University of Massachusetts Medical School eScholarship@UMMS

PEER Liberia Project

UMass Medical School Collaborations in Liberia

2020-11-12

Approach to Pediatric Plain Films

Chido D. Vera University of Pittsburgh Medical Center

Let us know how access to this document benefits you.

Follow this and additional works at: https://escholarship.umassmed.edu/liberia_peer

Part of the Analytical, Diagnostic and Therapeutic Techniques and Equipment Commons, Anatomy Commons, Family Medicine Commons, Medical Education Commons, Pediatrics Commons, and the Radiology Commons

Repository Citation

Vera CD. (2020). Approach to Pediatric Plain Films. PEER Liberia Project. https://doi.org/10.13028/915v-k414. Retrieved from https://escholarship.umassmed.edu/liberia_peer/62

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in PEER Liberia Project by an authorized administrator of eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu.

Approach to Pediatric Plain Films

Dr Chido D. Vera, MD MPH UPMC Children's Hospital University of Pittsburgh Medical Center Pittsburgh, PA

Normal neonatal chest

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

Inside-out or outside-in Approach

- Inside-out approach
 - Begin with mediastinum/heart
 - Lungs/diaphragm
 - Bones
 - Soft tissues

- Penetration:should be able to see thoracic spine through heart, and left hemidiaphragm traced to spine
- Inspiration: 9-10 posterior ribs
- Positioning: Clavicular heads should be equidistant from spinous process

Inside-Out

- Trachea
- Aorta
- Thymus
- Heart

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

- "Normal anatomy"
 - Trachea is to the right of midline
 - Left aortic arch
 - Symmetry is your friend
 - —> Right I Left

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

- Neonate
 - Normal thymic shadow on frontal radiograph should be more than twice width of 3rd thoracic vertebrae
 - Smaller dimensions
 - Involution
 - Hypoplasia

Figure 10. Three-hour-old newborn infant x-ray presenting the "sail sign" (arrow).

- Triangular-shaped inferior margin of normal thymus
- Commonly seen on right side
- Can also be bilateral
- Should not be confused with "Spinnaker sail sign" which indicates pneumomediastinum

- Spinnaker Sail sign
 - Thymus is made up of 2 lobes
 - Pneumomediastinum displaces lobes off mediastinum

Figure 9. Twenty-two-day-old newborn infant x-ray demonstrating "notch-sign" (arrow).

- "Notch sign"
- Inferior border of thymus blends with border of cardiac silhouette

Figure 8. Nine-day-old newborn infant x-ray demonstrating "wave-sign" (arrow).

- "Wave sign"
 - Gentle undulation on surface of thymus caused by rib impressions

- Normal variation in size
 - 2 month old: prominent, rounded shape
 - 7 year old: assumes "quadrilateral shape" with convex margins
 - 12 year old: triangular configuration.

- 3 hr old and 4 day old male
- Thymic atrophy.
 - Response to any stress
 - sepsis, major surgery, use of steroids or other immunosuppressants

Thymus changes shape with respiratory cycle

Inspiration

Hodgkin's Lymphoma

- Accounts for 10-15% of childhood tumors
- Present with nodal or extra nodal disease
 - Mass effect from nodal diseases such as SVC obstruction
 - Infiltrative involvement of organs
- Can often present with B symptoms
 - Fever, night sweats, weight loss

 Radiographic features depend on location and subtype of lymphoma

Mediastinal Teratoma

- Most common extragonadal germ cell tumors
- Account for 55% of anterior mediastinal tumors in children
- Typical presentation is below 1 year of age (immature teratoma)
- May be detected antenatally

- Clinical presentation
 - Mass effect
 - Respiratory distress, neck mass,
 - Endocrine function
 - Hormone production (beta-HCG, insulin)
 - Rupture
 - Chest pain, hemoptysis, respiratory failure, pleural effusions, cardiac tamponade

- Solid masses with fatty and cystic components. Calcifications.
- Xray
 - Indistinguishable from other causes of anterior mediastinal mass
 - Calcifications may be visible

- CT
 - Large mass, anterior mediastinum
 - Calcifications

- Treatment
 - Mature teratoma: surgery
 - Seminoma: chemotherapy followed by surgery for residual disease
 - Non- Seminomatous: chemotherapy and surgery

Surfactant Deficiency

- P Risk factors
 - Prematurity
 - Maternal diabetes
 - Prenatal asphyxia
 - Chorioamnionitis

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

- Diffuse "ground glass" lungs
- Low lung volumes
- Waxes and wanes with doses of surfactant
- Air bronchograms may be evident

 Hyperinflation in non-ventilated patient excludes diagnosis

- Associations
 - Persistent PDA: due to reduced oxygen stimulus
 - Germinal matrix hemorrhage
 - Necrotising enterocolitis

- Complications
 - Acute
 - Pulmonary interstitial emphysema (tx related)
 - Pulmonary hemorrhage
 - Chronic
 - Bronchopulmonary dysplasia
 - Subglottic stenosis from intubation
 - Recurrent pulmonary infections

- Differential diagnosis
 - Neonatal pneumonia
 - Pulmonary edema
 - Pulmonary hemorrhage

Pulmonary interstitial emphysema

- Almost always <u>associated with</u> <u>mechanical ventilation or continuous</u> <u>positive airway pressure</u> in first weeks of life
- Other risk factors
 - Reduced lung compliance, prematurity
 - low birth weight
 - meconium aspiration syndrome
 - pneumonia

- First week of life newborns on ventilatory support
 - Increased alveolar pressures and poor compliance
 - Alveolar rupture with escape of air into adjacent interstitial and lymphatics
- Overall
 - Lung volumes are increased
 - Maybe focal affecting one lobe or diffuse and bilateral
 - No predilection for particular lobe

- Typically incidental finding
- May present with air-block complications such as
 - Pneumomediasinum
 - Pneumothorax
 - Pneumopericardium
 - Pneumoperitonium
 - Subcutaneous emphysema

- Cystic or linear lucency's in intersitium radiating from hilum
- Affected segment is often hyper expanded and static in volume on multiple radiographs
- Pneumo: thorax/pericardium/mediastinum/ peritoneum

- Differential diagnosis
 - Partially treated surfactant deficiency
 - Bronchopulmonary dysplasia
 - Congenital pulmonary airway malformation
 - Congenital lobar overinflation
 - Congenital diaphragmatic hernia

PIE on CT

Transient Tachypnea of Newborn

- Aka
 - Retained fetal fluid or wet lung disease
- Neonate with tachypnea in first few hours of life, resolving within 48 hrs
- Most common cause of respiratory distress in term or near term newborns
 - Grunting, nasal flaring within first 6 hrs of life
 - Can be mild cyanosis

- Perihilar streakiness- interstitial edema
- Small pleural effusions
- Fissural prominence
- Normal chest radiograph by 48-72 hrs postpartum

First day of life x-ray. X-ray at 48hrs

Meconium aspiration

- Usually in setting of fetal distress
- Usually in term and post term infants
- Usually history of meconium stained fluid at birth
- Aspirated meconium causes small airway obstruction and chemical pneumonitis

- Increased lung volumes
 - Hyperinflated lungs with flattened diaphragms
 - Secondary to distal small airway obstruction and air trapping
- Asymmetric patchy pulmonary opacities
 - Due to subsegmental atelectasis
 - Rope like opacities
- Pleural effusions maybe present
- Pneumothorax and pneuomediastinum
 - Due to increased alveolar tension from obstructed airways
- Multifocal consolidation
 - Due to chemical pneumonitis

2 examples of Meconium aspiration of x-ray

Meconium aspiration Complication Pneumothorax

Neonatal Pneumonia

- Inflammatory changes caused by neonatal infection
- Leading cause of morbidity and mortality
- Acquired transplacentally or perinatally
- Risk factors
 - Premature rupture of membranes
 - Prolonged and complicated labors
 - Prematurity
 - Immune disorders
 - Maternal systemic infection
 - Chorioamnionitis
 - Fetal asphyxia- gasping and aspiration of infected amniotic fluid

- Fetal distress or tachycardia
- Respiratory distress
- Sepsis
- Other physical exam finding depending on offending organism...

- Maternal systemic infection
 - Rubella
 - CMV
 - Treponema Pallidum
 - Listeria
 - TB
 - HIV
- Most commonly isolated Bacteria
 - Strep (group A and B)
 - Staph A.
 - E. coli
 - Klebsiella
 - Proteus

Imaging findings variable

- Normal chest
- Focal or diffuse opacities
- Interstitial opacitiessimilar to surfactant deficiency
- Patchy parenchymal opacities with air bronchograms

2 examples of neonatal pneumonia on x-ray

Round Pneumonia

- Common imaging manifestation of bacterial pneumonia in children and young adolescents
- Underdeveloped pathways of collateral ventilation
 - Pores of Kohn
 - Canals of Lambert
 - In adults, permit lateral dissemination of infection through lobe —> lobar pneumonia
- In one study
 - 75% of patients were under 8 years old and 90% were under 12

- Round-is opacities
- Irregular margins
- Air bronchograms

Air bronchogram

- Phenomenon of air-filled bronchi (dark) being made visible by the opacification of surrounding alveoli (grey/white).
- Caused by a pathologic airspace/alveolar process, in which something other than air fills the alveoli.
- Air bronchograms will not be visible if the bronchi themselves are opacified (e.g. by fluid) and thus indicate patent proximal airways.

- Differential diagnosis
 - <u>Neuroblastoma:</u>
 - Arise anywhere along paraspinal sympathetic chain
 - May contain calcifications
 - Typ 3 CPAM
 - Bronchogenic cyst

Reactive airway disease

- General term for pediatric disease entity characterized by wheezing, shortness of breath and coughing
- Initial episodes frequently referred to as bronchiolitis
- Unlike asthma, which is chronic, reactive airway disease is usually transient
- May be triggered by
 - Viral URI, esp RSV
 - Pollen and mold
 - Cigarette smoke
 - Extreme cold
- Most (60%) of children with wheezing before age 3 will outgrow it by age 6

- Clinical findings
 - Increased respiratory rate
 - Retractions
 - Cough
 - Fever
 - Rhinorrhea

- Imaging findings
 - Peribronchal thickening
 - Primarily lobar or segmental bronchi
 - May produce tram-track like linear densities
 - Hyperinflation
 - Atelectasis from mucus plugging

- Differential diagnosis
 - Usually difficult to distinguish viral bronchiolitis and asthma in young children
 - 2 may coexist
 - Foreign body aspiration
 - Anaphylactic reaction

Treatment

- Bronchodilator
- Steroids
- Oxygen

Foreign body aspiration

- Immediate recognition is important
- Children under 4 at increased risk
 - 70% are witnessed to have choking episode at time of aspiration
 - May otherwise present with cough, dyspnea or irritability

- Aspirated material is not always visible on radiographs
 - Often in organic
 - Seeds, nuts

- Imaging findings
- Image during expiration to
 - May be normal in 30% of cases
 - If large enough, may see interrupted bronchus sign
 - Check valve mechanism: air enters but cannot exit—> hyper inflated lung
 - Lobar atelectasis

2 examples of bronchus cutoff sign

Atelectasis by Lobe

Juxtaphrenic peak

Luftsichle sign

- Air crescent sign
- Herniation of the superior segment of the hyperinflated left lower lobe between the mediastinum & the collapsed left upper lobe.

Lufth C Clip slide

L (Right Middle Lung)

Right middle lobe collapse

Congenital Lobar Over-inflation

- Congenital lung abnormality resulting in progressive overinflation of one or more lobes
- Classically: hyperlucent lung segment with over inflation and contralateral mediastinal shift
- M:F. 3:1
- Mechanism
 - Obstruction
 - Cartilage deficiency
 - Dysplasia
 - Immaturity
 - Most cases are idiopathic
- May be associated with aberrant left pulmonary artery and congenital heart defects

- Presentation
 - Respiratory distress
 - Most commonly neonatal period- usually within first 6 months of life

- Predilection for lobes
 - LUL- most common 40-45%
 - RML 30%
 - RUL 20%
 - May involve more than a single lobe 5%
 - Much rarer in lower lobes

- Imaging
 - Immediate post partum: opaque because of fetal lung fluid or may show diffuse reticular pattern related to distended lymphatic channels filled with fetal lung fluid
 - Later
 - Area of hyper lucency with paucity of vessels
 - Mass effect on mediastinum and diaphragm
 - Decubitus film lying on affected side shows little or no change in lung volume

Treatment

- Asymptomatic patients are typically followed
- Lobectomy considered in severe cases

- Differential diagnosis
 - Bronchial atresia: parenchymal distal to atretic segment can have air trapping
 - Sawyer James Syndrome: unilateral lucency secondary to post infectious obliterative bronchiolitis. Typically following viral infection such as adenoviruses or mycoplasma pan in infancy or early childhood
 - Congenital pulmonary airway malformation

- Congenital Pulmonary Airway Malformation
 - Multicystic pulmonary mass
 - classification—> cysts of varying sizes
 - Variable amounts of air/fluid
 - Very often noted on prenatal ultrasound
 - Neonate- progressive respiratory distress
 - typically solid mass, and gradually fills with air
 - Often, radiograph may appear normal
 - CT always warranted.

Туре О	Rarest, arises from trachea or bronchi and involves whole lung; commonly fatal
Type 1	Commonest (60-70%), arises from distal bronchi or proximal bronchioles: single or multiloculated 2-10 cm sized cyst. Reported association with malignancy
Type 2	15-20% of CPAMs; multiple cysts 0.5-2 cm in diameter with intervening solid-appearing areas
Туре З	5-10% of CPAMs. Alveolar origin; can have small cystic areas (>0.5 cm) with solid tissue or are mostly solid appearing
Туре 4	10-15% of CPAMs. Acinar origin. Large air-filled or fluid-filled cysts up to 10 cm: strongly associated with pneumothorax. indistinguishable from cystic pleuropulmonary blastoma
CAPM: Cong	enital pulmonary airway malformation

CPAM in a 6 month old with

Figure 1. Normal chest x-ray of a two-hour-old newborn infant, in compliance

