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Abstract 
 

 The intestinal epithelium represents one of the first lines of defense against 

pathogenic bacteria. Immune regulation at this critical barrier is necessary to maintain 

organismal fitness, and mis-regulation here has been linked to numerous debilitating 

diseases. Functional relationships between the nervous system and immune system have 

been found to be critical in the proper coordination of immune defenses at barrier surfaces, 

however the precise mechanisms underlying theses interactions remains unclear.   

 Through conducting a forward genetic screen utilizing the model organism 

Caenorhabditis elegans, we uncovered a surprising requirement for the olfactory neuron 

gene olrn-1 in the regulation of intestinal epithelial immunity. During nematode 

development, olrn-1 is required to program the expression of odorant receptors in the AWC 

olfactory neuron pair. Here, we show that olrn-1 also functions in AWC neurons in the cell 

non-autonomous suppression of the canonical p38 MAPK PMK-1 immune pathway in the 

intestine. Low activity of OLRN-1, which activates the p38 MAPK signaling cassette in 

AWC neurons during larval development, also de-represses the p38 MAPK PMK-1 

pathway in the intestine to promote immune effector transcription, increased clearance of 

an intestinal pathogen and resistance to bacterial infection. However, derepression of the 

p38 MAPK PMK-1 pathway also results in severe developmental and reproductive defects, 

demonstrating the critical function of OLRN-1 to both prime C. elegans intestinal epithelial 

cells for the induction of anti-pathogen responses, and to limit the deleterious effects of 

immune hyper-activation. These data reveal an unexpected connection between olfactory 
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receptor development and innate immunity, as well as demonstrate how neuronal 

regulation of immune responses within the intestinal epithelium is critical for both 

reproductive and developmental fitness. 
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Chapter 1: Introduction 
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1.1 C. elegans as a Model of Host-Microbe Interactions 
 
 Caenorhabditis elegans is a free-living soil-dwelling bacterivore that can be found 

ubiquitously in the environment where it primarily feeds on microbes found on 

decomposing organic matter. Over the past two decades, it has been discovered that 

nematodes possess a genetically tractable innate immune system that has allowed C. 

elegans to become a popular research model commonly used in the study of host-microbe 

interactions and immune regulation (Foster, Cheesman, et al., 2020; D. H. Kim et al., 2002; 

Peterson et al., 2019; Pukkila-Worley et al., 2011; Pukkila-Worley & Ausubel, 2012a, 

2012b). The constant exposure to microbe-rich environments has created a selective 

pressure for C. elegans to develop specialized intestinal defense mechanisms to protect 

themselves from ingested pathogenic bacteria and fungi.  

Functionally, the intestine of C. elegans, much like in mammals, serves as one of 

the first critical physical and immunological barriers to ingested pathogens. The C. elegans 

gut contains 20 non-renewable intestinal epithelial cells that are positioned as bilaterally  

 

Figure 1.1: The Cells of the C. elegans intestine. 
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symmetric pairs that form a tube around the intestinal lumen. The one exception is the 

anteriormost intestinal ring, which is made up of four epithelial cells that are 

morphologically distinct and have notably different gene expression profiles compared to 

the neighboring more posteriorly intestinal epithelial cells (Figure 1.1). Even though C. 

elegans lacks the diverse array of specialized intestinal epithelial cells that line the human 

intestinal tract (i.e. Paneth cells, goblet cells, and neuroendocrine cells), the basic 

organization of the C. elegans intestine is markedly similar to that of higher chordates. 

Individual intestinal epithelial cells, which closely resemble enterocytes, each have a well-

defined apical domain (including a microvillar brush border), basolateral domain, and 

basement membrane. Gap junctions located on the lateral cell membranes connect each 

epithelial cell to its neighbor, allowing small molecules to transit freely between cells. In 

addition to the morphological similarities that exist between the nematode and mammalian 

intestine, both also function similarly regarding the ability to mount innate immune 

responses. Many potent non-specific innate immune mechanisms that are necessary to 

protect intestinal epithelial cells against invading pathogens are evolutionarily conserved 

between nematodes and mammals; however, all adaptive immune mechanisms are notably 

absent from C. elegans. Thus, while not a perfect model, the conserved core structural and 

functional elements of the C. elegans intestine makes it an incredibly useful model in the 

study of host-pathogen interactions. 

In a laboratory setting, there are numerous key features that make C. elegans a 

convenient research model in the study of host-pathogen interactions. Firstly, as C. elegans 

is encased in a transparent cuticle, it is extraordinarily simple to observe complex core 
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biological processes with limited difficulty. When utilizing C. elegans as an infection 

model, one can easily observe feeding, intestinal colonization, and morphological changes 

in intestinal epithelial cells, all while utilizing a low powered differential contrast (DIC) 

microscope. Secondly, numerous powerful genetic tools are readily available for use in C. 

elegans, such as the ability to selectively target and knock down genes of interest via RNAi, 

and the ability to manipulate gene function by taking advantage of the powerful CRISPR 

Cas9 system (Fire et al., 1998; Friedland et al., 2013). Harnessing these tools makes it 

possible to determine precisely which genes are required for adequate immune function 

and regulation (Anderson et al., 2019; Cheesman et al., 2016; Fire et al., 1998; Peterson et 

al., 2019). Third, the utilization of fluorescently tagged transcriptional and translational 

reporters enables cellular processes to be monitored in real time (Anderson et al., 2019; 

Chalfie et al., 1994; Cheesman et al., 2016; Foster, Cheesman, et al., 2020; Peterson et al., 

2019; Pukkila-Worley et al., 2014). This unique ability provides researchers with the ability 

to quantify gene expression, determine protein localization and stability, and observe how 

those each may change in response to environmental and pathogenic stressors. Lastly, 

while the immune system of C. elegans significantly predates the intricate immune system 

present in mammals, many components of core immune signaling pathways are 

evolutionarily conserved (Pukkila-Worley et al., 2014; Pukkila-Worley & Ausubel, 2012b; 

Troemel et al., 2006). Thus, working with C. elegans gives insight into complex signaling 

pathways that would otherwise be much more challenging to characterize in higher order 

species.  
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 For all the above reasons, C. elegans remains a valuable tool for characterizing the 

complex biological relationships nematodes have with microbial counterparts. To date, 

investigators have developed infection models using numerous human pathogens including 

Pseudomonas aeruginosa (Conery et al., 2014; Kirienko et al., 2014; Powell & Ausubel, 

2008) Serratia marcescens (Mallo et al., 2002; Pujol et al., 2001),  Salmonella enterica 

(Aballay et al., 2003; Kerry et al., 2006), Enterococcus faecalis (Kerry et al., 2006; Moy et 

al., 2009), and fungi such as Cryptococcus neoformans (Alspaugh et al., 2002; Means et 

al., 2009; Pukkila-Worley et al., 2005), and Candida albicans (Pukkila-Worley et al., 2009, 

2011) . As innate immune systems of high order chordates have evolved from these simple 

invertebrate species, the information gained from studying host-microbe interactions using 

accessible and tractable model organisms like C. elegans allows for a more comprehensive 

understanding basic biological principles underlying mechanism of innate immunity in 

mammals.  

 
1.2 Chemosensation and Behavioral Avoidance in C. elegans  
 
 The ability to locate nutritious food sources and avoid toxic compounds and 

pathogenic microbes is vital to the longevity and evolutionary fitness and all organisms 

(Peters & Harper, 1985; Sanahuja & Harper, 1962). As C. elegans thrives in bacteria 

laden environments, the ability to dynamically respond to environmental conditions, such 

as the presence or absence of food sources, the quality of food sources, or the existence of 

pathogens is of critical importance. Thus, nematodes rely upon a highly developed 

chemosensory system in order to collect and process input gathered from its surrounding 
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in order to influence core biological processes such as foraging behaviors, pathogen 

avoidance, and immune activation for the purpose of maximizing the odds of surviving in 

hostile habitats (C. Bargmann, 2006; Ha et al., 2010; Hao et al., 2018; K C Reddy et al., 

2009) 

 

1.2.1 Chemosensation in C. elegans  
 
 For C. elegans to navigate its microbe rich habitat, it must be able to discriminate 

nutritious food sources from potentially harmful pathogens. One important mechanism by 

which nematodes are able to integrate environmental cues is by utilizing a highly 

specialized system of chemosensory and olfactory neurons (C. Bargmann, 2006; C. I. 

Bargmann et al., 1993; Rankin, 2006; Troemel et al., 1997; Zhang et al., 2005) . In fact, an 

estimated 5% or all nematode genes are involved in the recognition of environmental 

stimuli. C. elegans contains 32 chemosensory neurons - the vast majority of these neurons 

(22 out of 32) are paired neurons of the amphid sensilla, four are paired neurons of the 

phasmid sensilla, and six are IL2 neurons of the inner labial sensilla (Table 1). Sensory 

dendrites from chemosensory neurons protrude through openings in the body formed by 

neighboring glial cells where they make direct contact with the environment (S. Ward et 

al., 1975; Ware et al., 1975). 
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Table 1: Chemosensory Neurons and their reported functions 

 Function  
ASE • Chemotaxis to water soluble attractants 

AWA • Chemotaxis to diacetyl, pyrazine, trimethylthiazole 
• Required for sexual attraction in males 

AWB • Avoidance from 2-nonanone, 1-octanol 
• Light sensation 
• Electro sensory navigation 

AWC • Chemotaxis to volatile odorants 
• Induction of local search behavior and promoting turns 
• Thermosensation 
• Electro sensory navigation 
• Modulation of innate immune responses to pathogenic bacteria 

ASH • Nociception, 
• Avoidance responses from noxious stimuli 
• Light sensation 
• Electro sensory navigation 
• Modulation of innate immune responses to pathogenic bacteria 
• Plays role in establishment of asymmetric fates of AWCL/R 

ASI • Control entry into dauer stage: sole source of DAF-7/TGF-β 
• Induction of local search behavior, promoting turns, and reversals 
• Chemotaxis to lysine 
• Thermosensory 
• Pheromone sensing 
• Modulation of innate immune responses to pathogenic bacteria 

ADF • Only serotonergic sensory neurons 
• Dauer formation, 
• Chemotaxis (minor) to cAMP, biotin, Cl-, and Na+ 

ADF • Chemotaxis to water soluble attractants 
• Control entry into dauer stage 
• Lifespan regulation 

ASJ • Control entry into and exit from dauer stage 
• Light sensation 
• Electro sensory navigation 

ASK • Chemotaxis to LYS 
• Avoidance from protons, detergents, alkaloids 
• Pheromone sensing 
• Light sensation 
• Electro sensory navigation 

ADL • Avoidance behavior from heavy metals 
• Social feeding behavior 
• Pheromone sensing 

URX • Oxygen/aerotaxis 
• Social feeding 
• Lifespan regulation 
• Suppression of innate immunity 

AQR • Oxygen/aerotaxis 
• Social feeding 
• Suppression of innate immunity 

PQR • Oxygen/aerotaxis 
• Social feeding 
• Suppression of innate immunity 
• Mate-searching behavior of males 

PHA • Chemorepulsion behavior 
• Mate-searching behavior of males 

PHB • Chemorepulsion behavior 
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Chemosensory neurons generally exist as bilateral structurally symmetric pairs 

(annotated as left and right), however several gene expression studies have discovered 

numerous examples of asymmetrical gene expression patterns between left and right pairs 

of neurons within the same class (Chuang & Bargmann, 2005; Huang et al., 2007; Sagasti 

et al., 2001; S. Yu et al., 1997). The two ASE neurons, for example, are functionally 

discrete, with the ASER neuron able to detect chloride and potassium ions whereas the 

ASEL neuron detects sodium ions (S. Yu et al., 1997) . Similarly, AWC olfactory neurons 

display notable asymmetric distribution of chemoreceptors. While both AWC neurons can 

detect benzaldehyde and isoamyl alcohol, the volatile odorants butanone and 2,3-

pentanedione are only detected by one or the other. This functional asymmetry that exists 

within AWC neurons is required for odor differentiation and behavioral responses that 

result upon recognitions of these odors (Huang et al., 2007; Troemel et al., 1999; Wes & 

Bargmann, 2001) .  

 As the chemosensory system functions to detect environmental stimuli, it has been 

shown to be tightly integrated with both behavioral and locomotive responses. Studies 

performed using numerous volatile organic compounds demonstrated that in fact, each 

specific sensory neuron elicits a specific and reproducible behavioral response (Wes & 

Bargmann, 2001). Some neurons, such as AWC, and AWA neurons are chemoattractive, 

whereas AWB is linked to repulsion (Wes & Bargmann, 2001). Interestingly, if 

chemoreceptors normally expressed in neurons linked to chemoattraction are instead 

expressed in neurons linked to repulsive responses, the corresponding odorant becomes 

repulsive to C. elegans (Wes & Bargmann, 2001). This suggests that each sensory neuron 
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induces a preferential behavioral response upon activation that is independent of 

chemoreceptor expression. By systematically receiving input for the environment, C. 

elegans is able to make complex decisions in order to productively navigate its 

surroundings. 

 

1.2.2 Food Preference and Behavioral Avoidance 

 All living organisms must carefully select their food in order to meet specific 

dietary requirements that promote developmental and reproductive fitness (Peters & 

Harper, 1985; Sanahuja & Harper, 1962). The two primary steps of food acquisition 

include locating and subsequently evaluating the quality of available food sources in the 

environment. C. elegans thrive in microbe rich environments where it is especially critical 

to differentiate between nutritious and potentially pathogenic food sources in order to 

ensure survival. The presence and quality of bacterial food sources can dramatically affect 

C. elegans behavior, inducing or repressing actions such as feeding, locomotion, 

thermotaxis, and aerotaxis (Rankin, 2006; Shtonda & Avery, 2006). When given a choice 

between high- and low-quality bacteria, worms will almost always choose to feed on lawns 

of high-quality bacteria (Rankin, 2006; Shtonda & Avery, 2006). High quality food in this 

case is defined as bacteria that is known to support robust growth and development. Not 

only will worms gravitate towards higher quality food, but they also display different 

behaviors while feeding on more nutritious food sources, characterized by a decrease in 

roaming behaviors (straight rapid forward movement), and an increase in dwelling 

behavior (frequent direction changes and reversals). On poor quality food sources, C. 
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elegans tends to display just the opposite behavior, increasing roaming and decreasing 

dwelling. While worms always tend to ultimately prefer high quality food sources over 

time, the process of developing food presence is typically a learned process. In fact, even 

the odors associated with pathogenic bacteria usually requires initial exposure before 

inducing an aversive response (Zhang et al., 2005). Initial studies attempting to understand 

the precise biological mechanisms influencing food preference behaviors concluded that 

serotonin plays a critical role in pathogen induced olfactory learning and that the specific 

neurons involved in this circuit are NSM and AFD neurons; with NSM mediating an 

attractive response and AFD mediating a repulsive response. Downstream AIY and AIZ 

interneurons, upon activation by serotonin release have been shown to subsequently 

modulates aversive learning behavior. Further complicating the story, follow-up studies by 

Avery et al. determined that AIY interneurons also appear to play an important role in 

suppressing roaming-to-dwelling transitions, resulting in longer food-seeking periods 

(Zhang et al., 2005). Thus, behavioral leaning and food preference is a complex process 

that integrates both motor-sensory cues, olfactory cues and aversive learning behavior in 

order to make complex decisions.   

 Behavioral avoidance not only assists in the search of nutritious food, but also is a 

vital defense strategy to avoid pathogenic food sources. C. elegans has been shown to 

employ both learned and, less commonly, innate avoidance behaviors in order to reduce 

exposure to potentially toxic or pathogenic food sources (Ballestriero et al., 2016; Chang 

et al., 2011; Meisel & Kim, 2014; Schulenburg & Ewbank, 2007; Styer et al., 2008; Zhang 

et al., 2005). Innate avoidance behavior is when C. elegans displays aversion to a pathogen 
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without having had any prior contact. A prime example of C. elegans innate behavioral 

avoidance can be observed upon exposure to numerous dodecanoic acid secreting 

Streptomyces species (Tran et al., 2017). Dodecanoic acid, a nematicide which is sensed 

by the seven-transmembrane receptor SRB-6, causes rapid avoidance behavior in C. 

elegans (Tran et al., 2017). SRB-6 has been shown to be expressed in both phasmid and 

aphid chemosensory neurons, including PHA, PHB, ASH, ADL and ADF. Interestingly, 

C. elegans also exhibits a strong innate aversion to decanoic acid, another potent 

nematicide that does not appear to be secreted from Streptomyces (Tran et al., 2017). This 

observation potentially indicates that C. elegans has evolved to sense a diverse array of 

toxic compounds - some secreted by bacteria and others outside the context of pathogen 

exposure. Another study by Ballestriero et al. found that C. elegans displays innate 

avoidance behavior to toxic bacterial metabolite tambjamine YP1, which is secreted by a 

broad set of bacterial strains commonly found in soil and freshwater environments 

(Ballestriero et al., 2016). Less well understood is why some compounds induce immediate 

innate avoidance behavior, while others involve olfactory learning and subsequent 

adaptation.   

 Learned avoidance behavior, unlike innate avoidance behavior, requires an initial 

exposure to a toxic stimulus in order to induce future avoidance.  A well-studied bacterial 

pathogen that elicits a notable learned avoidance phenotype is the gram-negative, 

opportunistic pathogen Pseudomonas aeruginosa (Chang et al., 2011; Meisel et al., 2014; 

Styer et al., 2008). Under optimal growth conduction and high cell density, Pseudomonas 

Aeruginosa produces two potent toxins: phenazine-1-carboximide and pyochelin. Upon 
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initial exposure to Pseudomonas Aeruginosa, C. elegans is strongly attracted to the 

bacterial lawn. However, soon after this initial attraction, animals begin to display a strong 

aversion to the bacterial lawn and can be observed fleeing the lawn (Chang et al., 2011; 

Meisel et al., 2014; Styer et al., 2008). This process of learned aversion to Pseudomonas 

has been shown to be dependent upon DAF-7 neuroendocrine signaling originating from 

ASJ neurons (Meisel et al., 2014). Upon exposure to Pseudomonas aeruginosa, the 

secreted toxins phanazine-1-carboximide and pyochelin activate the expression daf-7 in 

ASJ neurons, which in turn, signals to DAF-1 in adjacently located RIM/RIC interneurons. 

This process has been shown to alter aerotaxis and ultimately promotes a lawn-leaving 

behavior (Meisel et al., 2014). 

 An exciting recent discovery relating to nematode aversive learning has found 

evidence of multi-generation pathogen avoidance. Progeny of C. elegans exposed to lawns 

of P. aeruginosa have been found to more strongly avoid lawns of P. aeruginosa when 

they encounter it, compared to controls whose parents have never encountered the pathogen 

(Moore et al., 2019). This suggests that not only is decision making regarding pathogen 

avoidance a complex process in the confines of a single generation, but multi-generational 

epistatic changes may need to be accounted for when trying to accurately characterize 

behavioral responses to microbes. Further work will need to be conducted in order to 

characterize precisely how trans-generational inheritance may influence the decision-

making process that regulates behavioral avoidance to pathogens.  
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1.3 Molecular Immunity in C. elegans  

 
1.3.1 Introduction to innate immunity in C. elegans  

 The innate immune system is an ancient defense mechanism that provides the first 

line of protection against pathogen infection after behavioral avoidance mechanisms fail. 

Studies first performed in Drosophila have demonstrated that numerous primitive 

mechanisms of pathogen detection and the subsequent activation of innate defense 

responses are broadly conserved across a wide range of organisms (Christophides et al., 

2002; Medzhitov & Janeway, 1998; Sackton et al., 2007). Canonical innate immune 

activation results after pathogen recognition occurs, typically through detection of 

pathogen-associated molecular patterns (PAMPs), such as bacterial wall components, or 

through detection of damage-associated molecular patterns (DAMPs), such as the release 

of nuclear or cytoplasmic material into the extra cellular space. Upon detection of a threat, 

core sets of signal transduction pathways are activated typically involving defined families 

of proteins including protein kinases and phosphates which activate transcriptional 

regulators to induce protective transcriptional responses. While adaptive immunity 

typically involved a pathogen specific immunological response, the innate immune system 

relies on a quick and robust, though non-specific response to general environmental and 

pathogenic stressors.  

 As C. elegans does not possess an adaptive immune system, it therefore relies solely 

on the innate immune system to provide adequate protection against pathogens and other 

environmental assaults (D. H. Kim et al., 2002; Pukkila-Worley & Ausubel, 2012a; 
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Troemel et al., 2006). Even so, numerous innate immune signaling components conserved 

across many species appear to be absent from C. elegans. Early studies in Drosophila 

characterized the role of Toll-like signaling pathways in pathogen detection, a process by 

which specific molecular patterns present on pathogens are recognized by toll-like 

receptors (TLRs) and subsequently initiate signaling cascades resulting in the induction of 

distinct patterns of gene expression which promote pathogen clearance (Belvin & 

Anderson, 1996; Nüsslein-Volhard & Wieschaus, 1980; SUN & FAYE, 1992; Wasserman, 

1993). TLR signaling pathways are notably absent in C. elegans, as is NF-kB, the 

transcription factor that induces the transcription of numerous pro-inflammatory molecules 

upon TLR activation in many metazoans. Interestingly, C. elegans does in fact contain one 

Toll homolog, tol-1, which has been shown to be important during pharyngeal invasion of 

S. enterica, however numerous studies have failed to demonstrate that it plays an important 

role in the detection of PAMPs (Pujol et al., 2001; Tenor & Aballay, 2008). Thus, C. 

elegans must rely on a very limited ancient innate immune repertoire to effectively mitigate 

pathogenic infection. 

 

1.3.2 The p38 PMK-1 Innate Immune Pathway 

 At the core of C. elegans immunity to bacterial pathogens, lies the evolutionarily 

conserved PMK-1 p38 MAPK pathway. MAPK signaling pathways are highly conserved 

across a broad range of species and serve as transducers of extracellular stimuli, relaying 

important environmental information into the cell in order to produce appropriate 

transcriptional response (Arthur & Ley, 2013; Feng & Li, 2011). MAPK pathways have 
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been shown to regulate many important physiological processes in numerous 

evolutionarily diverse organisms, such as development, growth, cell proliferation, stress 

response and immunity (Keshet & Seger, 2010; Morrison, 2012). Identified during a 

forward genetic screen seeking to determine genes required for C. elegans survival during 

pathogen infection, the PMK-1 p38 MAPK pathway was found to be a core requirement 

for C. elegans immunity (D. H. Kim et al., 2002). The C. elegans PMK-1 p38 MAPK 

pathway consists of a kinase cascade including the MAPKKK nsy-1, the MAPKK sek-1, 

and the p38 MAPK gene pmk-1, and is orthologous to the human ASK-1/MKK-3/6 MAPK 

pathway (Figure 1.2). Animals harboring loss-of-function mutations in any of the core 

kinases within the PMK-1 p38 MAPK pathway results in notable hyper-susceptibility to 

killing by a wide gamut of bacterial and fungal pathogens, suggesting that C. elegans relies 

heavily upon this signaling pathway for immunity to diverse microorganisms (Bolz et al., 

2010; Cheesman et al., 2016; D. H. Kim et al., 2002; Pukkila-Worley et al., 2014; Troemel 

et al., 2006). Subsequent studies aimed at further characterizing this pathway identified 

TIR-1, the only TIR-domain adapter protein in C. elegans, as being positioned directly 

upstream of the NSY-1-SEK-1-PMK-1 signaling cassette and determined it to be required 

for pathway activation (Liberati et al., 2004). TIR-1 domains are intracellular signaling 

domains present on many mammalian immune signaling intermediates such as MyD88, 

IL-1R, and toll receptors. As the C. elegans genome does not encode any of these functional 

immune elements, it remains unclear precisely how TIR-1 is activated and what upstream 

signaling components may exist to initiate the PMK-1 p38 MAPK pathway.  
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 Upon activation, the PMK-1 p38 MAPK pathway results in the sequential 

phosphorylation of NSY-1, SEK-1, and finally PMK-1 at conserved serine/threonine 

residues (D. H. Kim et al., 2002; Troemel et al., 2006).  Phosphorylated, active PMK-1 

subsequently phosphorylates the CREB/ATF bZIP transcription factor, ATF-7 (Pukkila-

Worley et al., 2012; Shivers et al., 2010). Under basal conditions, ATF-7 functions as a 

transcriptional repressor, however upon phosphorylation by active PMK-1, ATF-7 

becomes a transcriptional activator of PMK-1-regulated genes in response to P. 

aeruginosa infection (Shivers et al., 2010). In fact, subsequent studies have concluded that 

over 50% of all genes differentially upregulated in response to Pseudomonas aeruginosa 

infection rely upon ATF-7 for their transcriptional activation. ChIP-seq analysis confirmed 

this, by showing direct binding of ATF-7 at the promotors of a significant subset of 

pseudomonal-response genes, demonstrating that upon pathogen infection, ATF-7 

functions as a direct transcriptional regulator downstream of the p38 PMK-1 pathways 

responsible for coordinating the induction of a broad assortment of protective defense 

genes required for C. elegans immunity (Shivers et al., 2008, 2010).  
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Figure 1.2: The C. elegans p38 PMK-1 MAPK Pathway 

 

Activation of the p38 PMK-1 pathway elicits the transcription of a wide assortment 

of antimicrobial peptides (AMPs) that function to mitigate pathogen infection by 

promoting pathogen clearance (Cheesman et al., 2016; Foster, Cheesman, et al., 2020; 

Peterson et al., 2019; Pukkila-Worley et al., 2012; Pukkila-Worley & Ausubel, 2012b; 

Troemel et al., 2006). There are several primary classes of AMPs that are commonly 

induced upon exposure to pathogenic microbes such as: defensins, which cause 

permeabilization of the pathogen membrane, lysozymes, which digest peptidoglycans 

within in bacterial cell walls, and putative immune effectors including CUB-like domain 

proteins and C-type lectins (Irazoqui et al., 2010; Mallo et al., 2002; Murphy et al., 2003; 
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Pujol, Zugasti, et al., 2008; Pukkila-Worley et al., 2011). Generally speaking, antimicrobial 

peptides interact in a non-specific manner with invading pathogens, and usually target 

general structural elements of pathogens rather than microbe-specific moieties.  

 Conservation of the p38 MAPK pathway across a broad range of metazoans - from 

C. elegans to mammals - and its relevance in human disease, makes it a particularly 

lucrative area of research. Four p38 MAP kinases have been identified in humans, p38-α, 

p38-β p38-γ, and p38-δ. Collectively, p38 MAP kinases in humans have been shown to 

regulate a plethora of biological processes including cell differentiation, apoptosis, 

autophagy, and coordinate responses to stress stimuli, such as cytokines, heat shock, 

and osmotic shock . Abnormal activity of p38 MAP kinases has been linked to the onset of 

numerous diseases such as cancer, cardiovascular disease, inflammatory bowel disease, 

and neurological conditions such as Alzheimer’s disease (Hollenbach et al., 2004; Iwasa et 

al., 2003; Johnson & Bailey, 2003; Wang et al., 2002; Xia et al., 1995; Zarubin & Han, 

2005). Thus, there is currently and unmet medical need to learn more about precisely how 

p38 MAPK pathways are activated and subsequently regulated in order to properly address 

their role in clinically relevant human disease.  

 

1.4 Mechanisms to Promote Immune Homeostasis in C. elegans 

 
1.4.1 Aberrant immune activation is toxic to C. elegans 

 Immune responses are necessary for all organisms to protect themselves against 

environmental stressors, pathogens, and xenobiotic agents. C. elegans must be able to 
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swiftly and potently respond to threats as they are constantly exposed to a plethora of 

potentially dangerous bacteria and fungi in their natural habitat. While these inducible 

defense responses are beneficial and promote longevity upon exposure to pathogenic 

organisms, inappropriate activation of immune responses can have disastrous 

consequences on organismal fitness  (Cheesman et al., 2016; Foster, Cheesman, et al., 

2020; Richardson et al., 2010). The additional stress placed on C. elegans during immune 

activation is especially felt within the endoplasmic reticulum, where immune effector 

proteins must be folded and exported efficiently to ensure a robust defense response is 

initiated in a timely manner. A study by Richardson et al. was the first to clearly show that 

pathogen infection causes a significant increase in ER stress during pathogen infection. 

This added organismal stress was found to be toxic in developing animals, so much so that 

it led to larval lethality in animals lacking XBP-1, a key component of a compensatory 

unfolded protein response pathway that functions to maintain ER homeostasis (Richardson 

et al., 2010). A related study published by Cheesman et al., subsequently demonstrated that 

constitutive induction of the p38 PMK-1 MAPK pathway was noticeably toxic to 

developing animals. Mutants harboring gain-of-function (gf) mutations in the MAPKKK 

nsy-1 were found to robustly induce PMK-1-dependent immune responses, which resulted 

in a notable survival advantage when survival assays were conducted using P. aeruginosa 

(Cheesman et al., 2016) However, under normal conditions nsy-1(gf) animals were 

significantly smaller, thinner and developed at a much slower rate relative to wild-type 

animals. Furthermore, the reproductive fitness of these mutants was also affected, as they 

tended to lay significantly smaller broods. Cheesman et al. also utilized an immuno-
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stimulatory molecule previously reported to induce the p38 PMK-1 MAPK pathway in the 

absence of pathogen exposure to demonstrate that similar developmental delays occurred 

in the context of artificial immune hyper-activation (Cheesman et al., 2016). These studies 

indicate that a careful balance that must be established and maintained between toxic 

immune activation and core developmental and reproductive processes in order to promote 

longevity and organismal fitness. Recent studies have built upon this observation, by 

working to elucidate mechanisms of immune regulation C. elegans employs in order to 

carefully coordinate activation of its immune defenses in order to provide adequate 

protection against environmental pathogens, while at the same time limiting the deleterious 

consequences that result from immune hyper-activation (Aballay, 2009; Foster, Cheesman, 

et al., 2020; Liu et al., 2016; Sellegounder et al., 2019; Sowa et al., 2020; Y. Yu et al., 

2016). Described in the sections to follow are the various strategies C. elegans utilizes to 

regulate protective defense mechanisms in order to maintain immune homeostasis and thus 

limit the potentially deleterious consequences of aberrant immune activation. 

 

1.4.2 Proteostasis: The IRE1-XBP1 Unfolded Protein Response Pathway 

 The endoplasmic reticulum is the site where protein folding and export, post-

translational protein processing, and lipid synthesis occur. As all translated proteins must 

traffic through the ER, it is critically important that a balance is maintained between 

cellular demand and the capacity of the organelle to fold, process and export proteins. The 

Unfolded Protein Response (UPR) functions as a protective mechanism that maintains 

homeostasis within the ER by balancing protein import into and export out of the organelle  
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(Calfon et al., 2002; Shen et al., 2001). Under normal physiological conditions, the UPR 

can be thought of as a surveillance mechanism that prevents misfolded proteins from being 

exported to the golgi. However, under conditions of environmental stress, such as during 

pathogen infection when there is a rapid transcriptional up-regulation of immune defenses 

and detoxification genes, this sudden increase in protein processing demand places 

significant stress on the ER, inducing the UPR as a protective response aimed to alleviate 

organelle stress.  

 In C. elegans, upon sensing an increase in ER stress, the kinase IRE-1 excises an 

intron from xbp-1 (X-box binding protein-1) mRNA by means of an unconventional 

splicing event (Calfon et al., 2002; Richardson et al., 2010). This splicing event of xbp-1 

causes a frame shift that results in the translation of a truncated xbp-1 isoform that functions 

as a transcription factor which subsequently activates the expression of numerous ER-

associated chaperones and degradation proteins. Interestingly, xbp-1-independent 

functions of ire-1 have similarly been shown to reduce ER-stress during times of 

environmental stress. In addition to targeting xbp-1, ire-1 targets and causes the 

degradation of numerous other mRNA substrates, typically encoding proteins containing 

signal peptides and transmembrane domains that are particularly difficult for ER machinery 

to fold in the context of ER stress. Additionally, ire-1 has been implicated in the activation 

of cell death machinery and in the formation of autophagosomes in a manner that is 

independent on XBP-1.  

 Translation inhibition is another common cellular strategy aimed at reducing the 

burden on the ER during times of excessive organismal stress. The mechanism by which 
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this occurs is anchored by the serine/threonine kinase, PEK-1 (Richardson et al., 2011; 

Shen et al., 2001). ER stress causes PEK-1-dependent phosphorylation of the alpha subunit 

of eIF2, subsequently leading to the inhibition of ribosome assembly and translation 

initiation. Additionally, translational inhibition has been shown to induce a potent 

avoidance response, potentially providing evidence that maintenance of proteostasis and 

avoidance behaviors are inherently linked, and work in tandem to reduce ER stress upon 

pathogen exposure (Melo & Ruvkun, 2012). Ultimately each of the aforementioned 

mechanisms causes a reduction in host translation of immune and stress-responsive 

molecules as a means to maintain proteostasis during pathogen infection or exposure to 

environmental stressors. 

 

1.4.3 FSHR-1: A sensor of reactive oxygen species 

 Pattern recognition receptors (PRRs) are germ-line encoded pathogen sensor that 

respond to invading pathogens by activating immune defense signaling cascades. In 

mammals, PRR’s respond to two main classes of molecules, pathogen-associated 

molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). PAMPs 

activate protective defenses by sensing non-self-molecules such as bacterial 

lipopolysaccharides, endotoxins, and the presence of cytoplasmic DNA that are indicative 

of an active infection.  DAMPs on the other hand activate the immune and inflammatory 

responses by sensing endogenous molecular signatures that are released from dead and 

dying cells, such as chromatin organization and heat-shock proteins, or a buildup of 
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reactive oxygen species (ROS). A commonality among many PRR’s is the presence of a 

leucine-rich repeat (LRR), a structural motif that is highly conserved in vertebrates, 

invertebrates, and plants.   

 While C. elegans lack many canonical PRR’s such as TLRs and NOD-like 

receptors, screens of LRRs-containing proteins have found that LRR-containing proteins 

may contribute to the regulation of immune defense responses in C. elegans. Powell et all, 

reported that animals lacking the LRR-containing GPCR FSHR-1 exhibited hyper 

susceptibility to both gram negative and gram-positive bacteria. FSHR-1, which contains 

sequence similarity to mammalian follicle stimulating hormone, thyroid-stimulating 

hormone and luteinizing hormone receptors, has been shown to control the induction of 

both PMK-1-dependent and PMK-1-independent genes within the intestinal lumen (Powell 

et al., 2009). It was initially hypothesized that FHSR-1 might function either as a canonical 

pattern recognition receptor and directly senses secreted pathogen-related molecules, or as 

an intestinal hormone receptor, responsible for initiating transcriptional responses within 

tissues that make direct contact with ingested pathogens. Further research however, 

indicated that FSHR-1 appears to respond to oxidative stress, eliciting the production of 

transcriptional responses aimed at detoxifying reactive oxygen species (ROS) (Miller et 

al., 2015). ROS production is a conserved mechanism of pathogen virulence, however 

oxidative stress can also result from exposure to damaging xenobiotic agents and other 

environmental stressors, therefore FSHR-1 was postulated to be a DAMP sensor that 

coordinates numerous protective defense mechanisms in response to oxidative stress. 

Interestingly, Miller et al. also observed that the intestinal expression of  FSHR-1 appeared 
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to be requirement for pathogen induced avoidance, suggesting that FSHR-1 responds to 

intestinal bacterial colonization by eliciting both microbial and behavioral immune 

responses (Miller et al., 2015).    

 

1.4.4 Surveillance Immunity  

A new paradigm emerging in the realm of immune activation and regulation in C. 

elegans is the concept of “surveillance immunity”. During a pathogenic infection, there are 

numerous core cellular processes that can become interrupted (Dunbar et al., 2012; Haynes 

& Ron, 2010; McEwan et al., 2012; A M Nargund et al., 2012; Pukkila-Worley, 2016b). 

The concept of surveillance immunity is that in addition to sensing specific pathogen 

associated signatures directly, animals also monitor the function of core cellular processes 

that may be perturbed upon microbial infection as a surrogate. As C. elegans lacks many 

of the canonical microbe-associated molecular patterns (MAMP) sensors, worms might 

instead rely more heavily upon atypical mechanisms of pathogen recognition and immune 

regulation.  

It has been observed that pathogen infection often leads to disruption of 

mitochondrial homeostasis, due in part to the bacterial secretion of mitochondrial toxins 

that compromise mitochondrial function (Kirienko et al., 2015). As mitochondrial function 

is a core biological process commonly targeted by pathogens, numerous mitochondrial 

homeostatic mechanisms have been found to be linked to immune regulatory processes. 

One key example of this involves the transcription factor ATFS-1, a key regulator of the 

mitochondrial UPR (UPRmt). Under normal physiological conditions, ATFS-1 is readily 
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imported into the mitochondria and rapidly degraded. However, it in times of 

mitochondrial dysfunction, which commonly occurs during pathogen infection or 

environmental stress, import of ATFS-1 into the mitochondria is inhibited, thus allowing 

it to remain cytosolic where it ultimately translocates into the nucleus and initiates the 

transcription of numerous stress-response genes (Haynes & Ron, 2010; A M Nargund et 

al., 2012; Pellegrino et al., 2014). During bacterial infection in particular, it has been 

observed that ATFS-1 elicits the production of putative anti-microbial peptides and 

immune effectors found to be required for defenses against bacterial pathogens, thus 

mitochondrial stress is functionally a surrogate sensor of infection.  

Disruption of core cellular processes not only results in the induction of immune 

response genes, but also has been shown to induce behavioral avoidance, suggesting that 

not only does C. elegans utilize sensory input to monitor the external environment for 

potential threats, but sensory signals originating within an animal's internal tissues are also 

used to induce behavioral changes. By genetically disrupting fundamental cellular 

activities such as protein translation, mitochondrial functions, the proteasome, vacuolar 

ATPases, the tubulin and actin cytoskeletons, mRNA processing, chromatin packaging, 

central metabolism, and the molting program in C. elegans, Melo et al. discovered that 

animals elicited strong behavioral avoidance responses, similar to what is typically 

observed when worms are subjected to pathogenic food sources (Melo & Ruvkun, 2012). 

Thus, C. elegans takes advantage of a plethora of both endogenous and exogenous sensory 

cues in order to influence complex behavioral and immunological processes during times 

of stress.  
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1.4.5 Neuronal regulation of Innate Immunity in C. elegans 
 
 Rapid induction of protective defense mechanisms upon pathogen recognition is 

necessary in order to provide adequate protection again invading microbes. An increasing 

body of evidence suggests that the nervous system, which can quickly respond to 

environmental stimuli, has the ability to carefully coordinate the induction and subsequent 

regulation of host immune responses (Aballay, 2009; Foster, Cheesman, et al., 2020; Liu 

et al., 2016; K C Reddy et al., 2009; J Sun et al., 2011). Understanding how the nervous 

system is tightly integrated with the immune system has been made possible by taking 

advantage of the numerous genetic tools available in C. elegans.  

The C. elegans nervous system is relatively simplistic, containing only 302 neurons 

and 52 glial cells, which communicate through approximately 6400 chemical synapses. 

Additionally, the connectome of C. elegans has been completely mapped, providing 

comprehensive information about precisely how neurons interact with each other and with 

organ systems (White et al., 1986). It is for these reasons that C. elegans has become a 

powerful model for dissecting the relationship between the nervous system and the 

regulation of host defenses.   

 

1.4.5.1 Insulin signaling  

The highly conserved daf-2/daf-16 insulin-like signaling pathway in C. elegans 

regulates a wide array of biological processes including lifespan, development, entry into 
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dauer, and stress resistance (Evans, Chen, et al., 2008; Henderson & Johnson, 2001; Miyata 

et al., 2008; Murphy et al., 2003; Ookuma et al., 2003; V. Singh & Aballay, 2009; Vowels 

& Thomas, 1992). It was also one of the first pathways found to be a part of a neuronal 

circuit involved in the coordination of immune defenses in C. elegans. When an agonist 

binds to the insulin-like growth factor 1 (IGF-1) receptor, DAF-2, a kinase cascade is 

initiated involving the AKT-1/AKT-2 and PDK-1 which ultimately results in the 

phosphorylation and cytoplasmic retention of the FOXO transcription factor, DAF-16. In 

the presence of an antagonist, the DAF-2/IGF-1 receptor is deactivated, and subsequent 

downstream phosphorylation events do not occur (Evans, Chen, et al., 2008). Non-

phosphorylated DAF-16 then translocates into the nucleus where it acts as a transcriptional 

activator of numerous stress response and longevity promoting genes. The initial 

characterization of the DAF-2/DAF-16 pathway resulted following the observation that 

daf-2 mutants displayed significant extended lifespans relative to wildtype animals 

(Kenyon 1993), which at the time was the first mutant ever identified displaying such a 

significant lifespan extension. This observation eventually led to the question of whether 

longevity and immunity were inherently linked processes, and whether the DAF-2/DAF-

16 pathway also functioned to regulate immune defenses in C. elegans. Early studies by 

Troemel et al. concluded that unlike the PMK-1 which functions as the backbone of C. 

elegans immunity against pathogens, DAF-16 regulated immune genes as part of “a more 

general stress response” (Troemel et al., 2006). However, not soon after this initial 

characterization, work by Evans et al. concluded the neurosecretory activity of dense core 

vesicles (DCVs) influenced the activity of the DAF-2/DAF-16 resulting in transcriptome 
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changes enriched for immune defense genes (Evans, Kawli, et al., 2008). Specifically, it 

was found that by either reducing or eliminating DCV secretions, the insulin-like-peptide 

encoding gene ins-7 was downregulated and subsequently signaled via the DAF-2/DAF-

16 pathway to induce the transcription of antimicrobial peptides within intestinal epithelial 

cells (Evans, Kawli, et al., 2008). This model was one of the first to demonstrate a direct 

regulatory role for the nervous system in the coordination of immune defenses in C. 

elegans. Interestingly, this mechanism appears to also be a virulence strategy used by P. 

aeruginosa, whereby upon infection, ins-7 is induced and subsequently inhibits 

downstream signaling cascades responsible for upregulating immune defense genes. These 

discoveries not only provided important evidence that the C. elegans immune system is 

carefully controlled by elements of the nervous system, but also demonstrated that neuro-

immune regulatory elements can be hijacked by pathogens in order to increase 

pathogenicity.  

 

1.4.5.2 NPR-1: A Link Between Behavioral Avoidance and Innate Immunity  

 Soon after initial discoveries were made implicating the C. elegans nervous system 

as a key immune regulator, mutants in NPR-1, a neuronal GPCR and putative neuropeptide 

receptor orthologous to the mammalian Neuropeptide Y receptor,  were found to display 

increased susceptibility to P. aeruginosa, S. enterica, and E. faecalis, demonstrating that 

npr-1 is required for immunity against a wide range of microbes (Aballay, 2009; Styer et 

al., 2008). NPR-1 is expressed in AQR, PQR and URX neurons, and is required for the 

behavioral integration of numerous environmental cues, including responses to changes in 
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oxygen levels. NPR-1 loss-of-function mutants display hyperoxia avoidance, and as a 

result, can typically be observed displaying a lawn “bordering” phenotype in addition to 

clumping. While these behavioral abnormalities could independently explain the increased 

pathogen susceptibility of npr-1 mutants, transcriptome analyses have revealed that many 

genes misregulated in npr-1 mutants are similarly misregulated in pmk-1 mutants (Aballay, 

2009; Styer et al., 2008). Additionally, PMK-1 phosphorylation has been shown to be 

significantly decreased in NPR-1 mutants, suggesting that NPR-1 plays a key role in 

coordinating p38-dependent immune defenses. Many of the genes observed to be 

dependent on npr-1 are genes known to be required for defense against P. aeruginosa and 

are expressed in specific intestinal cells that are in direct contact with pathogenic microbe 

during infection (Styer et al., 2008). These observations provide strong evidence that npr-

1 is not only required for promoting behavioral changes in response to oxygen availability, 

but also plays an important role in the modulation of innate immune responses during 

pathogen infection. 

 

1.4.5.3 The Octopaminergic Immuno-inhibitory Pathway 

Maintenance of proteostasis, as previously mentioned, is vitally important for 

maintaining both cell integrity and immune homeostasis. ER folding capacity can be 

modulated during the course of pathogen infection when there is a notable increase in 

protein folding demand placed on the organelle by inducing chaperones through activation 

of the unfolded protein response (UPR). Interestingly, recent evidence indicates in addition 
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to responding to increase in protein folding demand, UPR activation can be modulated 

directly by nervous system in response to environmental stimuli to coordinate the induction 

of immune pathways as a means to maintain immune homeostasis (Aballay, 2013; Jingru 

Sun et al., 2012). The first evidence of this phenomenon was the observation that OCTR-

1, one of three C. elegans octopamine receptors expressed in ASH, ASI, and AIY neurons, 

functions as a negative regulator of p38-dependent immune responses. OCTR-1 mutant 

animals display notable resistance to pathogen and up regulate many pathogen response 

genes. The precise mechanism of this regulation was unclear until the observation was 

made that OCTR-1 was also found to suppress numerous genes within the abu (activated 

in blocked unfolded protein response) gene family, which are under the control of the non-

canonical UPR (Jingru Sun et al., 2012). Interestingly, many abu genes are similarly 

differentially regulated in response to P. aeruginosa, suggesting that the non-canonical 

UPR is an important element of pathogen defense. Utilizing tissue-restricted OCTR-1 

rescue lines, Sun et al. concluded that OCTR-1-esxpressing ASI and ASH negatively 

regulate innate immunity by controlling the activation of the non-canonical UPR. 

Subsequent studies built upon this model, showing that in addition to modulating the non-

canonical UPR, OCTR-1 also gains control of the canonical, xbp-1-mediated UPR post-

developmentally. OCTR-1 was shown to inhibit key translation machinery, such as the 

protein synthesis factor RPS-1 and the translation initiation factor EIF3.J, which ultimately 

results in the down regulation of immune defense responses in C. elegans (Liu et al., 2016). 

Further studies conducted by Sellegounder et al., were able to demonstrate that RIC 

neurons, which produce exogenous octopamine, are tonically active under normal 
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conditions and subsequently lead to the activation of the OCTR-1-dependent 

octopaminergic immuno-inhibitory pathway (Sellegounder et al., 2018). Upon exposure to 

the pathogenic bacteria P. aeruginosa, RIC neurons are deactivated, leading to the 

repression of the octopaminergic immune-inhibatory pathway and transcriptional 

activation of immune effectors (Sellegounder et al., 2018). 

 

1.4.5.4 NPR-8 and the Regulation of Cuticular Collagens 

 Intestinal epithelial cells in C. elegans constitute the primary physical barrier 

nematodes use to prevent ingested pathogens from entering the body. As previously 

described, inducible defense mechanisms within the intestine are critically important in the 

clearance of these microbes from the intestinal lumen. The intestine, however, is not the 

only physical barrier that protects against pathogen attack. C. elegans are encased within a 

flexible, durable, collagenous cuticle that enables locomotion, growth by molting, and 

serves as a resilient exoskeleton that protects animals from environmental threats. Like the 

intestinal epithelial barrier, the cuticle and associated epidermis are in nearly constant 

contact with environmental microbes and as a result have specialized immune defense 

mechanisms that are initiated upon pathogen recognition (Bolz et al., 2010; Pujol, 

Cypowyj, et al., 2008; Zugasti & Ewbank, 2009a, 2009b). Numerous fungi, such as D. 

coniospora penetrate the C. elegans cuticle by extending hyphal projections directly into 

the epidermal tissue (Dijksterhuis et al., 1990). This invasive fungal infection leads to the 

rapid up regulation of numerous antimicrobial peptides that have been shown to be 

dependent upon the neuropeptide-like-protein NLP-29, suggesting that much like intestinal 
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immunity, epidermal immunity is tightly integrated with the nervous system (Engelmann 

et al., 2011; Pujol, Cypowyj, et al., 2008). Recently, alternative mechanisms of epidermal 

immune defense have been postulated. One such mechanism, published by Sellegounder 

et al., suggests that rather than inducing immune effectors, pathogen exposure results in 

the restructuring of the cuticle itself in order to maintain barrier integrity (Sellegounder et 

al., 2019). A common virulence mechanism employed by numerous pathogenic bacteria is 

the secretion of extracellular proteases. These proteases can lead to the degradation of the 

C. elegans cuticle, thus reducing its ability to function as a barrier to infection. For 

example, when exposed to the gram-negative bacterium Pseudomonas aeruginosa the C. 

elegans cuticle becomes wrinkled and resembles the cuticle of older animals. Interestingly, 

it was discovered that mutants harboring a loss-of-function allele of NPR-8, a GPCR within 

the neuropeptide Y subfamily of cellular receptors, have cuticles that are far more resistant 

to infection-dependent cuticle damage (Sellegounder et al., 2019). Further analysis of 

NPR-8 mutants revealed that NPR-8 functions in AWB, ASJ, and AWC aphid sensory 

neurons to cell non-autonomously to suppresses the induction of cuticular college genes. 

Not only does this finding suggest that there are both physical and microbial defenses 

working in unison in order to maintain epidermal barrier integrity, but the regulatory 

involvement of NPR-8 in this process further demonstrates how tightly defense 

mechanisms are integrated with the nervous system.  
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1.4.5.5 NPR-9 and the Intersection of Foraging and Immunity 

 A complex assortment of sensory cues gathered from the environment influences a 

specific set of forging behavioral states in C. elegans. When exposed to food, C. elegans 

will typically roam in the forward direction, followed by brief pauses and slow backward 

movement (Shtonda & Avery, 2006). Eventually, upon evaluating the food source, worms 

will transition to a state called “dwelling” whereby movement will slow, and animals will 

begin making more frequent turns. This highly regulated foraging behavior is an example 

of C. elegans locomotory behavior being influenced by sensory cues from environmental 

stimuli. As described previously, C. elegans utilizes numerous GPCRs expressed in 

sensory neurons to probe the environment and subsequently integrate these chemical cues 

with numerous biological systems influencing behavior, locomotion, feeding, and 

development. 

 An increasing body of work suggests that many neuronal GPCRs also play 

important roles in immune regulation. From a screen of putative neuropeptide receptors, 

Bendena et al. observed that NPR-9, an allatostatin/galanin-like receptor expressed in AIB 

neurons, is essential for C. elegans to properly respond to diverse environmental stimuli 

(Bendena et al., 2008; Campbell et al., 2016). Interestingly, further research into this 

mechanism yielded the discovery that not only does NPR-9 function within AIB neurons 

to modulate behavioral responses to sensory cues, but NPR-9 also regulates innate 

immunity. NPR-9 mutants were found to be more resistant to infection with Pseudomonas 

aeruginosa and induced numerous immune-related genes such as dod-22, irg-4 and pqm-

1. The mechanism by which NPR-9 coordinates the induction of immune effectors upon 
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pathogen infection has been found to be dependent upon the ability of NPR-9 to antagonize 

the function of AIB interneurons. Thus, NPR-9 appears to function within a specialized 

neuronal circuit that utilizes sensory cues to regulate both C. elegans foraging behavior 

and immunity to pathogens, suggesting that neuronal GPCRs can influence numerous 

interconnected biological processes.   

 

1.4.5.6 Neurotransmitter-dependent Immune Regulation 

 Neurotransmitters are endogenous singling molecules released from neurons that 

transmit signals across chemical synapses and regulate numerous psychological processes 

in mammals including the regulation of mood and behavior, appetite, motor function, and 

have been shown to be critical for cardiovascular and function. Behavioral studies 

conducted on C. elegans have indicated that monoamine neurotransmitters are necessary 

for integrating sensory information with behavioral responses (Rankin, 2006; Schulenburg 

& Ewbank, 2007; Zhang et al., 2005). Upon encountering a nutritious food source, C. 

elegans demonstrates a slowing behavior known as the “basal slowing response” in order 

to maximize the time spent feeding. Interestingly, this behavior was found to be dependent 

upon serotonin and dopamine signaling, as mutants in genes within the biogenic amine 

synthesis pathway were found to display defecting basal slowing responses in the presence 

of nutritious food sources (Sawin et al., 2000). This observation indicates that 

neurotransmission plays an important role in local search behavior of C. elegans. In 

alignment with these observations, recent evidence has suggested that bacterially produced 

neuro-modulatory molecules can alter host behavior and may even function as possible 
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bacterial virulence mechanism (O’Donnell et al., 2019). O’ Donnell et al observed that 

tyrosine produced by the commensal bacteria Providencia upon colonizing the C. elegans 

intestine is able to circumvent endogenous tyrosine biosynthesis and is subsequently 

covered to octopamine, which signals through the octopamine receptor OCTR-1 in ASH 

neurons to suppress aversion behavior to volatile compounds (O’Donnell et al., 2020).  

 In addition to modulating behavior, dopamine and serotonin also function in the 

regulation of immune responses to pathogens. Dopamine release from CEP neurons, the 

only dopaminergic neurons in the C. elegans nervous system, modulates immunity to 

pathogenic bacteria by suppressing the PMK-1 MAPK pathway (Cao & Aballay, 2016).  

This regulatory pathway was shown to be dependent upon the D1-like dopamine receptor 

DOP-4 expression in chemosensory ASG neurons. This suggests that a complex dopamine-

dependent neuronal signaling network exists between multiple sensory neurons and 

functions to modulate immunity to ingested pathogens by fine tuning the expression of 

immune effectors within the intestine.  

 

1.4.5.7 Acetylcholine and the Wnt Pathway 

 Numerous complex biological processes occur during metazoan embryonic 

development to ensure proper formation of and spatial organization of critical tissues and 

organ systems. These key developmental programs such as cell fate specification, cell 

migration, cell polarity, and body axis patterning, rely on the evolutionarily conserved Wnt 

family of secreted, lipid-modified glycoproteins (Komiya & Habas, 2008). Originally 

characterized in Drosophila melanogastor, Wnt proteins are highly conserved across 
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species, including C. elegans, zebrafish, mice, and humans. Post-developmentally, Wnt 

signaling in humans has been shown to play important roles in the proliferation and 

maintenance of nearly all human stem cell populations, and is required in cells with high 

turnover rates, such as intestinal epithelial cells (Flanagan et al., 2018). Regulation of Wnt 

signaling is crucially important to properly maintain a balance between hypo- and hyper-

proliferative states. Due to the important roles Wnt proteins play in cell proliferation of 

organization, misregulation of Wnt signaling in humans is commonly associated with 

cancers, including colon and hepatocellular carcinomas, leukemia, and melanoma (Ng et 

al., 2019). 

 Recent discoveries made using C. elegans have demonstrated that in addition to 

playing key roles in developmental processes, Wnt signaling is also involved in pathogen 

sensing and immune regulation. Work by Labed et al., suggests a new signaling axis 

between acetylcholine-releasing neurons and Wnt-expressing intestinal epithelial cells that 

is required for adequate immunological defense against S. aureus (Labed et al., 2018). In 

response to intestinal colonization by S. aureus, acetylcholine is released by cholinergic 

neurons where it subsequently functions as a neuroendocrine signaling molecule to activate 

muscarinic receptors located within the intestinal epithelium. Activation of these 

muscarinic receptors, results in increased expression of Wnt and its cognate receptor 

Frizzled within the intestinal epithelium, ultimately causing activation of Wnt signaling 

and transcription of immune defense genes such as C-type lectins and lysozymes (Labed 

et al., 2018). The signaling axis described by Labed et al., demonstrates that the nervous 
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system is able to quickly and robustly respond to pathogen ingestion, and can rapidly elicit 

protective immune responses at distal sights of infection.  

 

1.5 Perspectives 

C. elegans lives in a microbe rich environment where the quick and robust 

activation of immune defenses is necessary to defend against a wide array of pathogenic 

threats. The complex integration of sensory information gathered from C. elegans elaborate 

sensory system functions as the first critical barrier to pathogen infection by enabling 

numerous environmental cues to influence core biological processes, such as foraging and 

avoidance behavior. When basic avoidance mechanisms prove futile, C. elegans has 

evolved to respond to pathogen infection by eliciting potent immune defense mechanisms 

that non-specifically target invading microbes. At the core of C. elegans immunity is the 

p38 MAPK pathway, which responds to a host of bacterial and fungal stressors. The 

induction of immune defenses comes at a cost however, and numerous studies have 

demonstrated that without proper regulation, immune defenses pose significant threats to 

developing animals and can lead to severe fitness and reproductive defects. Thus, it is vital 

that protective mechanisms are tightly regulated in order maintain effectiveness against 

invading microorganisms, while simultaneously acting to limit potential deleterious 

consequences of immune activation.  Numerous mechanisms of immune regulations have 

so far been characterized in C. elegans, further demonstrating the importance of 

maintaining immune homeostasis. The nervous system is becoming increasingly 

recognized as a core regulator of C. elegans innate immunity, due to its ability to quickly 
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and robustly react to stimuli. While strides have been made in recent years in characterizing 

numerous neuronal circuits that are tightly integrated with the immune system, many 

questions remain regarding precisely these circuits work together to influence immunity as 

a whole. Further insight gained by continuing to study the model organism C. elegans will 

help to elucidate all of the intricacies that exist between the nervous and immune systems 

and will lay the foundation for future work in more advanced species.    

In this graduate thesis, I characterize a novel neuronally-regulated signaling axis 

that modulates p38 PMK-1-dependent immune responses within the intestine of C. 

elegans. OLRN-1, a previously characterized negative regulator of the PMK-1 pathway in 

AWC sensory neurons, was found to also act cell non-autonomously coordinate the 

induction of the PMK-1 pathway in the intestinal epithelium, thus controlling 

physiologically relevant transcriptional responses to pathogenic stressors. The regulatory 

control OLRN-1 has over the PMK-1 pathway in the intestine was  found to be a necessary 

requirement for development and reproductive fitness, suggesting that the nervous system 

of C. elegans is inherently intertwined with both innate immune and developmental 

processes, that work together to ensure productive growth and organismal fitness in 

microbe rich habitats. These findings add to a growing body of evidence that suggests 

neuronal control of innate immunity within the intestine is an evolutionarily conserved 

process across all metazoans. 
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Chapter 2: Innate Immunity in the C. elegans 

Intestine Is Programmed by a Neuronal Regulator 

of AWC Olfactory Neuron Development 
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2.1 Abstract 

 Olfactory neurons allow animals to discriminate nutritious food sources from 

potential pathogens. From a forward genetic screen, we uncovered a surprising requirement 

for the olfactory neuron gene olrn-1 in the regulation of intestinal epithelial immunity in 

Caenorhabditis elegans. During nematode development, olrn-1 is required to program the 

expression of odorant receptors in the AWC olfactory neuron pair. Here, we show that 

olrn-1 also functions in AWC neurons in the cell non-autonomous suppression of the 

canonical p38 MAPK PMK-1 immune pathway in the intestine. Low activity of OLRN-1, 

which activates the p38 MAPK signaling cassette in AWC neurons during larval 

development, also de-represses the p38 MAPK PMK-1 pathway in the intestine to promote 

immune effector transcription, increased clearance of an intestinal pathogen and resistance 

to bacterial infection. These data reveal an unexpected connection between olfactory 

receptor development and innate immunity, and show that anti-pathogen defenses in the 

intestine are developmentally programmed. 

 

2.2 Introduction 

 The expression of a diverse array of olfactory receptors within sensory neurons is 

essential for metazoans to survive in microbe rich environments. For example, amphid 

neurons in the head of the nematode C. elegans sample the environment and program rapid 

changes in locomotion, which allows nematodes to forage decomposing organic matter for 

bacterial food sources and avoid potential pathogens. Thus, C. elegans provide an 
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experimental platform to understand how the development of sensory neurons is integrated 

with the physiology of the organism as a whole. 

 In addition to learned behavioral aversion responses to bacterial pathogens, innate 

immune defenses in intestinal epithelial cells allow nematodes to survive challenge from 

environmental pathogens (D. H. Kim, 2018; Pukkila-Worley, 2016a). The canonical 

immune pathway in intestinal cells is anchored by the p38 Mitogen-Activated Protein 

Kinase (MAPK) PMK-1 (D. H. Kim et al., 2002; Troemel et al., 2006). p38 MAPK PMK-

1 functions as part of a classical MAPK signaling cassette, which is activated by the 

MAPKKK NSY-1 and the MAPKK SEK-1, homologs of mammalian ASK1 and MKK3/6, 

respectively (D. H. Kim et al., 2002), and by TIR-1, a Toll/Interleukin-1 Receptor (TIR) 

domain protein (Liberati et al., 2004). The p38 MAPK PMK-1 pathway ensures the basal 

expression of immune effectors in the absence of pathogen (Peterson et al., 2019; Troemel 

et al., 2006). Thus, mechanisms that adjust basal levels of p38 MAPK PMK-1 pathway 

activity could act as a rheostat for immune effector expression, functioning both to prime 

C. elegans intestinal epithelial cells for the induction of anti-pathogen responses and to 

limit the deleterious effects of immune hyperactivation.     

 Here, we conducted a forward genetic screen to identify endogenous regulators of 

the p38 MAPK PMK-1 pathway. Genetic analyses of mutants identified in this screen 

uncovered a signaling axis between amphid wing C (AWC) sensory neurons and the 

intestinal epithelium that promotes immune homeostasis by suppressing the canonical p38 

MAPK PMK-1 immune pathway. Interestingly, olrn-1, the newly discovered neuronal 

regulator of this pathway, was previously shown to control the expression of olfactory 
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receptors in AWC sensory neurons (Huang et al., 2007). During neuronal development, 

olrn-1 acts cell autonomously in AWC neurons to suppress the TIR-1/ NSY-1/ SEK-1 

cassette, which signals redundantly through the p38 MAP kinases PMK-1 or PMK-2 

(Chuang & Bargmann, 2005; Huang et al., 2007; Pagano et al., 2015b; Troemel et al., 

1999). Modulation of p38 MAPK pathway activity by OLRN-1 in AWC neurons leads to 

differentiation of olfactory receptor expression, a developmental step that is required for 

C. elegans to detect specific chemoattractive odors (Wes & Bargmann, 2001). We show 

that neuronal olrn-1 also functions cell non-autonomously to suppress the p38 MAPK 

PMK-1 innate immune pathway in the intestine. Low olrn-1 activity in AWC neurons, as 

recapitulated in multiple olrn-1 loss-of-function mutant strains, de-represses the p38 

MAPK PMK-1 pathway in the intestine, which promotes immune effector transcription, 

increased clearance of an intestinal pathogen and resistance to bacterial infection. 

Interestingly, olrn-1 and p38 MAPK pmk-1-dependent immune effectors are enriched 

among genes that are induced during larval development in wild-type nematodes. These 

data suggest that low activity of neuronal OLRN-1 de-represses the p38 MAPK PMK-1 

pathway to prime the immune response in the intestine to handle challenges from bacterial 

pathogens encountered during larval development. 
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2.3 Results 

 

2.3.1 Loss-of-function mutations in olrn-1 cause constitutive immune activation  

 We conducted a forward genetic screen to identify endogenous regulators of the 

p38 MAP kinase PMK-1 innate immune pathway. The innate immune reporter, Pirg-

4(F08G5.6)::GFP was used for this experiment to provide a convenient readout of innate 

immune activation (Pukkila-Worley et al., 2014). irg-4 is a putative C. elegans immune 

effector whose basal expression is under the control of the p38 MAPK PMK-1 innate 

immune pathway (Anderson et al., 2019; Peterson et al., 2019; Pukkila-Worley & Ausubel, 

2012b; Troemel et al., 2006). In addition, irg-4 is upregulated during infection by multiple 

bacterial pathogens and is required for host defense against the bacterial pathogen 

Pseudomonas aeruginosa (Anderson et al., 2019; Nandakumar & Tan, 2008; Peterson et 

al., 2019; Troemel et al., 2006). Previously, we screened the F1 progeny of mutagenized 

Pirg-4::GFP for dominant mutations that cause constitutive immune activation and 

identified nsy-1(ums8), a gain-of-function mutation in the MAPKKK that functions 

upstream of p38 MAPK pmk-1 (Cheesman et al., 2016). Thus, this approach can identify 

mutations that affect the activity of the p38 MAPK PMK-1 pathway.  

 To identify regulators of immune activation in C. elegans, we screened the F2 

progeny of approximately 40,000 mutagenized Pirg-4::GFP haploid genomes for recessive 

mutations that caused constitutive Pirg-4::GFP expression, and identified two mutant 

alleles: ums9 and ums11 (Figure 2.1A). Whole genome sequencing of pooled F2 

recombinants, homozygous for the mutant phenotype following two outcrosses to wild-



 

 

44 

type N2 animals, was performed to identify the mutations that caused constitutive Pirg-

4::GFP expression. Sequencing revealed that both ums9 and ums11 contain different 

recessive mutations in olrn-1, a neuronally-expressed protein with putative transmembrane 

domains (Huang et al., 2007; Torayama et al., 2007). ums9 is a nonsense mutation (Q497*) 

and ums11 is a mutation that disrupts an olrn-1 splice acceptor site (Figure 2.1B). Several 

experiments demonstrated that loss-of-function mutations in olrn-1 causes constitutive 

activation of Pirg-4::GFP. First, expression of olrn-1 under the control of its own promoter 

in three independent extrachromosomal arrays rescued the constitutive activation of Pirg-

4::GFP in the ums9 mutant (Figure 2.1A). Second, a previously characterized loss-of-

function allele, olrn-1(ky626) [a missense mutation (G473E) mutation], also caused 

constitutive activation of Pirg-4::GFP (Figures 2.1A and 2.1B) (Bauer Huang et al., 

2007). Finally, we outcrossed olrn-1(ums9) to wild-type six times and confirmed that Pirg-

4::GFP was still constitutively activated (Figure 2.1A). 
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Figure 2.1: Loss-of-function mutations in olrn-1 cause constitutive immune activation. 

(A) Images of olrn-1 mutants and three independent rescue lines with olrn-1 expressed under the control of 
its own promoter in the Pirg-4::GFP immune reporter background are shown. Red pharyngeal expression is 
the Pmyo-2::mCherry co-injection marker, which confirms the presence of the Pirg-4::GFP transgene. The 
Pmyo-3::mCherry co-injection marker confirms expression of the Polrn-1::olrn-1 construct in the rescue 
lines. (B) A schematic of the olrn-1 locus with the locations of the ums9, ums11 and ky626 mutations is 
shown. (C) The immune reporter Pirg-5::GFP in the olrn-1(ums9) background is shown. Presence of the 
Pirg-5::GFP transgene was confirmed by assaying for the Rol phenotype. qRT-PCR data of irg-4 
 

A second transcriptional reporter for a different innate immune effector, Pirg-

5(F35E12.5)::GFP, is also constitutively activated in the intestine of olrn-1(ums9) mutants 

(Figure 2.1C). Like irg-4, irg-5 is an immune effector that is required for host defense 

during P. aeruginosa infection and is a target of the p38 MAPK PMK-1 pathway (Bolz et 
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al., 2010; Peterson et al., 2019; Troemel et al., 2006). Together, irg-4 and irg-5 are useful 

readouts of innate immune activation in the C. elegans intestine. Endogenous irg-4 and 

irg-5 were transcriptionally induced to comparable levels in olrn-1(ums9), olrn-1(ums11) 

and olrn-1(ky626) mutants, and reintroduction of olrn-1 under the control of its own 

promoter rescued the constitutive activation of these genes in the olrn-1(ums9) mutant 

background (Figures 2.2A-E) 
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Figure 2.2 Loss-of-function mutations in olrn-1 cause constitutive activation of  PMK-1 dependent 
immune effectors. 

 qRT-PCR data of irg-4 (A) and irg-5 (B) of the indicated genotypes is presented. Data are the average of 
three independent replicates, each normalized to a control gene with error bars representing SEM, and are 
presented as the value relative to the average expression from all replicates of the indicated gene in wild-type 
animals. * equals p<0.05 by one-way ANOVA for the indicated comparison. qRT-PCR data of irg-4 (C) and 
irg-5 (D) in wild-type, olrn-1(ums9), olrn-1(ums11) and olrn-1(ky626) is presented. Data are the average of 
three independent replicates, each normalized to the control gene snb-1 with error bars representing SEM, 
and are presented as the value relative to the average expression from all replicates of the indicated gene in 
wild-type animals. * equals p<0.05 by one-way ANOVA for the indicated comparison. **p=0.10 by one-
way ANOVA and p<0.05 by two-tailed t-test. (E) Data from a nanoString analysis of irg-4 and irg-5 
expression, presented as the fold change of gene expression in olrn-1(ums9) mutants versus wild-type 
animals. Data are the average of two independent replicates for olrn-1(ums9) and one sample for wild-type, 
each normalized to three control genes (snb-1, ama-1 and act-1) with error bars representing SEM. 

  

Consistent with the constitutive activation of innate immune effector transcription 

in olrn-1 loss-of-function animals, olrn-1 mutants displayed increased resistance to 

infection by P. aeruginosa (Figure 2.3A). Importantly, we confirmed that loss-of-function 

of olrn-1 modulates the susceptibility of C. elegans to P. aeruginosa infection by testing 

the pathogen susceptibility of the three independent olrn-1 rescue lines described above 

(Figure 2.3B). Expression of olrn-1 under the control of its own promoter rescued the 

pathogen-resistance phenotype of the olrn-1(ums9) mutant (Figure 2.3B). We considered 

that olrn-1 mutants may be resistant to P. aeruginosa infection because they are better able 

to avoid the pathogen than wild-type animals. However, olrn-1(ums9), olrn-1(ums11) and 

olrn-1(ky626) mutants were resistant to P. aeruginosa infection in a pathogenesis assay 

conducted with a lawn of bacteria that was spread to the edges of the agar, which negates 

the contribution of behavioral avoidance to the pathogen-resistance phenotype (Figure 

2.3A) (K C Reddy et al., 2009; Styer et al., 2008; J Sun et al., 2011). In addition, the olrn-
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1(ums9) mutant did not have an increased propensity to avoid a small lawn of P. aeruginosa 

compared to wild-type (Figure 2.3C). 

 Interestingly, olrn1(ums9) mutant animals accumulated significantly less 

Pseudomonas aeruginosa in their intestine compared to wild-type animals (Figure 2.3D).  

Reintroduction of olrn-1 under the control of its own promoter complemented this olrn-

1(ums9) mutant phenotype (Figure 2.3D). Of note, there was no difference in pharyngeal 

pumping rates between wild-type and olrn-1(ums9) mutants (Figure 2.3E). In addition, 

olrn-1(ums9) and olrn-1(ky626) mutants each have a lifespan that is similar to wild-type 

animals (Figure 2.3F). Together, these data demonstrate that olrn-1(ums9) mutants drive 

a transcriptional response that promotes clearance of bacteria from the intestine and 

resistance to P. aeruginosa infection, without pleiotropic effects on feeding behavior or 

nematode lifespan. 
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Figure 2.3 olrn-1 loss-of-function mutants are resistant to the Pseudomonas aeruginosa. 

(A, B) C. elegans pathogenesis assay conducted with a large lawn of P. aeruginosa and C. elegans of 
indicated genotypes at the L4 larval stage is shown. Data are representative of three trials. The Kaplan-Meier 
method was used to estimate the survival curves for each group, and the log rank test was used for all 
statistical comparisons. Sample sizes, mean lifespan and p-values for all trials are shown in Table 2.2. (C) 
Quantification of the propensity of olrn-1(ums9) and wild-type animals to avoid a lawn of P. aeruginosa is 
shown. Data are presented as the average number of animals that were on a small lawn of P. aeruginosa from 
three separate replicates with error bars representing SEM. There is no significant difference by one-way 
ANOVA between these mutants, except at the 8-hour time point. (D) P. aeruginosa, isolated from the 
intestines of animals with the indicated genotypes, were quantified after 24 hours of bacterial infection. Data 
are colony forming units (CFU) of P. aeruginosa and are presented as the average of five separate replicates 
with each replicate containing 10-11 animals. * equals p<0.05 by one-way ANOVA for the indicated 
comparison. (E) Data are the pharyngeal pumping rates, recorded as pumps per minute (PPM), of 10 
individual young adult C. elegans feeding on non-pathogenic OP50 in wild-type and olrn-1(ums9) mutants 
with error bars representing SEM. ‘ns’ equals no significant difference by one-way ANOVA for the indicated 
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comparison. Scale bars in Figures 1A and 1C are 100 μm. (F) The lifespan of olrn-1(ums9) and olrn-1(ky626) 
mutant animals is shown relative to wild-type animals. 
 

2.3.2 OLRN-1 suppresses the p38 MAPK PMK-1 innate immune pathway 

 To characterize the full spectrum of genes regulated by olrn-1, we performed RNA-

seq. The transcriptomes of wild-type and olrn-1(ums9) mutant animals growing in standard 

culture conditions (i.e., in the absence of pathogen challenge) were profiled. In olrn-

1(ums9) mutants, 549 genes were upregulated compared to wild-type (greater than 2-fold, 

p<0.05) (Figure 2.4A). Analysis of these differentially expressed transcripts revealed a 

significant enrichment for innate immune genes (Figure 2.4B), including irg-4 and irg-5 

(Figure 2.4A). Indeed, 41 of the 236 genes that are induced during Pseudomonal infection 

(Miller et al., 2015) are also constitutively upregulated in the olrn-1(ums9) mutant 

(hypergeometric p-value 2.80e-21)(Figure 2.4C).  

 Loss-of-function olrn-1 mutants demonstrated constitutive activation of Pirg-

4::GFP (Figure 2.1A) and Pirg-5::GFP (Figure 2.1C) in the intestinal epithelial cells of 

C. elegans, the tissue that directly interfaces with ingested pathogens. In the RNA-seq 

experiment, 171 of the 549 olrn-1-repressed genes are expressed in intestinal epithelial 

cells (hypergeometric p-value 1.16e-32) (Haenni et al., 2012). Together, these data indicate 

that olrn-1 suppresses the transcription of genes that are expressed in the intestine, which 

includes a significant number of immune effectors.  

 Interestingly, the RNA-seq experiment also revealed that olrn-1 negatively 

regulates a significant number of genes that are known targets of the p38 MAPK PMK-1 

pathway (Bond et al., 2014; Troemel et al., 2006). Of the 549 genes that are upregulated in 
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olrn-1(ums9) mutants, 139 are dependent on pmk-1 for their basal transcription 

(hypergeometric p-value 3.61e-69) (Figures 2.4A and 2.4D) (Bond et al., 2014). To 

determine if olrn-1 controls the activity of the p38 MAPK PMK-1 pathway, we performed 

western blot experiments with antibodies that recognize the doubly-phosphorylated TGY 

motif of activated PMK-1 and the total PMK-1 protein. Both the olrn-1(ums9) and olrn-

1(ky626) loss-of-function mutants have an increased ratio of phosphorylated PMK-1 

relative to total PMK-1 compared to wild-type controls, as quantified from four biological 

replicates (Figures 2.4E and 2.4F). 
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Figure 2.4 olrn-1 suppresses the p38 MAPK PMK-1 innate immune pathway. 

(A) Data from an mRNA-seq experiment comparing gene expression in olrn-1(ums9) mutants with wild-type 
animals are shown. All genes are shown in gray. Genes that are differentially expressed in olrn-1(ums9) 
mutants compared to wild-type animals are shown in black (Fold change>2, p<0.05). Genes that are known 
targets of the p38 MAPK pmk-1 pathway are highlighted in red. The location of the representative genes irg-
4 and irg-5 whose expression is examined throughout this manuscript are shown. (B) Gene ontology 
enrichment analysis for the 549 genes whose transcription were significantly upregulated in olrn-1(ums9) 
mutants compared to wild-type is shown. The three most significantly-enriched categories are shown, 
reported as the -log10 transformation of the Q value for the enrichment of each category. Venn Diagrams 
show the overlap of the 549 genes upregulated in olrn-1 mutants with genes that are known to be induced 
during P. aeruginosa infection (C) and are targets of the p38 MAPK PMK-1 pathway (D). Hypergeometric 
p-values for the overlap in C and D are 3.68e-22 and 4.67e-69, respectively. (E) An immunoblot analysis of 
lysates from animals of the indicated genotype using antibodies that recognize the doubly-phosphorylated 
TGY motif of PMK-1 (Phospho-PMK-1), the total PMK-1 protein (Total PMK-1) and tubulin (Tubulin) is 
shown. PMK-1 is a 40 kDa protein and tubulin is a 55 kDa protein. (F) The band intensities of four biological 
replicates of the Western blot shown in (E) were quantified. The ratio of active to total PMK-1 is shown for 
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each genotype and is presented relative to the ratio in wild-type animals for each replicate. * equals p<0.05 
by one-way ANOVA for the indicated comparison. 
 

Consistent with these data, loss-of-function mutations in p38 MAPK PMK-1 

pathway components, pmk-1(km25) and tir-1(qd4), suppressed the pathogen-resistance 

phenotype of the olrn-1(ums9) mutants (Figure 2.5A). In addition, both tir-1(qd4) (Figure 

2.5B) and sek-1(km4) (Figure 2.7A) suppressed the hyperactivation of Pirg-4::GFP in the 

intestinal epithelial cells of the olrn-1(ums9) mutant. Moreover, tir-1(qd4) and pmk-

1(km25) mutations each suppressed the constitutive activation of the immune effectors irg-

4 (Figure 2.5C) and irg-5 (Figure 2.5D) in the olrn-1(ums9) background.  

 The bZIP transcription factor ZIP-2 and the G protein-coupled receptor FSHR-1 

each function in parallel to the p38 MAPK PMK-1 pathway to promote host defense during 

an intestinal infection with P. aeruginosa (Estes et al., 2010; Powell et al., 2009; Kirthi C. 

Reddy et al., 2016). Loss-of-function mutants of zip-2 and fshr-1 are hypersusceptible to 

killing by P. aeruginosa and are unable to upregulate a suite of PMK-1-independent 

immune effectors (Estes et al., 2010; Powell et al., 2009; Kirthi C. Reddy et al., 2016). We 

examined the genes that are transcriptionally upregulated in the olrn-1(ums9) mutants to 

determine if olrn-1 also suppresses the ZIP-2 or the FSHR-1 pathway. However, the 

overlap of zip-2-regulated genes (Figure 2.5E) or fshr-1-regulated genes (Figure 2.5F) 

with the genes that were upregulated in the olrn-1(ums9) mutant was not significant. In 

addition, we also found that targets of the FOXO transcription factor DAF-16 were not 

significantly over-represented among olrn-1-regulated genes (Figure 2.5G). 
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 Together, these data demonstrate that OLRN-1 targets the p38 MAPK PMK-1 

immune pathway to suppress immune effector expression in the intestine and modulate 

host susceptibility to bacterial infection. 

 

 

Figure 2.5 olrn-1 suppresses the p38 MAPK PMK-1-depedent innate immune effectors. 

(A) C. elegans pathogenesis assay conducted with a large lawn of P. aeruginosa and C. elegans of indicated 
genotypes at the L4 larval stage is shown. Data are representative of three trials. The Kaplan-Meier method 
was used to estimate the survival curves for each group, and the log rank test was used for all statistical 
comparisons. Sample sizes, mean lifespan and p-values for all trials are shown in Table 2.2. (B) Images of 
olrn-1(ums9) mutants and olrn-1(ums9);tir-1(qd4) double mutants are shown. Red pharyngeal expression is 
the Pmyo-2::mCherry co-injection marker, which confirms the presence of the Pirg-4::GFP transgene. Scale 
bar is 100 μm. qRT-PCR data of irg-4 (C) and irg-5 (D) expression in the indicated genotypes. Data are the 
average of six independent replicates, each normalized to a control gene with error bars representing SEM. 
Data are presented as the value relative to the average expression from all replicates of the indicated gene in 
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wild-type animals. * equals p<0.05 by one-way ANOVA for the indicated comparison. ‘ns’ denotes that the 
difference between the indicated comparison was not statistically significant. Venn diagrams show the 
overlap of genes induced in olrn-1(ums9) mutants with targets of (E) the bZIP transcription factor zip-2, (F) 
the G protein-coupled receptor fshr-1, and (G) the FOXO transcription factor daf-16. In (E), (F) and (G), the 
hypergeometric p value for the overlap between these datasets was not significant (n.s.). 

 

2.3.3 Promotion of intestinal immune homeostasis by olrn-1 is required to ensure 

reproduction and development 

 We previously observed that aberrant activation of immune defenses in the intestine 

by a gain-of-function mutation in the p38 MAPKKK nsy-1 or by exogenous treatment with 

an immunostimulatory small molecule slows nematode development (Cheesman et al., 

2016). Like nys-1(ums8) mutants, olrn-1(ums9) mutants take a longer time to reach 

adulthood than wild-type animals (Figures 2.6A and 2.6B). Re-introduction of olrn-1 

under the control of its own promoter restored wild-type developmental rates to the olrn-

1(ums9) mutant (Figures 2.6A and 2.6B).  

To determine if the developmental delay in the olrn-1(ums9) mutant is a 

consequence of de-repression of the p38 MAPK PMK-1 pathway, we compared the 

developmental rates of the pmk-1(km25), tir-1(qd4), atf-7(qd22 qd130) and olrn-1(ums9) 

single mutants to the olrn-1(ums9); pmk-1(km25), the olrn-1(ums9); tir-1(qd4), and the 

olrn-1(ums9);atf-7(qd22 qd130) double mutants (Figures 2.6G-I). ATF-7 is the 

transcription factor that functions downstream of p38 MAPK PMK-1 to control the basal 

expression of immune effectors (Shivers et al., 2010). The pmk-1(km25), tir-1(qd4) and 

atf-7(qd22 qd130) null mutants each fully suppressed the developmental delay of the olrn-

1(ums9) mutant (Figures 2.6G-I). In addition, the brood sizes of both the nsy-1(ums8) 

gain-of-function mutants and olrn-1(ums9) mutants is significantly smaller than that of 
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wild-type animals (Figure 2.6J). Consistent with our observations in the C. elegans 

development experiments, both the pmk-1(km25) and tir-1(qd4) mutation fully suppressed 

the small brood size of olrn-1(ums9) mutants (Figure 2.6J). Thus, neuronal olrn-1 prevents 

the deleterious effects of aberrant immune activation on nematode development and 

reproductive fitness. 
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Figure 2.6 Promotion of intestinal immune homeostasis by olrn-1 is required to ensure reproduction 
and development. 

(A-I) Development assays were performed with the indicated genotypes. The stage of the animals was 
recorded at the same timepoint, approximately 72 hours after eggs from C. elegans of the indicated 
genotypes were laid. In (B), (D), (F), (H), and (I) data are presented as the average number of animals for 
each genotype that were at the L4 stage or older (Percent L4+) from three independent replicates with error 
bars representing SEM. * equals p<0.05 by one-way ANOVA. (J) Brood sizes from animals of the 
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indicated genotypes were quantified. Each data point is the average brood size from two animals. * equals 
p<0.05 by one-way ANOVA for the indicated comparison.  
 
 

2.3.4 Expression of olrn-1 in chemosensory neurons is sufficient to regulate innate 

immunity in the intestinal epithelium 

OLRN-1 is expressed in AWC chemosensory neurons where it acts cell 

autonomously to promote olfactory receptor expression during nematode development 

(Huang et al., 2007). However, OLRN-1 is not expressed in the intestinal epithelium 

(Huang et al., 2007) where the p38 MAPK PMK-1 pathway coordinates the tissue 

autonomous expression of immune effectors and resistance to pathogen infection (Shivers 

et al., 2009). Therefore, we hypothesized that OLRN-1 acts in sensory neurons to control 

p38 MAPK PMK-1 transcriptional responses in the intestine. 

 We introduced an extrachromosomal array containing olrn-1 under the control of a 

pan-neuronal promoter (Psng-1::olrn-1) into the olrn-1(ums9) mutant. Neuronal 

expression of olrn-1 in three independent lines rescued the constitutive expression of Pirg-

4::GFP in the intestine of olrn-1(ums9) mutants (Figure 2.7A). We confirmed that 

neuronal expression of olrn-1 was sufficient to suppress the constitutive activation of 

endogenous irg-4 (Figure 2.7B) and irg-5 (Figure 2.7C) in the olrn-1(ums9) mutant. 

Consistent with these gene expression data, neuronal expression of olrn-1 in three 

independent lines suppressed the pathogen-resistance phenotype of the olrn-1(ums9) 

mutant (Figure 2.7D). 

We also expressed olrn-1 in the olrn-1(ums9) mutant under the odr-3 promotor 

(Podr-3::olrn-1), which drives gene expression in a specific subset of chemosensory 
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neurons (Roayaie et al., 1998). A Podr-3::GFP transcription reporter is expressed strongly 

in AWC neurons, and weakly or inconsistently in AWB, AWA, ASH and ADF neurons 

(Roayaie et al., 1998). Historically, the odr-3 promoter has been a useful tool to 

characterize AWC-dependent mechanisms (Huang et al., 2007). As observed in our 

experiments with the Psng-1::olrn-1 constructs (Figure 2.7D), expression of olrn-1 under 

the odr-3 promoter fully suppressed the pathogen-resistance phenotype of the olrn-

1(ky626) mutant (Figure 2.7E). Importantly, this experiment, which utilizes a second 

heterologous promoter to direct olrn-1 expression in neurons, confirms that olrn-1 activity 

in neurons is necessary to modulate resistance to a bacterial pathogen. Interestingly, multi-

copy expression of olrn-1 in a wild-type background, both under its own promoter and 

specifically in neurons, rendered C. elegans more susceptible to killing by P. aeruginosa 

(Figure 2.7F).  

In addition, expression of olrn-1 only in neurons (under the sng-1 promoter) 

(Figures 2.6C and 2.6D) or in chemosensory neurons (using the odr-3 promoter) (Figures 

2.6E and 2.6F) was sufficient to rescue the developmental delay of olrn-1 mutants, as 

assessed in multiple independent lines carrying these rescue constructs. In summary, 

neuronal olrn-1 is necessary and sufficient to control pathogen resistance and promote 

intestinal immune homeostasis. In addition, we show that expression of olrn-1 in 

chemosensory neurons is sufficient to regulate innate immunity in the C. elegans intestinal 

epithelium. 
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Figure 2.7 Expression of olrn-1 in Chemosensory Neurons Is Sufficient to Regulate Innate Immunity 
in the Intestinal Epithelium 

(A) Three independent lines of olrn-1 under the control of a pan-neuronal promoter (sng-1) in the olrn-
1(ums9) mutant along with the olrn-1(ums9) mutant are shown. Pmyo-3::mCherry expression indicates the 
presence of an extrachromosomal array that contains the Psng-1::olrn-1 construct. Scale bar is 100 μm. qRT-
PCR data showing irg-4 (B) and irg-5 (C) expression in animals of the indicated genotypes is shown. Data 
are the average of three independent replicates, each normalized to a control gene with error bars representing 
SEM, and are presented as the value relative to the average expression from all replicates of the indicated 
gene in wild-type animals. * equals p<0.05 by one-way ANOVA for the indicated comparison. (D, E, F) C. 
elegans pathogenesis assay conducted with a large lawn of P. aeruginosa and C. elegans of indicated 
genotypes at the L4 larval stage is shown. Data are representative of three trials. 
 



 

 

61 

2.3.5 Immune effectors regulated by neuronal olrn-1 are dynamically expressed during 

nematode development 

During C. elegans development, olrn-1 suppresses the TIR-1/ NSY-1/ SEK-1 

cassette in AWC neurons, which utilizes either the PMK-1 or PMK-2 p38 MAP kinases to 

promote left-right asymmetry of the odorant receptors str-2 and srsx-3 in AWC neurons 

(Chuang & Bargmann, 2005; Huang et al., 2007; Pagano et al., 2015a; Torayama et al., 

2007; Troemel et al., 1999). Differentiation of odorant receptors in AWC neurons is a 

required developmental step for C. elegans to sense and move toward diverse attractive 

stimuli (Wes & Bargmann, 2001). Adult C. elegans have one AWC neuron that expresses 

str-2, called AWCON by convention, and one AWC neuron that expresses the srsx-3 

chemoreceptor instead (AWCOFF). Forward genetic screens for mutants with two AWCON 

or two AWCOFF neurons defined the genetic pathway that controls olfactory receptor 

development in AWC neurons. This work revealed that low olrn-1 activity causes 

activation (de-repression) of the TIR-1/ NSY-1/ SEK-1/(PMK-1 or PMK-2) signaling 

cassette in AWCOFF neurons (Huang et al., 2007; Troemel et al., 1997, 1999). 

Given that the TIR-1/ NSY-1/ SEK-1/ PMK-1 pathway is required both in neurons 

for the development of odorant receptors and in the intestine for innate immunity, we 

determined the tissues where this signaling cassette is sufficient for the promotion of 

immune homeostasis by neuronal olrn-1. A Pges-1::sek-1::GFP construct, which directs 

sek-1 expression in intestinal epithelial cells (Shivers et al., 2009), was introduced into the 

olrn-1(ums9);sek-1(km4) double mutant. Reconstitution of the p38 MAPKK sek-1 in the 

intestine restored Pirg-4::GFP expression in the olrn-1(ums9);sek-1(km4) double mutant 
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(Figure 2.8A). To confirm our results with the Pges-1::sek-1::GFP construct using a 

different heterologous promoter, we introduced a Pvha-6::pmk-1 construct (Bolz et al., 

2010) into the olrn-1(ums9);pmk-1(km25) double mutant. Like Pges-1, Pvha-6 directs gene 

expression specifically in intestinal epithelial cells (McGhee et al., 1990; Oka et al., 2001). 

Consistent with our observations with the Pges-1::sek-1 construct (Figure 2.8A), intestinal 

expression of pmk-1 was sufficient to completely restore the pathogen resistance phenotype 

of the olrn-1(ums9) mutant to the olrn-1(ums9);pmk-1(km25) double mutant (Figure 

2.8B). Expression of sek-1 under the control of a neuronal-specific promoter (Punc-

119::sek-1) (Shivers et al., 2009) in the olrn-1(ums9);sek-1(km4) double mutant, however, 

did not restore constitutive activation of Pirg-4::GFP in the olrn-1(ums9) mutant 

background (Figure 2.8A). Thus, the p38 MAPK PMK-1 pathway in intestinal epithelial 

cells, but not in neurons, is sufficient for the modulation of immune effector expression 

and resistance to P. aeruginosa infection by neuronal olrn-1. 

The function of the innexin gene nsy-5 and the claudin/ calcium channel 𝛾 subunit 

gene nsy-4 in promoting AWC neuron differentiation, as defined in genetic studies, is 

similar to olrn-1 (Chuang et al., 2007; Huang et al., 2007; VanHoven et al., 2006). Like 

olrn-1 mutants, both nsy-4(ky616) and nsy-5(ky634) loss-of-function mutants have two 

AWCOFF neurons, one of which never differentiates into an AWCON neuron (Bauer Huang 

et al., 2007). Interestingly, the immune effectors irg-4 (Figure 2.8C) and irg-5 (Figure 

2.8D) are not constitutively induced in nsy-4(ky616) and nsy-5(ky634) loss-of-function 

mutants, as they are in the olrn-1 mutants. These data indicate that olrn-1 has distinct roles 
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in regulating immune effector expression in the intestine and promoting olfactory receptor 

development in AWC neurons.  

Considering the role of olrn-1 in controlling olfactory receptor development in 

AWC neurons, we asked if olrn-1-depedent immune effectors are differentially expressed 

during larval development. We compared the RNA-seq transcriptome profiles of wild-type 

C. elegans at each larval stage, and identified 707 genes, 580 genes, 717 genes, 602 genes 

and 100 genes that were expressed at significantly higher levels in wild-type animals at the 

first larval stage (L1), the second larval stage (L2), the third larval stage (L3), the fourth 

larval stage (L4) and the young adult stage (YA) compared to adult animals, respectively 

(p<0.05, greater than 2-fold change). Interestingly, genes that are expressed at higher levels 

in olrn-1(ums9) mutants are significantly enriched among the genes that are 

developmentally-regulated in wild-type animals, including a significant number of the 

genes identified in Figure 2.4D that are targets of the olrn-1–p38 MAPK pmk-1 signaling 

axis (Figures 2.8C - 2.8E). In particular, innate immune genes were enriched among the 

genes expressed higher in L3 animals compared to adults (p value for GO term enrichment 

4.8x10-5), as were genes induced during P. aeruginosa infection (hypergeometric p value 

7.9e-10). Additionally, we identified 100 genes that were expressed higher in young adult 

compared to adult animals, but neither olrn-1-regulated genes nor immune effectors in 

general were enriched in this dataset (Figure 2.9F). Using qRT-PCR, we confirmed that 

the olrn-1-dependent immune effectors, irg-4 (Figure 2.9G) and irg-5 (Figure 2.9H) were 

expressed at higher levels in animals at the L2/L3 larval stage compared with young adult 

animals. Low activity of OLRN-1 leads to de-repression of the p38 MAPK pathway in 
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AWC neurons (Huang et al., 2007). Together, the data in this manuscript suggest that low 

levels of olrn-1, as recapitulated in multiple loss-of-function mutant alleles, also de-

represses the p38 MAPK PMK-1 pathway in intestine to promote pathogen resistance 

during C. elegans development.  
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Figure 2.8 Neuronal olrn-1 regulates p38 MAPK PMK-1-dependent immune effector expression 
during nematode development 

 (A) Representative images of animals with the indicated genotypes carrying an integrated Pirg-4::GFP 
reporter. Red pharyngeal expression is the Pmyo-2::mCherry co-injection marker, which confirms the 
presence of the Pirg-4::GFP transgene. Bright red pharyngeal expression in C. elegans with intestinal sek-1 
(Pges-1::sek-1::GFP) and neuronal sek-1 (Punc-119::sek-1::GFP) is the Pmyo-2:mStrawberry co-injection 
marker. Presence of Pirg-4::GFP reporter was confirmed in these animals by Pmyo-2::mCherry expression 
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in siblings that did not contain the indicated extrachromosomal arrays. Scale bar is 100 μm. (B) C. elegans 
pathogenesis assay conducted with a large lawn of P. aeruginosa and C. elegans of indicated genotypes at 
the L4 larval stage is shown. Data are representative of three trials. Sample sizes, mean lifespan and p-values 
for all trials are shown in Table 2.2. “intestinal pmk-1” indicates that these animals have the Pvha-6::pmk-1 
extrachromosomal array. qRT-PCR data of irg-4 (C) and irg-5 (D) in wild-type, nsy-4(ky616) and nsy-
5(ky634) animals is presented. Data are the average of three independent replicates, each normalized to a 
control gene with error bars representing SEM, and are presented as the value relative to the average 
expression from all replicates of the indicated gene in wild-type animals. “n.s.” equals not significant for the 
p value and * equals p<0.05 by one-way ANOVA for the indicated comparison. (E) A volcano plot of the 
mRNA-seq transcriptome profiling analysis shows all genes that were differentially expressed in olrn-
1(ums9) mutants compared to wild-type animals (Fold change>2, p<0.05), as described in Figure 2.4A. 
Highlighted in dark blue are the genes whose transcription are: (i) dependent in on the p38 MAPK pmk-1 
(from the overlap in Figure 2.4D), and (ii) also induced in wild-type animals at the L1, L2, L3 or L4 stage 
compared to wild-type young adult animals. Highlighted in light blue are the genes that are induced in L1, 
L2, L3 or L4 stage wild-type nematodes compared to adult animals, but whose transcription are not dependent 
on p38 MAPK pmk-1. Venn diagrams showing the overlap of genes that are induced at each larval stage 
compared to genes that are induced in olrn-1(ums9) mutants are shown. (F) Venn diagrams show the overlap 
of genes induced in olrn-1(ums9) mutants with genes that are upregulated at each larval stage in wild-type 
animals compared to wild-type adult animals. The hypergeometric p value for the overlap of each dataset is 
given in the Figure. “n.s.” equals not significant. qRT-PCR data of irg-4 (G) and irg-5 (H) in wild-type 
animals at the second or third larval stage (L2/L3), and the young adult (YA) stage are shown. Data are the 
average of four independent replicates, each normalized to a control gene with error bars representing SEM, 
and are presented relative to the average expression from all replicates of the indicated gene in animals at the 
young adult stage. * equals p<0.05 by one-way ANOVA for the indicated comparison. 
 

2.4 Materials and Methods 

 

2.4.1 Forward genetic screen 

 Ethyl methanesulfonate (EMS) mutagenesis was performed on strain agIs44 as 

previously described (Cheesman et al., 2016). Synchronized F2 progeny representing 

approximately 40,000 haploid genomes were screened for animals that constitutively 

express agIs44 GFP fluorescence. Three alleles were identified (ums9, ums10 and ums11). 

To identify the causative mutations, pooled genomes from 52 recombinants for ums9 and 

3 recombinants for ums11 following a 2X outcross to N2 were sequenced along with the 

agIs44 parent strain. All recombinants constitutively expressed agIs44 GFP. Homozygous 

variants from WS220 (ce10) C. elegans reference genome that were present in the 2X 
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outcrossed samples, but not in agIs44, were identified using Cloud Map (Minevich et al., 

2012). We were unable to identify the causative mutation in ums10. 

 

2.4.2 C. elegans Bacterial Infection and Other Assays 

 “Slow killing” P. aeruginosa infection experiments were performed as previously 

described (Foster, McEwan, et al., 2020; Tan et al., 1999). The wild-type control for these 

assays is agIs44. In brief, a single colony of P. aeruginosa PA14 was inoculated into 5 ml 

of Luria-Bertani (LB) medium, and allowed to incubate at 37° for 15 hr. 10 μl of this culture 

was spread onto 35-mm tissue culture plates containing 4 ml of slow kill agar (0.35% 

peptone, 0.3% sodium chloride, 1.7% agar, 5 μg/ml cholesterol, 25 mM potassium 

phosphate, 1 mM magnesium sulfate, 1 mM calcium chloride). Plates were incubated for 

24 hours at 37°C, and approximately 24 hours at 25°C. Approximately one hour before the 

start of the assay, 0.1 mg/ml 5-fluorodeoxyuridine (FUDR) was added to the medium to 

prevent progeny from hatching. For all pathogenesis assays that studied C. elegans with 

extrachromosomal arrays, control genotypes, which did not express the array, were 

obtained from siblings isolated from the same plates as nematodes that contained the array. 

C. elegans lifespan assays were conducted with animals grown on nematode growth media 

agar at 20ºC in the presence of 40 µg/mL 5-fluoro-2’-deoxyuridine. All pathogenesis and 

lifespan assays were conducted with nematodes at the L4 larval stage. To obtain stage-

matched animals at the L4 larval stage for the pathogenesis and lifespan assays, olrn-1 

mutant animals at the L1 larval stage were added to growth plates (NGM with E. coli OP50) 

approximately 24 hours before wild-type L1 larval stage animals were added to growth 
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plates. Three trials of each pathogenesis assay were performed. Sample sizes, mean 

lifespan, and p-values for all trials are shown in Table 2.2.  

The propensity of C. elegans to avoid a small lawn (10 µL) of P. aeruginosa was 

determined by counting the number of C. elegans on or off the lawn at 4, 8, 16, 24 and 30 

hours after synchronized L4 were placed on the bacteria (Foster, McEwan, et al., 2020). C. 

elegans development assays were performed as previously described (Cheesman et al., 

2016; Foster et al., 2020). Brood sizes were quantified from five independent plates, each 

with two animals per plate. Animals were transferred to new plates each day to facilitate 

scoring of the progeny. Data for all replicates of the development and brood size assays are 

shown in Table 2.2. 

Colony forming units of P. aeruginosa were quantified in the intestine of C. elegans 

as previously described with some modifications (Foster, McEwan, et al., 2020; J. Singh 

& Aballay, 2019). Briefly, C. elegans animals were exposed to P. aeruginosa for 24 hours. 

Animals were then picked to NGM plates lacking bacteria and incubated for 10 minutes to 

remove external P. aeruginosa. Animals were then transferred to a second NGM plate after 

which 10-11 animals per replicate were collected, washed with M9 buffer containing 25 

mM levamisole and 0.01% Triton X-100, and ground with 1.0 mm silicon carbide beads. 

CFUs were quantified from serial dilutions of the lysate. 

 

2.4.3 Generation of transgenic C. elegans strains 

To generate olrn-1 rescue lines, primers 5’-CAG AAC CAG ATT CTC GGA ATG 

A-3’ and 5’-AGA GGA AGA GAG ACA GGA TGA A-3’ were used to amplify the entire 
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olrn-1 locus. The resulting PCR product (30 ng/l), the Pmyo-3::mCherry co-injection 

marker (15 ng/l) and pBluescript SK (-) vector (155 ng/l) were microinjected into olrn-

1(ums9);agIs44 animals to generate the arrays umsEx4, umsEx6 and umsEx7.  

 The olrn-1 neuron-specific rescue construct was generated using Gibson assembly 

to fuse 2kb of the sng-1 promoter (amplified using primers 5’-CCC CCC CTC GAG GTC 

GAC GGT ATC GAT AAG CTT GAT ATC GTT GAG CAG CGA CTA ACA AAA-3’ 

and 5’-ACC TGA CAC TAA TTT CTC TTG GCG CTG AAC ATC TAG TCA TGC TAA 

AAT AAA AGA AAT ATA-3’) with 2960 bp of olrn-1b coding region + 667bp 3’ UTR 

(amplified using primers 5’-ATGACTAGATGTTCAGCGCC-3’ and 5’- GGC GGC CGC 

TCT AGA ACT AGT GGA TCC CCC GGG CTG CAG GTT TCA TAT ATC TTA TGC 

CGT -3’) in pBluescript vector linearized with EcoR1 (Gibson et al., 2009). The plasmid 

(30 ng/l), the Pmyo-3::mCherry co-injection marker (15 ng/l) and pBluescript SK (-) vector 

(155 ng/l) were microinjected into olrn-1(ums9);agIs44 animals to generate the arrays 

umsEx20, umsEx21 and umsEx23. 

 

2.3.4 Gene expression analyses and bioinformatics 

 For the RNA-seq experiment of olrn-1(ums9) and wild-type animals, synchronized 

L1 stage C. elegans were grown to the L4/young adult stage. RNA was isolated using 

TriReagent (Sigma-Aldrich), purified on a column (Qiagen), and analyzed by mRNA-seq 

using the BGISEQ-500 platform (BGI Americas Corp). The quality of raw sequencing data 

was evaluated by FastQC (version 0.11.8) and Multiqc (version 1.7) (Ewels et al., 2016; 

Wingett & Andrews, 2018). Low-quality reads were trimmed using Trimmomatic (version 
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0.36) (Bolger et al., 2014). The trimmed reads were mapped to the C. elegans reference 

genome, WS220/ce11 [University of California Santa Cruz (UCSC) genome browser] 

using HISAT2 (version 2.1.0)(D. Kim et al., 2015; Pertea et al., 2016). The sequence 

alignment map (SAM) files were then converted to sorted BAM files using Samtools 

(Version 1.3.1)(Li, 2011; Li et al., 2009). The general transfer format (GTF) annotation 

file (WS220/ce11) was downloaded from the UCSC genome website, and the assembled 

GTF file was generated for each sample using Stringtie (version 1.3.4)(Pertea et al., 2015, 

2016). Stringtie was then used to compare each sample against the merged assembly, 

estimate transcript abundance, and to generate a count table for Ballgown analysis (Pertea 

et al., 2016). The Ballgown package from the Bioconductor software suite (version 3.8) 

was used to run a custom R script in R console (R Version 3.5) to analyze the differential 

gene expression, visualize the data, and perform statistical tests for differential expression 

with multiple test correction. A gene was considered to be differentially regulated if its fold 

change versus wild-type was greater than two, the adjusted p-value was less than 0.05, and 

its RPKM was greater than one. 

To examine genes that are differentially expressed during C. elegans development, 

raw base-called fastq files were downloaded from the European Nucleotide Archive 

(accession number PRJEB31791). For each sample, reads were aligned to the WS220/ce11 

on UCSC genome website using minimap2 (version 2.14-r883)(Li, 2018). Genomic 

alignments were run with the following parameters: -ax splice -k14 -uf -secondary=no -G 

25000 -t 24. The resulting sam files were converted to bam format using samtools view 

with parameters: -b –F 2048 (Li et al., 2009). Read filtering and splice isoform 
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identification were analyzed as described (Roach et al., 2019). The GTF (WS220/ce11) 

annotation file was downloaded from UCSC genome website and the assembled GTF file 

was generated for each sample using Stringtie (version 1.3.4). Stringtie was used to 

compare each sample against the merged assembly, to estimate transcript abundance, and 

to generate a count table for Ballgown analysis. The Ballgown package from the 

Bioconductor software suite (version 3.8) was used to run a custom R script in R console 

(R Version is 3.5) to analyze differential gene expression, visualize the data and perform 

statistical tests for differential expression with multiple test correction. Differential gene 

expression was defined as a fold change (FC) versus wild-type greater than 2, adjusted P 

value less than 0.05 and RPKM greater than one. 

For the qRT-PCR studies, RNA was reverse transcribed to cDNA using the 

RETROscript Kit (Life Technologies) and analyzed using a CFX1000 machine (Bio-Rad) 

using previously published primers (Cheesman et al., 2016; Peterson et al., 2019; Troemel 

et al., 2006). All values were normalized against the control gene snb-1. Fold change was 

calculated using the Pfaffl method (Pfaffl, 2001). The analysis of irg-4 and irg-5 expression 

using nanoString was performed as previously described (Anderson et al., 2019; Cheesman 

et al., 2016; Pukkila-Worley et al., 2014). Counts from each gene in wild-type and olrn-

1(ums9) animals were normalized to three control genes: snb-1, ama-1 and act-1. 

 

2.3.5 Immunoblot Analyses 
 
 Protein lysates from stage-matched C. elegans grown to the young L4 larval stage 

on E. coli OP50 on NGM agar were prepared as previously described (Cheesman et al., 
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2016; Peterson et al., 2019). Harvested animals were washed twice with M9 buffer, 

incubated in a roller at room temperature for 15 minutes to allow the nematode intestine to 

clear of bacteria, washed an additional time and flash frozen in RIPA Buffer (Cell Signaling 

Technology, Inc.) using an ethanol and dry ice bath. Samples were lysed by sonication and 

centrifuged. Protein was quantified from the supernatant of each sample using Bradford 

Reagent (Bio-Rad Laboratories, Inc.). Laemmli buffer (Bio-Rad Laboratories, Inc.) was 

added to a concentration of 1X and the total protein from each sample was resolved on 

NuPage 4-12% gels (Life Technologies), transferred to nitrocellulose membranes (Life 

Technologies), blocked with 5% BSA in TBST and probed with a 1:1000 dilution of an 

antibody that recognizes the doubly-phosphorylated TGY motif of PMK-1 (Cell Signaling 

Technology), a previously characterized total PMK-1 antibody (Peterson et al., 2019) or a 

monoclonal anti-tubulin antibody (Sigma-Aldrich, Clone B-5-1-2). Horseradish 

peroxidase (HRP)-conjugated anti-rabbit (Cell Signaling Technology) and anti-mouse IgG 

secondary antibodies (Abcam) were used at a dilution of 1:10,000 to detect the primary 

antibodies following the addition of ECL reagents (Thermo Fisher Scientific), which were 

visualized using a ChemiDoc MP Imaging System (BioRad). The band intensities were 

quantified using Image Lab software version 6.0.1 (BioRad), and the ratio of active 

phosphorylated PMK-1 to total PMK-1 was calculated with all samples normalized to the 

ratio of wild-type control animals.  
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2.3.6 Microscopy 
 
 Nematodes were mounted onto agar pads, paralyzed with 10 mM levamisole 

(Sigma) and photographed using a Zeiss AXIO Imager Z2 microscope with a Zeiss 

Axiocam 506 mono camera and Zen 2.3 (Zeiss) software. 

 

2.3.7 Quantification and Statistical Analysis 
 
 Differences in survival of C. elegans in the P. aeruginosa pathogenesis assays were 

determined with the log-rank test after survival curves were estimated for each group with 

the Kaplan-Meier method. OASIS 2 was used for these statistical analyses (Han et al., 

2016). qRT-PCR studies, lawn occupancy studies, intestinal CFU quantification, western 

blot band intensity quantification, and developmental assays are presented as the mean ± 

standard error. p values were calculated using one-way ANOVA in Prism 8 (GraphPad 

Software), unless otherwise indicated in the Figure legend. Sample sizes, mean lifespan, 

and p-values for all trials are shown in Table 2.2. 
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Chapter 3: Discussion 
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3.1 Introduction 

 This study demonstrates that innate immunity in C. elegans intestinal epithelial 

cells and the development of AWC neurons are linked by a single neuronal protein. 

Neuronal olrn-1 functions cell autonomously in AWC neurons to ensure olfactory receptor 

expression and cell non-autonomously to suppress the p38 MAPK PMK-1 immune 

pathway in the intestine. These findings have the following important implications: 1) 

Food preference and chemotaxis is coupled to innate immune regulation, 2) Suppression 

of the p38-PMK-1 pathway by OLRN-1 is required for development and evolutionary 

fitness, and 3) Neuronal regulation of immune defenses in evolutionarily ancient and 4) 

Triggering toxic immune hyperactivation in human pathogenic nematodes may provide a 

novel treatment strategy to combat the growing threat of helminthic resistance.  

 

3.2 Food preference and chemotaxis may be coupled to innate immune regulation 

The work described in this thesis supports the existence of an immune regulatory 

network by which neuronally expressed OLRN-1 in Amphid Wing C (AWC) controls the 

induction of PMK-1-dependent immune effectors in the intestinal epithelium of C. elegans. 

Why might such a mechanisms exist and what survival advantage might this provide? 

Olfactory neurons are key transducers of environmental conditions, providing the critical 

input necessary for worms to make important decisions pertaining to food acquisition and 

pathogen avoidance. The availability and quality of food has drastic effects on C. elegans 

locomotion, suggesting that sensory information is broadly integrated with many core 

physiological processes.  
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AWC olfactory neurons are required for chemoattraction towards a diverse set of 

volatile stimuli, including butanone, benzaldehyde, butanone, isoamylalcohol, 2,3 

pentanedione and 2,4,5 trimethylthiazole. Many of these compounds are natural 

byproducts created when organic matter decomposes and are therefore attractive signals 

for C. elegans, which feeds on bacteria found in such microenvironments. When feeding 

on bacteria that promotes development, it is necessary to ensure that physiological stressors 

(i.e. immune responses) are not aberrantly initiated, as these processes could jeopardize 

immune homeostasis and have could have deleterious consequences on organismal fitness. 

To ensure this careful balance be maintained, chemoattraction and immune suppression 

may be inherently linked biological processes. Our data suggests that C. elegans may rely 

on a signaling axis by which OLRN-1 functions in AWC chemosensory neurons to repress 

PMK-1-dependent immune responses, a process which in the presence of attractive stimuli 

such nutritious food sources, may prevent unnecessary activation of immune defenses 

(Figure 3.1). 

 

Figure 3.1 Chemotaxis may be linked to immune regulatory mechanisms 
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Numerous other chemosensory neurons have been linked to immune regulation, 

suggesting that input from many chemosensory neurons may influence not only behavioral 

responses, but also regulate key biological processes like immune regulation in order to 

promote healthspan. Previous work by Aballay et al. characterized two separate 

mechanisms by which sensory neurons function to modulate immunity in C. elegans. 

Mechanosensory CEP neurons responsible for regulating the “basal slowing response” 

necessary for maximizing the time animals spend in the presence of nutritious food, and 

gustatory ASG sensory neurons, have also been shown to modulate PMK-1-dependent 

immune responses via dopaminergic signaling (Cao & Aballay, 2016). Likewise, ASH and 

ASI neurons expressing the octopamine receptor OCTR-1, have been implicated in the 

regulation of both microbial killing pathways and pathogen avoidance behavior (Cao et al., 

2017; Liu et al., 2016; Sellegounder et al., 2018; J Sun et al., 2011). Thus, chemosensation 

and immune regulation may not be independent protective processes. Rather, they very 

well may be two intrinsically associated processes that function cooperatively to ensure 

that worms are 1) able to locate and assess the quality of food 2) suppress protective 

immune defenses on bacteria that is determined not to pose a threat to organismal health.   

 Further evidence suggesting that OLRN-1-expressing AWC neurons might 

regulate immunity through a mechanism similar to the mechanisms described by Aballay 

et al. can be found upon close examination of the C. elegans connectome. In general, 

sensory neurons can be thought of as the first link in a long chain of signaling cascades that 

ultimately turns an input into an appropriate biological response. Interestingly, AWC, CEP, 

ASG, ASI and ASH neurons all function within the same neuronal circuit, whereby 
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chemosensory information is relayed to downstream AIY and AIA interneurons (Cook et 

al., 2019). Thus, as AWC neurons synapse with and communicate through the same set of 

downstream interneurons, it is feasible that AWC neurons function to regulate many of the 

same core biological processes (Figure 3.2).  

 

 

 

Figure 3.2 AIY, AIA, and AIB interneurons function as signaling hubs for AWC, ASG, CEP, ASH 
and ASI sensory neurons 
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3.3 Suppression of the p38-PMK-1 pathway by OLRN-1 is required for 

development and evolutionary fitness 

 While changes in environmental conditions have been known to effect growth and 

development of C. elegans for many years, recently it has become clear that immunological 

stressors can also have dire consequences on organismal fitness. Immune activation in the 

context of a pathogenic infection is crucial in order to ensure longevity. However, the 

initiation of protective immune mechanisms is an extraordinarily resource intensive 

process that puts significant stress on an organism.  Following a forward genetic screen for 

novel immune regulators, Cheesman et al. identified a gain-of-function allele in the 

MAPKKK gene nsy-1, that resulted in hyperphosphorylation of PMK-1, resulting in the 

constitutive induction of immune effectors previously characterized to respond robustly to 

pathogen infection (Cheesman et al., 2016). Mutants harboring the nsy-1(gf) allele were 

notably resistant to pseudomonal infection relative to wild-type animals. While this 

immune activation provided protection against pathogenic microbes, the constant 

production of immune effectors put a significant amount of stress on the organism and was 

found to be toxic to developing nematodes. The immune toxicity observed in nsy-1(gf) 

animals resulted in severe developmental stunting and significantly reduced brood sizes, 

suggesting that while protective defenses are required to adequately defend nematodes 

against microbial threats, uncontrolled activation of these protective responses can result 

in toxicity that can even numerous core biological processes (Cheesman et al., 2016).  

 As it is evolutionarily advantageous for immune and stress responses to be carefully 

controlled to avoid the detrimental effects immune toxicity, numerous mechanisms have 
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been discovered to fine tune these responses in order to promote nematode development 

and healthspan. Richardson et al. characterized one of the first immune regulatory 

mechanisms that appeared to promote development by protecting against immune 

activation (Richardson et al., 2010). Their findings indicated that the unfolded protein 

response, which works to restore protein folding homeostasis in the ER, also has an 

essential role at limiting PMK-1-dependent toxic immune activation during normal growth 

and development. Animals lacking key elements of the UPR machinery, such as XBP-1 

and PEK-1, displayed a decrease in stress resistance that often led to larval lethality 

phenotypes, thus suggesting the requirement of the UPR to maintain ER homeostasis in C. 

elegans under physiological conditions (Richardson et al., 2010). Follow up work aiming 

to better understand the relationship between immune control and development has resulted 

in the discovery of several other immune regulators that are critically important for 

productive nematode development. NIPI-3, a tribbles-family pseudokinase has been shown 

to negatively regulate the p38 PMK-1 signaling cascade in multiple tissues via the 

CCAAT/enhancer-binding protein homolog CEBP-1, in order to promote growth and 

development (K. W. Kim et al., 2016). Likewise, work by Amrit et al. demonstrated a 

similar phenomenon whereby TCER-1, the C. elegans homolog of the human transcription 

elongation and splicing factor TCERG, promoted longevity by suppressing the 

transcriptions of p38 PMK-1-depemndent genes, but also appeared to regulate the 

expression key intermediates involved in the UPRmt, suggesting that TCER-1 may be 

playing a more general role in suppressing immune and stress response in order to promote 

organismal viability and development (Amrit et al., 2019). The functional redundancy of 
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mechanisms that work to limit toxic immune activation, reflects the key requirement to 

protect organisms against unnecessary or aberrantly activate immune responses.  

 In this recent study, I have shown that OLRN-1 is an important upstream neuronal 

regulator of the PMK-1 pathway in intestinal epithelial cells. Loss-of-function mutants 

ums9, ums11 and ky626 each displayed severe growth stunting and reproductive fitness 

defects. This observation suggests that immune suppression by OLRN-1 is yet another 

requirement to protect against potentially toxic immune activation necessary to ensure 

productive development and organismal fitness. Additionally, I discovered that a 

significant subset of genes under the control of olrn-1 are also differentially expressed 

throughout nematode development. This interesting observation suggests that immune 

regulatory mechanisms may be inherently linked to genes involved in developmental 

processes, and that the two processes may be co-regulated to some degree in order to 

maintain a homeostatic relationship.  

 

3.4 Neuronal regulation of immune defenses are evolutionarily ancient 
 

The ability to mount protective defenses against pathogenic microbes has been an 

evolutionary requirement for millennia, thus many core innate immune signaling pathways 

are highly conserved in all metazoans. The requirement to maintain immune homeostasis 

suggests that regulatory mechanisms that function to fine tune these immune responses 

have also been carefully selected for. For nearly three decades it has been known that 

various components of the mammalian nervous system are tightly integrated with the 

immune system, especially within the gastrointestinal tract where a fine balance between 
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protective and tolerogenic responses must be maintained. Understanding the complexities 

of neuro-immune interactions within the intestine has been challenging however, and as a 

result progress in this field has been hindered. Recent discoveries suggesting that 

mechanisms of neuro-immune regulation are conserved in ancient organisms provides 

researchers with new tools that can be used to dissect the foundational principles 

underlying interactions between the nervous system and immune systems (Figure 3.3) 

(Foster, Cheesman, et al., 2020; Styer et al., 2008; J Sun et al., 2011).  

 

  

Figure 14 Previously characterized mechanisms of immune coordinating via the C. elegans nervous 
system. 

A) Insulin Signaling Pathway described in section 1.4.5.1 B) The NPR-1 Pathway described in section 
1.4.5.2 C) Dopaminergic Signaling described in 1.4.5.6 D) The octopaminergic immunoregulatory axis 
1.4.5.3 E) NPR-8 and cuticular collagens described in 1.4.5.4 F) NPR-9 Pathway described in and 1.4.5.5 
and G) The ACh-Wnt Pathway as described in section 1.4.5.7.  

Figure 13 Previously described mechanisms of immune regulation by the nervous system in C. elegans 
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Even though OLRN-1 is not widely conserved outside of invertebrates, the core 

idea that immune system function is heavily regulated by input received from the nervous 

system can be broadly applied. Interestingly, a structurally related protein expressed in 

Drosophila melanogaster, RAW, has been found to inhibit JNK MAPK signaling during 

development in order to promote the dorsal closure of the fly embryo (Byars et al., 1999; 

Luong et al., 2018). The JNK pathway is one of three signaling subfamilies of the MAP 

kinase signaling pathway in flies, the others being the extracellular signal-related kinase 

(ERK) pathway, and the p38 pathway. As both OLRN-1 and the related RAW proteins 

function to regulate MAPK signaling, it is likely that these proteins may utilize similar 

mechanisms to suppress signal transduction.  

In humans, the liver, spleen, bone marrow, thymus, lymph nodes, and 

gastrointestinal system are all densely innervated by both the autonomic nervous and 

sympathetic nerve fibers (McCorry, 2007; Wehrwein et al., 2011). Secretion of numerous 

chemical messengers, including small molecules, neuroendocrine peptides, cytokines, and 

growth factors allow for complex bi-directional communication between the nervous 

system and the immune system. Thus, the immune system should no longer be regarded as 

an autonomously functioning entity, but rather it is quite clear that the immune system 

receives significant regulatory input from neuronal systems. 

 Modulation of pro-inflammatory responses by the nervous system is thought to be 

one of the primary drivers of immuno-tolerance mechanisms critical for maintaining a 

healthy balance of immune activation within the intestinal tract (Costantini & Baird, 2016; 

Lakhan & Kirchgessner, 2010; Nemati et al., 2017). Here, billions of microbial species co-
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exist, requiring the immune system to distinguish commensal bacterial species from 

pathogenic ones in order prevent aberrant immune activation against beneficial microbes. 

Numerous chronic inflammatory diseases of the digestive tract, such as Crohn’s disease 

and ulcerative colitis are believed to result in part from dysregulated immune suppression 

by the nervous system (Costantini & Baird, 2016; Lakhan & Kirchgessner, 2010; 

Mogilevski et al., 2019; Nemati et al., 2017). To date, the ability of the mammalian immune 

system to differentiate between microbial species remains poorly understood and continues 

to be an area of active research. As the nervous system is proving to play a critical role in 

this process, more research is needed to understand the precise integrations that are 

occurring between the nervous system, immune system and resident microbial 

communities. For these reasons, C. elegans has emerged as an important model to better 

define the neuronal circuitry that exists to modulate immunity within the intestine. 

 

3.4 Next Steps 
 

I have described a mechanism whereby neuronal OLRN-1 coordinates the 

expression of numerous PMK-1/p38 dependent immune effectors within the intestine. The 

details of the precise mechanism by which this occurs however, remain unclear. A critical 

gap in knowledge that remains is understanding the precise physiological function of 

OLRN-1 in AWC neurons. AWC neurons detect volatile odorants and promote chemotaxis 

towards the stimuli. To date, the attractive odorants AWC neurons have been implicated in 

detecting include benzaldehyde, butanone, isoamylalcohol, 2,3 pentanedione and 2,4,5 

trimethylthiazole. One exciting hypothesis is that in addition to the odorants, AWC neurons 
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may also be able to detect specific bacterial secondary metabolites common among 

nutritious food sources and promote chemotaxis towards microbe rich environments. 

Previous studies have implicated sensory neurons in the detection of numerous bacterial 

secondary metabolites such as phenazine-1-carbox-amide and pyochelin, both of which 

activate a G-protein-signaling pathway in the ASJ chemosensory neuron pair to promote 

avoidance behavior when exposed to pathogens (Meisel & Kim, 2014). As both behavioral 

and microbial immunity are both important in the context of bacterial infection, it is 

possible the AWC neurons, and OLRN-1 in particular, utilize sensory information to 

coordinate both behavioral chemotactic responses and microbial defense mechanisms, thus 

promoting chemotaxis toward nutritious bacteria, while at the same time, suppressing 

deleterious immune responses.  

 Another critical gap in our understanding is the precise mechanism by which AWC 

neurons communicate with the intestine. Previous studies have determined that sensory 

neurons can communicate with the gut via the secretion of soluble neuromodulators. 

Inhibition of dopamine signaling between CEP and ASG neurons has been shown to protect 

C. elegans against bacterial infection by inducing expression of numerous PMK-1/p38 

(Cao & Aballay, 2016). Likewise, a neuronal circuit involving ASH neurons and the 

neuropeptide NLP-20 has also been implicated in mediating protective defense 

mechanisms in C. elegans (Cao et al., 2017). Therefore, OLRN-1-expressing AWC sensory 

neurons may be similarly be signaling to the intestine via a secreted neurotransmitter or 

neuropeptide. As AWC neurons are glutamatergic and have also been shown to express the 

neuropeptide NLP-1, either of these molecules may be involved in this signaling axis. 
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Additionally, transcriptome analysis of OLRN-1 mutants showed differential expression 

of five neuropeptide-like proteins. Many of these neuropeptides are uncharacterized, and 

thus their expression patterns remain unknown, therefore it is possible that one or multiple 

of these molecules plays an important role in the AWC signaling axis.  

 Post-synaptic output from AWC neurons is received by AIY interneurons, where 

sensory cues from many sources are integrated. As AIY neurons can be thought of as a 

sensory hub where chemosensation, mechanosensation and olfactory cues are processed, it 

is possible that OLRN-1-expressing AWC neurons communicate through AIY neurons in 

order to relay sensory data to distal tissues such as the intestine. The idea that interneurons 

may function as linkers between sensory neurons and downstream tissues is not novel. The 

AIA interneuron pair, which integrates sensory information from ASH sensory neurons has 

been found to be involved in the aforementioned NLP-20-dependent regulation of intestinal 

immunity (Cao et al., 2017). Further research must be conducted in order to determine the 

precise neuronal circuitry involved in the AWC-dependent immune regulatory pathway we 

have characterized.  

 The C. elegans intestine is not directly innervated, therefore, in order to completely 

elucidate the mechanism by which sensory cues can illicit transcriptional changes within 

the intestine, it must be understood precisely how the nervous system relays signals to 

intestinal epithelial cells. One hypothesis is that specific surface receptors on intestinal 

epithelial cells are able to bind to neuro-modulatory molecules and subsequently initiate 

downstream immune signaling pathways. Numerous GPCRs have been observed as having 
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neuropeptide and/or neurotransmitter binding capabilities (Hartenstein, 2006; Janssen et 

al., 2010; Jee et al., 2012; Keating et al., 2003; Rual et al., 2004). Interestingly, the initial 

forward genetic screen seeking to identify novel immune regulators that was conducted at 

the onset of this thesis also resulted in the identification of an intestinally expressed 

putative neuroendocrine receptor, GNRR-3. Mutants harboring a loss-of-function 

mutations in gnrr-3 constitutively induced numerous PMK-1-dependent immune effectors, 

were resistant to pathogen, and displayed hyperphosphorylation of PMK-1 in a manner 

virtually identical to that of OLRN-1 mutants.  It is quite possible that GNRR-3 is a 

downstream target of a neuro-immune signaling axis and may even be one of the 

downstream targets of the OLRN-1, functioning as the key surface receptor linking the 

nervous system to the intestine. Further research needs to be conducted in order to 

determine if these hypothesis have merit. Performing additional targeted GPCR 

knockdown screens in olrn-1(lf) mutants may assist in the identification of other involved 

downstream gut-specific neuron-endocrine receptors that allow for further characterization 

of the OLRN-1 signaling axis.  

 

3.5 Potential Clinical Applications of Toxic Immune Hyper-activation in Human 

Pathogenic Nematodes 

  In alignment with previous studies, this study has demonstrated the importance of 

maintaining immune homeostasis within the intestine, as mis-regulated defense responses 

have severe deleterious effects of development and reproductive fitness. OLRN-1 was 

found to be a necessary negative regulator of immune defenses in nematodes in order to 
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prevent severe developmental and reproductive fitness defects. Interestingly, OLRN-1 is 

conserved in many nematodes that are pathogenic to humans, but it is not present in 

humans. This lack of conservation combined with its role in modulating potentially toxic 

immune responses, may allow OLRN-1 to be used a nematode-specific therapeutic target 

in order to combat worm infections that pose serious health risks to mammals.  

Soil-transmitted helminths (STHs) are parasitic nematodes that are estimated to 

chronically infect over one-fifth of the world’s population and are one of the most prevalent 

health afflictions of the developing world (Mascarini-Serra, 2011). The most common soil-

transmitted helminths are Ascaris lumbricoides, whipworm (Trichuris trichiura), and 

hookworm (Anclostoma duodenale and Necator americanus). Chronically infected 

patients often present with anemia, gastrointestinal distress, severe growth stunting and 

cognitive retardation. As infections are most common within developing nations, poor 

sanitation, lack of infrastructure and inaccessible medical care are major contributors to the 

epidemic.  

 Even though parasitic nematodes chronically infect over a billion people 

worldwide, there remains a significant unmet medical need to develop efficacious broad-

spectrum treatments to combat this health crisis. The current standard of care treatments 

prescribed for chronically infected individuals includes albendazole, ivermectin, and 

praziquantel. Ivermectin and praziquantel are both neurotoxic, and lead to rapid paralysis 

of exposed helminths, causing them to detach from their sites of action after which they 

can be either excreted or destroyed by host immune responses. Albendazole on the other 
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hand inhibits microtubule polymerization and subsequently leads a host of deleterious 

physiological consequences such as impaired glucose uptake, sterility, and reduced ATP 

production. While these drugs are generally effective, resistance to these widely distributed 

and commonly used medications is making it much more difficult to adequately treat 

patients in areas where reinfection is likely. Thus, it is important reevaluate treatment 

strategies and develop novel broad-spectrum therapeutics in order to meet the current 

unmet medical needs of patients suffering from the debilitating consequences of chronic 

helminth infection.  

 In the context of a pathogenic nematode infection, the fitness defects caused by 

uncontrolled immune activation, could be harnessed to develop novel targeted treatment 

strategies. Interestingly, OLRN-1 contains two putative transmembrane domains, 

suggesting that it is a membrane bound surface receptor, making it a promising candidate 

drug target. If the immuno-regulatory role of OLRN-1 is in fact ligand-dependent as 

structural analyses suggest, it may be possible to pharmacologically inhibit OLRN-1 in 

parasitic nematodes in order to induce aberrant immune hyperactivation. Fitness defects 

caused by OLRN-1-dependent immune mis-regulation would most likely severely reduce 

intestinal worm burdens and fecal egg counts in infected hosts, thus increasing the chance 

that chronic infections can be properly cleared. As helminth infections continue to be a 

major public health emergency in many developing nations, continuing to take advantage 

of the genetic tractability of C. elegans to identify novel nematode-specific drug targets 

such as OLRN-1, will provide patients with an increase in alternative treatment option 
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3.6 Conclusion 
 

The work presented in this thesis enhances our understanding of how the nervous 

system plays a key role in the modulation of immune defenses within the intestine, and 

demonstrates that food preference, chemotaxis, development and immune regulation in the 

nematode Caenorhabditis elegans are co-regulated processes that function together to 

ensure organismal survival. These findings demonstrate how simplistic model organisms 

can be utilized to tease apart important biological systems that have direct relevance to 

human health. The mechanism of immune regulation that I have described contributes to a 

growing body of evidence that suggests the nervous system plays a vital role in the 

maintenance of immune homeostasis.   
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Appendix I: The nuclear hormone receptor NHR-

86 controls anti-pathogen responses in C. elegans 
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Abstract 
 
 Nuclear hormone receptors (NHRs) are ligand-gated transcription factors that 

control adaptive host responses following recognition of specific endogenous or exogenous 

ligands. Although NHRs have expanded dramatically in C. elegans compared to other 

metazoans, the biological function of only a few of these genes has been characterized in 

detail. Here, we demonstrate that an NHR can activate an anti-pathogen transcriptional 

program. Using genetic epistasis experiments, transcriptome profiling analyses and 

chromatin immunoprecipitation-sequencing, we show that, in the presence of an 

immunostimulatory small molecule, NHR-86 binds to the promoters of immune effectors 

to activate their transcription. NHR-86 is not required for resistance to the bacterial 

pathogen Pseudomonas aeruginosa at baseline, but activation of NHR-86 by this 

compound drives a transcriptional program that provides protection against this pathogen. 

Interestingly, NHR-86 targets immune effectors whose basal regulation requires the 

canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions 

independently of PMK-1 and modulates the transcription of these infection response genes 

directly. These findings characterize a new transcriptional regulator in C. elegans that can 

induce a protective host response towards a bacterial pathogen. 

 

Introduction 
 
 Nuclear hormone receptors (NHRs) are transcription factors that regulate a number 

of key biological processes following recognition of specific exogenous or endogenous 

ligands. Interestingly, the genomes of Caenorhabditis species contain a large number of 
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NHRs compared to other metazoans (Sluder et al., 1999). 284 NHRs are present in C. 

elegans, whereas Drosophila and humans have only 21 and 48, respectively (Taubert et al., 

2011). The marked expansion of NHRs suggests that these proteins play particularly 

important roles in nematode physiology (Arda et al., 2010; Taubert et al., 2011); however, 

only a very small minority of C. elegans NHRs have been characterized in detail (Taubert 

et al., 2011). Like other metazoans, C. elegans rely on inducible host defense mechanisms 

during infection with bacterial pathogens (Cohen & Troemel, 2015; Ewbank & Pujol, 

2016; Peterson & Pukkila-Worley, 2018; Pukkila-Worley & Ausubel, 2012b). The 

mechanisms that engage these immune defenses are not completely understood. 

Considering their roles as intracellular sensors of specific ligands, we hypothesized that 

NHRs function in innate immune activation in C. elegans. However, forward genetic 

screens did not previously identify an NHR that is necessary for pathogen resistance (D. 

H. Kim et al., 2002; Shivers et al., 2010). We, therefore, designed a genetic screen to 

determine if an NHR could activate protective immune defenses in C. elegans. 

Utilizing a potent immunostimulatory small molecule as a chemical probe, we 

identified NHR-86 and showed that it drives a transcriptional response that protects C. 

elegans from infection with the bacterial pathogen Pseudomonas aeruginosa. NHR-86 is 

a homolog of mammalian hepatocyte nuclear factor 4 (HNF4), an NHR that has been 

implicated in the pathogenesis of inflammatory bowel disease (Ahn et al., 2008; 

Consortium et al., 2009; Sommeren et al., 2010). We show that, in the presence of an 

immunostimulatory small molecule, NHR-86 induces innate immune defenses by binding 

to the promoters of immune effectors, in a manner that does not require the canonical p38 
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MAPK PMK-1 pathway. In this context, PMK-1 sets the basal expression of innate 

immune response genes, but is dispensable for their induction by NHR-86. These data 

demonstrate a new mechanism by which immune defenses are engaged to protect the worm 

and raise the possibility that the expansion of the NHR family in C. elegans may have been 

fueled, at least in part, by the roles of these proteins in the activation of host defense 

responses. 

 

Results 

 
An RNAi screen identifies a role for the nuclear hormone receptor nhr-86 in the induction 

of C. elegans immune effectors 

 To determine if an NHR can induce protective immune responses, 258 of the 284 

NHR genes in the C. elegans genome were screened by RNAi using the C. elegans Pirg-

4(F08G5.6)::GFP transcriptional immune reporter and the immunostimulatory xenobiotic 

R24 (MacNeil et al., 2015). R24 (also referred to as RPW-24) was originally identified in 

a screen of 37,214 small molecules for new anti-infective compounds(Moy et al., 2009). 

This molecule robustly activates innate immune defenses and protects nematodes infected 

with bacterial pathogens (Cheesman et al., 2016; Peterson & Pukkila-Worley, 2018; 

Pukkila-Worley et al., 2012, 2014). For this screen, the Pirg-4::GFP transcriptional 

reporter was chosen as a convenient readout of immune activation. IRG-4 

(infection response gene-4) contains a CUB-like domain, a group of secreted proteins that 

are postulated to play a role in host defense (Troemel et al., 2006). Basal levels of irg-
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4 transcription are controlled by the p38 MAPK PMK-1 pathway (Troemel et al., 2006). 

This gene is induced during infection by multiple bacterial pathogens, 

including P. aeruginosa, and by the small molecule R24 (Bolz et al., 2010; Cheesman et 

al., 2016; Engelmann et al., 2011; S.-H. Lee et al., 2013; Pukkila-Worley et al., 2012, 2014; 

Troemel et al., 2006; Wong et al., 2007). RNAi-mediated knockdown of ten NHRs partially 

affected the R24-mediated induction of Pirg-4::GFP by R24 (S1 Table), but only one NHR 

(nhr-86) completely abrogated the upregulation of this immune reporter (Figure 1A). 
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Figure 1. An RNAi screen identifies a role for the nuclear hormone receptor nhr-86 in the induction 
of C. elegans immune effectors. (A) C. elegans carrying either the Pirg-4(F08G5.6)::GFP or the Pirg-
5(F35E12.5)::GFP immune reporter of the indicated genotypes were transferred at the L4 stage to media 
supplemented with either R24 or the solvent control (1% DMSO) for approximately 18 hours. Red 
pharyngeal expression is the Pmyo-2::mCherry co-injection marker, which confirms the presence of the Pirg-
4::GFP transgene. Presence of the Pirg-5::GFP transgene was confirmed by assaying for the Rol phenotype. 
Photographs were acquired using the same imaging conditions for each immune reporter. (B) Model of 
the nhr-86 gene. Blue squares are exons. Black lines show the locations of the deletions in each of the nhr-
86 mutants. (C) The expression of the C. elegans immune effector genes irg-4, irg-5 and irg-6 (C32H11.1) 
were analyzed by qRT-PCR in wild-type animals and in two different nhr-86 loss-of-function mutants 
(tm2590 and ums12), each exposed to either R24 or control for approximately 18 hours. Data for irg-6 is 
shown in S1B Fig. Data are the average of four independent replicates, each normalized to a control gene 
with error bars representing SEM. Data are presented as the value relative to the average expression from all 
replicates of the indicated gene in the baseline condition (wild-type animals exposed to control). The 
difference in induction of irg-4, irg-5 and irg-6 by R24 in wild-type animals compared to each of the 
two nhr-86 mutant strains is significant (**** p<0.0001 by 2-way ANOVA with Bonferroni multiple 
comparisons test). 
 
 

We confirmed the results of the nhr-86(RNAi) experiment using several 

approaches. The previously characterized null allele nhr-86(tm2590), which contains a 172 

bp deletion that removes 33 bp in exon 4 of nhr-86, suppressed Pirg-4::GFP induct(Arda 

et al., 2010)1A and 1C) (Arda et al., 2010). CRISPR-Cas9 was used to generate a clean 

deletion of nhr-86 [nhr-86(ums12)] (Figure 1B). ums12 is a 5.5 kb deletion that removes 

nearly all of the nhr-86 coding region, which caused a marked reduction in the nhr-

86 transcript (S1A Figure). The nhr-86(ums12) mutation fully suppressed the induction 

of Pirg-4::GFP by R24 (Figure 1A and 1C). 

 In addition to irg-4, nhr-86 is required for the R24-dependent transcriptional 

upregulation of two additional immune effectors that contain CUB-like domains, irg-

5 (F35E12.5) and irg-6 (C32H11.1) (Figures 1 and S1B). Like irg-4, irg-5 and irg-6 are 

induced by several different bacterial pathogens, require the p38 MAPK PMK-1 pathway 
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for their basal transcriptional levels, and are induced in accordance with the virulence 

potential of the pathogen (Bolz et al., 2010; Engelmann et al., 2011; Gravato-Nobre et al., 

2005; S.-H. Lee et al., 2013; Pukkila-Worley et al., 2014; Troemel et al., 2006; Wong et 

al., 2007). R24-mediated induction of the Pirg-5::GFP transgene was abrogated by nhr-

86(RNAi) and in the nhr-86(tm2590) background (Figure 1A). In addition, qRT-PCR 

of irg-5 and irg-6 showed that nhr-86 loss-of-function mutations suppress induction by 

R24 (Figures 1C and S1B). 

 Interestingly, RNAi-mediated knockdown of irg-4 renders worms hyper-

susceptible to killing by P. aeruginosa (Nandakumar & Tan, 2008; Shapira et al., 2006). 

Importantly, irg-4 knockdown does not shorten the lifespan of nematodes growing 

on E. coli OP50, the normal laboratory food source, nor does its knockdown cause 

susceptibility to other stressors (Nandakumar & Tan, 2008; Shapira et al., 2006). We 

confirmed these observations and also found that irg-5(RNAi) and irg-6(RNAi) animals are 

more susceptible to killing by P. aeruginosa (S1C Figure). As with irg-4(RNAi), 

knockdown of irg-5 or irg-6 did not shorten the lifespan of C. elegans growing 

on E. coli OP50 (S1D Figure). Thus, nhr-86 drives the induction of at least three innate 

immune effectors that confer resistance to P. aeruginosa infection. 

 

nhr-86 activates the transcription of innate immune response genes 

 To define the genes that are dependent on nhr-86 for their transcription, we 

performed mRNA-sequencing. We compared the mRNA expression profiles of wild-type 

animals and two different nhr-86 loss-of-function alleles (tm2590 and ums12), each 
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exposed to the immunostimulatory molecule R24 or mock treatment. Exposure to R24 

caused the induction of 391 genes, which (as in previous studies) were enriched for innate 

immune response and xenobiotic detoxification genes (Cheesman et al., 2016; Pukkila-

Worley et al., 2012, 2014). The upregulation of 147 of these genes in the nhr-

86(tm2590) mutants and 205 genes in the nhr-86(ums12) mutants were significantly 

attenuated (Figure 2A). Importantly, the mRNA expression patterns of both nhr-86 loss-

of-function mutants were tightly correlated (Figure 2B) with 142 misregulated genes in 

common between these two datasets (S2 Table). Analysis of these 142 nhr-86-dependent 

genes revealed a significant enrichment of innate immune genes and those involved in the 

defense response to bacterial pathogens (Figure 2A and 2C). Included among these nhr-

86-dependent genes are the representative immune effectors irg-4, irg-5, irg-6, mul-

1(F49F1.6) and drd-50(F49F1.1) (Fig 2A). mul-1 and drd-50 are induced during infection 

with multiple bacterial pathogens, including P. aeruginosa (Pukkila-

Worley:2014,Troemel:2006,Wong:2007,Bolz:2010,Engelmann:2011,Lee:2013,Gravato-

Nobre:2005)  
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Figure 2. nhr-86 activates the transcription of innate immune response genes. (A) All data from the 
mRNA-seq experiment are presented on scatter plots. Genes that were differentially regulated upon R24 
treatment in wild-type animals are shown in black (Fold change> 2, PPEE<0.05). These same genes are also 
highlighted in black in the nhr-86(tm2590) and nhr-86(ums12) scatter plots. Genes involved in innate 
immunity by Gene Ontology (GO) term are highlighted in red. (B) Pearson correlation coefficients are 



 

 

101 

presented for all samples in the mRNA-seq experiment. (C) Gene ontology enrichment of the nhr-86-
dependent, R24-induced genes identified in the mRNA-seq experiment are shown. (D) Results of NanoString 
nCounter gene expression analysis for 118 C. elegans genes performed on wild-type and nhr-
86(tm2590) animals exposed to either R24 or control. The 28 genes that were induced 5-fold or greater in 
wild-type animals by R24 are presented. Data are the average of three replicates, each of which was 
normalized to three control genes, with error bars representing standard deviation and are presented as the 
value relative to the average expression from the replicates of the indicated gene in the baseline condition 
(wild-type animals exposed to control). * p<0.05 by student’s t-test for the comparison of the R24-induced 
conditions. 
 

To confirm the results of our mRNA-seq data, we used a NanoString codeset to 

examine the expression of 118 innate immune and stress response genes in biological 

replicate RNA samples from wild-type and nhr-86(tm2590) animals (Figure 2D). From the 

NanoString codeset, we identified 28 genes induced by R24, 23 of which were pathogen-

response genes. Of the 23 pathogen-response genes, we identified 22 that are dependent 

on nhr-86 for their induction. The NanoString experiment also confirmed the observation 

in the mRNA-seq experiment that nhr-86 is not required for the induction of all R24-

induced genes (Figure 2A and 2D). Interestingly, many of these genes that are upregulated 

by R24 in a manner independent of nhr-86 are cytochrome P450s, which are involved in 

the detoxification of xenobiotics (Figure 2D and S2 Table). Thus, nhr-86 is required for 

the upregulation of only a specific subset of the R24-induced genes, a group that is strongly 

enriched for innate immune effectors (Figure 2C). 

Interestingly, examination of the mRNA-seq profiles of C. elegans that were not 

exposed to compound (i.e., normal growth conditions or basal expression) revealed that the 

expression of 302 genes were significantly lower in the nhr-86 loss-of-function mutants 

compared to wild-type animals (>2-fold change, PPEE<0.05) and only 11 of these genes 

were differentially regulated more than 4-fold (PPEE<0.05). Only 6 of these genes were 
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among the 142 genes that required nhr-86 for their induction by R24. Comparison of the 

basal expression of irg-4, irg-5 and irg-6 in the two nhr-86 loss-of-function alleles with 

wild-type animals by qRT-PCR confirmed this observation (Figure 1C and S1B Figure). 

Thus, while nhr-86 is necessary for the transcriptional induction of genes and innate 

immune effectors in particular, it is largely dispensable for their basal regulation. 

 

NHR-86 binds to the promoters of innate immune genes to drive their transcription 
 
 To determine the direct targets of NHR-86 during R24 exposure, we performed 

chromatin immunoprecipitation-sequencing (ChIP-seq). Of the 142 genes that are induced 

by R24 in an nhr-86-dependent manner, NHR-86 bound to the promoters of 32 of these 

genes following treatment with R24 compared to control (Figure 3A and S3 Table). All but 

one of these 32 genes are induced during infection with at least one bacterial pathogen, 

including 14 genes that are upregulated during infection with P. aeruginosa (S3 Table). 

Among the immune effectors whose transcription is directly regulated by NHR-86 are irg-

4 (Figure 3B), irg-5 (Figure 3C), mul-1 (Figure 3D), drd-50 (Figure 3E) and irg-6 (S3 

Table). The ChIP-seq experiment was performed with a strain containing a GFP-tagged 

NHR-86 protein (NHR-86::GFP) that has been previously characterized (Arda et al., 2010). 

The induction of irg-4 by R24 was restored in nhr-86(tm2590) mutants, which contained 

this NHR-86::GFP construct (S2A Figure). 
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Figure 3. NHR-86 binds to the promoters of innate immune genes to drive their transcription. (A) Venn 
diagram showing the number of nhr-86-dependent, R24-induced genes in the mRNA-seq experiment, the 
genes whose promoters were bound by NHR-86 following R24 treatment in the ChIP-seq experiment, and 
the overlap between these datasets. The overlap between these datasets is significantly more than is expected 
by chance alone (1.1 gene overlap expected by chance, hypergeometric p-value = 2x10-39). ChIP-seq profiles, 
mRNA-seq profiles and confirmatory ChIP-PCR are presented for the representative immune effectors irg-
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4 (B), irg-5 (C), mul-1 (F49F1.6) (D) and drd-50 (F49F1.1) (E) in animals of the indicated genotype 
exposed to R24 or the control. The y-axis is the number of reads (log2). A gene model shows the location of 
the exons (blue) of the indicated genes. ChIP was performed with an anti-GFP antibody in C. elegans wild-
type and transgenic NHR-86::GFP animals. Final set of peaks were called if the difference in intensity values 
of samples had a significance level of p-value < 0.025 (see S3 Table) for the indicated comparison. In the 
ChIP-PCR data, the percent input for each condition was normalized to the abundance of a random intergenic 
region of chromosome four. ** p<0.01 and *** p<0.001 by 2-way ANOVA with Bonferroni multiple 
comparisons test for the indicated comparison. A region 200 bp upstream of irg-5 (C) and a random 
intergenic region on chromosome six (F) were not enriched by control or R24 treatment. Each data point in 
the ChIP-qPCR data is from an independent biological replicate. 
 

 ChIP followed by qPCR (ChIP-qPCR) was used to confirm that NHR-86 binds to 

the promoters of innate immune effectors following R24 treatment. Promoter regions 

associated with irg-4 (Figure 3B), irg-5 (Figure 3C), mul-1 (Figure 3D) and drd-

50 (Figure 3E) were significantly enriched following R24 treatment, but not in samples 

exposed to the solvent control. In addition, these promoter regions were not enriched in 

either control or R24-exposed wild-type animals, which do not express NHR-86::GFP that 

was used to immunoprecipitate promoter fragments. Binding of NHR-86 to the promoters 

of immune response genes upon R24 treatment was associated with a corresponding 

increase in mRNA transcript levels of these genes, which was entirely abrogated in 

both nhr-86 loss-of-function mutants (Figure 3B–3E). Importantly, a control region within 

the irg-5 promoter (Figure 3C) and a random intergenic region on chromosome VI (Figure 

3F) were not enriched in the ChIP-qPCR or ChIP-seq experiments. In addition, 110 genes 

were induced by R24 in an nhr-86-dependent manner, but NHR-86 did not bind to their 

promoters. Of note, NHR-86 is expressed in the nuclei of C. elegans intestinal epithelial 

cells (Arda et al., 2010) and promotes the induction of the innate immune effectors irg-
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4::GFP and irg-5::GFP in the intestine (Figure 1A), the tissue that directly interfaces with 

ingested pathogens. 

 A motif analysis was performed on the promoters bound by NHR-86::GFP to 

identify putative regulatory sequences. A single 15 bp sequence was strongly enriched in 

these promoters (E-value: 1.7e-003, S2C Figure). 15 of the 32 genes whose transcription 

were directly regulated by NHR-86 in the presence of R24 contain this 15 bp element in 

their promoters, including irg-4, irg-5 and mul-1 (S3 Table). However, only 3 of 172 genes 

that are induced by R24 independent of NHR-86 contain this 15 bp element. These data 

suggest that this 15 bp sequence may be a potential binding site for NHR-86. 

 Together, the mRNA-seq and ChIP-seq data demonstrate that, in the presence of an 

immunostimulatory molecule, NHR-86 engages the promoters of innate immune effector 

genes to drive their transcription. Under normal growth conditions, nhr-86 does not bind 

to the promoters of immune effectors (e.g., irg-4, irg-5, mul-1 and drd-50) and does not 

affect their basal expression. These data are the first demonstration of direct immune 

effector regulation by a nuclear hormone receptor in C. elegans. 

 

The immune response induced by nhr-86 protect a C. elegans from P. aeruginosa 

infection 

 To determine if nhr-86 induces a physiologically relevant transcriptional response, 

we compared the susceptibility of the nhr-86 loss-of-function mutants 

to P. aeruginosa infection following exposure to R24. R24 protects wild-type C. 

elegans during P. aeruginosa infection (Cheesman et al., 2016; Pukkila-Worley et al., 
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2012, 2014). Consistent with the key role of nhr-86 in driving the induction of innate 

immune defenses, nhr-86 loss-of-function mutants (tm2590 and ums12) significantly 

suppressed the pathogen-resistance phenotype of R24-exposed wild-type worms (Figure 

4A). Together, these data demonstrate that the defense response induced by nhr-

86 promotes host resistance to bacterial infection. 
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Figure 4. The immune response induced by nhr-86 protects C. elegans from P. aeruginosa infection. 
(A) P. aeruginosa infection assays of C. elegans wild-type, nhr-86(tm2590) and nhr-86(ums12) treated with 
R24 or 1% DMSO (control) are shown. The difference in susceptibility to P. aeruginosa between R24-
exposed wild-type and each of the mutant animals is significant (p<0.001 by the log-rank test). Data are 
representative of three trials. Sample sizes, mean lifespan, % lifespan extension conferred by R24 treatment 
in each background and p values for all trials are shown in S4A Table. Significance was determined using 
Kaplan-Meier survival curves and log-rank tests. (B) C. elegans carrying the Phsp-4::GFP reporter were 
exposed to the indicated RNAi bacteria and transferred at the L4 stage to media supplemented with either 
R24 or control for approximately 18 hours. Scale bar equals 100 μm. (C) qRT-PCR was used to measure the 
spliced (active) and total xbp-1 mRNA in animals of the indicated genotype exposed to R24 or control. 
Comparisons were calculated using 2-way ANOVA with Bonferroni multiple comparisons test and * p<0.05 
and ** p<0.0001. Data are the average of four independent replicates, each normalized to a control gene with 
error bars representing SEM. Data are presented as the value relative to the average expression from all 
replicates of the indicated gene in the baseline condition (wild-type animals exposed to control). 
 

 An alternate method of examining the physiological relevance of immune effector 

induction in C. elegans involves studying the effect of induced transcriptional responses 

on stress in the endoplasmic reticulum (ER). The induction of host immune effectors in C. 

elegans requires compensatory activation of the unfolded protein response (UPR) in the 

ER, presumably to handle the increase in proteins trafficking through this organelle 

(Richardson et al., 2010, 2011). Accordingly, R24 exposure caused the induction of Phsp-

4::GFP, a transcriptional reporter for the BiP/GRP78 homolog in C. elegans, which 

indicates UPR activation (Figure 4B). hsp-4 transcription is regulated by the transcription 

factor XBP-1, which is activated by the ER-transmembrane protein IRE-1 when unfolded 

proteins accumulate in the ER. IRE-1 has RNase activity, which upon activation, 

cleaves xbp-1 mRNA to change its reading frame and encode the active XBP-1 protein 

(Ron & Walter, 2007). We found that exposure to R24 increased the active, spliced form 

of xbp-1 (Figure 4C). Total xbp-1 mRNA was also increased following R24 treatment 

(Figure 4C). Interestingly, knockdown of nhr-86 suppressed Phsp-4::GFP induction 

(Figure 4B) and the accumulation of active xbp-1 (Figure 4C) following exposure to the 
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xenobiotic R24. In addition, animals deficient in nsy-1, the MAPKKK upstream of the p38 

MAPK pmk-1 (Figure 4B), and pmk-1 (S3A Figure), failed to induce the Phsp-

4::GFP following exposure to R24. pmk-1(km25) mutants abrogated the cleaving of xbp-

1 into its active form (Figure 4C). Thus, R24-mediated immune induction activates the 

UPR, in a manner dependent on nhr-86 and the p38 MAP pmk-1 pathway. 

 We considered the possibility that R24 is a direct poison of the ER. However, 

tunicamycin, a potent inducer of ER stress and the UPR, did not activate the immune 

reporter Pirg-4::GFP (S3B Figure). In addition, RNAi-mediated knockdown of nhr-86 did 

not suppress Phsp-4::GFP induction by tunicamycin (S3C Figure). Thus, ER stress itself 

does not lead to the induction of nhr-86-dependent innate immune responses, but rather 

occurs as a consequence of mobilizing this protective host response. These data are 

consistent with prior reports, which demonstrate that activation of the p38 MAPK pmk-

1 pathway is not dependent on IRE-1/XBP-1 (Richardson et al., 2010, 2011). Together, 

these data demonstrate that the immune response induced by nhr-86 following exposure to 

R24 is a physiologically relevant source of ER stress and provide further support for the 

conclusion that nhr-86 activates a pathogen-defense response involving secreted proteins. 

 In the absence of R24, C. elegans nhr-86 mutants are not more susceptible 

to P. aeruginosa infection than wild-type animals (Figure 4A). In addition, the induction of 

the innate immune effectors irg-5, irg-6 and irg-1 during P. aeruginosa infection is not 

attenuated in the nhr-86(ums12) mutant; however, the induction of irg-4 is significantly 

lower (S4 Figure). Given the marked expansion of the NHR family in C. elegans, NHRs, 

or potentially another mechanism, may function redundantly with NHR-86 to activate host 



 

 

109 

defense genes during P. aeruginosa infection. It is also possible that P. aeruginosa does not 

produce the ligand sensed by NHR-86. 

 

nhr-86 induces innate immune defenses independent of the p38 MAPK pmk-1 

The immunostimulatory molecule R24 upregulates innate immune effectors 

whose basal expression requires the p38 MAPK pmk-1 (Pukkila-Worley et al., 2012), a 

key signaling mediator in a pathway that is critically important for host defense against 

bacterial pathogens (D. H. Kim et al., 2002; Troemel et al., 2006). To determine if nhr-

86 and pmk-1 function in the same or distinct pathways in the transcriptional modulation 

of innate immune effector genes, we compared gene expression (Figures 5A and S5A) 

and pathogen resistance (Figure 5B) phenotypes of the pmk-1(km25) and nhr-

86(tm2590) single mutants with the pmk-1(km25); nhr-86(tm2590) double mutant. We 

previously observed that R24 can extend the lifespan of pmk-1(km25) mutant animals that 

are infected with P. aeruginosa [(Pukkila-Worley et al., 2012) and Figure 5B]. In 

addition, we found that pmk-1 is dispensable for the induction of a group of innate 

immune effectors, including irg-4, irg-5, mul-1 and drd-50 [(Pukkila-Worley et al., 

2012), see also Figures 5A and S5A]. However, because the basal level of expression of 

these four effectors is decreased in the pmk-1(km25) mutant, the absolute level of 

immune effector expression following exposure to R24 is markedly lower compared to 

controls (Figures 5A and S5A). The deficiency in the basal regulation of immune 

effectors in the pmk-1(km25) mutant contributes to the enhanced susceptibility of this 

mutant to P. aeruginosa infection in both naive and R24-treated animals (D. H. Kim et 
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al., 2002; Troemel et al., 2006) (Figure 5B). These data indicate that R24 drives the 

induction of a protective immune response independent of pmk-1. Consistent with this 

observation, exposure to R24 does not cause an increase in the percentage of active 

(phosphorylated) PMK-1 relative to total PMK-1 in wild-type or nhr-86(ums12) animals 

(Figure 5C and 5D). 

 

 

Figure 5. nhr-86 induces innate immune defenses independent of the p38 MAPK pmk-1. 
(A) The expression of the C. elegans immune effector genes irg-4, irg-5, drd-50, mul-1 and irg-6 were 
analyzed by qRT-PCR in wild-type animals, pmk-1(km25), nhr-86(tm2590), and pmk-1(km25); nhr-
86(tm2590) double mutants, each exposed to either R24 or the control for approximately 18 hours. Data 
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for drd-50, mul-1 and irg-6 are shown in S5A Figure. Data are the average of six independent replicates, each 
normalized to a control gene with error bars representing SEM. Data are presented as the value relative to 
the average expression from all replicates of the indicated gene in the baseline condition (wild-type animals 
exposed to control). The difference in induction of irg-4, irg-5, drd-50, mul-1 and irg-6 by R24 in wild-type 
animals compared to each of the mutant strains is significant (p<0.0001 by 2-way ANOVA with Bonferroni 
multiple comparisons test). There is no significant difference between the expression of these genes in pmk-
1(km25) animals exposed to control compared to either condition in the pmk-1(km25); nhr-
86(tm2590). (B) P. aeruginosa infection assays of C. elegans wild-type, pmk-1(km25), nhr-86(tm2590), 
and pmk-1(km25); nhr-86(tm2590), each exposed to control or R24, are shown. The difference in 
susceptibility to P. aeruginosa between control and R24-exposed wild-type and pmk-1(km25) animals is 
significant (p<0.001). There is no significant difference between control and R24-exposed nhr-
86(tm2590) and pmk-1(km25); nhr-86(tm2590) animals. Data are representative of three trials. Sample sizes, 
mean lifespan, % lifespan extension conferred by R24 treatment in each background and p values for all trials 
are shown in S4B Table. Significance was determined using Kaplan-Meier survival curves and log-rank 
tests. (C) Immunoblot analysis of lysates from L4 stage animals of the indicated genotype using antibodies 
that recognize the doubly phosphorylated TGY motif of PMK-1 (⍺-Active PMK-1), the total PMK-1 protein 
(⍺-Total PMK-1) and tubulin (⍺-Tubulin). The total PMK-1 antibody detects total, but not active 
(phosphorylated) PMK-1. (D) The relative intensity of active PMK-1 and total PMK-1 was quantified from 
three biological replicates and is expressed as the average ratio of active to total PMK-1, relative to wild-type 
control. Error bars report SEM. There is no significant difference (n.s.) between these conditions (2-way 
ANOVA with Bonferroni multiple comparisons test). 
 

The susceptibility of the pmk-1(km25); nhr-86(tm2590) double mutant 

to P. aeruginosa infection in the absence of R24 is identical to the pmk-1(km25) mutant, 

further suggesting that NHR-86 functions in an R24-dependent manner (Figure 5B). 

Importantly, the nhr-86(tm2590) allele suppressed the R24-mediated enhanced longevity 

in the pmk-1(km25) background (Figure 5B). Accordingly, the basal expression of irg-

4, irg-5, mul-1, drd-50 and irg-6 is reduced in the pmk-1(km25); nhr-86(tm2590) double 

mutant to the same level as the pmk-1(km25) mutant (Figures 5A and S5A). Importantly, 

the R24-mediated induction of these immune effectors in the pmk-1(km25) background is 

blocked by the nhr-86(tm2590) mutation (Figures 5A and S5A). 

 Of note, the induction of at least two cytochrome P450 xenobiotic detoxification 

genes by R24 is not dependent on either nhr-86 or pmk-1 (S5B Figure). These data further 
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support that nhr-86 is required for only a specific subset of the R24-induced genes (Figure 

2). 

 In summary, these genetic epistasis experiments support the model that, upon 

activation, NHR-86 traffics to the promoters of immune effectors to mount a protective 

immune response in a manner independent of the p38 MAPK pmk-1 pathway (Figure 6). 

In this context, a principal role of the p38 MAPK pmk-1 is to ensure basal resistance to 

pathogens by controlling the tonic expression of innate immune effectors, such as irg-

4, irg-5, mul-1 and drd-50. 

 

Figure 6. Model of NHR-86-mediated immune regulation in C. elegans. The basal expression of immune 
effectors such as irg-4, irg-5, mul-1 and drd-50 are ensured by p38 MAPK PMK-1. Activated NHR-86 
traffics to the promoters of these and other immune effectors to drive their induction and provide protection 
from bacterial infection. 
 

Discussion 
 
 This study extends the known functions of C. elegans NHRs to include the 

activation of anti-pathogen transcriptional responses. Following treatment with an 

immunostimulatory small molecule, NHR-86 directly activates innate immune effector 

transcription in a manner that promotes resistance to bacterial infection. ChIP-seq and 
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mRNA-seq revealed an enrichment for innate immune effectors among the transcriptional 

targets of NHR-86, including at least three genes, irg-4, irg-5 and irg-6, that are each 

required for normal resistance to P. aeruginosa infection. Consistent with this model, the 

induction of protective immune defenses by NHR-86 occurs independently of the p38 

MAPK pmk-1. In addition, in the absence of an immunostimulatory molecule, NHR-86 is 

not required for the basal regulation and is not at the promoters of immune effectors. 

Arda et al. proposed that NHRs, and NHR-86 in particular, organize modular gene 

regulatory networks to facilitate the rapid coordination of adaptive responses to 

intracellular ligands (Arda et al., 2010). Our data show that an anti-pathogen transcriptional 

response is one such adaptive response. 

 We previously demonstrated that a conserved component of the Mediator 

transcriptional regulatory complex, MDT-15/MED15, links detoxification and innate 

immune defenses in C. elegans (Pukkila-Worley et al., 2014). The Mediator complex is 

conserved from yeasts to humans and regulates transcription by physically interacting with 

both transcriptional regulators and RNA polymerase II (Conaway & Conaway, 2011; 

Malik & Roeder, 2010). Individual mediator subunits, particularly those like MDT-15, 

which are in the tail region of the complex, dictate the physical interactions with 

transcriptional regulators and play important roles in modulating specific transcriptional 

outputs (Conaway & Conaway, 2011; Malik & Roeder, 2010; Taubert et al., 2006, 2008). 

Like nhr-86, mdt-15 is required for the induction of immune effectors whose basal 

expression is dependent on the p38 MAPK PMK-1 pathway (Pukkila-Worley et al., 2014). 

In addition, MDT-15 functions downstream of the PMK-1 cascade to control the 
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expression of immune effectors (Pukkila-Worley et al., 2014). Notably, a subset of the 

immune effectors in mdt-15-deficient animals, including irg-4, irg-5, and drd-50 have 

reduced basal levels of expression [as in pmk-1(km25) mutants] and cannot be induced by 

the small molecule R24 (as in nhr-86 loss-of-function mutants). Importantly, NHR-86 is 

known to physically interact with MDT-15 (Arda et al., 2010). Thus, we hypothesize that 

MDT-15 and NHR-86 function together to drive the transcription of immune response 

genes, such as irg-4, irg-5 and drd-50. 

 The ligand that activates NHR-86 is not known. Indeed, it is possible that R24 or a 

metabolite derived from this compound is an activating ligand of NHR-86. However, it is 

important to note that not all R24-induced genes are dependent on nhr-86 for their 

upregulation. Alternatively, NHR-86 may detect a host-derived ligand that is associated 

with the toxic effects of R24 on nematode cells. R24 induces xenobiotic detoxification 

genes and shortens the lifespan of nematodes growing in standard laboratory conditions 

(Pukkila-Worley et al., 2012). C. elegans activates immune defenses following toxin-

mediated disruption of cellular homeostasis (Pukkila-Worley, 2016a). Thus, NHR-86 may 

function as part of a similar cellular surveillance mechanism, although this is not known. 

Notably, nhr-86 loss-of-function mutants are not more susceptible 

to P. aeruginosa infection at baseline. While nhr-86 is required for the induction of the 

immune effectors irg-5 and irg-6 by the immunostimulatory xenobiotic R24, it is 

dispensable for their induction during P. aeruginosa infection. Thus, it is possible 

that P. aeruginosa infection does not produce a ligand that is sensed by NHR-86 or there 

are redundant mechanisms engaged to activate C. elegans defenses during pseudomonal 
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infection. In either case, our data demonstrate that a C. elegans NHR can drive a protective 

transcriptional response towards a bacterial pathogen. These findings raise the possibility 

that NHRs provide a facile and evolutionarily adaptable mechanism to activate protective 

immune defenses in response to diverse ligands. 

 

Material and Methods 

 

C. elegans and bacterial strains 

C. elegans strains were maintained on standard nematode growth media plates 

with E. coli OP50 as a food source, as described (Brenner, 1974). The previously 

published C. elegans strains used in this study were: N2 Bristol, KU25 pmk-1(km25), 

AU306 agIs44 [Pirg-4::GFP::unc-54-3’UTR;Pmyo-2::mCherry], 

AY101 acIs101 [pDB09.1(Pirg-5::gfp); pRF4(rol-6(su1006)] (Bolz et al., 2010), 

SJ405 zcIs4 (Phsp-4::gfp)(Calfon et al., 2002), VL491 nhr-86(tm2590) (Arda et al., 2010), 

and VL648 unc-119(ed3); wwIs22 [Pnhr-86::nhr-86ORF::GFP unc-119(+)]  (Arda et al., 

2010)The strains developed in this study were: RPW137 nhr-86(ums12), RPW119 pmk-

1(km25);nhr-86(tm2590), RPW99 nhr-86(tm2590); agIs44, RPW106 nhr-

86(tm2590); acIs101, and RPW165 nhr-86(ums12); agIs44. Pseudomonas 

aeruginosa strain PA14 was used for all studies (Rahme et al., 1995). 
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C. elegans strain construction 
 

CRISPR/Cas9 was used to generate nhr-86(ums12) as described (Arribere et al., 

2014). Target sequences were selected on exons 1 and 6 of nhr-86. Forward and reverse 

oligonucleotides were designed to contain the target sequence and overhangs compatible 

with BsaI sites in plasmid pPP13, a modified version of pRB1017 (Arribere et al., 2014; J. 

D. Ward, 2014). Forward and reverse oligonucleotides were annealed and ligated into 

pPP13 cut with BsaI to create the gRNA plasmids. Plasmids were confirmed by 

sequencing. A DNA mixture of pDD162 (50 ng/L), the gRNA plasmids (25 ng/L each), 

pJA58 (50 ng/L) and the ssODN repair template for dpy-10(cn64) (20 ng/L) was prepared 

in injection buffer (20 mM potassium phosphate, 3 mM potassium citrate, 2% PEG, pH 

7.5) and injected into N2 worms. Mutations in the dpy-10 gene were used as a CRISPR co-

conversion marker. The F1 progeny were screened for Rol and Dpy phenotypes 3–4 days 

after injection and then for deletions in the nhr-86 coding region using PCR. The nhr-

86(ums12) mutant contains a 5539 bp deletion that spans from 17 bp upstream of the ATG 

to 30 bp before the stop codon with an insertion of 6 bp at the breakpoint. Primer sequences 

used for genotyping are listed in S5 Table. 

 

Feeding RNAi screen 
 

A previously described library containing RNAi clones corresponding to 258 of the 

284 NHRs in the C. elegans genome was used for this study (MacNeil et al., 2015). These 
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genes were screened for their ability to abrogate the induction of agIs44 by 70 μM R24, as 

described (Pukkila-Worley et al., 2014) 

 

C. elegans bacterial infection and other assays 
 

“Slow killing” P. aeruginosa infection experiments were performed as previously 

described (Cheesman et al., 2016; Tan et al., 1999). In all of these assays, the final 

concentration of DMSO was 1% and 70 μM R24 was used. Wild-type is either N2 

or agIs44. All pathogenesis and lifespan assays are representative of three biological 

replicates. Sample sizes, mean lifespan, % lifespan extension conferred by R24 treatment 

in each background (where applicable) and p values for all trials are shown in S4 Table. 

 

mRNA-seq, NanoString ncounter gene expression analyses and qRT-PCR 

Synchronized, L1 stage, hermaphrodites C. elegans of the indicated genotypes 

were grown to the L4/ young adult stage, transferred to assay plates, and incubated at 20°C 

overnight. 70 μM R24 or solvent control (DMSO, 1% final concentration) assay plates 

were prepared as described (Cheesman et al., 2016; Pukkila-Worley et al., 2012, 2014). 

RNA was isolated using TriReagent (Sigma-Aldrich), purified on a column (Qiagen), and 

analyzed by mRNA-seq using the BGISEQ-500 platform (BGI Americas Corp). mRNA-

seq data analysis was performed by BGI Americas Corp. Biological replicate RNA samples 

were analyzed using NanoString nCounter Gene Expression Analysis (NanoString 

Technologies) with a “codeset” designed by NanoString that contained probes for 118 C. 

elegans genes. The codeset has been described previously (Cheesman et al., 2016; Pukkila-
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Worley et al., 2014). Probe hybridization, data acquisition and analysis were performed 

according to instructions from NanoString with each RNA sample normalized to the 

control genes snb-1, ama-1 and act-1. For the qRT-PCR studies, RNA was reverse 

transcribed to cDNA using the RETROscript Kit (Life Technologies) and analyzed using 

a CFX1000 machine (Bio-Rad). The sequences of primers that were designed for this study 

are presented in S5 Table. Other primers were previously published (Estes et al., 2010; 

Richardson et al., 2010; Taubert et al., 2005; Troemel et al., 2006). All values were 

normalized against the control gene snb-1. Fold change was calculated using the Pfaffl 

method (Pfaffl, 2001). 

 

Immunoblot analyses 

C. elegans were prepared as described above to ensure that stage-matched, 

hermaphrodite animals at the young L4 larval stage were studied in each condition. Protein 

lysates were prepared as previously described (Pukkila-Worley et al., 2014) and probed 

with a 1:1000 dilution of an antibody that recognizes the doubly-phosphorylated TGY 

motif of PMK-1 (Promega Corporation). Monoclonal anti-α-tubulin antibody was used at 

a dilution of 1:1,000 (Sigma-Aldrich). A polyclonal antibody against the total PMK-1 

protein was raised using the peptide DFQKNVAFADEEEDEEKMES (PMK-1 amino 

acids 358 to 377) in a rabbit (Thermo Scientific Pierce Custom Antibody Services) and 

used at a dilution of 1:1000. We confirmed that the total PMK-1 antibody detects total, but 

not active (phosphorylated) PMK-1 (Figure 5C). Horseradish peroxidase (HRP)-

conjugated anti-rabbit (Cell Signaling Technology) and anti-mouse IgG secondary 
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antibodies (Abcam) were diluted 1:10,000 and used to detect the primary antibodies 

following the addition of ECL reagents (Thermo Fisher Scientific, Inc.), which were 

visualized using a BioRad ChemiDoc MP Imaging System. The band intensities were 

quantified using BioRad Image Lab software version 5.2.1, and the ratio of active 

phosphorylated PMK-1 to total PMK-1 was calculated with all samples normalized to the 

ratio of wild-type control animals. 

 

ChIP-qPCR, ChIP-seq and bioinformatics 

Chromatin immunoprecipitation was performed with a strain containing a GFP-

tagged NHR-86 protein (NHR-86::GFP) that has been previously characterized (Arda et 

al., 2010). nhr-86 transcript levels are 2.7-fold elevated in the NHR-86::GFP strain 

compared to wild-type (S2B Figure). ChIP was performed as previously described (Ercan 

et al., 2007; Amrita M Nargund et al., 2015) with modifications. Briefly, L4 synchronized, 

hermaphrodite C. elegans (wild-type and transgenic NHR-86::GFP animals) were exposed 

to “slow killing” plates (Tan et al., 1999) containing either DMSO (1%) or 70 μM R24 for 

approximately 18 hours. Animals were then collected and washed with 4°C M9 and 

phosphate-buffered saline to remove bacteria. Cross-linking of protein and DNA was 

performed in 2% formaldehyde for 30 minutes at room temperature. Cross-linking was 

quenched with 100 mM glycine, animals were washed in M9, resuspended in lysis buffer 

(50 mM Hepes–KOH pH 7.5, 300 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 0.1% 

(w/v) sodium deoxycholate, 0.5% (v/v) N-Lauroylsarcosine, and protease inhibitors) and 

lysed with a Teflon homogenizer. Lysates were then sonicated using a Bioruptor UCD-200 
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for 10 cycles (30 s on, 30 s off) to obtain 500–1000 bp DNA fragments. Sonicated lysates 

(2 mg) were pre-cleared with protein G Dynabeads (Invitrogen), 10% of lysate removed 

for input, and incubated with 5 μg anti-GFP antibody (Roche) overnight. Immune 

complexes were collected with protein G Dynabeads, washed, and eluted from beads. 

Cross-links were reversed at 65°C overnight and DNA fragments were purified with PCR 

purification columns (Qiagen). qPCR was performed on input and immunoprecipitated 

samples using primers designed around the transcription start site. All ChIP data are 

presented as percent input normalized to a random intragenic region on chromosome four. 

Primer sequences are available in S5 Table. 

ChIP-seq was performed by BGI Americas Corp. The raw sequencing data were 

first clipped for adaptor sequences and then mapped to the C. elegans genome (ce10, UC 

Santa Cruz) by the Burrows-Wheeler Aligner algorithm (BWA MEM, BWA version 

0.7.15). The output SAM files were processed and sorted with the Picard tools. The output 

mapping files (BAM files) were filtered with SAMtools to remove any read that had a 

mapping quality less than 10 (SAMtools view–b–q 10 input.bam > output.bam). Peaks 

were determined using MACS version 2.1 with the no-model parameter. The final set of 

peaks were called if the difference in intensity values of samples had a significance level 

of p-value < 0.025. 

To identify candidate motifs for NHR-86 binding, ChIP peaks that were located in 

promoter regions of genes were examined using the MEME motif analysis platform 

[Parameters: minw = 8, maxw = 25, in two modes (zoops & anr), significance threshold 

(E-value > = 1e-01), http://meme.sdsc.edu]. A background model is used by MEME to 
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calculate the log likelihood ratio and statistical significance of the motif. We set the 

following requirements: the most significant motif should exist in 50% of input sequences, 

and the genes containing the motif should have the largest overlap between ChIP-Seq and 

RNA-seq datasets. A single 15 bp motif was identified that met these criteria (E-value: 

1.7e-003, S2C Figure). 66 sites of 101 input sequences had this motif, including 15 of the 

32 genes that overlapped in the ChIP-Seq and RNA-seq datasets. 

 

Microscopy 

Nematodes were mounted onto agar pads, paralyzed with 10 mM levamisole 

(Sigma) and photographed using a Zeiss AXIO Imager Z2 microscope with a Zeiss 

Axiocam 506mono camera and Zen 2.3 (Zeiss) software. 

 

Statistical analyses 

Differences in survival of C. elegans in the P. aeruginosa pathogenesis assays 

were determined with the log-rank test using OASIS 2 as previously described (Han et al., 

2016). Data from one experiment that is representative of the replicates is shown. Other 

statistical tests, indicated in the Figure legends, were performed using Prism 7 (GraphPad 

Software). 
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Supplemental Figures 
 
 
 
 
 
 
 

 
 

   
S1 Fig: An RNAi screen identifies a role for the nuclear hormone receptor nhr-86 in 
the induction of C. elegans immune effectors. 
(A) qRT-PCR data of nhr-86 mRNA in the nhr-86(ums12) mutant. (B) qRT-PCR data 
of irg-6 as described in Fig 1. In A and B, data are the average of three or four 
independent replicates, respectively, each normalized to a control gene with error bars 
representing SEM. Data are presented as the value relative to the average expression from 
all replicates of the indicated gene in the baseline condition (wild-type animals exposed 
to control). (C) P. aeruginosa pathogenesis assay and (D) lifespan on E. coli OP50 of 
animals exposed to the indicated RNAi bacteria. Data are representative of three trials. 
Sample sizes, mean lifespan and p values for all trials are shown in S4C and S4D Table. 
Significance was determined using Kaplan-Meier survival curves and log-rank tests. 
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S2 Fig: NHR-86 binds to the promoters of innate immune genes to drive their 
transcription. 
qRT-PCR was used to measure (A) irg-4 and (B) nhr-86 in animals of the indicated 
genotypes. Data are the average of three independent replicates, each normalized to a 
control gene with error bars representing SEM. Data are presented as the value relative to 
the average expression from all replicates of the indicated gene in the baseline condition 
(wild-type animals exposed to control in A and wild-type in B). (C) The 15-bp sequence 
that was enriched in the promoters that were bound by NHR-86::GFP. 
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S3 Fig: The Immune response induced by nhr-86 protects C. elegans against P. 
aeruginosa infection. 
(A) Phsp-4::GFP, (B) Pirg-4::GFP and (C) Phsp-4::GFP animals were exposed to the indicated 
RNAi conditions and treated with DMSO (control) or 10 μg/mL tunicamycin (TC) 
overnight at 20°C and photographed. Red expression in Pirg-4::GFP animals is the Pmyo-
2::mCherry co-injection marker. Scale bar equals 100 μm. 
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S4 Fig: nhr-86(ums12) does not abrogate the induction of irg-1, irg-5 or irg-6 during 
P. aeruginosa infection 
qRT-PCR data of irg-1, irg-4, irg-5 and irg-6 in wild-type or nhr-86(ums12) animals 
exposed to E. coli or P. aeruginosa for 6 hours. * equals p<0.05 for the difference in 
expression of the indicated gene between wild-type and nhr-86(ums12) in 
the P. aeruginosa-exposed condition. All other differences were not significant. Data are 
presented relative to uninfected wild-type animals. 
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S5 Fig: nhr-86 induces innate immune defenses independent of the p38 MAPK pmk-
1. 
qRT-PCR data of drd-50, mul-1 and irg-6 (A), and cyp-35B2 and cyp-35A3 (B) as 
described in Fig 5A. 
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Supplemental Tables 
 
Supplemental tables referenced in this manuscript can be found by following the included 
links to the publisher’s website.  
 
Table S1: Genes identified in an RNAi screen for NHRs that control the induction of 
Pirg-4::GFP by R24. 
https://doi.org/10.1371/journal.pgen.1007935.s006 
 
Table S2: nhr-86-dependent genes from the mRNA-seq experiment. 
https://doi.org/10.1371/journal.pgen.1007935.s007 
 
Table S3: ChIP-seq data showing the promoters that were bound by NHR-86. 
https://doi.org/10.1371/journal.pgen.1007935.s008 
 
Table S4: Sample sizes, mean lifespan, % lifespan extension conferred by R24 
treatment in each background and p values for the C. elegans pathogenesis and 
lifespan assays. 
(A) Data for Fig 4A. (B) Data for Fig 5B. (C) Data for S1C Fig. (D) Data for S1D Fig. 
https://doi.org/10.1371/journal.pgen.1007935.s009 
 
Table S5: Primer sequences that were designed for this study. 
https://doi.org/10.1371/journal.pgen.1007935.s010 
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Appendix II: Measurements of Innate Immune 

Function in C. elegans 
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Abstract 

The microscopic nematode C. elegans has emerged as a powerful system to 

characterize evolutionarily ancient mechanisms of pathogen sensing, innate immune 

activation and protective host responses. Experimentally, C. elegans can be infected with 

a wide variety of human pathogens, as well as with natural pathogens of worms that were 

isolated from wild-caught nematodes. Here, we focus on an experimental model of 

bacterial pathogenesis that utilizes the human opportunistic bacterial pathogen 

Pseudomonas aeruginosa and present an algorithm that can be used to study mechanisms 

of immune function in nematodes. An initial comparison of the susceptibility of a C. 

elegans mutant to P. aeruginosa infection with its normal lifespan permits an 

understanding of a mutant’s effect on pathogen susceptibility in the context of potential 

pleotropic consequences on general worm fitness. Assessing the behavior of nematodes in 

the presence of P. aeruginosa can also help determine if a gene of interest modulates 

pathogen susceptibility by affecting the host’s ability to avoid a pathogen. In addition, 

quantification of the pathogen load in the C. elegans intestine during infection, 

characterization of immune effector transcription that are regulated by host defense 

pathways and an initial assessment of tissue specificity of immune gene function can refine 

hypotheses about the mechanism of action of a gene of interest. Together, these protocols 

offer one approach to characterize novel host defense mechanisms in a simple metazoan 

host. 
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Introduction 
 

In their natural habitats, the microscopic nematode Caenorhabditis elegans forage 

microorganisms within decomposing organic matter. As a result, their evolution has been 

shaped by interactions with pathogenic and nonpathogenic bacteria. For over two decades, 

researchers have exploited a wealth of genetic tools available in C. elegans to characterize 

the host defense mechanisms utilized by nematodes to survive challenge from pathogenic 

microbes. This effort has revealed that C. elegans mount inducible anti-pathogen defenses 

towards diverse pathogens, which involve the elaboration of secreted immune effectors, 

and also program behavioral avoidance responses to minimize exposure to pathogens 

(Cohen & Troemel, 2015; Ewbank & Pujol, 2016; D. H. Kim, 2018; Meisel & Kim, 2014; 

Pukkila-Worley & Ausubel, 2012b). Interestingly, detection of pathogens in these contexts 

involves surveillance of core host processes that are often disrupted during microbial 

infection (e.g. translation and mitochondrial respiration), monitoring for host damage 

associated with pathogen invasion,  and sensory nervous system activation by microbial 

molecules (Aballay, 2009; Cao et al., 2017; Dunbar et al., 2012; Hoffman & Aballay, 2019; 

Labed et al., 2018; McEwan et al., 2012; Meisel et al., 2014; Melo & Ruvkun, 2012; 

Pukkila-Worley, 2016b; Kirthi C. Reddy et al., 2016; Zugasti et al., 2014). Moreover, anti-

pathogen immune defenses are induced following physical damage to core cellular 

structures; as a host protective response after DNA damage and disruption of the ubiquitin 

proteasome system; and by a nuclear hormone receptor following activation by ligands in 

the chemical environment (Ermolaeva & Schumacher, 2014; Melo & Ruvkun, 2012; 

Peterson et al., 2019; Kirthi C. Reddy et al., 2016). These studies have revealed that 
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multiple biological processes are connected with pathogen defense mechanisms and have 

fueled interest in using genetic approaches in C. elegans to define new mechanisms of 

innate immune regulation. In this chapter, we aim to provide a framework for the 

experimental assessment of innate immune function in C. elegans by assimilating 

commonly-used protocols in the field. 

 In the laboratory, C. elegans can be infected with a variety of human pathogens, as 

well as with natural pathogens isolated from Pukkila-Worley & Ausubel 2012b; Tan et al. 

1999; Troemel et al. 2008; Troemel 2011(Pukkila-Worley & Ausubel, 2012b; Tan et al., 

1999; Troemel, 2011; Troemel et al., 2008). Here, we will focus on C. elegans 

experimental models that use the human opportunistic bacterial pathogen Pseudomonas 

aeruginosa, a widely-used assay that has been the subject of several published protocols 

(Conery et al., 2014; Kirienko et al., 2014; Powell & Ausubel, 2008). A C. elegans – P. 

aeruginosa pathogenesis assay can be used to determine if a gene of interest leads to 

enhanced susceptibility of C. elegans to bacterial infection when it is mutated or knocked 

down by RNAi (Tan et al., 1999; Troemel et al., 2006). Interpretation of a phenotype in C. 

elegans – P. aeruginosa pathogenesis assay should be made with an understanding of how 

the gene affects the longevity of C. elegans growing under standard laboratory conditions 

to assess pleiotropic effects of the mutant or gene knockdown on general nematode fitness. 

 An assessment of C. elegans behavior in the presence of pathogenic bacteria is an 

important next step to determine if a gene affects susceptibility to P. aeruginosa infection 

by modulating the ability of the host to avoid the pathogen or by modulating some aspect 

of the inducible immune  response (Aballay, 2009; Cao et al., 2017; J Sun et al., 2011).  
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Upon exposure to pathogenic food sources or noxious compounds, neuronal receptors 

induce programmed behavioral avoidance responses to minimize exposure to the insult 

(Aballay, 2009; Kumar et al., 2019; K. Lee & Mylonakis, 2017; J. Singh & Aballay, 2019; 

Zhang et al., 2005). Avoidance behaviors are both innately programmed and learned as the 

result of prior exposure to toxic stimuli (Cao & Aballay, 2016; Hoffman & Aballay, 2019; 

Zhang et al., 2005). One way to determine if a gene of interest modifies the behavior of 

nematodes is to perform a lawn occupancy assay whereby C. elegans are exposed to a small 

lawn of a pathogenic bacteria and their bChang et al. 2011; Styer et al. 2008; Sun et al. 

2011(Chang et al., 2011; Styer et al., 2008; J Sun et al., 2011). 

 Does a gene of interest affect intestinal colonization of the bacterial pathogen? 

Mutations in key immune defense pathways in C. elegans cause an increased burden of 

bacteria in the nematode intestine, presumably as a consequence of the failed immune 

response (D. H. Kim et al., 2002; Portal-Celhay et al., 2012). Alternatively, mutations can 

modify the ability of the host to tolerate infection or affect post-infection wound healing in 

a manner that does not modulate the burden of bacteria in the intestine (Cao et al., 2017; 

Head & Aballay, 2014). Measurements of bacterial colonization within the C. elegans 

intestine can help distinguish between these possibilities. 

 An important next step is to determine whether a gene of interest affects the 

function of known immune pathways. Multiple pathways operate in parallel in C. elegans 

to control protective host defenses during bacterial infection. Transgenic C. elegans strains 

that express green fluorescent protein under the control of a promoter for an innate immune 

effector, called transcriptional immune reporters, can provide a visual readout of host 
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defense activation (Cheesman et al., 2016; Estes et al., 2010; Irazoqui et al., 2010; Peterson 

et al., 2019; Pukkila-Worley et al., 2012). Assessing a panel of these immune reporters in 

a mutant background can help focus subsequent genetic epistasis analyses.  

 When it is established that a gene of interest affects host defense mechanisms 

towards P. aeruginosa, it is often useful to determine the tissues where gene function is 

necessary to modulate anti-pathogen defenses. Transgenic C. elegans strains in which the 

RNAi machinery has been reconstituted in specific tissues are available and can provide a 

useful starting point to assess the tissue-specific (Espelt et al., 2005; Melo & Ruvkun, 

2012). We discuss the benefits and pitfalls of this method. Together, these protocols offer 

an approach to assess immune gene function in C. elegans. 

 

Materials 

• Worm Pick: Carefully break off the tip of a Pasteur pipette just below the neck. Over a 

flame, use forceps to slowly insert a 2 inch-long segment of 90% Platinum/10% Iridium 

wire into the fractured end of the Pasteur pipette. Heat until the Pasteur pipette melts 

around the platinum wire, securing it in place. Once cooled, the wire tip can be hammered 

flat or pressed with jewelry pliers in order to increase its surface area. 

• 1-mm Silicon Carbide Beads 

• Streptomycin (2.5% w/v): Dissolve 1.25-gm streptomycin sulfate in 50-mL ddH2O. 

Filter sterilize and store in the dark at 4C 
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• Nystatin (50 x 10 mg/mL stocks): Suspend 500-mg Nystatin in 50-mL 70% EtOH. 

Aliquot into 1-mL tubes and store at -20C. Nystatin will precipitate out of the ethanol. 

Resuspend prior to use. 

• M9W (1 L): Dissolve 3-gm of KH2PO4, 6-gm of Na2HPO4, and 5-gm NaCl in 1-L of 

ddQ H2O. Autoclave and cool in a 55C water bath. Once solution has cooled, add 1-mL 

of filter sterilized 1M MgSO4. 

• 5-Fluoro-2′-deoxyuridine [FUDR] (50 x 10 mg/mL stocks): Dissolve 0.5-gm of 5-

Fluoro-2′-deoxyuridine in 50-mL ddQ H2O. Filter sterilize and aliquot into 1-mL tubes. 

• 5 mg/mL Cholesterol in Ethanol (50-mL): Dissolve 0.25-gm cholesterol in 50-mL of 

99.5% EtOH. Filter sterilize. 

• 1M Magnesium Sulfate (100-mL): Dissolve 12.04-gm MgSO4 in 100-mL of ddH2O. 

Autoclave.  

• 1M Calcium Chloride (100-mL): Dissolve 14.7-gm CaCl2 in 100-mL of ddH2O. 

Autoclave.  

• 2N NaOH (50-mL): Dissolve 4-gm NaOH in 50-mL of ddH2O. 

• 5M NaOH (50-mL): Dissolve 14.6-gm NaOH in 50-mL of ddH2O. 

• LB Broth (1 L): Dissolve 10-gm Bacto-Tryptone, 5-gm Bacto-Yeast extract, and 5-gm 

NaCl in 1 L of ddQ H2O. Autoclave. 

• LB Agar Plate Media (1 L): Dissolve 10-gm Bacto-Tryptone, 5-gm Bacto-Yeast 

Extract, 5-gm NaCl, 15-gm Bacto-Agar, and dispense 1.5-mL 2N NaOH in 1 L of ddQ 

H2O. Autoclave. Place media in a 55C water bath for 30 minutes to cool before using. 
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• “Slow Killing” Plate Media (1 L): Dissolve 3-gm NaCl, 3.5-gm Bacto-Peptone, and 

17-gm Bacto-Agar, in 1 L of ddH2O. Autoclave. Place media in a 55C water bath for 30 

minutes to cool. Once media is cool enough to be handled, add 1-mL 1M MgSO4, 1-mL 

1M CaCl2, 1-mL 5 mg/mL cholesterol in EtOH, and 25-mL 1M KPO4 buffer. Using a 

Unispense plate pourer or repeater pipette, pour media into the desired plates.  

• Nematode Growth Media Plates (1 L): Dissolve 3-gm NaCl, 2.5-gm Bacto-Peptone, 

and 17-gm Bacto-Agar, in 1 L of ddH2O. Autoclave. Place media in a 55C water bath for 

30 min to cool. Once media is cool enough to be handled, add 1-mL 1M MgSO4, 1-mL 

1M CaCl2, 1-mL 5 mg/mL cholesterol in EtOH, 25-mL 1M KPO4 Buffer, 7.5-mL 2.5% 

(w/v) Streptomycin, and 1-mL 10 mg/mL Nystatin. Using a Unispense plate pourer or 

repeater pipette, pour media into the desired plates.  

 

C. elegans Maintenance Plate Preparation 

 

NGM-OP50 Plate Preparation 

1. Inoculate a single colony of E. coli OP50 in LB broth + Streptomycin (10 ug/mL). 

Incubate the culture at 37C overnight while shaking continuously at 250 rpm. 

2. Spin resulting bacterial culture at 3000 x g for 10 minutes at 4C and pour off the 

supernatant. Ensure that the bacterial pellet is not disturbed. Resuspend bacterial pellet 

in appropriate volume of M9W so that the resulting OP50 concentration is 10x. Less 

concentrated OP5O can be used; however, worms may exhaust the food source and 

starve. 
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3. Spread between 100-500-µL of 10x OP50 onto the surface of 6-cm or 10-cm petri dishes 

containing NGM media, ensuring that the bacterial lawn does not reach the sides of the 

plates. Allow plates to dry completely before using. Seeded plates can be stored for 1-2 

weeks at 15C. 

 

P. aeruginosa PA14 Pathogenesis Assay Plate Preparation 

1. Inoculate one P. aeruginosa, strain PA14 colony in 5-mL LB broth. Incubate culture 

overnight (16 h maximum) at 37C while shaking at 250 rpm.  

2. Dry the P. aeruginosa PA14 plates uncovered in a biologic hood for 10 minutes 

3. Using a pipette, drop 10-µL of P. aeruginosa PA14 culture onto the center of Slow Kill 

(SK) plates. Carefully tip the plates from side to side in order to increase the surface area 

of the bacterial lawn, ensuring that the bacterial lawn does not reach the sides of the 

plates 

4. Incubate seeded P. aeruginosa PA14 plates at 37C for 24 h and then 24 h at 25C. 

 

C. elegans Maintenance and Synchronization 
 
Carry out all centrifugation steps at 3100 rpm unless otherwise specified.  

1. From NGM plates containing starved L1-stage C. elegans, remove a “chunk” of agar 

and place on a 6-cm or 10-cm NGM plate containing E. coli OP50, prepared as 

described above. Incubate plates at 20C until they reach the gravid adult stage 

(approximately three days). 
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2. Using a serological pipette, add 3-mL of M9W to each NGM plate and rinse worms off 

into 15-mL conical tubes (combine plates of the same condition into one tube). 

3. Pellet worms by spinning down tubes at 3100 rpm for 30 seconds. Remove supernatant 

until 500-µL liquid remains. 

4. Add 400-µL of ~8% bleach and 100-µL 5M NaOH into each tube and gently agitate by 

hand for 2-3 minutes. Check under a microscope to ensure that the carcasses have broken 

open and that eggs have been released. Do not expose eggs to concentrated bleach 

solution for more than 5 minutes. Quench the bleach by adding M9W up to 15-mL total 

volume.  

5. Centrifuge for 30 seconds. Aspirate supernatant down to egg pellet.  

6. Wash pellet with M9W 3-4 times. 

7. Resuspend purified eggs in 5-mL of M9W and place on a rocker overnight at room 

temperature to allow the eggs to hatch and arrest at the L1 stage. 

8. Drop approximately 200 L1-stage nematodes onto 6-cm NGM-OP50 plates and incubate 

at 20C until animals reach the L4 stage. Note: You may need to concentrate the egg 

isolation if the volume required to obtain 200 eggs is greater than 200 µL. Volumes of 

buffer added to plates larger than this may not dry completely. 

 

Pseudomonas aeruginosa PA14 Pathogenesis and C. elegans Lifespan Assays 
 
The P. aeruginosa PA14 pathogenesis assay described here is also referred to as the “slow 

killing” assay (Conery et al., 2014; Tan et al., 1999). In this assay, P. aeruginosa kills C. 
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elegans via an infection-like process that requires live bacteria and engages host defense 

mechanisms in the worm. 

 

P. aeruginosa PA14 Pathogenesis Assay Setup 
 
1. Prepare NGM-OP50 and P. aeruginosa PA14 pathogenesis assay plates as described in 

sections 3.1 and 3.2, respectively. 

2. Obtain synchronized populations of strains to be assessed as described in section 3. 

3. Spot the seeded P. aeruginosa PA14 plate with 4 10-µL drops of 10 mg/mL FUDR 

around the perimeter of the bacterial lawn (final concentration 40 µg/mL). Leave plates 

to dry at room temperature for 30 minutes to allow the FUDR to absorb into the plates. 

Adding FUDR prevents the hatching of progeny during the assay. 

4. Pick 50 C. elegans at the L4 stage to each of three separate P. aeruginosa PA14-seeded 

plates. Be careful not to injure the worms during assay setup. After animals are 

transferred to assay plates, ensure that residual OP50 is removed from the P. aeruginosa 

PA14-seeded plates. 

5. Incubate assay plates at 25C for the duration of the pathogenesis assay. 

 

Assay Scoring and Statistical Analyses 
 
1. Score assay twice daily, by counting the total number of live and dead animals on each 

assay plate. Animals may need to be prodded in order to determine whether they have 

succumbed to the infection. Remove all carcasses by picking them into a flame. 
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2. Calculate the cumulative number of dead worms at each time point for each condition. 

Subsequently determine the percent survival of each condition and plot this versus time. 

3. Mean Lifespan, Kaplan-Meier Estimator, and Log-rank test calculations can be 

performed by inputting survival data into the Online Application for Survival Analysis 

(OASIS) (Han et al., 2016). 

 

C. elegans Lifespan Assay Setup 
 
1. Prepare NGM-OP50 as described in sections 3.1. 

2. Obtain synchronized populations of strains to be assessed as described in section 3.3. 

3. From synchronized NGM-OP50 plates, pick 50 synchronized L4 animals of each 

condition to 3 separate freshly seeded NGM-OP50 plates that contain 40µg/mL FUDR). 

Be careful not to injure the worms during assay setup. FUDR is used in the C. elegans 

lifespan assays to mirror the conditions in the P. aeruginosa PA14 pathogenesis assays. 

4. Incubate assay plates at 20C for the duration of the lifespan assay. As lifespan assays 

typically take several weeks, it is advised to wrap assay plates in aluminum foil in order 

to limit contamination for the duration of the experiment.  

 

C. elegans Lifespan Assay Scoring and Statistical Analyses 
 
1. Score assay once daily by counting the total number of live and dead animals on each 

assay plate. Animals may need to be tapped on the head in order to determine whether 

they are alive. Remove all carcasses by picking them into a flame.  

2. Data processing and statistical analyses can be performed as described in section 4.1.2. 
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Lawn Occupancy Assay 

 

Assay Setup 

1. Prepare NGM-OP50 and P. aeruginosa assay plates as described in sections 3.1 and 3.2, 

respectively. 

2. Obtain synchronized populations of strains to be assessed as described in section 3.3 

3. From synchronized OP50-NGM plates, pick 50 synchronized L4 animals of each strain 

to three separate P. aeruginosa assay plates. Be careful not to injure the worms during 

assay setup. After animals are transferred to assay plates, ensure that residual OP50 is 

removed from the P. aeruginosa assay plates.  

4. Flip over assays plates and use a fine tip marker to carefully trace the perimeter of the 

pathogenic lawn.  

5. Incubate plates at 25C for the duration of the assay. 

 

Scoring and Statistical Analysis 
 
1. Score assay at several time points by counting the total number of animals that reside 

off and on the bacterial lawn (Figure 1). Typically, scoring at 4h, 8h, 16h, 24h, and 30h 

allows you to record sufficient data to understand the dynamics of behavioral avoidance 

to P. aeruginosa.      
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Intestinal Pseudomonal CFU Quantification 

 

Bacterial Isolation and Plating 

1. Prepare NGM-OP50 and P. aeruginosa PA14 pathogenesis assay plates as described in 

sections 3.1 and 3.2, respectively. 

2. Obtain synchronized populations of strains to be assessed as described in section 3.3. 

3. From synchronized OP50-NGM plates, pick 50 synchronized L4 animals of each strain 

to three separate P. aeruginosa PA14 pathogenesis assay plates. After animals are 

transferred to assay plates, ensure that residual OP50 is removed from the P. aeruginosa 

PA14-seeded plates. 

4. Incubate P. aeruginosa PA14-seeded plates at 25C overnight. 

5. Make bacterial isolation buffer by adding 300-mg tetramisole hydrochloride to 50-mL 

M9W. Vortex. Add 50-µL of 10% Triton X-100. 

6. Pick 10-20 L4 worms from P. aeruginosa PA14 plates to unseeded NGM plates (one 

plate per condition per replicate) and let them crawl around for 10 minutes to dislodge 

bacteria attached to cuticle.  

7. After 10 minutes, pick worms to another unseeded NGM plates and let them crawl 

around for 10 more minutes. 

8. Dispense 150-µL of bacterial isolation buffer into 1.5-mL tubes (1 tube per condition) 

9. Pick at minimum 10 L4 animals of each condition from unseeded NGM plates into each 

1.5-mL tube. 
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10. Important: Count the worms after transferring to ensure that you have an accurate worm 

count for each tube. 

11. Spin down worms at 3000 rpm for 30 seconds. Remove supernatant down to 50-µL. 

Add 1-mL M9W. Repeat wash steps 5 times. 

12. Perform one final wash. After last wash, transfer 200-µl of supernatant from each 

sample to clean Eppendorf tube before aspirating volume down to 100-µl. This aliquot 

will be used to assess the effectiveness of the wash steps at removing surface bacteria 

from the animals. 

13. Count worms and record the final number present in each tube. Add 80-µL of bacterial 

isolation buffer + 20-µL of 10% Trition. 

14. Add 400-mg (~ 0.5 mL mark) of 1.0-mm silicon carbide beads to 1.5-mL screw top 

Eppendorf tubes (1 tube per condition). 

15. Transfer animals and liquid to bead-filled tubes by pipetting and vortex for 1 minute to 

homogenize worms. Hold the tube vertically while vortexing to limit foam formation. 

16. Transfer foam and liquid to new tube. Try to remove as much liquid as possible to 

ensure all bacteria is collected. 

17. Spin tubes at 8000 rpm for 2 minutes to reduce foam that formed during 

homogenization. Vortex solution briefly to resuspend bacterial pellet. 

18. Perform three 1:5 serial dilutions of worm lysate for each sample in a 96 well plate. 

Dispense 60-µL of wash buffer (isolated form step 12) into row E and perform three 

1:5 serial dilutions. Refer to plate diagram below (Figure 2).  
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19. Plate 10-µl liquid from all wells onto agar plates. Tilt the plate and let the liquid spread 

down the plate. Incubate plates at 25C overnight. 

 

Intestinal CFU Calculations 
 
1. Count the number of colonies for each dilution under a dissecting microscope.  

2. Calculate CFUs/worm by multiplying the number of colonies for each lysate dilution by 

its respective dilution factor, followed by a factor of 20 (each plated well contained 10-

µL of the total 200-µL lysate volume) 

3. Divide the total CFU count by the number of worms counted in Step 13 

4. Perform the calculations on wells containing the isolated wash buffer (Step 12) for each 

condition and subtract this result from the result obtained from plating the worm lysate. 

This step ensures that bacteria that may have been attached to the cuticle are not counted.   

 

Utilizing Transcriptional Readouts to Examine Immune Pathway Function 
 
 Multiple pathways operate in parallel in C. elegans to promote host defense towards 

diverse pathogens. Understanding how putative immune regulators function together with 

these known host defense mechanisms can be challenging given the number of pathways 

that have been implicated. One approach to streamline this characterization is to examine 

the regulation of specific genes, which are known to be downstream of different host 

defense pathways in C. elegans. This approach can give an initial understanding of the 

mechanisms underlying immune misregulation in a particular mutant strain and can be 

accomplished using quantitative real time-PCR (qRT-PCR) to study the expression of these 
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genes upon pathogen exposure in mutant or RNAi-knockdown animals. Alternatively, 

transgenic, GFP-based transcriptional reporters, in which the promoter for an immune 

effector has been fused to GFP, can provide a visual readout of pathway regulation. In 

Table 1, we have included a list of genes and available transcriptional reporters that are 

regulated downstream of different pathways, which have been implicated in C. elegans 

immune defenses.   
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Table 1. Genes and transcriptional immune reporters that are regulated downstream of pathways 
that have been implicated in C. elegans host defense 

 

Pathway Implicated in C. elegans 
Immune Defense 

Selected Genes 
Downstream of 

Indicated 
Pathway 

Selected 
Transcriptional 

Immune 
Reporters 

References 

DBL-1/DAF-7 (TGFb) 

 
clec-66, clec-67, 

lys-1 
 

Pclec-67::GFP 
Psma-6::GFP 

(Alper et al., 2007; 
Kerry et al., 2006; 
Liang et al., 2007; 
Mallo et al., 2002; 
Mochii et al., 1999; 
Pujol, Zugasti, et al., 
2008; Roberts et al., 

2010) 

DAF-2/ DAF-16 (Insulin Signaling) 

 
lys-7, dod-22, 

nlp-31 
 

 
Plys-7::GFP 

Pdod-24::GFP 
Pnlp-31::GFP 

 

(Evans, Kawli, et 
al., 2008; Murphy et 
al., 2003; Nathoo et 
al., 2001; Ookuma 

et al., 2003) 

PMK-1 MAPK 
(basal regulation in the intestine) 

 
irg-4, irg-5, 

T24B8.5 
 

Pirg-4::GFP 
Pirg-5::GFP 

PT24B8.5::GFP 

(Cheesman et al., 
2016; Peterson et 
al., 2019; Pukkila-

Worley et al., 2014; 
Troemel et al., 

2006) 
 

PMK-1 MAPK 
(hypodermis) 

 

 
nlp-29, sta-2, elt-

3 
 

Pnlp-29::GFP 
Pelt-3::GFP 

(Dierking et al., 
2011; Pujol, 

Zugasti, et al., 2008) 

 
Wnt/ β-catenin BAR-1 

 

ilys-3, lys-5, 
clec-60 Pclec-60::GFP 

(Irazoqui et al., 
2008; Labed et al., 

2018) 

ZIP-2 
 

irg-1, irg-2 
 

Pirg-1::GFP (Estes et al., 2010) 

FSHR-1 

 
F01D5.5, clec-

67, irg-5 
 

 
Pirg-5::GFP 

Pclec-67::GFP 
 

(Miller et al., 2015; 
Powell et al., 2009) 

HLH-30 (TFEB) ilys-2, lys-3 lys-5 Pilys-2::GFP 
HLH-30::GFP 

(Visvikis et al., 
2014) 

 

SKN-1 (Nrf1) 
 

gst-4, gcn-1 
 

Pgst-4::GFP 
(Hoeven et al., 

2011; Miller et al., 
2015) 

ATFS-1 
Mitochondrial Unfolded Protein 

Response (UPRMT) 
hsp-6 Phsp-6::GFP (A M Nargund et 

al., 2012) 

Endoplasmic Reticulum Protein 
Response (UPRER) 

 
xbp-1 (activated 

splice form), 
hsp-4 

Phsp-4::GFP (Richardson et al., 
2010) 
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It is important to note that this is not an exhaustive list of immune effectors or host 

defense pathways in C. elegans, and some of the listed genes are regulated by more than 

one pathway. In addition, depending on the context and pathogen used, the transcription of 

the listed putative immune effectors can be induced in other ways. For example, upon 

activation with a chemical ligand, the nuclear hormone receptor NHR-86 traffics to the 

promoters of genes whose basal expression is ensured by the p38 MAPK PMK-1 pathway.  

NHR-86 drives the induction of these genes in a manner independent of the PMK-1 

immune pathway (Peterson et al., 2019).  In addition, many of the genes listed in the table 

are not induced during infection with P. aeruginosa, but are upregulated during infection 

with other pathogens. For example, clec-60 is important for defense against Staphylococcus 

aureus in a manner dependent on Wnt/ β-catenin BAR-1 signaling. (Irazoqui et al., 2008, 

2010). Therefore, we suggest that this list should be employed as a hypothesis-generating 

tool and as a prelude to further characterization of a new immune regulator with classic 

epistasis experiments, biochemical analyses of pathway activation and whole genome 

transcriptome profiling studies. 

 

An Initial Evaluation of Tissue Specificity in Immune Function 
 
 Innate immune defenses in C. elegans are controlled via tissue-autonomous 

mechanisms at sites of pathogen encounter, such as the intestine and hypodermis, and are 

also regulated tissue non-autonomously from neurons and the germline. One commonly-

used method for the initial examination of tissue specificity of gene function is to use a 

panel of transgenic C. elegans strains in which the RNAi machinery has been re-constituted 
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only in specific tissues, thereby permitting tissue-specific gene knockdown; however, an 

important caveat with this approach is discussed below. 

 We examined the ability of a panel of C. elegans strains that were engineered for 

tissue specific RNAi-mediated gene knockdown to perform RNAi in different tissues. We 

exposed these strains to E. coli RNAi-feeding bacteria that target genes, which confer 

visible phenotypes that are scorable under a dissecting microscope: RNAi-mediated 

knockdown of act-5, a gene required for intestinal development, causes developmental 

arrest; unc-22(RNAi), a gene expressed in body wall muscle, causes a twitching phenotype 

in levamisole; knockdown of bli-1 in the hypodermis causes blistering of the cuticle; and 

pos-1(RNAi), a gene expressed in the germline, prevents eggs from hatching (Table 2). We 

found that C. elegans strain MGH167, in which machinery essential for RNAi was 

reconstituted only in the intestine, demonstrated excellent tissue specificity in RNAi-

mediated gene knockdown with no detectable RNAi-mediated gene knockdown outside of 

the intestine (McEwan et al., 2016).  In contrast, RNAi in C. elegans strain VP303, which 

also reports intestinal specificity, occurs efficiently in the intestine and not in body wall 

muscle or the germline; however, 36% of VP303 animals exposed to bli-1(RNAi) had 

cuticle blistering. Likewise, RNAi in the C. elegans strain JM43 is primarily restricted to 

hypodermal cells, although a subset of animals showed evidence of some RNAi-mediated 

gene knockdown in the intestine (33%) or body-wall muscle (13%). These data indicate 

that results with C. elegans JM43 and VP303 strains should be interpreted with caution. 

For these reasons, it can be useful to confirm results with tissue-restricted RNAi strains by 
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generating mosaic C. elegans with a tissue-specific mutation in a given gene (Besseling & 

Bringmann, 2016) 
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Percent of animals with the phenotype associated with the indicated RNAi strain 
(total n counted) 

 Strains 

 

 
Wild-type 

 
N2 

 
MGH167 

 
sid-1(qt9); alxIs9 

[Pvha-6p::sid-
1::SL2::GFP] 

 
VP303 

 
rde-1(ne219); 

kbIs7 
[Pnhx2::rde1+ 
rol-6(su1006)] 

 

 
JM43 

 
rde-1(ne219); Is 
[Pwrt-2::rde1;  
Pmyo-2::rfp] 

 

Capable of RNAi 
in 

intestine, germline 
and hypodermis 

Designed to 
perform RNAi 

only in intestine 
(Melo & Ruvkun, 

2012) 

Designed to 
perform RNAi 

only in intestine 
(Melo & Ruvkun, 

2012) 

Designed to 
perform RNAi 

only in 
hypodermis 

(Espelt et al., 
2005) 

 
L4440(RNAi) 

Control vector 
 

0% 
(82) 

0% 
(96) 

0% 
(199) 

0% 
(151) 

act-5(RNAi) 
 

Affected tissue in act-5(RNAi): 
intestine 

Phenotype scored: 
developmental arrest 

100% 
(74) 

99% 
(70) 

100% 
(170) 

No arrest: 
67% 
(77) 

 
Intermediate 

Arrest: 
16% 
(18) 

 
N2-Like arrest: 

17% 
(20) 

 
unc-22(RNAi) 

 
Affected tissue in unc-22(RNAi): 

body wall muscle 
Phenotype scored: twitching in 

10mM levamisole 

100% 
(100) 

0% 
(100) 

0% 
(100) 

13% 
(100) 

 
bli-1(RNAi) 

 
Affected tissue in bli-1(RNAi): 

hypodermis 
Phenotype scored: blistered 

cuticle 
 

100% 
(97) 

0% 
(168) 

36% 
(168) 

100% 
(214) 

 
pos-1(RNAi) 

 
Affected tissue in pos-1(RNAi): 

germline 
Phenotype scored: >50 

unhatched eggs 
 

100% 
(10) 

0% 
(10) 

0% 
(10) 

20% 
(10) 

Table 2. Assessing the specificity of transgenic C. elegans engineered for tissue-restricted RNAi. 
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Experiments with tissue-restricted RNAi can help determine if expression of a gene 

is necessary in a given tissue for a particular immune-related phenotype (e.g. resistance to 

pathogen infection or induction of an immune effector). It is also important to determine if 

gene expression in a particular tissue is sufficient for the phenotype by generating 

transgenic C. elegans strains in which the gene of interest is only expressed in a particular 

tissue. Most commonly, this is accomplished by introducing an extrachromosomal array, 

which expresses the gene of interest under the control of a tissue-specific promoter, into a 

loss-of-function mutant and assays for complementation of the immune-related phenotype. 
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