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SUMMARY

Programmed cell death contributes to host defense against pathogens. To investigate the relative impor-
tance of pyroptosis, necroptosis, and apoptosis during Salmonella infection, we infected mice and macro-
phages deficient for diverse combinations of caspases-1, -11, -12, and -8 and receptor interacting serine/
threonine kinase 3 (RIPK3). Loss of pyroptosis, caspase-8-driven apoptosis, or necroptosis hadminor impact
on Salmonella control. However, combined deficiency of these cell death pathways caused loss of bacterial
control in mice and their macrophages, demonstrating that host defense can employ varying components of
several cell death pathways to limit intracellular infections. This flexible use of distinct cell death pathways
involved extensive cross-talk between initiators and effectors of pyroptosis and apoptosis, where initiator
caspases-1 and -8 also functioned as executioners when all known effectors of cell death were absent. These
findings uncover a highly coordinated and flexible cell death systemwith in-built fail-safe processes that pro-
tect the host from intracellular infections.

INTRODUCTION

Metazoans employ different types of programmed cell death

(PCD), including apoptosis, necroptosis, and pyroptosis, for

the removal of unwanted cells, such as those infected with path-

ogens (Green, 2019). Apoptosis is executed by so-called effector

caspases (caspases-3 and -7, and possibly caspase-6) (Salve-

sen and Dixit, 1997) that promote cellular fragmentation into

apoptotic bodies and engulfment of dying cells by neighboring

cells, thus preventing release of intracellular content causing

inflammation (Nagata, 2018). Apoptosis can be induced by death

receptors such as FAS or TNFR1, which activate caspase-8, or in

response to diverse cellular stresses via the intrinsic pathway,

which involves BH3-only protein-initiated and Bcl-2-associated

protein (BAX) and BCL-2 homologous antagonists killer (BAK)-

mediated mitochondrial outer membrane permeabilization

(MOMP) (Czabotar et al., 2014). This causes activation of the

initiator caspase, caspase-9, and subsequent proteolytic trig-

gering of the effector caspases. Pyroptosis is induced through

nucleotide-binding oligomerization domain and leucine-rich

repeat-containing receptor (NLR)-dependent activation of cas-

pase-1 or LPS-induced activation of caspase-11 (Lamkanfi

and Dixit, 2014; Zhao and Shao, 2016). Ligation of tumor

necrosis factor receptor-1 (TNFR1) or Toll-like receptors

(TLRs) causes phosphorylation of receptor interacting serine/

threonine kinase (RIPK) 1 and RIPK3 to initiate necroptosis

Immunity 53, 533–547, September 15, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 533
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when caspase-8 activity is absent (Ofengeim and Yuan, 2013;

Vandenabeele et al., 2010). Pyroptosis and necroptosis are

both executed through lysis of the plasma membrane that re-

leases cellular content into the extracellular space, which can

elicit pro-inflammatory responses priming the innate as well as

the adaptive immune systems.

One important biological function of cellular suicide is to con-

trol intracellular pathogens (Jorgensen et al., 2017; Kayagaki

et al., 2015; Shi et al., 2015). The killing of infected cells is thought

to remove a replicative niche, re-expose the pathogen to extra-

cellular immune effector mechanisms, and make antigens avail-

able for triggering pathogen-specific adaptive immune re-

sponses. Salmonella has been widely used as a model for

studying the role of programmed cell death in host defense

(Broz et al., 2012; Franchi et al., 2009). This intracellular path-

ogen can cause typhoid fever, a systemic infection that affects

10�20 million people worldwide and kills >135,000 individuals

per annum (Browne et al., 2020). The disease can be modeled

by infecting mice with S. enterica serovar Typhimurium (Kupz

et al., 2014), where spleen and liver are major sites of replication

of these bacteria. The primary target of Salmonella spp. are

phagocytes in which the bacteria survive by repurposing a

host-cell-derived membrane compartment into a specialized

niche. Phagocytes, such as macrophages, respond to Salmo-

nella infection through inflammasome formation involving NLR

family apoptosis inhibitory proteins (NAIP)2 or NAIP, and NLRs

such as NLRC4 and NLRP3 (Franchi et al., 2009; Miao et al.,

2010), which activate caspase-1 (Zhang et al., 2015). Caspase-

1 then causes the proteolytic maturation of the inflammatory cy-

tokines interleukin (IL)-1b and IL-18 and release of N-terminal

fragments of gasdermin D (GSDMD) proteins that form pores in

the cell membrane to elicit pyroptosis. Although these processes

appear highly relevant in vitro, with caspase-1- or GSDMD-defi-

cient phagocytes resisting Salmonella-induced killing (Franchi

et al., 2006; Mariathasan et al., 2004), in vivo studies suggest

that Salmonella can be controlled in the absence of inflamma-

some-driven pyroptosis (Broz et al., 2010). This may reflect the

capacity of the host to compensate for the lack of one type of

cell death by using another. Such ‘‘fail-safe’’ systems have

been hypothesized before (Jorgensen et al., 2017; Rauch

et al., 2017; Van Opdenbosch et al., 2017) and may represent

the host’s response to offset a variety of evasion strategies em-

ployed by pathogens to prevent immune recognition (Bedoui

et al., 2010). However, very little is known about the organization,

regulation, and kinetics of such functional backup in the use of

different programmed cell death pathways during host defense

against pathogens in vivo. Here, we investigated the relative con-

tributions of all initiator and executioner caspases and the cell

death effectors they activate to host defense against systemic

Salmonella infections.

RESULTS

Combined Loss of Caspase-1, Caspase-11, Caspase-12,
Caspase-8, and RIPK3 Prevents Salmonella-Induced
Cell Death and Impairs Bacterial Clearance In Vivo

To determine which cell death pathways the host requires for

control of intracellular pathogens, we infected C57BL/6 (wild-

type: WT) mice with a growth-attenuated strain of S. Typhimu-

rium that mirrors the systemic phase of typhoid fever (Kupz

et al., 2013, 2014). This infection follows a classical pattern

where bacterial growth initially outpaces host defense. By

about week 3, bacterial titers reach a peak that is followed

by dropping titers and eventual clearance of the bacteria

from the host. This type of infection thus allows detailed in vivo

investigations into the mechanisms that enable Salmonella

control by innate immune mechanisms over the first 3 weeks

of the infection (Kupz et al., 2012, 2013) and T-cell-mediated

immune clearance thereafter (Benoun et al., 2018). Consistent

with earlier reports using WT strains of S. Typhimurium (Broz

et al., 2012), we observed slightly elevated bacterial titers in

Casp1–/–;Casp11–/– mice 3 weeks post-infection compared

to WT controls (Figure 1A), but the lack of pyroptosis did

not affect their capacity to clear the bacteria by 12 weeks

post-infection. This indicated a minor defect in bacterial con-

trol. Exploiting this in vivo model of caspase-1 and -11 inde-

pendent bacterial control, we explored the role of other cell

death pathways and their key constituents. We first investi-

gated whether the lack of caspases-1 and -11 was compen-

sated for by caspase-12, given their substantial amino acid

similarity and chromosomal co-localization. However, at

week 3 post-infection, Casp1–/–;Casp11–/–;Casp12–/– and

Casp1–/–;Casp11–/– mice presented with similar bacterial titers

that were slightly higher compared to those observed in WT

controls (Figure 1B), revealing that caspase-12 did not play

a critical role in bacterial clearance by compensating for the

combined absence of caspases-1 and -11.

Caspase-8 has been suggested to coordinate an alternative

pathway toward pyroptosis that operates independently of

caspases-1 and -11 (Mascarenhas et al., 2017; Orning et al.,

2018). This prompted us to investigate the contribution of

caspase-8-driven cell death to Salmonella control in mice.

To prevent the necroptosis-driven embryonic lethality caused

by loss of caspase-8, we used Casp8–/–;Ripk3–/– mice (Al-

varez-Diaz et al., 2016; Kaiser et al., 2011; Oberst et al.,

2011). The combined lack of caspase-8-mediated apoptosis

and RIPK3-driven necroptosis did not have significant

impact on Salmonella titers 3 weeks post-infection (Figure 1B).

Mice lacking necroptosis alone (Mlkl–/– mice) or those with

combined deficiency in pyroptosis and necroptosis

(Casp1–/–;Casp11–/–;Casp12–/–;Ripk3–/– mice) had no defects

in bacterial control until at least 3 weeks post-infection (Fig-

ures 1B and S1A). These findings demonstrate that mice

with defects in select types of programmed cell death only

have minor impairments in their ability to control bacterial

replication.

These findings raised the possibility that in vivo control of Sal-

monella infection was safeguarded by extensive functional

backup between several programmed cell death processes.

To investigate this, we generated Casp1–/–;Casp11–/–;

Casp12–/–;Casp8–/–;Ripk3–/– mice that are deficient for pyrop-

tosis, death-receptor-induced apoptosis, and necroptosis.

These mice had drastically elevated bacterial titers in liver

and spleen at both week 2 and 3 post-infection compared to

WT animals (Figures 1B and 1C) and had to be sacrificed in

accordance with ethical guidelines between 4 and 5 weeks

post-infection (Figure 1D). This showed that host defense

against Salmonella necessitated the activity of at least one of

ll
OPEN ACCESS Article

534 Immunity 53, 533–547, September 15, 2020



these types of programmed cell death pathways and that

none of the other known cell death pathways (e.g., intrinsic

apoptosis or ferroptosis) were sufficient to ensure control of

the infection in their absence. Of note, we observed similar de-

fects in host defense in bone marrow chimeras in which pyrop-

tosis, caspase-8-mediated apoptosis, and necroptosis were

only missing from the immune cell compartment (Figure 1E).

Therefore, we conclude that Salmonella control broke

down in Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– mice

because phagocytes could no longer purge the bacteria from

their vacuolar compartments by undergoing programmed

cell death.

Figure 1. Combined Loss of Caspases-1, -11, -12, and -8 (plus RIPK3) Leads to Lack of Bacterial Control upon Salmonella Infection

(A) Bacterial replication over time in WT and Casp1–/–;Casp11–/– mice infected with Salmonella DAroA (200 CFU). n = 10�22 mice per group per time point. Mean

and SEM are shown. **p < 0.005, *p < 0.05, nsp > 0.05 = not significant.

(B) Bacterial loads in spleen and liver of mice of the indicated genotypes 3 weeks post-infection with Salmonella DAroA (200 CFU). n = 7�48 mice per genotype.

Mean and SEM are shown. **p < 0.005, *p < 0.05, nsp > 0.05 = not significant.

(C) Bacterial loads in spleen and liver from mice of the indicated genotypes 1 to 3 weeks post-infection with Salmonella DAroA (200 CFU). n = 3�4 mice per

genotype and time point. Mean and SEM are shown. **p < 0.005, *p < 0.05, nsp > 0.05 = not significant.

(D) Mouse survival curves and corresponding bacterial loads in the spleen and liver at time of sacrifice in WT andCasp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3�/

� mice infected with Salmonella DAroA (200 CFU). n = 7�8 mice per genotype. Mean and SEM are shown. **p < 0.005.

(E) Bonemarrow chimeras of the indicated genotypes were infected with Salmonella DAroA (200 CFU) and culled for analysis of bacterial loads in spleen and liver

3 weeks post-infection. n = 10 mice per group. Mean and SEM are shown. **p < 0.005.

Please also see Figure S1.
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Combined Loss of Caspase-1, Caspase-11, Caspase-12,
Caspase-8, and RIPK3 Prevents Salmonella-Induced
Killing of BMDMs
Previous reports suggest that caspase-8 can induce pyroptosis

through proteolytic activation of GSDMD (Mascarenhas et al.,

2017). To explore the nature of the cell death induced by cas-

pase-8 upon infection in the absence of the initiators of pyropto-

sis, we used bone-marrow-derived macrophages (BMDMs)

deficient for caspases-1 and -11, or caspases-1, -11, and -12,

and infected them with Salmonella. As previously reported

(Franchi et al., 2006; Mariathasan et al., 2004), Casp1–/–;

Casp11–/– BMDMs are protected from Salmonella-induced

killing at early time points. However, 6 h after infection with

Salmonella, a substantial fraction of Casp1–/–;Casp11–/– and

Casp1–/–;Casp11–/–;Casp12–/– BMDMs had died (Figure 2A), reit-

erating that caspase-12 was not critical for the response to

Figure 2. Combined Loss of Caspases-1, -11, -12, and -8 Abrogates the Death of BMDMs upon Salmonella Infection

(A) LDH release cell death assay of primary BMDMs of the indicated genotypes after infection with Salmonella SL1344 (MOI = 50). Data pooled from two or more

experiments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(B) BMDMs of the indicated genotypes were infected with Salmonella SL1344 (MOI = 50) and cleavage associated with activation of the indicated cell death

regulators was analyzed by immunoblotting at the indicated time points. Probing for b-actin served as a loading control.

(C) Confocal or lattice light-sheet imaging of BMDMs of the indicated genotypes after infection with GFP-expressing Salmonella (MOI = 50) at the indicated time

points. Yellow, membrane; Magenta, Salmonella; Cyan, PI. Scale bars: 10 mm.

Please see also Figure S2.
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Salmonella infection. The delayed type of Salmonella-induced

cell death in Casp1–/–;Casp11–/– and Casp1–/–;Casp11–/–;

Casp12–/– BMDMs was unlikely to be due to necroptosis, as

we could not detect changes in phosphorylation of MLKL, a hall-

mark of necroptosis (Figure S1B). Instead, Casp1–/–;Casp11–/–

and Casp1–/–;Casp11–/–;Casp12–/– BMDMs displayed hallmarks

of apoptosis, including cleavage of Poly (ADP-ribose) polymer-

ase (PARP) as well as caspases-3, -7, -8, and -9 and BH3 inter-

acting-domain agonist (BID) (Figure 2B). This extends a previous

report showing that anthrax lethal toxin can induce a NLRP1-

dependent form of cell death with features of apoptosis in cells

lacking caspase-1 (Van Opdenbosch et al., 2017). Lattice light-

sheet microscopy revealed nuclear condensation and plasma

membrane blebbing, which was consistent with apoptotic death

of Salmonella-infected Casp1–/–;11–/–;12–/– BMDMs and con-

trasted with the pyroptotic death observed in Salmonella-in-

fected WT BMDMs (Figure 2C; Videos S1, S2, and S3). Notably,

combined loss of caspase-8 plus RIPK3 did not impair Salmo-

nella-induced cell killing, as in vitro-infected Casp8–/–;Ripk3–/–

BMDMs died with kinetics that were indistinguishable from WT

cells, with both undergoing pyroptosis (Figure 2A). This was

consistent with the observation that the combined loss of cas-

pase-8 and RIPK3 did not impair bacterial control in vivo until

at least 3 weeks post-infection (Figure 1B). These findings indi-

cate that although caspase-8 was dispensable for the early py-

roptotic cell death upon Salmonella infection, caspase-8-driven

apoptosis, rather than caspase-8-mediated pyroptosis or

RIPK3- and MLKL-driven necroptosis, was responsible for

the delayed type of cell death observed in Casp1–/–;Casp11–/–;-

Casp12–/– BMDMs. Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;

Ripk3–/– BMDMs were not only profoundly resistant to Salmo-

nella-induced killing in vitro (Figure 2A), but also contained large

numbers of bacteria (Figure 2C). This resistance to Salmonella-

induced killing was not due to a general defect in cell death, as

Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– BMDMs could

still be killed through the intrinsic pathway of apoptosis by treat-

ment with BH3 mimetic drugs, as shown by lactate dehydroge-

nase (LDH) release and activation of the apoptosis effector

BAX (Figures S2A and S2B). Collectively, these findings uncover

a backup system that enables the host to flexibly deploy different

types of programmed cell death for the control of the intracellular

pathogen Salmonella.

Immortalized BMDMs Facilitate Unraveling of the
Diverse Cell Death Mechanisms Induced upon
Salmonella Infection
To gain a deeper understanding of this complex system of func-

tional backup between different cell death processes, we em-

ployed our CRISPR-Cas9 gene editing platform (Aubrey et al.,

2015) to identify the initiators and effectors critical for the respec-

tive types of cell death upon Salmonella infection. We used

immortalized BMDMs (iBMDMs) for these experiments, which

exhibited comparable responses to Salmonella infection as pri-

mary BMDMs (Figures 3A and 3B). While the combined loss of

caspases-1, -11, and -12 delayed Salmonella-induced killing of

iBMDMs, the loss of both caspase-8 and RIPK3 had no impact,

and cells died in a manner comparable to WT cells (Figure 3A).

Only the combined absence of caspases-1, -11, -12, and -8

and RIPK3 completely blocked Salmonella-infection-induced

killing of iBMDMs (Figure 3A). The Casp1–/–;Casp11–/–;

Casp12–/–;Casp8–/–;Ripk3–/– iBMDMs still underwent cell death

in response to treatment with combinations of BH3 mimetics

or etoposide, and this was accompanied by activation of the

apoptosis effector BAX (Figures S3A and S3B), as was the

case for primary BMDMs (Figures S2A and S2B). These results

validate iBMDMs as useful tools to unravel the molecular re-

quirements of the diverse cell death pathways induced upon Sal-

monella infection. We also noted in these experiments that

Casp1–/–;Casp11–/–;Casp12–/– iBMDMs showedmore prominent

processing of caspase-8 following Salmonella infection

compared to WT iBMDMs and that this was accompanied by

classical markers of apoptosis, such as cleavage of BID and cas-

pases-3, -7, and -9 (Figures 2B and 3B). Casp1–/–;Casp11–/–;

Casp12–/– cells infected with Salmonella in the absence or pres-

ence of the highly selective RIPK1 inhibitor, Nec1s (which pro-

tected against necroptosis induced by TNF-a+Birinapant+

Emricasan; Figure S4A), still underwent cell death and showed

cleavage of caspases-3 and -8 and BID (Figures 3C and 3D).

These findings indicate that the activation of caspase-8 upon

infection with Salmonella was unlikely to depend on RIPK1-

dependent ripoptosomes (Tenev et al., 2011).

Caspase-11 Can Partially Compensate for the
Combined Loss of Caspase-1 and Caspase-8
To identify which of the initiator caspases were required for Sal-

monella-induced cell death, we treated WT, Casp1–/–;

Casp11–/–;Casp12–/–, and Casp8–/–;Ripk3–/– iBMDMs with

different caspase inhibitors and examined their cell death re-

sponses (Figures 4A and S4B). The broad-spectrum caspase in-

hibitor Emricasan stalled the early cell death response in Salmo-

nella-infected WT iBMDMs, similar to what was seen in

Casp1–/–;Casp11–/–;Casp12–/– BMDMs, but later on, these cells

also died (Figure 4A). We hypothesized that the late death was

due to necroptosis caused by the blockade of caspase-8, and

we confirmed this by showing that treatment with Emricasan

killed WT but not MLKL-deficient iBMDMs (Figure S4B). Accord-

ingly, Emricasan completely blocked Salmonella-induced killing

inMLKL–/– iBMDMs (Figure 4A). This demonstrated that caspase

activity was required for Salmonella-induced cell killing. Inhibi-

tion of caspase-1 by VX765 delayed but did not abrogate the

killing of Salmonella-infected WT, MLKL–/–, and Casp8–/–;

Ripk3–/– cells (Figures 4A and S4A). These pharmacological ap-

proaches validated the above-described observations from the

genetic studies and reaffirmed that the functional differences

are not the consequence of longer-term adaptations of cells

driven by the loss of the genes of interest.

Inhibition of caspase-1 activity by VX765 or genetic deletion

of caspase-1 in Casp8–/–;Ripk3–/– iBMDMs only reduced

Salmonella-induced killing but did not afford the profound

protection seen in Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;

Ripk3–/– iBMDMs (Figures 4A and 4B). We therefore hypothe-

sized that caspase-11 may provide a backup mechanism

for cell killing when caspases-1 and -8 are both absent or in-

hibited (Man et al., 2017; Ng and Monack, 2013). To investigate

this, we generated Casp1–/–;Casp8–/–;Ripk3–/– iBMDMs

and compared their death kinetics upon Salmonella infection to

those of Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– cells.

Casp1–/–;Casp8–/–;Ripk3–/– iBMDMs responded to the infection
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Figure 3. Caspase-8-Mediated Apoptosis Is the Default Backup Mechanism when Caspases-1- and 11-Mediated Pyroptosis Is Disabled in

Salmonella-Infected iBMDMs

(A) LDH release cell death assay of iBMDMs of the indicated genotypes after infection with Salmonella SL1344 (MOI = 50). Data pooled from two or more ex-

periments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(B) Immunoblot analysis of the indicated proteins in iBMDMs of the indicated genotypes after infection with Salmonella SL1344 (MOI = 50). Probing for b-actin

served as a loading control.

(C) LDH release cell death assay ofSalmonellaSL1344 (MOI = 50) -infectedWT andCasp1–/–;Casp11–/–;Casp12–/– iBMDMs that had been left untreated or treated

with the RIPK1 inhibitor, Nec1s (30 mM). Data pooled from two or more experiments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(D) Immunoblot analysis of the indicated proteins in Salmonella SL1344 (MOI = 50) -infected WT and Casp1–/–;Casp11–/–;Casp12–/– iBMDMs that had been left

untreated or treated with the RIPK1 inhibitor, Nec1s (30 mM). Probing for b-actin served as a loading control.

Please see also Figures S3 and S4.
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Figure 4. Caspase-11 Can Compensate for the Loss of Caspases-1 and -8 to Ensure GSDMD-Mediated Killing of Salmonella-Infected Cells

(A) LDH release cell death assay of Salmonella SL1344 (MOI = 50) -infected iBMDMs of the indicated genotypes that had been left untreated or treated with VX-

765 or Emricasan. Data pooled from two or more experiments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(B) LDH release cell death assays of iBMDMs of the indicated genotypes that had been infectedwithSalmonella SL1344 (MOI = 50). Data pooled from two ormore

experiments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(C) LDH release cell death assays of Salmonella-infected iBMDMs of the indicated genotypes orCasp1–/–;Casp8–/–;Ripk3–/– iBMDMs that had been left untreated

or treated with Emricasan and infected with Salmonella SL1344 (MOI = 50). Data pooled from two or more experiments. Mean and SEM are shown. **p < 0.005,
nsp > 0.05 = not significant.

(D) Immunoblot analysis of caspase-11, GSDMD, BID, and PARP in Casp1–/–;Casp8–/–;Ripk3–/– iBMDMs that had been left untreated or treated with Emricasan

and infected with Salmonella SL1344 (MOI = 50). WT iBMDMs that had been left untreated or treated with LPS for 4 h were used as a control for the induction of

caspase-11. Probing for b-actin served as a loading control.

Please see also Figure S4.
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by upregulation of caspase-11 and underwent cell death,

although this killing was less effective with �60%–70% of the

cells surviving the bacterial assault (Figures 4B and 4D).

Casp1–/–;Casp11–/–;Casp8–/–;Ripk3–/– iBMDMswere as resistant

to Salmonella-induced killing as the Casp1–/–;Casp11–/–;

Casp12–/–;Casp8–/–;Ripk3–/– cells (Figure 4B). This revealed

again that caspase-12 did not contribute notably to cell death

caused by infection with this intracellular pathogen. The broad-

spectrum caspase inhibitor Emricasan completely blocked

the killing of Salmonella-infected Casp1–/–;Casp8–/–;Ripk3–/–

iBMDMs and appearance of the activated form of GSDMD, the

critical effector of pyroptosis (Figures 4C and 4D). Notably,

Casp1–/–;Casp8–/–;Ripk3–/– iBMDMs infected with Salmonella

did not exhibit markers of apoptosis such as cleaved BID or

PARP (Figure 4D), and the additional deletion of GSDMD

rendered Casp1–/–;Casp8–/–;Ripk3–/– iBMDMs fully resistant to

Salmonella-induced killing (Figure 4C). Thus, although cas-

pase-11 can contribute to the killing of Salmonella-infected cells,

with its effects uncovered by the absence of caspases-1 and -8,

the protracted kinetics and exclusive dependence on GSDMD

suggest a comparativelyminor role for caspase-11 in the backup

system governing Salmonella-induced killing.

Caspase-1 Orchestrates a Wide Range of Diverse Cell-
Death-Inducing Processes with Plasticity
Although our data revealed an important role for caspase-8 in

compensating for the lack of pyroptosis, it was also evident

that host defense was intact in mice lacking both caspase-8

and RIPK3 (Figure 1B). This suggests that there may not only

be redundancy among the different cell death pathways, but

that individual components of these processes could possibly

be employed in more than one pathway. With this in mind, we

reasoned that the lack of caspase-8-mediated apoptosis might

be compensated for by caspase-1. To investigate this, we

deleted Gsdmd to prevent caspases-1 and -11 from triggering

pyroptosis and also eliminated Casp8 and Ripk3 from iBMDMs.

Cells lacking these essential components of apoptosis and nec-

roptosis, as well as being unable to execute pyroptosis, still died

upon Salmonella infection with kinetics that were indistinguish-

able from Gsdmd–/– iBMDMs (Figure 5A). We noted that Salmo-

nella-infected Gsdmd–/–;Casp8–/–;Ripk3–/– iBMDMs not only had

active caspase-1 as predicted, but also contained cleaved BID

(tBID) and caspases-3, -7, and -9 (Figure 5B). This indicated

that caspase-1 may trigger caspase-8-independent apoptosis

via BID-driven, BAX- or BAK-mediated MOMP, and the resulting

activation of caspase-9, thereby stimulating the effector cas-

pases-3 and -7. This is consistent with recent reports (Heilig

et al., 2020; Tsuchiya et al., 2019) and suggests that caspase-

1 can induce apoptosis by bypassing caspase-8 through the

mitochondrial amplification loop. However, preventing MOMP

through the combined deletion of Bax and Bak in Gsdmd–/–;Ca-

sp8–/–;Ripk3–/– iBMDMs did not have the predicted effect of

completely blocking Salmonella-induced cell killing. Instead,

Gsdmd–/–;Casp8–/–;Ripk3–/–;Bax–/–;Bak–/– iBMDMs still died

upon Salmonella infection, containing cleaved caspases-3 and

-7 (Figures 5A and 5B), indicating that the combined absence

of BAX and BAK could be compensated for by rewiring the cell

in a manner that allowed for caspase-1 to trigger the executioner

caspases-3 and -7 independently of MOMP. Ablating this alter-

native cell death circuit by deleting caspases-3 and -7 was yet

again not sufficient to prevent cell death, as Gsdmd–/–;Ca-

sp8–/–;Ripk3–/–;Casp3–/–;Casp7–/– iBMDMs still died upon Sal-

monella infection, although this occurred with slower kinetics

and lower efficiency compared to Gsdmd–/–;Casp8–/–;Ripk3–/–;

Bax–/–;Bak–/– iBMDMs (Figure 5C). The fact that Gsdmd–/–;Ca-

sp8–/–;Ripk3–/–;Casp3–/–;Casp7–/– iBMDMs still contained

cleaved BID and caspases-1 and -9 suggested that tBID and

caspase-9 activated by caspase-1 could overcome the lack of

the executioner caspases to ensure killing of infected cells (Fig-

ure 5D). Additional deletion of BID from Gsdmd–/–;Ca-

sp8–/–;Ripk3–/–;Casp3–/–;Casp6–/–;Casp7–/– iBMDMs did not

render the cells fully resistant to Salmonella-induced death.

This raised the prospect that caspase-1 could directly activate

caspase-9, which then acted as an effector caspase rather

than an initiator caspase (Figure 5E). Of note, the deletion of

caspase-9 from Gsdmd–/–;Casp8–/–;Ripk3–/–;Bid–/–;Mlkl–/–;

Casp3–/–;Casp7–/– iBMDMs finally reproduced the profound

resistance to Salmonella-induced killing observed in Casp1–/–;

Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– iBMDMs (Figure 5F).

These findings reveal a substantial degree of plasticity with

which caspase-1 can orchestrate the use of diverse cell-death-

inducing processes to kill Salmonella-infected iBMDMs. Cas-

pase-1 can bypass caspase-8 by initiating apoptosis through

mitochondrial amplification and can even circumvent the need

for MOMP by activating caspases-3, -7, and -9 directly (see

schematic shown in Figure S5A). This shows that many core

components widely believed to be essential for apoptosis can

be bypassed and that the resulting re-routing of the cell death

machinery provides various alternative processes for the killing

of pathogen-infected cells.

Caspase-1 Has a Central Role as Both a Cell Death
Inducer and Executioner
Our findings provided novel insights into the role of caspase-1 and

its capacity tocompensate for the lackofcaspase-8.However, it is

important to note that Casp1–/–;Casp11–/– and Casp1–/–;

Casp11–/–;Casp12–/– mice nonetheless effectively controlled Sal-

monella infection (Figure 1B). This indicates yet another form of

compensation whereby caspase-1 can also be functionally

replaced, which likely involved caspase-8, as suggested by

the observations that Casp1–/–;Casp11–/–;Casp12–/–;

Casp8–/–;Ripk3–/– mice were unable to clear bacteria and that

BMDMs derived from these animals failed to undergo cell death

upon infection (Figures 1B and 1C). We therefore tested the hy-

pothesis that deleting the death effectors activated by both cas-

pases-1 and -8, i.e., GSDMD, BID, MLKL, and caspases-3, -6,

-7, and possibly also -9, would recapitulate the profound

resistance to Salmonella-induced killing observed in Casp1–/–;

Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– iBMDMs. However,

upon infection with Salmonella, both Gsdmd–/–;Bid–/–;Mlkl–/–;

Casp3–/–;Casp7–/–;Casp9–/– and Gsdmd–/–;Bid–/–;Mlkl–/–;

Casp3–/–;Casp6–/–;Casp7–/–;Casp9–/– iBMDMs underwent sub-

stantial cell death, although this was delayed compared to

WT iBMDMs (Figure 6A). To identify the most potent driver(s) of

this unexpected cell killing caused by Salmonella, we performed

a genome-wide CRISPR-Cas9 screen (Figure S5A). We trans-

duced Cas9 expressing Gsdmd–/–;Bid–/–;Mlkl–/–;Casp3–/–;

Casp7–/–;Casp9–/– iBMDMs with a whole-genome single guide
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Figure 5. Caspase-1 Can Activate Caspases-3, -7, and -9 Independently of Caspase-8 and BID

(A) LDH release cell death assays of iBMDMs of the indicated genotypes that had been infectedwithSalmonella SL1344 (MOI = 50). Data pooled from two ormore

experiments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(B) iBMDMs of the indicated genotypes were infected with Salmonella SL1344 (MOI = 50) and cleavage associated with activation of the indicated cell death

proteins was analyzed by immunoblotting at the indicated time points. Probing for b-actin served as a loading control.

(C) LDH release cell death assays of iBMDMs of the indicated genotypes that had been infectedwithSalmonellaSL1344 (MOI = 50). Data pooled from two ormore

experiments. Mean and SEM are shown. **p < 0.005, nsp > 0.05 = not significant.

(D) GsdmD–/–;Casp8–/–;Ripk3–/–;Mlkl–/–;Casp3–/–;Casp7–/– iBMDMs were infected with Salmonella SL1344 (MOI = 50) and expression and cleavage associated

with activation of the indicated cell death proteins was analyzed by immunoblotting at the indicated time points. Probing for b-actin served as a loading control.

(legend continued on next page)
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RNA (sgRNA) library (Koike-Yusa et al., 2014) and stringently en-

riched for sgRNAs that promoted cell survival after Salmonella

infection by repeating the infection and selection procedure three

times. Amplicon sequencing of the sgRNAs enriched in the surviv-

ing cells identified caspase-1 and its activator NLRC4 (Figures 6B

and S5B), suggesting the possibility that the initiator caspase-1

could kill Salmonella-infected iBMDMs directly (i.e., acting not

only as an initiator but also as an effector caspase). This would

also explain why cells still died in the absence of pore formation

(GSDMD) and all other effectors that are known to function down-

stream of caspase-1. Consistent with such a role for caspase-1,

immunoblot analysis revealed processing of both caspase-1 and

caspase-8 in Salmonella-infected Gsdmd–/–;Bid–/–;Mlkl–/–;

Casp3–/–;Casp7–/–;Casp9–/– iBMDMs (Figure 6C). Deletion of

caspase-1 in Gsdmd–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/–

iBMDMs rendered these cells fully resistant to Salmonella-

induced killing (comparable to Casp1–/–;Casp11–/–;Casp12–/–;

Casp8–/–;Ripk3–/– cells) despite the presence of caspase-8 (Fig-

ure 6D). Together with our demonstration thatGsdmd–/–;Ripk3–/– ;

Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/– iBMDMs in which cas-

pase-8wasadditionallydeleted (Figure5F)werealso fully resistant

to Salmonella-induced killing, these findings indicate that cell

death under these circumstances was only possible when both

caspase-1 and caspase-8 were present.

(E) LDH release cell death assays of iBMDMs of the indicated genotypes that had been infectedwithSalmonella SL1344 (MOI = 50). Data pooled from two ormore

experiments. Mean and SEM are shown. nsp > 0.05 = not significant.

(F) LDH release cell death assays of iBMDMs of the indicated genotypes that had been infected withSalmonella SL1344 (MOI = 50). Data pooled from two ormore

experiments. Mean and SEM are shown. nsp > 0.05 = not significant.

Please see also Figure S5.

Figure 6. CRISPR Screen Reveals a Central Role for Caspase-1 in Mediating Salmonella-Infection-Induced Cell Death Independent of All

Known Downstream Effectors of Cell Killing

(A) LDH release cell death assays of iBMDMs of the indicated genotypes that had been infected withSalmonella SL1344 (MOI = 50). Data pooled from two ormore

experiments. Mean and SEM are shown. *p < 0.05, nsp > 0.05 = not significant.

(B)GsdmD–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/– iBMDMwhole genome CRISPR-Cas9 screen mean-difference (MD) plot showing log-fold change versus

average log counts per million (CPM) after three rounds of infection with Salmonella SL1344 (MOI = 50) (please also see Figures S5A and S5B).

(C) GsdmD–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/– iBMDMs were infected with Salmonella SL1344 (MOI = 50) and cleavage associated with activation of

caspases-1 and -8 was analyzed by immunoblotting at the indicated time points. Probing for b-actin served as a loading control.

(D) LDH release cell death assays of WT, Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/–, and two independent clones (#1 and #2) of

GsdmD–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/–;Casp1–/– iBMDMs that had been infected with Salmonella SL1344 (MOI = 50). Data pooled from two or more

experiments. Mean and SEM are shown. nsp > 0.05 = not significant.

Please see also Figure S6.
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Caspase-1 Can Act Upstream of and Requires Caspase-
8 to Induce Cell Death in the Absence of All Known
Downstream Effectors of Cell Death
We found that the caspase-8 cleavage we had observed in Sal-

monella-infected Gsdmd–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp6–/–;

Casp7–/–;Casp9–/– iBMDMs was strongly reduced by the addi-

tional deletion of caspase-1 (Figure 7A), indicating that cas-

pase-1 was required for full activation of caspase-8. This iden-

tified caspase-1 as the most potent upstream initiator of

Salmonella-induced cell killing and explained why we only en-

riched for sgRNAs targeting caspase-1 and its activator

NLRC4 in the CRISPR screen. Supporting this idea, we found

that both the broad-spectrum caspase inhibitor Emricasan

and the highly specific caspase-1 inhibitor VX-765 completely

blocked Salmonella-induced killing of Gsdmd–/–;Bid–/–;Mlkl–/–;

Casp3–/–;Casp7–/–;Casp9–/– iBMDMs (Figure 7B). Furthermore,

similar to the genetic deletion of Casp1, VX-765 almost

completely blocked caspase-8 processing in Salmonella-in-

fected Gsdmd–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp6–/–;Casp7–/–;

Casp9–/– cells (Figure 7C). Of note, this type of cell death,

which was ensured as long as both caspase-1 and caspase-8

were present, exhibited apoptosis-like morphology as demon-

strated by brightfield microscopy of Salmonella-infected

Gsdmd–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/– iBMDMs

(Figure S6A). These results show that Salmonella-infectedmac-

rophages can undergo programmed cell death in the absence

of all known effector mechanisms of pyroptosis, apoptosis,

and necroptosis as long as caspases-1 and -8 can be activated

(see schematic shown in Figure S6B).

DISCUSSION

The clearance of intracellular pathogens requires programmed

death of the infected cells. However, the relative requirement

Figure 7. Caspase-1 Can Act Upstream of and Requires Caspase-8 to Induce Cell Death in the Absence of All Known Downstream Effectors

of Pyroptosis and Apoptosis

(A) iBMDMs of the indicated genotypes were infected with Samonella SL1344 (MOI = 50) and cleavage associated with activation of caspases-1 and -8 was

analyzed by immunoblotting at the indicated time points. Probing for HSP70 served as loading control.

(B) LDH release death assays of Salmonella SL1344 (MOI = 50) -infected Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– and GsdmD–/–;Bid–/–;Mlkl–/–;-

Casp3–/–;Casp7–/–;Casp9–/– iBMDMs that had been left untreated or treated with VX-765 or Emricasan. Data pooled from two experiments. Mean and SEM are

shown. **p < 0.005, nsp > 0.05 = not significant.

(C) Immunoblot analysis of caspases-1 and -8 activation at the indicated time points in Salmonella SL1344 (MOI = 50) -infected GsdmD–/–;Bid–/–;Mlkl–/–;-

Casp3–/–;7–/–;9–/– iBMDMs that had been left untreated or treated with VX-765. Probing for HSP70 served as a loading control.

Please see also Figure S6.
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for individual cell death pathways and how they are connected at

the molecular level were not clear. Our findings uncovered a

highly flexible system of cell-death-inducing pathways through

which phagocytes can purge bacteria from intracellular niches

and thereby enable the host to control intracellular bacteria.

While we have observed and functionally validated the triggering

of the known pathways leading to pyroptosis, necroptosis, and

apoptosis, our work reveals a considerable plasticity that allows

bacterially infected cells to rewire known cell death signaling

cascades in highly flexible and thus far unknown ways. We iden-

tified caspase-1 and caspase-8 as central pillars of this system

and demonstrated that multiple previously unknown versions

of rewired cell death circuits can efficiently evict bacteria from

intracellular, most likely vacuolar niches, as long as one of these

central hubs is present.

Our results revealed that caspases-1 and -8, but not -11, could

kill Salmonella-infected cells in the absence of all known effec-

tors of cell killing (i.e., caspases-3, -6, and -7, BID, and GSDMD).

We observed enhanced cleavage of caspase-8 in Salmonella-in-

fected iBMDMs that lacked caspase-1. This suggests that the

strengths of caspase-8 activation may be subject to regulation

by the activity of caspase-1. Our data exclude non-redundant

roles for ripoptosomes in mediating interactions between these

two central regulators of programed cell death, and it is likely

that ASC provided the molecular link between caspases-1 and

-8 as previously shown in certain scenarios (Antonopoulos

et al., 2015; Lee et al., 2018; Mascarenhas et al., 2017; Pierini

et al., 2012; Rauch et al., 2017; Sagulenko et al., 2013; Schneider

et al., 2017; Van Opdenbosch et al., 2017). It is possible that the

strong activation of caspase-8 in the absence of caspase-1 is

indicative of some bona fide, yet-to-be-uncovered inhibitory ef-

fects reminiscent of the role of caspase-8 in preventing necrop-

tosis (Oberst et al., 2011). Alternatively, this could reflect differ-

ential kinetics whereby the more rapid induction of pyroptosis

may simply kill cells before caspase-8 is fully activated, and

the role of caspase-8 would thus only become appreciable in

the absence of caspase-1. Remarkably, this requirement for

caspase-8 downstream of caspase-1 was not absolute, as Sal-

monella-infected iBMDMs lacking caspase-8 and RIPK3 still

died as long as caspase-9 was present, even when the effector

caspases-3 and -7 were also missing. It is tempting to speculate

that caspase-9 was directly activated by caspase-1 through a

MOMP-independent mechanism under these conditions, as

cell death still depended on caspase-1. Regardless of the pre-

cise molecular mechanisms underpinning the observed phe-

nomena, our findings highlight a role for caspase-1 as a master

regulator in the orchestration of multiple cell death pathways

during infection with intracellular pathogens. This bears resem-

blance to recent data proposing a similar role for caspase-8 dur-

ing embryonic development (Fritsch et al., 2019; Newton et al.,

2019). Importantly, host defense can also be maintained in the

absence of caspase-1, but this depends on the intactness of

the downstream effector machinery that, under such conditions,

is coordinated by caspase-8 instead.

The various alternative circuits of cell death uncovered here all

resulted in morphological features characteristic of apoptosis.

Thus, rather than one type of lytic cell death, such as pyroptosis,

being compensated for by another form of programmed cellular

lysis (i.e., necroptosis), our study and work by others (Mascare-

nhas et al., 2017; Van Opdenbosch et al., 2017) indicate that the

absence of lytic cell death appears to be backed up by

apoptosis. This is noteworthy because lytic and non-lytic types

of cell death are believed to differ substantially in their conse-

quences for the host, with the former promoting inflammation

while the latter is often referred to as immunologically silent.

Yet, we found here that in vivo control of Salmonella proceeded

normally, irrespective of these functional differences. More work

is required to dissect how the qualitatively different forms of cell

death impact on the ultimate clearance of the bacteria through

adaptive immune responses mediated by CD4+ T cells and

CD8+ T cells (Kupz et al., 2012, 2014).

A potential backup role for caspase-11 in synergizing,

enhancing, or even compensating for caspase-1 in host defense

against intracellular pathogens has been the focus of previous

studies (Broz et al., 2012; Ng and Monack, 2013). Our findings

indicate that caspase-11 can indeed play a role (albeit relatively

minor) in pathogen clearance, operating independently of cas-

pases-1 and -8. However, caspase-11-mediated killing of Sal-

monella-infected cells was strictly dependent on the activation

of GSDMD, demonstrating its limited backup ability compared

to caspase-1, which can also kill through caspases-3, -7, -9,

and -8 or act as a cell death executioner itself.

Collectively, our work demonstrates substantial flexibility and

plasticity with which macrophages can commit suicide to purge

Salmonella from intracellular hideouts. As long as caspase-1 or

caspase-8 can be activated, molecular components previously

thought to be unique to particular types of programmed cell

death can be flexibly deployed and thereby ensure the killing

of Salmonella-infected macrophages even when all currently

known executioners are absent. Such a complex system has

likely arisen as a consequence of host-pathogen co-evolution

and the never-ending struggle between pathogens seeking to

evade cell death and the host offsetting these attempts through

the rewiring of cell death circuits. While we focused on a proto-

typical intracellular pathogen with global relevance, it is inter-

esting to note that extracellular bacterial pathogens, such as

Staphylococcus aureus, also express and inject effector mole-

cules capable of manipulating apoptosis into host cells through

their type VII secretion systems (Korea et al., 2014; Winstel

et al., 2019). This may suggest that programed cell death could

also play a role in the host response against extracellular bacte-

ria, and it is tempting to speculate that the extracellular lifestyle of

some bacteria could be considered as yet another evasion strat-

egy of the intra-cellular suicide machinery.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rat anti-caspase-11 (4E11) Enzo Life Sciences Cat# ALX-804-530-C100; RRID: AB_2050921

rat anti-caspase-1 (1H11) Enzo Life Sciences Cat# ALX-804-507-C100; RRID: AB_2050924

rat anti-BID (2D1-3) WEHI N/A

mouse anti-PARP (C2-10) Santa Cruz Cat# sc-53643; RRID: AB_785086

rabbit anti-GSDMD Abcam Cat# EPR19828; RRID: AB_2783550

rabbit anti-Bak Sigma Aldrich Cat# B-5897; RRID: AB_258581

rat anti-Bax (5B7) SouthernBiotech Cat# 10050-01; RRID: AB_2794106

Rabbit polyclonal anti-BAX NT Merck Millipore Cat#ABC11; RRID: AB_310143

anti-BAX antibody 6A7 (aa113-19) BD Biosciences Cat# 556467; RRID: AB_396430

rabbit anti-caspase-9 CST Cat# 9504; RRID: AB_2275591

rabbit anti-caspase-7 (D2Q3L) CST Cat# 12827S; RRID: AB_2687912

rabbit anti-cleaved caspase-3 (Asp175) CST Cat# 9661S; RRID: AB_2341188

rabbit anti-RIPK3 ProSci Cat# 2283; RRID: AB_203256

rabbit anti-cleaved caspase-8 (D5B2) CST Cat# 8592S; RRID: AB_10891784

rat anti-caspase-8 (3B10) Enzo Life Sciences Cat# ALX-804-448-C100; RRID: AB_2050953

rabbit anti-phospho MLKL (S345) Abcam Cat# ab196436; RRID: AB_2687465

rat anti-MLKL (3H1) Merck Cat# MABC604; RRID: AB_2820284

anti-b-actin-HRP (13E5) CST Cat# 5125S; RRID: AB_1903890

mouse anti-HSP70 (BRM-22) Sigma Aldrich Cat# MA1-91159; RRID: AB_1957733

Goat anti-rabbit Ig (H/L): HRP conjugate Southern Biotech Cat# 4010-05; RRID: AB_2632593

Goat anti-rat Ig (H/L): HRP conjugate Southern Biotech Cat# 3010-05; RRID: AB_619911

Goat anti-mouse Ig (H/L): HRP conjugate Southern Biotech Cat# 1010-05; RRID: AB_609673

Goat anti-rabbit Ig (Fc): HRP conjugate Southern Biotech Cat# 3030-05; RRID: AB_2716837

Bacterial and Virus Strains

Stbl3 chemically competent E. coli Invitrogen Cat# C737303

Chemicals, Peptides, and Recombinant Proteins

Gentamycin Sigma Aldrich Cat# G-1397

ABT-199 (Venetoclax) (BCL-2i) ActiveBiochem Cat# A-1231

S63845 (MCL-1i) ActiveBiochem Cat# A-6044

A1331852 (BCL-XLi) ActiveBiochem Cat# A-6046

Etoposide Sigma Aldrich Cat# E-1383

RIP1 inhibitor II, 7-Cl�O-Nec (10mg) (Nec1s) Merck Cat# 5.04297.0001

TNF-a Miltenyi Cat# 130-101-690

Birinapant TetraLogic/Medivir N/A

Emricasan MedKoo Cat# 510230

VX-765 InvivoGen Cat# inh-vx765i-1

PhosSTOP phosphatase inhibitor Roche Cat# 04906837001

EDTA-free Protease inhibitor cocktail Roche Cat# 11836170001

Proteinase K Roche Cat# 3115879

dox hyclate Sigma-Aldrich Cat# D-9891

Luminata Forte Western HRP substrate Merck Millipore Cat# WBLUF0500

Lipopolysaccharide from E.coli Sigma-Aldrich Cat# L-2880

Critical Commercial Assays

Promega CyTox LDH assay Promega Cat# G1780

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

Primary murine BMDMs this manuscript N/A

murine WT iBMDMs (De Nardo et al., 2018) N/A

murine Casp1/11/12KO iBMDMs this manuscript N/A

murine Casp1/11/12/8/RipK3KO iBMDMs this manuscript N/A

murine Casp8/RipK3KO iBMDMs this manuscript N/A

murine MLKLKO iBMDMs this manuscript N/A

murine Casp1/8/RipK3KO iBMDMs this manuscript N/A

murine Casp1/11/8/RipK3KO iBMDMs this manuscript N/A

murine Casp1/8/RipK3/GsdmdKO iBMDMs this manuscript N/A

murine GsdmdKO iBMDMs this manuscript N/A

murine Gsdmd/Casp8/Ripk3KO iBMDMs this manuscript N/A

murine Gsdmd/Casp8/Ripk3/Bax/BakKO iBMDMs this manuscript N/A

murineGsdmd/Casp8/Ripk3/Mlkl/Casp3/7KO iBMDMs this manuscript N/A

murine Gsdmd/Casp8/Ripk3/Mlkl/Casp3/6/7KO

iBMDMs

this manuscript N/A

murine Gsdmd/Casp8/Ripk3/Mlkl/Casp3/7/9KO

iBMDMs

this manuscript N/A

murine Gsdmd/Bid/Mlkl/Casp3/7/9KO iBMDMs this manuscript N/A

murine Gsdmd/Bid/Mlkl/Casp3/6/7/9KO iBMDMs this manuscript N/A

murine Gsdmd/Bid/Mlkl/Casp1/3/7/9KO iBMDMs this manuscript N/A

Experimental Models: Organisms/Strains

Mice: C57BL/6 (WT) WEHI N/A

Mice: MLKL�/� (Murphy et al., 2013) N/A

Mice: Casp1/11�/� (Kuida et al., 1995) N/A

Mice: Casp1/11/12�/� (Salvamoser et al., 2019) N/A

Mice: Casp1/11/12/Ripk3�/� this manuscript N/A

Mice: Casp1/11/12/8/Ripk3�/� this manuscript N/A

Mice: Casp8/Ripk3�/� (Oberst et al., 2011) N/A

Salmonella Typhimurium: SL1344 ATCC Cat#14028

Salmonella Typhimurium: DAroA (Kupz et al., 2014) N/A

Salmonella Typhimurium: SL1344 SPI2 ssaG-GFP+ (Hautefort et al., 2003) N/A

Recombinant DNA

pVSVg plasmid Addgene Cat# 8454

pMDLg/pRRE plasmid Addgene Cat# 12251

pRSV-Rev plasmid Addgene Cat# 12253

pFH1tUTG- H1-Tet-sgRNA plasmid (Aubrey et al., 2015), Addgene Cat#70183

pFUGW-Cas9mcherry plasmid (Aubrey et al., 2015), Addgene Cat#70182

Forward Primers for Caspase-1 sgRNA:

50-ACTTGCAAACATTACTGCTA-30
this manuscript N/A

Reverse Primers for Caspase-1 sgRNA:

50-TAGCAGTAATGTTTGCAAGT-30
this manuscript N/A

Forward Primers for Caspase-3 sgRNA:

50-ATCTCGCTCTGGTACGGATG-30
this manuscript N/A

Reverse Primers for Caspase-3 sgRNA:

50-CATCCGTACCAGAGCGAGAT-30
this manuscript N/A

Forward Primers for Caspase-6 sgRNA:

50-TGGCGTCGTATGCGTAAACG-30
this manuscript N/A

Reverse Primers for Caspase-6 sgRNA:

50-CGTTTACGCATACGACGCCA-30
this manuscript N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Forward Primers for Caspase-7 sgRNA:

50-GCCCACTTATCTGTACCGCA-30
this manuscript N/A

Reverse Primers for Caspase-7 sgRNA:

50-TGCGGTACAGATAAGTGGGC-30
this manuscript N/A

Forward Primers for Caspase-8 sgRNA:

50-TAGCTTCTGGGCATCCTCGA-30
this manuscript N/A

Reverse Primers for Caspase-8 sgRNA:

50-TCGAGGATGCCCAGAAGCTA-30
this manuscript N/A

Forward Primers for Caspase-9 sgRNA:

50-AACTTGAGCACCGATTCCGC-30
this manuscript N/A

Reverse Primers for Caspase-9 sgRNA:

50-GCGGAATCGGTGCTCAAGTT-30
this manuscript N/A

Forward Primers for Caspase-11 sgRNA:

50- AGCCTTTCGTGTACGGCCAT �30
this manuscript N/A

Reverse Primers for Caspase-11 sgRNA:

50- ATGGCCGTACACGAAAGGCT �30
this manuscript N/A

Forward Primers for Caspase-12 sgRNA:

50-TGCGAGTTTCATCCTGAACA-30
this manuscript N/A

Reverse Primers for Caspase-12 sgRNA:

50-TGTTCAGGATGAAACTCGCA-30
this manuscript N/A

Forward Primers for Ripk3 sgRNA:

50-GGAACCGCTGACGCACCAGT-30
this manuscript N/A

Reverse Primers for Ripk3 sgRNA:

50-ACTGGTGCGTCAGCGGTTCC-30
this manuscript N/A

Forward Primers for Gsdmd sgRNA:

50-CAGAGGCGATCTCATTCCGG-30
this manuscript N/A

Reverse Primers for Gsdmd sgRNA:

50-CCGGAATGAGATCGCCTCTG-30
this manuscript N/A

Forward Primers for Bid sgRNA:

50-GGTCAGCAACGGTTCCGGCC-30
this manuscript N/A

Reverse Primers for Bid sgRNA:

50-GGCCGGAACCGTTGCTGACC-30
this manuscript N/A

Forward Primers for Mlkl sgRNA:

50-TACCCAACACTTTCGGCCTG-30
this manuscript N/A

Reverse Primers for Mlkl sgRNA:

50-CAGGCCGAAAGTGTTGGGTA-30
this manuscript N/A

Forward Primers for Caspase12 indel sequencing:

50-TTACAGCCAGGAGGACACAT-30
this manuscript N/A

Reverse Primers for Caspase12 indel sequencing:

50-ACAGTCTAAGGGATATGGGG-30
this manuscript N/A

Software and Algorithms

GraphPad Prism Version 8.0d; GraphPad

Software Inc.

https://www.graphpad.com/scientific-

software/prism/

Image Lab Version 6.0.0 Bio-Rad laboratories

Adobe Illustrator CC Version 2015.1.0 http://www.adobe.com/Illustrator

Fiji Version 2.0.0-rc-69/1.52v ImageJ: https://imagej.net/Fiji

IMARIS Version 9.5 Oxford Instruments - Imaris

edgeR (Robinson et al., 2010) N/A

Other

Protein G Sepharose� 4 fastflow GE Healthcare Cat#17-0618-01
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact and cor-

responding author, Andreas Strasser (strasser@wehi.edu.au).

Materials Availability
Themouse lines and iBMDMcell lines generated in this studymay be obtained (pending continued availability) from the Lead Contact

with a completed Materials Transfer Agreement.

Data and Code Availability
The published article includes all datasets generated or analyzed during this study. The full CRISPR/Cas9 whole genome screen da-

taset supporting the current study may be obtained from the Lead Contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 (WT),Mlkl�/� (Murphy et al., 2013),Casp8–/–;Ripk3–/– (Oberst et al., 2011),Casp1–/–;Casp11–/– (Kuida et al., 1995),Casp1–/–;

Casp11–/–;Casp12–/– (Salvamoser et al., 2019), Casp1–/–;Casp11–/–;Casp12–/–;Ripk3–/–, and Casp1–/–;Casp11–/–;Casp12–/–;Ca-

sp8–/–;Ripk3–/–mice were bred and maintained at The Walter and Eliza Hall Institute of Medical Research Animal Facility. Both

age- and sex-matched animals between eight and fourteen weeks of age were used for in vivo and in vitro studies. All mice were

bred and housed in specific pathogen-free facilities, in a 12 h light/dark cycle in ventilated cages, with free access to chow and water

supply ad libitum. All animal experiments were approved by The Walter and Eliza Hall Institute of Medical Research Animal Ethics

Committee and The University of Melbourne Animal Ethics Committee (AEC 1714194) and were conducted in accordance with

the Prevention of Cruelty to Animals Act (1986) and the Australian National Health and Medical Research Council Code of Practice

for the Care and Use of Animals for Scientific Purposes (1997). Accordingly, mice were euthanized at a weight loss of more than 15%,

which is described in here as ‘mouse survival’.

Bone Marrow Chimeras
Bonemarrow chimeras were generated as previously described (Bachem et al., 2019). C57BL/6-CD45.1micewere lethally irradiated

with 2 doses of 550 rad 4 h apart and reconstituted with 5 3 106 T cell-depleted bone marrow cells from Casp1–/–;Casp11–/–;

Casp12–/–;Casp8–/–;Ripk3–/– (C57BL/6-CD45.2) mice. Chimeric mice were allowed to reconstitute for at least 8 weeks before use

in experiments.

Bone Marrow-Derived Macrophages (BMDMs)
Bone marrow-derived macrophages (BMDMs) were prepared by flushing bone marrow from femurs and tibiae of both male and fe-

male mice, and culturing cells in DMEM supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich), 15% L929-conditioned

medium, 100 U/mL penicillin and 100 mg/mL streptomycin for six days in non-tissue culture treated dishes.

Immortalized Bone Marrow-Derived Macrophages (iBMDMs)
C57BL/6 Cre-J2 immortalized bone marrow-derived macrophages (iBMDM) (De Nardo et al., 2018) were passaged in DMEM sup-

plemented with 10% FBS, 100 U/mL penicillin and 100 mg/mL streptomycin at 37�C and 10% CO2. CRISPR/Cas9 mediated gene

deletion was achieved as previously described (Aubrey et al., 2015; Kueh and Herold, 2016). sgRNAs targeting the genes to be

deleted were designed in silico and cloned into an inducible lentiviral expression vector. Lentivirus was generated using 293T cells

and 13 105 target iBMDMcells transducedwith the respective virus supernatant. Infected cells were expanded and single cell sorted

into tissue culture medium containing 1 mg/mL dox hyclate (to induce sgRNA expression) (Sigma-Aldrich D9891) performed on eGFP

andmCherry expressing populations using FACSaria flow cytometer. Single cell clones were expanded and gene deletion confirmed

by western blot analysis of the targeted protein as described above.

Bacterial Strains for in vivo and in vitro Infection Studies
For in vivo infection, S. Typhimurium DAroA was grown shaking at 37�C in Luria-Bertani (LB) broth supplemented with 50 mg/mL

streptomycin for 16 to 18 h, diluted in PBS and 200 CFU were injected into the tail vein in a volume of 200 mL. The number of repli-

cating bacteria was determined by homogenizing organs from infected mice in 5 mL of sterile PBS. The homogenate was serially

diluted and plated onto LB agar plates supplemented with 50 mg/mL streptomycin. Plates were incubated at 37�C for 24 h. S. Typhi-

murium strain SL1344 was used for in vitro infection of primary BMDMs and iBMDMs. Imaging studies utilized SL1344 expressing

GFP under the control of the SPI-2 promoter. SL1344 was grown shaking at 37�C over night in (LB) broth (+50 mg/mL Streptomycin)

for 16 to 18 h and OD600 was determined using a spectrophotometer to calculate multiplicity of infection (MOI). Cells were infected
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with SL1344 at MOI of 50 in serum free and antibiotic free medium. After 1 h, cells were washed twice with warm PBS and medium

replaced with serum containing Dulbecco’s modified Eagle’s medium DMEMwith 50 mg/mL Gentamycin to prevent growth of extra-

cellular bacteria.

METHOD DETAILS

Cell Culture
BMDMs were passaged in DMEM supplemented with 10% FBS, 15% L929-conditioned medium, 100 U/mL penicillin and 100 mg/

mL streptomycin at 37�C and 10% CO2. iBMDM were passaged in DMEM supplemented with 10% FBS, 100 U/mL penicillin and

100 mg/mL streptomycin at 37�C and 10% CO2. For experimental assays, cells were seeded into 6- or 96-well plates at a density

of 3 3 105 or 2 3 104 cells/well, respectively, in antibiotic-free medium and rested for 24 h before infection/treatment and down-

stream analysis as described below.

Lentiviral Infection and CRISPR/Cas9 Mediated Gene Deletion
CRISPR/Cas9 mediated gene deletion was achieved as previously described (Aubrey et al., 2015; Kueh and Herold, 2016). sgRNAs

targeting the genes to be deleted were designed in silico and cloned into an inducible lentiviral expression vector as previously

described (Aubrey et al., 2015). Lentivirus was generated using 293T cells and 1 3 105 target iBMDM cells transduced with the

respective virus supernatant. Infected cells were expanded and single cell sorts into tissue culture medium containing 1 mg/mL

dox hyclate (to induce sgRNA expression) (Sigma-Aldrich D9891) performed on eGFP and mCherry expressing populations using

a FACSaria flow cytometer. Single cell clones were expanded and gene deletion confirmed via immunoblot analysis of the targeted

protein as described below or in the case of caspase-12 by Sanger sequencing or NGS as previously described (Aubrey et al., 2015)

using primers outlined in the Key resources table.

LDH Release Cell Death Assay
The viability of uninfected, Salmonella-infected and/or inhibitor treated BMDMs and iBMDMs at the indicated time points was deter-

mined using the CytoTox 96� Non-Radioactive Cytotoxicity Assay (Promega). The percentage of live cells at each time point was

calculated comparing LDH release of surviving cells in Salmonella-infected wells to LDH release of non-infected control cells.

Immunoblotting
To quantify the amounts and to determine the activation status of a wide range of cell death initiator and effector molecules upon

Salmonella infection, cells were lysed at the indicated time points by scraping with cell lysis buffer containing 20 mM Tris-HCl, pH

7.5, 135 mMNaCl, 1.5 mMMg2Cl, 1 mMEGTA, 1%Triton X-100 (Sigma-Aldrich), 10% glycerol, EDTA-free protease inhibitor tablets

(Roche, Basel, Switzerland), and phosphatase inhibitor tablets (Roche). Cell lysates were rotated at 4�C for 20 min and then clarified

at 4�C at 13,000 g for 15 min. Absolute protein content of clarified lysates was determined by Bradford assay (Bio-Rad, Hercules, CA,

USA), and equal quantities (20–50 mg) of total protein were separated under denaturing and reducing conditions (with 5% b-mercap-

toethanol) using 4%–12% SDS-PAGE gels (Life Technologies). Proteins were transferred onto nitrocellulose membranes, blocked

with either 5% skim milk (Devondale, Brunswick, Australia) or 5% BSA (for phospho-proteins) in PBS with 0.05% Tween-20

(PBST) for 1 h, and detected using the following primary antibodies: rat anti-caspase-11 (4E11, Enzo Life Sciences), rat anti-cas-

pase-1 (1E11, Enzo Life Sciences), rat anti-MLKL (3H1; available fromMerck), rabbit anti-phospho S345MLKL (EPR9515[2]; Abcam,

Cambridge, UK), rat anti-caspase-8 (3B10; Enzo Life Sciences), rabbit anti-cleaved caspase-8 (D5B2; Cell Signaling Technology),

rabbit anti-RIPK3 (ProSci, Poway, CA, USA), rabbit anti-cleaved caspase-3 (Asp175; Cell Signaling Technology), rabbit anti-cas-

pase-7 (D2Q3L, Cell Signaling), rabbit anti-caspase-9 (Cell Signaling Technology), rabbit anti-GSDMD (EPR19828, Abcam), mouse

anti-PARP (C2-10, Santa Cruz), rat anti-BID (2D1-3, WEHI), mouse anti-HSP70 (BRM-22, Sigma Alrich) and rabbit anti-b-actin-HRP

(Cell Signaling Technology).

HRP-conjugated goat antibodies against mouse, rat or rabbit IgG (Southern Biotech, Birmingham, AL, USA) were applied as a sec-

ondary reagent to membranes, which were subsequently incubated with Amersham ECL PrimeWestern Blotting Detection Reagent

(GE Healthcare) and imaged using a ChemiDoc Touch Imaging System (Bio-Rad). Densitometry was performed using Image Lab

v.5.2.1 software (Bio-Rad).

Immunoprecipitation of Activated BAX
To determine BAX activation, 3 3 105 WT and Casp1–/–;Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– primary BMDMs or Casp1–/–;

Casp11–/–;Casp12–/–;Casp8–/–;Ripk3–/– iBMDMs were left untreated, infected with Salmonella and/or treated with a combination of

BH3-mimetic drugs (2 mM of each BCL-2i ABT-199, MCL-1i S63845, BCL-XLi A1331852) for 16 h and cells were then solubilized

with 1% CHAPS for 30 min on ice. Lysates were centrifuged at 13,000 g for 5 min and pre-cleared with 25 mL Protein G Sepharose

(Amersham Biosciences). Pre-cleared supernatant was then incubated with antibody (4 mg) of 6A7 anti-BAX antibody (aa113-19, BD

Biosciences Cat# 556467, RRID: AB_396430) and Protein-G Sepharose for 2 h at 4�C. Unbound proteins were collected and the resin

washed with lysis buffer containing up to 0.1%w/v CHAPS. Immunoprecipitated proteins (IP) were eluted by boiling in SDS-contain-

ing sample buffer. Immunoprecipitates and pre-IP samples were electrophoresed on SDS-PAGE and immunoblotted for BAX

(anti-BAX NT). To avoid signals from immunoglobulin (Ig) light chains in immunoblots, Ig heavy chain-specific HRP-conjugated
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goat anti-rabbit IgG antibodies (Southern Biotech Cat# 4041-05) were used as secondary reagent, as previously described (Dengler

et al., 2019).

Treatment of Cells in vitro with BH3 Mimetic Drugs or Etoposide
Primary BMDMs or iBMDMs were seeded for LDH assay or BAX activation analysis as indicated above. The following BH3 mimetic

drugs were used for the indicated time points at a final concentration of 2 mM: MCL-1i S63845, BCL-2i ABT199, BCL-XLi A1331852.

Etoposide (Sigma) was used at a final concentration of 50 mM.

Treatment of Cells in vitro with Caspase Inhibitors
iBMDM were passaged and seeded for LDH release cell death assay or western blot analysis as indicated above. After 24 h, cells

were either left untreated, pre-treated with the caspase-1 specific inhibitor VX-765 (20 mM) or the broad-spectrum caspase inhibitor

Emricasan (20 mM) for 1 h prior to infection withSalmonellaSL1344 (MOI = 50) in the presence of inhibitor. After 1 h, cells werewashed

twice with warm PBS and fresh medium containing 50 mg/mL Gentamycin and the respective inhibitor added. At the indicated time

points, cells were either harvested for immunoblot analysis or cell death was measured by LDH release.

Treatment of Cells in vitro with LPS
iBMDM) were passaged and seeded for immunoblot analysis as indicated above. After 24 h, cells were either left untreated or treated

with LPS for 4 h and harvested for immunoblot analysis as described above.

Treatment of Cells in vitro with the RIPK1 Inhibitor, Nec1s, and/or TNF-a plus Birinapant and Emricasan

iBMDM) were passaged and seeded for LDH release cell death assay as indicated above. After 24 h, iBMDMs were either left un-

treated, pre-treated with the RIPK1 specific inhibitor, Nec1s (30 mM), for 1 h prior to infection with Salmonella SL1344 (MOI = 50)

in the continued presence of Nec1s. After 1 h, cells were washed twice with warm PBS and fresh medium containing 50 mg/mL Gen-

tamycin and Nec1s was added. At the indicated time points, cell death was measured by LDH release. In order to verify effective

inhibition of RIPK1 by Nec1s, iBMDMs were treated with TNF-a (100 ng/mL) + Birinapant (1 mM) + Emricasan (20 mM) with or without

Nec1s (30 mM) or Nec1s alone (30 mM) and harvested for LDH cell death assay at the indicated time points.

Brightfield, Confocal and Lattice Light Sheet Microscopy
For confocal and lattice light sheet microscopy, BMDMs were seeded into Nunc microscopy chamber slides at a density of 13 105

per well using DMEM without phenol red. After 24 h, cells were stained with MitoTracker-Deep Red FM (Thermo) at a final concen-

tration of 50 nM for 30min, washed twice and infected with GFP-expressingSalmonella SPi-2 (kind gift of Strugnell lab, Peter Doherty

Institute (Hautefort et al., 2003)) as previously described. After 30 min, cells were again washed twice and fresh medium containing

Gentamycin (50 mg/mL) and PI (25 mg/mL; Sigma-Aldrich) was added. Cells were imaged at the Centre for Dynamic Imaging, WEHI,

using either a Zeiss LSM 980 or a custom-built Lattice light sheet system constructed as outlined in (Chen et al., 2014). Confocal

images were acquired using a 1.2 NA 40x LD-LCI Plan-Apochromat lens (Zeiss) at a temperature of 37�C at 5% CO2. For lattice

light-sheet imaging, illumination at the back aperture of the excitation objective was focused through an annular mask of 0.44 inner

NA and 0.55 outer NA. Fluorescent emission was collected by detection objective (Nikon, CFI Apo LWD 25XW, 1.1 NA), and detected

by sCMOS cameras (Hamamatsu Orca Flash 4.0 v2). Lattice light sheet images were de-skewed and deconvolved using an iterative

Richardson-Lucy algorithm before visualization. Images were processed using either Fiji or IMARIS software packages.

For Brightfield microscopy, iBMDM cells were seeded into Nunc microscopy chamber slides at a density of 13 105 per well using

DMEM. Cells were infected with Salmonella SL1344 (MOI = 50) as described above and images taken on a Zeiss LSM 980. Images

were processed using Fiji software package.

CRISPR/Cas9 Whole Genome Guide RNA Library Screen
293T cells were used to generate lentivirus containing the YUSA mouse full genome sgRNA library (Koike-Yusa et al., 2014).

Gsdmd–/–;Bid–/–;Mlkl–/–;Casp3–/–;Casp7–/–;Casp9–/– iBMDMs were seeded at a density of 1 3 106 and lentivirally transduced with

the sgRNA library. BFP+ cells were sorted using a FACSaria, expanded and seeded into 10 flasks at a density of 2 3 106 cells.

The next day, 5 flasks were infected with Salmonella SL1344 (MOI = 50) as described in the protocols above, and 5 flasks were har-

vested as non-infection control. Infected flasks were washed every 24 h for 3 days in order to remove cell debris and dying cells, and

medium containing Gentamycin replaced respectively. Once surviving cells of each flask had expanded sufficiently, they were split

and re-seeded at a density of 13 106 cells for a second round of infection. The remaining cells were frozen for analysis of guide RNA

enrichment by NGS. This procedure was repeated for a third round. Genomic DNA of harvested cells from control flasks and Salmo-

nella-infected flasks was extracted using the QIAGEN genomic DNA extraction kit as per the manufacturer’s protocol (QIAGEN). For

targeted PCR of gDNA Insertion Sites, specific primers were used to amplify from the CRISPR backbone vector which surrounds the

guide RNA sequence (Aubrey et al., 2015). Individual infection and control replicates were amplified in triplicate. The PCR cycling

conditions were as follows: 95�C 2 min, (95�C 15 s, 60�C 15 s, 72�C 30 s) x35 cycles, 72�C 7 min, 4�C hold step). Amplicon size dis-

tributionwas ascertained using the Agilent Tapestation D1000 protocol. When a single bandwas observed at 250 bp, the sample was

accepted as amplifying the expected target region. All reactions from the entire plate were then pooled and the PCR amplicons were

bead purified as previously described. The quality and integrity of the samples was ascertained as previously described and the
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concentration was used to set up the sequencing reaction. Each dual indexed library plate pool was quantified using the Agilent Ta-

pestation and the Qubit RNA assay kit for Qubit 2.0� Fluorometer (Life Technologies). The indexed pool was diluted to 12 pM for

sequencing on a MiSeq instrument as per the manufacturer’s instructions. The 150-cycle kit was used to generate a single read

of sequence. The fastq sequence output file from the run was used for analysis.

For analysis, the data were formatted into a matrix such that each row represented an individual guide RNA and each column a

sample. Analyses of these data were then undertaken using the edgeR (Robinson et al., 2010) software package. Technical replicates

were first combined using edgeR’s sumTechReps function and water control samples removed prior to data filtering. Guide RNAs

were filtered out if they failed to achieve a count of 10 in at least 5 samples, leaving 1384 guides for downstream analysis. Following

filtering, the data were normalized using edgeR’s TMM normalization (Robinson and Oshlack, 2010) with singleton pairing. For

normalization only a prior count of 10 was added to all observations. This prior count was then removed for all other analyses. Dif-

ferential abundance of guide RNAs between the Salmonella-infected and control samples was assessed using edgeR’s likelihood

ratio test. The false discovery rate (FDR) for this analysis was set at 5%. The mean-difference plot was generated using edgeR’s

plotMD function, while the heatmap was created using the pheatmap software package.

QUANTIFICATION AND STATISTICAL ANALYSIS

Prism v8.0 (GraphPad Software, San Diego, CA, USA) was used to perform statistical tests. Groups were compared by either un-

paired two-tailed t tests for parametric data, or Mann–Whitney tests for non-parametric data. Survival data were analyzed using

log rank (Mantel Cox) test. Please refer to the legend of the figures for description of sample size (n) and statistical significance.

P values were calculated and are indicated as follows: **p < 0.005; *p < 0.05; nsp > 0.05 = not significant (ns).
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