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Abstract Predicting gene expression from DNA sequence remains a major goal in the field of13

gene regulation. A challenge to this goal is the connectivity of the network, whose role in altering14

gene expression remains unclear. Here, we study a common autoregulatory network motif, the15

negative single-input module, to explore the regulatory properties inherited from the motif. Using16

stochastic simulations and a synthetic biology approach in E. coli, we find that the TF gene and its17

target genes have inherent asymmetry in regulation, even when their promoters are identical; the18

TF gene being more repressed than its targets. The magnitude of asymmetry depends on network19

features such as network size and TF binding affinities. Intriguingly, asymmetry disappears when20

the growth rate is too fast or too slow and is most significant for typical growth conditions. These21

results highlight the importance of accounting for network architecture in quantitative models of22

gene expression.23

24

Introduction25

The genomics revolution has enabled biology with the ability to read, write and assemble DNA26

at the genome scale with single base pair resolution. These advancements have provided an27

important tool for the field of gene regulation that aims to predict gene expression from the28

regulatory code, inscribed in DNA (Carey et al. (2013); Kosuri et al. (2013); Sharon et al. (2012))29

This approach relies on quantitative measurements of gene expression as the regulatory DNA30

is systematically designed to induce regulation by various transcription factors (TFs) at specific31

positions or with differing affinities. However, success in predicting expression levels of natural32

genes from sequence alone has been relatively modest. One obvious complication is that genes33

are not isolated but rather exist in dense, interconnected networks. The concept of network motifs,34

defined as overrepresented patterns of connections between genes and TFs in the network, helps35

to digest these large networks into smaller subgraphs with specific properties; each of these motifs36

can be interpreted as performing a particular “information processing” function that is determined37

by the connectivity and regulatory role of the genes in the motif (Alon (2006, 2007); Davidson (2006);38

Mangan and Alon (2003); Tkačik et al. (2008). In this study, we dissect a prevalent gene regulation39
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motif, the single-input module (SIM), to demonstrate the influence of network size and connectivity40

on the regulation of a network motif.41

The SIM is a network motif where a single TF regulates the expression of a set of genes, including42

itself (Fig. 1A). In E. coli this motif is prevalent; the majority of TFs are autoregulated and have43

multiple targets (Santos-Zavaleta et al. (2018)). Typically, this group of genes have related functions44

and the purpose of this motif is to coordinate, in both time and magnitude, expression of these45

related genes (Alon (2006)). There are mounting examples, from diverse topics that range from46

metabolism (Fig. 1B, (Zaslaver et al. (2004))), stress response (Fig. 1C, (Friedman et al. (2005);47

Ronen et al. (2002))), development (Arnone (2002); Gaudet and Mango (2002); Kalir et al. (2001)),48

and cancer (Lorenzin et al. (2016)), where temporal ordering of gene expression in the motif49

naturally follows the functional order of the genes in the physiological pathway. Mechanistically,50

it is thought that this ordering is set through differential affinity for the TF amongst the various51

target genes in the motif (Alon (2006)), although in some experiments temporal ordering was52

not observed implying a dependence on physiology or another experimental detail that is yet53

unrecognized (Gerosa et al. (2013); Schmidt et al. (2016)). Due to the broad importance of these54

motifs, a quantitative understanding of how SIMmotifs can be encoded, designed and optimized,55

will be instrumental in gaining a deep and fundamental understanding of the spatial and temporal56

features of a diverse set of cellular phenomena.57

To quantitatively explore the input-output relationship of the SIM motif, we use a synthetic58

biology approach that boils the motif down to its most basic components: an autoregulated TF59

gene, a sample target gene, and competing binding sites. Using E. coli as a model organism we build60

this motif in vivo. We use non-functional “decoy” binding sites to exert competition for the TF and61

mimic the demand of the other genes in the motif (which will depend on the size of the network,62

Fig. 1D (Gillespie (1977); Shen-Orr et al. (2002)). However, the demand for the TF could also stem63

from a litany of sources such as random non-functional sites in the genome (Bakk and Metzler64

(2004); Kemme et al. (2016); Lee and Maheshri (2012);Mirny (2009)) or non-DNA based obstruction65

or localization effects that transiently interfere with a TFs ability to bind DNA. Because of the design,66

our results do not depend on the nature of the TF competition. SIM TFs typically exert the same67

regulatory role on all targets of the motif (Shen-Orr et al. (2002)). As such, in this work we will focus68

on a TF that is a negative regulator of its target genes and itself; this is the most common regulation69

strategy in Escherichia coli where roughly 60% of TF genes are autoregulated and almost 70% of70

those TFs negatively regulate their own expression (inset Fig. 1D, (Shen-Orr et al. (2002)).71

We use stochastic simulations of kinetic models (Gillespie (1977, 2007); Kaern et al. (2005);72

Shahrezaei and Swain (2008)), to predict how the overall level of gene expression depends on73

parameters characterizing cellular environment such as TF binding affinities and the number of74

competing binding sites. To test these predictions in vivo, we built a synthetic system with LacI as a75

model TF, and individually tune each of these parameters. Past work with LacI has demonstrated the76

ability to control with precision the regulatory function, binding affinity and TF copy number through77

basic sequence level manipulations (Brewster et al. (2014); Choi et al. (2008); Garcia and Phillips78

(2011); Jones et al. (2014); Kuhlman et al. (2007); Oehler et al. (1990); Razo-Mejia et al. (2018)); Here79

we use that detailed knowledge to inform our simulations which then guide our experiments (and80

vice versa).81

Our approach reveals that the presence of competing TF binding sites can have counterintuitive82

effects on the mean expression levels of the TF and its target genes due to the opposing relationship83

between free TFs and total TFs (total TF is the sum of free TF and TF bound to promoters and84

decoy binding sites). Furthermore, we find that the TF and target gene experience quantitatively85

different levels of regulation in the same cell, and with the same regulatory sequence. We show86

that this regulatory asymmetry is sensitive to features such as the degradation rate, TF binding87

affinity and the number of competing binding sites for the TF. The stochastic simulation makes88

accurate predictions of the asymmetry and its dependence on the parameters of the model that89

we confirm through in vivomeasurements. Interestingly, regulatory asymmetry is not captured by a90
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simple deterministic model which is based on translating the stochastic reactions to kinetic rates91

through mass action equilibrium kinetics (which have been shown to accurately predict target gene92

expression in other studies (Brewster et al. (2014); Garcia and Phillips (2011); Garcia et al. (2012);93

Jones et al. (2014); Razo-Mejia et al. (2018)). In fact, this deterministic model fails to accurately94

predict expression of either gene. A revised deterministic model, which explicitly allows for different95

microenvironments in each “regulatory state”, predicts asymmetry although it still does not recover96

quantitative agreement with stochastic simulations.97

Results98

Matching molecular biology with simulation methodology99

We use a combination of theory and experimental in vivo measurements on engineered E. coli100

strains to study the interplay between TF gene, target gene, and additional binding sites of a101

negative autoregulatory SIM network motif. The basic regulatory system is outlined in Fig. 1E. We102

use a stochastic model of the SIM motif to explore how the expression of the TF gene and one103

target gene depends on parameters such as TF binding affinity and number of other binding sites in104

the network (here modeled and controlled through competing, non-regulatory decoy sites (Burger105

et al. (2010)). In this model, the TF gene and target gene can be independently bound by a free TF106

to shut off gene expression until the TF unbinds. The two genes (TF-encoding and target) compete107

with decoy binding sites which can also bind free TFs. Each free TF can bind any open operator site108

with equal probability (set by the binding rate). The unbinding rate can be set individually for the109

TF gene, target gene and decoy sites and is related to the specific base pair identity of the bound110

operator site (Kinney et al. (2010);Maerkl and Quake (2007); Stormo (2000);Weirauch et al. (2013)).111

We employ stochastic simulations to make specific predictions for how the expression level of the TF112

and target genes depend on the various parameters of the model. Furthermore, we translate these113

stochastic processes into a deterministic ODE model using equilibrium mass action kinetics (see114

Appendix 6: Deterministic solution). A thorough discussion on how we chose the kinetic parameters115

of our model is presented in the methods section.116

In experiments, the corresponding system is constructed with an integrated copy of both the117

TF (LacI-mCherry) and target gene (YFP) with expression of both genes controlled by identical118

promoters with a single LacI binding site centered at +11 relative to their transcription start sites119

(Brewster et al. (2014); Garcia and Phillips (2011)). As demonstrated in Fig. 1F, decoy binding sites120

are added by introducing a plasmid with an array of TF binding sites (between 0 to 5 sites per121

plasmid) enabling control of up to roughly 300 binding sites per cell (for average plasmid copy122

number measured by qPCR, see methods and Appendix 3 Figure 1). TF unbinding rate is controlled123

by changing the sequence identity of the operator sites; the binding sequence assessed in this124

study include (in order of increasing affinity) O2, O1 and Oid. The decoy binding site arrays are125

constructed using the Oid operator site. We quantify regulation through measurements of fold-126

change (FC) in expression which is defined as the expression level of a gene in a given condition127

(typically a specific number of decoy binding sites) divided by the expression of that gene when128

it is unregulated. For the target gene we can always measure unregulated expression simply by129

measuring expression in a LacI knockout strain. However, it is challenging to measure unregulated130

expression for the autoregulated gene. For autoregulation this unregulated expression can be131

measured by exchanging the TF binding site with a mutated non-binding version of the site. For O1132

there is a mutated sequence (NoO1v1 Oehler et al. (1994)) that we have shown relieves repression133

of the target gene comparable to a strain expressing no TF (see Appendix 4 Figure 1A) which134

allows us to calculate fold-change even for the autorepressed gene. Despite testing many different135

mutated sites and strategies, we could not find a corresponding sequence for O2 and Oid so we136

focus primarily on studying a TF gene regulated by O1 (see Appendix 4: Constitutive values for137

autoregulatory gene, for more discussion).138
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Decoy sites increase expression of the auto-repressed gene and its targets139

We first investigate the negatively regulated SIMmotif where the TF and target gene have identical140

promoters and TF binding sites (O1) and the number of (identical) competing binding sites are141

varied systematically (schematically shown in Fig. 1E, F). Simulation and experimental data for142

Fold-change of the TF gene as a function of number of decoys is shown in Fig. 2A as red lines143

(simulation) and red points (experiments). We find that increasing the number of decoy sites144

increases the expression of the auto-repressed TF gene monotonically. To interpret why the TF level145

increases, in Fig. 2B we plot the number of “free” TFs in our simulation (defined as TFs not bound to146

an operator site) as a function of decoy site number. The solid line demonstrates that on average,147

despite the increased average number of TFs in the cell, the number of unbound TFs decreases as148

the number of competing binding sites increases (Nevozhay et al. (2009)). Therefore, because the149

number of available repressors decreases, the overall level of repression also decreases and thus150

the mean expression of the TF gene rises.151

Now we consider the effect of competition on the expression of SIM target genes. We measure152

our system with O1 as the regulatory binding site for both TF and target genes. In Fig. 2A, the153

expression of the target gene is shown as blue points (experiments) and blue lines (simulation) for154

the SIMmotif with different numbers of decoy TF binding sites (from 0 sites up to 5 per plasmid).155

Just as in the case of the TF gene, we once again see that the expression of the target gene increases156

as more decoy binding sites are added even though the total number of TFs is also increasing (red157

points and line). Qualitatively, we expected this result since the free TF number is expected to158

decrease (Fig. 2B) and, in turn, the expression of any gene targeted by the autoregulated repressing159

TF will increase. While the mechanism is more obvious in this controlled system, it is important to160

note that this is a case where more repressors correlate with more expression of the repressed161

gene. It is easy to see how this relationship could be misinterpreted as activation in more complex162

in vivo system if the competition level of the TF is (advertently or otherwise) altered in experiments.163

Asymmetry in gene regulation between TF and target genes164

Quantitative inspection of Fig. 2A reveals an interesting detail: Even when the regulatory region of165

the auto-repressed gene and the target gene are identical, we find that the expression (fold-change166

or FC) is higher for the target gene, raising the question of how two genes with identical promoters167

and regulatory binding sites in the same cell can have different regulation levels. In this data, both168

the TF gene and target gene are regulated by a single repressor binding site (O1) immediately169

downstream of the promoter. This regulatory scheme is often referred to as “simple repression”170

(Bintu et al. (2005); Garcia and Phillips (2011); Phillips et al. (2013)). Drawing our intuition from a171

simple deterministic model of regulation based on translating the stochastic reactions to kinetic172

rate equations (Fig. 2C and Appendix 6: Deterministic solution), we find that regardless of the173

network architecture (autoregulation, constitutive TF production, number of competing sites, etc.),174

the fold-change of any gene is expected to follow a simple scaling relation,175

Fold − change = 1
1 + R∗

,

R∗ = Rf ree
kon

koff + 
.

where, Rf ree is the number of free (unbound) TFs and kon∕(koff + ) represents the affinity of the176

specific TF binding site in the thermodynamic framework (Rydenfelt et al. (2014)). This calculation177

is applicable for both the TF and the target gene and would predict a “symmetric” response for178

identical regulatory regions. This model performs well for this same promoter in a related system179

where the TF is induced or constitutively expressed and predicts the fold-change for a wide range of180

perturbations such as promoter strength, TF binding site, induction condition and TF competition181

levels are tuned (data accumulated in Fig. 3A, adapted from (Phillips et al. (2019). However, it has182

been shown that the regulation of an autorepressed gene can diverge from this prediction (Hahl183
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and Kremling (2016); Hornos et al. (2005);Milias-Argeitis et al. (2015)). In Fig. 3, we show simulation184

data for the fold-change versus number of scaled-free TFs (R∗) for the autoregulatory gene (red line)185

and its target gene (blue line) with O1 (Fig. 3C) or O2 (Fig. 3B) binding sites, where we are changing186

the number of free TFs by tuning the number of competing binding sites. In each plot, we also show187

simulations for the fold-change of a single target gene with a TF undergoing constitutive (constant188

in time) expression where the TF is controlled by either changing the expression level of the TF189

(purple stars) or adding competing binding sites while maintaining a set constitutive expression190

level (purple circles). In both cases, where TFs are made constitutively, the simulation data agrees191

well with the deterministic model predictions. However, for the autoregulatory circuits, we find that192

for strong binding sites (O1) neither the target nor the TF gene follow the deterministic solution193

(black dashed line). In this case, the asymmetry occurs with the TF gene being more repressed and194

the target gene less repressed than expected.195

Since “free TF concentration” is not readily available in experiments, we demonstrate asymmetry196

in experimental results explicitly in Fig. 3D, where we plot the fold-change of the target gene against197

fold-change of the TF gene. In this figure, the data points are derived from measurements made198

in six different competition levels (from 0 to 5 decoy binding sites per plasmid). Each data point199

represents the average expression level of each gene for a given number of competing binding200

sites. The lines represent results from the stochastic simulations where we systematically vary201

competition levels by introducing decoy binding sites and the fold-change of both the TF and target202

gene are calculated. The simple deterministic model prediction that identical promoters (yellow203

data, Fig. 3D) should experience identical levels of regulation (see Appendix 6 Figure 1C, (Sanchez204

et al. (2011)) would cause the data to fall on the black dashed one-to-one line. However, for both205

simulations and experiments of this system the TF gene is clearly more strongly regulated than the206

target gene subject to identical regulatory sequences.207

To examine the extent of asymmetry in this system, we adjust the target binding site to be of208

higher affinity (Oid, blue lines and data points in Fig. 3D) or weaker (O2, purple lines and data points209

in Fig. 3D). Clearly, this should change the symmetry of the regulation, after all the TF binding sites210

on the promoters are now different and symmetry is no longer to be expected. The experiments211

and simulations once again agree well. However, when Oid regulates the target gene and O1212

regulates the TF gene, the regulation is now roughly symmetric despite the target gene having a213

much stronger binding site; in this case, the size of the inherent regulatory asymmetry effect is on214

par with altering the binding site to a stronger operator resulting in symmetric overall regulation of215

the genes.216

Mechanism of asymmetric gene regulation217

The difference in expression between the TF and its target can be understood by studying the218

TF-operator occupancy for each gene, drawn schematically in Fig. 4A. This cartoon shows the four219

possible promoter occupancy states of the system: (1) both genes unbound by TF, (2) target gene220

bound by TF, TF gene unbound, (3) TF gene bound by TF, target gene unbound, and (4) both genes221

bound by TF. It should be clear that state 1 and state 4 cannot be the cause of asymmetry; both222

genes are either fully on (state 1) or fully off (state 4). As such the asymmetry must originate from223

differences in states 2 and 3. In state 2, the TF gene is “on” while the target gene is fully repressed224

and in state 3 the opposite is true. Since we know that the asymmetry appears as more regulation225

of the TF gene than the target gene, then it must be the case that the system spends less time in226

state 2 than in state 3. There are two paths to exit either of these states: unbinding of the TF from227

the bound operator or binding of the TF to the free operator. Since unbinding rate of a TF is identical228

for both promoters in our model, the asymmetry must originate from differences in binding of free229

TF in state 2 and in state 3; specifically state 2 must have an (on average) higher concentration of230

TF than state 3. This makes sense since the system is still making TF in state 2, while production231

of TF is shut off in state 3. Fig. 4B validates this interpretation as we can see that state 2 has on232

average more free TFs than state 3, and as a result, the system spends less time in state 2 than233
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in state 3 in our simulations. As such, the asymmetry comes from the fact that the two genes,234

despite being in the same cell and experiencing the same average intracellular TF concentrations,235

are exposed to systematically different concentrations of TF when the TF and target gene are in their236

respective “active” states. To quantify regulatory asymmetry, we define asymmetry as the difference237

in fold-change of the target and the fold-change of the TF gene (asymmetry =FCtarget − FCTF). Using238

the chemical master equation (CME) approach, we find that the asymmetry is exactly equal to the239

difference in time spent in state 3 and state 2, for any condition or parameter choice (Fig. 4C and240

Appendix 9 Eqn. A9-9: CME for minimal model). Furthermore, the asymmetry can be written as the241

difference of TF concentration in state 2 and state 3 and is given by242

Asymmetry =
kon

koff + 
(n2 − n3),

where, n2 and n3 are the TF concentrations in state 2 and state 3, respectively. In Fig. 4D we show243

that the asymmetry obtained using the difference in TF concentration precisely match with the244

asymmetry calculated from the fold-change expression. However, it is important to note, that this245

is not a complete analytic solution for asymmetry because n2 and n3 are unsolved functions of the246

model parameters.247

The asymmetry in the expression of TF and target genes stems from systematically differential248

TF concentration in the states when the TF gene is occupied (and target gene is expressing) and249

when the target gene is occupied (and the TF gene is expressing). The general approach of ODEs250

outlined above (Fig. 2C) does not account for this differential TF concentration and hence shows no251

asymmetry. Armed with the knowledge that individual states have this systematic TF difference,252

we can rewrite the basic deterministic model where we instead keep track individually of each253

state and the specific TF concentration of that state using the same equilibrium mass action kinetic254

approach (details in Appendix 10: Modified ODEs for the minimal model). Like the stochastic CMEs255

the modified ODEs predict that the asymmetry arises from the difference in the TF concentrations256

in different states and solely depends on the difference in time spent in state 3 (only target gene257

occupied) and state 2 (only TF gene occupied). Although we find the modified deterministic model258

can predict asymmetry, it still does not quantitatively agree with the results of stochastic modeling259

due to the deterministic model not accounting for variability in TF number in each state (see260

Appendix 10: Modified ODEs for the minimal model). As a result, in the following sections, we will261

compare our experiments to stochastic simulations based on the full CME formalism.262

Dependence of regulatory asymmetry on TF degradation and binding affinity263

According to the above proposed mechanism, the regulatory asymmetry stems from differences264

in the cellular TF concentration when the TF is bound to the target versus when it is bound to265

the autoregulatory gene, as such we expect that binding affinity will play a central role in setting266

asymmetry levels. This is also evident from Fig. 3B, C where we find that the deviation of the267

expression of both TF and target gene is more prominent for a strong binding site (Oid or O1)268

compared to a weaker binding site (O2). Furthermore, there are many parameters associated269

with the production and decay of TF and target mRNA and protein which could also influence the270

asymmetry. To reveal which (if any) of these parameters is important to asymmetry, we calculate271

the maximum asymmetry (the maximum value of asymmetry found as competing site number is272

controlled, Appendix 7 Figure 1A) using simulation as these production and degradation parameters273

are tuned. First, we find that tuning the rates of target gene production and decay has no effect on274

asymmetry (Appendix 7 Figure 1B and Appendix 11 Figure 1B). On the other hand, for TF production275

and decay each parameter has some effect on asymmetry. However, we find that the biggest driver276

of asymmetry in this set of parameters is the protein degradation rate (Appendix 7 Figure 1B).277

As such, we focus on two crucial parameters that control the asymmetry: TF binding affinity and278

TF degradation rate. In Fig. 4E we show a heat map of the maximum asymmetry as a function279

of the rate of protein degradation and binding affinity of the TF. We see from this figure that280
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strong binding produces enhanced asymmetry, but the degradation rate displays an interesting281

intermediate maximum in asymmetry – degradation that is too fast, or too slow will not show282

asymmetry, but a maximum asymmetry is expected for TF lifetimes between 10 and 100 minutes.283

Crucially, this maximum coincides with typical doubling time of E. coli (which sets the TF half-life284

(Marr (1991); Neidhardt and Curtiss (1996)) and thus regulatory asymmetry in this motif is most285

relevant in common physiological conditions.286

The non-monotonic behavior of asymmetry with degradation rate of TF can be explained by the287

TF-promoter occupancy (alternatively, residence time) of the TF and the target gene. Analytically,288

the asymmetry is given by the difference of occupancy of state 2 and state 3 (Appendix 9 Eqn. A9-7:289

CME for minimal model). For slow degradation, the number of TFs in a cell is high, favoring the290

transition to state 4 very quickly, thereby reducing the residence times of both state 2 and 3. On the291

other extreme, when degradation is fast, the TF number is too low for the cell to be in the state 2 or292

3; the cell spends most of the time in state 1. In both the cases, the difference of residence times293

between state 2 and state 3 is low and hence the asymmetry is small. In the intermediate regime of294

degradation, the number of TFs is optimum to maximize the difference between residence times in295

state 2 and 3, which leads to maximum asymmetry.296

To experimentally test the theory predictions for the role of TF degradation in setting regulatory297

asymmetry, we introduced several ssrA degradation tags to the LacI in our experiments (McGinness298

et al. (2006)). The data, shown in Fig. 4F includes degradation by a “weak” or “slow” tag (DAS with299

a rate of 0.00063 per minute per enzyme (McGinness et al. (2007)), blue points), a slightly faster300

tag (DAS+4 with a rate of 0.0011 per minute per enzyme (McGinness et al. (2007)), green points)301

and a very fast tag (LAA tag with a rate of 0.21 per minute per enzyme (McGinness et al. (2007)),302

red points) . In addition, the data without a tag is shown as yellow points. Here we see that the303

slowest tag (blue points) introduces strong asymmetry. However, for the next fastest tag (green304

points) we see a significant decrease in asymmetry and the level of regulatory asymmetry is similar305

to what is seen in the absence of tags (yellow points). Finally, the fastest tag (red points) shows306

no asymmetry at all. It is worth pointing out that the qualitative order of degradation rates in307

these experiments can be inferred from how far the data “reaches”, faster degradation will lead308

to higher overall fold-changes for a given competition level. Importantly, controlling the protein309

degradation rate through this synthetic tool agrees with our model predictions, although the actual310

in vivo protein degradation rates are difficult to estimate from tag sequence alone, the asymmetry311

follows the expected trends based on the known (and observed) effectiveness of each tag (see312

schematic inset Fig. 4F).313

In the absence of targeted degradation, the degradation rate of most protein in E. coli, is naturally314

set by the growth rate. According to the model predictions in Fig. 4E, the asymmetry should be315

highest for fast growing cells (roughly 20-minute division rate for our growth conditions which is316

well below the degradation rate for peak asymmetry ∼ 10 minutes, Fig. 4F) and decrease (or vanish)317

for very slow growing cells. To test this, we take the system with O1 regulatory binding sites on318

both the target and the TF promoter (yellow data in Fig. 3D grown in M9 + glucose, 55-minute319

doubling time) and grow in a range of doubling times between 22 minutes (rich defined media) up320

to 215 minutes (M9 + acetate) (see Appendix 2 Figure 1A). Importantly, when we change the growth321

rate, other rates such as the transcription and translation rates will also be impacted (Bremer and322

Dennis (2008); Klumpp et al. (2009)), while these parameters will change the quantitative values of323

the asymmetry curve, the qualitative ordering and features of the asymmetry are not expected to324

be impacted (see Appendix 11 Figure 1C). The data for these growth conditions is shown in Fig. 5A.325

As predicted, faster growing cells show more regulatory asymmetry and slower growing cells show326

little-to-no regulatory asymmetry. We also test the role of growth rate in asymmetric regulation327

when O2 (a lower affinity site) and Oid (a higher affinity site) are used as the regulatory binding sites328

instead of O1. This data is shown in Fig. 5B (O2) and 5C (Oid). As discussed above, we could not find329

a suitable mutant for O2 and Oid that both relieved regulation from LacI and completely restored330

the expression of target gene (see Appendix 4: Constitutive values for autoregulatory gene.). This331
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means we cannot explicitly measure the 1-1 correlation between the two axes in our data when332

using O2 or Oid for the TF gene. To this end, we find this correspondence by fitting the glucose data333

to our simulation of the same system and use that value to normalize all other growth rates for that334

operator. Despite this complication, it is clear that O2 regulation is symmetric at all studied growth335

rates while Oid regulation is asymmetric for all growth rates with faster growth rates appearing336

more asymmetric.337

Importantly, the regulatory asymmetry is not due to a small population of outliers, bimodality338

or any other “rare” phenotype. In Fig. 5D, we show a histogram of single cell asymmetry values339

(defined as asymmetry = FCTarget − FCTF) for each condition. As can be seen, expression in each340

media condition are roughly symmetric for most cells at the lowest competition levels (top panel).341

However, as competition levels are increased, the fast-growing conditions shift to higher asymmetry342

levels; strikingly at the highest growth rate almost every single cell is expressing target at a higher343

level than TF (bottom panel).344

Discussion345

The single-input module (SIM) is a prevalent regulation strategy in both bacteria (Ma et al. (2004);346

Shen-Orr et al. (2002)) and higher organisms (Lee et al. (2002); Segal et al. (2003); Yu et al. (2003)).347

While the role of TF autoregulation (positive and negative) has been extensively studied (Acar348

et al. (2008); Assaf et al. (2011); Becskei and Serrano (2000); Ochab-Marcinek et al. (2017); Rodrigo349

et al. (2016); Rosenfeld et al. (2002); Savageau (1975); Semsey et al. (2009)), the focus here is on350

the combined influence of an autoregulated TF and its target genes and how the shared need351

for that TF influences the quantitative features of its regulatory behaviors. We find that there352

is a fundamental asymmetry in gene regulation that can occur in the SIM regulatory motif. This353

asymmetry is not related to distinctions in the biological processes or an unexpected difference354

in our in vivo experiment, but rather an inherent asymmetry originating from the way the motif355

itself is wired. Although two identical promoters are in the same cell with the same average protein356

concentrations, they experience distinct regulatory environments. This is particularly relevant357

for the SIM motif because the primary function of the motif, organizing and coordinating gene358

expression patterns, operates on the premise of differential affinities amongst target genes; here359

we have shown that the TF gene has an inherent “affinity advantage” due to being exposed to360

systematically higher TF concentrations than its target genes. This implies that the TF gene will361

respond “earlier” than expected based on the raw affinity of its binding site and may necessitate362

weaker sites on autoregulating TF genes in order to achieve similar timing in expression compared363

to its targets. This may also shed light on the discrepancies in Arg pathway timing between different364

experiments which have used plasmid reporters (essentially changing network size) or different365

physiological growth conditions; the asymmetry is critically sensitive to both of these features.366

Although, here we are using E. coli as a model organism where it is easy to build and manipulate367

these regulatory motifs, we expect this phenomenon to apply broadly to other regulatory systems.368

Regulatory asymmetry is intrinsic to the negative SIMmotif even in the absence of decoys, but369

it can be greatly exacerbated by competing TF binding sites. Due to the promiscuous nature of370

TF binding, this highlights the importance of considering not just the “closed” system of a TF and371

a given target but also the impact of other binding sites (or inactivating interactions) for the TF372

in predicting regulation as well as the regulatory motif at play in the system. In our system, the373

magnitude of the asymmetry is enough to compensate for swapping the wild-type proximal O1 LacI374

binding site on the target gene with the “ideal” operator Oid.375

The cause of this asymmetry is a systematic difference in the TF concentration when the TF gene376

is active compared to when the target gene is active. As such, asymmetry is magnified by anything377

that enhances this concentration difference. Here we have identified TF binding affinity and TF378

degradation rate (controlled both directly and through modulating growth rate) as primary drivers379

of asymmetry in this motif. Although the relationship between growth rate and expression levels380

is well established (Bremer and Dennis (2008); Klumpp and Hwa (2008); Klumpp et al. (2009); Scott381
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et al. (2010); Volkmer and Heinemann (2011)), effects such as this add a layer of complexity to this382

relationship.383

In studies of quantitative gene regulation, the typical goal is to predict the output of a gene based384

on the regulatory composition of that gene’s promoter and the number and identity of regulatory385

proteins. This work clearly presents a challenge for the drive to “read” and predict regulation386

levels from the promoter DNA alone, in this case the regulatory motif is responsible for altering387

the observed regulation and must be considered as well. It has previously been demonstrated388

that features of a transcript can impact its regulation by effects such as targeted degradation,389

stabilization or posttranslational modification and regulation (Schikora-Tamarit et al. (2018)), it is390

important to point out that regulatory asymmetry in this motif is a distinct phenomenon that does391

not operate through an enzymatic processes but rather is a fundamental feature of the network.392

Finally, here we demonstrate regulatory asymmetry using a specific (but common) regulatory393

motif. The more general problem of quantifying the role of asymmetry in other network motifs394

may be an important step in expanding the predictive power of models based on single genes. The395

broader point that specific genes can be exposed to systematically different levels of regulatory TFs396

even in the absence of specific cellular mechanisms such as cytoplasmic compartmentalization,397

protein localization or DNA accessibility is likely more generally relevant. Understanding and398

quantifying these mechanisms can be an important piece towards improving our ability to predict399

and design gene regulatory circuits.400
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Materials and Methods411

Key Resources Table
Reagent type Designation Source or Identifiers Additional
(species) reference information
resources
gene ybcN<>25XX+ GeneBank MT726947 TF gene;

(E. coli) 11-lacI-mcherry XX can be O1,

O2 or Oid

operator

gene galK<>3*5XX+ GeneBank MT726948 Target gene;

(E. coli) 11-yfp XX can be O1,

O2 or Oid

operator

strain, strain E. coliMG1655 Lab stock CGSC#6300 Wild type

background

(E. coli)
strain, strain HG105 Garcia and Phillips (2011) E. coliMG1655
background with lac
(E. coli) operon deleted

strain, strain HG105 ΔsspB This study E. coli HG105
background with sspB
(E. coli) gene deleted

Other M9 minimal BD DF0485-17 commercial

media Diagnostics media

Other Rich defined Teknova #M2105 commercial

media media

software, Matlab code Schnitzcells

algorithm Rosenfeld et al. (2005)
Other C code for GitHub link

simulations This study

Bacterial Strains412

All strains used in this study are constructed from the parent strain E. coli HG105 which is MG1655413

with the lac operon deleted (MG1655ΔlacIZY A). Auto-regulated TF (lacI-mCherry) is expressed414

from the ybcN locus and the TF-repressed target (yfp) is expressed from the galK locus with identical415

promoter sequence for both the TF and the target. Decoys are introduced on the pZE plasmid. In416

order to tune the degradation rate of the TF, three different ssrA tags were added to the C-terminus417

of the LacI-mCherry fusion protein. The tags used in this study are wildtype LAA tag (AANDENYALAA),418

DAS tag (AANDENYADAS) and DAS+4 tag (AANDENYSENYADAS)(McGinness et al. (2006)). For protein419

degradation tag experiments with LacI-mCherry fusion protein, HG105 with ΔsspB knockout is used420

as a parent strain to substantially moderate the protein degradation rate. It is also noteworthy that421

deletion of sspB gene did not affect the growth rate in any of the strains tested. Primers used in this422

study are listed in Table 1.423

Microscopy424

Bacterial cultures are grown overnight in 1 mL of LB in a 37°C incubator shaking at 250 rpm. Unless425

otherwise stated cultures grown overnight are diluted 2.5 × 103 fold to an initial OD of 0.002 into426

1 mL of fresh M9 minimal media supplemented with 0.5% of one of the three different carbon427
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sources (Glucose, Glycerol or Acetate) or in Rich Defined Media (RDM, Teknova #M2105), allowed to428

grow at 37°C until they reach an OD600 of 0.2 to 0.4 (0.1 for acetate) and harvested for microscopy.429

Cells are diluted 1:3 in 1X PBS (in order to obtain isolated cells in microscope images) and 1µL is430

spotted on a 2% low melting agarose pad (Invitrogen #16520050) made with 1X PBS. Cells grown in431

RDM are cross-linked with paraformaldehyde before imaging to prevent shrinkage and osmotic432

shock to the cells. An automated fluorescent microscope (Nikon TI-E) with a heating chamber set at433

37°C is used to record multiple fields per sample (between 8-12 unique fields of view) resulting in434

roughly 500 to 1000 individual cells per sample.435

qPCR measurements for average plasmid copy number436

We performed qPCR measurements in order to quantify the average copy number of the pZE437

plasmid. Cells are grown as described for microscopic analysis and diluted 1:200 in Qiagen P1 lysis438

buffer and allowed to sit on ice. Meanwhile, cells are plated at 10-5 dilutions on fresh LB plates in439

order to determine the colony forming units per mL (CFU/mL). 25 µL of the lysate is diluted with 25440

µL of 1X PBS and allowed to sit for 5 minutes. The cells are then diluted 1:100 into 1X cut smart441

buffer from NEB. 20µL of the mixture is incubated with 0.5 µL of HindIII restriction enzyme for 30442

minutes at 37°C followed by heat inactivation at 80°C for 20 minutes. The mixture is further diluted443

1:10 and 4.2 µL is used as a template in a 20 µL qPCR reaction mixture. The pZE-1XOid plasmid is444

purified using the Qiagen Plasmid Medi Prep kit and quantified using the Qubit dsDNA assay kit. A445

standard curve is then prepared by diluting pZE-1XOid plasmid from 108 copies down to 10 copies.446

The average copy number of the decoy plasmid per cell is computed by comparing the cT of the447

sample to the standard curve and dividing by the number of cells in the sample.448

Simulation methodology449

To model the experiments and study the effect of decoy sites on the expression of a target gene450

regulated by a negatively autoregulated TF gene, we develop a simple model of the experimental451

system. In our model the auto-regulatory gene produces a protein (X) which forms a TF dimer452

(R). We explicitly modeled TF as a dimer to incorporate the fact that LacI acts as a dimer in our453

experimental system (the LacI-mCherry construct lacks the tetramerization domain (Kipper et al.454

(2018)). Dimerization and de-dimerization steps occur at the rate kp and km, respectively. The455

TF binds to its own promoter (PTF), to the promoter of the target gene (Ptarget ), and to the decoy456

sites (N) with a constant rate kon per free TF per unit time. The off rate of the bound TF (koff , the457

unbinding rate) depends on the sequence identity and can be different for different promoters.458

A bound TF unbinds from the promoters of the TF and target, and from the decoy sites at a rate459

koff ,TF, koff ,target , and koff ,decoy per unit time, respectively. A TF-free promoter produces an mRNA at460

the rate � which is then translated into a protein at a rate �. The mRNA and the proteins are461

degraded at the rate m and  , respectively. We assume that all proteins (free protein, TF bound to462

promoter and TF bound to decoy sites) degrades with the same rate. Typically, the proteins in E.463

coli are very stable with protein half-life greater than the cell cycle and the dominant contribution464

to degradation comes from the dilution due to cell division. The degradation rate is thus given by465

 = ln(2)∕�1 + ln(2)∕�2, where �1 and �2 are protein half-life and cell division time, respectively. The466

set of reactions describing the model above are listed in Appendix Figure 2A.467

We implement the simulations for stochastic reaction systems using Gillespie’s algorithm (Gille-468

spie (1977)) in C programming. Each simulation is run for sufficiently long time (∼ 106 s) to reach469

a steady state. Typically, for the rates used in this paper the steady state is achieved in 105 s or470

less (see Appendix 6 Figure 1 for a sample time trace). Data for steady state distributions (TF and471

target protein) are then recorded by sampling over time with a time interval (TS) long enough for472

the slowest reaction to occur 20 times on average (TS = 20 over rate for slowest reaction). Mean473

protein numbers in steady state for fold-change are calculated using at least 105 data points for474

each single run.475
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Kinetic parameter estimation476

To compare the results from experiments with our simulations we are required to find values for477

the kinetic on and off rate of LacI for different operator sites (Oid, O1 and O2), the transcription478

and translation rates, mRNA degradation rate, and the growth rates in different media. We directly479

measure growth rate for different media in our experiment (see Appendix 2). The on and off rates480

are related to the binding energy (Δ�) through,481

kon
koff + 

=
exp(−Δ�)
Nns

, (1)

where Nns ∼ 5 × 106 bps is the number of non-specific binding sites in the genome (which we482

take as the total number of bases) (Phillips et al. (2013)), kon is the binding rate per free TF per483

unit time, koff is the unbinding rate per unit time and  is the decay rate of the TF. Experimental484

measurements of Δ� have been reported in many repeated experiments (Brewster et al. (2014);485

Garcia and Phillips (2011); Razo-Mejia et al. (2018)) and thus we constrain our choice of kon and486

koff such that we obtain affinities consistent with these measurements. Taking one data set (O1487

regulated TF and O1 regulated target grown in glucose), we use maximum likelihood analysis to488

obtain the rates by varying kon in a range 0.0015-0.003 s−1 (which sets the corresponding value of489

koff to give Δ�O1 = 15.3kBT ) (Elf et al. (2007); Bremer and Dennis (2008)), −1m in a range of 30-90 s (Yu490

et al. (2006); Bremer and Dennis (2008)), � in a range of 0.1-0.3 s−1 (Kennell and Riezman (1977)),491

and choosing � (Cai et al. (2006)) such that the constitutive number for the TF protein is in the range492

of 1000-2600; this parameter largely sets the “range” of our fold-change vs fold-change curves and493

this range of � reproduces the experimental range we see in those curves for this data set.494

We then use this same on rate to derive the relevant off rates for O2 and Oid using their495

binding energies Δ�O2 = 13.9kBT , Δ�Oid = 16.3kBT ) and Equation 1. Interestingly, the binding affinity496

we measure for Oid is 0.7 kBT weaker than has been previously reported but is consistent with497

measurements of Oid binding affinity in our lab. Using this method, we find the kon to be 0.0015 per498

TF per second, which yields koff to be, O1=0.0015 s−1, O2 = 0.0167 s−1 and Oid=0.0004 s−1, consistent499

with previous findings (Elf et al. (2007); Hammar et al. (2014); Jones et al. (2014); Razo-Mejia et al.500

(2018)). All other rates are listed in Table 2. Importantly, this process is not meant to precisely501

determine the exact quantitative parameters of LacI binding, and it is not a formal fit, but rather502

an estimate that provides us with realistic prediction of regulation from our simulations using503

molecular parameters that are consistent with available direct kinetic measurements (Chen et al.504

(2015); Elf et al. (2007); Sanchez et al. (2011); Yu et al. (2006)).505

Data Analysis506

Data analysis is performed using a modified version of the Matlab code Schnitzcells (Rosenfeld507

et al. (2005)). We use this code to segment the phase images of each sample to identify single508

cells. Mean pixel intensities of YFP and mCherry signals are extracted from the segmented phase509

mask for each individual cell using regionprops, an inbuilt function in matlab. The background510

fluorescence is calculated by averaging the mean intensity of the inverse phase mask upon eroding511

the regions around the segmented cell masks. The background fluorescence value of a particular512

frame was subtracted from the mean pixel intensity of cells in the same frame (see Appendix 1).513

Finally, the autofluorescence value were calculated using the same procedure for cells that do not514

express either YFP or mCherry and the average autofluorescence value of these cells is subtracted515

from each measured YFP or mCherry value. Resulting mean pixel intensity of mCherry signal was516

corrected for the crosstalk from YFP signal. Crosstalk between different channels can be measured517

by determining the difference between the autofluorescence of a strain without a given fluorophore518

in the presence of the other fluorophore (highly expressed). We find that under our microscope519

0.25% (cross = 0.0025) of YFP signals can be seen in the mCherry channel whereas mCherry channel520

has no crosstalk in the YFP channel. Hence, we correct for this crosstalk by subtracting the mean521

pixel intensity of YFP signal times the cross from the mean pixel intensity of mCherry signal. The522
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per-pixel fluorescence values of mCherry and YFP of each cell is then multiplied by the area of the523

cell to account for the total fluorescence. Fold-change in expression of the mCherry and YFP is524

calculated by dividing the corresponding values of the constitutive strains (discussed in Appendix525

4). At least 500 individual cells were analyzed per sample and binned according to the mCherry526

values. Any bin with less than 50 data points is excluded. Unless otherwise stated, each data point527

represents the bootstrapped mean of all data points in a given bin and the error bar represents the528

standard deviation of the bootstrapped mean.529
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Figure 1. Synthetic approach to exploring the negative SIMmotif. (A) Schematic of a canonical SIMmotif:
A single TF regulates itself and several other genes. (B and C) Examples of SIMmotifs in E. coli. (B) ArgR is a
transcriptional regulator of arginine biosynthesis. It auto-regulates itself and genes involved in different steps of

arginine biosynthesis with precision in expression starting from the first enzyme of the pathway down to the

last. This precise ordering is thought to originate from a corresponding ordering in TF binding affinities of the

target genes. (C) LexA is the master regulator of SOS pathway and is actively degraded in response to DNA

damage. LexA auto-represses itself and represses a set of other genes involved in DNA repair. In this case the

early response genes have low affinity for the repressor while the late acting genes have high affinity, enabling

temporal ordering of the response. (D) Histogram showing the number of known regulated genes for every TF

in E. coli. Inset shows different modes of regulation of the TF genes. 62% of the TF genes are autoregulated with
42% negatively autoregulated and 20% positively auotregulated. (E) Schematic of the experimental model of a

SIMmotif used in this study. Here, LacI-mCherry is the model TF and YFP is the protein product of the target

gene. Decoys sites are used to control the network size by simulating the demand of other target genes in the

SIMmotif. (F) Representation of the tunable parameter space detailed in this study. We can systematically tune

the TF unbinding rate, number of decoys and protein degradation rate in the experimental system and adjust

these parameters accordingly in simulations.
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Figure 2. Fold-change in target and TF genes with network size. (A) Fold-change in the expression level of
both the autoregulated gene (red) and the TF’s target gene (blue) as a function of the number of competing

binding sites present. Simulation data is shown as solid curves. Different symbols represent independent

biological replicates. Each data point in y-axis is the bootstrapped mean of individual decoy strains and the

error bars represent the standard deviation of bootstrapped mean. Each data point in x-axis is the mean of

three technical replicates and the error bar is the corresponding standard deviation. (B) Increasing the number

of competing binding sites increases the expression of both the TF (red line) and target genes by lowering the

overall number of free TFs (black line). (C) Simple kinetic model describing the SIMmotif using mass action

equilibrium kinetics. For compactness of the figure the reactions involving the decoy binding sites,

dimerization/dedimerization of TF monomers, and transcription steps are not shown. Full reactions of the

model are described in Appendix 6.
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Figure 3. Comparison of SIMmotif fold-change data to deterministic model predictions. (A) Fold-change
vs scaled free TF in the thermodynamic model for a collection of simple repression data (open circles) where

free TF is controlled through a diverse range of mechanisms. The data collapse to the deterministic model

predictions (dashed curve). (B-C) Fold-change vs scaled free TF in simulations using the actual free TF obtained

from simulation. The data for a constitutive expressed TF where free TF is varied by changing TF production rate

(purple circles) or number of decoy sites (purple stars) collapses to the deterministic solution, however, the

regulation of genes in the SIMmotif (target: red line, TF gene: blue line) both diverge from the deterministic

solution in opposing ways, giving rise not only to asymmetry but a disagreement with deterministic modeling

for both genes. (D) Fold-change in the target gene versus fold-change in the TF gene. Each data point is the

bootstrapped mean of fold-change in TF and target expression across hundreds of cells with a given number of

competing binding sites and error bars represent the standard deviation of the bootstrapped mean. Different

symbols represent independent biological replicates. In all cases the TF gene is regulated by an O1 binding sites

whereas the target is regulated by (in order of weakest binding to strongest binding): O2 (purple), O1 (yellow) or

Oid (blue). Simulation data is shown as solid curves.

21 of 45



Manuscript submitted to eLife

LacI-mCherry YFP

LacI-mCherry YFP

koff kon

koff kon

kon koff

kon koff

State 1

State 2 State 3

State 4

(A) Schematic of binding states of TF and target (B) Asymmetry in states 2 and 3

LacI-mCherry YFPLacI-mCherry YFP

(D) Free TF difference vs Asymmetry (F) Asymmetry with TF degradation rate(E) Phase space of maximum asymmetry 

-14.5

-15.5

-16.5

-16

-15

Bi
nd

in
g 

en
er

gy
 (k

BT
)

TF half-life (min)
100 100.5 101 101.5 102

0.2

0.1

0.15

0.05

M
ax

im
um

 a
sy

m
m

et
ry

Asymmetry = FCtarget - FCTF

∆t
 (s

ta
te

 3
 - 

st
at

e 
2)

∆t

(C) State occupancy vs Asymmetry

0
0

0.5

0.5

250 min growth
125 min growth

55 min growth
25 min growth

O1O2 Oid

Asymmetry = FCtarget - FCTF

0 0.5
0

0.5

250 min growth
125 min growth

55 min growth
25 min growth

O1O2 Oid

Stat
e 1

Stat
e 2

Stat
e 3

Stat
e 4

Stat
e 4

Stat
e 3

Stat
e 2

Stat
e 1

0

1

2

3

4

Av
er

ag
e 

nu
m

be
r o

f f
re

e 
TF

s

0

0.1

0.2

0.3

0.4

Fr
ac

tio
n 

tim
e 

in
 s

ta
te

 Fold change in TF

 F
ol

d 
ch

an
ge

 in
 T

ar
ge

t

M
ax

 a
sy

m
m

et
ry

TF half-life (min)

1-t
o-1

 sy
mmetr

y l
ine

DAS tag

DAS+4 tag

LAA tag

No tag

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4. Mechanism of regulatory asymmetry. (A) Schematic of the TF-operator occupancy with their
corresponding transition rates. The kon for transition from state 1 to state 2 or state 3 will be identical and
hence cannot account for the asymmetry. State 2 and state 3 on the other hand, will encounter a difference in

the free TF concentration and hence the kon for transition from one of these states to state 4 will be different;
thus, accounting for the asymmetry in expression between the TF and the target. (B) Plot showing the average

number of free TFs in different states and fraction of time cells spends in each of the given state in the

simulation. (C) Plot showing asymmetry as a function of fractional time difference between state 2 and state 3.

(D) Plot showing asymmetry as a function of difference in free TF concentration between state 3 and state 2. (E)

Heat map showing the phase space of maximum asymmetry as a function of binding affinity for the TF and its

half-life. (F) Tuning the TF degradation rate influences the extent of asymmetry observed in the SIMmodule.

Yellow points corresponds to the system with no degradation tags; Blue points corresponds to degradation by a

“weak” or “slow” tag (DAS tag with a rate of 0.00063 per min per enzyme); Green points corresponds to a slightly

faster tag (DAS+4 with a rate of 0.0011 per min per enzyme ); Red points corresponds to a very fast tag (LAA tag

with a rate of 0.21 per min per enzyme ). Different symbols represent independent biological replicates.
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Figure 5. Dependence of regulatory asymmetry on growth rate. Measurement of asymmetry in different
media as a function of TF binding energy: O1 (A), O2 (B), Oid (C). The division time (�) is varied between 22
minutes up to 215 minutes. (A) For O1, the asymmetry decreases with slower division rates and agrees well with

the simulation predictions. (B) For the weak O2 site, no asymmetry is seen at any growth rate. (C) For the

strongest site Oid asymmetry is present at every growth rate although the magnitude of asymmetry still orders

roughly by growth rate. Different symbols represent independent biological replicates and simulation data are

shown as solid curves. (D) Histograms of single-cell asymmetry in expression of the TF and target gene

regulated by O1 binding site in these 4 growth rates. Solid lines represent the interpolated distributions for

better visualization of the histograms. Panels from top to bottom represent increasing the level of competition

for the TF.
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Table 1. Primers used in this study are listed below. Primers for the chromosomal integration of TF and the
target are the same as described in (Brewster et al. (2014)). Primers to mutate the binding sites from O1 to Oid,
O2 or NoO1V1 is listed below with the binding sites highlighted in yellow. Primers to introduce the degradation

tags to LacImCherry fusion protein is listed below with tag sequence highlighted in red.

Mutagenesis Primer
Oid_mutagenesis_FP CCGGCTCGTATAATGTGTGG AATTGTGAGCGCTCACAATT GAATTCATTAAAGAG

Oid_mutagenesis_RP CTCTTTAATGAATTC AATTGTGAGCGCTCACAATT CCACACATT

ATACGAGCCGG

O2_mutagenesis_FP GTGAGCGAGTAACAACC GAATTCATTAAAGAGGAGAAAGGTAC

O2_mutagenesis_RP TTGTTACTCGCTCACATTT CCACACATTATACGAGCC

NoO1V1_mutagenesis_FP GATTGTTAGCGGAGAAGAATT GAATTCATTAAAGA

GGAGAAAGGTACC

NoO1V1_mutagenesis_RP AATTCTTCTCCGCTAACAATC CCACACATTATACGAGCCGGAAG

Primers to introduce tags
ssrA_WT_FP GC AGCAAACGACGAAAACTACGCTTTAGCAGCT TAAGCTTAA

TTAGCTGAGTCTAGAGGC

ssrA_WT_RP AGCTGCTAAAGCGTAGTTTTCGTCGTTTGCT GCTTTGTA

CAGCTCATCCATGC

DAS_FP C AGCAAACGACGAAAACTACGCTGATGCATCT TAAGCTTAAT

TAGCTGAGTCTAGAGGC

DAS_RP AGATGCATCAGCGTAGTTTTCGTCGTTTGCT GCTTTGTAC

AGCTCATCCATGC

DASplus4_FP GCAGCAAACGACGAAAACTACTCTGAAAATTATGCTGATGCATCT

TAAGCTTAATTAGCTGAGTCTAGAGGC

DASplus4_RP AGATGCATCAGCATAATTTTCAGAGTAGTTTTCGTCGTTTGCT

GCTTTGTACAGCTCATCCATGC

qPCR primers
qPCR_FP GCATTTATCAGGGTTATTGTCTCAT

qPCR_RP GGGAAATGTGCGCGGAAC

Table 2. Kinetic rates used in the simulations
Rates Symbols Value Reference

Growth rate ln2∕ 25 min (RDM) Measured experimentally

55 min (Glucose)

125 min (Glycerol)

225 min (Acetate)

Binding of TF kon 0.0015 TF−1s−1 Obtained from fit

Unbinding of TF koff 0.00042 s−1 (Oid) Eqn. 1

0.00149 s−1 (O1)
0.0167 s−1 (O2)

mRNA degradation m 0.033 s−1 Obtained from fit

mRNA production � 0.1 s−1 Obtained from fit

Translation rate � 0.03-0.2 s−1 Obtained from fit

Dimerization kp 1.38s−1 Stamatakis and Zygourakis (2011)
Monomerization km 0.000002s−1 Stamatakis and Zygourakis (2011)
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Appendix 1786

Sensitivity in choosing the background values787

The local background of each image is subtracted from individual cells of that image, rather

than using a global average over every position. Getting a precise quantitative measurement

of fluorescence values is important especially for the tagged strains as their mCherry signal

can be only several counts above autofluorescence. The background fluorescence can be

influenced by factors such as the local thickness of the agarose pad and positional effects due

to the glass dish (which can have small local defects). As shown in Appendix 1 Figure 1, a
no fluorescent strain corrected using the local fluorescence (calculated by making an inverse

mask of each frame, excluding regions with cell, and calculating the mean intensity of the

background) of each frame produces a tight, symmetric distribution of cell fluorescence with

the mean centered near 0 when compared to using the mean value of no fluorescent strain.

In other words, many of the YFP or mCherry signals that appear high in the autofluorescence

samples also have higher than average backgrounds and thus accounting for this image to

image difference is important. Hence, for all experiments we have used the local background

fluorescence of each frame to correct for the autofluorescence of cells in the corresponding

frame and excluding frames with too high variation in the background fluorescence.
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803 Appendix 1 Figure 1. Accounting for local variation in background fluorescence. Histogram of
single-cell autofluorescence levels of (A) mCherry or (B) YFP fluorescence in a strain without the YFP and
mCherry casettes. The blue bars are calculated as the fluorescence level subtracted from the average

across the entire sample (9 different fields of view). The red bars are calculated by first removing the

local background fluorescence from cells at each position before subtracting the remaining signal from

the average. The wide distribution seen in the blue bars is owed largely to local differences in

background fluorescence and is removed by accounting for position-to-position variability. (C,D)
Histogram showing the minimal detection limit (in a no decoy strain) for mCherry (C) and YFP (D)
compared to an autofluorescence strain.
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Appendix 2814

Cell growth rate in different media815

Cell growth rate is measured in strain HG105 growing in a 50 mL flask at 37°C and at 250 rpm.
Samples are collected at precise time points and OD600 is measured (see Appendix 2 Figure
1C). Doubling time is calculated by first interpolating the intermediate time points from the
measurements of OD600 and with the single exponential robust fit function in Matlab (see

Appendix 2 Figure 1A). Appendix 2 Figure 1B shows the scaling in cell area (measured in
pixel units) in different media in accordance with the previous literature Jun et al. (2018).
Interestingly, the strain with 5X decoy plasmid has a strikingly different area (from other

strains) in glucose minimal media possibly indicating sickness due to the presence of multiple

arrays of Oid binding site. Hence, results of 5X decoy strain is excluded from the data set for

glucose minimal media.

816

817

818

819

820

821

822

823

824

825

20 40 60 80 100 120 140 160 180 200
Time in minutes

0.4

0.6

0.8

1

1.2
1.4

O
D6

00

HG105
No decoy
1X decoy
2X decoy
3X decoy
4X decoy
5X decoy

(D) Growth curve for different strains

(A) Doubling time in different media

0X 1X 2X 3X 4X 5X
Decoys

500

550

600

650

700

750

800

850

900

Ar
ea

 o
f c

el
l (

pi
xe

l u
ni

ts
)

(B) Area of cells (O1)
D

ou
bl

in
g 

tim
e 

in
 m

in
ut

es

Acetate Glycerol Glucose RDM
0

50

100

150

200

250

300

Different Media
(C) Growth curve in different media

0 200 400 600 800 1000 1200
Time in minutes

101

O
D6

00

RDM
M9 Glucose
M9 Glycerol
M9 Acetate

100

10-1

10-2

826 Appendix 2 Figure 1. Cellular physiology in different media. (A) Doubling time of HG105 in
different media used in this study. (B) Consistent with the literature there is a scaling of cell area in
different media in accordance with their growth rate. Strains with 4X and 5X decoys growing in glucose

minimal media have a drastically different cell area. (C) Plot showing the growth curves for the strain
HG105 grown in M9-minimal media with glucose, glycerol and acetate or in rich-defined media. (D) Plot
showing the growth curves in rich-defined media for strains carrying in different decoy plasmid. Cells

are grown in TECAN machine (maintained at 37°C) in a 96-well plate with constant shaking and
measurements are made every 30 minutes.
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Appendix 3836

Quantification of plasmid copy number837

Five different variants of Oid decoy arrays (carrying 1, 2, 3, 4 and 5 binding sites for Oid,

respectively) are inserted in the intergenic region between the origin of replication and ampi-

cillin cassette of the pZE plasmid. Plasmid copy number is quantified in qPCR measurements

using primers that targets a 90 bp-intergenic region in the plasmid backbone immediately

upstream of the site of insertion of our decoy array. The total number of decoys can then

be estimated by multiplying the measured copy number of pZE plasmid backbone with

the number of binding sites in the decoy array. As shown in Appendix 3 Figure 1A, pZE
plasmid backbone had similar copy number in strains with different decoy arrays except

for strains carrying the 5X decoy array plasmid. Copy number of 5X-decoy array plasmid

is significantly higher when compared to strains carrying other decoy array plasmids. This

difference is primarily due to a reduced CFU/mL obtained (see Appendix 3 Figure 1C) for
strains carrying the 5X decoy arrays; the number of molecules of plasmid per reaction is

uniform across different strains (see Appendix 3 Figure 1B). It is not clear if this is due to
this sample actually containing less cells or if it is due to a reduced ability to recover and sep-

arate these cells (which tend to clump and stick more in microscopy imaging) in the plating

assay. This may lead to over-prediction of the copy number of 5X decoy plasmid. Hence,

we excluded the 5X-decoy plasmid data in Figure 2A. The average (± standard deviation)
number of decoy binding arrays in different strains are: 39±8, 96±17, 134±25, 245±40, and
607±47, respectively.
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857 Appendix 3 Figure 1. Quantification of plasmid copy number. (A) Copy number of decoy array
plasmids measured in M9-Glucose minimal media. (B) Number of molecules obtained per qPCR
reaction remains constant across different decoy strains (1X, 2X, 3X, 4X, 5X). (C) Number of Colony
Forming Units (CFU) per mL used to normalize the number of molecules to account for the copy

number of plasmids per cell.
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Appendix 4864

Constitutive values for the autoregulatory gene865

To compare expression levels between the TF and the target genes, we wish to compare

fold-change as an “apples-to-apples” comparison of the regulation of each gene. To calculate

fold-change we must know the constitutive expression of the gene, i.e. howmuch expression
is seen in the absence of regulation by TF. In simulation, this is simple to calculate because

we can remove any reactions that include TF binding. Experimentally, calculating constitutive

expression for the target gene is also relatively straight-forward; we delete the gene express-

ing LacI-mCherry and measure the same construct in the absence of TF. However, measuring

constitutive expression experimentally for an autoregulating gene was more challenging.

There are many possible strategies, but all of them come with some complication. In short,

we attempted 3 different strategies which included: 1) IPTG induction (with or without the

addition of decoys), 2) mutated LacI to ablate specific binding, 3) mutated binding site se-

quences (which has the complication that the site is centered at +11 and thus is both close

to the promoter and present on the transcript, see Appendix 4 Figure 1A). In the end, we
identified one mutated site (NoO1V1) which faithfully preserved constitutive expression of

the target gene in all media studied. Unfortunately, we were not able to find corresponding

mutated sites that reproduced expression of promoters bearing O2 or Oid binding sites. As

such, for data using those binding sites on the TF gene we have an unknown scaling factor

between the x- and y-axis in the fold-change versus fold-change plots which we determine

by fitting the glucose data to our simulations (and then hold constant for all other data sets).

In the following sections we discuss techniques we tried.
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Allosteric induction with IPTG to achieve constitutive expression886

One way to obtain the constitutive values is to exploit the property of the LacI to become less

active when bound to small molecules like IPTG. Previous studies indicate that even with the

use of IPTG, expression from a stronger binding site (like Oid) cannot be fully rescued when

the repressor copy number is high Razo-Mejia et al. (2018). In our experiments, we observed
this phenomenon as well. As shown in Appendix 4 Figure 1C-E, for most strains expressing
the TF, the expression of the target could not be fully rescued with 2.5mM IPTG and decoys.

Further increase in IPTG concentration (to up to 10mM) did not help in increasing the target

expression. Hence, allosteric induction with IPTG could not serve as a right constitutive value

for our system.
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Use of LacI with mutated DNA recognition domains896

We constructed a mutant protein by deleting 10 amino acids (from amino acid 60 to amino

acid 70) in the DNA binding domain of LacI. This mutant helped to completely restore the

target expression. However, themCherry level of strains with themutated LacI-mCherry were

significantly lower than the mCherry level of strains with the functional LacI-mCherry. Since,

we would expect the expression of the non-functional TF to be higher than the functional, we

reason that this did not provide an accurate estimate of the constitutive mCherry level in the

LacI-mCherry strain. This discrepancy may originate from many possible sources such as a

change to the stability of the mRNA/protein or a possible alteration to the spectral property

of mCherry (which is directly fused to LacI). In the end we were unable to find a suitable LacI

mutant without this feature.
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Use of binding sequence insensitive to LacI907

Oehler et al. 1994 has reported inactivated O1 site (NoO1V1) that has close consensus
to O1 binding sequence but does not allow LacI binding. We verified that the expression

of YFP from the promoter with NoO1V1 is comparable to the expression of YFP from O1

regulated promoter (in the absence of any LacI) but is lower than the expression from O2

and Oid regulated promoters (Appendix 4 Figure 1B). Although expression alone does not
guarantee that all intermediate steps are precisely the same, we believe this construct gives

accurate measurements of constitutive expression for the TF and target genes. We used TF

and target with NoO1V1 binding sequence as our constitutive strain to normalize expression

from any O1 regulated genes in our experiments. We also tried other forms of mutations on

the NoO1V1 binding site (Appendix 4 Figure 1A) in order to obtain mutants that relieves
lacI repression and restore expression of Oid or O2 sequence but with no success.
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(A) 5’ mRNA sequence of the TF and the target gene 

AATTGTGAGCGGATAACAATTGAATTCATTAAAGAGGAGAAAGGTACCATATGO1

 AAATGTGAGCGAGTAACAACCGAATTCATTAAAGAGGAGAAAGGTACCATATGO2

AATTGTGAGC  GCTCACAATTGAATTCATTAAAGAGGAGAAAGGTACCATATGOid

GATTGTTAGCGGAGAAGAATTGAATTCATTAAAGAGGAGAAAGGTACCATATGNoO1V1

GATTGTTAGC   GAGAAGAATTGAATTCATTAAAGAGGAGAAAGGTACCATATGmut1

GATTGTTAGC  GCGCAGAATTGAATTCATTAAAGAGGAGAAAGGTACCATATGmut2

919 Appendix 4 Figure 1. Determining constitutive expression of YFP and mCherry. (A) 5′ mRNA
sequence of the TF and the target genes. The binding site for the TF is carried in the mRNA sequence

and is highlighted in shaded dark grey boxes with base changes for different binding sites coded in

multicolor. mut1 and mut2 are the two variant binding sites that are designed with mutations similar to

NoO1V1 but with Oid site length. However, such changes do not achieve constitutive unregulated

expression similar to O2 or Oid. (B) Plot showing YFP expressed from NoO1V1 regulated promoter
normalized to YFP expressed from promoter regulated with O1, O2 or Oid. (C-E) Plot showing the effect
of 2.5mM IPTG in relieving YFP expression form O1 (C), O2 (D) or Oid. (E) regulated promoter and with
5X decoy plasmids. As indicated in the plot IPTG is not sufficient to restore complete expression of YFP

in different media and hence cannot be used as a measure of constitutive expression.
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Appendix 5931

Copy number difference and Diffusion limitation of TF932

Copy number variation of genes along the long axis of the chromosome and the diffusion

limitation of LacI-mCherry could be suggested as a significant contributor to the asymmetry

between TF and the target. E. coli can initiate multiple replication events (depending on
the division rate in the given media) and hence different genes along the chromosome will

experience a different copy number in a given time. For instance, E. coli growing in RDM
(with a division rate of 22minutes) will have a copy number of 4 at the ybcN locus (where the
TF gene is integrated) and a copy number of 3.6 at the galK locus (where the target gene is
integrated) as described by Cooper et al. Cooper and Helmstetter (1968). We believe that
the use of fold-change as the measurement of expression helps to reduce the influence of

copy number effects (since both the regulated and unregulated measurements have the

same copy number). However, the effects may not be linear and LacI has been shown to

suffer from diffusion limitation from its origin of synthesis Kuhlman and Cox (2012). Hence,
we tested our system by placing the TF and the target genes integrated next to each other

at the gspI locus. As evident from Appendix 5 Figure 1, there is no significant contribution
of the copy number difference between TF and target or diffusion limitation of TF on the

phenomenon of asymmetry observed in our negatively-autoregulated SIMmotif.
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949 Appendix 5 Figure 1. Effect of copy number difference on asymmetry. Comparison of asymmetry
in strain where the TF and the target genes are located either at two different regions of the

chromosome (ybcN for TF and galK for target, shown in yellow data points)) or when it is present
together in the chromosome (at the gspI locus, shown in red data points). (B) Plot showing the
measurement of asymmetry in glucose-minimal media at different optical density (OD600) in the

exponential phase.
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Appendix 6957

Deterministic solution958

Using the assumptions of equilibrium mass-action kinetics, the deterministic counterpart of

the negative autoregulation system described in the main text and Appendix 6 Figure 2A
can be written as

959

960

961

dX
dt

= �mx − X + 2kmR − 2kpX2,

dR
dt

= −kmR + kpX2 − R − konRPfx − konRPfy − konRNf + koff ,x(1 − Pfx)

+ koff ,y(1 − Pfy) + koff ,d(N −Nf ),
dY
dt

= �my − Y ,

dPfx
dt

= −konRPfx + (koff ,x + )(1 − Pfx),

dPfy
dt

= −konRPfy + (koff ,y + )(1 − Pfy),

dNf

dt
= −konRNf + (koff ,d + )(N −Nf ),

dmx
dt

= �Pfx − mmx,

dmy
dt

= �Pfy − mmy.

(A6-1)
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Here, X is the concentration of free TF monomer, Y is the concentration of target protein,
and R is the concentration of TF dimer. mx, my, Pfx(Pox), Pfy(Poy), N , and Nf (No) are TF mRNA,
target mRNA, free (bound) TF-promoter, free (bound) target-promoter, total concentration

of decoy sites, and concentration of free (bound) decoy sites, respectively. Inherent in the

equations are the assumptions of the conservation for the concentration of binding sites ,

i.e. Pfx + Pox = 1, Pfy + Poy = 1, and Nf +No = N . The right hand side of the equations can be
set to zero to obtain the steady state values for all the components.
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Pfx =
koff ,x + 

konR + koff ,x + 
= 1
1 + �1R

,

Pfy =
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= 1
1 + �2R

,

Nf =
N(koff ,d + )

konR + koff ,d + 
= N
1 + �3R

,
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�
m
Pfx,

my =
�
m
Pfy,

0 = �mx − X + 2kmR − 2kpX2,
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Y =
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m

Pfy =
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m

1
1 + �2R

,

(A6-2)
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where �i = kon∕(koff ,i + ). The concentration of total TF protein can be expressed as a
sum of free TF monomer, TF dimer bound to each promoter, and TF dimers bound to the

decoys sites
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XTotal = X + 2(R + Pox + Poy +No),

= �

mx,

=
��
m

1
1 + �1R

. (A6-3)
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The fold-change of the TF and target expression, thus can be obtained by dividing XTotal

and Y with the constitutive expression, i.e., ��∕m which yields,
984
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FCTF = 1
1 + �1R

= 1
1 + kon

koff ,x+
R
, (A6-4)

FCTarget = 1
1 + �2R

= 1
1 + kon

koff ,y+
R
. (A6-5)
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It is worth noting that both TF and target protein follows 1∕(1+R∗), whereR∗ = Rkon∕(koff+
) is the reduced free TF concentration, which is equivalent to the thermodynamic solution
Weinert et al. (2014). When the unbinding rates of TF and target are identical, each of them
follow the same fold-change curve irrespective of the competition from other decoy sites. In

Appendix 6 Figure 1C, we plot the fold-change for TF and target with koff ,x corresponding
to O1 binding site and koff ,y corresponding to O1 (yellow), O2 (purple), and Oid (blue). It
can be seen from the figure that when the off-rates are identical the fold-change curve

follows one-to-one line showing no asymmetry which is in contrast with the results obtained

using stochastic simulations and experimental results. Furthermore, both the transient and

steady state behavior of mean fold-change of TF and target obtained from deterministic

solution deviate from the stochastic behavior (see Appendix 6 Figure 1B). Importantly, when
autoregulation is removed from the simulation, the deterministic and stochastic solutions

agree precisely (Appendix 6 Figure 1B inset).
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1003 Appendix 6 Figure 1. Solutions from stochastic simulation and from deterministic ODEs. (A)
Representative time traces of target expression in individual cells (grey shades) from stochastic

simulations. Blue solid line represents the mean behavior averaged over 5 × 104 iterations. Inset shows
the transient behavior. (B) Plot showing the average target expression in the negative SIMmotif from
stochastic simulations (solid line) and from solving deterministic ODEs (dashed line). Inset shows that

when regulation is removed the average levels are identical for stochastic and deterministic models. (C)
Plot showing the asymmetry between TF and target expression from using either stochastic simulation

(solid lines) or solving deterministic ODEs (dashed lines). The TF is always regulated by O1 binding site

whereas the target is regulated by O1 (yellow), O2 (purple) or Oid (blue) binding sites. The black dashed

line represents line of no asymmetry.
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mTF(Target)
β−→ mTF(Target) + 1

mTF
α−→ mTF + X

mTarget
α−→ mTarget + Y

X + X
kp−→ Z

Z
km−−→ X + X

+
TF dimer

decayed mRNA

or or

decayed protein

+

bound decoydecoy site
+

+

or or

+

+
TF/target mRNATF/target gene

+
TF monomerTF mRNA

+
target mRNA target protein

+
repressed gene

Z + PTF(Target)
kon−−→ ZPTF(Target)

ZPTF(Target)

koff,TF(Target)−−−−−−−−−→ Z + PTF(Target)

Z + N
kon−−→ ZN

ZN
koff,Decoy−−−−−−→ Z + N

mTF(Target)
γm−−→ mTF(Target)

X, Y, Z
γ−→ φ

orZPTF(Target)
γ−→ PTF(Target) ZN

γ−→ N

Schematic reaction Stochastic chemical reaction Deterministic rate

βPfx(fy)

αmx

αmy

kpX2

kmZ

kon ZPfx(fy)

koff,x(off, y)(1 − P fx(fy))

konZNf

koff,d (N − Nf)

γmmx(y)

γX γY γZor or

(1 − P fx(fy))γ or (N − Nf)γ

(A) Full model

(B) Minimal model to demonstrate asymmetry

or

decayed protein

+

+
TF/target prot.TF/target gene

+
repressed gene

Schematic reaction Stochastic chemical reaction Deterministic rate

or

X + PTF(Target)
kon−−→ XPTF(Target)

PTF(Target)
α−→ PTF(Target) + X(Y )

X,Y
γ−→ φ

XPTF(Target)
koff−−→ X+ PTF(Target)

XPTF(Target)
γ−→ PTF(Target)

αPfx(fy)

konXPfx(fy)

koff(1 − Pfx(fy))

γX γYor

(1 − P fx(fy))γ

1015 Appendix 6 Figure 2. List of reactions used in the (A) stochastic model and (B) in the minimalmodel.1016

10171018
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Appendix 71019

Maximum asymmetry1020

The asymmetry in regulation (defined as FCTF − FCTarget ) is a function of all the rates describing
the system and number of decoy binding sites. For a given set of rates (kon, koff , , m) as
the decoy number is varied the asymmetry first increases, attains a maximum and then

approaches zero for infinite number of decoy binding sites (see Appendix 7 Figure 1). The
maximum asymmetry for a given set of rates is this peak asymmetry observed as decoy

number is varied. In the manuscript we show a heatmap (Fig. 3E) to emphasize how this
maximum asymmetry depends on the two crucial rate parameters, off-rate of the binding

sites (koff or equivalently binding affinity, since in our model kon is kept constant) and the
degradation of TF molecules ().
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1030 Appendix 7 Figure 1. Determination of maximum asymmetry. (A) Maximum asymmetry in
simulation is computed by plotting the asymmetry, difference in fold-change between target and TF,

versus number of decoy binding sites in SIMmotif. The peak of this asymmetry corresponds to the

maximum asymmetry. (B) Exploring the model parameters of the TF (mRNA production and

degradation; protein production and degradation) that could influence the asymmetry between the TF

and the target. Tuning the protein degradation rate (red line) has the maximum influence on the

asymmetry between the TF and its target gene.
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1035

1036

10371038
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Appendix 81039

A minimal model of an autoregulatory gene and a single target gene1040

The full model in Appendix 6 contains many reactions that are included to more faithfully
mirror the biological system we are modeling. However, not all of these reactions are

necessary to observe the phenomenon of asymmetry which we describe in this manuscript.

In this section, we present a reducedmodel of the extendedmodel of transcription described

in Materials and methods to show that the asymmetry in TF and target expression stems

from the network architecture and not due to the intermediate steps of transcription and

the presence of excess decoy binding sites. We consider an autoregulatory gene whose

protein product X inhibits its own expression and also represses a single target gene with
protein product Y. To reduce the complexity, the protein is made directly from the gene with
no intermediates (eliminating translation rates and mRNA decay rates). In this system the

TF, X, acts as a monomer and binds to its own gene with rate kon and unbinds with rate koff .
Similarly, the TF (X) binds and unbinds from the target gene with the same rates. Both the
TF gene and target gene in free state (not bound with TF) produces their protein with rate

� which degrades with rate  (dilution through cell division). The reactions describing this
reduced model are listed in Appendix 6 Figure 2B. We implement the simulations using
stochastic simulation algorithms as described in Materials and Methods section.

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

Next, we write a set of deterministic coupled ODEs corresponding to the reactions

described above which is given by

1057

1058

dX
dt

= �Pfx − X − konXPfx − konXPfy + koff (1 − Pfx) + koff (1 − Pfy),

dY
dt

= �Pfy − Y ,

dPfx
dt

= −konXPfx + (koff + )(1 − Pfx),

dPfy
dt

= −konXPfy + (koff + )(1 − Pfy).

(A8-1)

1059

1060

1061

1062

Here, X is the concentration of free TF and Y is the concentration of target protein.
Pfx(Pox) and Pfy(Poy) are free (bound) TF-promoter, free (bound) target-promoter, respectively.
Inherent in the equations are the assumptions of the conservation for the concentration

of binding sites, i.e. Pfx + Pox = 1, Pfy + Poy = 1. To obtain the steady state values of TF and
target expression the right hand side of the equations is set to zero which yield

1063

1064

1065

1066

1067

Pfx =
koff + 

konX + koff + 
= 1
1 + �X

,

Pfy =
koff + 

konX + koff + 
= 1
1 + �X

,

X = �

Pfx − Pox − Poy,

Y = �

Pfy =

�


1
1 + �X

,

(A8-2)

1068

1069

1070

1071

where � = kon∕(koff + ). Total TF concentration, XTotal, can be expressed as the sum of
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free TF and TFs bound to each promoter

1072

1073

XTotal = X + Pox + Poy

= �

Pfx

= �


1
1 + �X

.

(A8-3)

1074

1075

1076

1077

The fold-change of the TF and target expression, thus can be obtained by dividing XTotal

and Y by the constitutive expression, i.e. without any regulation, C0 = �∕ which yields,
1078

1079

FCTF = 1
1+�X

= 1
1+ kon

koff +
X
, (A8-4)

FCTarget = 1
1+�X

= 1
1+ kon

koff +
X
. (A8-5)

1080

1081

1082

1083

As was shown previously in section Appendix 6, both TF and target protein follows
1∕(1 + �X) and show no asymmetry in regulation.

1084

1085

Furthermore, solving Eqn. A8-2 we get the free TF expression as,1086

X =
−1 − 2� +

√

(1 + 2�)2 + 4C0�
2�

. (A8-6)

1087

1088

1089

1090
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Appendix 91091

Chemical master equation (CME) for the minimal model1092

The chemical master equation governing the dynamics of the expression for TF and target

gene for the minimal model discussed in Appendix 8 (also shown in Appendix 6 Figure 2B)
is given by

1093

1094

1095

dP00(n, m, t)
dt

= �
[

P00(n − 1, m, t) − P00(n, m, t) + P00(n, m − 1, t) − P00(n, m, t)
]

+ 
[

(n + 1)P00(n + 1, m, t) − nP00(n, m, t) + (m + 1)P00(n, m + 1, t)

− mP00(n, m, t) + P01(n, m, t) + P10(n, m, t)
]

+ koff
[

P01(n − 1, m, t)

+ P10(n − 1, m, t)
]

− 2konnP00(n, m, t),

dP01(n, m, t)
dt

= �
[

P01(n − 1, m, t) − P01(n, m, t)
]

+ 
[

(n + 1)P01(n + 1, m, t)

− nP01(n, m, t) + (m + 1)P01(n, m + 1, t) − mP01(n, m, t)

+ P11(n, m, t) − P01(n, m, t)
]

+ koff
[

P11(n − 1, m, t) − P01(n, m, t)
]

+ kon
[

(n + 1)P00(n + 1, m, t) − nP01(n, m, t)
]

,

dP10(n, m, t)
dt

= �
[

P10(n, m − 1, t) − P10(n, m, t)
]

+ 
[

(n + 1)P10(n + 1, m, t)

− nP10(n, m, t) + (m + 1)P10(n, m + 1, t) − mP10(n, m, t)

+ P11(n, m, t) − P10(n, m, t)
]

+ koff
[

P11(n − 1, m, t) − P10(n, m, t)
]

+ kon
[

(n + 1)P00(n + 1, m, t) − nP10(n, m, t)
]

,

dP11(n, m, t)
dt

= 
[

(n + 1)P11(n + 1, m, t) − nP11(n, m, t) + (m + 1)P11(n, m + 1, t)

− mP11(n, m, t) − 2P11(n, m, t)
]

− 2koffP11(n, m, t)+

kon
[

(n + 1)P01(n + 1, m, t) + (n + 1)P10(n + 1, m, t)
]

(A9-1)

1096

1097

1098

1099

Here Pij(n, m, t) is the probability of having n TF protein and m target protein at any instant
of time t in the state (i, j). i and j denotes the occupancy of the TF promoter and target
promoter, respectively. A value of 0 indicates that the promoter of TF/target gene is occupied

by a TF. A value of 1, similarly indicates a promoter which is free to express.

1100

1101

1102

1103

Summing Eqn. A9-1 over all values of (m, n) we get the rate equation for occupancy
defined as Sij =

∑∞
n,m=0 Pij in each state

1104

1105

dS00
dt

= ( + koff )(S01 + S10) − 2kon⟨n⟩00,

dS01
dt

= ( + koff )(S11 − S01) + kon
[

⟨n⟩00 − ⟨n⟩01
]

,

dS10
dt

= ( + koff )(S11 − S10) + kon
[

⟨n⟩00 − ⟨n⟩10
]

,

dS11
dt

= −2( + koff )S11 + kon
[

⟨n⟩01 + ⟨n⟩10
]

.

(A9-2)

1106

1107

1108

1109
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Multiplying both sides of Eqn. A9-1 by n and summing over all values of (m, n) we get the
time evolution of free TF protein in each state (⟨n⟩ij =

∑

m,n nPi,j(n, m, t))
1110

1111

d⟨n⟩00
dt

= �S00 − ⟨n⟩00 + 
[

⟨n⟩01 + ⟨n⟩10
]

+ koff
[

⟨n + 1⟩01 + ⟨n + 1⟩10
]

− 2kon⟨n2⟩00
d⟨n⟩01
dt

= �S01 − ⟨n⟩01 + 
[

⟨n⟩11 − ⟨n⟩01
]

+ koff
[

⟨n + 1⟩11 − ⟨n⟩01
]

+ kon
[

⟨n(n − 1)⟩00 − ⟨n2⟩01
]

d⟨n⟩10
dt

= −⟨n⟩10 + 
[

⟨n⟩11 − ⟨n⟩10
]

+ koff
[

⟨n + 1⟩11 − ⟨n⟩10
]

+ kon
[

⟨n(n − 1)⟩00 − ⟨n2⟩10
]

d⟨n⟩11
dt

= −⟨n⟩11 − 2⟨n⟩11 − 2koff ⟨n⟩11 + kon
[

⟨n(n − 1)⟩01 + ⟨n(n − 1)⟩10
]

.

(A9-3)

1112

1113

1114

1115

Similarly, multiplying both sides of Eqn. A9-1 by m and summing over all values of (m, n)
we obtain the time evolution of target protein in each state (⟨m⟩ij =

∑

m,n mPi,j(n, m, t))
1116

1117

d⟨m⟩00
dt

= �S00 − ⟨m⟩00 + 
[

⟨m⟩01 + ⟨m⟩10
]

+ koff
[

⟨m⟩01 + ⟨m⟩10
]

− 2kon⟨mn⟩00
d⟨m⟩01
dt

= −⟨m⟩01 + 
[

⟨m⟩11 − ⟨m⟩01
]

+ koff
[

⟨m⟩11 − ⟨m⟩01
]

+ kon
[

⟨mn⟩00 − ⟨mn⟩01
]

d⟨m⟩10
dt

= �S10 − ⟨m⟩01 + 
[

⟨m⟩11 − ⟨m⟩10
]

+ koff
[

⟨m⟩11 − ⟨m⟩10
]

+ kon
[

⟨mn⟩00 − ⟨mn⟩01
]

d⟨m⟩11
dt

= −⟨m⟩11 − 2⟨m⟩11 − 2koff ⟨m⟩11 + kon
[

⟨mn⟩01 + ⟨mn⟩10
]

.

(A9-4)

1118

1119

1120

1121

The rate equation for total number of TF (sum of the free TFs in each state and the bound

TFs in state 2, 3, and 4) and the total target protein can be written as

1122

1123

d⟨n⟩
dt

= d
dt

[

⟨n⟩00 + ⟨n⟩01 + ⟨n⟩10 + ⟨n⟩11 + S01 + S10 + 2S11
]

= �(S00 + S01) − ⟨n⟩
d⟨m⟩
dt

= d
dt

[

⟨m⟩00 + ⟨m⟩01 + ⟨m⟩10 + ⟨m⟩11
]

= �(S00 + S10) − ⟨m⟩.

(A9-5)

1124

1125

1126

1127

The steady state expression for total TF and target can be obtained by setting Eqn. A9-5

to zero which yields

1128

1129

⟨n⟩ss =
�

(S00 + S01) = C0(S00 + S01),

⟨m⟩ss =
�

(S00 + S10) = C0(S00 + S10),

(A9-6)

1130

1131

1132

1133

where C0 = �∕ is the constitutive protein expression. The asymmetry defined as the
difference of fold change in expression of target and TF gene expression is given by

1134

1135

Asymmetry = FCTarget − FCTF,

=
⟨m⟩ss
C0

−
⟨n⟩ss
C0

,

= S10 − S01.

(A9-7)

1136

1137

1138

1139
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The asymmetry in TF and target regulation simply depends on the difference of occupancy

in the states where TF gene is bound and where the target gene is bound. Furthermore, the

steady state occupancies are given by (setting Eqns. A9-2 to zero)

1140

1141

1142

S01 = S11 +
kon

( + koff )

[

⟨n⟩00 − ⟨n⟩01
]

,

S10 = S11 +
kon

( + koff )

[

⟨n⟩00 − ⟨n⟩10
]

,

S11 =
kon

2( + koff )

[

⟨n⟩01 + ⟨n⟩10
]

.

(A9-8)

1143

1144

1145

1146

The asymmetry using Eqns. A9-7 and A9-8 is then given by1147

Asymmetry =
kon

( + koff )

[

⟨n⟩01 − ⟨n⟩10
]

. (A9-9)

1148

1149

1150

1151

Eqn. A9-9 clearly demonstrates that the asymmetry in TF and target expression arises

from the difference in the free TF concentration in state 2 (only target gene bound) and

state 3 (only TF gene bound). Analytical expression for free TFs in different state cannot be

determined explicitly as it can be seen from the Eqns. A9-3 and A9-4 that the mean protein

(⟨n⟩, ⟨m⟩) depends on the higher order moments (⟨n2⟩, ⟨mn⟩) which then depends on the next
higher order moments and so on.

1152

1153

1154

1155

1156

1157
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Appendix 101158

Modified ODEs for the minimal model1159

The asymmetry, as explained in the main text and evident from Eqn. A9-9, appears due

to the difference in the TF concentration when only the TF gene is occupied and when

only the target gene is occupied. The general deterministic approach does not capture

this asymmetry due to the mean field assumption of uniform TF concentration in all the

states. To incorporate the difference in TF concentration in the deterministic model we now

specifically assume the four state model; 1) both the TF gene and target gene are free to

express, 2) TF gene is bound by TF, 3) target gene is bound by TF, and 4) both the genes are

bound by TF. The number of cells in each state are S1, S2, S3, and S4 and the total population
(S) is constant. The free TF and total target protein number in each states are (n1, m1), (n2, m2),
(n3, m3), and (n4, m4) such that the average free TFs in each cell is ⟨n⟩i = ni∕Si and average
target protein in each cell is ⟨m⟩i = mi∕Si. State 1 switches to state 2 and 3 when a free TF
binds to the free promoter of TF gene or target gene. State 2 and state 3 switch to state 1

when a bound TF unbinds or degrade from the gene. State 2 and state 3 also switch to state

4 due to TF binding. Finally, state 4 switches to state 2 and state 3 when a bound TF unbinds

or degrade from the gene.

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

Change in cell number due to the reactions that switch the cells from state i to state j
causing an increase(state j) or decrease (state i) in the cell population per unit time are

1175

1176

Binding ∶ kon⟨ni⟩Si = kon
ni
Si
Si = konni

Unbinding ∶ koffSi
Degradation of TF from gene ∶ Si

(A10-1)

1177

1178

1179

1180

When a TF binds to a promoter of TF gene or target gene in state i switching the cells
to state j the number of free TF of the cells in state j increases by the (⟨n⟩i − 1) times the
number of cell switched (konni) and the number of target protein increases by ⟨m⟩ikonni. It
is to be noted that a binding event decreases the average free TF pool by one in the cells

which switch from state i to state j. In the process the cells in state i loses ⟨n⟩ikonni number
of free TFs and ⟨m⟩ikonni number of target. Similarly, when a TF unbinds from a promoter
switching state i to state j the number of free TFs of cells in state j increases by (⟨n⟩i + 1)
times the number of cell switched (koffSi) and the number of free TFs of each cell in state i
goes down by ⟨n⟩i times the number of cell switched. The target protein number of cells in
state i goes down by ⟨m⟩ikoffni and increase by the same amount in state j. Degradation of
bound TF changes the free TF number by ⟨n⟩iSi and target protein number by ⟨m⟩iSi. The
change in protein number for all the reactions are listed in Appendix 10 Table 1.

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

The set of ODEs describing the time evolution of the cell populations (Si) in each state is
then given by

1193

1194

dS1
dt

= −2konn1 + (koff + )(S2 + S3),

dS2
dt

= konn1 − konn2 + (koff + )(S4 − S2),

dS3
dt

= konn1 − konn3 + (koff + )(S4 − S3),

dS4
dt

= konn2 + konn3 − 2(koff + )S4.

(A10-2)

1195

1196

1197

1198
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The rate equations for free TF number can be written as1199

dn1
dt

= �S1 − n1 + koff (n2 + S2) + koff (n3 + S3) − 2kon
n21
S1

+ (n2 + n3),

dn2
dt

= �S2 − n2 + koff (n4 + S4) − koffn2 + kon
n1(n1 − S1)

S1
− kon

n22
S2

+ (n4 − n2),

dn3
dt

= −n3 + koff (n4 + S4) − koffn3 + kon
n1(n1 − S1)

S1
− kon

n23
S3

+ (n4 − n3),

dn4
dt

= −n4 − 2koffn4 + kon
n2(n2 − S2)

S2
+ kon

n3(n3 − S3)
S3

− 2n4,

(A10-3)

1200

1201

1202

1203

and the rate equations for target protein number is given by1204

dm1
dt

= �S1 − m1 + koffm2 + koffm3 − 2kon
m1n1
S1

+ (m2 + m3),

dm2
dt

= −m2 + koffm4 − koffm2 + kon
m1n1
S1

− kon
m2n2
S2

+ (m4 − m2),

dm3
dt

= �S3 − m3 + koffm4 − koffm3 + kon
m1n1
S1

− kon
m3n3
S3

+ (m4 − n3),

dm4
dt

= −m4 − 2koffm4 + kon
m2n2
S2

+ kon
m3n3
S3

− 2m4.

(A10-4)

1205

1206

1207

1208

Using Eqns. A10-2-A10-4, the rate equations for total TF and target protein can be written

as

1209

1210

dn
dt

= d
dt
(n1 + n2 + n3 + n4 + S2 + S3 + 2S4),

= �(S1 + S2) − n,
dm
dt

= d
dt
(m1 + m2 + m3 + m4),

= �(S1 + S3) − m.

(A10-5)

1211

1212

1213

1214

The steady state concentration for total TF and target protein is obtained by setting Eqn.

A10-5 to zero which gives

1215

1216

nss =
�

(S1,ss + S2,ss) = C0(S1,ss + S2,ss),

mss =
�

(S1,ss + S3,ss) = C0(S1,ss + S3,ss).

(A10-6)

1217

1218

1219

1220

Here, C0 = �∕ is the protein number of unregulated gene (constitutive expression). The
steady state number of cells in states in terms of free TF number can be obtained by setting

Eqn. A10-2 to zero and is given by

1221

1222

1223

S1,ss = S − (S2,ss + S3,ss + S4,ss) = S −
kon

2(koff + )
(4n1,ss + n2,ss + n3,ss),

S2,ss =
kon

2(koff + )
(2n1,ss − n2,ss + n3,ss)

S3,ss =
kon

2(koff + )
(2n1,ss + n2,ss − n3,ss)

S4,ss =
kon

2(koff + )
(n2,ss + n3,ss).

(A10-7)
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Setting S = 1 converts the number of cells (Si) to occupancy of the cell in each state and
ni, mi to fractional average of free TF and target protein per cell, i.e. ni = nssSi and mi = mssSi.
The asymmetry defined as the difference of fold change in expression of target and TF gene

expression is given by

1228

1229

1230

1231

Asymmetry = FCTarget − FCTF,

=
mss
C0

−
nss
C0
,

= S3,ss − S2,ss,

=
kon

koff + 
(n2,ss − n3,ss).

(A10-8)

1232

1233

1234

1235

It is important to note that the same set of ODEs (Eqns. A10-2-A10-4) can be derived

from CME by setting the variance and covariance of protein number in each state to zero.

This modified ODEs predicts asymmetry between the TF and target expressions as shown

in Appendix 10 Figure 1A, however, the predicted asymmetry doesn’t match quantitatively
with the CME predictions (see Appendix 10 Figure 1B). This discrepancy arises because of
the fluctuations in the protein number in each state which is not considered in the modified

ODEs.
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1243 Appendix 10 Figure 1. Minimal model of autoregulation. (A) Asymmetry predicted from a minimal
model without intermediate transcription steps and decoy binding sites using stochastic simulations

(solid lines in blue, red and yellow for Oid, O1 and O2 binding sites, respectively). The asymmetry

follows similar trend as predicted in the complete stochastic model(shown as dashed lines). Stronger

binding site (Oid, shown in solid blue line) shows higher asymmetry than a weak binding site (O2, shown

in solid yellow line). Also, asymmetry decreases as the growth rate is increased. Black dashed line

corresponds to the deterministic counterpart of the stochastic reaction systems. Again, we do not find

any asymmetry in TF and target regulation from the deterministic solution. (B) Modified ODEs with the

inclusion of four states each having a different TF concentration predict asymmetry (dashed lines for

different binding sites Oid (blue), O1 (red), and O2(yellow)). However, the quantitative values disagrees

from the stochastic simulations of minimal model shown as solid lines.
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Reaction Increase in free TF Decrease in free TF

Production in active state �Si -

Degradation of free TF - ni
Binding

(

ni
Si
− 1

)

konni = kon
ni(ni−Si)

Si

ni
Si
konni = kon

n2i
Si

Unbinding

(

ni
Si
+ 1

)

koffSi = koff (ni + Si)
(

ni
Si
+ 1

)

koffSi = koff (ni + Si)

Degradation of TF from gene
ni
Si
Si = ni

ni
Si
Si = ni

Increase in target Decrease in target

Production in active state �Si -

Degradation of target - mi
Binding

mi
Si
konni = kon

mini
Si

mi
Si
konni = kon

mini
Si

Unbinding
mi
Si
koffSi = koffmi

mi
Si
koffSi = koffmi

Degradation of TF from gene
mi
Si
Si = mi

mi
Si
Si = mi
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Appendix 10 Table 1. Change in free TF and target protein number for the reactions describing the
minimal model
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Appendix 111261
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1262 Appendix 11 Figure 1. Simulations showing the effects of rate parameters on asymmetry. (A)
Effect of TF unbinding rate (kOFF) on asymmetry. Irrespective of the kOFF, the maximum asymmetry
decreases monotonically. (B) Asymmetry is not affected by difference in translation rate between the TF
gene and the target gene. Blue solid curve represents asymmetry obtained from simulations where the

translation rate of TF gene and the target gene is exactly same. The data points are generated with a

translation rate of target gene twice (red square) and ten times (green cross) that of the TF gene and fall

exactly on the blue curve showing no deviation. (C) Asymmetry for different growth rate (�) with varying
transcription rate, translation rate, and mRNA stability. Stochastic simulation performed using the

kinetic parameters listed in Bremer and Dennis (2008) for � being 20 (blue line), 40 (red line), and 100
(yellow line) minutes. Dashed lines show the asymmetry for � =40 min and 100 min for the rate
parameters same as � = 20 min. The qualitative ordering and features of the asymmetry curve is not
impacted by the changes in the kinetic parameters such as transcription rate, translation rate, and

mRNA stability due to change in growth rates.
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Appendix 121277
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1278 Appendix 12 Figure 1. Distributions of free TFs and time spent in different promoter states. (A)
Typical asymmetry plot obtained from simulations for Oid binding site with division time � = 25 min.
(B-C) Distribution of free TFs and time spent in state 2 (S2) and state 3 (S3) for varying level of

asymmetry corresponding to different decoy number as shown in panel (A). The plots in red, green and

purple correspond to no decoys (low asymmetry), 150 decoy (maximum asymmetry) and 1500 decoy

(low asymmetry). Insets in (B) are steady state fractional average of free TFs in state 2 and state 3

obtained from stochastic simulations using equation ⟨n⟩ =
∑

m,n nPi,j , where Pi,j is the probability of
having m target protein and n free TF in the promoter state (i,j); see Appendix 9. Insets in (C) are

TF-occupancy in state 2 and state 3 defined as ⟨n⟩ =
∑

m,n Pi,j .
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