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ABSTRACT 

Microglia, the resident macrophages of the central nervous system (CNS), 

are dynamic cells, constantly extending and retracting their processes as they 

contact and functionally regulate neurons and other glial cells. There is far less 

known about how microglia interact with the CNS vasculature, particularly under 

healthy steady-state conditions. Here, I provide the first extensive 

characterization of juxtavascular microglia in the healthy, postnatal brain and 

identify a molecular mechanism regulating the timing of these interactions during 

development.  Using the mouse cerebral cortex, I show that microglia are 

intimately associated with the vasculature in the CNS, directly contacting the 

basal lamina in vascular sites that are devoid of astrocyte endfeet.  I demonstrate 

a high percentage of microglia are associated with the vasculature during the first 

week of postnatal development, which is concomitant with a peak in microglial 

colonization of the cortex and recruitment to synapses. I find that as microglia 

colonize the cortex, juxtavascular microglia are highly motile along vessels and 

become largely stationary as the brain matures. 2-photon live imaging in adult 

mice reveals that these vascular-associated microglia in the mature brain are 

stable and stationary for several weeks. Further, a decrease in microglia motility 

along the vasculature is tightly correlated with the expansion of astrocyte endfeet 

along the vasculature. Finally, I provide evidence that the timing of these 

microglia-vascular interactions during development is regulated by the microglial 

fractalkine receptor (CX3CR1). Together, these data support a model by which 
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microglia use the vasculature as a scaffold to migrate and colonize the 

developing brain and the timing of these associations is modulated by CX3CR1. 

This migration along the vasculature becomes restricted as astrocyte vascular 

endfoot territory expands and, upon maturation, vascular-associated microglia 

become largely stationary.  
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CHAPTER 1:  GENERAL INTRODUCTION 

Microglia in the Healthy Central Nervous System 

Microglia, the resident immune cells and phagocytes of the central 

nervous system (CNS), were first described in the mammalian CNS by Pio del 

Rio Hortega nearly a century ago (Rio-Hortega 1932).  Since their discovery, the 

vast majority of studies have focused on their role in the diseased and injured 

CNS, in which they perform a broad range of functions such as shielding injury 

sites, phagocytosing cellular material, and releasing inflammatory signals to 

initiate and/or propagate the immune response (Wyss-coray and Mucke 2002; 

Napoli and Neumann 2009; Ransohoff and Perry 2009; Ransohoff and Cardona 

2010; Kettenmann et al. 2011; Sierra et al. 2013; Schafer, Lehrman, and Stevens 

2013). However, in recent years there has been a growing appreciation for the 

importance of microglia in the healthy CNS. Seminal 2-photon in vivo live 

imaging studies have demonstrated that “resting” microglia in the healthy, adult 

cerebral cortex are highly active, continuously extending and retracting their 

processes (Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 2005). 

These processes are frequently found in direct contact with neurons, synapses, 

and other glial cell, raising questions about what other CNS cell types microglia 

could be contacting in the healthy developing and adult brain (Schafer et al. 

2012; Tremblay, Lowery, and Majewska 2010; Cserép et al. 2020). Microglia are 

known to contact the brain vasculature, however, the vast majority of these 

studies have been in the context of disease where parenchymal microglia rapidly 
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associate with the brain vasculature following breakdown of the blood-brain 

barrier (BBB) (Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 2018). Far 

less is known about how microglia interact with the vasculature in the healthy 

brain. In this thesis, I investigate juxtavascular microglia through postnatal 

development and adulthood, explore a role for the vasculature in microglial 

colonization, and identify a molecular mechanism regulating the timing of these 

interactions during development. This work advances our understanding of 

juxtavascular microglia and lays the fundamental groundwork to investigate the 

function of these cells in the healthy and diseased brain.  

 

The origins of microglia 

 Unlike the vast majority of cells found in the CNS, microglia are of 

mesodermal origin. In rodents, a subset of CD45- c-kit+ erythromyeloid precursors 

use the blood circulation to travel from the embryonic yolk sac to the 

mesenchyme surrounding the neural tube beginning at embryonic day (E) 8 

(Alliot, Godin, and Pessac 1999; Kierdorf et al. 2013). Upon colonization of the 

mesenchyme, these microglial precursors downregulate c-kit, upregulate the 

fractalkine receptor (CX3CR1), and invade the neuroepithelium at E9.5 by 

crossing the pial surface and lateral ventricles (Kierdorf et al. 2013; Ginhoux et 

al. 2010; Navascués et al. 2000; Swinnen et al. 2013). The initial formation and 

survival of microglial precursors is dependent on cell survival factor 1 receptor 

(CSF1-R) signaling, the transcription factors PU.1 and interferon regulatory factor 
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8 (IRF8) (Kierdorf et al. 2013; Ginhoux et al. 2010; Erblich et al. 2011). Once 

established in the CNS, microglia then migrate and proliferate through the brain 

parenchyma in a rostral-to-caudal gradient to colonize the embryonic brain 

(Sorokin et al. 1992; Navascués et al. 2000; Swinnen et al. 2013; Alliot, Godin, 

and Pessac 1999; Perry, Hume, and Gordon 1985; Ashwell 1991). In humans, 

microglia enter and colonize the embryonic brain during early gestational weeks 

(GW) in a similar manner. Human amoeboid microglia precursors enter into the 

brain rudiment from the leptomeninges, the ventricular lumen, and the choroid 

plexus at GW4.5-5.5, then colonize in a radial and tangential manner towards the 

immature white matter, subplate layer, and cortical plate (Verney et al. 2010; 

Monier et al. 2007; Andjelkovic et al. 1998).  

In rodents, signaling mechanisms have been identified to regulate the 

initial infiltration of microglial precursors into the brain parenchyma, such as 

matrix metalloproteinases (MMPs), stromal cell derived factor 1 (SDF-1), and 

chemokine (C-X-C motif) ligand (CXCL) 12/ chemokine (C-X-C motif) receptor 

(CXCR) 4 signaling (Ginhoux et al. 2010; Arno et al. 2014; Ueno and Yamashita 

2014). However, far less is known about the mechanisms regulating microglial 

localization to the appropriate brain regions once they reach the parenchyma, 

particularly during postnatal development. Remarkably, during both rodent and 

human embryonic development, microglia are found localized to the brain 

vasculature, but these interactions have not been explored in the rodent 

postnatal brain (Verney et al. 2010; Monier et al. 2007; Fantin et al. 2010; 
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Smolders et al. 2017; Checchin et al. 2006). In Chapter II, I demonstrate that 

microglia are highly associated with the vasculature and migrate on blood 

vessels, concomitant with colonization of the postnatal brain. This work suggests 

a mechanism by which microglia use the vasculature to colonize the developing 

brain parenchyma, providing a foundation to investigate the precise molecular 

pathways regulating vascular-dependent microglial localization to the appropriate 

brain regions. Understanding how microglia colonize the brain will provide insight 

into several neurodevelopmental disorders, such as autism spectrum disorders 

(ASDs), where changes in microglial densities have been described (Edmonson, 

Ziats, and Rennert 2016; Morgan et al. 2010). 

 

Microglial interactions with synapses, neurons, and glia 

 Once established in the brain, microglia continually survey their local 

environment by extending and retracting their processes, making transient 

contacts with synapses, dendritic spines, neuronal cell bodies, and astrocytes 

(Wake et al. 2009; Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 

2005; Tremblay, Lowery, and Majewska 2010). Early in vivo 2-photon live 

imaging has revealed that microglial processes briefly contact synaptic elements 

in layers II-III of the somatosensory and visual cortices at a rate of ~1 structure 

per hour (Feng et al. 2000; Hirasawa et al. 2005; Wake et al. 2009). A more 

recent study used a combination of high-resolution 3D serial electron 

microscopy, with 2-photon transcranial imaging to attain a better spatial 



	 5	

resolution of microglial contacts with synapses and found that microglia in layer II 

of the visual cortex contacted dendritic spines, synaptic terminals, and synaptic 

clefts (Tremblay, Lowery, and Majewska 2010). Importantly, several studies have 

demonstrated that after microglial contact, dendritic spines often change in size 

or will appear in sites of microglia-synapse contact, suggesting that this contact 

may be key regulator of structural spine plasticity (Tremblay, Lowery, and 

Majewska 2010; Miyamoto et al. 2016; Weinhard et al. 2018). In addition to 

synapses and dendritic spines, microglia are found to make direct contacts with 

>90% of neuronal cell bodies in both the rodent and human brain (Cserép et al. 

2020). Neuronal cell body-microglia junctions sites have a specialized 

nanoarchitecture optimized for purinergic signaling (Cserép et al. 2020). As 

purinergic signaling is key for cell-to-cell communication between neurons and 

microglia, this suggests that microglia contacts at these junctions could monitor 

and protect neuronal functions (Davalos et al. 2005; Nimmerjahn, Kirchhoff, and 

Helmchen 2005; Cserép et al. 2020). Finally, in the cortex, but not other brain 

regions, a subset of microglia extend a single process that specifically associates 

and overlaps with the neuronal axon initial segment (AIS) (Baalman et al. 2015). 

Microglia-AIS interactions occur early in development, persist throughout 

adulthood, and are thought to play roles in healthy brain functions as these 

interactions are lost after brain injury (Baalman et al. 2015).  

In addition to neurons, microglia are found in direct contact with other glial 

cells, including astrocytes. Confocal microscopy studies reveal that microglia 
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make direct soma-soma contacts, as well as process-process interactions with 

astrocytes in the hippocampus (Jinno et al. 2007). Further ultrastructural analysis 

of these contact sites in the visual cortex demonstrates that microglial processes 

directly interact with astrocyte processes at synapses and changes in synaptic 

activity leads to changes to the percent contact between microglia and astrocytes 

(Tremblay, Lowery, and Majewska 2010). Given that both astrocytes and 

microglia play complementary roles in support of synapse formation and 

remodeling, by communicating directly through cytokines and other molecules, 

these contact sites at synapses are an ideal location for communication between 

microglia and astrocytes (Vainchtein and Molofsky 2020).   

It is well established that microglial processes are highly active and motile 

in the healthy brain, contacting several different CNS cell types and structures as 

they survey the parenchyma. However microglial contacts with the vasculature 

have yet to be explored in this context. In Chapter II, I determine that microglia 

somas contact the vasculature throughout the developing postnatal and adult 

brain. As microglial contacts with other cell types often lead to functional changes 

or are sites of communication, this data suggest that microglia may regulate, and 

directly communication, with the vasculature in the healthy brain.   

 

Microglial functions in the developing CNS 

 The developing CNS represents a dynamic period in the lifetime of an 

organism that requires coordination and communication amongst several 
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different cell types. The direct physical contacts that microglia make with 

neurons, synapses, and other glial cell places microglia in the unique position to 

play critical roles in CNS development (Schafer et al. 2012; Tremblay, Lowery, 

and Majewska 2010; Cserép et al. 2020). For example, microglia regulate 

neuronal cell numbers in the developing brain by releasing factors that promote 

the survival, proliferation, and maturation of neural progenitor cells (NPCs), as 

well as by engulfing dead or dying cells that have undergone normal programed 

cell death (NPCD) (Ferrer et al. 1990; Bessis et al. 2007). Specifically, mice 

deficient in the fractalkine receptor (CX3CR1), a chemokine receptor enriched in 

microglia, have significant increases in the numbers of apoptotic neurons in layer 

V of the postnatal cortex, which is attributed to reductions in insulin-growth factor 

1 (IGF-1) singling, a potent trophic factor for NPC survival (Ueno et al. 2013; Wolf 

et al. 2013; Mizutani et al. 2012; Nishiyori et al. 1998).  Moreover, in cultured rat 

cerebellar slices, microglia engulf dead or dying cells and pharmacological 

depletion of microglia results in reduced Purkinje neuron NPCD, suggesting 

microglia can actively initiate the cell death program (Martin-Teva et al. 2004).  

In addition to regulating neuronal cell numbers, microglial are critical 

regulators of synapse development and maturation. In the developing CNS, 

neurons initially form a crude synaptic wiring diagram. Through a neuronal 

activity-dependent manner, these synaptic connections are refined, whereby less 

active connections are eliminated and more active connections are maintained 

and strengthened (Katz and Shatz 1996; Hua and Smith 2004). Live imaging 
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studies have revealed that microglia can sense and respond to changes in 

neuronal activity, through neuronal activity-dependent release of adenosine 

triphosphate (ATP) (Dissing-Olesen et al. 2014; Davalos et al. 2005; 

Nimmerjahn, Kirchhoff, and Helmchen 2005).  Further, modulating neuronal 

activity by rearing mice in the dark and re-exposing them to light induces 

changes in the frequency and duration of microglial contact with synapses in the 

visual cortex, suggesting that microglia regulate synapse development through 

activity-dependent mechanisms (Tremblay, Lowery, and Majewska 2010; Wake 

et al. 2009).  Indeed, studies in the developing mouse retinogeniculate system 

have shown that microglia eliminate synaptic connections by engulfing a subset 

of immature, less active presynaptic inputs through complement mediated 

phagocytosis (Schafer et al. 2012). Further, microglia mediated synaptic 

remodeling occurs in response to sensory loss and dampened neuronal activity 

in the developing rodent barrel cortex (Gunner et al. 2019). In addition to 

regulating synapse development, microglia play a role in the maturation of 

synaptic connections. A transient reduction in microglia numbers in the 

hippocampus or barrel cortex, due to a genetic deletion of CX3CR1, results in 

delayed maturation of structural and functional synapses (Paolicelli et al. 2011; 

Hoshiko et al. 2012). These effects are attenuated in juvenile mice when 

microglial density in CX3CR1 deficient mice reaches wild-type levels. However, 

in adulthood, these mice display phenotypes associated with ASDs, including 

decreased functional brain connectivity, deficits in social interactions, and 
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increased repetitive behaviors (Zhan et al. 2014), suggesting a critical role for 

microglia in the development of mature functional neuronal circuits. 

Microglia also play a role in regulating non-neuronal cell development. In 

vitro evidence suggests that microglia-conditioned media promotes the survival 

and differentiation of cultured oligodendrocyte precursor cells (OPCs) into mature 

oligodendrocytes through secretion of IGF-1, nuclear factor-kappa B (NFκB), 

interleukin (IL)-β and IL-6 (Shigemoto-Mogami et al. 2014; Lu et al. 2013; 

O’Kusky and Ye 2012; Nicholas, Wing, and Compston 2001). Microglia have also 

been suggested to promote myelination by providing iron, a necessary co-factor 

for myelination, to oligodendrocytes (Clemente et al. 2013; X. Zhang et al. 2006; 

Cheepsunthorn, Palmer, and Connor 1998). Finally, it has been shown that 

microglia-conditioned media increases the differentiation of NPCs into astrocytes 

through IL-6 and leukemia inhibitory factor (LIF) (Nakanishi et al. 2007). While it 

is unknown if these mechanisms apply in vivo, microglia may have the potential 

to regulate the survival and differentiation of other glial cells. 

Microglial localization and direct contact with neurons, synapses, and 

other glial cells places microglia in an ideal position to regulate their development 

through engulfment and release of factors to promote cell survival and 

differentiation. In this thesis, I demonstrate that a high percentage of microglia 

are juxtavascular during CNS development. This raises the question, what role 

do juxtavascular microglia play at the vasculature? Evidence in the embryonic 

brain suggests that microglia play a role in promoting vascular branching (Fantin 
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et al. 2010).  Contrary to this, in Chapters II and III I demonstrate that delays in 

microglial localization to the vasculature do not result in changes to vascular 

density. Moreover, previous studies find that microglial depletion in the postnatal 

brain leads to no change in the vasculature (Parkhurst et al. 2013; Elmore et al. 

2014). Thus, a deeper understanding of juxtavascular microglia in the developing 

and healthy postnatal brain is required and will provide the groundwork to 

investigate the function of juxtavascular microglia in the healthy brain, which I 

explore in Chapter IV. 

 

The Brain Vasculature 

The brain vasculature consists of a multicellular unit, the neurovascular 

unit (NVU), which connects the brain parenchyma to the cerebral vasculature. 

Large arteries that penetrate from the subarachnoid space consist of endothelial 

cells, basal lamina, smooth muscle cells, perivascular macrophages, and 

astrocyte endfeet (McConnell et al. 2017).  As vessels dive deeper into the brain 

and become capillaries, smooth muscle cells are lost and pericyte coverage 

takes their place (Fig 1.1 A-B) (McConnell et al. 2017). Interactions between 

these NVU cell types is important for a variety of physiological processes such as 

angiogenesis, vessel maintenance and permeability, metabolic support, and 

regulation of blood flow (L. S. Brown et al. 2019; McConnell et al. 2017). While 

microglia are often described as a cellular compartment of the NVU, the precise 

spatial and functional relationship between microglia and the NVU remains an   
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Figure 1.1: The brain Vasculature. A. Large penetrating arteries enter the brain 
parenchyma from the subarachnoid space, which then branch into smaller 
arterioles and then form a dense capillary network. Penetrating arteries are 
distinguished from other vessels by the presence of smooth muscle cells. B. The 
cells that form the vasculature, together known as the neurovascular unit, consist 
of endothelial cells, pericytes, basal lamina, astrocyte, neurons, and microglia. 
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open question. In this thesis, I determine precisely where within the NVU 

microglia associate with vessels and explore a role for cells of the NVU in 

regulating microglial migration during brain colonization, advancing our 

understanding of the cellular components of the NVU and the role it plays in CNS 

development. 

 

NVU development  

 The development of the NVU begins via the process of vasculogenesis, 

whereby mesoderm-derived angioblasts invade the head region and merge to 

form the perineural vascular plexus (PNVP), a primitive vascular network that 

covers the entire surface of the neural tube at E7.5-8.5 (Hogan et al. 2004). 

Beginning at E9.5, nascent endothelial cells originating from the PNVP invade 

the neural tube, elongate toward the ventricular zone, form a series of lateral 

branches, and anastomose with adjacent vascular sprouts to produce a plexus of 

capillaries (Engelhardt 2003; Engelhardt and Liebner 2014; Saili et al. 2017). 

Pericytes, a mural cell that sits on the abluminal surface of the endothelial cell 

embedded within the basal lamina, associate with endothelial cells as the 

nascent vessels generate as early as E10 (Armulik et al. 2010; Bauer et al. 1993; 

Yamanishi et al. 2012; Daneman et al. 2010; Zlokovic 2008). Interactions 

between pericytes and endothelial cells are critical to form the BBB (Daneman et 

al. 2010; Armulik, Genové, and Betsholtz 2011; L. S. Brown et al. 2019). 

Astrocytes are also a key component of the NVU, however they do not appear in 
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the cortex until early postnatal development, when they extend their processes to 

form endfeet on developing vasculature (Daneman et al. 2010). These astrocyte 

endfeet ultimately surround and ensheath the majority of the vasculature by 

adulthood where they play roles in a variety of functions such as maintaining the 

BBB, providing metabolic support to neurons, and regulating blood flow (Abbott, 

Rönnbäck, and Hansson 2006; Kimelberg and Nedergaard 2010; Macvicar and 

Newman 2015). Once developed, the cells that make up the NVU create an 

important cellular barrier that tightly controls the microenvironment and the 

exchange of nutrients between the cerebral blood flow and the CNS.  

Previous work demonstrates that microglia colonize the brain precisely 

when nascent endothelial cells begin infiltrating the neuroepithelium, E9.5, and 

microglia are found associated with vessels during embryonic development, 

which is discussed in greater detail below (Ginhoux et al. 2010; Engelhardt 2003; 

Engelhardt and Liebner 2014; Saili et al. 2017; Fantin et al. 2010; Smolders et al. 

2017). Whether microglia are part of the developing NVU in the postnatal brain, 

and what cells types they associate with, remain open questions. In Chapter II, I 

demonstrate that microglia are juxtavascular in the healthy postnatal and adult 

brain and simultaneously contact the basal lamina and astrocyte endfeet across 

development. Additionally, I propose a mechanism by which astrocyte endfeet 

expansion may exclude juxtavascular microglia from contacting blood vessels. 

This work addresses a critical need to understand the cellular components of the 

NVU, as the NVU plays an essential role in brain homeostasis and becomes 
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dysfunctional in several neurodegenerative disorders (Zhao et al. 2018; 

Stankovic, Teodorczyk, and Ploen 2016; McConnell et al. 2017).  

 

The brain vasculature as a scaffold for cell migration 

 The development of the brain vasculature and the NVU is not only 

important for proper communication between the brain parenchyma and the 

cerebral blood flow, it also serves as a scaffold for migration of several different 

cell types in the healthy brain. In the embryonic brain, gamma-aminobutyric acid 

(GABA) inhibitory interneurons are associated with blood vessels as they migrate 

towards the cortex. During adult neurogenesis, subventricular zone (SVZ)-

derived neuroblasts migrate tangentially towards the olfactory bulb along blood 

vessels (Bovetti et al. 2007; Snapyan et al. 2009; Whitman et al. 2009). 

Additionally, another glial cell type, OPCs, migrate on blood vessels during 

embryonic development and utilize vessels to reach the appropriate brain 

location (Tsai et al. 2016). In the embryonic brain, microglia have been described 

to be in close contact with the vasculature and even display saltatory migration 

patterns on the vessels, which is discussed in more detail below (Fantin et al. 

2010; Smolders et al. 2017). Additionally, juxtavascular microglia migration has 

been described in the adult CNS, however this was in the context of an injury 

(Grossmann et al. 2002). If microglia migrate on vessels and utilize vascular 

networks as a scaffold for colonization of the healthy, postnatal brain are open 

questions. In Chapter II, I demonstrate that microglia are highly motile on vessels 
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during early postnatal development, but not in adulthood. This developmental 

timing of juxtavascular microglia motility suggests that microglia migrate on a 

vascular scaffold to colonize the developing cortex. Understanding precisely how 

microglia migrate and colonize the brain at the correct time is critical given the 

important role microglia play in regulating synapse maturation and pruning during 

critical windows of development, which is disrupted in diseases such as ASDs 

(Paolicelli et al. 2011; Hoshiko et al. 2012; Tremblay, Lowery, and Majewska 

2010; Schafer et al. 2012; Gunner et al. 2019; Edmonson, Ziats, and Rennert 

2016; Morgan et al. 2010). 

 

Juxtavascular microglia 

Parenchymal microglia that interact with the brain vasculature were first 

identified in the rodent brain in 1991 (Ashwell 1991; Lassmann et al. 1991). 

However, since their initial description, the vast majority of studies assessing 

interactions between microglia and the vasculature are in the context of disease 

and in the embryonic brain. In this thesis, I report the first extensive analysis of 

juxtavascular microglia in the healthy, postnatal and adult brain. Given the 

importance of juxtavascular microglia in inflammation, neurodegenerative 

disease, and stroke (Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 2018; 

Fantin et al. 2010), a greater understanding of microglia-vascular interactions 

under healthy, steady state conditions is necessary and may provide novel 

therapeutic targets to treat the diseased CNS. 
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Juxtavascular microglia in the diseased CNS  

It has become increasingly appreciated that acute and chronic peripheral 

inflammations (e.g. changes in microbiome or infection) induce large-scale 

changes in microglia reactivity and BBB impairment, which negatively impact 

CNS function (Morris et al. 2018; Sousa et al. 2018; Hanamsagar and Bilbo 

2017; Hammond, Robinton, and Stevens 2018; Zhao et al. 2018; Rothhammer et 

al. 2018). Activated microglia secrete a range of toxic molecules such as reactive 

oxygen species (ROS), nitric oxide (NO), prostaglandin E2 (PGE), 

cyclooxygenase (COX)-2, quinolinic acid, several chemokines such as monocyte 

chemoattractant protein 1 (MCP-1), CXCL-1, and macrophage inflammatory 

protein (MIP)-1α, and pro-inflammatory cytokines such as IL-6, tumor necrosis 

factor alpha (TNF-α), and IL-1β, all of which exert a detrimental effect on the 

integrity and function of the BBB (Morris et al. 2018; Sousa et al. 2018). 

Additionally, in vivo 2-photon live imaging demonstrates that systemic 

inflammation induces a significant increase in the number of juxtavascular 

microglia just one day after infection (Haruwaka et al. 2019). These juxtavascular 

microglia initially maintain BBB integrity via expression of the tight junction 

protein Claudin-5, however during sustained inflammation, microglia 

phagocytose astrocytic endfeet and impair BBB function (Haruwaka et al. 2019). 

With new evidence that microglia could be a conduit between peripheral 

immunity and the CNS, these studies raise the interesting possibility that 

juxtavascular microglia are first responders to peripheral immune challenge and 
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perpetuate CNS inflammation by impairing BBB function (Hanamsagar and Bilbo 

2017; Hammond, Robinton, and Stevens 2018; Zhao et al. 2018; Rothhammer et 

al. 2018).  

 In addition to systemic inflammation, several neurodegenerative diseases, 

such as Alzheimer’s disease (AD) and Multiple sclerosis (MS), are characterized 

by vascular dysfunction and BBB breakdown that is attributed to an accumulation 

of juxtavascular microglia (Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 

2018). In AD, β-amyloid (Aβ) plaques are frequently found on blood vessels, with 

microglia highly localized around the perivascular deposits (Hickman and El 

Khoury 2010; Stankovic, Teodorczyk, and Ploen 2016). These juxtavascular 

microglia evoke an opening of the BBB through release of ROS and MMPs, 

causing endothelial cell damage and infiltration of peripheral immune cells into 

the CNS, perpetuating disease progression (Stankovic, Teodorczyk, and Ploen 

2016; Zhao et al. 2018; Morris et al. 2018). In MS, histopathological analyses of 

pre-demyelinating lesions has identified BBB disruption and activated microglia 

as the earliest pathological signs of disease (Marik et al. 2007). In fact, 

juxtavascular microglia accumulate on blood vessels prior to myelin loss or 

paralysis onset in a rodent model of MS (Experimental Autoimmune 

Encephalomyelitis (EAE)) through the interaction of CD11b on microglia and the 

blood component fibrinogen (Adams et al. 2007; Davalos et al. 2012). Hindering 

the fibrinogen–juxtavascular microglia interaction by pharmacological and genetic 

means led to reduced severity of EAE, suggesting that juxtavascular microglia 
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contribute to disease progression (Adams et al. 2007; Davalos et al. 2012). 

Further, these fibrinogen induced juxtavascular microglia generate elevated 

ROS, which causes BBB breakdown and peripheral immune cell infiltration 

(Davalos et al. 2012; Stankovic, Teodorczyk, and Ploen 2016; Morris et al. 2018).  

Finally, stroke initiates robust microglial inflammatory response and BBB 

breakdown (Gelderblom et al. 2009; Schilling et al. 2003). The initial breakdown 

of the BBB after stroke causes release of blood proteins such as fibrinogen and 

albumin into the brain parenchyma, which attract microglia to become 

juxtavascular 24 hours after ischemic insult (Jolivel et al. 2015). Once 

juxtavascular, microglia disrupt BBB integrity by phagocytizing endothelial cells, 

generating ROS, releasing MMPs, and producing pro-inflammatory cytokines 

(Jolivel et al. 2015; Stankovic, Teodorczyk, and Ploen 2016). Interestingly, data 

suggests that inhibiting microglia during the first 24 hours after ischemic stroke 

may reduce BBB damage and facilitate recovery of the ischemic penumbra. For 

example, inhibiting microglial activation, by treating animals with minocycline, 

decreased the secretion of IL-1β and NO in microglia, which correlated with a 

smaller infarct size (Yenari et al. 2006; Yrkanheikki et al. 1999). Whether 

specifically inhibiting juxtavascular microglia improves recovery after stroke is 

unknown. 

 Microglial interactions with the vasculature play a clear role in disease 

progression, but surprisingly little is known about these interactions in the healthy 

developing and adult brain. A deeper understanding of precisely when, where, 
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and mechanisms by which microglia interact with the vasculature in the healthy 

brain may lead to novel therapeutic strategies to reduce vascular pathology and 

facilitate recovery of neurological disorders. In this thesis, I determine that 

microglia directly contact the vasculature during early postnatal development 

through adulthood, filling a significant gap in knowledge in the field. Moreover, I 

demonstrate that CX3CR1 regulates the timing of these interactions in the 

developing brain, enabling future investigation of CX3CR1 as a potential 

therapeutic target to inhibit microglial localization to the vasculature in the 

diseased CNS.    

 

Juxtavascular microglia in embryonic development 

  In developing mouse embryos, microglia invade the CNS as it is being 

vascularized, putting microglia in a unique position to influence the early 

sprouting, migration, anastomosis, and refinement of the growing CNS vascular 

system. Indeed, studies have shown that microglia associate with the vasculature 

during early embryonic development in both rodents and humans (Monier et al. 

2007; Fantin et al. 2010; Smolders et al. 2017; Checchin et al. 2006; Rymo et al. 

2011; Yoshiaki Kubota et al. 2009; Dudiki et al. 2020). These juxtavascular 

microglia migrate on vessels in the embryonic mouse brain, however the precise 

function of this migration is unknown. In addition to associating with vessels, it 

has been suggested that embryonic juxtavascular microglia regulate vascular 

complexity (Fantin et al. 2010; Smolders et al. 2017; Checchin et al. 2006; Rymo 
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et al. 2011; Yoshiaki Kubota et al. 2009; Dudiki et al. 2020). For example, in the 

embryonic brain, microglia are often localized to vascular junction points and 

depletion of all microglia is associated with a decrease in vascular branch points 

(Fantin et al. 2010). Similar findings have been identified in the developing retina 

(Rymo et al. 2011; Checchin et al. 2006; Dudiki et al. 2020). Several signaling 

mechanisms have been suggested to regulate this microglia-dependent vascular 

architecture, including Wnt-Flt1 and transforming growth factor β (TGF-β) 1 

signaling, however these mechanisms were identified in the retina and have not 

been explored in the brain (Stefater et al. 2011; Dudiki et al. 2020).  

These studies provide evidence that microglia interact with the vasculature 

in the embryonic brain; however, what happens to these juxtavascular microglia 

after embryonic development is not known. In Chapter II, I demonstrate that 

microglia are localized to the vasculature during postnatal development and are 

developmentally regulated, with a high percentage of microglia associated with 

the vasculature during the first week of postnatal development, which diminishes 

and then is maintained in adult animals. Moreover, I determine that microglia 

continue to be migratory on the vasculature during early postnatal development, 

however this motility is restricted in adulthood. This work addresses a critical 

need to understand juxtavascular microglia, an understudied subpopulation of 

microglia in the healthy, postnatal CNS.  
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The fractalkine receptor 

Microglia, born in the embryonic yolk sac, invade the developing 

neuroepithelium at E9.5 where they are found associated with the vasculature 

(Fantin et al. 2010; Smolders et al. 2017; Ginhoux et al. 2010). In this thesis, I 

present evidence that microglia remain highly juxtavascular during the first week 

of postnatal development and this association diminishes as the rodent develops. 

However, the molecular mechanism regulating the developmental timing of 

microglia-vascular interactions remains unknown. An intriguing candidate 

molecule to regulate the timing of these interactions is CX3CR1, a 7 

transmembrane domain G-protein-coupled chemokine receptor that is 

predominantly expressed in microglia in the CNS, as it has been implicated in 

regulating microglial recruitment and colonization (Combadiere, Ahuja, and 

Murphy 1995; Raport et al. 1995; Hoshiko et al. 2012; Paolicelli et al. 2011; Zhan 

et al. 2014). Mice deficient in CX3CR1 signaling have a delay in localization of 

microglia to synapse-dense regions of the hippocampus and somatosensory 

cortex, which is concomitant with a delay in synapse development (Paolicelli et 

al. 2011; Hoshiko et al. 2012; Zhan et al. 2014). Given that it is unknown how 

CX3CR1 signaling regulates microglial function, in this thesis CX3CR1 signaling 

is broadly defined as encompassing signaling through a down stream GPCR 

pathways, an extracellular domain function such as an adhesion molecule, or a 

scaffold/heterodimer protein-protein interaction with a second receptor. Despite 

growing evidence that CX3CR1 is important for proper neural circuit 
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development, the mechanism by which CX3CR1 regulates microglial recruitment 

to synaptic regions in the developing brain remains an open question. One 

possible mechanism by which CX3CR1 could regulate microglial recruitment is 

via vascular networks, as CX3CR1 has been implicated in regulating interactions 

between immune cells and the vasculature in the periphery (Fong et al. 1998; 

Hamon et al. 2017; Schwarz et al. 2010; Imai et al. 1997; Imaizumi, Yoshida, and 

Satoh 2004; Muehlhoefer et al. 2000; Umehara et al. 2004; Johnson and 

Jackson 2013; Goda et al. 2000). In Chapters II and III, I provide evidence that 

the timing of microglia-vascular interactions during development is regulated by 

CX3CR1 and suggest that CX3CR1-dependent microglia-vascular interactions 

are critical for microglial colonization to synapse-dense brain regions. This work 

provides insight into molecular mechanisms regulating microglial localization to 

the appropriate brain region at the correct time, an open question in the field. 

 

The fractalkine receptor, microglial recruitment, and neuronal circuit development 

 CX3CR1 has been shown to regulate microglia colonization of cortical and 

subcortical brain regions, as well as subsequent synapse development. One 

such cortical region is the barrel cortex, which contains a highly precise synaptic 

map of the vibrissae (whiskers) on the snout. Sensory endings from trigeminal 

neurons transmit sensory information from each whisker follicle across several 

synapses, ultimately terminating at thalamocortical synapses within layer IV of 

the barrel cortex. These layer IV thalamocortical synapses form discrete barrel 
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structures corresponding to each whisker, which are separated by septa where 

thalamocortical synapses are largely absent (Woolsey and Van der Loos 1970; 

Welker and Woolsey 1974). Studies have shown that microglia first localize to 

the septa and then colonize these thalamocortical synapse-dense barrel centers 

between P6 and P7 and this timing is delayed to P8-P9 in CX3CR1 deficient 

(Cx3cr1-/-) mice, without any changes in overall microglial density between 

control and Cx3cr1-/- mice (Hoshiko et al. 2012). Importantly, this delay in 

recruitment is concomitant with a delay in functional synapse maturation, as 

measured by NMDA receptor subunit composition (Hoshiko et al. 2012).  Similar 

delays in microglial recruitment to synapses were also observed between P8 and 

P28 in the synapse-dense CA1 region in the hippocampus of Cx3cr1-/- mice 

(Paolicelli et al. 2011). This delay in localization was accompanied by increased 

dendritic spine numbers and immature synapses in Cx3cr1-/- mice (Paolicelli et 

al. 2011). Finally, microglial colonization of the motor cortex during early 

postnatal development has also been shown to be impaired in the absence of 

fractalkine signaling, resulting in microglial accumulation within subcortical white 

matter of Cx3cr1-/- mice at P5 (Ueno et al. 2013). Long term, Cx3cr1-/- mice have 

deficits in functional connectivity, as well as ASDs-like behaviors including 

defects in social interactions and increased repetitive behaviors (Zhan et al. 

2014). These data raise the intriguing possibility that the fine-scale timing of 

microglial cells to specific brain regions is critical for neural circuit development 

relevant to ASDs. Despite growing evidence that CX3CR1 is important for proper 
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neural circuit development, the mechanism by which CX3CR1 regulates 

microglial recruitment to synaptic regions in the developing brain remains an 

open question. 

 

Fractalkine signaling in immune cell adhesion to endothelial cells 

 In the periphery, circulating immune cells, such as leukocytes or 

monocytes, associate with blood vessels when they extravasate across the walls 

of microvessels into peripheral tissues. The classical pathway of leukocyte 

migration begins with selectin-mediated interactions between rolling leukocytes 

and the endothelium, decelerating the flowing leukocytes (B. Jones, Beamer, and 

Ahmed 2010). Locally produced chemokines from the tissue activate integrins on 

leukocytes (such as CD11a, CD11b, or CD11c) and intracellular adhesion 

molecules (including intracellular adhesion molecule (ICAM)-1/ICAM-2 and 

members of the junctional adhesion molecules family) that coat the endothelium, 

resulting in a strong adhesion between the leukocyte and endothelial cell (Oda et 

al. 1992; B. Jones, Beamer, and Ahmed 2010). After adhesion, transendothelial 

migration occurs by paracellular trafficking between the endothelial cells or 

intracellular trafficking through endothelial cytoplasmic pores (Oda et al. 1992; B. 

Jones, Beamer, and Ahmed 2010).  

 Prior to the identification and description of fractalkine (CX3CL1), the only 

known in vivo ligand to CX3CR1, it was thought that all chemokines that attracted 

leukocytes to the endothelium were soluble molecules that associated with cell 
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surface proteoglycans and tissue matrix components to retain the local 

chemokine gradient (Imai et al. 1997; Imaizumi, Yoshida, and Satoh 2004; 

Umehara et al. 2004; Tanaka et al. 1993). However, CX3CL1 is unique amongst 

chemokines because it is synthesized as a transmembrane molecule consisting 

of an extracellular N-terminal chemokine domain, a mucin-like stalk, a 

transmembrane α helix, and a short cytoplasmic tail (Umehara et al. 2004). 

Therefore, CX3CL1 itself functions as an adhesion molecule, enhancing the 

capture, adhesion, and subsequent migration of immune cells to the vasculature 

(Bazan et al. 1997; Imai et al. 1997). Indeed, CX3CR1-expressing cells bind 

rapidly with high affinity to immobilized CX3CL1 or CX3CL1-expressing cells in 

both static and physiological flow conditions (Imai et al. 1997; Goda et al. 2000; 

Fong et al. 1998). Thus, CX3CL1 may facilitate the extravasation of circulating 

leukocytes by mediating cell adhesion through the initial tethering and final 

transmigration steps (Umehara et al. 2004). In addition to CX3CL1 adhesion, 

CX3CL1-CX3CR1 can transduce signals through G proteins that enhance 

leukocyte integrin binding to its ligands (Goda et al. 2000). Therefore, the 

engagement of both CX3CR1 on leukocytes with CX3CL1 and intracellular 

adhesion molecules on endothelial cells results in enhanced cell adhesion 

compared to each system alone (Umehara, Bloom, et al. 2001; Umehara, Goda, 

et al. 2001). 

 These data demonstrate that CX3CR1 signaling is important for the proper 

timing of microglial colonization of cortical and subcortical brain regions, as well 
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as the adhesion of peripheral immune cells to the vasculature, raising the 

intriguing possibility that CX3CR1 signaling may regulate the timing of microglia-

vascular interactions in the developing brain. In Chapter II, I demonstrate that the 

timing of juxtavascular microglia is developmentally delayed in CX3CR1 deficient 

mice. This delay in association coincides with a delay in microglial localization 

into barrel centers in CX3CR1 deficient mice, suggesting that microglia-vascular 

interactions are important for the proper colonization of synapse-dense brain 

regions. In Chapter III, I demonstrate that the CX3CR1-dependent delay in 

juxtavascular microglia is independent of CX3CL1, the only known in vivo ligand 

for CX3CR1, suggesting that delays in the timing of juxtavascular microglia in 

CX3CR1 deficient mice are not due to direct adhesion between CX3CL1-

CX3CR1. Understanding the molecular mechanism underlying the timing of 

microglia colonization to synapse-dense brain regions may provide important 

insight into neurodevelopmental disorders, such as ASDs, where changes in 

microglial numbers and synaptic connectivity have been implicated in disease 

progression (Edmonson, Ziats, and Rennert 2016; Morgan et al. 2010).  

 

Thesis Overview 

 Together, my thesis work aims to understand juxtavascular microglia in 

the healthy, developing and adult CNS. While microglial interactions with 

neurons, synapses, and other glial cells are well understood, far less is known 

about microglial interactions with the CNS vasculature. Questions include: What 
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is the developmental timing of microglial interactions with the vasculature in the 

healthy CNS? Where within the cellular makeup of the NVU do microglia reside? 

Are microglia stable or dynamic while associated with the vasculature? What 

molecular mechanism regulates the timing of microglia vascular interactions? 

Answers to these questions will provide insight into juxtavascular microglia, a 

subpopulation of microglia that has never been studied in the healthy postnatal 

CNS, as well as neurological diseases where juxtavascular microglia contribute 

to vascular dysfunction and disease progression. 

 In Chapter II, I address the developmental timing, dynamics, and cellular 

localization of juxtavascular microglia in the healthy brain. My results indicate that 

a high percentage of microglia are associated with the vasculature during the first 

week of postnatal development and this timing is dependent on CX3CR1. 

Moreover, microglia-vascular interactions are concomitant with a peak in 

microglial colonization of the cortex and recruitment to synapses. I find that as 

microglia colonize the cortex, vascular-associated microglia are highly motile 

along vessels and become largely stationary as astrocyte endfeet arrive and the 

brain matures in adult mice. Finally, my work demonstrates that juxtavascular 

microglia associate with both the basal lamina and astrocyte endfeet surrounding 

the vasculature through development and adulthood. These findings lay the 

fundamental groundwork to investigate juxtavascular microglia function, 

microglia-astrocyte crosstalk, and microglia-vascular crosstalk in the healthy and 

diseased brain. They further provide a potential mechanism by which vascular 
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interactions facilitate microglial colonization of the brain to later regulate neural 

circuit development. 

 In Chapter III, I investigate the molecular mechanisms underlying the 

timing of microglia-vascular interactions in the developing brain. I find that 

CX3CR1 regulates the timing of microglia-vascular interactions across cortical 

brain regions. Further, I show that CX3CR1 facilitates microglial adhesion to 

endothelial cells in young postnatal mice, a time of active microglial colonization, 

but not older mice. Finally, I demonstrate that the timing of microglia-vascular 

interactions in the developing brain is independent of the canonical CX3CR1 

ligand, fractalkine (CX3CL1). These data provide the first mechanistic insight into 

the CX3CR1-dependent timing of microglia-vascular interactions in the postnatal 

brain. Altogether, these studies presented in this dissertation aim to advance our 

understanding juxtavascular microglia in the healthy, developing and adult brain. 
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A developmental analysis of juxtavascular microglia dynamics and 

interactions with the vasculature 
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Contribution Summary  

E.M. collected confocal microscopy, structured illumination microscopy, 

expansion microscopy, acute slice culture live imaging, 2-photon live imaging 

images and quantified all results. S.C.B. quantified juxtavascular microglia that 

occur by chance and juxtavascular microglia on branched and unbranched 

segments. A.G.K. quantified juxtavascular microglia in WT animals. M. Schifferer 

collected electron microscopy images and 3D reconstructions. C.E.B. assisted 

with structured illumination microscopy. J.C. imaged and analyzed human 

juxtavascular microglia. E.J.H, M. Simons, and D.P.S. designed research. E.M. 

and D.P.S. designed and interpreted all experiments and wrote the final 

document. 
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ABSTRACT  

Microglia, the resident macrophages of the central nervous system (CNS), are 

dynamic cells, constantly extending and retracting their processes as they 

contact and functionally regulate neurons and other glial cells. There is far less 

known about microglia-vascular interactions, particularly under healthy steady-

state conditions. Here, we use the male and female mouse cerebral cortex to 

show that a higher percentage of microglia associate with the vasculature during 

the first week of postnatal development compared to older ages and the timing of 

these associations are dependent on the fractalkine receptor (CX3CR1). Similar 

developmental microglia-vascular associations were detected in the prenatal 

human brain. Using live imaging in mice, we found that juxtavascular microglia 

migrated when microglia are actively colonizing the cortex and became stationary 

by adulthood to occupy the same vascular space for nearly 2 months. Further, 

juxtavascular microglia at all ages associate with vascular areas void of astrocyte 

endfeet and the developmental shift in microglial migratory behavior along 

vessels corresponded to when astrocyte endfeet more fully ensheath vessels. 

Together, our data provide a comprehensive assessment of microglia-vascular 

interactions. They support a mechanism by which microglia use the vasculature 

to migrate within the developing brain parenchyma. This migration becomes 

restricted upon the arrival of astrocyte endfeet such that juxtavascular microglia 

become highly stationary and stable in the mature cortex.  
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INTRODUCTION  

While myeloid lineage in origin, microglia are now appreciated to be key 

cellular components of neural circuits. Imaging studies have revealed that 

microglia are constantly extending and retracting their processes, which are in 

frequent contact with neurons, synapses, and other glial cells (Davalos et al. 

2005; Nimmerjahn, Kirchhoff, and Helmchen 2005; Schafer et al. 2012; 

Tremblay, Lowery, and Majewska 2010; Frost and Schafer 2016). These 

descriptions of interactions between microglia and other resident CNS cell types 

have now led to a new understanding that microglia are important for neural 

circuit structure and function, including their role in developmental synaptic 

pruning by engulfing and removing synapses from less active neurons (Schafer 

et al. 2012; Tremblay, Lowery, and Majewska 2010; Paolicelli et al. 2011; Gunner 

et al. 2019). Besides interactions with parenchymal neurons and glia, microglia 

are known to interact with the vasculature. However, the vast majority of these 

studies have been in the context of disease where parenchymal microglia rapidly 

associate with the brain vasculature following breakdown of the blood-brain 

barrier (BBB) and, in turn, inflammatory microglia can modulate the breakdown of 

the BBB (Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 2018). Far less is 

known about how microglia interact with the vasculature in the healthy brain. 

With new evidence that microglia could be a conduit by which changes in 

peripheral immunity (e.g. microbiome, infection, etc.) affect CNS function 

(Hanamsagar and Bilbo 2017; Hammond, Robinton, and Stevens 2018; Zhao et 
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al. 2018; Rothhammer et al. 2018) and mounting evidence that an array of 

neurological disorders have a vascular and microglial component (Daneman 

2012; Hammond, Robinton, and Stevens 2018; Zhao et al. 2018), a greater 

understanding of microglia-vascular interactions is necessary. 

The neurovascular unit (NVU) is composed of endothelial cells, pericytes, 

vascular smooth muscle cells, astrocytes, macrophages, and neurons that 

connect the brain parenchyma to the cerebral vasculature. Interactions between 

these NVU cell types is important for a variety of physiological processes such as 

angiogenesis, vessel maintenance and permeability, metabolic support, and 

regulation of blood flow (L. S. Brown et al. 2019; McConnell et al. 2017). The 

development of the NVU begins around embryonic day (E) 9.5 in mice, when 

specialized endothelial cells branch from vessels of the perineural vascular 

plexus to form capillaries that invade nearby neural tissue (Saili et al. 2017). 

Pericytes associate with endothelial cells as nascent vessels generate at E9.5 

(Armulik et al. 2010; Bauer et al. 1993; Yamanishi et al. 2012; Daneman et al. 

2010) and these interactions are critical to form the BBB (Zlokovic 2008; 

Daneman et al. 2010). Astrocytes are also a key component of the mature NVU. 

After the vasculature initially forms, astrocytes extend their processes to form 

endfeet over the course of postnatal development in rodents (Daneman et al. 

2010). These astrocyte endfeet ultimately surround and ensheath the majority of 

the vasculature by adulthood where they play roles in a variety of functions such 

as maintaining the BBB, providing metabolic support to neurons, and regulating 
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blood flow (Abbott, Rönnbäck, and Hansson 2006; Kimelberg and Nedergaard 

2010; Macvicar and Newman 2015).  

The vast majority of studies assessing interactions between microglia and 

the vasculature are in the context of disease. For example, microglia rapidly 

surround and contact the vasculature following breakdown of the BBB in the 

inflamed CNS (Zhao et al. 2018; Stankovic, Teodorczyk, and Ploen 2016). One 

mechanism regulating these microglia-vascular interactions is the blood 

component fibrinogen and CD11b on microglia (Davalos et al. 2012; Adams et al. 

2007). Reactive microglia can also influence the opening of the BBB by 

phagocytosing astrocyte endfeet or upregulating molecules such as vascular 

endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), and 

reactive oxygen species (ROS) (Stankovic, Teodorczyk, and Ploen 2016; Zhao et 

al. 2018; Haruwaka et al. 2019). In the healthy brain, much less is known. 

Studies in rodents and humans have shown that microglia associate with the 

vasculature in the developing CNS and live imaging in postnatal brain slices 

following traumatic injury or in embryonic mouse brain slices has suggested that 

microglia can migrate along the vasculature (Monier et al. 2007; Fantin et al. 

2010; Smolders et al. 2017; Grossmann et al. 2002; Checchin et al. 2006). 

Microglia have also been suggested to regulate vascular growth and complexity 

in the developing hindbrain and retina (Fantin et al. 2010; Rymo et al. 2011; 

Checchin et al. 2006; Yoshiaki Kubota et al. 2009; Dudiki et al. 2020). Together, 
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these studies provide evidence that there is microglia-vascular crosstalk, which 

requires further investigation in development, adulthood, and disease.  

 In the current study, we investigated microglia-vascular interactions in the 

healthy, developing and adult cerebral cortex. Using confocal, super-resolution, 

expansion, and electron microscopy, we assessed the developmental regulation 

of associations between microglia and the vasculature and used fractalkine 

receptor (CX3CR1)-deficient mice to determine a role for this signaling in the 

timing of these interactions. Using in situ confocal and in vivo 2-photon live 

imaging, we further assessed the dynamics of juxtavascular microglia in real 

time. Our data support a mechanism by which microglia migrate along the 

vasculature to colonize the developing brain and the timing of these interactions 

is regulated by CX3CR1. This migratory behavior becomes restricted as 

astrocyte endfeet mature and suggests the establishment of a long-term niche for 

juxtavascular microglia in the adult brain.  
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RESULTS 

A high percentage of microglia are juxtavascular during development  

During rodent and human embryonic development, microglia somas have been 

described to be in close association with blood vessels (i.e. juxtavascular 

microglia) (Fantin et al. 2010; Monier et al. 2007; Checchin et al. 2006). We 

assessed microglial association with the vasculature over an extended 

developmental time course across postnatal development. Microglia were 

labeled using transgenic mice that express EGFP under the control of the 

fractalkine receptor CX3CR1 (Cx3cr1EGFP/+). The vasculature was labeled with an 

antibody against platelet endothelial cell adhesion molecule (PECAM). To start, 

we focused our analyses in the frontal cortex. Juxtavascular microglia were 

defined as microglia with at least 30% of their soma perimeter in association with 

blood vessels and soma centers that were within 10µm of the vessel, which we 

confirmed with orthogonal views and 3D surface rendering (Fig 2.1 A-F; See also 

Movies 1 and 2). Juxtavascular microglia were further distinguished from 

perivascular macrophages by their morphology with processes emanating from 

their soma and higher levels of EGFP. Using these criteria, we found the percent 

of total microglia associated with vasculature and microglial soma surface area 

associated with the vessel was higher during early development than in older 

animals in the frontal cortex (Fig 2.1 G-H). We further found a higher percent of 

the total microglial population were juxtavascular at P1-P5 in the frontal cortex 

(Fig. 2.1 G). These results were independent of sex (data not shown). The 
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percent association dropped to below 20% by P14 and was maintained at later 

ages. We confirmed that this developmental regulation of juxtavascular microglia 

was independent of changes in vasculature density over development. While the 

total vascular content of the cortex increases as the brain grows, the density of 

the blood vessels within a given field of view is unchanged across development 

(Fig. 2.1 I). Moreover, developmental changes in juxtavascular microglia were 

likely not due to chance encounters with the vasculature, as rotating the blood 

vessel images 180° resulted in reduced percentages of association with the 

vasculature over development (Fig. 2.1 J). Consistent with the results in mouse, 

the ventricular and subventricular zones of the prenatal human brain at the level 

of the frontal cortex also showed a high percent of juxtavascular microglia. This 

association in the developing human brain peaked at 18-24 gestational weeks 

(GW) where 38% of total microglia were juxtavascular (Fig. 2.1 K-L)—a 

percentage similar to what we identified in early postnatal mice. Together, these 

data demonstrate that a large percentage of the total microglia are juxtavascular 

in the early postnatal mouse and prenatal human brain.  
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Figure 2.1: A high percentage of microglia are juxtavascular during early 
postnatal development. A-B. Representative low magnification tiled images of 
microglia (green, EGFP) associated with vasculature (magenta, anti-PECAM) in 
the P5 (A) and P28 (B) frontal cortex. Filled arrowheads denote juxtavascular 
microglia. Scale bars= 100µm (A) and 50µm (B). C-D. High magnification, 
orthogonal view (C) and 3D reconstruction and surface rendering (D) of 
juxtavascular microglia in the P5 frontal cortex (see also Movie 1). Scale bars= 
10µm. E-F. Orthogonal (E) and 3D reconstruction and surface rendering (F) of a 
juxtavascular microglia in the P28 frontal cortex (see also Movie 2). Scale bars= 
10µm. G. The percent of the total microglia population associated with 
vasculature over development in the frontal cortex. One-way ANOVA with 
Dunnett’s post hoc; comparison to P≥21, n=4 littermates per developmental time 
point, ****p<.0001. H. Quantification of the percent of juxtavascular microglia 
surface area associating with vessels over development in the frontal cortex in 
3D reconstructed confocal images. One-way ANOVA with Dunnett’s post hoc; 
comparison to P≥21, n=3 littermates per developmental time point,  *p= .0445, 
**p=.0025. I. Vascular density over development in the frontal cortex. One-way 
ANOVA with Dunnett’s post hoc; comparison to P≥21, n=4 littermates per 
developmental time point. J. The percent of total microglia associated with 
vasculature that occur by chance in the frontal cortex over development. Two-
way ANOVA with a Sidak’s post hoc; n=4 littermates per developmental time 
point, **p=.0022, ****p<.0001. K. Representative image of microglia (green, anti-
IBA1) associated with vasculature (magenta, anti-CD31) in gestational week 
(GW) 24 in the ventricular zone (VZ) and subventricular zone (SVZ) at the level 
of the human frontal cortex. Filled arrowheads denote juxtavascular microglia. 
Scale bar= 20µm. L. Quantification of the percentage of total microglia 
associated with vasculature in the human brain. One-way ANOVA across all 
ages, p=0.0544, n=1 specimen per gestational age. All error bars represent  ± 
SEM.  
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Juxtavascular microglia are largely associated with capillaries in the early 

postnatal cortex  

While previous work has described similar high association of microglia 

with the vasculature in the embryonic/prenatal brain, these studies did not use 

markers to distinguish microglia from perivascular macrophages (Fantin et al. 

2010; Monier et al. 2007; Checchin et al. 2006).  Therefore, we next sought to 

confirm that vascular-associated EGFP-positive cells were, indeed, microglia 

versus perivascular macrophages and determine the types of vessel associated 

with juxtavascular microglia. We found that the juxtavascular EGFP+ cells that 

we initially identified as microglia based on their larger numbers of processes and 

higher levels of EGFP (Fig. 2.1; Fig. 2.2 A-B filled arrowheads) were also positive 

for the microglia-specific marker purinergic receptor P2Y12 (P2RY12) (Fig. 2.22 

A, filled arrowhead) and negative for the perivascular macrophage-specific 

marker lymphatic vessel endothelial receptor 1 (LYVE1) (Fig. 2.2 B, unfilled 

arrowheads) (Butovsky et al. 2014; Zeisel et al. 2015). Using anti-P2RY12 to 

label microglia in wild-type mice or EGFP in Cx3cr1EGFP/+ mice, which are 

heterozygote for CX3CR1, we obtained similar percentages of juxtavascular 

microglial and vascular density (Fig. 2.2 C-D), confirming results were 

independent of the microglial labeling technique. We also found that these 

juxtavascular microglia were associated largely along unsegmented vessels, 

rather than branch points, across postnatal development (Fig. 2.2 E). We next 

assessed what types of vessels were associated with juxtavascular microglia, 
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using a combination of parameters. Capillaries are ≤8 µm in diameter and are 

smooth muscle actin (SMA)-negative and platelet derived growth factor receptor 

β (PDGFRβ)-positive (Grant et al. 2019; Mastorakos and Mcgavern 2019). 

Arterioles are >8 µm in diameter and are SMA-positive and a subset of pre-

capillary arterioles are also PDGFRβ-positive (Grant et al. 2019). Using these 

markers, we identified that juxtavascular microglia were largely associated with 

capillaries (≤8 µm, SMA-negative, PDGFRβ-positive; Fig. 2.2 F-H). These 

experiments establish that a large percentage of bona fide microglia are 

associated with unsegmented capillaries in the postnatal cerebral cortex and 

these percentages are similar in wild type and Cx3cr1EGFP/+ mice. 
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Figure 2.2: Juxtavascular microglia predominantly associate with 
capillaries in the postnatal cortex. A. A representative image of a 
juxtavascular microglia (filled arrowhead) in the P5 frontal cortex. Microglia are 
labeled using the Cx3cr1EGFP/+ reporter mouse (green; Ai) and immunolabeling 
for a microglia-specific marker anti-P2RY12 (red; Aii.). The vasculature is labeled 
with anti-PECAM (magenta) in the merged image (Aiii.). Scale bar= 10µm. B. A 
representative image of LYVE1-negative microglia (green, EGFP, filled 



	 42	

arrowheads) and LYVE1-positive perivascular macrophages (gray, anti-LYVE1, 
unfilled arrowheads) associated with vasculature (magenta, anti-PECAM) in the 
P5 frontal cortex. Scale bar= 10µm. C. Quantification of juxtavascular microglia 
across development labeled either with EGFP in Cx3cr1 EGFP/+ mice (black bars) 
or anti-P2RY12 in wild type mice (WT, white bars) frontal cortices. Two-way 
ANOVA with a Sidak’s post hoc; n=3-4 littermates per genotype per 
developmental time point. D. Quantification of vascular density in Cx3cr1 EGFP/+ 
(black bars) and WT (white bars) frontal cortices over development. Two-way 
ANOVA with a Sidak’s post hoc; n=3-4 littermates per genotype per 
developmental time point. E. Quantification of the percent of juxtavascular 
microglia associated with branched (black bars) or unsegmented (gray bars) 
vessels.  Two-way ANOVA with a Sidak’s post hoc; n=3-4 littermates per 
developmental time point, *p=.0118, ***p=.0003, ****p<.0001.  F. A 
representative image of a juxtavascular microglia (green, EGFP, filled 
arrowhead) associated with smooth muscle cell actin (gray, SMA)-negative 
capillaries (magenta; PDGFRβ) in the P5 frontal cortex. Scale bar= 10µm G. 
Quantification of the percent of juxtavascular microglia associated with SMA-
positive or -negative vessels at P5 and P≥21 in the frontal cortex. Two-way 
ANOVA with a Sidak’s post hoc; n=3 littermates per genotype per developmental 
time point, ****p<.0001. H. Quantification of the percent of juxtavascular microglia 
associated with vessels ≤8µm and >8µm at P5 and P≥21 in the frontal cortex. 
Two-way ANOVA with a Sidak’s post hoc; n=4 littermates per genotype per 
developmental time point, ****p<.0001. All error bars represent ± SEM.    
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High percentages of juxtavascular microglia occur when microglia are 

actively colonizing the cortex  

Over development, microglia undergo a dynamic process of colonization 

and expansion in a rostral-to-caudal gradient (Ashwell 1991; Perry, Hume, and 

Gordon 1985). Similar to previously published work (Nikodemova et al. 2015), we 

identified a large expansion in cortical microglia between P1 and P14, with 

microglia colonizing the more rostral frontal cortex region prior to the more caudal 

somatosensory cortex (Fig. 2.3 A-C, bar graphs in B-C). Microglia-vascular 

association mirrored this rostral-to-caudal gradient by which microglia colonize 

the brain with a higher percentage of juxtavascular microglia at P1-P5 (46.3% at 

P1 and 44.4% at P5) in the frontal cortex and at P5-P7 (39.1% at P5 and 34.2% 

at P7) in the more caudal somatosensory cortex (Fig. 2.3 B-C, line graphs). 

Moreover, during times of active microglial colonization in both postnatal cortical 

regions (P1-P5 in the frontal cortex and P1-P7 in the somatosensory cortex), 

significantly more microglial primary processes were aligned parallel with vessels 

compared to older ages (Fig. 2.3 D-G). This parallel juxtavascular microglial 

orientation along vessels is consistent with a migratory orientation.  
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Figure 2.3: Microglia associate and align with vasculature as they colonize 
the cortex in a rostral-to-caudal gradient. A. Tiled sagittal sections of a P1 
(Ai), P7 (Aii), and P14 (Aiii.) Cx3cr1EGFP/+ brain. The dotted yellow and red lines 
outline the frontal and somatosensory cortex, respectively. Scale bars= 400µm. 
B-C. Left Y axis and gray bars: quantification of microglial density over 
development in the frontal cortex (B) and somatosensory cortex (C). One-way 
ANOVA with Dunnett’s post hoc; comparison to P≥21, n=4 littermates per 
developmental time point, *p=.0182, **p=.0062, ****p<.0001. Right Y axis and 
black line graphs: the percent of the total microglia population associated with 
vasculature over development in the frontal cortex (B) and somatosensory cortex 
(C). Note, data corresponding to the percent of juxtavascular microglia in the 
frontal cortex (line graph in C) are the same as presented in Fig. 1G. One-way 
ANOVA with Dunnett’s post hoc; comparison to P≥21, n=4 littermates per 
developmental time point, ++++p<.0001. D-E. Representative images of 
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juxtavascular microglia (EGFP, green in Di and Ei; black in Dii and Eii) primary 
processes aligned parallel (D) with vessels (magenta, anti-PECAM) in the P5 
frontal cortex, which were largely not aligned at P28 (E). Filled arrowheads 
denote processes aligned parallel to the vessel and unfilled arrowheads denote 
those microglial processes that are not aligned with the vessel. The dotted 
magenta line in Dii and Eii outline the vessel in Di and Ei.  Scale bars= 10µm. F-
G. Quantification of the percent of juxtavascular primary processes that are 
aligned parallel with vessels in the frontal (F) and somatosensory (G) cortices 
over development. One-way ANOVA with Dunnett’s post hoc; comparison to 
P≥21, n=4 littermates per developmental time point, frontal cortex: **p=.0021 
(P1), **p=.0033 (P5), somatosensory cortex: ***p=.0003, ****p<.0001). All error 
bars represent ± SEM.    
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CX3CR1 regulates the timing of microglia-vascular interactions as 

microglia colonize synapse-dense cortical regions 

To further investigate microglia-vascular interactions in the context of 

colonization of the postnatal cortex, we assessed a somatosensory sub-region 

where the pattern of microglial colonization has been well described—the barrel 

cortex. Layer IV of the barrel cortex contains thalamocortical synapses, which 

form a highly precise synaptic map of the vibrissae (whiskers) on the snout. 

These layer IV thalamocortical synapses form discrete barrel structures 

corresponding to each whisker, which are separated by septa where 

thalamocortical synapses are largely absent (Fig. 2.4 A) (Woolsey and Van der 

Loos 1970; Welker and Woolsey 1974). Previous work has shown that microglia 

first localize to the septa and then colonize these thalamocortical synapse-dense 

barrel centers between P6 and P7 and this process is delayed to P8-P9 day in 

CX3CR1-deficient (Cx3cr1-/-) mice (Hoshiko et al. 2012). This delay in 

recruitment in Cx3cr1-/- mice is concomitant with a delay in synapse maturation. 

However, it was unclear how CX3CR1 was regulating the timing of microglial 

recruitment to synapses in the barrel cortex. To identify barrels, we labeled 

thalamocortical presynaptic terminals with an antibody against vesicular 

glutamate transporter 2 (VGluT2). Microglia were labeled with transgenic 

expression of EGFP in either Cx3cr1+/- (Cx3cr1EGFP/+) or Cx3cr1-/- 

(Cx3cr1EGFP/EGFP) mice. The vasculature was labeled with anti-PECAM. Similar to 

previous work (Hoshiko et al. 2012), microglia infiltrated thalamocortical synapse-
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dense barrel centers (outlined with a yellow dotted line in Fig. 2.4 C-F) from the 

septa by P6-P7 in Cx3cr1+/- mice and this process was delayed by one day in 

Cx3cr1-/- mice (Fig. 2.4 B-D). Strikingly, just prior to entering barrel centers at P5-

P6 in Cx3cr1+/- mice, a higher percentage of microglia were juxtavascular (Fig. 

2.4 E, G, arrowheads). Further, this microglia-vascular association was delayed 

by one day in Cx3cr1-/- mice (Fig. 2.4 F-G), which is consistent with the delay in 

microglial migration into barrel centers in these mice (Fig. 2.4 B). In both 

genotypes, the percentage of juxtavascular microglia decreased once the 

microglia began to colonize the thalamocortical synapse-dense barrel centers, 

P7 in Cx3cr1+/- mice and P8 in Cx3cr1-/- mice (Fig. 2.4 E-G). These changes in 

microglia-vascular interactions were independent of any changes in total 

microglial or vascular density in layer IV (Fig. 2.4 H-I), but rather specific to 

microglial distribution between the septa and barrels. These data are consistent 

with a model by which microglia use the vasculature to colonize synapse-dense 

cortical regions at the appropriate developmental timing. They further suggest 

that CX3CR1 signaling modulates the timing of microglial-vascular interactions 

during colonization.  
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Figure 2.4: A high percentage of microglia associates with vasculature as 
they are recruited to synapses in the cortex and the timing is regulated by 
CX3CR1. Ai-Aii. Layer IV of the barrel cortex contains thalamocortical synapses, 
which form a highly precise synaptic map of the vibrissae (whiskers) on the 
snout. Aiii. A low magnification representative image of a tangential section 
through layer IV of the barrel cortex shows layer IV thalamocortical presynaptic 
terminals (red, anti-VGluT2), form discrete barrel structures corresponding to 
each whisker, which are separated by septa where thalamocortical terminals are 
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largely absent. Microglia are labeled by EGFP (green) and the vasculature is 
labeled with anti-PECAM (gray). White box denotes a single barrel. Scale bar= 
100µm. B. Quantification of the number of microglia per mm2 within the barrel 
centers in developing Cx3cr1+/- (black bars) and Cx3cr1-/- (gray bars) mice. Two-
way ANOVA with a Sidak’s post hoc; n=4 littermates per genotype per 
developmental time point; ** p=.0049, ***p=.0004. C-D. Representative images of 
quantification in B. Images are zoomed in to show single barrels within tangential 
sections of layer IV of the barrel cortex (denoted by white box in Aiii) where 
microglia (green) are recruited to barrel centers in Cx3cr1+/- by P7 (C) and in 
Cx3cr1-/- by P8 (D). Asterisks denote microglia located within barrel centers. The 
dotted yellow lines denote the perimeters of the VGluT2-positive thalamocortical 
inputs (red), which define the barrels vs. the septa. Scale bars= 30µm. E-F. The 
same representative fields of view in C-D but lacking the anti-VGluT2 channel 
and, instead, including the channel with anti-PECAM immunostaining (magenta) 
to label the vessels. Microglia are still labeled with EGFP (green). Dotted yellow 
lines still denote the perimeters of the VGluT2-posiive barrels (red in C-D). 
Juxtavascular microglia in Cx3cr1+/- (E) and Cx3cr1-/- (F) mice are denoted by 
filled arrowheads. Scale bar= 30µm. G. Quantification of the percent of microglia 
associated with the vasculature in Cx3cr1+/- (black lines) and Cx3cr1-/– (gray 
lines) animals over development in layer IV of the barrel cortex demonstrates a 
peak of vascular association in Cx3cr1+/- mice at P5-P6, which is delayed to P7-
P8 in Cx3cr1-/- coincident with delayed microglial recruitment to barrel centers. 
Two-way ANOVA with a Tukey’s post hoc; n=4-5 littermates per genotype per 
developmental time point; *p=.0173 (P7), *p=.0187 (P8), **p=.0027, ****p<.0001, 
compared to P9 Cx3cr1+/-. H-I. Quantification of microglial (H) and vascular (I) 
density in Cx3cr1+/- (black bars) and Cx3cr1-/- (gray bars) animals over 
development in layer IV of the barrel cortex. Two-way ANOVA with a Sidak’s post 
hoc; n=4 littermates per genotype per developmental time point. All error bars 
represent ± SEM. 
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Juxtavascular microglia migrate along the vasculature as they colonize the 

developing brain and are stationary in adulthood 

With data demonstrating that high percentages of microglia are 

juxtavascular when they are actively colonizing the brain with processes aligned 

parallel to the vessel, we next performed live imaging to assess migration. As the 

early postnatal cortex is challenging to image in vivo, we performed our initial 

analyses in acute cortical slices. Acute slices of somatosensory cortex were 

prepared from early postnatal (P7) and adult (P≥120) Cx3cr1EGFP/+ mice, which 

were given a retro-orbital injection of Texas Red labeled dextran to label blood 

vessels prior to slice preparation. We then imaged microglia every 5 minutes 

over 6 hours at both ages (Fig. 2.5 A). Live imaging at P7 revealed significant 

juxtavascular microglial soma movement along blood vessels in the 

somatosensory cortex compared to vascular-unassociated microglia at P7 (Fig. 

2.5 B, D, see also Movies 3-5). Specifically, 28.6% of juxtavascular microglia 

somas moved at a rate of 3-5µm/hour and another 26.1% moved at a rate of 5-

7.5µm/hour (Fig. 2.5 D).  In comparison, only 9.3% and 6.8% of vascular-

unassociated microglia at the same age moved at 3-5µm/hour and 5-7.5µm/hour, 

respectively. We further found that when we assessed just the motile soma at 

P7, significantly more juxtavascular microglia somas travelled >20µm (30.9% 

traveled 20-30µm and 23.6% traveled 30-45µm) over 6 hours compared to 

vascular-unassociated microglia (7.5% and 6.8% traveled 20-30µm and 30-

45µm, respectively) (Fig. 2.5 E). Importantly, the juxtavascular microglia soma 
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velocities and distances traveled are consistent with the rate and distances at 

which microglia migrate to barrel centers within the somatosensory cortex in vivo 

where the distance between the septa and barrel center is ~80µm and it takes 

~24 hours for microglia to reach the barrel center from the septa. Demonstrating 

directional motility and suggesting migration along the vessel, 84.1% of these 

postnatal juxtavascular microglia had a motility trajectory of ≤15° along the blood 

vessel (Fig. 2.5 F). Together, these data demonstrate directional migration of 

juxtavascular microglia at distances and speeds consistent with colonization of 

the cortex (P7).  

Interestingly, this migratory behavior along the vasculature was 

developmentally regulated and juxtavascular microglia in adult slices were largely 

stationary (Fig. 2.5 C-D; see also Movie 6). We further confirmed the stationary 

phenotype of juxtavascular microglia in the adult cortex by in-vivo 2-photon live 

imaging in Cx3cr1EGFP/+ mice. Windows were placed over the visual cortex, which 

was most conducive to our head posts necessary for stabilizing the head in 

awake, behaving mice during imaging. We have found similar microglia-vascular 

interactions by static confocal imaging in the visual cortex (data not shown). Mice 

were given a retro-orbital injection of Texas Red labeled dextran to label blood 

vessels prior to imaging and juxtavascular microglia were imaged every 5 min 

over the course of 2 hours (Fig. 2.5 G).  As observed in acute cortical slices, 

100% of juxtavascular and vascular-unassociated microglia were stationary (Fig.  

2.5 H; see also Movie 7). To further understand long-term dynamics, we imaged 
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juxtavascular microglia in vivo over the course of 6 weeks (Fig. 2.5 I). We 

identified that 82.9% of juxtavascular microglia present on day 0 of imaging 

remained near the vasculature 6 weeks later (Fig. 2.5 J-K). Using static confocal 

imaging, we also found that juxtavascular microglia were less evenly distributed 

to their nearest neighbor compared to vascular-unassociated microglia, 

suggesting a preferential association with vessels in the adult vs. simply a 

consequence of tiling (Fig. 2.5 L). Together, these data demonstrate that 

juxtavascular microglia in the postnatal cortex are highly migratory compared to 

non-vascular associated microglia. In contrast, juxtavascular microglia in 

adulthood have a distribution that is less tiled compared to other parenchymal 

microglia and they are largely stationary, which suggests the establishment of a 

niche for juxtavascular microglia in the adult brain. 
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Figure 2.5: Juxtavascular microglia migrate along blood vessels as they 
colonize the developing brain and are largely stationary in adulthood. A. A 
schematic of the live imaging experiment. Cx3cr1EGFP/+ mice received a retro-
orbital injection of Texas red labeled dextran to label the vasculature 10 minutes 
prior to euthanasia. Coronal somatosensory cortices were cut and imaged every 
5 minutes over 6 hours immediately following slice preparation. B-C. 
Representative fluorescent images from a 6-hour live imaging session from a P7 
(B) and P≥120 (C) slice. Filled arrowheads indicate microglial soma position at 
t=0. Unfilled arrowheads indicate the location of the same microglial soma at 0hr 
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(Bi, Ci), 1hrs (Bii, Cii), 2hrs (Biii, Ciii), 3hrs (Biv, Civ), 4hrs (Bv, Cv), 5hrs (Bvi, 
Cvi), and 6hrs (Bvii, Cvii).  See also Movies 3-6. Scale bars= 30µm. D. 
Quantification of juxtavascular (black bars) and vascular-unassociated (gray 
bars) microglia soma motility speed/velocity. Two-way ANOVA with a Sidak’s 
post hoc; n=4 mice per time point; **p=.0081 (stationary), **p=.0013 (0-3µm/hr), 
**p=.0015 (5-7.5µm/hr), ***p=.0005 (3-5µm/hr).. E. Quantification of the distance 
traveled of juxtavascular (black bars) and vascular-unassociated (gray bars) 
microglia somas in the P7 somatosensory cortex. Two-way ANOVA with a 
Sidak’s post hoc; n=4 mice; **p=.0041, ****p<.0001. F. Quantification of 
migratory juxtavascular microglia trajectory angles in the P7 somatosensory 
cortex. Unpaired student’s t-test; n=4 mice per time point; ****p<.0001. G. A 
schematic of short-term 2-photon live imaging experiment in adult cortex. 
Cx3cr1EGFP/+ mice received a retro-orbital injection of Texas Red-labeled dextran 
to visualize the vasculature 10 min prior to each imaging session. EGFP+ 
juxtavascular microglia were then imaged every 5 minutes for 2 hours. See also 
Movie 7. H. Quantification of the percent of juxtavascular (black bars) and 
vascular-unassociated (gray bars) microglia that remain stationary for 2 hours. 
Unpaired student’s t-test; n=3 mice per developmental time point. I. A schematic 
of the long-term 2-photon live imaging experiment in adult visual cortex. 
Cx3cr1EGFP/+ mice received a retro-orbital injection of Texas Red-labeled dextran 
to visualize the vasculature 10 min prior to each imaging session. EGFP+ 
juxtavascular microglia were then imaged for 6 weeks. J. Quantification of the 
percent of juxtavascular microglia on vessels on day 0 that remain on vessels 
through six weeks of imaging. Data are representative of n=3 mice. K. 
Representative fluorescent images acquired during a 6-week live imaging 
session from a single mouse. Filled arrowheads indicate juxtavascular microglia 
that remain on vessels for 6 weeks. Unfilled arrowhead indicates a juxtavascular 
microglia that changes position, but remains on the vasculature, over 6 weeks. L. 
Quantification of the nearest neighbor distance between juxtavascular and 
vascular-unassociated microglia in static confocal images. Paired student’s t-test; 
n=4 littermates, *p=0.0239. All error bars represent ± SEM.  
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Microglia associate with the vasculature in areas lacking full astrocyte 

endfoot coverage 

Our data demonstrate a strong microglial association and migration along 

the developing postnatal cortical vasculature. One possible mechanism 

regulating these developmental changes in juxtavascular microglia is the 

changing cellular composition of the NVU over development. The NVU begins to 

form during embryonic development, when pericytes associate with endothelial 

cells. Later in postnatal development, astrocytes are born and begin wrapping 

their endfeet around vessels until the vast majority of the vasculature is 

ensheathed by astrocyte endfeet by adulthood (Daneman et al. 2010; Schiweck, 

Eickholt, and Murk 2018; Bayraktar et al. 2015). As previously described 

(Daneman et al. 2010), the territory of Aquaporin 4 (AQP4)-positive astrocyte 

endfeet on PDGFRβ+ capillaries was low in the early postnatal cortex and then 

expanded over the first postnatal week (Fig. 2.6 A-D, bar graph in D). In more 

mature animals (≥P21), astrocytic endfeet covered ~85% of vessels in the frontal 

cortex. Intriguingly, this developmental timing of astrocyte endfoot coverage 

mirrored the developmental shift in the percentage of juxtavascular microglia in 

the cortex (Fig. 2.6 D, line graph). That is, as the percentage of juxtavascular 

microglia decreased, astrocyte endfoot coverage increased. This astrocyte 

coverage also correlated with the timing of decreased microglial motility along the 

vessels (Fig. 2.5). We next assessed microglia-astrocyte endfoot interactions by 

confocal microscopy and 3D surface rendering at all ages and found that 
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microglia only associated with the vasculature in areas either completely void of 

astrocyte endfeet or in areas where vessels were not fully covered by the endfeet 

(Fig. 2.6 A-C, white arrow heads; Fig. 2.6 E, see also Movies 8-10). We also 

found microglia occupied 4-9% of the vessel area, depending on postnatal age, 

and there were parts of the vessel that lacked astrocyte endfeet that also lacked 

microglia (Fig. 2.6 F).   

Given that cells of the NVU are nanometers apart from each other, we 

confirmed these results with expansion microscopy (ExM; Fig 2.6 G-H), 

structured illumination microscopy (SIM; Fig. 2.6 I-J) and electron microscopy 

(EM; Fig 2.7). By EM, microglia were identified based on characteristic microglial 

morphologies. Microglia nuclei tend to be half-mooned shape or long and thin 

with electron dense heterochromatin around the edge of the nucleus. Microglia 

were further distinguished by EM from perivascular macrophages by having 

processes emanating from the soma. Serial sectioning and 3D reconstruction of 

a representative cell captured by EM from each age confirmed that juxtavascular 

microglia contacted the basal lamina in vascular areas without full astrocyte 

endfoot coverage at all ages (Fig. 2.7 C, see also Movies 11 and 12). Similar to 

light microscopy (Fig. 2.1 H), the microglial surface area contacting the vessel 

decreased in older animals (Fig. 2.7 D; Unpaired student’s t-test; n=29 cells (P5) 

and n=11 cells (P56); *p=.0155) and there were areas of the vasculature that 

were not fully ensheathed by astrocytes by EM,  which were not contacted by 

microglia. Together, these data demonstrate that juxtavascular microglia contact 
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the vascular basal lamina and associate with the vasculature in areas lacking full 

coverage by astrocyte endfeet. The data raise the intriguing possibility that lack 

of astrocyte endfeet in early postnatal development provides a permissive 

environment for juxtavascular microglial association with and migration along the 

vasculature as they colonize the brain.  
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Figure 2.6: Juxtavascular microglia associate with the cortical vasculature 
in areas lacking full astrocytic endfoot coverage. A-C. Representative single 
optical plane images and 3D rendering (Aiv-Civ; see also Movies 8-10) of 
juxtavascular microglia (green, EGFP) and blood vessels (magenta, anti-
PDGFRβ) in areas void of astrocytic endfoot labeling (gray, anti-AQP4) in the 
frontal cortex at P5 (A), P7 (B) P28 (C). Filled arrowheads denote vascular areas 
that lack astrocyte endfeet where juxtavascular microglia are associated with the 
vessel. Scale bars= 10µm. D. Left Y axis, gray bars: quantification of the percent 
of blood vessels covered by astrocyte endfeet over development in the frontal 
cortex. One-way ANOVA with Dunnett’s post hoc; comparison to P≥21, n=3 
littermates per developmental time point, ***p=.0005, ****p<.0001. Right Y axis, 
black line: the percent of the total microglia population that are juxtavascular over 
development in the frontal cortex (data are the same as presented in Fig. 1G). 
One-way ANOVA with Dunnett’s post hoc; comparison to P≥21, n=4 littermates 
per developmental time point, ++++p<.0001. E. Quantification of the percent of 
juxtavascular microglia associated with vessels only, vessels and astrocyte 
endfeet (representative images in A-C), and astrocyte endfeet only from 3D 
rendered images. F. Quantification of the percent of blood vessel area 
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associated with astrocyte endfeet (black bars), juxtavascular microglia (gray 
bars), or uncovered vessels (white bars) in the frontal cortex over development. 
G-J. Representative expansion microscopy (ExM, G-H) and structured 
illumination microscopy (SIM, I-J) images of juxtavascular microglia (green, 
EGFP), in vascular areas lacking anti-AQP4 (gray) astrocytic endfoot labeling 
(filled arrowheads) in the P5 (G, I) and P28 (H, J) frontal cortex. Scale bars= 
10µm.  All error bars represent ± SEM.   
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Figure 2.7: Ultrastructural analysis by EM reveals that juxtavascular 
microglia directly contact the basal lamina of the vasculature. A-B. Electron 
microscopy (EM) of juxtavascular microglia (green pseudocoloring) contacting 
the basal lamina (purple line) of a blood vessel in an area void of astrocyte 
endfeet (blue pseudocoloring) in the P5 ( A, left column) and P56 (B, right 
column) frontal cortex. Pink pseudocoloring denotes a pericyte. Asterisks denote 
microglia nuclei. Scale bar= 5µm. The black box denotes the magnified inset in 
the bottom right corner where microglia (green pseudocoloring) directly contact 
the basal lamina (unlabeled in the inset) and only partially contacts the astrocyte 
endfoot (blue pseudocoloring). Scale bar= 1µm. C. 3D reconstruction of serial 
EM of P5 juxtavascular microglia (green pseudocoloring) in Aiii (Ci) and P56 
juxtavascular microglia in Biii (Cii) contacting a blood vessel in an area void of 
astrocyte endfeet (blue pseudocoloring) (see also Movies 11 and 12). Red and 
tan pseudocoloring denotes a pericyte and vessel lumen, respectively. D. 
Quantification of the percent of juxtavascular microglia contacting the basal 
lamina in single optical plane images. Unpaired student’s t-test; n=29 cells (P5) 
and n=11 cells (P56); *p=.0155. All error bars represent ± SEM.   
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DISCUSSION  

 This study provides the first extensive analysis of juxtavascular microglia 

in the healthy developing and adult brain. We discovered that a high percentage 

of juxtavascular microglia are associated with largely capillaries in the early 

postnatal mouse cortex. Similar microglia-vascular association was observed in 

the developing human brain. Live imaging revealed that juxtavascular microglia 

are migratory along the vasculature during the peak of microglial colonization of 

the postnatal cortex and become stationary by adulthood. In addition, microglia 

are highly associated with the vasculature during development as they are being 

recruited to synapse-dense rich cortical regions and the timing of these 

interactions is regulated by CX3CR1. Last, we provide evidence that microglia 

preferentially associate and contact the vasculature at all ages in areas lacking 

full astrocyte endfoot coverage and expansion of astrocytic endfeet along blood 

vessels coincides with a decrease in microglia migration along vessels. Taken 

together, these data suggest that microglia are using the vasculature to migrate 

and colonize the cortex and the timing of this vascular association is regulated by 

CX3CR1. Our data further support a mechanism in which microglial migration 

along the vasculature during development ceases and juxtavascular microglia 

become stationary upon the maturation of astrocyte endfeet. 

 

A possible role for the vasculature in regulating microglial colonization 
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 Microglia are born as primitive macrophages in the embryonic yolk sac 

and enter the neuroepithelium at embryonic day E9.5 by crossing the pial surface 

and lateral ventricles (Navascués et al. 2000; Swinnen et al. 2013; Ginhoux et al. 

2010). Microglia then migrate and proliferate through the brain parenchyma in a 

rostral-to-caudal gradient to colonize the embryonic brain (Sorokin et al. 1992; 

Navascués et al. 2000; Swinnen et al. 2013; Alliot, Godin, and Pessac 1999; 

Perry, Hume, and Gordon 1985; Ashwell 1991). Signaling mechanisms have 

been identified to regulate initial microglial infiltration into the brain parenchyma, 

such as matrix metalloproteinases (MMPs), stromal cell derived factor 1 (SDF-1), 

and Cxcl12/Cxcr4 signaling (Ginhoux et al. 2010; Arno et al. 2014; Ueno and 

Yamashita 2014). However, far less is known about the mechanisms regulating 

microglial localization to the appropriate brain regions once they reach the 

parenchyma, particularly during postnatal development. Previous work has 

shown microglia can migrate along the vasculature in acute embryonic brain 

slices and brain slices prepared from postnatal mice in an injury context 

(Smolders et al. 2017; Grossmann et al. 2002). In addition, other work has shown 

that oligodendrocyte precursor cells (OPCs) require the vasculature as a physical 

substrate for migration (Tsai et al. 2016). Similar findings have been identified for 

neural stem cells where the timing of astrocyte endfeet to the vessels has also 

been implicated (Bovetti et al. 2007; Fujioka, Kaneko, and Sawamoto 2019; 

Whitman et al. 2009). We have identified that microglia are highly associated with 

vasculature during the peak of microglial colonization and recruitment to 
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synapses. Furthermore, these vascular-associated microglia are migratory along 

blood vessels during early postnatal development and later become stationary 

once microglial colonization is complete. We also show in CX3CR1-deficient 

mice with known delays in microglial colonization of synapse-dense cortical 

regions that there are concomitant delays in microglial association with the 

vasculature. As we have observed no significant expression of Cx3cl1 (the 

CX3CR1 ligand) by vascular cells (Gunner et al. 2019) and a subset of microglia 

still associate with the vasculature in Cx3cr1-/- mice, this delay in microglial 

vascular association in Cx3cr1-/- mice is most likely due to disruptions in 

chemokine gradient signaling from neuronal sources of CX3CL1 versus a direct 

effect of vascular adhesion. This would suggest that microglia receive directional 

cues from surrounding cells, use the vasculature as a substrate to migrate 

towards those cues, and the timing of this migration along the vasculature is 

regulated by CX3CR1. As Cx3cr1-/- mice have delays in synapse maturation and 

pruning and, long-term, have behavioral deficits consistent with an autism-like 

phenotype, it suggests that these microglia-vascular associations in development 

have long-term consequences (Paolicelli et al. 2011; Zhan et al. 2014; Hoshiko et 

al. 2012). The vascular cues regulating microglial adhesion and migration in the 

healthy CNS are yet to be identified, which will be key to determine the relative 

importance of microglia-vascular interactions for microglial colonization, brain 

development, and long-term CNS function. 
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Microglia-astrocyte interactions at the NVU interface  

Another interesting direction is to determine the role of astrocyte endfeet 

in regulating microglia-vascular interactions. Astrocytes are born and begin 

wrapping their processes to form endfeet along blood vessels during the first 

postnatal week (Daneman et al. 2010). By adulthood, astrocyte endfeet ensheath 

60-95% of the vasculature (Mathiisen et al. 2010; Korogod, Petersen, and Knott 

2015). Here, we demonstrate that juxtavascular microglia in the postnatal cortex 

represent a large percentage of total microglia and are migratory along the 

vasculature. Juxtavascular microglia migration decreases as astrocyte endfeet 

develop and ensheath the vasculature. In addition, we showed that microglia 

associate with vessels at all ages in areas lacking full astrocytic endfoot 

coverage and EM revealed contact between juxtavascular microglia and the 

vascular basal lamina. These data raise the intriguing possibility that the basal 

lamina provides an adhesive substrate for microglial association and migration, 

which becomes restricted upon astrocyte endfoot arrival. Astrocyte endfeet may, 

therefore, exclude microglia from contacting the basal lamina and associating 

with the vasculature. Another possibility is that microglia in the postnatal brain 

repel astrocyte endfeet, but this repellent signal later decreases as the animal 

matures so that astrocyte endfeet can wrap the vessels. Analysis of astrocyte 

endfoot-juxtavascular microglia interactions along blood vessels will be important 

going forward.  

 



	 66	

Possible functions for juxtavascular microglia in the healthy CNS 

Are juxtavascular microglia a unique subpopulation of microglial cells that 

perform distinct functions at the NVU? Evidence in the literature suggests 

microglia play important roles in regulating the vasculature, but it is unclear if 

these functions are specific to juxtavascular microglia. For example, in the 

embryonic brain, microglia are often localized to vascular junction points and 

depletion of all microglia is associated with a decrease in vascular complexity 

(Fantin et al. 2010). Similar findings have been identified in the developing retina 

(Rymo et al. 2011; Checchin et al. 2006; Dudiki et al. 2020). Our data 

demonstrating that microglia are localized to the vasculature prior to the arrival of 

the astrocyte endfeet could place microglia in a position to regulate fine-scale 

remodeling of the vasculature throughout the brain and/or help to maintain the 

BBB prior to astrocyte endfoot arrival. Arguing against the latter, microglia 

depletion during development does not appear to induce changes in BBB 

integrity in the postnatal brain (Parkhurst et al. 2013; Elmore et al. 2014). These 

data are in contrast to the inflamed adult CNS, were microglia regulate BBB 

integrity (Zhao et al. 2018; Stankovic, Teodorczyk, and Ploen 2016). One of the 

most recent studies shows that during systemic inflammation, parenchymal 

microglia migrate to the vasculature and help to maintain the BBB at acute 

stages (Haruwaka et al. 2019). However, with sustained inflammation, microglia 

phagocytose astrocyte endfeet and facilitate BBB breakdown. In the absence of 

inflammation, it remains unknown what functions juxtavascular microglia may 
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perform. In the adult, this could be a simple consequence of tiling with no specific 

functional implications. Arguing against this, we found that juxtavascular 

microglia are less evenly distributed and closer to their nearest neighbor 

microglia compared to vascular-unassociated microglia within the cortex. Also, 

our in vivo live imaging data demonstrating microglia in the adult brain are 

stationary for nearly 2 months opens up the possibility that these cells could 

reside in a vascular niche. Although speculative at this point, one possible role 

could be to serve as immune surveillant “first responders”. It will be important 

going forward to determine whether these juxtavascular microglia in the adult 

have unique functions.    

 

Microglia-vascular interactions: Implications for CNS disease 

Our findings have important implications for neurological diseases 

associated with the injured or aged CNS where there is enhanced microglial 

association with the vasculature, such as in stroke, brain tumors, multiple 

sclerosis (MS), and Alzheimer’s disease (AD) (Stankovic, Teodorczyk, and Ploen 

2016; Zhao et al. 2018). This enhanced association can lead to further 

breakdown of the BBB and infiltration of peripheral immune cells into the CNS 

and possibly angiogenesis in the case of brain tumors (Stankovic, Teodorczyk, 

and Ploen 2016; Zhao et al. 2018; Haruwaka et al. 2019). Therefore, 

understanding precisely when and where microglia interact with the vasculature 

in the healthy brain may lead to therapeutic strategies to reduce vascular 
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pathology and facilitate recovery. One intriguing possibility is that these sites of 

juxtavascular microglia association with vessels, which lack astrocyte endfeet, 

are more vulnerable to BBB breakdown and infiltration of peripheral immune cells 

and factors. In addition to neurodegenerative disorders, our findings may also 

have important implications for neurodevelopmental disorders such as autism 

spectrum disorders (ASDs). For example, microglia-vascular interactions may be 

important for the timing of microglial colonization to synapse-dense brain regions 

where they regulate synapse maturation and pruning during critical windows in 

development (Paolicelli et al. 2011; Hoshiko et al. 2012; Tremblay, Lowery, and 

Majewska 2010; Schafer et al. 2012; Gunner et al. 2019). If these interactions 

are disrupted, the timing of synapse development and, ultimately, neural circuit 

function may be altered. This is supported by our data from Cx3cr1-/- mice 

showing delays in microglial association with the vessels, which is concomitant 

with known delays in microglial recruitment to developing synapses and delays in 

synapse maturation in these mice (Paolicelli et al. 2011; Zhan et al. 2014; 

Hoshiko et al. 2012). Long term, Cx3cr1-/- mice have phenotypes associated with 

ASD, including decreased functional brain connectivity, deficits in social 

interactions, and increased repetitive behaviors (Zhan et al. 2014). However, a 

better understanding of how vascular interactions affect microglial colonization 

and extending these analyses of microglia-vascular interactions into the ASD 

human brain will be necessary.  
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Together, our work sheds new light on an understudied population of 

microglia, juxtavascular microglia. This work lays the foundation for identifying 

new molecular mechanisms underlying microglia-vascular interactions, 

identifying mechanistic underpinnings of microglia-astrocyte crosstalk at the level 

of the NVU, and furthering our understanding of juxtavascular microglia function 

in CNS homeostasis. With the vascular interface emerging as an important 

aspect of many neurological conditions, this study also lays the critical 

groundwork to study how this microglial population may be important in a wide 

range of CNS diseases. 
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MATERIALS AND METHODS 

Animals 

Male and female mice were used for all experiments. Cx3cr1-/- mice 

(Cx3cr1EGFP/EGFP; stock #005582) and C57Bl6/J (stock #000664) mice were 

obtained from Jackson Laboratories (Bar Harbor, ME). Heterozygous breeder 

pairs were set up for all experiments and wild-type (WT) and heterozygote 

littermates were used as controls with equal representation of males and females 

for each genotype. All experiments were performed in accordance with animal 

care and use committees and under NIH guidelines for proper animal welfare. 

 

Human prenatal brain collection and immunofluorescence microscopy 

Deidentified prenatal human brain tissues were collected via the Department of 

Pathology Autopsy Service at the University of California San Francisco under 

the approval of the Committee on Human Research (CHR, Study #: 12-08643). 

Brain tissues from four prenatal cases at 15, 18, 21 and 28 gestational weeks 

(GW) were evaluated using standard neuropathologic examinations to rule out 

any gross or microscopic abnormalities. These autopsy cases, which all had 

postmortem intervals of less than 48 hours, were fixed in freshly prepared 4% 

paraformaldehyde (PFA) and sampled at the level of the mammillary body. 

Following fixation in 4% PFA for 48 hours, brain samples were incubated with 

20% sucrose solution, and were frozen in embedding medium OCT for 

cryosectioning at 20µm. For consistency, 3-6 consecutive sections were 
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prepared from each sample and immunostained with anti-Iba1 antibody (Wako; 

Richmond, VA; 1:3000) and anti-CD31 antibody (R&D Systems; Minneapolis, 

MN; 1:200). Images of the ventricular and subventricular zones at the level of the 

frontal cortex were acquired on Leica SP8 confocal microscope using a 40X 

(1.3NA) objective lens. 

 

Preparation of tissue for immunofluorescence microscopy     

Mice were perfused with 1X Hank’s balanced salt solution (HBSS) -magnesium, -

calcium, (Gibco, Gaithersburg, MD) prior to brain removal at indicated ages. For 

analysis of frontal and somatosensory cortex, brains were post-fixed in 4% 

paraformaldehyde in 0.1M phosphate buffer (PB) for four hours. Brains were 

placed in 30% sucrose in 0.1M PB and allowed to sink prior to sectioning. 

Sections were blocked in 10% goat serum, 0.01% TritonX-100 in 0.1M PB for 1 

hour before primary immunostaining antibodies were applied overnight. 

Secondary antibodies were applied for two hours the following day. All steps 

were carried out at room temperature with agitation. For structured illumination 

microscopy (SIM), sections were blocked in 3% BSA, 0.01% TritonX-100 in 0.1M 

PB for 1 hour before primary immunostaining antibodies were applied for 48 

hours at 4°C. Secondary antibodies were applied for four hours at room 

temperature with agitation. The following antibodies were used: anti-P2RY12 

(Butovsky Laboratory, Brigham and Women’s Hospital, Harvard University; 

1:200), anti-PECAM (Biolegend; San Diego, CA; 1:100), anti-aquaporin 4 
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(Millipore Sigma; St. Louis, Missouri; 1:200), anti-Pdgfrβ (Thermo Fisher 

Scientific; Waltham, MA; 1:200), anti-Lyve1 (Abcam; Cambridge, MA; 1:200), 

anti-smooth muscle actin (SMA) (Millipore Sigma; St. Louis, Missouri; 1:200), and 

anti-VGluT2 (Millipore Sigma; St. Louis, Missouri; 1:2000).  

 

Confocal microscopy  

Immunostained sections were imaged on a Zeiss Observer Spinning Disk 

Confocal microscope equipped with diode lasers (405nm, 488nm, 594nm, 

647nm) and Zen acquisition software (Zeiss; Oberkochen, Germany). For 

microglia-vascular interaction, microglial density, nearest neighbor analysis, 

microglia association with SMA+ or SMA- vessels and vascular density analyses, 

20x, single optical plane, tiled images of the frontal or somatosensory cortex 

were acquired for each animal. To create a field of view (FOV), each tiled image 

was stitched using Zen acquisition software. Two FOVs (ie. tiled images) were 

acquired per animal. To note, anti-P2RY12 immunostaining was used to label 

microglia in wild type animals, which was more difficult to visualize at lower 

magnification at older ages compared to EGFP-labeled microglia. As a result, for 

anti-P2RY12 immunostained sections from P7-P28 animals, twelve 40x fields of 

view were acquired per animal with 76 z-stack steps at 0.22µm spacing. For 

analysis of juxtavascular microglia that occur by chance, vascular diameter, 

juxtavascular association with branched/unsegmented vessels, primary 

processes aligned with vessels, astrocyte endfeet/juxtavascular microglia 
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coverage on the vasculature, and vascular-associated microglia contacts with 

astrocytes, six-twelve 40X fields of view were acquired from the frontal cortex per 

animal with 76 z-stacks at 0.22µm spacing. 

 

Juxtavascular microglia and microglia density analyses in the frontal and 

somatosensory cortices  

Using the DAPI channel as a guide, a region of interest (ROI) was chosen in 

each cortical layer, I-VI from each 20x stitched tiled image (10 ROIs per animal). 

Subsequent images were analyzed in ImageJ (NIH; Bethesda, MD). For anti-

P2RY12, sections were acquired at 40x, a maximum intensity projection was 

made from each z-stack and was considered a ROI (12 per animal). The ROI 

areas were recorded. The same ROI was transposed on the microglial channel 

and the cell counter ImageJ plugin was used to count the number of microglia in 

the ROI. The total density of microglia was then calculated by dividing the 

microglia number by the ROI area. To assess microglial association with the 

vasculature, the microglia and blood vessel channels were merged and the cell 

counter plugin was used to manually count the number of microglia with cell 

bodies directly apposed to blood vessels. Juxtavascular microglia were defined 

as microglia with at least 30% of their soma perimeter associated with blood 

vessels and soma centers that were within 10µm of the vessel. The percent of 

juxtavascular microglia was calculated by summing the total number of microglia 

associated with vasculature divided by the total number of microglia within the 
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ROI. To quantify the percent juxtavascular microglia that occur by chance six-

twelve 40X fields of view were analyzed. The number of associations between 

microglia and blood vessels was quantified, then the orientation of the blood 

vessel channel was horizontally flipped 180 degrees and the number of 

associations between microglia and vasculature was re-quantified. For each 

animal, data from the ROIs were averaged together to get a single average per 

animal for statistical analyses.  

 

Juxtavascular microglia analysis within the barrel cortex 

Juxtavascular microglia analysis in the barrel cortex was performed blinded to 

genotype. Images were analyzed in ImageJ (NIH; Bethesda, MD). From each 

tiled image from each animal, 12-18 images containing VGluT2+ barrels were 

cropped for subsequent analyses. From each cropped image, the individual 

channels were separated and, using the free hand selection tool, each individual 

barrel was outlined. This ROI outlining the barrel was transposed to the microglia 

channel where the cell counter plugin was used to count the number of microglia 

in the barrels. The microglia and blood vessel channels were then merged and 

the same ROI was transposed onto the merged image. The cell counter plugin 

was used to count the number of microglia in barrels associated with vasculature. 

Each individual barrel ROI was then cleared, leaving behind only the septa 

fluorescence and the cell counter plugin was again used to count the number of 

microglia and the number of juxtavascular microglia in the septa. To calculate the 
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percent of juxtavascular microglia in the barrel cortex, the total numbers of 

juxtavascular microglia in the barrels and septa were summed and divided by the 

total number of microglia in the barrel and septa, respectively, for each ROI. The 

total microglia in barrels and septa, regardless of vascular association, were also 

calculated. All numbers across 12-18 cropped images were then averaged for a 

given animal prior to statistical analyses.  

 

Vascular density analysis 

Density analysis was performed blinded to genotype from the same tiled and 

stitched 20x images used for microglia-vascular association analyses. Using 

ImageJ (NIH; Bethesda, MD) software, the blood vessel channel was 

thresholded manually and the total blood vessel area was measured. Vascular 

density was calculated by dividing the blood vessel area by the area of the ROI. 

For each animal, the vascular density was averaged across all ROIs in the two 

FOV to get a single average per animal for statistical analyses.  

 

Nearest neighbor analysis 

Stitched 20x images, used for microglia-vascular association analyses, were 

used to determine nearest neighbor. Using ImageJ (NIH; Bethesda, MD) 

software, a ROI was drawn around the cortex. The microglia channel was 

thresholded so only somas were selected, the number of microglia was 

calculated using the analyze particles function, and microglia were manually 
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annotated as juxtavascular or vascular-unassociated microglia. The distance 

between nearest neighbor was calculated using the nearest neighbor distances 

plugin. For each animal, the nearest neighbor distance for juxtavascular and 

vascular-unassociated microglia was averaged across the two FOV to get a 

single average per animal for statistical analysis.  

 

Microglial association with SMA+ or SMA- vessels analysis  

Using the DAPI channel as a guide, a ROI was chosen in each cortical layer, I-VI 

from each 20x stitched tiled image (10 ROIs per animal). Subsequent images 

were analyzed in ImageJ (NIH; Bethesda, MD). The same ROI was transposed 

on the microglial, Pdgfrβ, and SMA channel and the cell counter ImageJ plugin 

was used to count the total number of microglia, the number of juxtavascular 

microglia, and the number of juxtavascular microglia associated with SMA+ or 

SMA- vessels in the ROI. The percent of juxtavascular microglia associated with 

SMA+ or SMA- vessels was quantified by dividing the number of microglia on 

SMA+ or SMA- vessels by the number of total juxtavascular microglia. For each 

animal, data from the ROIs were averaged together to get a single average per 

animal for statistical analyses. 

 

Vascular diameter analysis   

Using Imaris (Bitplane) software, the diameter of the vessel was measured in 3D 

at microglial soma association points from 40X images (12 per animal). For each 
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animal, data from the 12 images were averaged together to get a single average 

per animal for statistical analysis. 

 

Primary Process and branched/unsegmented vessel analyses 

Using ImageJ (NIH; Bethesda, MD), the total number of primary processes, the 

number of primary processes aligned parallel with vessels, and whether the 

juxtavascular microglia was associated with a vessel branch point was calculated 

from 40X images (6 per animal, n=3-4 animals). The percent of primary 

processes aligned with vessels was calculated by dividing the number of primary 

processes aligned parallel and associated with vessels by the total number of 

primary processes. The percent of juxtavascular microglia associated with 

branched/unsegmented vessel was calculated by dividing the number of 

juxtavascular microglia associated with branched or unsegment vessels by the 

total number of juxtavascular microglia.  For each animal, data from 6 images 

were averaged together to get a single average per animal for statistical analysis.   

 

Acute Slice Time-Lapse Imaging 

Mice were given a retro-orbital injection of Texas Red labeled dextran (Fisher 

Scientific; Waltham, MA) 10 minutes prior to sacrifice to label vasculature. Mice 

were euthanized at P7 or P≥120, brains were isolated and sectioned coronally at 

a thickness of 300µm using a Leica VT1200 vibratome in oxygenated 37°C 

artificial cerebrospinal fluid (ACSF). Slices were mounted on a MatTak glass 



	 78	

bottom microwell dish and placed in a Zeiss Observer Spinning Disk Confocal 

microscope equipped with diode lasers (405nm, 488nm, 594nm, 647nm) and 

Zen acquisition software (Zeiss; Oberkochen, Germany). Image acquisition 

started after a minimum of 30 minutes of tissue equilibration at 37°C with 5% 

CO2 and within 2 hours of decapitation. Oxygenated artificial cerebral spinal fluid 

ACSF was continuously perfused over the slices at a rate of 1.5-2µm/minute for 

the duration of equilibration and imaging. Per animal, one field of view was 

imaged every 5 minutes over 6 hours on an inverted Zeiss Observer Spinning 

Disk Confocal and a 20X objective. Z-stacks spanning 50-60µm, with serial 

optical sections of 1.5-2µm were recorded from a minimal depth of 30µm 

beneath the surface of the slice to avoid cells activated by slicing. 

 

In vivo 2-Photon Time-Lapse Imaging 

Cranial window surgeries were performed as previously described within the 

visual cortex (2.5µm lateral and 2.0 µm posterior from bregma) (Goldey et al. 

2014). One week after surgery, mice were head-fixed to a custom-built running 

wheel and trained to run while head restrained for increasing time intervals 

several days a week. Two weeks post surgery long-term 2-photon live imaging 

began.  Mice were given a retro-orbital injection of Texas Red labeled dextran 

(Fisher Scientific; Waltham, MA) 10 minutes prior to imaging and were head 

restrained on a custom built running wheel, which was positioned directly under 

the microscope objective. Images were acquired with a 20X water immersion 
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objective (Zeiss, NA 1.0) on a Zeiss Laser Scanning 7 MP microscope equipped 

with a tunable coherent Chameleon Ultra II multiphoton laser and BiG detector. 

Three different regions of interest (ROIs) were taken at least 75µm below the 

surface of the brain, with z-stacks spanning 45-65µm with a step size of 2.5µm 

for each animal. On the first day of imaging, each ROI was imaged every 5 

minutes over 2 hours. The same ROIs were then imaged once (single z-stack) on 

the following days post first imaging session: 1, 3, 7, 10, 14, 17, 21, 24, 28, 35, 

and 42 days. For each imaging day, the ROIs from day 0 of imaging were 

identified based on the vascular structure. 

 

Migration tracking and analysis 

Image processing and microglial soma motility/migration tracking were performed 

using ImageJ (NIH; Bethesda, MD). Time series were first corrected for 3D drift 

using the 3D drift correction plugin (Parslow, Cardona, and Bryson-richardson 

2014) and migration was tracked using the TrackMate plugin (Tinevez et al. 

2017). For each developmental time point, 10-12 juxtavascular and vascular-

unassociated microglia were analyzed per animal (n=4 mice per developmental 

time point). Only cells remaining in the field of view for six hours were included in 

the analysis. The average soma motility (µm/h) was calculated by measuring the 

displaced distance of the microglial soma between time=0 min and time=360 min 

and dividing by the duration of the imaging session. Juxtavascular distance 

migrated was calculated by measuring the displaced distance of the microglial 
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soma between time=0 min and time=360 min. Juxtavascular migration trajectory 

was calculated by measuring the angle between the blood vessel and 

juxtavascular microglia soma along the longest, continuous stretch of motility on 

the vessel. Percent of cells within each binned category (motility, distance 

travelled, and trajectory) was calculated by dividing the number microglia of 

within each category by the total number of microglia. For each animal, data from 

each analyzed cell were averaged together to get a single average per animal for 

statistical analysis.  

 In vivo tracking of juxtavascular microglia motility and long-term 

juxtavascular microglia were performed using ImageJ (NIH; Bethesda, MD). Time 

series were first corrected for 3D drift using the 3D drift correction plugin 

(Parslow, Cardona, and Bryson-richardson 2014) and migration was tracked 

using the TrackMate plugin (Tinevez et al. 2017). To calculate percent of 

microglia stationary over two hours, the number of stationary juxtavascular and 

vascular-unassociated microglia was divided by the total number of microglia.  To 

calculate the percent of original juxtavascular microglia that remain on vessels 

over 42 days, the number of juxtavascular microglia on day 0 was calculated. For 

each subsequent day, the number of these original juxtavascular microglia that 

were still associated with the vasculature was determined and divided by the 

number of original juxtavascular microglia on day 0. For each animal, data was 

analyzed from three ROIs and averaged together to get a single average per 

animal for statistical analysis.  
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Astrocyte endfeet and juxtavascular microglia coverage analysis  

Using Imaris (Bitplane) software, the astrocyte endfeet, microglia, and vessel 

channels were 3D rendered from 40X images (6 per animal). The astrocyte and 

microglia channels were then masked onto the vessel channel and the masked 

astrocyte channel and microglia was 3D rendered. Volumes of the 3D rendered 

vessel channel, masked astrocyte endfeet channel, and masked microglia 

channel were recorded. The percent of blood vessels covered by astrocyte 

endfeet was calculated by dividing the blood vessel volume by the masked 

astrocyte endfeet volume. The percent of blood vessels covered by juxtavascular 

microglia was calculated by dividing the blood vessel volume by the masked 

microglia volume. Uncovered vessel volume was calculated by adding the 

masked astrocyte endfeet and juxtavascular microglia volume and subtracting 

from the vessel volume. The percent of juxtavascular microglia associated with 

vessels was calculated by diving the microglial volume by masked microglial 

volume.  For each animal, data from the 6 images were averaged together to get 

a single average per animal for statistical analysis. 

 

 Juxtavascular microglia- astrocyte association 

Analysis was done using the same images used for astrocyte endfeet coverage 

analysis in Imaris (bitplane). The microglia was 3D rendered, masked onto the 

blood vessel and astrocyte endfeet channel, and the volume of the masked 
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microglial channel was recorded. The percent of juxtavascular microglia 

associated with blood vessels only, vessels and astrocyte endfeet, or astrocyte 

endfeet only was calculated by summing the number of microglia associated with 

vessels only, vessels and astrocyte endfeet, or astrocyte endfeet only and 

dividing by the total number of juxtavascular microglia. For each animal, data 

from the 6 images were averaged together to get a single average per animal for 

statistical analysis. 

 

Expansion Microscopy (ExM) 

Expansion microscopy was performed as previously described (Asano et al. 

2018) with slight modification. Briefly, 80µm floating sections were blocked in 

0.5% bovine serum albumin (BSA) and 0.3% Triton-X100 (TX-100) for 1 hour at 

room temperature.  Primary antibodies, anti-aquaporin 4 (Millipore Sigma; St. 

Louis, Missouri; 1:200), anti-PDGFRβ (Thermo Fisher Scientific; Waltham, MA; 

1:100), and anti-GFP (Abcam; Cambridge, MA; 1:200) were incubated in 0.5% 

BSA and 0.3% TX-100 at 4°C for 4 nights.  Secondary antibodies were added at 

1:200 dilutions overnight at room temperature.  Expansion microscopy protocol 

(Basic Protocol 2) was then followed as published in Asano et al. 2018. 

   

 Structured Illumination Microscopy (SIM) 

Structured Illumination Microscopy (SIM) was performed using a GE Delta Vision 

OMX V4 microscope with pCO.edge sCMOS cameras and an Olympus 60x 1.42 
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NA objective. Samples were mounted in Prolong Glass mounting media with #1.5 

coverslips and imaged using 1.516 refractive index immersion oil. Image 

processing was completed using the GE softWorx software and image quality 

was determined using the SIMcheck plugin in ImageJ. SIM figures were 

produced in ImageJ (NIH; Bethesda, MD).  

 

Scanning Electron Microscopy (SEM)  

Mice were perfusion fixed in 2.5% glutaraldehyde and 2% paraformaldehyde in 

0.1 M sodium cacodylate buffer at pH 7.4 (Science Services). Brains were 

dissected, vibratome sectioned, and immersion fixed for 24h at 4°C. We applied 

a rOTO (reduced osmium-thiocarbohydrazide-somium) staining procedure 

adopted from Tapia et al. (Tapia et al. 2013). Briefly, the tissue was washed and 

post-fixed in 2% osmium tetroxide (EMS), 2% potassium hexacyanoferrate 

(Sigma) in 0.1 M sodium cacodylate buffer. After washes in buffer and water the 

staining was enhanced by reaction with 1% thiocarbohydrazide (Sigma) for 45 

min at 50°C. The tissue was washed in water and incubated in 2% aqueous 

osmium tetroxide. All osmium incubation steps were carried out over 90 min with 

substitution by fresh reagents after 45 min, respectively. To further intensify the 

staining, 2% aqueous uranyl acetate was applied overnight at 4°C and 

subsequently warmed to 50°C for 2h. The samples were dehydrated in an 

ascending ethanol series and infiltrated with LX112 (LADD). The samples were 

flat embedded into gelatin capsules (Science Services) and cured for 48h. The 
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block was trimmed by 200 µm at a 90° angle on each side using a TRIM90 

diamond knife (Diatome) on an ATUMtome (Powertome, RMC). Consecutive 

sections were taken using a 35° ultra-diamond knife (Diatome) at a nominal 

cutting thickness of 100 nm and collected on freshly plasma-treated (custom-

built, based on Pelco easiGlow, adopted from Mark Terasaki) CNT tape 

(Yoshiyuki Kubota et al. 2018). We collected 450 (P5) and 550 (P56) cortical 

sections, covering a thickness of 45-55 µm in depth. Tape strips were mounted 

with adhesive carbon tape (Science Services) onto 4-inch silicon wafers (Siegert 

Wafer) and grounded by additional adhesive carbon tape strips (Science 

Services). EM micrographs were acquired on a Crossbeam Gemini 340 SEM 

(Zeiss) with a four-quadrant backscatter detector at 8 kV. In ATLAS5 Array 

Tomography (Fibics), the whole wafer area was scanned at 3000 nm/pixel to 

generate an overview map. The entire ultrathin section areas of one wafer (314 

sections (P5), 279 sections (P56) were scanned at 100 x 100 x 100 nm3 (465 x 

638 µm2 (P5), 1249 x 707 µm2 (P56). After alignment in Fiji TrakEM2 (A. Cardona 

et al. 2012) areas that contained microglia in close proximity to blood vessels 

(148 x 136 x 16 µm3 (P5), 193 x 186 x 12 µm3 (P56) were selected for high 

resolution acquisition. We collected 29 total 2D micrographs (10 x 10 nm2) from 

n=3 animals at P5 and 11 total micrographs from n=3 animals at P56. From each 

age, one juxtavascular microglia was identified and selected to generate a 3D 

volume (10 x 10 x100 nm3). The image series were aligned in TrakEM2 using a 

series of automated and manual processing steps. For the P5 and P56 image 
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series, segmentation and rendering was performed in VAST (Volume And 

Segmentation Tool) (Berger et al. 2018). We used Blender to render the two 3D 

models (Community 2018). The percent of juxtavascular microglia contacting 

basal lamina was calculated using ImageJ (NIH; Bethesda, MD). Single optical 

plane image were opened, the perimeter area of microglia was measured, and 

the length of contact between microglia and the basal lamina was measured. The 

percent juxtavascular microglia contacting the basal lamina was calculated by 

dividing the perimeter of the microglia by the length of contact between microglia 

and basal lamina.  

 

Experimental Design and Statistical analyses 

GraphPad Prism 7 (La Jolla, CA) provided the platform for all statistical and 

graphical analyses. The ESD method was run for each ROI per animal to identify 

outliers. Significant outliers were removed prior to analyses. Analyses included 

Students t-test when comparing 2 conditions or one-way ANOVA followed by 

Dunnett’s post hoc analysis or two-way ANOVA followed by Sidak’s or Tukey’s 

post hoc analyses (indicated in results figure legends).  
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MOVIE LEGENDS 

Movie 1: 3D rendering of juxtavascular microglia in the early postnatal 

frontal cortex. 3D reconstruction and surface rendering of juxtavascular 

microglia (green, EGFP) associated with blood vessels (magenta, anti-PECAM) 

in the P5 frontal cortex. Yellow denotes association area between microglia and 

blood vessels. 

 

Movie 2: 3D rendering of juxtavascular microglia in the P28 frontal cortex. 

3D reconstruction and surface rendering of juxtavascular microglia (green, 

EGFP) associated with blood vessels (magenta, anti-PECAM) in the P28 frontal 

cortex. Yellow denotes association area between microglia and blood vessels. 

 

Movie 3: Juxtavascular microglial migration in the early postnatal 

somatosensory cortex. Representative live imaging of juxtavascular microglia 

(green, EGFP) migrating on vessels (magenta; dextran) in the P7 

somatosensory. Cx3cr1EGFP/+ mice received a retro-orbital injection of Texas red 

labeled dextran to label the vasculature 10 minutes prior to euthanasia. Coronal 

somatosensory cortices were imaged every 5 minutes over 6 hours immediately 

following slice preparation.  

 

Movie 4: Juxtavascular microglial migration in the early postnatal 

somatosensory cortex.  A second representative live imaging of juxtavascular 
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microglia (green, EGFP) migrating on vessels (magenta; dextran) in the P7 

somatosensory. Cx3cr1EGFP/+ mice received a retro-orbital injection of Texas red 

labeled dextran to label the vasculature 10 minutes prior to euthanasia. Coronal 

somatosensory cortices were imaged every 5 minutes over 6 hours immediately 

following slice preparation.  

 

Movie 5: Juxtavascular microglial migration in the early postnatal 

somatosensory cortex. A third representative live imaging of juxtavascular 

microglia (green, EGFP) migrating on vessels (magenta; dextran) in the P7 

somatosensory. Cx3cr1EGFP/+ mice received a retro-orbital injection of Texas red 

labeled dextran to label the vasculature 10 minutes prior to euthanasia. Coronal 

somatosensory cortices were imaged every 5 minutes over 6 hours immediately 

following slice preparation.  

. 

Movie 6: Juxtavascular microglial migration in the adult somatosensory 

cortex. Representative live imaging of juxtavascular microglia (green, EGFP) 

stationary on vessels (magenta; dextran) in the P≥120 somatosensory cortex. 

Cx3cr1EGFP/+ mice received a retro-orbital injection of Texas red labeled dextran 

to label the vasculature 10 minutes prior to euthanasia. Coronal somatosensory 

cortices were imaged every 5 minutes over 6 hours immediately following slice 

preparation.  
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Movie 7: 2-photon in vivo live imaging of juxtavascular microglia in the 

adult cortex. Representative 2-photon in vivo live imaging of juxtavascular 

microglia (green, EGFP) stationary on blood vessels (magenta, dextran) over 2 

hours in vivo in the adult cortex. Cx3cr1EGFP/+ mice received a retro-orbital 

injection of Texas Red-labeled dextran to visualize the vasculature 10 min prior 

to each imaging session. EGFP+ juxtavascular microglia were then imaged every 

5 minutes for 2 hours. 

 

Movie 8: Juxtavascular microglia associate with the cortical vasculature in 

areas lacking full astrocytic endfoot coverage in the P5 frontal cortex. 3D 

reconstruction and surface rendering of juxtavascular microglia (green, EGFP) 

associated with blood vessels (magenta, anti-PDGFRβ) in areas void of 

astrocytic endfoot labeling (gray, anti-AQP4) in the frontal cortex at P5. 

 

Movie 9: Juxtavascular microglia associate with the cortical vasculature in 

areas lacking full astrocytic endfoot coverage in the P7 frontal cortex. 3D 

reconstruction and surface rendering of juxtavascular microglia (green, EGFP) 

associated with blood vessels (magenta, anti-PDGFRβ) in areas void of 

astrocytic endfoot labeling (gray, anti-AQP4) in the frontal cortex at P7. 

 

Movie 10: Juxtavascular microglia associate with the cortical vasculature in 

areas lacking full astrocytic endfoot coverage in the P28 frontal cortex. 3D 
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reconstruction and surface rendering of juxtavascular microglia (green, EGFP) 

associated with blood vessels (magenta, anti-PDGFRβ) in areas void of 

astrocytic endfoot labeling (gray, anti-AQP4) in the frontal cortex at P28. 

 

Movie 11: Serial EM 3D reconstruction of juxtavascular microglia in the 

early postnatal cortex. 3D reconstruction of serial electron microscopy (EM) of 

juxtavascular microglia (green) contacting a blood vessel in an area void of 

astrocyte endfeet (blue) in the P5 frontal cortex. Red and tan pseudocoloring 

denotes a pericyte and vessel lumen, respectively.  

 

Movie 12: Serial EM 3D reconstruction of juxtavascular microglia in the P56 

cortex. 3D reconstruction of serial electron microscopy (EM) of juxtavascular 

microglia (green) contacting a blood vessel lacking full astrocyte endfoot (blue) 

coverage in the P56 frontal cortex. Red and tan pseudocoloring denotes a 

pericyte and vessel lumen, respectively. 
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ABSTRACT 

Microglia, the resident central nervous system (CNS) macrophage, are born in 

the yolk sac and take up residence in the CNS during embryonic development. 

Once in the brain parenchyma, microglia become highly associated with the 

vasculature and migrate along vessels as they colonize developing synapse-

dense brain regions. While the timing of microglia-vascular interactions and 

colonization of the barrel cortex is dependent on the fractalkine receptor 

(CX3CR1), the precise mechanism by which CX3CR1 regulates the timing of 

juxtavascular microglia, and subsequent colonization, is unknown. Here, we 

identify that CX3CR1 modulates the timing of early developmental microglial-

vascular interactions across cortical brain regions. Further, we show that 

CX3CR1 facilitates microglial adhesion to endothelial cells in young postnatal 

mice, a time of active microglial colonization, but not older mice. Finally, we 

demonstrate that the timing of microglia-vascular interactions in the developing 

brain is independent of the canonical CX3CR1 ligand, fractalkine (CX3CL1). 

Together, these data provide mechanistic insight into the CX3CR1-dependent 

timing of microglia-vascular interactions. They further suggest a role for 

CX3CR1-dependent microglial adhesion to blood vessels, independent of 

CX3CL1, in regulating the timing of microglial colonization of synapse-dense 

brain regions. 
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INTRODUCTION 

Microglia, the resident immune cells of the CNS, play an intricate role in 

an array of developmental processes, including regulating neurite outgrowth, 

synaptogenesis, and synaptic pruning (Schafer et al. 2012; Pont-lezica et al. 

2014; Nagata et al. 1993; Miyamoto et al. 2016). To perform these critical 

processes, microglia must localize to the correct brain region at the appropriate 

time. In the developing brain, a high percent of the microglial population is 

juxtavascular and migrate on blood vessels as they colonize the brain (Mondo et 

al. 2020). The timing of microglia-vascular interactions and subsequent 

localization into synaptic dense brain regions within the somatosensory cortex is 

dependent on the fractalkine receptor (CX3CR1) (Hoshiko et al. 2012; Mondo et 

al. 2020), however precisely how CX3CR1 regulates the timing of juxtavascular 

microglia is unknown. Answers to this question will have an important impact on 

our understanding of how microglia reach the appropriate brain region at the 

correct time and could provide insight into disorders of the developing brain such 

as autism spectrum disorders (ASDs), where disruptions in microglia density and 

synaptic connectivity during critical periods in development, have been identified 

(Edmonson, Ziats, and Rennert 2016; Morgan et al. 2010). 

CX3CR1 is a 7 transmembrane domain G-protein-coupled chemokine 

receptor that is highly enriched in microglia in the CNS (Combadiere, Ahuja, and 

Murphy 1995; Raport et al. 1995). Broadly, CX3CR1 regulates the timing of 

microglial localization in the developing brain. For example, CX3CR1 knockout 
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mice (Cx3cr1-/-) have a delay in recruitment of microglia to synapse-dense 

regions of the hippocampus and somatosensory cortex, which is concomitant 

with a delay in synapse development (Paolicelli et al. 2011; Hoshiko et al. 2012; 

Zhan et al. 2014). One study assessed microglial colonization and subsequent 

effects on synapse maturation in Cx3cr1-/- mice in a sub-region of the 

somatosensory cortex called the barrel cortex (Hoshiko et al. 2012). This study 

found that microglia within layer IV of the barrel cortex, are recruited to dense 

areas of thalamocortical synapses, termed barrel centers, at postnatal day (P) 7. 

This process is delayed in Cx3cr1-/- mice, which is accompanied by a delay in the 

functional maturation of synapses, as measured by NMDA receptor subunit 

composition and AMPA/NMDA ratios (Hoshiko et al. 2012). Similar delays in 

microglial recruitment to synapses and subsequent delays in synapse maturation 

were also observed in the hippocampus of postnatal Cx3cr1-/- mice (Paolicelli et 

al. 2011). Long term, Cx3cr1-/- mice have deficits in functional connectivity, as 

well as ASDs-like behaviors including defects in social interactions and increased 

repetitive behaviors (Zhan et al. 2014).  

Along with delays in localization to synapse-dense brain regions, Cx3cr1-/- 

mice have delays in microglial localization to the vasculature. In the embryonic 

and early postnatal developing brain, microglia are highly juxtavascular, 

associating with and migrating along the vasculature as they actively colonize the 

cortex (Fantin et al. 2010; Smolders et al. 2017; Mondo et al. 2020). In the barrel 

cortex, microglia are associated with the vasculature as they colonize the 
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synapse-dense rich barrel centers and these interactions are delayed in Cx3cr1-/- 

mice, concomitant with delays in microglial localization into barrel centers 

(Mondo et al. 2020). How CX3CR1 regulates the timing of juxtavascular microglia 

is an open question. In the periphery, CX3CR1 and it’s canonical and only known 

in vivo ligand, fractalkine (CX3CL1), have been implicated in regulating 

interactions between immune cells and the vasculature through cellular adhesion 

(Fong et al. 1998; Hamon et al. 2017; Schwarz et al. 2010; Imai et al. 1997; 

Imaizumi, Yoshida, and Satoh 2004; Muehlhoefer et al. 2000; Umehara et al. 

2004; Johnson and Jackson 2013; Goda et al. 2000). Whether CX3CR1 

regulates the timing of microglia-vascular interactions through cellular adhesion 

and if CX3CL1 signaling is involved in the developing brain is unknown. 

In the current study, we identify that CX3CR1 regulates the timing of 

microglia-vascular interactions throughout the developing rodent cortex. We 

demonstrate that CX3CR1 deficient microglia isolated from early postnatal mice 

are less adhesive to endothelial cells in vitro compared to older mice. Finally, we 

show that the timing of microglia-vascular interactions in the early postnatal brain 

is independent of CX3CL1, which is not highly expressed in vascular endothelial 

cells in the brain during early postnatal development. Together, these data 

provide mechanistic insight into the CX3CR1-dependent microglia-vascular 

interactions. They further suggest a role for CX3CR1 in regulating the timing of 

microglial recruitment to synapses via cell adhesion with blood vessels, 

independent of CX3CL1. 
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RESULTS 

CX3CR1 modulates the timing of early developmental juxtavascular 

microglia across cortical brain regions. 

 During rodent and human development, microglia somas are in close 

association with blood vessels and the timing of these interactions is dependent 

on CX3CR1 signaling in the rodent barrel cortex (Fantin et al. 2010; Monier et al. 

2007; Checchin et al. 2006; Mondo et al. 2020). We set out to explore whether 

the timing of microglia-vascular interactions were more globally impaired in 

CX3CR1 deficient (Cx3cr1-/-) mice across development. We focused our analysis 

on the frontal cortex where microglia are highly juxtavascular between postnatal 

day (P)1-P5 (Mondo et al. 2020). Microglia were labeled using transgenic mice 

that express EGFP under the control of the fractalkine receptor CX3CR1, 

Cx3cr1EGFP/+ (heterozygous mice, Cx3cr1+/-) or Cx3cr1EGFP/EGFP (homozygous 

knockout mice, Cx3cr1-/-). Microglia-vascular interactions in Cx3cr1+/- phenocopy 

wild-type (WT) mice (Mondo et al. 2020), therefore they are used as control mice 

here. The vasculature was labeled with an antibody against platelet endothelial 

cell adhesion molecule (PECAM). As previously described (Mondo et al. 2020), 

we observed a high percentage of juxtavascular microglia during early postnatal 

development in Cx3cr1+/- mice (Fig 3.1 A,C). Similar to the barrel cortex, the 

timing of microglia-vascular interactions in the frontal cortex was dependent on 

CX3CR1 (Fig 3.1 B-C). We observed a significant reduction in the percent of the 

total microglial population associated with blood vessels in Cx3cr1-/- mice 
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compared to controls during early postnatal development (Fig 3.1 A-C). We 

confirmed this disruption in the timing of microglia-vascular interactions in 

Cx3cr1-/- mice was independent of changes in microglial and vascular density 

(Fig 3.1 D-E). Further, we confirmed this CX3CR1-dependent timing of microglia-

vascular interactions in the frontal cortex in a second model of CX3CR1 

deficiency (Cx3cr1CreER/CreER) (Fig 3.1 F). Together, these data demonstrate that 

CX3CR1 is a more global regulator of microglia-vascular interactions within the 

developing cortex. 
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Figure 3.1: The timing of microglia-vascular associations in the early 
postnatal frontal cortex is dependent on CX3CR1. A-B. Representative 
images of microglia (green, EGFP) and vasculature (magenta, anti-PECAM) in 
Cx3cr1+/- (A) and Cx3cr1-/- (B) mice at P1 (Ai, Bi), P5 (Aii, Bii), and P28 (Aiii, 
Biii) in the frontal cortex. Microglia are labeled by transgenic expression of EGFP 



	 99	

and vasculature is immunolabeled by anti-PECAM. White arrowheads denote 
juxtavascular microglia. Scale bar= 20µm. C. Quantification of the percent of total 
microglia associated with vasculature in Cx3cr1+/- (black bars) and Cx3cr1-/- (gray 
bars) littermates over development in the frontal cortex shows a significant 
reduction in association at P1 and P5 in Cx3cr1-/- animals. (Two-way ANOVA 
with a Sidak’s post hoc; n=4 littermates per genotype per developmental time 
point, ***p<.001, ****p<.0001). D. Quantification of microglial density in Cx3cr1+/- 
(black bars) and Cx3cr1-/- (gray bars) over development in the frontal cortex 
demonstrates no significant difference in Cx3cr1-/- mice. (Two-way ANOVA with a 
Sidak’s post hoc; n=4 littermates per genotype per developmental time point). E. 
Quantification of vascular density in Cx3cr1+/- (black bars) and Cx3cr1-/- (gray 
bars) over development in the frontal cortex (One-way ANOVA with Dunnett’s 
post hoc; comparison to P28, n=4 mice per genotype per developmental time 
point). F. Quantification of the percent of total microglia associated with 
vasculature in the frontal cortex of a second model of CX3CR1 deficiency, 
Cx3cr1CreER/CreER (white bar) compared to Cx3cr1+/- (black bar) controls (Unpaired 
student’s t-test; n=4 mice per genotype, *p<.05). 
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CX3CR1 deficient microglia isolated from young, postnatal mice are less 

adhesive to endothelial cells 

We next set out to understand the mechanism by which CX3CR1 

regulates the timing of microglia-vascular interactions across the cortex during 

early postnatal development. In the periphery, CX3CR1 mediates immune cell-

vasculature interactions through adhesion to its only known in vivo ligand, 

CX3CL1 (Fong et al. 1998; Hamon et al. 2017; Schwarz et al. 2010; Imai et al. 

1997; Imaizumi, Yoshida, and Satoh 2004; Muehlhoefer et al. 2000; Umehara et 

al. 2004; Johnson and Jackson 2013; Goda et al. 2000). First, we explored 

whether CX3CR1 signaling is modulating microglia-vascular adhesion by 

performing an in vitro cell adhesion assay (Lowe and Raj 2015). In this assay, 

microglia are acutely isolated from P3-P5 or P14 mouse cortices and are then 

added to cultured, adherent endothelial cells (HUVEC) for 30-60 min. The non-

adherent microglia are then washed away and the remaining microglia that have 

adhered to the HUVEC cells are quantified. Using this assay, we observed a 

significant reduction in the endothelial adherence of acutely isolated Cx3cr1-/- 

microglia compared to Cx3cr1+/- microglia from P3-P5 mice, but not from P14 

mice (Fig. 3.2 A-F). These development differences in adhesion are concomitant 

with a reduction in the percent of microglia-vascular interactions we observed in 

Cx3cr1-/- mice at P1-P5, but not at P14 (Fig. 3.1). These data establish that 

CX3CR1 deficient microglia are less adhesive to endothelial cells when isolated 

from early postnatal development and suggests that the delays observed in the 
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timing of juxtavascular microglia in Cx3cr1-/- mice may be through CX3CR1-

dependent vascular adhesion. 
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Figure 3.2: CX3CR1 deficient microglia isolated from early postnatal 
development are less adhesive to endothelial cells. A-E. Representative 
images of the cell adhesion assay, which includes EGFP fluorescence to 
visualize microglia isolated from Cx3cr1+/- (A-C) and Cx3cr1-/- (D-E) mice at P5, 
overlaid over phase contrast to visualize endothelial cells (HUVECs) (Ai-Ei) and 
phase contrast images only (Aii-Eii). Black dotted lines denote EGFP+ microglia. 
Red and yellow arrowheads indicate microglia contact points with endothelial 
cells, which are magnified in B-C (red, Cx3cr1+/-) and E (yellow, Cx3cr1-/-). Scale 
bar= 50µm. F. Quantification of the percent of total Cx3cr1+/- (black bars) or 
Cx3cr1-/- (gray bars) microglia acutely isolated from P3-5 or P14 mice that 
adhered to endothelial cells. (Two-way ANOVA with a Sidak’s post hoc; n=4 
biological replicates; n=1-2 technical replicates per biological replicate; *p<.05). 
All error bars represent ± SEM.  
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The timing of microglia-vascular interactions is independent of the 

canonical CX3CR1 ligand fractalkine (CX3CL1). 

To investigate if CX3CR1 mediates microglia-vascular adhesion through 

CX3CL1, we assessed the timing of these interactions in the frontal cortex of 

CX3CL1-deficient mice (Cx3cl1-/-), in which microglia were similarly labeled by 

transgenic expression of EGFP in the wild-type and knockout littermates 

(Cx3cr1+/-; Cx3cl1+/+ and Cx3cr1+/-; Cx3cl1-/-, respectively). CX3CL1 is the 

canonical and only known in vivo ligand of CX3CR1, which is highly enriched in 

neurons in the CNS and is expressed by vascular endothelial cells in the 

periphery (Bazan et al. 1997; Imai et al. 1997; Imaizumi, Yoshida, and Satoh 

2004). Surprisingly, unlike Cx3cr1-/- mice, microglia still associate with the 

vasculature in early postnatal Cx3cl1-/- mice at levels comparable to littermate 

controls (Fig 3.3 A-B). Similar to Cx3cr1-/- mice, there were no significant 

changes in microglial or vascular density when compared to Cx3cl1+/- littermates 

(Fig 3.3 C-D).  

We further explored Cx3cl1 expression in endothelial cells by performing 

multiplex in situ hybridization for Cx3cl1 and Pecam in Cx3cr1+/- animals (Fig 3.4 

A). We found Cx3cl1 was not highly expressed within Pecam positive cells. In 

contrast, Cx3cl1 was highly enriched in surrounding cells with nuclei >5 µm (Fig 

3.4 A-B), which are likely neurons. This is consistent with previous work showing 

Cx3cl1 enrichment in neurons and little expression in endothelial cells in the 

cerebral cortex (Sunnemark et al. 2005; Ye Zhang et al. 2014). These data 
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suggest that the timing of CX3CR1-dependent microglia-vascular interactions in 

the developing brain is independent of the only known in vivo CX3CR1 ligand, 

CX3CL1.  
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Figure 3.3: The timing of microglia-vascular associations in the early 
postnatal brain are independent of CX3CL1. A. Representative images of 
microglia (green, EGFP) and vasculature (magenta, anti-PECAM) from P1 (Ai), 
P5 (Aii), and P28 (Aiii) Cx3cl1-/- mice frontal cortex. Note, for transgenic 
expression of microglia, the Cx3cr1EGFP/+ reporter mouse line was crossed into 
Cx3cl1-/- mice and littermate controls. Therefore, all mice are Cx3cr1+/-. White 
arrowheads denote juxtavascular microglia. Scale bar= 20 µm. B. Quantification 
of the percent of microglia associated with vasculature in Cx3cl1+/+ (black bar) 
and Cx3cl1-/- (gray bars) animals over development. (Two-way ANOVA with a 
Sidak’s post hoc; n=3-4 littermates per genotype per developmental time point). 
C. Quantification of the number of microglia per mm2 in Cx3cl1+/+  (black bars) 
and Cx3cl1-/- (gray bars) frontal cortices across development. (Two-way ANOVA 
with a Sidak’s post hoc; n=3-4 littermates per genotype per developmental time 
point). D. Quantification of vascular area per mm2 in Cx3cl1+/+ (black bars) and 
Cx3cl1-/- (gray bars) mice over development in the frontal cortex. (Two-way 
ANOVA with a Sidak’s post hoc; n=3-4 littermates per genotype per 
developmental time point). All error bars represent ± SEM. 
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Figure 3.4: Cx3cl1 is not highly expressed in endothelial cells in the early 
postnatal brain. A. Representative in situ hybridization in P5 Cx3cr1+/- animals 
for Cx3cl1 (grey) and Pecam (magenta). The yellow dotted line demarcates the 
Pecam positive signal boundaries used for quantification in B. The Cx3cl1 
channel alone is shown in Aii. Scale bar= 10 µm. B. Quantification of the number 
of Cx3cl1 puncta per µm2 within the boundaries of the Pecam-positive area 
(black bar) versus Pecam-negative cells (gray bars) defined by a boundary, 1.5X 
the diameter of the nucleus, around the DAPI in P5 Cx3cr1+/- frontal cortex. 
There is significant enrichment of Cx3cl1 in Pecam-negative cells. (Two-tailed 
paired Student's t-test; n=3 mice; *p<.05). All error bars represent ± SEM. 
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DISCUSSION 

This study provides the first mechanistic insight into how CX3CR1 

regulates the timing of microglia-vascular interactions. We have discovered that 

CX3CR1-dependent timing of microglia-vascular interactions occurs across 

cortical brain regions during early postnatal development. Moreover, CX3CR1 

deficient microglia are less adhesive to cultured endothelial cells when isolated 

from young, postnatal mice, but not older mice. Finally, we demonstrate that the 

timing of microglia-vascular interactions is independent of the canonical CX3CR1 

ligand, CX3CL1, which is not highly expressed in vascular endothelial cells in the 

brain during early development. Taken together, these data provide mechanistic 

insight into microglia-vascular interactions, demonstrating a novel role for 

CX3CR1 in modulating microglial adhesion to the vasculature and providing 

evidence that the timing of juxtavascular microglia in the developing brain is 

independent of CX3CL1. They further suggest a role for CX3CR1-dependent 

microglial adhesion to blood vessels in regulating the timing of microglial 

colonization of synapse-dense brain regions. 

 

The timing of microglia-vascular interactions is CX3CR1 dependent but 

CX3CL1 independent. 

CX3CL1 expression in endothelial cells has been implicated in regulating 

chemo attraction and cell adhesion of peripheral dendritic cells, lymphocytes, 

leukocytes, Ly6c high monocytes, and THP-1 cells to the vasculature via 
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CX3CR1 signaling (Muehlhoefer et al. 2000; Umehara et al. 2004; Johnson and 

Jackson 2013; Goda et al. 2000; Imaizumi, Yoshida, and Satoh 2004; Fong et al. 

1998; Hamon et al. 2017; Schwarz et al. 2010; Imai et al. 1997). In contrast, our 

data demonstrate that, while CX3CR1 regulates the timing of microglia-vascular 

interactions in the developing cortex, CX3CL1 is not required. This is reminiscent 

of previous work showing that CX3CR1 can promote adult neurogenesis in the 

dentate gyrus independent of CX3CL1 (Sellner et al. 2016). The only other 

proposed ligand of CX3CR1 is CCL26 (Nakayama et al. 2010). However, it is 

known that CCL26 does not induce chemotaxis of mouse L1.2 cells expressing 

mouse CX3CR1 (Nakayama et al. 2010), and there is little to no detectable 

expression of Ccl26 in the postnatal cerebral cortex (Ye Zhang et al. 2014; 

Hammond et al. 2019). These data suggest that CCL26 is not a likely candidate 

to regulate developmental association of microglia with vasculature. Instead, our 

study raises the intriguing possibility that CX3CR1 is modulating these 

interactions through a yet-to-be identified ligand derived from the vasculature. 

Another intriguing possibility is that CX3CR1, a G-protein-coupled receptor 

(GPCR), could modulate gene expression of cell adhesion molecules, such as 

integrins, independent of a ligand. GPCRs that lack a ligand, orphaned GPCRs, 

can participate in intracellular signaling by forming heterodimers with other 

GPCRs. These interactions can then promote receptor folding, maturation, 

and/or transport to the cell surface (Marullo and Bouvier 2005; Levoye et al. 

2006; X. Tang et al. 2012; Galvez et al. 2001; K. A. Jones et al. 1998; Robbins et 
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al. 2001). It remains to be determined if CX3CR1 could function similarly in 

microglia.  

Another interesting and related new question raised by our findings is 

what types of molecules are downstream of CX3CR1 signaling that could 

regulate vascular adhesion? Our cell adhesion assay demonstrates that 

microglia isolated from early postnatal Cx3cr1-/- mice have reduced adhesion to 

endothelial cells in vitro. This raises the possibility that CX3CR1 signaling could 

regulate microglial adhesion to the vasculature through modulation of cell 

adhesion molecules at the cell surface either through transcriptional or post-

translational programs. Going forward, it will be important to elucidate 

downstream CX3CR1 GPCR signaling and whether it is ligand-dependent or -

independent.  

 

A possible role for CX3CR1-dependent microglial-vascular adhesion in 

microglial colonization of synapse-dense brain regions  

Our data are intriguing in light of recent work showing microglia are highly 

juxtavascular as they actively colonize synapse-dense brain regions, the timing 

of which is dependent on CX3CR1 (Mondo et al. 2020). These transient delays in 

juxtavascular microglia in CX3CR1 deficient mice are concomitant with delays in 

recruitment to thalamocortical synapses and are accompanied by delays in 

synapse maturation (Hoshiko et al. 2012), yet how CX3CR1 coordinates the 

timing of juxtavascular microglia and colonization remains unknown. Here, we 
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have uncovered that CX3CR1 deficient microglia isolated from young, but not 

older, mice are less adhesive to endothelial cells in vitro. This developmental 

difference in endothelial adhesion corresponds to delays in juxtavascular 

microglia and microglial colonization in CX3CR1 deficient mice (Hoshiko et al. 

2012; Mondo et al. 2020). Together, these data are consistent with a model in 

which microglia adhere to the vasculature in a CX3CR1-dependent manner and 

use the vasculature as a physical substrate to migrate and localize to the 

appropriate brain region at the correct time. Inefficient microglial adhesion to the 

vasculature in young CX3CR1 deficient mice may lead to disruptions to the 

timing of juxtavascular microglia and subsequent migration and colonization, 

which is resolved in older animals when CX3CR1 deficient microglia maintain the 

same adherence levels as control microglia. Indeed, previous work has shown 

microglia migrate along the vasculature in acute, embryonic and postnatal brain 

slices as the actively colonize the brain (Smolders et al. 2017; Mondo et al. 

2020). Additionally, CX3CR1 deficient microglia display deficits in motility and 

migration speed (Arnoux and Audinat 2015), however what role the vasculature 

plays in these motility changes remains unknown. 

 

Microglia-vascular interactions: Implications for CNS disease 

Mice that exhibit delays in juxtavascular microglia and microglial 

colonization during early postnatal periods due to a lack of CX3CR1 also show 

delays in synaptic maturation and pruning (Paolicelli et al. 2011; Hoshiko et al. 
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2012; Zhan et al. 2014). Long term, Cx3cr1-/- mice have phenotypes associated 

with ASDs, including decreased functional brain connectivity, deficits in social 

interactions, and increased repetitive behaviors (Zhan et al. 2014). Thus, 

CX3CR1-dependent timing of microglia-vascular interactions and subsequent 

colonization to synaptic regions may be critical for proper neuronal circuit 

development and defects may be relevant for ASDs. Consistent with this, 

microglia have been shown to associate with the vasculature in the developing 

human brain, and individuals with ASDs have alterations in microglial density and 

synaptic connectivity (Edmonson, Ziats, and Rennert 2016; Morgan et al. 2010). 

Our work could shed important new mechanistic insight on the role of CX3CR1 in 

neurological disease. Further understanding of how downstream CX3CR1 

signaling is modulates microglia-vascular adhesion in the developing brain will be 

important to inform disease going forward. 
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Materials and Methods  

Animals 

Cx3cr1-/- mice (Cx3cr1EGFP/EGFP; stock #005582), C57Bl6/J (stock #000664), and 

Cx3cr1CreER/CreER (stock #021160) mice were obtained from Jackson Laboratories 

(Bar Harbor, ME). Cx3cl1-/- mice were provided by Dr. Sergio Lira (Ichan School 

of Medicine, Mount Sinai). Heterozygous breeder pairs were set up for all 

experiments and heterozygote littermates were used as controls with equal 

representation of males and females for each genotype. All experiments were 

performed in accordance with animal care and use committees and under NIH 

guidelines for proper animal welfare. 

 

Preparation of tissue for immunofluorescence microscopy     

Mice were perfused with 1X Hank’s balanced salt solution (HBSS) -magnesium, -

calcium, (Gibco, Gaithersuburg, MD) prior to brain removal at indicated ages. For 

analysis of frontal cortex, brains were post-fixed in 4% paraformaldehyde in 0.1M 

phosphate buffer (PB) for four hours. Brains were placed in 30% sucrose in 0.1M 

PB and allowed to sink prior to sectioning. Sections were blocked in 10% goat 

serum, 0.01% TritonX-100 in 0.1M PB for 1 hour before primary immunostaining 

antibodies were applied overnight. Secondary antibodies were applied for two 

hours the following day. All steps were carried out at room temperature with 

agitation. The following antibodies were used: anti-PECAM (Biolegend; San 

Diego, CA; 1:100).  
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Confocal microscopy  

Immunostained sections were imaged on a Zeiss Observer Spinning Disk 

Confocal microscope equipped with diode lasers (405nm, 488nm, 594nm, 

647nm) and Zen acquisition software (Zeiss; Oberkochen, Germany). For 

microglia-vascular interaction, microglial density, and vascular density analyses, 

20x, single optical plane, tiled images of the frontal cortex were acquired for each 

animal. To create a field of view (FOV), each tiled image was stitched using Zen 

acquisition software. Two FOVs (ie. Tiled images) were acquired per animal.  

 

Juxtavascular microglia and microglia density analyses within the frontal 

cortex 

Microglial association with vasculature in the cortex was performed blinded to 

genotype. Images were analyzed in ImageJ (NIH; Bethesda, MD). Using the 

DAPI channel as a guide, a region of interest (ROI) was chosen in each cortical 

layer, I-VI from each 20x stitched tiled image (10 ROIs per animal). The ROI 

areas were recorded. The same ROI was transposed on the microglial channel 

and the cell counter ImageJ plugin was used to count the number of microglia in 

the ROI. The total density of microglia was then calculated by dividing the 

microglia number by the ROI area. To assess microglial association with the 

vasculature, the microglia and blood vessel channels were merged and the cell 

counter plugin was used to manually count the number of microglia with cell 
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bodies directly apposed to blood vessels. Juxtavascular microglia were defined 

as microglia with at least 30% of their soma perimeter associated with blood 

vessels and soma centers that were within 10µm of the vessel. The percent of 

juxtavascular microglia was calculated by summing the total number of microglia 

associated with vasculature divided by the total number of microglia within the 

ROI. For each animal, data from the ROIs were averaged together to get a single 

average per animal for statistical analyses.  

 

Vascular density analysis 

Density analysis was performed blinded to genotype from the same tiled and 

stitched 20x images used for microglia-vascular association analyses. Using 

ImageJ (NIH; Bethesda, MD) software, the blood vessel channel was 

thresholded manually and the total blood vessel area was measured. Vascular 

density was calculated by dividing the blood vessel area by the area of the ROI. 

For each animal, the vascular density was averaged across all ROI in the two 

FOV.  

 

Adhesion assay 

The adhesion assay was performed as previously described with minor 

modifications (Lowe and Raj 2015). The day of the assay, cortical microglia were 

acutely isolated by Percoll gradient. Two mice were perfused with ice-cold 1X 

HBSS (-magnesium, -calcium) (Gibco) at P3-P5 or P14, cortices of the same age 
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were dissected and pooled together. Cortices were minced using a razor blade 

homogenized in a glass homogenizer in RPMI-1640 (Thermo Fisher Scientific). 

Homogenates were mixed with Percoll (Sigma) to create a 30% percoll and 

homogenate solution. This solution was layered over a 70% percoll. The 

homogenate was spun at 500g for 30 minutes at 18 °C with low breaks settings. 

After centrifugation, myelin debris was removed and microglia were collected 

from the 70%-30% gradient interphase. Microglia were washed twice in 1X HBSS 

(-magnesium, -calcium) and centrifuged at 900g for 7 minutes at 4 °C between 

each wash. After the final wash, microglia were resuspended in HUVEC 

endothelial cell media, EBM Endothelial Cell Growth Basal Medium (Lonza, 

Switzerland) supplemented with EGM SingleQuots (Lonza, Switzerland) in a 

volume that yielded 100,000 microglia for every 200µl. 200µl of resuspended 

microglia were added to HUVEC endothelial cell line (obtained from Dr. Nathan 

Lawson at UMMS) plated on coverslips at a density of 50,000-100,000 cells per 

coverslip. Cells were incubated together for 30-60 minutes at 37 °C. After 

incubation, coverslips were submersed in 1X phosphate buffered saline (PBS) 

fifteen times to remove non-adherent cells. Coverslips were then fixed in 4% PFA 

at room temperature for 15 minutes. Two technical replicates were performed for 

each experiment and the experiment was repeated four times on separate days 

(4 biological replicates). Microglial adhesion to HUVEC cells was subsequently 

quantified similar to previously published work (Lowe and Raj 2015). Single plane 

10x epifluorescence images, together with bright field images were collected 
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using a Zeiss Observer microscope equipped with Zen Blue acquisition software 

(Zeiss; Oberkochen, Germany). Two images were taken per technical replicate. 

Images were quantified blinded to genotype in ImageJ (NIH; Bethesda, MD). 

Microglia and HUVEC cell channels were split. The cell counter plugin was used 

to count the total number of microglia in a 10x FOV. The microglia and HUVEC 

channel were then merged together and the cell counter plugin was used to 

count the number of microglia that were adherent to HUVECs. This number was 

then divided by to the total number of microglia within the FOV to calculate the 

percent of microglia adherent to HUVECs. For each biological replicate, data 

were averaged over the two technical replicates prior to statistical analyses. 

    

In situ RNA hybridization  

In situ RNA hybridization was performed according to the manufacturer’s 

specification with slight modifications (ACDBio; Newark, CA). Briefly, mice were 

perfused with 4% PFA and brains were post-fixed for 24 hours. 10µm 

cryosections were prepared, equilibrated to room temperature for 1 hour, and 

then washed in 1X PBS for 5 minutes. Sections were treated with “Protease III” 

for 20 minutes at 40 °C and rinsed with RNAse free water. In situ probes were 

added and incubated for 2 hours at 40 °C. Subsequent amplification steps were 

performed according to the manufacturer’s specification. In situ sections were 

then imaged on a Zeiss Observer Spinning Disk Confocal microscope and Zen 

acquisition software (Zeiss; Oberkochen, Germany). For each animal, twelve 63x 
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fields of view were acquired in the frontal cortex with 25-35 z-stacks at 0.22µm 

spacing. Images were analyzed using ImageJ (NIH; Bethesda, MD). Z-stacks 

were opened, one optical plane was chosen for analysis, and the Pecam and 

Cx3cl1 channels were split. To quantify the number of puncta in Pecam positive 

area, the free hand selection tool was used to draw a ROI around the Pecam 

positive area. The area of the Pecam positive ROI was recorded. The Cx3cl1 

channel was manually thresholded, the Pecam positive ROI was superimposed 

on the Cx3cl1 channel, and the number of Cx3cl1 puncta within the Pecam 

positive area was recorded. To quantify the number of puncta in a Pecam 

negative area, a circle that was 1.5x the diameter of a Pecam negative nucleus 

was drawn. Nuclei smaller than 5µm were excluded. The area of the circle was 

recorded, superimposed on the Cx3cl1 channel, and the number of Cx3cl1 

puncta within the ROI was recorded. To calculate the number of Cx3cl1 puncta 

per µm2 (X102), the number of Cx3cl1 puncta in the Pecam positive area was 

divided by the Pecam positive ROI or the Pecam negative ROI and multiplied, 

respectively, by one hundred. Fifteen cells per animals were analyzed and data 

for each animal was averaged across all twelve fields of view prior to statistical 

analyses.  

 

Statistical analysis 

GraphPad Prism 7 (La Jolla, CA) provided the platform for all statistical and 

graphical analyses. The ESD method was run for each ROI per animal to identify 
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outliers. Significant outliers were removed prior to analyses. Analyses included 

Students t-test when comparing 2 conditions or one-way ANOVA followed by 

Dunnett’s post hoc analysis or two-way ANOVA followed by Sidak’s or Tukey’s 

post hoc analyses (indicated in figure legends).  
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Chapter IV 

Discussion 

Over the past 20 years, there has been a growing appreciate for the 

importance of microglia in the healthy CNS. In contrast to classically held beliefs, 

seminal imaging studies revealed that “resting” microglia in the health brain are 

highly active, constantly extending and retracting their processes which are in 

frequent contact with neurons, synapses, and other glial cells (Davalos et al. 

2005; Nimmerjahn, Kirchhoff, and Helmchen 2005; Schafer et al. 2012; 

Tremblay, Lowery, and Majewska 2010; Frost and Schafer 2016). These 

descriptions of interactions between microglia and other resident CNS cell types 

has now led to a new understanding that microglia are important for neural circuit 

structure and function and has raised questions about what other CNS cell types 

microglia contact (Schafer et al. 2012; Tremblay, Lowery, and Majewska 2010; 

Paolicelli et al. 2011; Gunner et al. 2019). Microglia are known to contact the 

brain vasculature, however, the vast majority of these studies have been in the 

context of disease (Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 2018). In 

this thesis, I investigate the developmental timing, dynamics, localization, and 

molecular mechanisms of juxtavascular microglia in the healthy postnatal CNS. 

In Chapter II, I demonstrate that microglia are highly associated with the 

vasculature during the first week of postnatal development, the timing of which is 

dependent on the fractalkine receptor (CX3CR1). Moreover, I find that microglial 

association with the vasculature is concomitant with a peak in microglial 
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colonization of cortex and synapse-dense brain regions. As microglia colonize 

the cortex, juxtavascular microglia are highly motile along vessels and become 

largely stationary in adulthood. This change in microglia motility occurs as 

astrocyte endfeet arrive on the vasculature. Finally, I determine that juxtavascular 

microglia associate with both the basal lamina and astrocyte endfeet surrounding 

the vasculature through development and adulthood. In Chapter III, I investigate 

the mechanism by which CX3CR1 regulates the timing of microglia-vascular 

interactions. I determine that CX3CR1 modulates the timing of juxtavascular 

microglia throughout the developing cortex. Moreover, I demonstrate that 

CX3CR1 deficient microglia isolated from young mice are less adhesive to 

endothelial cells. However, surprisingly I find that the timing of microglia-vascular 

interactions is independent of CX3CL1, the canonical ligand to CX3CR1. 

Together, this work provides the first extensive analysis of juxtavascular 

microglia in the healthy, developing and adult brain and lays the fundamental 

groundwork to investigate the function of these cells in the healthy and diseased 

brain. 

 

Part I. Microglial association and migration along the vasculature in the 

developing brain: implications for microglial colonization. 

Microglia are born as primitive macrophages in the embryonic yolk sac 

and enter the neuroepithelium at embryonic day E9.5 by crossing the pial surface 

and lateral ventricles (Navascués et al. 2000; Swinnen et al. 2013; Ginhoux et al. 
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2010). They then migrate and proliferate to colonize the embryonic brain in a 

rostral-to-caudal gradient (Sorokin et al. 1992; Navascués et al. 2000; Swinnen 

et al. 2013; Alliot, Godin, and Pessac 1999; Perry, Hume, and Gordon 1985; 

Ashwell 1991). While signaling mechanisms have been identified to regulate the 

initial infiltration of microglial precursors into the brain parenchyma (Ginhoux et 

al. 2010; Arno et al. 2014; Ueno and Yamashita 2014), far less is known about 

the mechanisms regulating microglial localization to the appropriate brain regions 

during postnatal development. In this thesis, I have identified that microglia are 

highly juxtavascular and migratory on vessels during the first postnatal week, a 

time of active microglial colonization of the cortex and synapse-dense brain 

regions. Moreover, I demonstrate that the timing of these interactions is 

dependent on CX3CR1, a molecule implicated in regulating recruitment of 

microglia into synapse-dense brain regions (Paolicelli et al. 2011; Hoshiko et al. 

2012). Together, these data suggest microglia utilize blood vessels to colonize 

the developing brain and raises intriguing future directions including 

understanding the role of the vasculature as a scaffold for microglial migration, 

investigating CX3CR1-dependent timing of juxtavascular microglia, and exploring 

possible mechanisms regulating juxtavascular microglia migration directionality 

and colonization. Understanding how microglia localize to the appropriate brain 

region at the correct time will provide insight into neurodevelopmental disorders, 

such as autism spectrum disorders (ASDs), that are characterized by alterations 
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in microglial density and synaptic changes (Edmonson, Ziats, and Rennert 2016; 

Morgan et al. 2010). 

 

The vasculature as a scaffold for microglial colonization 

 In the developing brain, the vasculature serves as a scaffold for the 

migration of several different cell types. During embryonic development, gamma-

aminobutyric acid (GABA) inhibitory interneurons are associated with blood 

vessels as they migrate towards the cortex (Won et al. 2013; Barber et al. 2018; 

Li et al. 2018). Additionally, the vasculature serves as a scaffold for migration of 

another glial subtype in the brain, oligodendrocyte precursor cells (OPCs). In the 

developing mouse forebrain, the first OPCs originate from ventral regions of the 

medial ganglionic eminence and the anterior entopeduncular area at E12 and 

become highly associated with, and migrate on, vascular networks (Kessaris et 

al. 2006; Tsai et al. 2016). OPC migration and localization is disrupted in mice 

with defective vascular architecture, suggesting that physical interactions with the 

vascular endothelium are required for OPC migration (Tsai et al. 2016). Previous 

work has shown microglia can migrate along the vasculature in acute embryonic 

brain slices and brain slices prepared from postnatal mice in an injury context 

(Smolders et al. 2017; Grossmann et al. 2002). In Chapter II, I demonstrate that 

microglia are highly associated with and migrate on vasculature during the first 

week of postnatal development, a time of active microglial colonization.  
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Together, these data raise the intriguing possibility that microglia utilize 

the vasculature as a scaffold to migrate to the appropriate brain region in the 

developing brain, similar to GABA inhibitory neurons and OPCs, however future 

experiments are required. An ideal experiment is to assess microglial 

colonization in vivo in a mouse model with defective vascular architecture, such 

as the G protein-coupled receptor 124 (GPR124) knockout mice used to study 

OPC-vascular migration (Tsai et al. 2016). However, mice with disrupted 

vasculature are embryonic lethal (Sohet and Daneman 2013), thus vascular-

dependent microglial colonization would have to be assessed in the context of 

embryonic development. Alternatively, genes required for appropriate vascular 

structure could be conditionally removed during postnatal development using a 

Cre-Lox system, but these conditional knockouts can lead to a leaky blood-brain-

barrier (BBB) (Sohet and Daneman 2013), which attract microglia to the 

vasculature and could make interpreting the results difficult (Davalos et al. 2012; 

Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 2018). Novel techniques to 

disrupt vascular architecture without embryonic lethality or disrupting BBB 

permeability will help to overcome obstacles in addressing this future direction.  

 

CX3CR1-dependent timing of juxtavascular microglia and colonization 

 CX3CR1, a G-protein-coupled chemokine receptor (GPCR) that is highly 

enriched in microglia (Combadiere, Ahuja, and Murphy 1995; Raport et al. 1995), 

has been implicated in regulating microglial colonization of synapse-dense brain 
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regions. Mice deficient in CX3CR1 (Cx3cr1-/-) have delays in their localization to 

synapse-dense brain regions such as the barrel cortex and hippocampus, 

resulting in delays in synaptic development. However, how CX3CR1 coordinates 

colonization is unknown (Paolicelli et al. 2011; Zhan et al. 2014; Hoshiko et al. 

2012). In Chapter II, I demonstrate that microglia are highly associated with and 

migrate on vessels during times of active colonization.  The timing of microglia-

vascular interactions is delayed in Cx3cr1-/- mice concomitant with delays in 

microglia localization to synapse-dense brain regions. These data raise the 

intriguing possibility that CX3CR1 regulates colonization through microglia-

vascular interactions.  

 One possible mechanism by which this may occur is through CX3CR1-

dependent microglial adhesion to the vasculature. In the periphery CX3CR1 

mediates adhesion of peripheral immune cells, such as lymphocytes, leukocytes, 

Ly6c high monocytes, and THP-1 cells, to the vasculature through binding to 

CX3CL1, the only known in vivo ligand to CX3CR1 (Muehlhoefer et al. 2000; 

Umehara et al. 2004; Johnson and Jackson 2013; Goda et al. 2000; Imaizumi, 

Yoshida, and Satoh 2004; Fong et al. 1998; Hamon et al. 2017; Schwarz et al. 

2010; Imai et al. 1997). To this end, in Chapter III I demonstrate that Cx3cr1-/- 

microglia isolated from young mice (P3-5) are less adhesive to cultured 

endothelial cells compared to control mice, suggesting CX3CR1 regulates 

microglial adhesion to the vasculature in vivo. However, surprisingly, I find that 

the timing of microglia-vascular interactions in vivo is independent of CX3CL1, 
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raising questions of how CX3CR1 regulates adhesion to the vasculature 

independent of CX3CL1. One possibility is that deletion of CX3CR1, a GPCR, 

could lead to alterations in microglial gene expression that affect microglial 

adhesion to the vasculature. Previously work has demonstrated that other 

functions of CX3CR1, such as promoting adult neurogenesis of the dentate 

gyrus, are independent of CX3CL1 and dependent on downstream CX3CR1 

signaling (Sellner et al. 2016). Here, they report Cx3cr1-/- mice have altered gene 

expression compared to wild type (WT) mice and identify changes in sirtuin 1 

(SIRT1)/P65 expression as being responsible for the change in the number of 

newborn and proliferative cells in the subgranular zone observed in Cx3cr1-/- 

mice (Sellner et al. 2016). Single cell RNA-sequencing (RNA-seq) published from 

the Schafer lab demonstrates that Cx3cr1-/- mice also have altered expression of 

molecules with known adhesion roles, such as osteopontin (SPP1), during early 

postnatal development (P5) (Gunner et al. 2019). Whether altered expression of 

cell adhesion molecules in Cx3cr1-/- mice is responsible for reduced adhesion to 

the vasculature and delays in microglial colonization, independent of CX3CL1, 

remains an open question. Future experiments include assessing microglia-

vascular interactions, juxtavascular migration, and microglial colonization in 

knockout models of candidate molecules identified by the Schafer lab RNA-seq 

data set. Additionally, RNA-seq of Cx3cr1-/- and WT control mice at multiple 

developmental time points, as microglia colonize the brain, may reveal candidate 

genes important for microglial adhesion to the vasculature. An ideal candidate 
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would be a cell adhesion molecule that is highly expressed in microglia during 

embryonic and the first week of postnatal development, that is significantly down 

regulated in Cx3cr1-/- mice. 

 Another way CX3CR1-dependent timing of juxtavascular microglia could 

regulate colonization is through modulating microglia migration and motility. 

Previous work indicates that Cx3cr1-/- microglia have reduced migration and 

motility. In response to a laser ablation in the retina, Cx3cr1-/- mice have 

significantly slower migratory response to the injury site (Liang et al. 2009). 

Moreover, 2-photon live imaging studies in the P5-P9 barrel cortex demonstrate 

that Cx3cr1-/- microglia have reduced soma velocity in response to a 

chemoattractant cue, a P2RY12 agonist (Arnoux and Audinat 2015). These data 

support a model in which Cx3cr1-/- microglia have slower migratory speed, 

resulting in a delayed association with the vasculature and delayed microglial 

colonization. However, further experiments are required to test this model. 2-

photon live imaging of the somatosensory cortex in Cx3cr1-/- mice during peak 

microglial colonization, between P5 and P9, are required to assess Cx3cr1-/- 

microglia migration velocity towards, and while associated with, the vasculature.  

 Another question raised by this work is, how does CX3CR1 signal to 

regulate microglia vascular interactions? One possibility is through down stream 

GPCR pathways. CX3CR1 is a GPCR that signals through the Gq, in turn 

activating phosphatidylinositol-3 (PI-3) kinase pathway (Lyons et al. 2009; Imai et 

al. 1997). As PI-3 kinase has been implicated in regulating cell motility and 
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chemotaxis (Kölsch, Charest, and Firtel 2008), deletion of CX3CR1 may lead to 

alterations in downstream PI-3 kinase signaling and subsequent changes in 

microglial motility and chemotaxis that could delay microglial localization to the 

vasculature. Alternatively, CX3CR1 has been shown to mediate adhesion 

independent of G protein signaling, but required the architecture of a chemokine 

domain atop the mucin stalk (Imai et al. 1997). Thus, CX3CR1 could also signal 

as an adhesion molecule through an extracellular domain function to mediate the 

timing of microglia-vascular interactions. Finally, CX3CR1 could signal through a 

scaffold/heterodimer protein-protein interaction with a second receptor. To 

determine how CX3CR1 signals to mediate the timing of juxtavascular microglia, 

different domains on CX3CR1 could be mutated such that downstream GPCR 

signaling can’t occur, CX3CR1 cannot bind to a ligand through the ligand-binding 

domain, or CX3CR1 cannot adhere by mutating the chemokine domain. The 

timing of juxtavascular microglia could then be assessed within each of these 

conditions. 

Understanding how CX3CR1 regulates the timing of juxtavascular 

microglia and colonization is important given that Cx3cr1-/- mice also show delays 

in synaptic maturation and pruning (Paolicelli et al. 2011; Hoshiko et al. 2012; 

Zhan et al. 2014). Long term, Cx3cr1-/- mice have phenotypes associated with 

ASDs, including decreased functional brain connectivity, deficits in social 

interactions, and increased repetitive behaviors (Zhan et al. 2014). Thus, 

CX3CR1-dependent timing of juxtavascular microglia and microglial colonization 
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to synaptic regions may be critical for proper neuronal circuit development and 

defects may be relevant for ASDs. The work presented in this thesis could shed 

important new mechanistic insight on the role of CX3CR1 in neurological 

disease. Further dissection of how CX3CR1 signaling is modulating microglia-

vascular interactions in the developing brain, as well as in models of ASDs, will 

be important to inform disease going forward.  

 

Possible mechanisms regulating juxtavascular microglia migration directionality 

and colonization  

In rodents, signaling mechanism have been identified to regulate the initial 

infiltration of microglial precursors into the brain parenchyma, such as matrix 

metalloproteinases (MMPs), stromal cell derived factor 1 (SDF-1), and 

Cxcl12/Cxcr4 signaling (Ginhoux et al. 2010; Arno et al. 2014; Ueno and 

Yamashita 2014). However the mechanism underlying microglial migration 

directionality and colonization of the correct brain region in such a precise time 

window is an unresolved question. In this thesis, I demonstrate that juxtavascular 

microglia migrate on blood vessels as they colonize the brain and this migration 

becomes restricted in adulthood, when colonization is complete. Moreover, I find 

that in early postnatal development, juxtavascular microglia have a motility 

trajectory within 15° of the vasculature, demonstrating directional migration along 

vessels. Finally, I provide evidence that the timing of microglia-vascular 

interactions is dependent on CX3CR1, suggesting CX3CR1-CX3CL1 signaling 
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may serve as a migration and colonization cue for juxtavascular microglia. 

CX3CL1 is unique amongst chemokines because it is synthesized as a 

transmembrane molecule, but can be cleaved into a soluble form that contains 

the chemokine domain that serves as a chemoattractant signal (Umehara et al. 

2004; B. Jones, Beamer, and Ahmed 2010). In Chapter III, I find that Cx3cl1 is 

highly enriched outside of endothelial cells, likely in neurons (Gunner et al. 2019), 

suggesting delays in microglia-vascular association in Cx3cr1-/- mice may be due 

to disruptions in chemokine gradient signaling from neuronal sources of soluble 

CX3CL1 versus a direct effect of vascular adhesion. Arguing against this 

hypothesis, I demonstrate that the timing of microglia-vascular interactions is 

CX3CL1 independent. While CX3CR1 may regulate juxtavascular microglia 

adhesion and/or motility through an alternative, CX3CL1 independent method 

(discussed above in “CX3CR1-dependent timing of juxtavascular microglia and 

colonization”), these data raise the intriguing possibility of an unidentified cue 

modulating the directionality of juxtavascular microglia migration and 

colonization.  

 Clues to different signals that could regulate juxtavascular microglia 

migration and colonization can be taken from the literature. As described above, 

several different cell types utilize the vasculature to migrate in the healthy brain. 

The developing vasculature regulates the migration of interneurons via diffusible 

signals, such as GABA and vascular endothelial growth factor (VEGF) secreted 

by vascular endothelial cells (Won et al. 2013; Barber et al. 2018; Li et al. 2018; 
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Fujioka, Kaneko, and Sawamoto 2019). Interestingly, microglia express VEGF 

receptor 1 (VEGFR-1) and it plays a role in microglia chemotactic response 

induced by amyloid-β peptide (Y Zhang et al. 2014; Ryu et al. 2009). In the adult 

brain, neuroblasts born in the subventricular zone migrate along blood vessels to 

the olfactory bulb, which is regulated by endothelial cell derived brain-derived 

neurotrophic factor (BDNF) and neurotrophin receptor P75 (P75NTR) expression 

on migrating neuroblasts (Snapyan et al. 2009). Interestingly, neuroblasts 

derived GABA release induces Ca2+-dependent tyrosine receptor kinase β (Trkβ) 

(a potent BDNF receptor) insertion in astrocytes, suggesting astrocytes can limit 

the availability of BDNF and thus also play a role in neuroblast migration 

(Snapyan et al. 2009). Given my findings in Chapter II that inhibition of 

juxtavascular microglia migration coincides with the appearance of astrocyte 

endfeet on the vasculature, the idea of a tripartite regulation of microglial 

migration on vasculature and colonization is intriguing. 

 Another candidate mechanism that could regulate the directionality of 

juxtavascular microglia migration and colonization is neuronal activity. Sensory-

related changes in neuronal activity regulate the structure of vascular networks in 

the cortex (Lacoste et al. 2014). Increases in neuronal activity in the 

somatosensory barrel cortex, through whisker stimulation, lead to increases in 

vascular density and branching while dampening neuronal activity results in 

decreased vascular density and branching (Lacoste et al. 2014). In addition to 

changes in vascular structure, changes in neuronal activity modulate microglia 
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process dynamics, with microglia moving towards the source of neuronal activity 

(Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 2005; Liu et al. 2019; 

Stowell et al. 2019; Tremblay, Lowery, and Majewska 2010). One pathway that 

could regulate neuronal activity dependent juxtavascular migration is ATP-

P2RY12 signaling. P2RY12 is a puringergic receptor expressed exclusively by 

microglia in the CNS that regulates microglial dynamics in response to ATP 

(Butovsky et al. 2014; Haynes et al. 2006). Juxtavascular microglia require 

P2RY12 to extend their processes towards an injured vessel (Lou et al. 2016). 

Moreover, activated neurons release ATP, which has been shown to mediate 

microglia process outgrowth (Dissing-Olesen et al. 2014). Together, these data 

suggest neuronal activity could act as a chemoattractive cue for juxtavascular 

microglia migration through ATP-P2RY12 signaling. 

 While thought provoking, future experiments are required to test these 

hypotheses. First, single-cell RNA-seq experiments could be performed to 

identify candidate molecules that regulate microglial chemotaxis. Based on 

previously published literature, these molecules will likely be expressed by 

vascular cells, but could also be expressed by neurons. Once candidate 

molecules are identified, juxtavascular microglial association, migration, and 

colonization can be assessed if knockout mouse models exist. Second, to 

determine if neuronal activity plays a role in the directional migration and 

colonization of juxtavascular microglia, a whisker deprivation paradigm can be 

used to dampen neuronal activity in the barrel cortex and localization of 
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juxtavascular microglia can be assessed in the absence of neuronal activity 

(Lacoste et al. 2014; Gunner et al. 2019). Finally, to determine if ATP-P2RY12 

signaling plays a role in juxtavascular microglia migration, microglia-vascular 

associations and juxtavascular migration can be assessed in P2RY12 knockout 

mice. Identifying mechanisms that regulate juxtavascular migration directionality 

will be key to determine the relative importance of microglia-vascular interactions 

for microglial colonization, brain development, and long-term CNS function. 

 

Concluding remarks 

 In this thesis, I have demonstrated that microglia are highly 

associated with the vasculature concomitant with colonization of the cortex and 

synapse-dense brain regions. I show that microglia are migratory on vasculature 

as they colonize the cortex and stationary in adulthood when colonization is 

complete. Finally, I show that the timing of these interactions is dependent on 

CX3CR1, a molecule known to regulate microglial colonization of synapse-dense 

brain regions (Paolicelli et al. 2011; Hoshiko et al. 2012). Together, these data 

suggest microglia utilize the vasculature as a scaffold to migrate on and colonize 

the appropriate brain region at the correct time. Ultimately, these studies linking 

juxtavascular microglia migration and colonization are correlations. Future 

experiments aimed at determining if the vasculature serves as a scaffold for 

microglial colonization, determining how CX3CR1 regulates the timing of 

juxtavascular microglia independent of CX3CL1, and identifying mechanisms 
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regulating juxtavascular microglia directionality will provide further insight 

regarding if and how microglia utilize the vasculature for colonization. 

Understanding how microglia localize to the appropriate brain region at the 

correct time, and the role juxtavascular microglia play in this colonization is 

important given that microglia have been reported to be localized to the 

vasculature in the human brain and several neurodevelopmental disorders, such 

as ASDs, are characterized by alterations in microglial density (Edmonson, Ziats, 

and Rennert 2016; Morgan et al. 2010). 

 

Part II. Juxtavascular microglia-astrocyte interactions and crosstalk at the 

neurovascular unit. 

 At first glance, microglia and astrocytes appear to be very different cell 

types. Astrocytes are derived from neuroepithelial progenitors, are tissue 

embedded, and are non-motile, whereas microglia are derived from a 

hematopoietic common myeloid progenitor that enters the brain during embryonic 

development and have highly dynamic processes (Molofsky and Deneen 2015; 

Ginhoux et al. 2010; Allen and Eroglu 2017; Davalos et al. 2005; Nimmerjahn, 

Kirchhoff, and Helmchen 2005). Despite their differences, microglia and 

astrocytes have the ability to communicate and coordinate their functions both in 

the healthy and diseased brain (Vainchtein and Molofsky 2020). For example, 

both microglia and astrocytes are found in close association at the synapse and 

play complementary roles in support of synapse formation and remodeling (Allen 
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and Eroglu 2017; Clarke and Barres 2013; Tremblay, Lowery, and Majewska 

2010; Schafer et al. 2012; Vainchtein and Molofsky 2020). Along with synapses, 

astrocytes processes, termed endfeet, are found at the vasculature and play an 

integral role in the maturation and maintenance of the blood brain barrier (BBB) 

(Abbott, Rönnbäck, and Hansson 2006; Kimelberg and Nedergaard 2010; 

Macvicar and Newman 2015). In this thesis, I demonstrate that microglia are also 

localized to the vasculature and are in direct contact with both astrocyte endfeet 

and the basal lamina throughout development into adulthood. Together, these 

data raise several questions: 1.) Do astrocytes play a role in regulating 

juxtavascular microglial association and migration? 2.) Do juxtavascular microglia 

and astrocytes communicate at the vasculature to coordinate vascular function? 

3.) Could the vasculature serve as novel model to study microglia-astrocyte 

crosstalk?  Given that both astrocytes and microglia play important roles in the 

maintenance and dysfunction of the BBB in the injured and diseased brain (Eilam 

et al. 2018; Michinaga and Koyama 2019; Stankovic, Teodorczyk, and Ploen 

2016; Zhao et al. 2018; Haruwaka et al. 2019), understanding microglia-astrocyte 

interactions and crosstalk at the NVU may provide insight into neurodegenerative 

diseases. 

 

A potential role for astrocyte endfeet in juxtavascular microglial association and 

migration 
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 Astrocytes are a key cellular component of the NVU that are born and 

begin extending their processes to form endfeet along blood vessels during the 

first postnatal week (Daneman et al. 2010). These astrocyte endfeet ultimately 

surround and ensheath 60-95% of vasculature by adulthood (Mathiisen et al. 

2010; Korogod, Petersen, and Knott 2015). During this time when vessels are left 

uncovered by astrocyte endfeet, I find that a high percentage of microglia are 

associated with and migrate on the vasculature. Interestingly, I demonstrate that 

the decline in the percent of microglia associated with the vasculature and 

juxtavascular microglia migration corresponds with expansion of astrocyte 

endfeet territory on vessels over development. Together, these data raise the 

interesting possibility that expansion of astrocyte endfeet territory on blood 

vessels excludes microglia from associating with and migrating on the 

vasculature during early postnatal development. One mechanism by which this 

may occur is by astrocytes releasing signals that inhibit juxtavascular microglia 

migration. Indeed, in vitro work suggests that astrocytes can inhibit the migration 

of Schwann cells, glial cells found in the peripheral nervous system (Afshari, 

Kwok, and Fawcett 2010; Afshari et al. 2010). In addition, time-lapse imaging 

demonstrates that reactive astrocytes can inhibit neuroblast migration towards a 

lesion caused by a stroke (Kaneko et al. 2018). Whether similar mechanisms 

regulate juxtavascular migration is unknown and is an important future direction.  

Alternatively, astrocyte endfeet expansion could exclude juxtavascular 

microglial association and migration on vasculature by simply limiting the 
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vascular surface area available for microglia to contact. In Chapter II, I 

demonstrate that across all developmental ages juxtavascular microglia are in 

direct contact with the basal lamina, a complex of extracellular matrix proteins 

that could provide an adhesive substrate for microglial association and migration 

(Thomsen, Routhe, and Moos 2017). Therefore, as astrocyte endfeet expand 

during early postnatal development, they may limit the basal lamina surface area 

available for microglia to associate with, thus causing juxtavascular microglia 

dissociation and inhibiting migration. Along these same lines, the expansion of 

astrocyte endfeet territory on vessels may physically remove juxtavascular 

microglia from the vasculature, leading to decreases in the percent of microglia 

on vasculature.  

Given the complementary role that microglia and astrocytes play in 

regulating each other’s function, another interesting direction is to determine if 

juxtavascular microglia contribute to astrocyte endfeet expansion on vessels 

during development. This could be in a positive manner, such as promoting 

astrocyte endfeet expansion by releasing chemoattractive signals. Indeed, 

microglia release soluble factors that can direct the migration of neuronal 

precursor cells in the subventricular zone (Aarum et al. 2003; Xavier et al. 2015). 

However, it could be in a negative manner, microglia may express a repellent 

cue that inhibits astrocyte endfeet from ensheathing vessels during the first 

postnatal week, which is down regulated in older animals. Answers to these 
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questions will provide deeper insight into the relationship between juxtavascular 

microglia and astrocyte endfeet. 

In the future, several experiments will be required to test these 

hypotheses. First, live imaging of astrocyte endfeet-juxtavascular microglia 

interactions on blood vessels through several different developmental time points 

will be critical to determine the role of astrocyte endfeet expansion in 

juxtavascular microglia association and migration. Additionally, assessing 

juxtavascular microglial association and migration in a mouse model with delayed 

astrocyte endfeet, such as fibroblast growth factor 2 (FGF2) knock out mice 

(Saunders et al. 2016), will provide clues to the role of astrocyte endfeet in 

juxtavascular microglia dynamics. Finally, to determine if microglia contribute to 

astrocyte endfeet expansion during development, endfeet coverage on blood 

vessels can be quantified in mice lacking microglia, such as CSF1R KO mice 

(Ginhoux et al. 2010; Erblich et al. 2011). To determine if juxtavascular microglia 

regulated coverage in adulthood, a CSF1R inhibitor, PLX3397 (Elmore et al. 

2014), can be used to deplete microglia and astrocyte endfeet coverage on 

vessels can be assessed. These experiments will provide further insight into 

microglia-astrocyte interactions at the vasculature and will be key to determine 

the relative importance of astrocyte endfeet juxtavascular microglia dynamics.  

 

Could juxtavascular microglia-astrocyte crosstalk coordinate vascular function? 



	 139	

 The cells that make up the NVU, including endothelial cells, pericytes, 

smooth muscle cells, pericytes, the basal lamina, astrocytes, and neurons, work 

in concert to ensure proper function of the vasculature and the BBB (Daneman 

and Prat 2015; Mastorakos and Mcgavern 2019; Alvarez, Katayama, and Prat 

2013). In particular, astrocytes play a key role in promoting and maintaining BBB 

and vascular function by communicating between cells of the NVU. For example, 

astrocytes provide a cellular link between neuronal circuitry and blood vessels, 

as astrocytes relay signals that regulate blood flow in response to neuronal 

activity (Attwell et al. 2011; Gordon, Howarth, and Macvicar 2010). This includes 

regulating the contraction/dilation of vascular smooth muscle cells surrounding 

arterioles as well as pericytes surrounding capillaries (Daneman and Prat 2015). 

In addition, astrocytes are known to produce an array of factors that can 

modulate endothelial function by inducing expression of junctional proteins, 

altering the permeability of the BBB (Wang et al. 2008; Alvarez et al. 2011; 

Alvarez, Katayama, and Prat 2013; Daneman and Prat 2015). Finally, astrocytic 

extracellular matrix proteins have been shown to regulate pericyte differentiation 

and smooth muscle cell function, which helps to maintain BBB integrity (Z. Chen 

et al. 2013; Yao et al. 2014). In this thesis, I demonstrate for the first time that 

microglia are apart of the NVU, with their somas directly contacting the basal 

lamina and astrocyte endfeet throughout the lifetime of animal. This raises the 

question, could juxtavascular microglia-astrocyte communication regulate 

vascular function? 
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 One mechanism by which astrocytes communicate with the NVU is 

through cytokine signaling. Cytokines released by reactive astrocytes in close 

proximity to the BBB induce tight junction re-organization through tumor necrosis 

factor (TNF), interferon (IFN)-γ, and CCL2 (Chaitanya et al. 2011; Yao and Tsirka 

2014). Moreover, astrocyte-derived IL-6 decreases endothelial cell barrier 

function in vitro (Takeshita et al. 2017). In addition to cross talk with the NVU, 

cytokines are an also an important mechanism of astrocyte-microglia crosstalk 

(Vainchtein and Molofsky 2020). For example, astrocyte-derived IL-33 can 

promote microglial synapse engulfment and neuronal circuit development, while 

microglia-conditioned media increases the differentiation of NPCs into astrocytes 

through IL-6 (Vainchtein et al. 2018; Nakanishi et al. 2007). Together, these data 

provide a foundation to explore if astrocyte-juxtavascular microglia crosstalk 

through cytokine singling could have consequences on vascular development 

and integrity. In the future, experiments such as in vitro microglia, astrocyte, and 

endothelial co-cultures will be necessary to determine if microglia or astrocyte 

derived cytokines work in synchrony to modulated endothelial cellular function. 

Another potential mediator of astrocyte-microglia crosstalk at the 

vasculature is the extracellular matrix (ECM). The parenchymal basal lamina is 

comprised of ECM proteins, such as laminin, secreted by astrocyte endfeet and 

is the site of juxtavascular microglia contact with the vasculature (Daneman and 

Prat 2015; Thomsen, Routhe, and Moos 2017; Mondo et al. 2020). Astrocytic 

extracellular matrix proteins have been implicated in regulating BBB 
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development, function, and permeability. For example, knockout of laminin α2 

chain (LAMA2-/-) expressed by astrocytes and pericytes causes infiltration of 

inflammatory cells in the brain parenchyma, changed organization of tight 

junction proteins, reduced pericyte coverage, and extravasation of albumin 

(Menezes et al. 2014). Astrocytic laminin also affects pericyte differentiation by 

maintaining the pericytes in non-contractile state, which stabilizes BBB integrity 

(Yao et al. 2014). While the exact extracellular matrix proteins expressed by 

juxtavascular microglia is not known, microglia do express MMPs, a group of 

enzymes that are responsible for the degradation of most ECM proteins, which 

disrupt BBB function (Rosenberg 1995). Specifically, microglia express MMP-2 

and MMP-9, which have been shown to disrupt the parenchymal basal lamina in 

a mouse model of multiple sclerosis (Kieseier et al. 1998; Dubois et al. 1999; 

Romanic and Madri 1994; Könnecke and Bechmann 2013). Thus, MMPs 

secreted by juxtavascular microglia at the basal lamina may control the ECM 

composition secreted by astrocytes, leading to functional changes in the 

vasculature. Additionally, recent work demonstrates that microglia can engulf 

ECM proteins in an IL-33 dependent manner (Nguyen et al. 2020), raising the 

possibility that juxtavascular microglia could engulf basal lamina ECM, 

influencing astrocytes and vascular function. Although these models of 

juxtavascular microglia-ECM-astrocyte communication may be indirect, they 

would still require the two cell types to create a functional change at the 

vasculature. Future experiments include identifying ECM proteins and MMPs that 
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are expressed by juxtavascular microglia. Methodologies to identify juxtavascular 

microglia specific genes will be discussed in Part IV of the discussion. 

 

The NVU: a novel model to investigate microglia-astrocyte crosstalk 

 Although microglia and astrocytes perform complementary functions in 

neuronal development and homeostasis, few studies have addressed how 

microglia and astrocytes communicate to coordinate these functions. Previous 

work has demonstrated that microglia and astrocyte processes are both found at 

synapses and can promote developmental synapse formation and pruning (Allen 

and Eroglu 2017; Clarke and Barres 2013; Tremblay, Lowery, and Majewska 

2010; Schafer et al. 2012). One study found that astrocytes can secrete 

transforming growth factor β (TGF-β) that may positively regulate complement 

component 1q (C1q) expression and promote microglial phagocytosis (Bialas 

and Stevens 2013). Additionally, it has been shown that IL-33 produced by 

developing astrocytes directly increased microglial phagocytic ability (Vainchtein 

et al. 2018). Beyond this work, few studies have shown direct evidence of 

microglia-astrocyte crosstalk. A novel model to study microglia-astrocyte 

crosstalk could provide new avenues to investigate molecular mechanisms of 

communication and functional outcomes. In this thesis, I find that juxtavascular 

microglia are in direct contact with astrocytes at the vasculature across all 

developmental time points, providing a novel modality to investigate microglia-

astrocyte crosstalk. Questions aimed at understanding what molecules microglia 
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and astrocytes use to communicate, how microglia and astrocytes physically 

interact, how microglial dynamics are affected by astrocytes, and the functional 

outcomes of these interactions can be explored here.  

 

Concluding remarks 

In this thesis, I demonstrate that microglia are localized to the vasculature 

and are in direct contact with both astrocyte endfeet and the basal lamina 

throughout development into adulthood. Additionally, I show that changes in the 

percent of juxtavascular microglia and juxtavascular migration correlate with an 

expansion in astrocyte endfeet, raising the possibility that microglia and 

astrocytes are able to communicate and regulate one another at the vasculature. 

This work lays the foundation to investigate microglia-astrocyte crosstalk, an 

understudied and important topic in glial biology. An interesting direction raised 

by this thesis to understand if astrocytes play a role in regulating juxtavascular 

microglial association and migration, which will provide key insights into 

mechanisms regulating microglial colonization as well as mechanisms by which 

microglia and astrocytes communicate. Another future direction of this thesis is to 

determine if juxtavascular microglia and astrocytes communicate at the 

vasculature to coordinate vascular function. Vascular dysfunction, initiated and 

perpetuated by microglia and astrocytes, is characteristic of several neurological 

disorders (Stankovic, Teodorczyk, and Ploen 2016; Zhao et al. 2018; Vainchtein 

and Molofsky 2020), thus understanding mechanisms of juxtavascular microglia-
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astrocyte crosstalk could provide novel therapeutic targets to treat these 

disorders.  

 

Part III. Juxtavascular microglia-vascular crosstalk and functions in the 

healthy CNS 

 Juxtavascular microglia were first identified in the rodent brain in 1991 

(Ashwell 1991; Lassmann et al. 1991). Using ultrastructural analysis, the authors 

demonstrate that microglial processes contact the vascular basal lamina between 

astrocyte endfeet (Lassmann et al. 1991). Since this initial description, few 

studies have focused on these cells in the healthy brain. In this thesis, I report 

the first extensive analysis of juxtavascular microglia in the healthy, developing 

and adult brain. I demonstrate that microglia-vascular interactions are 

developmentally regulated, with a high percentage of microglia juxtavascular 

during the first week of postnatal development. Moreover, I demonstrate that 

microglial cell bodies directly contact the basal lamina and astrocyte endfeet 

throughout development and adulthood. These data lay the fundamental 

groundwork to gain a deeper understanding of juxtavascular microglia regulation 

of the vasculature, vascular regulation of juxtavascular microglia, and potential 

roles of microglia at the vasculature. With new evidence that microglia could be a 

conduit by which changes in peripheral immunity affect CNS function 

(Hanamsagar and Bilbo 2017; Hammond, Robinton, and Stevens 2018; Zhao et 

al. 2018; Rothhammer et al. 2018) and mounting evidence that an array of 
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neurological disorders have a vascular and microglial component (Daneman 

2012; Hammond, Robinton, and Stevens 2018; Zhao et al. 2018), a greater 

understanding of microglia-vascular crosstalk is necessary. 

 

Juxtavascular microglial regulation of the vasculature 

 Evidence in the literature suggests a role for microglia in regulating 

vascular developmental. For example, in the embryonic brain, microglia are often 

localized to vascular junction points and mice depleted of microglia (PU.1 

knockout mice) display decreases in vascular branching (Fantin et al. 2010). 

Similar findings have been reported in the developing retina (Rymo et al. 2011; 

Checchin et al. 2006; Yoshiaki Kubota et al. 2009; Dudiki et al. 2020). However, 

these studies are limited given that the genetic and pharmacological approaches 

used to deplete microglia target all monocyte-derived cells. My data 

demonstrating that microglia are localized to the vasculature prior to the arrival of 

astrocyte endfeet suggests juxtavascular microglia may be in a position to 

regulate vascular complexity and/or to help maintain the BBB prior to astrocyte 

endfeet arrival. Arguing against this, microglia depletion in the postnatal brain 

does not appear to induce changes in BBB integrity (Parkhurst et al. 2013; 

Elmore et al. 2014). Moreover, I demonstrate that mice with delayed microglial 

localization to the vasculature (Cx3cr1-/- mice) do not have changes in vascular 

density during postnatal development. Additionally, I find that juxtavascular 

microglia preferentially associate with unsegmented vessels in the postnatal 
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brain, rather than branch points, providing further evidence that juxtavascular 

microglia may not regulate vascular complexity. Together, these data suggest 

that either peripheral myeloid cells can contribute to developmental vascular 

complexity or juxtavascular microglia may play differential roles in vascular 

development in embryonic versus postnatal development. Future experiments 

that specifically deplete microglia are required to identify the role microglia play in 

vascular development. Strategies include using a microglia-specific Cre line, 

such as P2ry12 or Hexb, to deplete microglia embryonically and assess vascular 

complexity and BBB permeability in early postnatal and adult mice (McKinsey et 

al. 2020; Masuda et al. 2020).  

 Beyond regulating vascular development, microglia could play a role in 

regulating cerebral blood flow (CBF). The mammalian brain has evolved a unique 

mechanism for regional CBF control known as neurovascular coupling, where 

neuronal activity regulates CBF though communication with astrocytes, vascular 

smooth muscle cells, pericytes, and endothelial cells (Kisler et al. 2017). At the 

capillary level, where I find juxtavascular microglia predominantly localized, 

pericytes and astrocytes have been reported to play important roles in controlling 

blood flow. Previous work demonstrates that neuronal activity and the 

neurotransmitter glutamate evoke the release of messengers that dilate 

capillaries by actively relaxing pericytes (Hall et al. 2014). Additionally, astrocytes 

can mediate neurovascular signaling to capillary pericytes, influencing CBF 

(Mishra et al. 2016). Whether juxtavascular microglia could also influence CBF is 
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an open question. The close localization of juxtavascular microglia to astrocytes 

and pericytes at the vasculature suggests microglia could play similar roles. 

Additionally, microglia can respond to changes in neuronal activity (Dissing-

Olesen et al. 2014; Davalos et al. 2005; Nimmerjahn, Kirchhoff, and Helmchen 

2005; Tremblay, Lowery, and Majewska 2010; Schafer et al. 2012; Gunner et al. 

2019), supporting a role for juxtavascular microglia in neurovascular coupling. 

Future experiments to address this open question include measuring the 

vascular diameter at juxtavascular microglia contact points before and after 

neuronal activity, such as whisker stimulation in the barrel cortex. Answers will 

impact our understanding of neurovascular coupling, which can become 

uncoupled in disease leading to vascular dysfunction and disease progression 

(Kisler et al. 2017; Iadecola 2017). 

   

Vascular regulation of juxtavascular microglia 

 To date, the role of the vasculature in regulating microglia in the healthy 

brain has not been explored. My findings that microglia are intimately associated 

with the vasculature in both young and adult mice raises questions about the role 

the vasculature plays in the developmental changes that occur in microglia 

throughout the life of an animal (Hammond et al. 2019). Possible answers to 

these questions may be found in the periphery, where blood vessels can regulate 

macrophage differentiation and maturation of recruited monocytes, including 

proliferative status and phagocytic capacity (Krishnasamy et al. 2017). 
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Additionally, the differentiation of another glial cell type, OPCs, is regulated by 

the vasculature (Tsai et al. 2016). Whether the vasculature regulates 

juxtavascular microglia differentiation and maturation is unknown and represents 

an important future direction. In this thesis, I find that microglia are highly 

associated with the vascular basal lamina during the first week of postnatal 

development, as the microglial population is expanding and microglia are in a 

more immature, phagocytic state (Butovsky et al. 2014; Krasemann et al. 2017; 

Ashwell 1991; Perry, Hume, and Gordon 1985). These data point towards a 

possible role for the vasculature in regulating juxtavascular microglia, perhaps 

through modulating proliferative, phagocytic, or activation states of microglia. 

Interestingly, pericytes can serve as immune responsive cells which can enhance 

microglial activation (Matsumoto et al. 2014; 2018). This might imply a regulation 

by pericytes of microglial phenotype in the developing brain, however these 

experiments were performed in vitro and need to be validated in vivo. In the 

context of disease, the vasculature plays a role in regulating microglial activation 

(discussed in Part V of the discussion), which could provide insights into the 

healthy and developing brain. In the future, experiments aimed at addressing 

juxtavascular microglial states will be key to identify if the vasculature can 

regulate microglia. These include determining microglial proliferative and 

phagocytic state in juxtavascular versus vascular unassociated using markers 

such as Ki67 and CD68, respectively. Additionally, assessing juxtavascular 

microglia morphology could provide clues to vascular regulation of microglia, as 
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microglial morphology and function are closely related (Fernández-arjona et al. 

2017). Finally, determining if juxtavascular microglia have a unique 

transcriptional profile compared to vascular-unassociated microglia could provide 

clues to if/how the vasculature regulates microglia. Methodologies to identify 

juxtavascular microglia specific genes will be discussed in Part IV of the 

discussion. 

 Another mechanism by which the vasculature could regulate microglia is 

through modulating juxtavascular microglia migration. As discussed in “Possible 

mechanisms regulating juxtavascular microglia migration directionality and 

colonization” in Part I of the discussion, vascular derived cues can modulate 

migration of newborn interneurons and neuroblasts. Here, I find that 

juxtavascular microglia are migratory on vessels during times of active 

colonization, raising the interesting hypothesis that vascular derived cues can 

regulate microglia migration and colonization. Identifying if the vasculature can 

regulate juxtavascular microglial migration will provide insight into microglial 

colonization as well as juxtavascular microglia-vascular crosstalk, furthering our 

understanding of juxtavascular microglia in the healthy brain. 

 

Juxtavascular microglia as “first responders” to peripheral immune challenge 

 In the healthy brain, the CNS must be able to detect and respond to 

peripheral immune challenge and blood-born signals, but has no direct access to 

them (Persidsky et al. 2006; Saper 2010). Likewise, the immune system does not 
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directly contact the brain parenchyma, suggesting that they interact through a 

brain-immune interface. One intriguing possibility is that juxtavascular microglia 

serve as “first responders” to peripheral immune challenge. Here I demonstrate 

that juxtavascular microglia directly contact the vascular basal lamina, placing 

them in an ideal location to relay peripheral immune and blood-born signals to 

the CNS.  

A growing body of work has illustrated that peripheral immune activation 

can disrupt fetal brain development, and induce an onset of behavioral 

abnormalities in animal models (Hsiao et al. 2012; P. H. Patterson 2009). As the 

resident immune cells of the CNS and key regulators of neuronal development, 

microglia are thought to mediate a neuroinflammatory response that leads to 

neurodevelopmental disruptions. For example, bacterial infection in newborn rats 

alters the function of microglia such that a subsequent systemic 

lipopolysaccharide (LPS) injection results in exaggerated cytokine production 

within the brain, which is causally linked to cognitive deficits if the LPS infection 

occurs around the time of learning later in life (Williamson et al. 2011). 

Additionally, maternal immune activation (MIA) or LPS challenge in late 

adolescent mice has been shown to impact microglial transcriptional 

development, likely having significant consequences on neuronal development 

and increasing the risk for disease (Matcovitch-Natan et al. 2016; Hanamsagar et 

al. 2017). Environmental challenges to the immune system have also been 

shown to alter microglial phenotype. Exposure of pregnant dams to diesel 
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exhaust results in changes to microglial morphology in fetal brains, interestingly 

only in males, consistent with activation and/or delays in maturation in several 

brain regions (Bolton et al. 2017). Similarly, maternal exposure to ultrafine 

particles (UFP), a component of air pollution, leads to increases in corpus 

callosum size, hypermyelination, and microglial activation in offspring (Klocke et 

al. 2017). Although evidence is building that microglia communicate peripheral 

immune challenges to the CNS, the exact mechanism by which this occurs is 

unknown. 

One intriguing site of communication between peripheral immune cells 

and microglia is the vasculature. Immune cells are found circulating in the blood 

and enter the brain through disruption of the BBB in disease (Engelhardt, 

Vajkoczy, and Weller 2017; Erickson and Banks 2018). In Chapter II, I 

demonstrate that juxtavascular microglia directly contact the vascular basal 

lamina in development and adulthood. As the basal lamina is a site of cell-cell 

communication (Obermeier, Daneman, and Ransohoff 2013), juxtavascular 

microglia could directly communicate with, or receive signals from, peripheral 

immune cells at these vascular contact sites. Alternatively, immune cells and 

juxtavascular microglia could communicate through a more indirect pathway. 

Under inflammatory conditions, endothelial cells and pericytes can serve as 

immune responsive cells, releasing cytokines and chemokines that can cause 

microglia activation (Hurtado-alvarado, Cabañas-morales, and Gómez-gónzalez 

2014; Xing et al. 2018; Navarro et al. 2016). Given the tight localization between 
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juxtavascular microglia, endothelial cells, and pericytes, it is possible that these 

cytokines and chemokines directly activate juxtavascular microglia, which could 

relay signals of peripheral immune challenge throughout the brain parenchyma. 

Determining if juxtavascular microglia act as “first responders” to immune 

challenges is important as early life immune activations, such as infection, toxin 

exposure, maternal stress, and metabolic disruptions, have increasingly been 

identified as a risk factor for several neurodevelopmental disorders such as 

ASDs, schizophrenia, and psychosis (P. Patterson 2011; A. S. Brown 2008; 

Boksa 2008; Dalman et al. 2008). 

 

Concluding remarks 

 Since the first description of juxtavascular microglia in the early 1990’s, 

there has been little research on these cells in the context of the healthy brain. 

Previous work suggests that juxtavascular microglia may play a role in vascular 

branching and complexity in the embryonic brain, however this work has several 

caveats and raises questions about juxtavascular microglia in the postnatal brain. 

In this thesis, I demonstrate that juxtavascular microglia are developmentally 

regulated, with a high percentage of microglia associated with the vasculature as 

they actively colonize the postnatal brain. Additionally, I find that microglia 

directly contact the basal lamina across all developmental time points, laying the 

groundwork to investigate microglia-vascular crosstalk in the healthy and 

developing brain. Future directions include gaining a deeper understating of the 
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role juxtavascular microglia play in vascular development, as well as 

investigating if the vasculature can regulate microglia, a topic that has never 

been explored. In addition, as new evidence that microglia could be a conduit by 

which changes in peripheral immunity affect CNS function comes to light, it 

raises questions about the role of juxtavascular microglia as first responders to 

these immune challenges. Addressing these questions and gaining a deeper 

understanding of juxtavascular microglia-vascular cross talk in the healthy brain 

may provide insight into neurodegenerative diseases that are characterized by 

microglia activation, resulting in vascular dysfunction (Stankovic, Teodorczyk, 

and Ploen 2016; Zhao et al. 2018). 

 

Part IV. Juxtavascular microglia: a new subpopulation of microglia? 

 It has become increasingly appreciated that microglia are a 

heterogeneous population of cells that express different cellular markers, use 

different signaling mechanisms, and have differing morphologies across 

development and within different brain regions (Gunner et al. 2019; Masuda et al. 

2019; Hammond et al. 2019; Tan, Yi, and Li 2020). Additionally, microglia that 

functionally differ from each other are thought to mix within close vicinity of the 

same anatomical site (De Biase and Bonci 2019; Hanisch 2013; Stratoulias et al. 

2019), suggesting that microglia may differ within specific brain regions such that 

one subtype of microglia could be localized within multiple anatomical regions. 

This raises interesting questions about juxtavascular microglial identity. Could 
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juxtavascular microglia be a unique subpopulation of microglia localized 

throughout the brain? Future experiments aimed at identifying juxtavascular 

specific gene expression are required and could provide insight into their 

potential significance for normal CNS functions and in disease. 

The vast majority of studies investigating microglia heterogeneity use a 

single-cell RNA-sequencing approach to characterize microglial gene expression 

from different regions of the brain that can easily be isolated, for example the 

cerebellum, cortex, hippocampus, and midbrain. Identifying if juxtavascular 

microglia are a unique population of cells by single-cell RNA-sequencing brings 

about technical difficulties since isolating juxtavascular microglia is not as simple 

as dissecting out different anatomical regions. One possible technique is to 

isolate brain vasculature and sequence juxtavascular cells that remain 

associated with the vessels. However, it has been reported that microglia do not 

stay bound to isolated vessels (Boulay et al. 2015), thus crosslinking reagents 

may be required to ensure juxtavascular microglia remain associated with the 

vessels, which could cause changes in gene expression. Alternatively, laser 

capture microdissection can be used to specifically isolate juxtavascular 

microglia, which can then be submitted for sequencing. While possible, laser 

capturing microglia can be challenging as these cells are small with little RNA, 

thus requiring capture of hundreds of cells (Mastroeni et al. 2017; 2018). The 

ideal method to identify if juxtavascular microglia are a unique population of cells 

is through spatial transcriptomics, such as multiplexed error-robust fluorescence 
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in situ hybridization (MERFISH) (K. H. Chen et al. 2015). Image-based 

approaches to single-cell transcriptomics naturally preserve the native spatial 

context of RNAs within a cell and the organization of cells within tissue (Moffitt et 

al. 2016). Moreover, new advances allow for the RNA profiling of hundreds of 

thousands of cells within 24 hours (Moffitt et al. 2016), making it an ideal 

technique to identify juxtavascular microglia specific gene expression. 

Clues to genes specifically expressed in juxtavascular microglia can be 

taken from the literature and may provide insight into possible functions of these 

cells. In the embryonic brain, microglia are found highly associated with blood 

vessels and may perform proangiogenic functions (Fantin et al. 2010). In this 

context, vascular-associated microglia express TIE2 and neuropilin 1 (NRP1), 

two genes found to be significantly upregulated in proangiogenic tumor 

macrophages (Fantin et al. 2010; Pucci et al. 2009). However, it remains 

unknown if vascular-unassociated microglia also express these genes and if 

juxtavascular microglia continue expressing these genes throughout postnatal 

development and adulthood. Another interesting candidate molecule that may be 

specifically expressed in juxtavascular microglia is CD11c, a classic dendritic cell 

marker (Prodinger et al. 2011). Prodinger et al. investigated the distribution, 

phenotype, and source of CD11c+ cells in the non-diseased brain. Interestingly, 

they identified that the majority of CD11c+ cells were juxtavascular parenchymal 

cells that co-expressed ionized calcium-binding adaptor molecule 1 (IBA-1) and 

CD11b, markers also expressed in microglia (Prodinger et al. 2011). While 
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promising, they also identified a small population of CD11c+ cells within the 

perivascular space, suggesting these cells may not be microglia (Prodinger et al. 

2011). In the future, identifying if these cells are microglia using microglia specific 

markers, such as P2RY12, will be important in determining if juxtavascular 

microglia are a new subpopulation of microglia.  

In this thesis, I demonstrate that about 20% of microglia in the adult CNS 

are associated with the vasculature; raising the possibility that juxtavascular 

microglia may be a new microglial subpopulation. Investigation into microglial 

heterogeneity has demonstrated that microglia function, phenotype, and gene 

expression can vary across brain regions. Considering the importance of 

microglia for CNS development and homeostasis, this regional heterogeneity 

suggests microglia may selectively influence CNS functions and contribute to 

neurological diseases. As juxtavascular microglia contribute to vascular 

dysfunction in the diseased CNS (Stankovic, Teodorczyk, and Ploen 2016; Zhao 

et al. 2018), understanding if these cells are a new subpopulation of microglia 

could provide therapeutic strategies to specifically target juxtavascular microglia 

and ameliorate vascular dysfunction. 

 

Part V. Juxtavascular microglia: implications for CNS disease 

 The data presented in this thesis have important implications for 

neurological diseases associated with the injured or aged CNS, such as Multiple 

Sclerosis (MS), Alzheimer’s disease (AD), stroke, and peripheral inflammation, 
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where there is enhanced microglia-vascular association and vascular 

dysfunction, as outlined in the introduction “Juxtavascular microglia in the 

diseased CNS ”. In Chapter II, I demonstrate that juxtavascular microglia directly 

contact the vascular basal lamina in areas devoid of astrocyte endfeet, raising 

the possibility that these contact sites may be more vulnerable to BBB 

breakdown and peripheral immune cell invasion. Indeed, under inflammatory 

conditions, endothelial cells and pericytes can serve as immune responsive cells, 

releasing cytokines and chemokines that can cause microglia activation 

(Hurtado-alvarado, Cabañas-morales, and Gómez-gónzalez 2014; Xing et al. 

2018; Navarro et al. 2016). When activated, microglia secrete a range of toxic 

molecules such as ROS, NO, PGE, COX-2, quinolinic acid, several chemokines 

such as MCP-1, CXCL-1, and MIP-1α, and pro-inflammatory cytokines such as 

IL-6, TNF-α, and IL-1β, all of which exert a detrimental effect on the integrity and 

function of the BBB (Morris et al. 2018; Sousa et al. 2018). Given the tight 

localization between juxtavascular microglia, endothelial cells, and pericytes, it is 

possible that endothelial cells and pericytes can directly activate juxtavascular 

microglia, leading to BBB breakdown. Alternatively, these sites of contact may 

strengthen the BBB and initially prevent its breakdown. Recent work 

demonstrates that during systemic inflammation, vessel-associated microglia 

initially maintain BBB integrity via expression of the tight-junction protein Claudin-

5 and make physical contact with the endothelial cells (Haruwaka et al. 2019). 

However, during sustained inflammation, microglia phagocytose astrocytic end-
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feet and impair BBB function (Haruwaka et al. 2019). Together, these data 

suggest that juxtavascular microglia localization to the vasculature in areas 

devoid of astrocyte endfeet may play a dual role in maintaining BBB integrity in 

the diseased brain. 

 In models of stroke, microglia become juxtavascular 24 hours after 

ischemic insult (Jolivel et al. 2015). Interestingly, mice deficient in CX3CR1, 

displayed a reduction in the size of the ischemic infarct area and BBB damage 

(Dénes et al. 2008; Jolivel et al. 2015; Z. Tang et al. 2014). However, how 

CX3CR1 reduces ischemic and BBB damage is an open question. In this thesis, I 

demonstrate that CX3CR1 regulates the timing of microglia-vascular interactions, 

raising the intriguing hypothesis that Cx3cr1-/- microglia are delayed in their 

localization to the vasculature under stroke conditions resulting in reduced BBB 

damage. Supporting this, a selective inactivation of microglial CX3CR1 that has 

been reported to regulate microglial migration (Liang et al. 2009; A. E. Cardona 

et al. 2006), significantly reduced blood extravasation (Jolivel et al. 2015), 

pointing towards a role for CX3CR1-dependent timing of juxtavascular microglia 

in BBB damage and immune cell extravasation after stroke. As CX3CR1 also 

plays a role in the progression of other neurological diseases characterized by 

vascular dysfunction, such as AD (Stankovic, Teodorczyk, and Ploen 2016; Zhao 

et al. 2018; Finneran and Nash 2019), understanding if CX3CR1-dependent 

timing of microglia-vascular interactions contributes to disease could provide 

novel therapeutic strategies.   
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 In addition to diseases of the aged and injured CNS, data presented in this 

thesis have implications for neurodevelopmental disorders such as ASDs. 

Microglial colonization of the appropriate brain regions at the correct time during 

development is critical for proper neuronal circuit development (Paolicelli et al. 

2011; Hoshiko et al. 2012; Zhan et al. 2014). Mice with delayed colonization of 

synapse-dense brain regions display long-lasting behavior deficits associated 

with ASDs (Zhan et al. 2014). Moreover, in human ASDs patients, disruptions in 

microglial density and synaptic connectivity during critical periods of development 

have been identified (Edmonson, Ziats, and Rennert 2016; Morgan et al. 2010). 

Thus, understanding how microglia colonize the brain at the correct time will 

impact our understanding of ASDs. In Chapter II, I demonstrate that 

juxtavascular microglia migrate on blood vessels, which may be important for the 

timing of microglial colonization to synapse-dense brain regions where they 

regulate synapse maturation and pruning during critical windows in development 

(Paolicelli et al. 2011; Tremblay, Lowery, and Majewska 2010; Schafer et al. 

2012; Gunner et al. 2019; Hoshiko et al. 2012). If these interactions are 

disrupted, the timing of synapse development and, ultimately, neural circuit 

function may be altered. This is supported by my data that Cx3cr1-/- mice show 

delays in microglial association with the vessels, which is concomitant with 

known delays in microglial recruitment to developing synapses and delays in 

synapse maturation in these mice (Paolicelli et al. 2011; Zhan et al. 2014; 

Hoshiko et al. 2012). Future studies investigating microglia-vascular interactions 
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in the ASDs human brain will be necessary to determine the importance of 

juxtavascular microglia in neurodevelopmental disorders. 

 Together, my thesis work investigating juxtavascular microglia in the 

healthy brain provides insights into CNS diseases characterized by microglia and 

vascular dysfunction, as well as aberrant microglial colonization. Understanding 

precisely when, where, and mechanisms by which microglia interact with the 

vasculature in the healthy brain may lead to therapeutic strategies to reduce 

vascular pathology and facilitate recovery. 

 

Part VI. Concluding remarks 

The work presented in this thesis sheds new light on an understudied 

population of microglia, juxtavascular microglia. I provide the first extensive 

characterization of microglia-vascular interactions in the healthy, postnatal brain 

and identify a molecular mechanism regulating the timing of these interactions 

during development. I determine that juxtavascular microglia are developmentally 

regulated, with a high percentage of microglia associated with and migratory on 

blood vessels, concomitant with a peak in microglial colonization of the cortex 

and recruitment to synapses (Fig 4.1A). Juxtavascular microglia become 

stationary on vessels as astrocyte endfeet arrive and the brain matures. 2-photon 

live imaging in adult mice reveals that these vascular-associated microglia in the 

mature brain are stable and stationary for several weeks (Fig 4.1A). Finally, I 

provide evidence that the timing of these interactions during development is 



	 161	

regulated by CX3CR1, but not CX3CL1, the canonical in vivo ligand for CX3CR1, 

and hypothesize that this delay in microglia-vascular interactions leads to delays 

in microglial colonization of the barrel cortex in CX3CR1 deficient mice (Fig 

4.1B). Together, these data lay the fundamental groundwork to investigate the 

role of the vasculature in microglial colonization, juxtavascular microglia-

astrocyte crosstalk, juxtavascular microglia function, and juxtavascular microglia 

as a novel subpopulation of microglia in the healthy and diseased brain. 

Moreover, data presented in this thesis have important implications for 

neurological diseases associated with the injured or aged CNS, such as Multiple 

Sclerosis, Alzheimer’s disease, stroke, and peripheral inflammation, where there 

is enhanced microglia-vascular association and vascular dysfunction.  
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Figure 4.1: Working model of microglia-vascular interactions in wild type 
and CX3CR1 deficient mice. A. During the first week of postnatal development 
in wild type animals, a high percentage of microglia are juxtavascular, coinciding 
with a peak in microglial colonization of the cortex and recruitment to synapses. 
These juxtavascular microglia are motile during times of active microglial 
colonization, but become stationary and stable on blood vessels long-term in 
adulthood. This change in microglial association and dynamics is concomitant 
with expansion of astrocyte endfoot territory on the vasculature. This data 
supports a mechanism by which microglia use the vasculature to migrate and 
colonize the developing brain parenchyma. This migration becomes restricted 
upon the arrival of astrocyte endfeet such that juxtavascular microglia become 
highly stationary and stable in the mature cortex. B. CX3CR1 deficient mice have 
delays in microglia-vascular interactions that coincide with delays in microglial 
colonization of the synapse dense barrel cortex. These data are consistent with a 
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model in which microglia associate with the vasculature in a CX3CR1-dependent 
manner and use the vasculature to localize to the appropriate brain regions at the 
correct time. Inefficient microglial association with the vasculature in CX3CR1 
deficient mice may lead to disruptions to the timing of juxtavascular microglia and 
subsequent migration and colonization, which is resolved in adult animals where 
juxtavascular microglia and microglial colonization reach wild type levels. 
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