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Abstract 

 

The validity of the Language ENvironment Analysis (LENA) System was evaluated for 

Dutch. 216 5-min samples (six samples per age per child) were selected from daylong 

recordings at 5, 10 and 14 months of age of native Dutch-speaking younger siblings of children 

with autism spectrum disorder (N=6) and of typically developing children (N=6). Two native 

Dutch-speaking coders counted the amount of adult words (AWC), child vocalisations (CVC) 

and conversational turns (CT). Consequently, correlations between LENA and human 

estimates were explored. Correlations were high for AWC at all ages (r = .73 to .81). Regarding 

CVC, estimates were moderately correlated at 5 months (r = .57) but the correlation decreased 

at 10 (r = .37) and 14 months (r = .14). Correlations for CT were low at all ages (r = .19 to .28). 

Lastly, correlations were not influenced by the risk status of the children. 

 

Keywords: Language ENvironment Analysis, Dutch, autism spectrum disorder 
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Introduction 

A child’s home language environment plays an important role in the development of 

language as children spend a large amount of time at home. Both the quantity (e.g., the amount 

of language input) as well as the quality (e.g., diversity and sophistication) of language input 

given by a caregiver influence language development in young children (Huttenlocher, Haight, 

Bryk, Seltzer, & Lyons, 1991; Rowe, 2012; Warlaumont, Richards, Gilkerson, & Oller, 2014; 

Weisleder & Fernald, 2013; Zimmerman et al., 2009). In addition, Warlaumont et al. (2014) 

suggested that there is a social feedback loop between a child and a caregiver that facilitates 

language development. When a child produces a sound, parents are likely to respond to this, 

which will encourage the child to produce similar utterances (Warlaumont et al., 2014). More 

specifically, speech that is used in interaction with a child (e.g., conversational turns between 

caregiver and child) seems to predict a child’s language development even more than the 

amount of language input (Ratner, 2013; Ye Wang et al., 2017; Zimmerman et al., 2009).  

Despite the clear value of mapping characteristics of the home language environment 

(e.g., the amount of conversational turns), different methodological issues make it difficult to 

estimate this. Reliable audio recordings are required but gathering and processing 

representative recordings of the natural home language environment is generally very time-

consuming. In this light, the Language ENvironment Analysis system (LENA) has been 

developed with the purpose of estimating the amount of speech present in the home language 

environment of young children (Schwarz et al., 2017). The LENA uses an automated approach 

to yield a set of descriptive measures of daylong audio recordings (number of adult words, 

child vocalisations, conversational turns and other components of the audio environment) that 

meaningfully characterize language environments (Gilkerson et al., 2015). The process by 

which the LENA system derives language measures from audio recordings can be divided into 

two main steps (Xu, Yapanel, Gray, & Baer, 2008). First, the audio stream is divided into 

segments which are categorized based on the speaker or type of sound each segment 

represents (Xu et al., 2008). These segments consist of key child (i.e., the child of interest 
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being recorded), other child, male adult, female adult, overlapping sound, TV and other electric 

sound, noise (e.g., crying/whining) and silence. After identification of the different segments, 

the software can estimate: 1) Adult Word Count (AWC; the number of words spoken by a clear 

male or female adult in the proximity of the child), 2) Child Vocalisation Count (CVC; the 

number of vocalisations produced by the key child with the exception of vegetative sounds 

(e.g., sneezing or burping) and fixed sounds (e.g., crying or laughing)) and 3) Conversational 

Turns (CT; the number of turns the key child engages in with an adult, more specifically, all the 

child vocalisations that occur within five seconds of an adult utterance without an interruption 

from another child) (Ganek & Eriks-Brophy, 2018a; Schwarz et al., 2017; Xu et al., 2008). A 

more comprehensive explanation of this process can be found in Oller et al. (2010) and 

Gilkerson and Richards (2008). 

Thus far, the LENA system has been used to investigate individual differences in 

children’s home language environments (e.g., Greenwood, Thiemann-Bourque, Walker, 

Buzhardt, & Gilkerson, 2011; Weisleder & Fernald, 2013), to characterize the language 

environments of children with and without developmental problems such as autism spectrum 

disorder (ASD) (e.g., Dykstra et al., 2012; Warlaumont et al., 2014; Warren et al., 2010) or with 

and without a hearing impairment (e.g., Aragon & Yoshinaga-itano, 2012; Caskey & Vohr, 

2013), to study differences between home and school contexts (e.g., Burgess, Audet, & 

Harjusola-Webb, 2013; Jackson & Callender, 2014), to investigate the language environment 

in other languages and cultures (e.g., Pae et al., 2016) and to map outcome in language 

intervention research (e.g., Gilkerson et al., 2015; Sacks et al., 2014). Furthermore, studies 

have also been focusing on updating psychometrics of the automated measurement in 

American English and in other languages (Greenwood, Schnitz, Irvin, Tsai, & Carta, 2018).   

The LENA System software has been developed and so far mainly used for American 

English applications. There is a growing interest in the reliability and validity of the LENA 

System in other languages due to the benefits (e.g., less time consuming, more naturalistic, 

etc.) related to using an automated approach in mapping descriptive measures of the home 

language environment of young children. The validation of the LENA System has been 
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performed for Spanish (as spoken in the United States; Weisleder & Fernald, 2013), European 

French (Canault, Le Normand, Foudil, Loundon, & Thai-Van, 2016), Swedish (Schwarz et al., 

2017), Chinese (Gilkerson et al., 2015), Korean (Pae et al., 2016), Vietnamese (Ganek & Eriks-

Brophy, 2018b) and Dutch (Busch, Sangen, Vanpoucke, & van Wieringen, 2018). Validation 

for Chinese (with a focus on the Shanghai dialect and Mandarin) has shown that the LENA 

system can also be used in a tone language with a prosody that differs from American English, 

indicating that acoustic differences do not seem to invalidate system performance (Gilkerson 

et al., 2015). As mentioned earlier, the LENA system software derives language measures 

from audio recordings using two main steps (Xu et al., 2008). When validating the LENA 

system, comparisons with manual transcription can thus be provided for both steps: the 

algorithm’s intermediate step (the segments) or its final output (the counts) (Busch et al., 2018; 

Gilkerson et al., 2015). Regarding the intermediate step, LENA and human transcribers seem 

to agree relatively well when labelling speaker and sound categories (segments) in American 

English and Chinese (Gilkerson et al., 2015; Xu, Yapanel, & Gray, 2009). The majority of 

validation studies in languages other than American English have, however, investigated the 

validity of the LENA system directly at the level of its final output (counts) and did not take the 

intermediate step into account (for an overview see Table 1). This because specific counts 

seem to be influenced to a higher extent by the language that is being spoken (e.g., due to 

differences in speed of delivery, pitch, accent, dialectal variations, etc.) than speaker and 

sound categories (Busch et al., 2018; Canault et al., 2016). Defining speaker and sound 

categories relies mainly on acoustic features that are extracted from the recording, but can be 

influenced by environmental factors such as a noisy environment (Xu et al., 2008). Taking this 

into account, the current study will therefore focus on validating the final output (counts) of the 

LENA system.  

In what follows, an overview will be given of studies that were specifically designed to 

evaluated the final output (counts) of the LENA system in languages other than American 

English. These studies will also be related to the results of the LENA foundation’s validation 

study, more specifically the Natural Language Study (Gilkerson & Richards, 2008; Gilkerson 
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et al., 2017; Xu et al., 2009). A more comprehensive overview of all studies reporting on LENA 

validation in American English and in other languages can be found in the review of Cristia, 

Bulgarelli and Bergelson (2020). 

 

Adult word count (AWC)  

In American English, the LENA System Software’s AWC Report estimated quite 

precisely how many adult words parents produced near the key child between 2 and 48 months 

of age (Gilkerson et al., 2017). The Natural Language Study of the LENA Foundation reported 

a .92 correlation between human and LENA-based AWC estimates. The mean word count was 

2% lower in the LENA estimates when compared to human estimates (Gilkerson & Richards, 

2008; Gilkerson et al., 2017; Xu et al., 2009). In languages other than American English (see 

Table 1), accurate estimates of the amount of adult words spoken near the child have been 

reported with overall correlations ranging from .64 in families speaking European French 

(Canault et al., 2016) to .87 in Dutch-speaking families (Busch et al., 2018). The validation 

study in European French was the only study that also investigated correlations between 

human and LENA estimates for different age groups. Despite the fact that the Natural 

Language Study indicated no influence of a child’s age on AWC (Gilkerson & Richards, 2008), 

correlations for AWC in European French seemed to differ according to the age of the child 

and ranged from .61 (when the child was 13-18 months of age) to .87 (when the child was 0-6 

months of age) (Canault et al., 2016). When including all validation studies (independent of the 

spoken language), the review of Cristia et al. (2020) reported a high overall correlation for AWC 

(mean r = .79) with rather low relative error rates indicating that the LENA System shows a 

small tendency to over-estimate AWC. 

 

  



  

Table 1 
Overview of validation studies in languages other than American English. 

Source Language N Age Sample selection Duration Estimates r radj 

Weisleder & Fernald, 2013 Spanish (US) 10 19-24 months 10 x 60 min 10h AWC .80  

Gilkerson et al., 2015 Chinese: Shanghai 
dialect & Mandarin 

22 3-23 months 66 x 5 min 5.5h AWC 
CT 

.72 - .73 

.22 
 
.72 

Pae et al., 2016 Korean 99 3-22 months 
 

63 x 10 min 10.5h AWC 
CT 

.72 
-.03 

 
.67 

Canault et al., 2016 European French 18 3-48 months 324 x 10 min 54h AWC 
CVC 

.64 

.71 
 

Schwarz et al., 2017 Swedish 4 30 months 48 x 5 min +/- 8h AWC .67  

Busch et al., 2018 Dutch (Belgium) 6 2-5 years 48 x 5 min +/- 8h AWC 
CVC 
CT 
TV 

.87 

.77 

.52 

.50 

 

Ganek & Eriks-Brophy, 2018 Vietnamese 10 22-42 months 10 x 10 min 1h40min CT .70  

Note. N = number of participants, age = chronological age, radj = adjusted correlation when eliminating abundant overlap and noise. 
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Child vocalisation count (CVC) 

The LENA System Software’s CVC Report estimates the total amount of vocalisations 

the key child produces (Gilkerson et al., 2017). LENA and human based child vocalisation 

classifications were largely in agreement in the Natural Language Study, although there was 

a slightly stronger tendency to misclassify child non-speech sounds as speech sounds by the 

LENA System (Gilkerson & Richards, 2008; Gilkerson et al., 2017; Xu et al., 2009). The only 

other languages, besides American English, for which validation of CVC has been conducted 

is European French and Dutch (see Table 1). Canault and colleagues (2016) showed that 

human count estimates of child vocalisations correlated significantly with LENA System 

software counts in children from 3 to 48 months of age (r = .71) in European French. Similar 

to the correlations for AWC, correlations for CVC differed according to the child’s age. The 

correlations ranged from .39 (for children aged 25-36 months) to .83 (for children aged 37-48 

months). In Dutch-speaking children aged 2 to 5 years, a strong correlation of .77 was reported 

(Busch et al., 2018). When combining validation studies in American English with those in 

other languages, a high overall correlation for CVC (mean r = .77) is reported with negative 

relative error rates indicating that the LENA system shows a tendency to under-estimate CVC 

(Cristia, Bulgarelli, et al., 2020). In addition, Busch et al. (2018) indicated that large proportional 

biases were present for CVC counts whereby LENA’s CVC counts were lower than human 

counts for most of the samples selected for validation but higher than human counts for the 

samples containing many vocalizations. 

 

Conversational turns (CT) 

The LENA System Software’s CT Report estimates the total amount of conversational 

turns the child engages in with an adult (Gilkerson et al., 2017). The review of Cristia et al. 

(2020) reported a quite low overall correlation for CT (mean r = .36) in validation studies thus 

far. In addition, negative relative error rates indicate that the LENA system shows a rather 

strong tendency to under-estimate CT (Cristia, Bulgarelli, et al., 2020). The CT validation in 
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languages other than American English has, thus far, only been investigated in Dutch, 

Chinese, Korean and Vietnamese (Busch et al., 2018; Ganek & Eriks-Brophy, 2018b; 

Gilkerson et al., 2015; Pae et al., 2016) (see Table 1). In Dutch, the correlation between human 

CT counts and LENA CT counts was moderate (r = .52) for children between 2 and 5 years of 

age (Busch et al., 2018). In addition, proportional biases were reported for CT counts in Dutch 

indicating that LENA’s CT counts were higher than human counts for samples with few turns 

and lower for samples with many turns (Busch et al., 2018). In Vietnamese, a strong correlation 

between human CT counts and LENA CT counts was reported (rs = .70) for children aged 22 

to 42 months (Ganek & Eriks-Brophy, 2018b). The initial correlations between human CT 

counts and the automated CT estimates by the LENA software were low and non-significant 

for Chinese (r = .22) as well as for Korean (r = -.03) for children aged 3 to 23 months (Gilkerson 

et al., 2015; Pae et al., 2016). Both studies reported a correlation between human and LENA 

CT counts that was significant and higher both for Chinese (r = .72) and for Korean (r = .67) 

when excluding data that contained high amounts of abundant overlaps or whining noises. The 

algorithmic models of the LENA system do not detect conversational turns during overlapping 

speech or segments indicated as noise, as opposed to human coders. As human coders are 

able to disentangle the vocalisations of several children and adults, significantly greater 

absolute mean differences between human CT counts and LENA CT counts will be present 

when including audio segments with overlap or noise. The adjusted correlations in the Chinese 

and Korean study thus demonstrate that the LENA system only provides correct CT counts 

when there are clear segments containing exclusively vocalisations by the key child and by an 

adult.  

 

The current study 

The present study further evaluates the validity of automated estimates by the LENA 

System software measuring AWC, CVC and CT for Dutch. Although every language has its 

own phonetic and acoustic features (Canault et al., 2016), we expected the correlations for 
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Dutch to resemble those reported for American English as both languages are part of the 

Germanic branch of the Indo-European language family and constitute of similar sound 

systems. 

The first objective of this study is to expand the results reported by Busch and 

colleagues (2018) by performing the LENA System validation in children under the age of two, 

which resembles the age range for which the LENA system was intended. The study of Jones 

et al. (2019), for example, indicates that expanding the use of the LENA System beyond the 

age ranges for which it was developed might suggest misleading results. Gilkerson et al. (2017) 

additionally indicate that there may be age related differences when measuring the home 

language environment using the LENA system, especially for CVC and CT. These age 

differences may be due to differences in sleep patterns or modelling techniques used at 

different ages or to differences in the reliability of automated voice labelling across age 

(Gilkerson et al., 2017). Expectations can be formulated based on previous validation studies 

in this age group. With regard to AWC, we expected a strong correlation between human count 

estimates and LENA System estimates within the range of previous validation studies 

evaluating the LENA system for AWC and irrespective of the age of the key child as 

chronological age did not significantly influence AWC in the Natural Language Study starting 

from the age of 5 months onwards (Busch et al., 2018; Canault et al., 2016; Gilkerson & 

Richards, 2008; Gilkerson et al., 2015, 2017; Pae et al., 2016; Schwarz et al., 2017; Weisleder 

& Fernald, 2013). With regard to CVC and CT, we do however expect age differences in the 

accuracy of the counts in the current study as both measures show a significant increase up 

to approximately 26 months (Gilkerson et al., 2017). We mainly based our expectations on the 

results for European French and to some extent also for Dutch (despite the age difference) as 

these were the only two studies investigating the validity of the LENA system for CVC in a 

language other than American English. In line with those studies we expected to find medium 

to high correlations for CVC (Busch et al., 2018; Canault et al., 2016). For CT however we 

expected correlations between human count estimates and LENA estimates to be rather low 

at first (Busch et al., 2018; Gilkerson et al., 2015; Pae et al., 2016). Yet, it can be expected to 
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see the same increase in Dutch as for Chinese and Korean when abundant overlaps or whining 

noises are eliminated (Gilkerson et al., 2015; Pae et al., 2016).  

The second objective of this study is to explore if the validity of the LENA system would 

be similar in younger siblings of children with ASD (high-risk siblings; HR-sibs) and younger 

siblings of typically developing children (low-risk siblings; LR-sibs) and thus irrespective of the 

risk status of the child. These two groups were included in the validation study as we want to 

use the LENA system to compare the home language environment of both groups in the future. 

HR-sibs, especially, are of interest as 10 to 20% of these children are likely to develop ASD 

(Szatmari et al., 2016) and 28% may show a mild expression of the disorder and/or other 

developmental problems such as early deficits in language development (Brian et al., 2014; 

Losh, Childress, Lam, & Piven, 2008; Marrus et al., 2018; Ozonoff et al., 2014), because of the 

high heritability of ASD. The comparison between HR-sibs and LR-sibs, in light of the validity 

of the LENA system, will be made as the study of Jones et al. (2019) reported that the LENA 

system did not reliably capture the speech/language of their sample. They suggest that the 

speech/language of older children and adolescents with ASD may be characterized by 

changes in voice quality which can negatively influence the automated coding procedure of 

the LENA system (Jones et al., 2019). Consequently, the current study will evaluate if this 

difference would also be apparent in young children at elevated risk for ASD. 

 

Method 

Participants 

Participants included six younger siblings of typically developing children (low-risk 

siblings; LR-sibs) and six younger siblings of children with ASD (high-risk siblings; HR-sibs). 

The current study was part of a longitudinal prospective study of LR-sibs and HR-sibs during 

the first three years of life. It was decided to select six children from both groups embedded in 

the longitudinal prospective study in view of sufficient hours of coding for defining validity and 

in light of feasibility within a limited time span. All children were native Dutch-speaking children 
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with both parents also being native speakers of Dutch. Inclusion criteria for LR-sibs were full-

term birth and no ASD within first-degree relatives. HR-sibs and their older sibling with ASD 

had no known genetic disorder linked to ASD. HR-sibs were recruited in centres for 

developmental disorders, rehabilitation centres, home guidance centres and through parent 

support groups. LR-sibs were recruited in well-baby clinics and day-care centres. In addition, 

both HR-sibs and LR-sibs were recruited via Facebook and the website of the aforementioned 

longitudinal study. Participant characteristics are presented in Table 2. The families’ 

socioeconomic status (SES - family) was calculated using Hollingshead’s four factor index and 

was based on both parents’ education level and occupation (Hollingshead, 1975). The families’ 

social status in the current study reflects an average to high social status and corresponds with 

the highest three strata (stratum 1: major business and professional; stratum 2: medium 

business, minor professional, technical; stratum 3: skilled craftsmen, clerical, sales workers) 

of the five social strata defined by Hollingshead. The families’ SES is important to consider as 

this has been correlated with specific characteristics of a child’s language environment in 

previous research (Gilkerson et al., 2017). For all variables reflecting participant 

characteristics, the assumption of normality was violated. Therefore, Mann-Whitney U tests 

were performed in order to explore group comparisons. When comparing the gender ratio of 

both groups a Chi-square test was used. Both groups of children were very similar with regard 

to the participant characteristics.  

 

Table 2 
Participant Characteristics. 

 LR-sibs HR-sibs   All children 

Gender ratio (m:f) 2:4 3:3 χ2 = .34  5:7 

 M(SD)   M(SD) 

Average age  
5M 
10M 
14M 

 
  5.68 (.41) 
10.32 (.34) 
14.17 (.33) 

 
  5.51 (.29) 
10.62 (.28) 
14.42 (.45) 

 
U = 11.00 
U = 28.00 
U = 27.00 

  
  5.59 (.35) 
10.47 (.34) 
14.30 (.40) 

SES – family   51.33 (6.59)     43.58 (13.19) U = 11.00      47.46 (10.73) 

Educational level  
Mother 
Father  

 
  6.67 (.52) 

    6.17 (1.17) 

 
    6.00 (1.10) 
    5.83 (1.94) 

 
U = 11.00 
U = 17.50 

  
  6.33 (.89) 

    6.00 (1.54) 
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Note. LR-sibs = low-risk siblings, HR-sibs = high-risk siblings, m:f = male:female, M(SD) 
= mean (standard deviation), 5M = 5 months, 10M = 10 months, 14M = 14 months, 
SES = socio-economic status (Hollingshead, 1975), educational level was also defined 
by Hollingshead (1975). 

 

Measures 

Home language environment measures were obtained employing the LENA system. 

The participating children wore a small digital recorder in the front chest pocket of clothing 

designed to optimize microphone placement and to reduce noise from clothing friction as much 

as possible. Recorders contained 16 hours of high-quality audio, optimally recorded within 6- 

to 10-foot radius at 16 kHz.   

 

Procedure 

At 5, 10 and 14 months of age, we asked parents to let their child wear the recording 

device during two typical week and/or weekend days at home, when the majority of the family 

was present and no trips to crowded places were planned. This led to a total of six recordings 

per child. Both of the recordings took place within a time span of 10 days for every age. 59 

(~82%) of the total amount of 72 recordings took place during a weekend or on a weekday 

during school holidays. Parents also filled out a log. In this log the parents noted the sequence 

of the day with regard to the eating and sleeping behaviour of the child, which family members 

were present during the day, if the child slept well before the recording and if anything was out 

of the ordinary (child feeling sick, unforeseen circumstances, etc.). All parents were instructed 

to begin recording as soon as their child woke up in the morning and to continue recording 

until their child went to bed at night. Thereafter, the LENA recorder switched itself off when it 

had gathered 16 hours of recording. Completed recordings were processed by the LENA 

software to acquire the AWC, CVC and CT estimates for the current study. 

For the validation of the LENA-based AWC, CVC and CT estimates, audio samples 

were randomly drawn from every family recording. The selection was based on the 

methodology described in Gilkerson et al. (2015). Every recording day was divided into three 
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4-hour zones: morning (9 a.m. – 1 p.m.), afternoon (1 p.m. – 5 p.m.), and evening (5 p.m. – 9 

p.m.). From each zone, we pseudo-randomly selected one 5-min sample including AWC, CVC 

and CT counts. Chunks consisting of only adult or child vocalisations were not considered 

eligible in the interest of validation. For each participant, we thus selected three chunks of 5-

min recordings per recording day, which resulted in eighteen chunks for the six recording days 

spread over the three ages. Consequently, a total of 216 samples were selected for the 12 

participants (1080 min, or 18 hours, in total). 

Two native Dutch-speaking coders, blind to group status of the children, listened to the 

home recordings and counted the AWC, CVC and CT of the 216 selected samples (human 

count estimate). As the LENA system does not provide any semantic information but only 

estimated counts, validation did not require the samples to be transcribed (Gilkerson et al., 

2015). Consequently, no software was used to count AWC, CVC and CT of the different 5-min 

chunks. Coders listened at least three times to each 5-min chunk in order to separately count 

the LENA system estimates (AWC, CVC and CT). Using pen and paper, coders tallied AWC 

and CVC respectively during the first and second time they listened to the 5-min chunk. During 

the third listen, coders wrote down the sequence of the CT (e.g., key child – parent – key child) 

indicating also start and end time. Pausing the 5-minute sample was allowed. Data 

transcription and coding, as described in more detail below, was mainly based on the 

description hereof in the Natural Language Study (Gilkerson & Richards, 2008; Gilkerson et 

al., 2017) and the paper of Canault and colleagues (2016).  

Firstly, AWC estimates the number of adult words spoken loudly enough to register 

clearly in the LENA recorder (Gilkerson et al., 2017). The LENA system does not differentiate 

between child-directed and overheard speech, therefore AWC consists of words adults 

directed to the child (child-directed speech) and/or to other people present (speech overheard 

by the key child) (Gilkerson et al., 2017). All words adults used were counted as separate 

words when they were understandable to the coder. When the adult contracted two words into 

one (e.g., “tis” (it’s) for “het is” (it is)) this was counted as one word. Vocalisations of adults 

were counted as words when they consisted of at least one syllable. Stop words or filled 
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pauses (e.g., “eh”, “uh”) were however eliminated as the consonant is often silent (see also 

Busch et al., 2018; Canault et al., 2016). As mentioned earlier, the LENA system is not able to 

differentiate between child-directed speech and speech directed to other persons in the 

proximity of the child. Comprehensive studies on parental language input however indicated 

that mainly language used in interaction with a child, rather than the exposure to language in 

the environment (e.g., overheard language during a conversation between parents), is 

important for the language development of a child (Ratner, 2013; Weisleder & Fernald, 2013). 

Consequently, a distinction was made between words directed to the key child (child-directed 

speech) or to other people (other speech) in the current study when coding adult words.  

Secondly, CVC estimates were made for the key child. The LENA system defines 

vocalisations by a “breath-group” criterion, whereby a 300ms pause ends a vocalisation. This 

suggests that vocalisations occur on expiration, and each time an inspiration (or long enough 

break) occurs, a break between vocalisations is perceived (Oller et al., 2010). This is however 

difficult to implement in a manual transcription protocol where no software is being used. In 

addition, this is not a common way to count child vocalisations when transcribing manually. In 

the current study, the distinction between different vocalisations was therefore made based 

partly on the presence of a small pause (hearable for the coder) and mainly on the semantic 

content. Successive vocalisations by the child were seen as separate ones when a small pause 

(e.g., inspiration) was present (Oller et al., 2010). For example, if the child said “babababa” or 

“ba” these utterances were counted as one vocalisation, whereas “bababa # baba” was 

counted as two vocalisations. In case of protowords/words and sentences, the semantic 

content was prioritized to the presence of a small pause. Protowords and/or words were 

counted as one vocalisation even if they contained a small pause in the middle. When a child 

combined protowords and/or words into a sentence the different words were counted as 

vocalisations (e.g., “nog koekje” (more cookie) was counted as 2 vocalisations). All speech-

like babbling or vocalisations were taken into account. Fixed signals (e.g., cries, screams, 

laughs,…) and vegetative sounds (e.g., sneezing, drinking sounds, …) were not considered 

valid as vocalisations. 
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Thirdly, we made a CT estimate for the key child. Vocal alternations occurring between 

adult and child within 5 seconds were counted as a CT (Gilkerson & Richards, 2008). 

Consequently, a conversation was bounded by a pause of at least 5s. Coders registered the 

start and end time of a CT and monitored the timing of the vocal alternations while writing down 

the sequence of the CT (e.g., key child – parent – key child). As with the LENA algorithm, the 

first utterance of each conversation was not counted as a turn (e.g., “key child – parent – key 

child” was counted as one CT while “key child – parent – key child - parent” was counted as 

two CT’s). In contrast to the LENA system, CT’s were also counted when they occurred during 

overlapping speech (see also Busch et al., 2018; Gilkerson et al., 2015; Pae et al., 2016) or 

when interrupted by a third speaker if the coder indicated that this may have been understood 

by the child. These conversational turns were included in the coding scheme as the current 

study intended to evaluate the performance of the LENA system compared to how turns would 

be coded manually. This may however have led to a higher CT count in the manual coding 

compared to the automated LENA estimates, which can make it difficult to compare these 

results. 

A subsample (20%) of 5-min chunks was coded by both coders in order to determine 

interrater reliability using the absolute agreement intra-class correlation coefficient (ICC) (see 

Table 3). Regarding AWC, interrater reliability was very low for child-directed speech since 

coders could not always determine whether or not speech was directed to the child based on 

audio recordings. Consequently, no distinction was made between child-directed and other 

speech hereafter. The ICC indicated good to excellent agreement between both coders for 

AWC (when all words were taken into account), CT and CVC.  

Table 3.  
Intra-class correlation coefficient indicating interrater 
reliability for human count estimate. 

  ICC  

Adult words Child-directed speech .172 
Other speech .671 

 All speech .981 

Conversational turns  .939 

Child vocalisations  .712 
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Note. ICC = absolute agreement intra-class correlation 
coefficient. 
 

Statistical Analysis 

To assess the concurrent validity of the LENA system for Dutch, comparisons between 

AWC, CT and CVC estimates generated by the LENA system software (Version: V3.5.0) and 

human coders were performed for all selected 5-min chunks. Paired sample t-tests and 

Pearson product-moment zero-order correlations were carried out for all children together, for 

both groups separately, and for the different age groups. Results were generated using SPSS 

(Version 25.0) to obtain descriptive statistics, t-values and correlations. Correlations lower than 

.30 reflect poor agreement between the LENA and human counts and correlations between 

.30 and .50 reflect low agreement . Correlations between .50 and .70, on the other hand, reflect 

moderate agreement between the LENA and human counts and correlations higher than .70 

reflect high agreement. Although the exact meaning of correlations cannot merely be 

interpreted based on the correlation coefficient (Bosco, Aguinis, Singh, Field, & Pierce, 2015; 

Taylor, 1990), correlations of .70 or higher are consistently interpreted as high. Nevertheless, 

it should be taken into account that correlations reflect the linear association between both 

methods and do not take into account systematic biases (Busch et al., 2018). When Pearson 

correlations were compared, a Fisher r-to-z transformation was used. 

 

Results 

Table 4 
Means and standard deviations for human count estimates and LENA estimates, Paired 
samples t-test and Pearson correlations between LENA and human estimates for all children, 
across all ages and per age, and for LR-sibs and HR-sibs separately. 

  AWC (M(SD))   

 N Human LENA Differencea t r 

All children       
   all ages 216 265.78 (153.16) 194.75 (115.10) 71.03 (96.23) 10.85*** .78** 
   5M 72 247.71 (141.34) 192.36 (107.84) 55.35 (97.34) 4.82** .73** 
   10M 72 280.68 (156.22) 198.10 (127.71) 82.58 (94.05) 7.45*** .80** 
   14M 72 268.96 (161.51) 193.81 (110.27) 75.15 (96.54) 6.61*** .81** 
LR-sibs  108 278.82 (144.12) 202.82 (108.88) 76.00 (94.68) 8.34*** .75** 
HR-sibs  108 252.74 (161.31) 186.69 (120.96) 66.06 (97.94) 7.01*** .80** 
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  CVC (M(SD))   

 N Human LENA Differencea t r 

All children       
   all ages 216 31.80 (21.27) 25.40 (13.70) 6.40 (20.47) 4.60*** .38** 
   5M 72 27.08 (21.49) 25.71 (15.67) 1.38 (17.93) .65 .57** 
   10M 72 33.36 (21.83) 23.67 (13.46) 9.69 (21.00) 3.92*** .37** 
   14M 72 34.96 (19.90) 26.83 (11.67) 8.13 (21.59) 3.19** .14 
LR-sibs  108 31.44 (21.67) 27.07 (12.67) 4.36 (20.22) 2.24* .40** 
HR-sibs  108 32.17 (20.94) 23.73 (14.52) 8.44 (20.60) 4.26*** .37** 
       

  CT (M(SD))   

 N Human LENA Differencea t r 

All children       
   all ages 216   8.51 (8.10) 8.64 (4.61)    .34 (8.56) -.23 .24** 
   5M 72   5.40 (6.44) 8.31 (4.80) -2.68 (7.02) -3.47** .23° 
   10M 72   9.42 (8.07) 8.07 (4.61)  1.89 (8.65) 1.34 .19 
   14M 72 10.71 (8.75) 9.54 (4.33)  1.81 (9.16) 1.15 .28* 
LR-sibs  108   9.16 (8.47) 9.61 (4.26)   -.09 (9.23) -.54 .18° 
HR-sibs  108   7.86 (7.69) 7.67 (4.75)    .77 (7.85) .26 .28* 

Note. 5M = 5 months, 10M = 10 months, 14M = 14 months, HR-sibs = high-risk siblings, LR-
sibs = low-risk siblings, AWC = adult word count (all words), CVC = child vocalisation count, 
CT = conversational turns, N = amount of 5-min chunks, Human = human count estimate, 
LENA = LENA system count, aDifference values reflect human count estimates minus LENA 
system counts, t = value of the paired samples t-test, r = Pearson correlation between human 
and LENA count estimate, °p < .10, *p < .05, **p < .01, ***p < .001. 

 

Adult word count  

Means and standard deviations for human count estimates and LENA estimates, the 

results of the paired samples t-test and Pearson product-moment zero-order correlations are 

presented in Table 4. On average, the LENA system counted significantly fewer adult words 

than the human coders (p < .001; see Table 4). The mean difference, between the LENA 

system and human estimates, ranged from 55.35 (SD = 97.23) at 5 months to 82.58 (SD = 

94.05) at 10 months (see Table 4). The variation (SD) was also higher in human count 

estimates compared to the estimates of the LENA system (see Table 4 and Figure 1). Figure 

1 displays scatterplots of the LENA system and human estimates for the three different ages 

and in addition also for the different recording days as well as the three different time zones 

(morning, afternoon and evening) from which 5-min chunks were selected.  
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Despite significant mean differences, Pearson product-moment zero-order correlations 

indicated that human count estimates of adult words significantly correlated (p < .01) with the 

corresponding LENA system estimates. This significant and high correlation (r = .73 to .81) 

was found for all children together, for both groups separately, and for the different age groups 

(see Table 4).  

Child vocalisation count  

Means and standard deviations for human count estimates and LENA estimates, the 

results of the paired samples t-test and Pearson product-moment zero-order correlations are 

presented in Table 4. The LENA system systematically counted significantly less child 

vocalisations than human coders did (mean difference ranged from 4.36 (SD = 20.22) in LR-

sibs to 9.69 (SD = 21.00) at 10 months; see Table 4), except at the age of 5 months where a 

non-significant mean difference of 1.38 (SD = 17.93) was reported. In addition, human count 

estimates also showed higher variation (SD) compared to the estimates of the LENA system 

(see Table 4 and Figure 2). Scatterplots of the LENA system and human estimates for the 

three different ages and for the different recording days as well as the three different zones 

(morning, afternoon and evening) from which 5-min chunks were selected are displayed in 

Figure 2.  

Despite significant mean differences (except at the age of 5 months), Pearson product-

moment zero-order correlations showed that human count estimates of child vocalisations 

significantly correlated (p < .01) with the corresponding LENA estimates (see Table 4). This 

significant correlation was found for all participants and also when the risk status was taken 

into account. When looking at the different ages the LENA system was used, significant 

correlations between human count estimates and LENA estimates were only found at the age 

of 5 (r = .57, p < .01) and 10 months (r = .37, p < .01) but not at the age of 14 months (r = .14, 

p = .23) (see Table 4). A Fisher r-to-z transformation shows that the correlation at 14 months 

was significantly smaller than the one at 5 months (z = 2.98, p < .01), but did not significantly 

differ from the correlation at 10 months (z = 1.45, p = .15). Although significant at 5 and 10 
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months, correlations were moderate to low. Furthermore, the correlation between human count 

estimates and LENA estimates was also rather low for all children together (r = .38, p <.01) 

and when group status was taken into account (LR-sibs: r = .40, p <.01; HR-sibs: r = .37, p 

<.01) (see Table 4).  

Conversational turns 

Means and standard deviations for human count estimates and LENA estimates, the 

results of the paired samples t-test and Pearson product-moment zero-order correlations are 

presented in Table 4. As reported in Table 4, the average amount of conversational turns 

produced by human counts and the LENA system were very similar (mean difference ranged 

from -.09 (SD = 9.23) in LR-sibs to 1.89 (SD = 8.65) at 10 months). Only at the age of 5 months 

a significant difference was reported between human and LENA counts (mean difference is -

2.68 and SD is 7.02). The variation was higher in human count estimates compared to the 

estimates of the LENA system (see Table 4 and Figure 3). Scatterplots of the LENA system 

and human estimates for the three different ages and for the different recording days as well 

as the three different zones (morning, afternoon and evening) from which 5-min chunks were 

selected are displayed in Figure 3.  

Despite the lack of significant mean differences (except at the age of 5 months), human 

count estimates of conversational turns did not consistently correlate with the corresponding 

LENA estimates at different ages and for different groups (r = .18 to .28; see Table 4). The 

correlation was significant but low when no distinction was made regarding age or group (r = 

.24, p < .01) and at the age of 14 months (r = .28, p < .05). When risk status was taken into 

account, a significant low correlation was only found in HR-sibs (r = .28, p < .05).  
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Discussion 

This study was the first to validate the LENA system performance in Dutch-speaking 

children younger than 2 years of age. AWC, CVC and CT estimates were performed for 216 

5-min chunks, making this the second largest study investigating the validity of the LENA 

system in a language other than American English. In addition, the current sample consisted 

of children at high and low risk for ASD which made it possible to determine if a child’s risk 

status would influence LENA validity.  

In general, correlational analyses revealed good overall accuracy of the LENA system 

in estimating the amount of adult words (r = .78). Overall agreement regarding the amount of 

child vocalisations (r = .38)  and conversational turns (r = .24) was rather low. Several 

suggestions can be made which may explain the variability of correlations found in different 

studies (e.g., different languages, methodological and environmental differences, age at which 

the recording took place, etc.) (Busch et al., 2018). Some of these explanations, suggested by 

Busch et al. (2018), will also be discussed regarding the current study, yet supplemented with 

other possible explanations. 

Good correlation between human and LENA estimates for AWC 

Correlations found in the current study were within the range of previously reported 

correlations in American English and other languages. The current results were higher than 

correlations reported in Swedish and in European French (Canault et al., 2016; Schwarz et al., 

2017). Within the Swedish sample, comparisons were made for only 48 5-min samples in 30-

month old children while the sample in European French consisted of 324 10-min samples in 

children aged 0-48 months (Canault et al., 2016; Schwarz et al., 2017). In the Swedish and 

European French sample a correlation of .67 and .64, respectively, was reported while the 

current overall correlation for AWC in Dutch was .78. When comparing correlations from the 

different age groups of Canault et al. (2016) (0-6 months: .87; 7-12 months: .72, 13-18 months: 

.61) with the correlations of the same age in the current study, significantly lower correlations 

were found at 5 months (z = -2.19, p < .05), equal correlations were found at 10 months (z = 
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1.03, p = .30) and significantly higher correlations were found at 14 months (z = 2.26, p < .05) 

for AWC in the current study. However, within Dutch-speaking samples a strong correlation 

between LENA and human counts was reported for AWC by Busch et al. (2018) in 2 to 5 year 

old children (r = .87)  and in the current sample of children younger than two years of age (r = 

.78). These results suggest that there is a strong correlation for AWC in a Dutch sample, 

independent of the intended age range of the LENA system. This is in line with the results of 

the Natural Language Study indicating that chronological age does not significantly influence 

AWC starting from the age of 5 months onwards (Gilkerson et al., 2017). Together with 

previous studies in languages other than American English, the current results seem to 

indicate that the LENA system does a good job at estimating the amount of adult words in 

Dutch (Busch et al., 2018; Canault et al., 2016; Gilkerson et al., 2015; Pae et al., 2016; 

Schwarz et al., 2017; Weisleder & Fernald, 2013).  

Influence of child’s age on the correlation between human and LENA estimates for CVC  

The chronological age of the key child seemed to have an influence on the strength of 

the correlations between human and LENA estimates, especially with regard to child 

vocalisations. The agreement for child vocalisations between LENA system estimates and 

human estimates seemed to be dependent on the child’s age. At the age of 5 months (r = .57), 

the correlation reported in the current study was slightly higher than the one reported in 

European French (0-6 months: r = .49; Canault et al., 2016), yet they did not significantly differ 

from one another (z = .60, p = .55). At the age of 10 (r = .37) and 14 months (r = .14), 

correlations were lower than those reported in European French (7-12 months: r = .54; 13-18 

months: r = .67; Canault et al., 2016) and they significantly differed from one another at 14 

months (z = -3.63, p <.001) but not at 10 months (z = -1.17, p = .24). In addition, Busch et al. 

(2018) reported a substantially higher correlation (r = .77) between LENA and human counts 

in 2 to 5 year old Dutch-speaking children. Thus, the current results indicate rather low 

correlations for CVC in Dutch-speaking children under two years of age and correlations seem 

to decline with increasing age. Yet, Busch et al. (2018) reported a high correlation in Dutch-
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speaking children above the age of two. Studies validating CVC in languages other than 

American English are however rather limited. 

Gilkerson et al. (2017) indicated that there may be age related differences when 

measuring the home language environment using the LENA system, especially for CVC and 

CT. Within the current sample, this might mainly be true for CVC as these correlations 

substantially decreased with increasing age. Different suggestions have been made by 

Gilkerson et al. (2017) as to what might be at the base of age differences (e.g., differences in 

sleep patterns, modelling techniques, reliability of automated voice labelling across age,…). In 

the current study this also remains unclear, yet, a few suggestions can be made.  

First, the decline in the correlations between human and LENA estimates from 5 to 14 

months might indicate increasing difficulty in correctly identifying child vocalisations by the 

LENA system with increasing age of the key child. Table 4 shows significant and high mean 

difference scores at the age of 10 and 14 months, while this is not the case at the age of 5 

months. LENA estimates at the age of 10 and 14 months are significantly lower than human 

estimates. This increasing difficulty can, on one hand, be related to a significant increase in 

child vocalisations up to 26 months (Gilkerson et al., 2017). This is in line with the study of 

Busch et al., (2018) that reported significant proportional biases with regard to CVC, with higher 

LENA than human estimates in samples that contained many vocalisations. Stability in CVC 

beyond 26 months of age (Gilkerson et al., 2017), may subsequently explain why high 

correlations for CVC were reported by Busch et al., (2018) in Dutch-speaking children older 

than 2 years of age. The presence of other children may, on the other hand, also explain why 

correlations for CVC seemed to decrease with increasing age. At the age of 5 months, 

vocalisations produced by the key child significantly differ from speech produced by the older 

sibling(s). However, with increasing age vocalisations of the key child more and more resemble 

those of their older sibling(s) making the distinction between different children more difficult for 

the LENA system.  

Second, misclassification by the LENA system may also be at the base of low 

correlations. When visually inspecting the scatterplots at 10 and 14 months (see Figures 2 and 
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3), it appeared that the selected 5-min chunks in the evening of the first recording day at 10 

months and the second recording day at 14 months showed a very low correlation between 

LENA system counts and human counts. When we excluded these 5-min chunks, correlations 

for both CVC (10M: r = .44, p < .001; 14M: r = .38, p < .01) and CT (10M: r = .27, p < .05; 14M: 

r = .35, p < .01) increased at both ages. Listening to these 5-min chunks indicated that the 

majority of these chunks were accidentally selected shortly before bedtime. Parents were often 

getting their children dressed for bedtime and putting them to bed. What most of these chunks 

have in common is that the vest these children wore, containing the LENA recorder in the front 

chest pocket, was taken off and put near the child. Consequently, the distance between the 

key child and the LENA recorder changed and identifying the source of the audio segment 

correctly might have become more difficult for the LENA software (Jones et al., 2019). In 

addition, other children were often also present during this bedtime period whereby the LENA 

system might have misclassified the key child as another child or vice versa. Furthermore, a 

substantial amount of children alternated whining noises with vocalisations right before their 

bedtime. Differences between both sounds might not have been easily distinguishable by the 

LENA system as Xu et al. (2009) reported that the LENA algorithms correctly detected 75% of 

the human-identified child vocalisations but misclassified 25% of these vocalisations as fixed 

signals or vegetative sounds when evaluating the validity for American English. Lastly, a few 

parents were reading an interactive book and used motherese, characterised by a high-pitch 

voice, when reading to the child. As reported in the study of VanDam and Silbert (2016) and 

Gilkerson et al. (2015), it might be possible that the LENA misclassified high-pitched child-

directed speech of the mother as vocalisations from the key child due to similarities in their 

fundamental frequencies.  

Low correlation between human and LENA estimates for CT 

The agreement of human estimates of CT with estimates made by the LENA system 

was low (correlations ranging from .19 at 10 months to .28 at 14 months), which is similar to 

the initial correlations reported in Chinese (r = .22) and Korean (r = -.03) (Gilkerson et al., 2015; 

Pae et al., 2016). In contrast to the Chinese and Korean sample, correlations in the current 
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study could however not be increased by eliminating outliers with high amounts of overlap 

and/or noise. Furthermore, the current results are somewhat lower than the overall moderate 

correlation reported for CT in the review of Cristia et al. (r =.36, 2020). The only studies 

reporting moderate (r = .52) to strong (r = .70) correlations were by Busch et al. (2018) in 

Dutch-speaking children aged 2-5 years and by Ganek and Eriks-Brophy (2018b) in 

Vietnamese speaking children aged 22 to 42 months, respectively. Thus, correlations with 

regard to the validation of CT differ greatly. Yet, in general an overall low agreement between 

LENA and human CT counts is reported. In addition, the review of Cristia et al. (2020) suggests 

an under-estimation of CT counts by the LENA system which is also found in the current study, 

especially at the age of 5 months. Nevertheless, both under- and over-estimation by the LENA 

system has been reported (see Table 4). These results might thus be more in line with the 

proportional biases reported by Busch et al. (2018) suggesting that LENA’s CT counts might 

be higher than human counts for samples with few turns and lower for samples with many 

turns (Busch et al., 2018). 

The manual coding on this study differed from audio processing by the LENA system 

on one major aspect, which may possibly explain differences regarding correlations for CT. 

Within the LENA algorithm, CT are only counted when they are not interrupted by another child 

and/or adult. Segments containing overlapping speech are not included when generating a CT 

count. The LENA Research foundation also suggests that overlapping speech is most likely 

not beneficial for language learning and exclusion of these segments might thus lead to a more 

accurate representation of the child’s meaningful language environment (Xu et al., 2009). As 

the LENA system cannot directly measure which speech is beneficial for language learning, 

this suggestion remains rather speculative. Contrary to the LENA system, human coders are 

able to disentangle different speakers during overlapping speech and when transcribing 

natural language samples overlapping speech is often also taken into account (e.g., Northrup 

& Iverson, 2015). Therefore, the current study also counted CT during those segments. A 

certain amount of variation between human and LENA estimates might thus be due to 

differences in defining a CT. Unfortunately, it is not possible to calculate the correlation 
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coefficient of CT occurring outside of overlapping segments in the current study as this 

distinction was not implemented in the coding scheme. The lack of obvious differences 

between mean human and LENA CT estimates (see Table 4) does however suggest that there 

are other possible factors influencing the correlation between human and LENA estimates. For 

example, Busch et al. (2018) reported significant proportional biases in CT counts with higher 

LENA than human estimates in samples that contained few vocalisations.   

Correlation between human and LENA estimates in a risk group  

The LENA system has been valuable for the evaluation of vocalisations of young 

children with ASD and also for the differentiation of children with ASD from typically developing 

children based on characteristics of vocalisations or conversations (Oller et al., 2010; Warren 

et al., 2010; Yoder, Oller, Richards, Gray, & Gilkerson, 2013). Furthermore, LENA system 

measures have been shown to correlate with later language skills in children with a different 

developmental status (e.g., children with ASD or hearing loss and preterm children) (Wang, 

Williams, Dilley, & Houston, 2020). However, no studies have investigated if the risk status or 

diagnosis of a child might affect the validity of the LENA system.  The current study investigated 

if risk status may affect LENA system performance as the study of Jones et al. (2019) reported 

that the LENA system did not reliably capture the speech/language of older children and 

adolescents with ASD. It is however important to interpret the results cautiously as the current 

study consisted of a sample of 12 children (6 of whom were at high risk for ASD) who were 

followed longitudinally. Given the small sample, there is a lack of power for detecting a 

difference.  

The current results indicate that risk status does not seem to have an influence on the 

LENA system performance in young children, as correlations did not significantly differ for HR-

sibs and LR-sibs when performing a Fisher r-to-z transformation (AWC: z = -.91, p = .36; CVC: 

z = .26, p = .79; CT: z = -.77, p = .44). This suggests that there are no distinct characteristics 

of the speech/language or the environment of children at high risk for ASD between 5 to 14 

months of age that negatively influence the algorithm of the LENA system when providing 

estimates of the home language environment. Thus, possible differences between both groups 
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may not be due to measurement differences by the LENA system. The study of Jones et al. 

(2019), however, indicated that the LENA system did not reliably capture the speech/language 

of older children and adolescents with a diagnosis of ASD. Yet, Jones et al. (2019) used the 

LENA system in children older than age 5 (which is outside the intended scope of the LENA 

system) and they suggested that the speech/language of older children with ASD may be 

characterized by changes in voice quality which can negatively influence the automated coding 

procedure of the LENA system (Jones et al., 2019). Consequently, this may imply that changes 

in voice quality of children with ASD may be more apparent with increasing age. Therefore, it 

is possible that the LENA system does not reliably capture the speech/language of older 

children and adolescents with ASD, yet, does reliably capture the speech/language of younger 

children at risk for ASD.  

Do sampling differences influence the agreement between human and LENA estimates? 

First of all, the amount of AWC, CVC and CT the selected sample contains might 

influence agreement. Gilkerson et al. (2015) selected 5-min samples with the highest CT count 

when trying to validate the LENA system for Chinese. They however suggested that by 

selecting samples with the highest CT count they may have maximized their chances of 

obtaining a possible unrepresentative sample as samples with high CT counts may contain the 

highest amount of mislabelled segments (Gilkerson et al., 2015). On the other hand, samples 

with high AWC or CT are suggested to mainly occur in clear sections of the recording 

consequently containing little overlapping speech which may bias results to a higher level of 

agreement (Cristia, Lavechin, et al., 2020). The current study tried to take this into account by 

randomly selecting 5-min samples containing different amounts of AWC, CVC and CT (see 

also Busch et al., 2018; Canault et al., 2016; Weisleder & Fernald, 2013). Still, low correlations 

were found in the current study regarding CVC and CT counts. The validation study of Busch 

et al. (2018) however indicated that when comparing measurement methods, the sample 

should contain a wide range of the factors which you intend to validate. Therefore, they used 

a more controlled sample selection which guaranteed they had samples containing different 
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amounts of AWC, CVC and CT covering the entire range of the counts (Busch et al., 2018). 

Consequently, this may have led to the higher correlations reported in their study. 

Second, the duration of the selected samples might also influence agreement between 

the LENA system and manual transcription. The majority of the validation studies, thus far, 

selected samples with a duration of 5 minutes (e.g., Busch et al., 2018; Gilkerson et al., 2015) 

or 10 minutes (e.g., Canault et al., 2016; Pae et al., 2016). It is suggested, on the one hand, 

that an increase to 30 min/one hour might yield better performance of the LENA system 

(Canault et al., 2016; Gilkerson et al., 2015, 2017). On the other hand, Cristia, Lavechin, et al. 

(2020) indicated that speech is produced in bursts (periods of silence followed by conversation 

and on their turn followed by silence again) rather than at a periodic rate. Therefore the authors 

suggested to keep a fixed total length of selected audio, yet select shorter samples (1-2 min). 

This may rather capture heterogeneity in audio samples suggesting better generalisation than 

longer samples that will be more internally homogeneous (Cristia, Lavechin, et al., 2020). 

Third, different sample environments might also be at the basis of low agreement. 

Performing a validation study containing samples of a more controlled and quiet environment 

might hold better results although this may not be representative for LENA system 

performance in natural settings. Recordings for the Korean sample were for example partly 

made during play and picture book reading in a hospital (Pae et al., 2016). The more controlled 

environment in the study of Pae et al. (2016) is in contrast with the naturalistic recordings of 

the current study in which often other children and/or other family members were present. As 

indicated by Gilkerson et al. (2015) and Pae et al. (2016), high amounts of overlapping speech 

and/or noise may have an influence on the agreement between human and LENA estimates. 

Within the current study no outliers regarding overlapping speech and or noise were however 

detected. Nevertheless, the validation study in European French also recorded within the 

natural environments of the children assuring high ecological validity, yet they sometimes 

reported higher correlations than the current study (Canault et al., 2016).  

In conclusion, careful thought should be given to sample selection in validation studies. 

Both the amount of AWC, CVC and CT that they contain and the duration of the selected 
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samples should be taken into account. A broad range of samples should be selected with 

regard to the measures that the study intends to validate. The current study tried to do this in 

a semi-randomized matter, yet a more controlled way (see Busch et al., 2018) might hold better 

results. With regard to the sample duration, both an increase and a decrease in duration have 

been suggested. Further research is necessary in order to determine which strategy might be 

best in light of validation studies. Lastly, researchers should also take into account that the 

recording environment (e.g., a natural versus a controlled environment) might influence 

validation results. The LENA system was however intended for use in natural environments. 

Implications 

A child’s vocabulary development is, amongst others, predicted by the number of word 

learning trials (e.g., language input) the child is exposed to and by the number of 

conversational turns between the child and a caregiver (Huttenlocher et al., 1991; Ratner, 

2013; Ye Wang et al., 2017; Zimmerman et al., 2009). The current results suggest that the 

LENA system can be used to measure the amount of language input but not the amount of 

child vocalisations and conversational turns within the home language environment of Dutch-

speaking families of very young children. Researchers, clinicians and parents should however 

bear in mind that mainly speech directed to the child and not overheard adult conversations 

contribute to a child’s vocabulary development (Ratner, 2013; Weisleder & Fernald, 2013). The 

LENA system is currently not able to determine the amount of child-directed versus overheard 

speech thus the LENA output regarding adult language input should be interpreted with 

caution. In addition, the LENA system only measures the amount of language input and not 

the quality (e.g., richness, complexity). Nevertheless, it should be noted that the LENA system 

has an added value for conducting very naturalistic recordings of the home language 

environment. Due to the fact that the child is wearing a comfortable vest in which a light 

recording device is present, both parent and child are quickly accustomed to the recording 

situation and may forget that they are being recorded. Consequently, this leads to ecologically 

valid and natural recordings. 
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Strengths and limitations 

An important strength of this study is the considerable amount (18 hours) of LENA 

recording data from 12 children that was coded by human coders. This makes the current 

study the second largest validation study in a language other than American English. Despite 

that, an issue of nonindependence has to be raised as the total amount of chunks that were 

coded consisted of multiple chunks of the same child. This indicates that paired sample t-tests, 

Pearson correlations and Fisher r-to-z transformations were conducted on nonindependent 

data which may have influenced the results. Furthermore, correlations indicate the strength of 

linear association and not agreement (Busch et al., 2018). Together with the fact that the exact 

meaning of correlations cannot merely be interpreted based on the correlation coefficient 

(Bosco et al., 2015; Taylor, 1990), strong conclusions regarding the validity of the LENA 

system cannot be made when they are based purely on correlations. In addition, Busch et al. 

(2018) indicated that correlations do not take into account systematic biases that may occur 

between methods. LENA recordings took place within a longitudinal prospective study 

following LR-sibs and HR-sibs which resulted in the ability to gather longitudinal data of these 

children. This however limited us in gathering recordings at broader age ranges, as recordings 

were scheduled near assessment appointments. Generalizability of the current results is thus 

limited to the reported age range of the current study (5 to 14 months). Lastly, comparisons of 

conversational turns were difficult as the current study counted these turns differently than the 

LENA algorithm. Within the current study it was decided to count conversational turns as we 

would normally do when transcribing natural language.  

Conclusion 

In conclusion, current results suggest that the LENA system can accurately assess the 

amount of adults’ words but not conversational turns in Dutch-speaking families. With regard 

to the amount of child vocalisations, the LENA system appears to be moderately accurate at 

5 months but its accuracy seems to decrease with age. At the age of 14 months substantial 

differences are reported between LENA system estimates and human estimates. Thus, the 
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LENA system can be used in Dutch-speaking families within the home language environment 

when evaluating the amount of adult words spoken near the key child but not the amount of 

vocalisations by the key child, nor the conversational turns between an adult and the key child.  
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