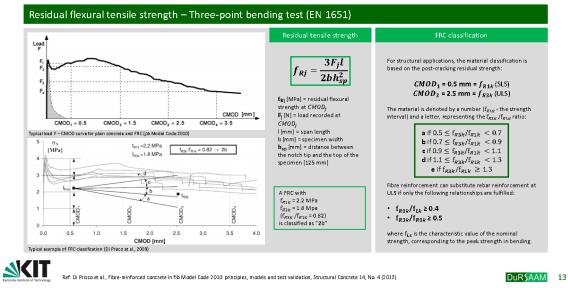


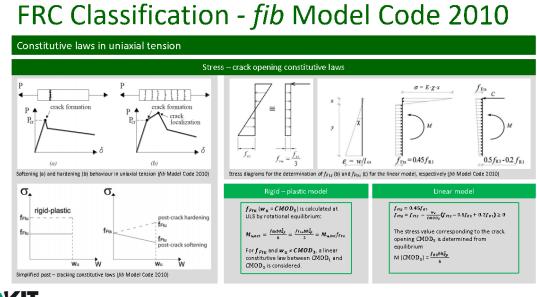
DuRSAAM 8

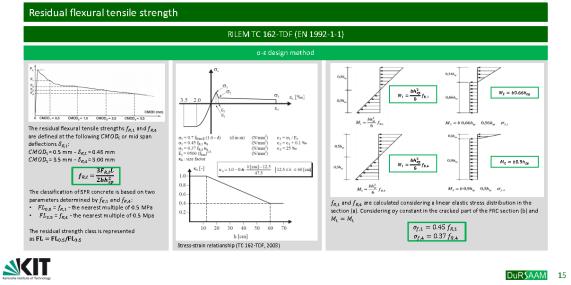
Fibre types and properties

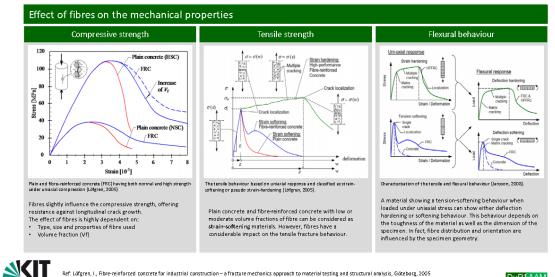



Fibre types and properties

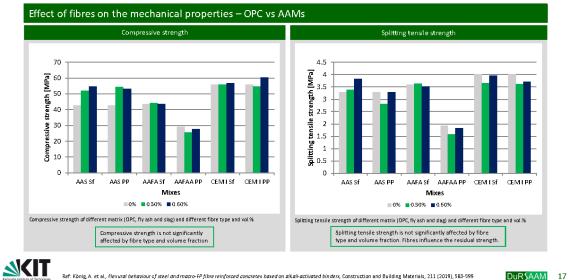

Ref: Scrivener, K. et al., The Interfacial Transition Zone (ITZ) between cement paste and aggregate in concrete, Interface Science 12, 411-421, 2004 Bhutta, A. et al., Flexural behaviour of geopolymer composites reinforced with steel and polypropylene macrofibres, Cement and Composites 80, 51-40, 2017

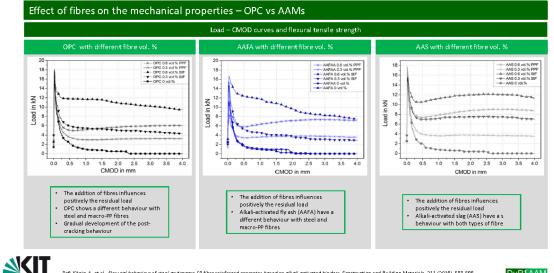

DuRSAAM 10


FRC Classification - fib Model Code 2010

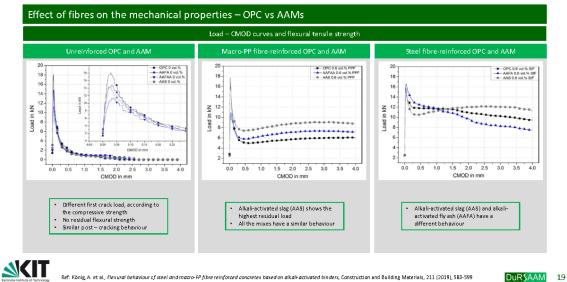


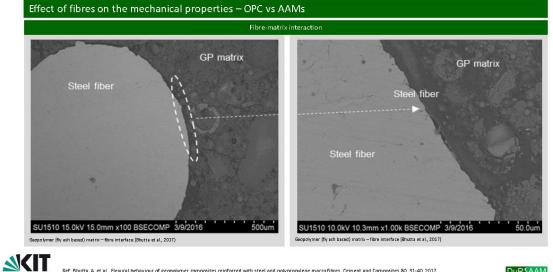
DuRSAAM 14


FRC Classification – Eurocode 2

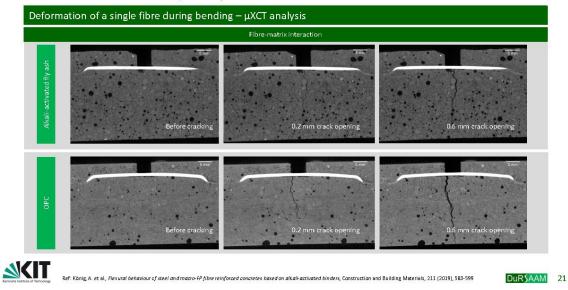


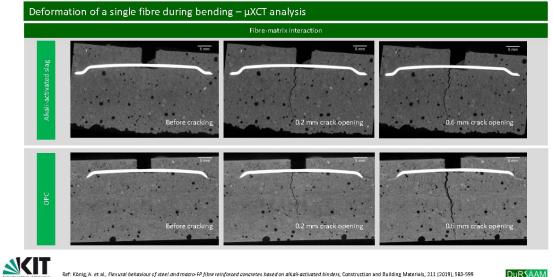
Ref. Löfgren, I., Fibre-reinforced concrete for industrial construction – a fracture mechanics approach to material testing and structural analysis, Göteborg, 2005 Jansson, A., et al., Design methods for fibre-reinforced concrete: a state-of-the-art review, Nordic Concrete Research 38, 21-36 (2008)


DuRSAAM 16

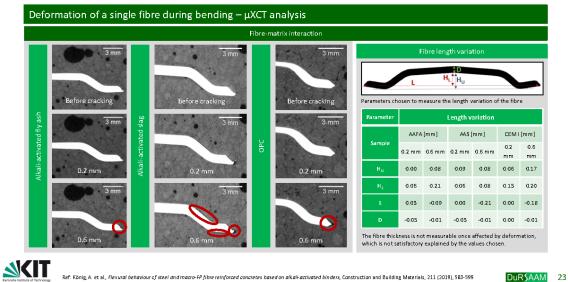


Flexural behaviour of steel and macro-FP fibre reinforced concretes based on alkali-activated binders, Construction and Building Materials, 211 (2019), 588-599


DuRSAAM 18



of geopolymer composites reinforced with steel and polypropylene macrofibres, Cement and Composites 80, 31-40, 2017


DuRSAAM 20

et al, flexural behaviour of steel and macro-FP fibre reinforced concretes based on alkali-activated binders, Construction and Building Materials, 211 (2019), 583-599

DuRSAAM 22

Frank Dehn

Having gained theoretical insights with respect to alkali-activated concrete, it might be good to experience the manufacturing of AAM concrete. This can be easily achieved in a concrete lab or similar workshop, provided that you can get hold on the constituent materials. In this chapter, two exemplary mix designs (one concrete and one mortar) are provided for those who want to get first experience with making AAM concrete.

Part 1: Fly ash concrete

Material and Proportions

	-	
Product		Mass (kg)
Fly Ash	(class F)	15.032
NaOH solution	(50% solid, 50% water)	2.270
Waterglass	(35% solid, 65% water)	4.026
Extra water		1.187
Aggregate	(0-2 mm)	16.681
Aggregate	(2-8 mm)	16.681
Aggregate	(8-16 mm)	22.242
Superplasticizer	: BB334-BASF	0.075

Moulds of (15cm*15cm*15cm)

Corresponding parameters

water:binder = 0.33 (kg:kg) SiO₂:Na₂O = 0.91 (mol:mol, in the solution) SiO₂:H₂O = 0.065 (mol:mol, in the solution)

<u>Protocol</u>

Mix aggregates and binder 60s Add waterglass, then sodium hydroxide, then water and let mix 60s Add progressively superplasticizer, if needed Fill cubes (15cm*15cm*15cm)

<u>Curing</u>

-2 cubes at ambient conditions (T=20°C, RH=65%)

-2 cubes cured at 70°C during 48 hours then ambient temperature

Compressive strength after 7 days

Compressive strength (MPa)

Curing conditions	Sample 1	Sample 2	Average
Ambient			
conditions			
Curing 70°C 48			
hours			

Part 2: Metakaolin mortars

Material and Proportions

Product		Mass (g) for Specimen 1	Mass (g) for Specimen 2
Metakaolin	(MetaMax)	300	300
NaOH solution	(50% solid, 50% water)	180	180
Waterglass	(35% solid, 65% water)	320	320
Extra water		-	50
Sand	(0-2 mm)	1350	1350

Moulds of 4cm*4cm*16cm

Corresponding parameters

water:binder = 1.00 (kg:kg) SiO₂:Na₂O = 0.92 (mol:mol, in the solution) SiO₂:H₂O = 0.085 (mol:mol, in the solution)

<u>Protocol</u>

- 1. Sand + metakaolin mixed for 30s.
- 2. After 30s, add activators.
- 3. Let all mix during 60s at low speed.
- 4. Stop the mix for 30s during which one should remove the material from the paddle.
- 5. Mix again at high speed during 60s.

<u>Workability</u>

	Specimen 1	Specimen 2
Workability		

Compressive strength after 7 days (storage: T=20°C, RH=65%)

Compressive strength (MPa)

Sample	Specimen 1	Specimen 2
1		
2		
3		

About the teachers

Frank Dehn - Karlsruhe Institute of Technology

Chair of Building Materials and Concrete Construction at the Institute of Concrete Structures and Building Materials (IMB), Director of the Materials Testing and Reasearch Laboratory (MPA), Member of the Presidium and Co-Chair of Techical Council of the International Federation for Structural Concrete (*fib*), Co-Chair of RILEM TC MPA - Mechanical Properties of Alkali-activated Materials, Member of National and International Standardization Commitees and Expert Boards related to Concrete, Editor-in-Chief "Structural Concrete"

Guang Ye - Delft University of Technology

Associate professor in the Section of Materials and Environment of TUDelft, chair of the research group of Concrete Modelling and Materials Behavior, author/co-author of 300 journal/conference papers, editor/co-editor of 8 conference proceedings and Chapter contribution of 6 books, member of several RILEM Technical Committees like TC-ICC, TC-ATC, TC-SHC and TC-SAP, TC-DTA and *fib* committee of 8.10 and 8.12.

John Provis - University of Sheffield

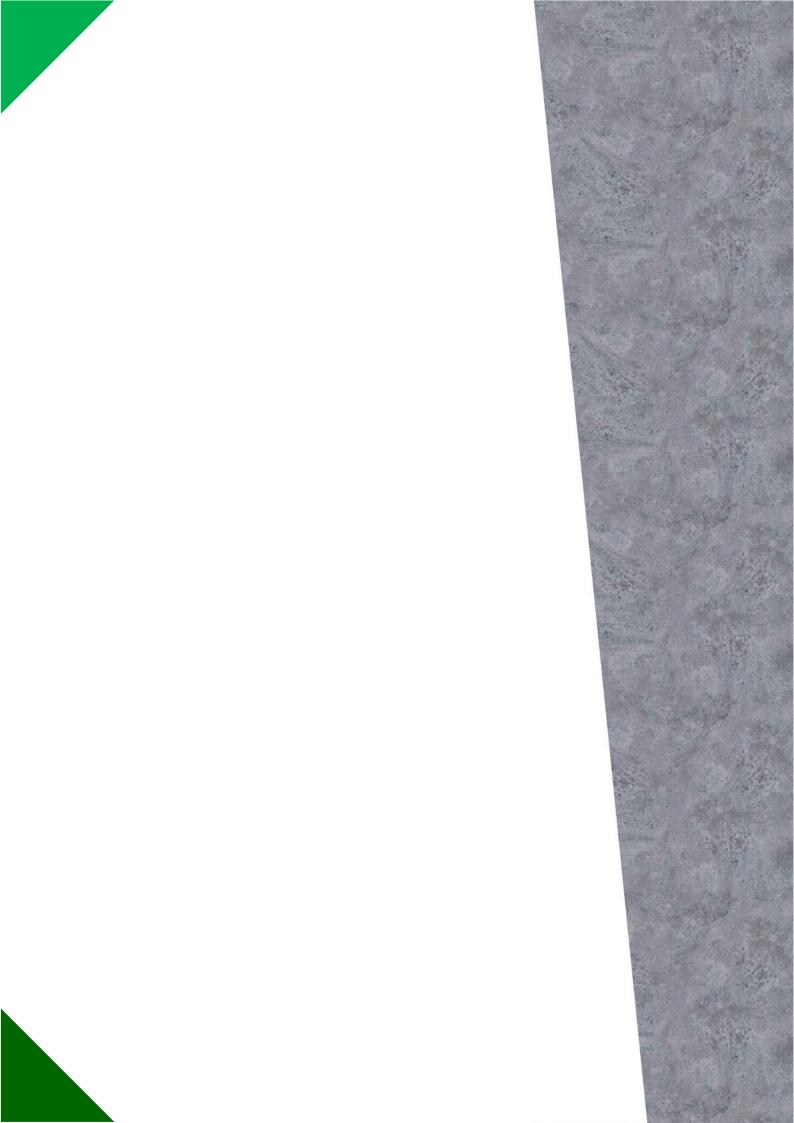
Professor of Cement Materials Science and Engineering and Head of the Engineering Graduate School of University of Sheffield, Deputy Chair of RILEM Technical Committee 283-CAM, an invited TAC Expert of RILEM, a Voting Member of committees of BSI, ASTM and ACI, Associate Editor of the leading journals Cement and Concrete Research and Materials and Structures, and Speciality Chief Editor for the Structural Materials section of Frontiers in Materials.

Stijn Matthys - Ghent University

Stijn Matthys is full professor on renovation of civil structures at Ghent University, Magnel Laboratory for Concrete Research. He is manager of the Ghent University "<u>DuraBUILDmaterials</u>" knowledge cluster. His expertise relates to structural renovation of civil structures, fibre reinforced polymer (FRP) reinforcement, structural behaviour of concrete structures, damage diagnostics and monitoring, and technologies for durable building materials and techniques.

About DuRSAAM

DuRSAAM is a collaborative PhD framework creating a critical mass of experts skilled in innovative alkali-activated material (AAM) concrete, as a key enabling technology for a sustainable and resilient built environment. AAM technology presents a new generation of materials, ideally conceived to respond to the need for more efficient, durable, eco-friendly and reliable construction, and utilizing by-product resources as raw materials. Modern concrete will be produced with low carbon footprint (CO2 emissions reduced by 80%), lower energy consumption and reduced use of primary resources (>1.5 t raw materials are quarried per t Portland cement clinker; this will be reduced by >60%), and with an addressable market for AAM binders of 5 B€/yr. DuRSAAM answers unmet industry demands, to facilitate emerging AAM technology for continued market entry and to unlock its potential in society.


The consortium brings together 7 academic and 15 non-academic partners, to excel in the scientific development and exploitation of AAM concrete, advancing design, modelling and practice beyond the state-of-the-art. It holds a unique focus on: (1) today's concerns of users and engineers that the durability and sustainability of AAM concrete is yet insufficiently quantified; and (2) provision of an AAM technology for rehabilitation of structures to meet the growing demand for renovation, to be developed in parallel with AAM for new concrete structures.

DuRSAAM runs from 2018 till 2023 and delivers world-leading training in this multidisciplinary field through 13 PhDs in interrelated aspects of AAM concrete, fibre reinforced highperformance concrete, and textile-reinforced mortar, as well as sustainability assessment. The outcomes will be instrumental in delivering a sustainable future in Europe's construction industry, which is increasingly driven by the growing demand for durable yet cost-effective solutions, driving a greater focus on reliable and comprehensive eco-efficient material technologies such as AAM.

The PhD Training Network on Durable, Reliable and Sustainable Structures with Alkali-Activated Materials This project has received funding from the European Union's Horizon 2020 research and innovation

programme under grant agreement No 813596 DuRSAAM.

