
Efficient Application Deployment in Fog-enabled
Infrastructures

Lyla Naghipour Vijouyeh∗, Masoud Sabaei ∗, José Santos †, Tim Wauters †,
Bruno Volckaert † and Filip De Turck†
∗Computer Engineering Department

Amirkabir University of Technology, Tehran, Iran
Email: lyla.naghipour@aut.ac.ir

†IDLab, Department of Information Technology
Ghent University - imec, Ghent, Belgium

Abstract—Fog computing is a paradigm that extends cloud
computing services to the edge of the network in order to support
delay-sensitive Internet of Things (IoT) services. One of the most
promising use-cases of fog computing is Smart City scenarios.
Fog computing can substantially improve the quality of citywide
services by reducing response delays. Owing to geographically
distributed and resource-constrained fog nodes and a multitude
of IoT devices in Smart Cities, efficient service deployment and
end device traffic routing are quite challenging. Therefore, in
this paper, we present an Integer Linear Programming (ILP)
formulation for the Joint Application Component Placement
and Traffic Routing (JAcPTR) problem in which users’ de-
lay requirements and the limited traffic processing capacity
of application instances are considered. Besides, the JAcPTR
enables users and infrastructure managers to easily enforce
their locality and management requirements in the deployment
of application instances. To cope with the considerably high
execution time in large instances of the JAcPTR problem, we
propose a fast polynomial-time heuristic to efficiently solve the
problem. The performance of the proposed heuristic has been
evaluated through extensive simulation. Results show that in large
instances of the problem, while the state-of-the-art Mixed Integer
Linear Programming (MILP) solver fails to obtain a solution in
50% of the simulation runs in 300 seconds, our proposed heuristic
can obtain a near-optimal solution in less than one second.

Index Terms—Fog Computing, Cloud Computing, Smart City,
Application Deployment, Traffic Routing.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has introduced
a new set of ubiquitous services by transforming dumb objects
into communicating and smart devices [1]–[3]. According to
[4], the number of IoT connected devices is expected to
grow to 41.6 billion, generating 79.4 zettabytes of data in
2025, which imposes considerable, yet unsolved, challenges
in the existing cloud-centric infrastructure [5]. The high end-
to-end delays, lack of bandwidth, and network congestion are
among the most critical challenges of current cloud-centric IoT
systems. Fog computing was introduced to cope with the afore-
mentioned issues [6]. Fog computing extends cloud computing
services, including processing, storage, and network services
to the network edge to support geographically distributed and
delay-sensitive IoT applications [6], [7].

One of the most promising use-cases of fog computing
is Smart City scenarios. Fog computing can considerably

improve the quality of citywide services and decrease response
time while reducing network load [8]. In this regard, we
generally consider Smart City applications, and in particular,
Antwerp’s City of Things (CoT) and its diverse range of
applications, including smart traffic light, smart water, and
smart freeways [9]–[11]. Generally, the operator of a Smart
City faces several challenges in provisioning IoT applications
on hybrid cloud-fog infrastructure. On the one hand, fog nodes
are resource-constrained and may not be able to host all
components of one application or the components of different
applications. On the other hand, a large number of end devices
may simultaneously request the applications hosted by fog
nodes. As a result, a strategy is needed to enable the Smart
City operator to properly deploy applications and route end
device traffic to the hosted applications.

In this paper, we focus on providing the Smart City operator
with the ability to manage infrastructure, end devices, and
applications efficiently. In this regard, we present a math-
ematical formulation for the Joint Application Component
Placement and Traffic Routing (JAcPTR) problem with the
objective of maximizing the infrastructure provider profit.
The JAcPTR deals with a set of application requests with
diverse requirements such as maximum tolerable delay and
service locality. IoT applications have been designed based
on microservice architecture, and thus, each application is
considered as a set of communicating services [12]–[14]. In
addition, we assume each application has a limited traffic
processing capacity, and sometimes, it may be necessary to
create and deploy multiple instances of the application. We
offer management capabilities in which users can define a set
of preferred locations for the deployment of their requested
applications. The JAcPTR problem consists of jointly solving:
(1) Application deployment sub-problem: this determines the
required number of application instances, physical placement
of application services, and mapping each virtual link between
services to a path in the infrastructure; and (2) Traffic routing
sub-problem: this consists of assigning the traffic of end
devices to the deployed application instances, determining
the fog node through which end device traffic enters the
network, and routing the end device traffic to the assigned
application instance. Moreover, we propose a fast polynomial-

time heuristic to solve the problem efficiently.
In summary, the main contributions of this paper are as

follows:
• We formulate the JAcPTR problem as an Integer Linear

Programming (ILP) problem that can deploy applications
in the infrastructure network and route end device traffic
to deployed applications while meeting different user re-
quirements and maximizing the profit of the infrastructure
provider.

• We propose a fast polynomial-time heuristic to calculate a
feasible and sub-optimal solution to the JAcPTR problem.

• We evaluate the performance of the proposed heuristic
through extensive simulations. Results demonstrate that
in large instances of the problem, our proposed heuristic
can obtain a near-optimal solution in less than one second.

The rest of the paper is organized as follows. In Section II,
the related works are discussed. The mathematical formulation
of the JAcPTR is presented in Section III, and a heuristic
algorithm for solving it is proposed in Section IV. Section
V presents the evaluation settings and results. Finally, we
conclude the paper in Section VI.

II. RELATED WORK

In recent years, various studies have been conducted on
resource allocation to IoT applications in fog computing
environments, more specifically, service placement and traffic
routing. In [15], the authors have investigated the Virtual Ma-
chines (VMs) placement problem in Mobile Edge Computing
(MEC) architecture to minimize the delay. The authors in [16]
have addressed the dynamic service placement problem on
edge servers for the group virtual reality games to minimize
operational costs while respecting the players’ Quality-of-
Service (QoS) requirements. In [17], a Mixed Integer Nonlin-
ear Programming (MINLP) model for the joint VMs resource
allocation and user request assignment problem has been
presented to minimize the average response time. Kherraf et
al. [18] have formulated the problem of resource provisioning
and workload assignment for IoT service as a Mixed Integer
Programming (MIP) problem, to minimize the cost of edge
servers and applications deployment while ensuring the IoT
services delay requirement. An ILP model has been presented
in [19] for the IoT application placement problem with the
aim of maximizing profit while the users’ QoS is guaranteed.

Mouradian et al. [20] have proposed an ILP formulation
for the IoT application component placement problem in
Network Function Virtualization (NFV)-based fog-cloud sys-
tems aiming to minimize cost and makespan. In [21], the
VNF placement and user traffic routing problem has been
addressed to minimize delay while respecting the limitation
of resource capacity and delay requirements. The problem of
application component placement and mapping links between
them with the objective of minimizing the maximum costs
is studied in [22]. In [23], by assuming the application as
a chain of services with limited processing capacity, the
authors have presented a multi-objective Integer Nonlinear
Programming (INLP) model for the joint service placement

and data flow management problem to minimize deployment
costs and service delay. Moreover, in [24], a Mixed Integer
Linear Programming (MILP) model for the Service Function
Chain (SFC) deployment problem in edge servers has been
presented to find the optimal placement of services and route
traffic between the edge servers while minimizing cost. In
[25], the authors assumed that each gateway could have
limited associated stations and proposed an ILP model for
IoT application resource provisioning with different objective
functions while taking the wireless constraint into account.

A comparison of the most important reviewed studies is pre-
sented in Table I. We compare them according to the following
criteria: (1) decision variables in the defined problems, (2) the
objective function of the defined problems, (3) the most crucial
assumptions used in the problem definition, and (4) whether
delay and locality are considered in users’ requests or not.

In this paper, we investigate the JAcPTR problem by con-
sidering both delay and locality requirements. In this regard,
we take several real-world assumptions, including the limited
processing capacity of applications and the limited connection
capacity of fog nodes into account. As shown in Table I, our
approach is different from previous studies in considering both
delay and locality requirements at the same time. In addition,
the JAcPTR considers the limited traffic processing capacity
of applications as well as end device traffic routing to the
deployed instances of the application.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the high-level fog-cloud architecture of a Smart
City, as illustrated in Fig. 1. The details and specifications
of the architecture are based on the CoT project [9], [11].
According to [9], wireless gateways, in addition to commu-
nication resources, have processing and memory resources.
These gateways serve as fog nodes in the infrastructure. In
the assumed architecture, each user prepares and submits
a set of application requests to the Smart City provider.
The fog and cloud infrastructure provider must deploy the
requested applications and route the traffic of end devices
to them according to the requirements outlined in the users’
request and the available resources in the infrastructure. In
the following, first, the infrastructure network model, the user
request model, and the problem assumptions are explained.
Next, the formulation of the JAcPTR problem is presented.
The notations used for variables and parameters in this paper
are also listed in Table II and Table III, respectively.

A. Infrastructure Network Model

The hybrid fog-cloud infrastructure is modeled as a directed
graph G = (V,E), wherein V is the set of cloud nodes, fog
nodes, and switches, and E is the set of links among the
infrastructure nodes. We denote the set of cloud nodes, fog
nodes, and switches by V C , V F , and V S , respectively, and
we define V = V C ∪V F ∪V S . A directed link from node n
to node m is shown by (n,m) ∈ E with bandwidth capacity
B(n,m) and propagation delay d(n,m). Cloud and fog nodes
have limited processing and memory resources represented by

TABLE I: Summary of Related Research

Ref.
Decision Variables

Objective function
Assumptions User requirements

Application
deployment

End device traffic
assignment to End device/

user traffic
routing

Limited
processing
capacity of

application instances

Limited
connection
capacity of
fog nodes

Delay Locality
Service/

application
placement

Link
mapping

Fog
node

Application
instance

[20] X X Minimizing costs and time X
[21] X X Minimizing delay X
[22] X X Minimizing the maximum costs
[23] X X Minimizing cost and delay X
[25] X X X Seven different objective function X X

This paper X X X X X Maximizing profit X X X X

Fig. 1: High-level View of Hybrid Fog-cloud Infrastructure
Considered for Smart City.

TABLE II: Notations: Decision Variables

Symbol Description
accepta ∈ {0, 1} Equals 1 if the request a is accepted

placeda,i ∈ {0, 1} Equals 1 if the instance i of the application a
is created

xa,i,sn ∈ {0, 1} Equals 1 if service s of the instance i of the
application a is placed on the node n

y
a,i,(s,s′)
(n,m)

∈ {0, 1}
Equals 1 if the virtual link (s, s′) of the
instance i of the application a uses link (n,m)
of the infrastructure

za,i
ed ∈ {0, 1}

Equals 1 if end device ed is assigned
to the instance i of application a

fa,i
ed,(n,m)

∈ {0, 1}
Equals 1 if the link (n,m) is used to route
the traffic of end device ed to the instance i
of application a

ked,n ∈ {0, 1}
Equals 1 if the traffic of end device ed enters
to the network through fog node n ∈ V F

Ωn and Γn, respectively. In addition, fog nodes can serve a
limited number of associated end devices depending on the
technology they use [25]. We use θn, henceforth referred as a
fog node n ∈ V F connection capacity, to denote the maximum
number of end devices that can be served by fog node n ∈ V F .

B. User request Model

Let A show the set of all application requests received
by the infrastructure provider. We assume each request
contains all the information required by the infrastructure
provider. Each application request a ∈ A is modeled by
a = 〈Ga, τa, EDa, Ra, Da〉 where Ga and τa are a graph

TABLE III: Notations: Parameters

Symbol Description
G = (V,E) The infrastructure graph
A The set of all requests
ED The set of all end devices
Ga = (V a, Ea) Graph of application a
EDa The set of all end devices in the request a

E′ The set of virtual links between end devices and
fog nodes

Ia
The maximum number of instances that can be
created from the application a

Da The maximum tolerable delay for request a
τa The processing capacity of application a

γa,s The memory requirement of service s of
application a

ωa,s The processing requirement of service s of
application a

λaed The traffic rate of end device ed in request a
profitaed The profit of end device ed in request a
ϕa,(s,s′) The bandwidth requirement of virtual link (s, s′)

R
a,s
n ∈ {0, 1} Equals to 1 if it is permitted to deploy service s

from application a on node n
B(n,m) The bandwidth of link (n,m)

d(n,m) Link (n,m) propagation delay
θn The connection capacity of fog node n ∈ V F

describing the components of the requested application and the
processing capacity of the requested application, respectively.
EDa presents the set of end devices whose traffic is assumed
to be processed by the requested application. Ra and Da repre-
sent the set of preferred locations for the services constituting
the requested application and the maximum tolerable delay,
respectively.

Since each request contains just one application, we reuse
the notation of request a for the application that the request
describes. The application a is modeled by a linear directed
graph Ga = (V a, Ea), wherein V a contains a source, a
destination, and a set of services constituting application a,
and Ea is the set of virtual links between the services.
The source node acts as a classifier determining the services
through which the traffic of each end device passes. Therefore,
the source node is modeled similarly to other application
services. The destination node represents the exit point of
the application traffic. The physical location of the destination
nodes on the infrastructure are predefined and can be an egress
switch of the network. An egress switch is a switch through
which traffic leaves the network. A virtual link (s, s′) ∈ Ea

indicates a data stream from service s to service s′, and its
bandwidth requirement is shown by ϕa,(s,s′). The processing

and memory requirements of the service s in the application
a are denoted by ωa,s and γa,s, respectively. We assume
only one configuration file exists for the deployment of each
application.

Let ED be the set of all end devices in all requests. We
define a virtual link (ed, n) between each fog node n ∈ V F

and each end device ed ∈ ED within the service region of
that fog node. E′ represents the set of all virtual links between
end devices and fog nodes. Each virtual link has a limited
bandwidth capacity, shown by B(ed,n), which is determined
by communication technology. The propagation delay of each
virtual link (ed, n) is indicated by d(ed,n).

C. Assumption

To deploy an application, the infrastructure provider has to
deploy all its constituent services and map each virtual link
between them to a path in the infrastructure. The infrastructure
provider or the user requesting an application can determine
whether service s of application a can be placed on the
infrastructure nodes n ∈ V or not by setting parameter
Ra,s

n ∈ {0, 1}. If Ra,s
n = 1, the service s of application a can

be placed on node n. This parameter is used to guarantee user
locality requirements and infrastructure provider management
capabilities. We assume each application instance to be limited
in terms of the amount of traffic it can process. If the
input traffic to an application instance exceeds its processing
capacity, the infrastructure provider has to create and deploy
more instances of the application. By creating a new instance
of an application, a new instance of all its services is created.
The infrastructure provider has to assign the traffic of end
devices to the application instances. To this end, the decision
variable za,ied is used. If za,ied = 1 the end device ed is assigned
to the instance i of application a.

We assume that there is a fixed revenue and cost for each
end device. Therefore, the infrastructure provider can calculate
the profit of accepting the traffic of each end device. profitaed
is the profit gained by accepting the traffic of end device ed
of request a.

D. Problem Formulation

Given the assumptions mentioned above, the JAcPTR prob-
lem is formulated as follows. The objective function is the
maximization of the infrastructure provider’s profit and is
expressed via (1). The profit of the infrastructure provider is
calculated as the sum of each end device profit in the accepted
requests.

max
∑
a∈A

∑
ed∈EDa

accepta× profitaed (1)

Several constraints have to be respected to meet this objective.
These constraints can be classified as follows:

Determining the number of required instances of each
application: Constraint (2) determines the number of required
instances of each application. It also ensures the total traffic

assigned to each instance does not exceed the processing
capacity of that instance.

placeda,i× τa ≥
∑

ed∈EDa

za,ied ×λaed ∀a ∈ A, i ∈ Ia (2)

Application service placement: Constraint (3) respects that
each service is placed on at most one node in the infrastructure.
As previously mentioned, each service can only be placed
on one of the locations specified for it. If an instance of an
application is deployed, all its constituent services also have
to be placed, which is ensured by constraint (4).∑

n∈V
xa,i,sn ×Ra,s

n ≤ 1 ∀a ∈ A, i ∈ Ia, s ∈ V a
(3)∑

s∈V a

∑
n∈V

xa,i,sn ×Ra,s
n = placeda,i× |V a| ∀a ∈ A, i ∈ Ia

(4)
The resource capacity of infrastructure nodes: Given the

limited processing and memory resources of cloud and fog
nodes, services have to be placed such that their total resource
requirements do not exceed the capacity of the nodes hosting
them. Constraints (5) and (6) respect the limited memory and
processing resources of cloud and fog nodes.∑

a∈A

∑
i∈Ia

∑
s∈V a

xa,s,in × γa,s×Ra,s
n ≤ Γn ∀n ∈ V C ∪V F

(5)∑
a∈A

∑
i∈Ia

∑
s∈V a

xa,s,in ×ωa,s×Ra,s
n ≤ Ωn ∀n ∈ V C ∪V F

(6)
Mapping virtual links between services: Constraints (7) and

(8) ensure that each virtual link between services is mapped
to one path in the infrastructure. Constraints (7) enforces flow
conservation for cloud and fog nodes, and Constraints (8)
applies flow conservation for switches.∑

(n,m)∈E
y
a,i,(s,s′)
(n,m) −

∑
(m,n)∈E

y
a,i,(s,s′)
(m,n) =

xa,i,sn ×Ra,s
n −xa,i,s

′

n ×Ra,s′

n

∀a ∈ A, i ∈ Ia, (s, s′) ∈ Ea, n ∈ V C ∪V F

(7)

∑
(n,m)∈E

y
a,i,(s,s′)
(n,m) −

∑
(m,n)∈E

y
a,i,(s,s′)
(m,n) = 0

∀a ∈ A, i ∈ Ia, (s, s′) ∈ Ea, n ∈ V S

(8)

Traffic assignment: Constraint (9) guarantees if a request is
accepted, the traffic of all its end devices are accepted.∑

ed∈EDa

∑
i∈Ia

za,ied = |EDa| × accepta ∀a ∈ A (9)

The traffic of each end device has to be assigned to one of the
application instances to be processed. Constraint (10) ensures
that each end device is assigned to at most one instance of
the requested application. If the assignment of the end device
traffic to one of the application instances is not possible, its
traffic cannot be accepted. Constraint (11) guarantees that if
the end device traffic is assigned to one of the requested
application instances, that instance of the application is placed.∑

i∈Ia

za,ied ≤ 1 ∀a ∈ A, ed ∈ EDa
(10)

za,ied ≤ placed
a,i ∀a ∈ A, i ∈ Ia, ed ∈ EDa (11)

Each end devices must be assigned to a fog node to be able to
send its traffic. Constraint (12) ensures that if the end device
traffic is accepted, it is assigned to a fog node. Constraint
(13) respects the limited bandwidth of the virtual link between
the end device and the fog node. Constraint (14) assures the
number of end devices assigned to a fog node does not exceed
its connection capacity.∑

n∈V F

ked,n =
∑
a∈A

∑
i∈Ia

za,ied ed ∈ EDa
(12)

λaed× ked,n ≤ B(ed,n) ∀a ∈ A, ed ∈ EDa, (ed, n) ∈ E′
(13)∑

ed∈ED
ked,n ≤ θn ∀n ∈ V F

(14)

Traffic routing: Following the determination of the applica-
tion instance to which the end device traffic is assigned, the
end device traffic has to be routed to the given application in-
stance. Constraints (15) and (16) present the flow conservation
for routing the traffic of end devices.∑

(n,m)∈E
fa,ied,(n,m) −

∑
(m,n)∈E

fa,ied,(m,n) = 0

∀a ∈ A, i ∈ Ia, ed ∈ EDa, n ∈ V S
(15)

∑
(n,m)∈E

fa,ied,(n,m) −
∑

(m,n)∈E
fa,ied,(m,n) =

za,ied × ked,n−xa,i,0n ×Ra,0
n × z

a,i
ed

∀a ∈ A, i ∈ Ia, ed ∈ EDa, n ∈ V C ∪V F

(16)

The bandwidth capacity of infrastructure links: Constraint
(17) guarantees the traffic passing through each infrastructure
link does not exceed its capacity.(∑

a∈A

∑
i∈Ia

∑
(s,s′)∈Ea

y
a,i,(s,s′)
(n,m) ×ϕa,(s,s′)

)
+(∑

a∈A

∑
i∈Ia

∑
ed∈EDa

fa,ied,(n,m)×λ
a
ed

)
≤ B(n,m) ∀ (n,m) ∈ E

(17)
Delay constraint: Constraint (18) respects the delay re-

quirement of the requests. The left side of the constraint is,
respectively, the sum of (1) propagation delay between cloud
and fog nodes for mapping virtual links between services, (2)
propagation delay between cloud and fog nodes for routing
the traffic of end devices, and (3) propagation delay between
end devices and fog nodes. The right side of the constraint
presents the maximum tolerable delay determined by the user
request.(∑

(s,s′)∈Ea

∑
(n,m)∈E

y
a,i,(s,s′)
(n,m) × za,ied × d(n,m)

)
+(∑

(n,m)∈E
fa,ied,(n,m)× d(n,m)

)
+

(∑
n∈V F

ked,n× d(ed,n)

)
≤ Da ∀a ∈ A, ed ∈ EDa, i ∈ Ia

(18)
Constraints (16) and (18) contain multiplications of two

variables, and linearization techniques must be used to convert

the formulation to an ILP problem. These constraints can be
easily linearized. However, due to the lack of space, we omit
the details here.

IV. PROPOSED HEURISTIC

The presented ILP formulation for the JAcPTR problem is
complex and computationally intractable. To cope with the
considerably high execution time in large instances of the
JAcPTR problem, we propose a heuristic named First Nearest
Then Farthest (FNTF) that solves the JAcPTR problem faster.
The general procedure of the FNTF is illustrated in Alg.
1. First, a weight is assigned to each request according to
the Value Factor (VF) function. Three factors are involved
in the calculation of the VF: (1) the profit gained from the
request, (2) the sum of the bandwidth requirement of all virtual
links, and (3) the maximum tolerable delay. We define the VF
function of the request a as follows:

V F (a) =

(∑
ed∈EDa

profitaed

MaxP

)
×

 ∑
(s,s′)∈Ea

ϕa,(s,s′)

MaxBW

×
(
MaxD
Da

)
(19)

where MaxP , MaxBW , and MaxD are the maximum
profit of requests, the maximum bandwidth capacity of the
infrastructure links, and the maximum propagation delay in
the infrastructure network, respectively. We use the aforemen-
tioned parameters in the VL function to consider profit, delay,
and bandwidth in request deployment. Next, the requests are
sorted in descending order of VF and are scheduled one by
one. The FNTF is a two-phase algorithm: (1) the Nearest
Search (NS), and (2) the Farthest Search (FS). Each phase
consists of two steps: (1) application service placement and
(2) traffic routing. If a request is rejected in the first phase,
NS, we move it to the next phase, FS, and attempt to deploy
it. A request may be rejected in the placement or routing step
in the NS phase. If both steps of one phase are completed
successfully, the request is accepted, and the infrastructure
resources are updated; otherwise, the request is rejected.

A. Applications Service Placement

In the NS and FS phases, different strategies are utilized
for application service placement. The application service
placement algorithm for the NS phase is illustrated in Alg.
2. First, the required number of instances for the requested
application is calculated in line 2; then instances are deployed
one after another. In the deployment of instances, the services
are placed one by one, and the links between them are
mapped. After placing each service, we update the available
infrastructure resources. The source node of an application is
deployed according to the following procedure: first, candidate
nodes for placing the source node are identified. The candidate
nodes are nodes that have adequate resources and placement
of the service on them is permitted. Then, we assign a weight
to each candidate node based on its available resources and
select the node with the highest weight for placement in line
6. Eq. (20) presents the weighting function, where MaxCPU

and MaxMem are the maximum available CPU and memory,
respectively.

NW (n) =
availableCPU

MaxCPU
+
availableMem

MaxMem
(20)

The procedure for deploying other services is different from
the source node, which is described below. Line 13 checks
the possibility of placing the service on the same node on
which the previous adjacent service is placed. If it is possible,
we place the service on the same node. The aim of placing
services on the same nodes is to save the bandwidth and
reduce the delay. If a service cannot be placed on the node
that the previous service is deployed on, we have to select
another node. For selecting another node, a path is calculated
using the weighted shortest path from the node whereon the
previous service is placed to all the candidate nodes for the
placement of the current service in lines 20 and 21. In line
22, the node whose path has the lowest cost is selected for
service placement. Besides, we use that path to map the virtual
link between the two subsequent services. We implement the
weighted shortest path using the Dijkstra algorithm. A pruned-
graph of the infrastructure network is used as the input to
the Dijkstra method. The cost of link (n,m) is a function
of its propagation delay and remaining bandwidth, and it is
calculated using (21). The reason for placing the service on
the node with the lowest cost is to save bandwidth and reduce
delay.

LC (n,m) =
d(n,m)

/
MaxD

AvailableBW (n,m)/MaxBW
(21)

The application service placement algorithm in the FS phase
is similar to the placement algorithm in the NS phase. The only
difference between these two algorithms is in the selection
of another node for service placement in line 22 of Alg. 2.
As mentioned before, If a service cannot be placed on the
node that the previous service is deployed on, we have to
select another node. Although in the NS, we select the node
with the lowest path cost, in the FS placement algorithm, we
choose the node with the highest path cost. We use the FS
to improve the profit by reconsidering the rejected requests.
Therefore, unlike the NS, we disperse services in order to
use every last remaining resource. Since the FS placement
algorithm is similar to the NS placement algorithm, it is not
presented here.

B. Traffic Routing

In the traffic routing step, the assignment of end devices to
fog nodes and deployed application instances, and end device
traffic routing are performed. The traffic routing procedure is
depicted in Alg. 3. The end device traffic routing is performed
according to the following procedure: (1) First, candidate fog
nodes and candidate instances are determined for the end
device traffic assignment in lines 3 and 4. The candidate fog
nodes are nodes that have adequate communication resources
and the end device is in their coverage area. Communication
resources refer to the remaining connection capacity of the

Algorithm 1 Main procedure of the FNTF
1: Input: The set of all requests

2: Requests← sort the requests in descending order of VF
3: for each req in Requests do
4: placement← NSplacement(req)
5: if (placement 6= null) then
6: routing ← routing (req, placement)
7: if (routing 6= null) then
8: accept req and update remaining resources
9: else

10: placement← FSplacement(req)
11: if (placement 6= null) then
12: routing ← routing (req, placement)
13: if (routing 6= null) then
14: accept req and update remaining resources
15: else
16: reject req
17: else
18: reject req
19: else
20: placement← FSplacement(req)
21: if (placement 6= null) then
22: routing ← routing(req, placement)
23: if (routing 6= null) then
24: accept req and update remaining resources
25: else
26: reject req
27: else
28: reject req

Algorithm 2 The NSplacement procedure of the FNTF
1: Input: request, Output: placement

2: instances← calculate the number of required instances
3: for each i in instances do
4: for each s in instanceServices do
5: if (s is the source node) then
6: n← candidate node with the minimum NW
7: if (n = null) then
8: return null
9: else

10: place s on the n and update placement

11: else
12: n← node that hosting the previous service
13: if (we can place s on the n) then
14: place s on the n and update placement
15: else
16: CN ← candidate nodes
17: if (CN = null) then
18: return null
19: else
20: prune infrastructure graph G
21: find a path from n to each node in CN
22: n← node in CN with minimum path cost
23: place s on node n and reserve that path
24: update placement

25: return placement

fog node and the virtual link bandwidth between the fog node
and the end device. The candidate instances are the deployed
instances of the requested application whose remaining pro-

Algorithm 3 The routing procedure of the FNTF
1: Input: request and placement, Output: routing

2: for each ed in request do
3: CFN ← determine candidate fog nodes
4: CAI ← determine candidate application instances
5: if (CFN 6= null & CAI 6= null) then
6: Ḡ← prune infrastructure graph G
7: for each n in CFN do
8: for each i in CAI do
9: dest← node hosting the first service of i

10: p← Dijkstra (Ḡ, n , dest)
11: NIV .add(n,i,p.cost(),p)
12: r ← select the entry with minimum path cost from NIV
13: update routing based on n,i,p in r
14: else
15: return null
16: return routing

cessing capacity exceeds the end device traffic. (2) After that,
the shortest path is calculated from each candidate fog node
to all nodes whereon the source node of candidate instances is
placed using the Dijkstra method in lines 7-11. The links cost
and the Dijkstra method inputs are similar to the placement
step. (3) Finally, the path with the lowest cost is selected and
reserved for the end device traffic. This path connects two
entities: The fog node that carries the traffic of the end device
into the network, and the node hosting the source node of
an application instance that is responsible for processing the
traffic of the end device, i.e., the traffic of the end device is
assigned to that application instance.

V. NUMERICAL RESULTS

In this section, we conduct an extensive simulation to
evaluate the performance of our proposed heuristic against
the CPLEX Branch and Cut algorithm (B&C) [26] and a
Random-based Placement and Routing (RPR) method in terms
of average execution time and profit. In the RPR, first, the
application services are placed randomly on the infrastructure
nodes. Then the Dijkstra algorithm is used to find a path be-
tween communicating services. The traffic routing part of the
RPR is similar to the FNTF routing step. Their only difference
is the cost of infrastructure links. In RPR, propagation delay
is used as the cost of links.

A. Simulation Settings

The Fog-Cloud infrastructure used in this paper is based
on [14], [27]. The topology consists of twelve fog nodes,
three cloud nodes, and five switches. The specifications of the
infrastructure nodes and links are summarized in Table IV.

We randomly generated a set of requests using the data
presented in Table V and Table VI. Each request has 5
to 10 end devices, and the generated traffic of each end
device was randomly selected between [0.02-0.2] Mbps. Each
application graph contained 3 to 5 services. The specifications
of application services were based on Smart City applications
studied in [25], [27]. The traffic processing capability of each
application was chosen randomly between [1-20] Mbps. The

TABLE IV: Infrastructure Specifications

Parameter Value
CPU (GHz) {4,8,12,16}
RAM (GB) {8,12,16,24,48}
Fog nodes connection capacity {38,80,100}
Link bandwidth (Mbps) {25,50,125,150,500}
Links propagation delay (ms) {1,3,5,15,25}

TABLE V: Requests Parameters

Parameter Value
Number of end devices 5 to 10
End device traffic rate (Mbps) Uniform [0.02-0.2]
The maximum
tolerable delay (ms)

Limited scenario: Uniform [60-180]
Exact scenario: Uniform [10-180]

TABLE VI: Services Specifications

Parameter Value
CPU requirement (GHz) {0.1,0.2,0.5,1}
Memory requirement (GB) {0.128,0.256,0.512,1}
Bandwidth (Mbps) Uniform [2-8]

value of the Ra,s
n parameter was randomly set to one. The

value of the profitaed parameter was set to one dollar for all
end devices. Each end device was in the coverage area of
two fog nodes, which were selected randomly. The maximum
connection capacity of fog nodes was chosen randomly from
the set {38,80,100}. Virtual wireless links bandwidth and
delay were random numbers between [0.5-1] Mbps and [0.5-1]
ms, respectively.

We used two scenarios to evaluate the performance of the
proposed heuristic: Limited and Exact. In the Limited scenario,
the maximum tolerable delay of each request is a random
number between [60-180] ms. We limited the execution time
of B&C to 300s in this scenario. Accordingly, the termination
condition of the B&C was reaching 300s or achieving the
optimality. In the Exact scenario, we did not limit the execu-
tion time and the range of maximum tolerable delay was set to
[10-180] ms. All simulations were carried out on a server with
20 GB of memory and four E5-2690 CPU cores operating at
2.60 GHz. All simulations results have been averaged over 30
successive runs.

B. Performance Evaluation

The performance of different methods in the Limited sce-
nario is shown in Fig. 2. As shown in Fig. 2a, by increasing the
number of requests from 5 to 100, the execution time of the
B&C grows from 1.65s to 300s. In contrast, the execution time
of the other two methods is constantly below 1s despite their
ascending trend. Therefore, both the FNTF and RPR methods
calculate the solution faster than the B&C method.

According to Fig. 2b, by increasing the number of requests
from 5 to 80, the profit of both the B&C and FNTF methods
gradually grows from 37.12$ to 570.064$ and 536.538$, re-
spectively. However, the profit of RPR remains almost constant
after reaching 40 requests. As we continue to increase the
number of requests, the execution time of B&C reaches the
termination limit in some of the simulation runs. Therefore,

Total Number of Requests

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

0

50

100

150

200

250

300

350
B&C

FNTF

RPR

(a) Execution Time
Total Number of Requests

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
ro

fi
t
($

)

0

100

200

300

400

500

600

700 B&C

FNTF

RPR

(b) Objective Value
Total Number of Requests

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

R
e
q
u
e
s
t
A

c
c
e
p
ta

n
c
e
 R

a
ti
o
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

B&C

FNTF

RPR

(c) Request Acceptance Ratio

Total Number of Requests

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N
u
m

b
e
r

o
f
A

c
c
e
p
te

d
 R

e
q
u
e
s
ts

0

20

40

60

80

100
B&C

FNTF

RPR

(d) Accepted Requests
Total Number of Requests

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
O

p
ti
m

a
lit

y
 G

a
p
 (

%
)

-40

-20

0

20

40

60

80

(e) The Optimality Gap of B&C Method
Total Number of Requests

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
e
rc

e
n
ta

g
e
 o

f
F

a
ile

d
 R

u
n
s
 (

%
)

0

10

20

30

40

50

(f) Failed Runs in B&C Method

Fig. 2: The Performance of B&C, FNTF and RPR Methods in the Limited Scenario.

Total Number of Requests

10 20 30 40 50 60 70 80 90 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

×10
4

-1

0

1

2

3

4
B&C

FNTF

RPR

(a) Execution Time
Total Number of Requests

10 20 30 40 50 60 70 80 90 100

P
ro

fi
t

($
)

0

100

200

300

400

500
B&C

FNTF

RPR

(b) Objective Value
Total Number of Requests

10 20 30 40 50 60 70 80 90 100

R
e

q
u

e
s
t

A
c
c
e

p
ta

n
c
e

 R
a

ti
o

 (
%

)

0

20

40

60

80

100
B&C

FNTF

RPR

(c) Request Acceptance Ratio
Total Number of Requests

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

A
c
c
e

p
te

d
 R

e
q

u
e

s
ts

0

10

20

30

40

50

60

70
B&C

FNTF

RPR

(d) Accepted Requests

Fig. 3: The Performance of B&C, FNTF and RPR Methods in the Exact Scenario.

the B&C algorithm ends before obtaining the optimal solution,
which leads to a decrease in profit and the number of accepted
requests. Fig. 2f represents the percentage of failed runs in
the B&C method. A failed run is defined as a run that B&C
failed to accept at least one request of the requests set. The
obtained optimality gap in other runs is depicted in Fig. 2e.
As shown in Fig. 2f, the percentage of failed runs increases
exponentially to 50%; therefore, B&C needs more time to
find an acceptable solution. In the Limited scenario, the FNTF
outperforms the B&C and RPR by 45.5% and 69.29% more
profit in 100 requests, respectively. Also, the FNTF deploys
43% and 67.27% more requests than the B&C and RPR
methods in 100 requests, respectively. The B&C fails to obtain
acceptable results in limited time due to the increase in the
problem size, which shows the importance of developing a
faster method.

In Fig. 3, the performance of different methods in the Exact
scenario is illustrated. As shown in Fig. 3a, the B&C obtained
the optimal solution after spending 12917.58s on solving the
problem whit 100 requests. However, the obtained solution
is just 24.9% better than the proposed heuristic and accepts
only 17% more requests. Therefore, it is justifiable to use the
proposed heuristic in large instances of the JAcPTR problem
since it can obtain a sub-optimal solution in less than one
second while the B&C method cannot solve the problem

efficiently.

VI. SUMMARY AND CONCLUSION

In this paper, we investigate the JAcPTR problem that
jointly solves the application component placement and traffic
routing problems. Each IoT application was considered as a
set of communicating services. We assumed each application
instance to be limited in terms of the amount of traffic it can
process. Therefore, if the amount of entering traffic is larger
than an application instance processing capacity, it is necessary
to create multiple instances of the application. The JAcPTR
took management capabilities into account that capable users
to define a set of preferred locations for the deployment of
their requested application. We proposed an ILP model for
the JAcPTR problem with the objective of maximizing the
fog-cloud infrastructure provider’s profit while respecting the
users’ requirements and infrastructure resource limitations.
We also proposed a fast polynomial-time heuristic named
FNTF to solve the problem efficiently. We evaluated the FNTF
performance through simulation. According to the simulation
results, by considering a time limit of 300 seconds, the B&C
cannot obtain a solution in 50% of the simulation runs with
100 requests. However, The FNTF can provide a near-optimal
solution in less than one second. Therefore, it is justifiable to
use the proposed heuristic in large instances of the JAcPTR
problem if execution time matters.

REFERENCES

[1] B. Negash, A. M. Rahmani, P. Liljeberg, and A. Jantsch, “Fog Com-
puting Fundamentals in the Internet-of-Things,” in Fog Computing in
the Internet of Things: Intelligence at the Edge. Springer International
Publishing, 2018, ch. 1, pp. 3–13.

[2] J. Yao and N. Ansari, “QoS-Aware Fog Resource Provisioning and
Mobile Device Power Control in IoT Networks,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 1, pp. 167–175, Mar. 2019.

[3] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Fog Computing:
Enabling the Management and Orchestration of Smart City Applications
in 5G Networks,” Entropy, vol. 20, no. 1, p. 4, Jan. 2018.

[4] “The Growth in Connected IoT Devices Is Expected to Generate
79.4ZB of Data in 2025, According to a New IDC Forecast.” [Online].
Available: https://www.idc.com/getdoc.jsp?containerId=prUS45213219

[5] L. Deboosere, B. Vankeirsbilck, P. Simoens, F. De Turck, B. Dhoedt,
and P. Demeester, “Efficient resource management for virtual desktop
cloud computing,” The Journal of Supercomputing, vol. 62, no. 2, pp.
741–767, Nov. 2012.

[6] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, “A Comprehensive Survey on Fog Computing: State-of-
the-Art and Research Challenges,” IEEE Commun. Surveys Tuts., vol. 20,
no. 1, pp. 416–464, 2018.

[7] M. Mukherjee, L. Shu, and D. Wang, “Survey of Fog Computing:
Fundamental, Network Applications, and Research Challenges,” IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 1826–1857, 2018.

[8] A. Chowdhery, M. Levorato, I. Burago, and S. Baidya, “Urban IoT Edge
Analytics,” in Fog Computing in the Internet of Things: Intelligence at
the Edge. Springer International Publishing, 2018, ch. 6, pp. 101–120.

[9] S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester,
“City of things: An integrated and multi-technology testbed for IoT
smart city experiments,” in Proc. IEEE ISC2, Sep. 2016, pp. 1–8.

[10] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, “Towards Network-
Aware Resource Provisioning in Kubernetes for Fog Computing Appli-
cations,” in Proc. IEEE NetSoft, Jun. 2019, pp. 351–359.

[11] J. Santos, T. Vanhove, M. Sebrechts, T. Dupont, W. Kerckhove,
B. Braem, G. V. Seghbroeck, T. Wauters, P. Leroux, S. Latre, B. Volck-
aert, and F. D. Turck, “City of Things: Enabling Resource Provisioning
in Smart Cities,” IEEE Commun. Mag., vol. 56, no. 7, pp. 177–183, Jul.
2018.

[12] F. Chiti, R. Fantacci, F. Paganelli, and B. Picano, “Virtual Functions
Placement With Time Constraints in Fog Computing: A Matching
Theory Perspective,” IEEE Trans. Netw. Service Manag., vol. 16, no. 3,
pp. 980–989, Sep. 2019.

[13] A. Brogi and S. Forti, “QoS-Aware Deployment of IoT Applications
Through the Fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185–
1192, Oct. 2017.

[14] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource
Provisioning in Fog Computing: From Theory to Practice †,” Sensors,
vol. 19, no. 10, p. 2238, Jan. 2019.

[15] L. Zhao and J. Liu, “Optimal Placement of Virtual Machines for
Supporting Multiple Applications in Mobile Edge Networks,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6533–6545, Jul. 2018.

[16] Y. Zhang, L. Jiao, J. Yan, and X. Lin, “Dynamic Service Placement for
Virtual Reality Group Gaming on Mobile Edge Cloudlets,” IEEE J. Sel.
Areas Commun., vol. 37, no. 8, pp. 1881–1897, Aug. 2019.

[17] Q. Fan and N. Ansari, “Application Aware Workload Allocation for
Edge Computing-Based IoT,” IEEE Internet Things J., vol. 5, no. 3, pp.
2146–2153, Jun. 2018.

[18] N. Kherraf, H. A. Alameddine, S. Sharafeddine, C. M. Assi, and
A. Ghrayeb, “Optimized Provisioning of Edge Computing Resources
With Heterogeneous Workload in IoT Networks,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 2, pp. 459–474, Jun. 2019.

[19] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Profit-
aware application placement for integrated Fog–Cloud computing envi-
ronments,” Journal of Parallel and Distributed Computing, vol. 135, pp.
177–190, Jan. 2020.

[20] C. Mouradian, S. Kianpisheh, M. Abu-Lebdeh, F. Ebrahimnezhad, N. T.
Jahromi, and R. H. Glitho, “Application Component Placement in NFV-
Based Hybrid Cloud/Fog Systems With Mobile Fog Nodes,” IEEE J. Sel.
Areas Commun., vol. 37, no. 5, pp. 1130–1143, May 2019.

[21] R. Gouareb, V. Friderikos, and A.-H. Aghvami, “Virtual Network Func-
tions Routing and Placement for Edge Cloud Latency Minimization,”
IEEE J. Sel. Areas Commun., vol. 36, no. 10, pp. 2346–2357, Oct. 2018.

[22] S. Wang, M. Zafer, and K. K. Leung, “Online Placement of Multi-
Component Applications in Edge Computing Environments,” IEEE
Access, vol. 5, pp. 2514–2533, 2017.

[23] T. Huang, W. Lin, C. Xiong, R. Pan, and J. Huang, “An Ant Colony
Optimization-Based Multiobjective Service Replicas Placement Strategy
for Fog Computing,” IEEE Trans. Cybern., pp. 1–14, 2020.

[24] Z. Zhou, Q. Wu, and X. Chen, “Online Orchestration of Cross-Edge
Service Function Chaining for Cost-Efficient Edge Computing,” IEEE
J. Sel. Areas Commun., vol. 37, no. 8, pp. 1866–1880, Aug. 2019.

[25] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, “Resource pro-
visioning for IoT application services in smart cities,” in Proc. IEEE
CNSM, Nov. 2017, pp. 1–9.

[26] “CPLEX Optimization Studio V12.8,” Jan. 2018. [Online]. Available:
https://www.ibm.com/support/pages/cplex-optimization-studio-v128

[27] J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, “Towards delay-
aware container-based Service Function Chaining in Fog Computing,”
in Proc. IEEE/IFIP NOMS, Nov. 2020, pp. 1–9.

