
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2020-07-30 

Investigating Evolutionary Innovation in Yeast Heat Shock Protein Investigating Evolutionary Innovation in Yeast Heat Shock Protein 

90 90 

Pamela Cote-Hammarlof 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Biochemistry Commons, Environmental Microbiology and Microbial Ecology Commons, 

and the Molecular Biology Commons 

Repository Citation Repository Citation 
Cote-Hammarlof P. (2020). Investigating Evolutionary Innovation in Yeast Heat Shock Protein 90. GSBS 
Dissertations and Theses. https://doi.org/10.13028/tns2-1515. Retrieved from 
https://escholarship.umassmed.edu/gsbs_diss/1103 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations 
and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/50?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/tns2-1515
https://escholarship.umassmed.edu/gsbs_diss/1103?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F1103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


 
 

 
INVESTIGATING EVOLUTIONARY INNOVATION IN YEAST HEAT  

 
SHOCK PROTEIN 90 

 

A Dissertation Presented 
 

By 
 

PAMELA COTE-HAMMARLOF 
 
 

Submitted to the Faculty of the 
 
 

University of Massachusetts Graduate School of Biomedical Sciences, Worcester 
 
 

in partial fulfillment of the requirements for the degree of 
 
 

DOCTOR OF PHILOSOPHY 
 

July 30th, 2020 
 

BIOCHEMISTRY AND MOLECULAR PHARMACOLOGY 

 

 

 

 

 
 
 
 

 

 
 



 
 

II 

INVESTIGATING EVOLUTIONARY INNOVATION IN YEAST HEAT 
 

SHOCK PROTEIN 90 
 

A Dissertation Presented 
 

By 
 

PAMELA COTE-HAMMARLOF 
 

The signatures of the Dissertation Defense Committee signifies completion and 
 

 approval as to style and content 
 

of the Dissertation 
 
 

Daniel N. A. Bolon, Ph.D., Thesis Advisor 
 

Jennifer Benanti, Ph.D., Member of Committee 
 

Mary Munson, Ph.D., Member of Committee 
 

Nick Rind, Ph.D., Member of Committee 
 

Daniel Jay, Ph.D., Member of Committee 
 

The signature of the Chair of the Committee signifies that the written dissertation meets  
 

the requirements of the 
 

Dissertation Committee 
  

Reid Gilmore, Ph.D., Chair of Committee 
 

The signature of the Dean of the Graduate School of Biomedical Sciences signifies 
 

that the student has met all graduation requirements of the school. 
 

Mary-Ellen Lane, Ph.D., 
 

Dean of the Graduate School of Biomedical Sciences 
 

Biochemistry and Molecular Pharmacology 
(July 30, 2020) 



 
 

III 

Dedication 

I dedicate this dissertation to my husband, Tai Hammarlof, my son, Leonardo Cristobal 

Hammarlof and my grandmother, Phyliss Simonowitz. Thank you for your endless 

support, encouragement and love! Phyliss I know you are watching from above with a 

big smile on your face!   

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 
 



 
 

IV 

Acknowledgement 

 

First and foremost, I would like to give thanks to God because without him none 

of this is possible!  

It truly takes a village to raise a doctoral student into a Doctor of Philosophy. As a 

result, there are many people I would like to thank. Firstly, I would like to thank my 

thesis mentor Dr. Daniel Bolon for giving me the opportunity to conduct my dissertation 

in your lab. Words cannot describe how truly thankful I am for your endless support, 

guidance, teaching and mentorship throughout my graduate training. Thank you for 

believing in me and allowing me to discover my potential! I would also like to thank the 

members of my Thesis Research Advisory Committee and Thesis Defense Committee, 

Dr. Reid Gilmore, Dr. Jennifer Benanti, Dr. Mary Munson, Dr. Nick Rhind, Dr. Konstantin 

Zeldovich and Dr. Daniel Jay for constructive criticism and support throughout my 

training and dissertation. I would also like to give a special thanks to Dr. Claudia Bank 

and Dr. Ines Fragata for their collaboration, constructive criticism, mathematical insight, 

knowledge and teaching of population genetics. 

I would like to thank current and previous members of the Bolon lab. I would like 

to give a special thanks to Dr. Julia Flynn for your guidance, teaching, support and 

mentorship throughout my training in the lab! Thanks to Dr. Gily Nachum, Dr. Mohan 

Somasundaran, Dr. David Mavor, Neha Samant and Carl Hollins III, as well as previous 

members, Dr. Aneth Canale, Dr. Li Jiang, Dr. Parul Mishra, Ammeret Russow, Dr.  

 

 



 
 

V 

Jeffrey Boucher, Dr. Ben Roscoe and Dr. Ryan Hietpas for making the Bolon lab a great 

place to train as a graduate student. Thank you to everyone for being there to help me 

get through the ups and downs of scientific research and life! I would also like to thank 

Ryan Hietpas for your patience in teaching me the EMPIRIC method.  

I would also like to thank the Biochemistry and Molecular Pharmacology 

Department for providing me with the supportive environment to promote my intellectual 

development as a student and scientist. Thank you to the BMP department 

administration members for being there whenever I needed assistance! 

I would like to thank my informal mentors, Dr. Kendal Knight, Dr. Brian Lewis, Dr. 

Anthony Carruthers, Dean Mary Ellen Lane, and Dr. Teresita Padilla for your guidance 

and support!  

Finally, I would like to thank my family! Thank you to my mom, Maryori Cote and 

my dad, Daniel Cote for encouraging my interests in science at such a young age and 

not denying me a telescope and microscope kit for Christmas! Thank you for standing 

behind me in my life endeavors and providing me with the hard work etiquette and 

determination to pursue my goals! Thank you for all that you have done to shape me 

into the person I am today! Thank you for your endless love and support! And thank you 

for taking care of Leonardo so that I can finish my graduate studies! Thank you to my 

sister, Amber Cote for making sure I never forget where I came from, keeping me in 

line, making me laugh and treating me like a Queen. Thank you to my other  

 

 

 



 
 

VI 

mother, Carrie Sacco and my other father, Dr. Steve Scannell for your endless love, 

support and encouragement! Thank you for also taking such great care of Leonardo so 

that I can finish my dissertation.  

Finally, I would like to thank two very important people in my life my husband, Tai 

Hammarlof and my son, Leonardo Hammarlof. Tai I dedicate this thesis to you because 

of your continuous love, support and patience throughout my ten plus years of 

education. Words cannot explain how eternally grateful I am for your encouragement 

and commitment throughout this lengthy and arduous process. Thank you for being by 

my side and for holding the fort down so that I could figure out what my interests are 

and allowing me to pursue those interests. Because of your commitment to us and my 

educational endeavors this thesis is as much mine as it is yours! Thank you from the 

bottom of my heart! Leonardo thank you for choosing me to be your mom. Thank you 

for giving me thesis breaks and teaching me how to have fun and how to look at the 

world around me with wonder again. I love you both eternally! 

 

 

 

Thank you, Julia Flynn, and Aneth Canale for your edits and comments on my 

dissertation! 

 

 

                                                                                                                                         



 
 

VII 

Abstract 

The Heat Shock Protein 90 (Hsp90) is an essential and highly conserved 

chaperone that facilitates the maturation of a wide array of client proteins, including 

many kinases. These clients in turn regulate a wide array of cellular processes, such as 

signal transduction, and transcriptional reprogramming. As a result, the activity of Hsp90 

has the potential to influence physiology, which in turn may influence the ability to adapt 

to new environments. Previous studies using a deep mutational scanning approach, 

(EMPIRIC) identified multiple substitutions within a 9 amino acid substrate-binding loop 

of yeast Hsp90 that provides a growth advantage for yeast under elevated salinity 

conditions and costs of adaptation under alternate environments. These results 

demonstrate that genetic alterations to a small region of Hsp90 can contribute to 

evolutionary change and promote adaptation to specific environments. However, 

because Hsp90 is a large, highly dynamic and multi-functional protein the adaptive 

potential and evolutionary constraints of Hsp90 across diverse environments requires 

further investigation. 

In this dissertation I used a modified version of EMPIRIC to examine the impact 

of environmental stress on the adaptive potential, costs and evolutionary constraints for 

a 118 amino acid functional region of the middle domain of yeast Hsp90 under 

endogenous expression levels and the entire Hsp90 protein sequence under low 

expression levels. Endogenous Hsp90 expression levels were used to observe how 

environment may affect Hsp90 mutant fitness effects in nature, while low expression 

levels were used as a sensitive readout of Hsp90 function and fitness. In  
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general, I found that mutations within the middle domain of Hsp90 have similar fitness 

effects across many environments, whereas, under low Hsp90 expression I found that 

the fitness effects of Hsp90 mutants differed between environments. Under individual 

conditions multiple variants provided a growth advantage, however these variants 

exhibited growth defects in other environments, indicating costs of adaptation. When 

comparing experimental results to 261 extant eukaryotic sequences I find that natural 

variants of Hsp90 support growth in all environments.  I identified protein regions that 

are enriched in beneficial, deleterious and costly mutations that coincides with residues 

involved in co-chaperone-client-binding interactions, stabilization of Hsp90 client-binding 

interfaces, stabilization of Hsp90 interdomains and ATPase chaperone activity.  

In summary, this thesis uncovers the adaptive potential, costs of adaptation and 

evolutionary constraints of Hsp90 mutations across several environments. These results 

complement and extend known structural and functional information, highlighting 

potential adaptive mechanisms. Furthermore, this work elucidates the impact 

environment can have on shaping Hsp90 evolution and suggests that fluctuating 

environments may have played a role in the long-term evolution of Hsp90. 
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Chapter I: Introduction 

Adaptation to Novel Environments via Natural Selection 

Individuals are constantly subjected to novel and fluctuating environments that 

can impose selective pressures on an individual’s fitness such as, abiotic stress 

(temperature, pH, salinity), limited food resources and predation. However, many 

organisms can survive, reproduce and thrive when subjected to these selective 

pressures in nature, resulting in the survival of diverse species within distinct 

environmental niches. As a result of this biological phenomenon, understanding the 

mechanism of how organisms can adapt to novel and stressful environments has been 

and continues to be a central question. 

Since the classical era, Greek philosophers have contemplated theories to 

describe and understand how organisms can survive and persist when presented with 

selective pressures in nature. The physician, Hippocrates the II expressed the idea that 

an organism can pass on to its offspring physical traits that promote adaptation to 

specific environments (Zirkle 1941). At the same time, the philosopher Empedocles 

postulated a theory of natural selection, whereby reproductive fitness, random chance 

and survival of the fittest promotes adaptation to environmental change (Zirkle 1941). 

The contemplation of these theories during this time were contradictory to the common 

belief that supernatural forces were dictators of life and death. It was not until the 19th 

century that ideas related to natural selection were revisited and popularized by 

Lamarck, Darwin and Wallace to provide a theoretical mechanism for adaptive evolution 

in nature. The zoologist, Jean Baptiste Lamarck postulated that the environment 

induces an adaptive phenotypic change that results in an environment specific 
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phenotype that is subsequently inherited (Lamarck 1914). His theory was later rejected 

due to the combined works of Alfred Wallace and Charles Darwin on Natural Selection. 

Charles Darwin presented his famous theory of evolution by natural selection in his 

book titled “The Origin of Species by Natural Selection”. Darwin coined “natural 

selection as the mechanism that causes evolutionary change via differences in an 

individual’s phenotype that helps individuals adapt to their environment and reproduce” 

(Darwin 1859). The subsequent heritability of these characteristics further promotes 

survival of populations and continuance of a species should the environment change 

(Darwin 1859), whereas, individuals who are considered less fit cannot reproduce and 

go extinct (Darwin 1859). Darwin synthesized his theory of natural selection through 

observations of natural populations of animals on his 4-year voyage of the Beagle along 

with research of Robert Malthus’s topic on the struggles of existence in the “Principles 

of Population” and letters from Alfred Wallace’s theory on natural selection. Wallace 

independently synthesized his theory of natural selection from his own observations of 

natural populations in the Amazon (Wallace 2013). Together the work of Darwin and 

Wallace provided a theoretical model for adaptive evolution, which has become a 

central tenet of biology. However, the physiological mechanism by which natural 

selection can act upon to promote adaptive evolution remained elusive and 

controversial. 

Mechanistic Insight into How Natural Selection Can Promote Adaptation 

 Mendelian Inheritance and Mutation  

Around the same time that Darwin proposed his theory of Natural Selection, 

Gregor Mendel discovered the mechanism of inheritance through investigations of 
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hybridization in pea plants. He demonstrated that the inheritance of phenotypic traits 

was an isolated process, that was discontinuous and could be quantitatively predicted 

(Mendel 1866). He also theorized that this mechanism of inheritance was compatible 

with Darwin’s theory of natural selection based on his own studies and interpretations of 

Darwin’s theory. Unfortunately, his work was dismissed at the time because Darwin and 

others believed that adaptive traits were inherited via a blending of parental traits 

(Darwin 1859). It was not until the following century that Mendel’s work would be fully 

appreciated.  

The beginning of 20th century brought forth a large body of important work and 

discovery in the fields of Genetics and the quantitative field of Population Genetics, 

which ultimately unified Mendelian Inheritance with Darwin’s Theory of Natural 

Selection. At the turn of the century the geneticists, Correns (Correns 1950; Corcos and 

Monaghan 1987), Tschermak (Tschermak 1950) and De Vries (de Vries 1950) 

rediscovered Mendel’s work on the inheritance of phenotypic traits in pea plants. De 

Vries was also the first to discuss the idea of mutations as the cause of observed 

phenotypic differences (de Vries 1950). However, it was the biologist, William Bateson 

who further popularized Mendel’s mechanisms of biological inheritance as the 

mechanism that coupled to mutation and natural selection can result in phenotypic 

differences among organism (Bateson 1894). Most importantly, he invented the terms 

“genetics” to describe the study of heredity and “allele” as the agent of inheritance 

(Gillham 2001). Together, Correns, Tschermak, De Vries and Bateson helped spread 

Mendel’s concept of inheritance and principles that has led to our current understanding 

of the relationship among inheritance, mutation and natural selection.  Their work also 
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laid down the foundation for later efforts by evolutionary biologists Ronald Fisher, J.B.S. 

Haldane and Sewall Wright on population genetics.  

Fisher, Haldane and Wright established the field of population genetics, which 

uses quantitative models to demonstrate how Mendelian genetics and gene frequency 

change is compatible with natural selection and adaptation in populations (Haldane 

1927; Fisher 1931; Wright 1932; Haldane 1959). Furthermore, Fisher and Wright were 

pioneers in the development of fitness landscape models that could depict how 

individuals and organisms could sample a multi-dimensional phenotypic space during 

natural selection and adaptation to specific environments. Specifically, Ronald Fisher’s 

work outlined an adaptive evolutionary model, “Fisher’s Geometric model” (FGM) in his 

book, “The Genetical Theory of Natural Selection”. Fisher’s model allows one to 

physically map the effects of phenotypic mutations to fitness and form quantitative 

predictions of the fraction of available beneficial, ”adaptive” mutations based on the 

populations initial level of fitness (Fisher 1931) .  Specifically, Fisher’s model promotes 

the characterization of an initial population with a given fitness distanced from an 

‘optimum’ fitness as a ‘point’ in a multidimensional space (Fisher 1931). Mutations that 

arise are characterized as ‘vectors’ that are generated in random directions and 

magnitudes away from the optimum in the multidimensional space (Fisher 1931). 

Vectors that bring the initial high fitness population furthest away from the optimum are 

considered deleterious, whereas, those that bring the initial populations closest to the 

optimum are beneficial (Fisher 1931). Most importantly, his model helps to explain how 

the distribution of spontaneous mutant fitness effects and effect sizes in a fitness 

landscape can contribute to continuous variation of traits (Fisher 1931; Waxman 2006). 
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Around the same time, Sewall Wright introduced a similar yet distinct concept of 

adaptive landscapes to model the relationship between genotype-phenotype and fitness 

in his book, “The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in 

Evolution” (Wright 1932). Wright’s concept was based on initial populations in a 

landscape climbing to nearest peaks of adaptive fitness as a result of natural selection 

acting upon mutations (Wright 1932). His work on adaptive landscapes showed that 

genetic drift, whereby random sampling of  genetic variants causes a change in the 

frequency of existing variants in a population, resulting in either a reduction or fixation of 

alleles in populations (Wright 1932).  J. B. S. Haldane derived mathematical 

expressions to estimate the direction and rate of gene frequency change in natural 

populations in his series of papers on “A Mathematical Theory of Natural and Artificial 

Selection”. These mathematical models help to promote the analysis of the interaction 

of mutation with natural selection and demonstrated that natural selection acts faster 

than what was previously thought (Haldane 1927). Together they provided critical 

quantitative methods that could predict, measure and test natural selection. Additionally, 

they provided key concepts in the fields of genetics and evolution, which Theodosius 

Dobzhansky further popularized along with experimental evidence in his book, 

“Genetics and the Origin of Species” (Dobzhansky 1937). Most importantly, 

Dobzhansky summarization combined Mendelian Genetics with Darwinian Evolution, 

which served as the catalyst for the modern synthesis of evolutionary biology (Ayala 

and Fitch 1997).  

The significant contributions in population genetics and experimental genetics 

helped to provide ways to predict adaptive evolution and further unify the fields of 
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Mendelian genetics and Darwinian evolution via natural selection. Moreover, they 

uncovered important concepts in the field that lead to the conception of Julian Huxley’s 

modern synthesis of evolutionary biology, which are a set of principles that serve as a 

framework to understand evolutionary mechanisms in all biological fields. Huxley 

summarized his synthesis in his 1942 book, “Evolution the Modern Synthesis” and 

emphasized that the origin of adaptive evolution is due to natural selection acting on 

inherited genetic variability that arises via random changes in genetic material, 

otherwise known as ‘mutations’ (Huxley 1944; Charlesworth et al. 2017). He also 

brought forth the notion that these mutations arise regardless of their effects on fitness, 

whether mutations are advantageous or disadvantageous (Huxley 1944; Charlesworth 

et al. 2017). While Huxley’s modern synthesis provided the framework for our current 

understanding of evolutionary mechanisms it was not until the 1950’s that we began to 

understand how genes and the instructions for them are held within organisms and 

passed on from generation to generation. Most importantly, how mutations can arise 

within organisms, serve as the catalyst for evolutionary change and passed on to 

subsequent generations. 

Molecular Mechanisms of Adaptive Evolution  

The middle of the 20th century was an important time in scientific history because 

of the important contributions in the fields of Molecular Biology that provided insight into 

the molecular aspects of evolution and further unification of inheritance with natural 

selection.  In 1953 the biologist, James Watson and the physicist, Francis Crick 

reported a model of the deoxyribonucleic acid (DNA) double helix based on Rosalind 

Franklin’s crystallographic work on DNA combined with the mathematics of a helix 
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transform (Watson and Crick 1953). This discovery was crucial to science because it 

precisely and correctly outlined the current molecular structure of DNA, as an anti-

parallel double stranded polymer composed of repeated units of nucleotides (Adenine, 

Guanine, Cytosine and Thymine).  Most importantly, they uncovered that only two 

specific base-pairing combinations exist, Adenine-Thymine and Guanine-Cytosine, 

which they proposed could serve as a copying mechanism for genetic material and 

mispairings between these bases could cause a mutation during replication (Watson 

and Crick 1953). Around the same time Matthew Meselson and Franklin Stahl’s famous 

experimental studies of bacterial replication and phage infection in E. coli confirmed that 

DNA can carry and transmit hereditary information and is self-replicating, which further 

supported Crick and Watson’s hypothesis (Meselson and Stahl 1958). Later genetic 

experiments by Crick, Barnet, Brenner and Waits-Tobin on bacteriophage T4 mutants 

and analysis of tobacco mosaic virus mutants by Wittmann, Tsugita and Fraenkel-

Conrat demonstrated through the discovery of frameshift mutations that the genetic 

code for proteins is degenerate, and composed of non-overlapping triplets of bases, 

“codons” derived from part of the nucleic acid (Crick 1970). This discovery laid the 

foundation for future work by Khorana, Holley and Nirenberg on deciphering the genetic 

code and describing how the code synthesizes proteins from DNA which is transcribed 

into RNA and translated into protein (Nirenberg and Matthaei 1961; Holley et al. 1965; 

Nirenberg et al. 1965; Kresge et al. 2009) . Together the extraordinary discoveries 

during this time highlighted the molecular mechanisms that promotes the carry and 

transmission of hereditary material and the flow of genetic information within an 

organism, “from nucleic acid to nucleic acid and nucleic acid to protein but not protein to 
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nucleic acid” , which Crick coined the ‘Central Dogma of Biology’ (Crick 1958; Cobb 

2017).   

The discovery of DNA and the molecular mechanisms that enable the 

transmission of hereditary material provided new perspectives on the genetic basis of 

adaptation, resulting in the study of molecular mechanisms of variation and their 

evolutionary consequences. The development of “Fingerprinting” techniques, such as 

gel electrophoresis, immune assays and paper chromatography allowed for the study of 

evolutionary mechanisms at both the protein and sequence level. For example, the 

advent of protein sequencing technology allowed for sequence comparisons between 

homologous protein sequences. By directly comparing sequences one could then 

estimate divergence times between two sequences via determining the mutation rate 

per generation and the number of nucleotide differences between two sequences, 

coined the “molecular evolutionary clock” (Zuckerkandl and Pauling 1965). These 

estimates helped to uncover at what time in history evolutionary changes occurred.  

Other studies looked at the genetic variation in humans and animals to quantify the 

relationship between species and within populations, which helped to uncover other 

important evolutionary concepts. Specifically, studies of genetic variation within dozens 

of Drosophila pseudoobscura loci found a large proportion of loci were polymorphic 

(Lewontin and Hubby 1966), which they attributed to either balancing selection, which 

can maintain various alleles in a species through natural selection mechanisms or 

neutral mutations that have no effect on fitness as the explanation for their 

observations. Most importantly, their indication that neutral mutations could account for 
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the high levels of variability within species served as the basis for future work on the 

“Neutral Theory of Evolution” by Motoo Kimura (Kimura 1970; Kimura 1983).  

 

In Vitro Experimental Evolution 

Even though we gained a further understanding of the molecular mechanisms of 

adaptation and population genetic models provided important evolutionary concepts that 

can impact evolutionary processes and patterns there remained gaps in knowledge 

between theoretical models and observed phenomena. Furthermore, addressing 

questions in population genetics and what occurs in nature is difficult due to differences 

in environments, taxa, life span and generation times (Bailey and Bataillon 2016). As a 

result of this came the rise of in vitro experimental evolution, which allows for repeated 

phenotypic and genetic studies of populations from a common ancestor in controlled 

environments on shorter timescales than what is observed in nature. These studies 

allow one to get a glimpse of what happens in nature. For example, one of the earliest 

controlled experimental evolution experiments described was performed by William 

Ballinger from 1880-1886. Ballinger created an incubator to look at the effects of 

increased temperatures on the survival of protists and cultivated strains that could 

withstand temperatures that were initially lethal to the protists (Lenski 2017). His work 

was one of the first to observe evolution in action and provide evidence of Darwinian 

adaptation. However, Ballinger could not identify or describe the mechanism that 

resulted in the thermal adaptive mutants. It was not until the early 20th century, that 

controlled laboratory studies of fruit flies provided ways in which to study adaptation and 

identify what factors are involved in this process. For example, Theodosius Dobzhansky 
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studies of experimentally breeded populations of Drosophila pseudoobscura allowed for 

him to observe extensive genetic variation within species, and provide further evidence 

to support the notion that mutations allow populations to evolve rapidly to changing 

environments (Dobzhansky 1937; Ayala and Fitch 1997). Even though Drosophila and 

other unicellular organisms were used as model organisms to study experimental 

evolution, bacteria were initially excluded as model organisms because at the time it 

was thought that bacteria did not have genes (Huxley 1944).  It was not until the 1940’s 

that Max Delbruk and Salvador Luria used bacteria in their “fluctuation test” to estimate 

mutation rates and test whether mutations occur before or after selection (Luria and 

Delbrück 1943). They showed that mutation and selection were unique processes in 

Escherichia coli grown in the presence and absence of T4 viral phage, where mutations 

arise in the absence of selection pressure instead of in response to selection presence 

imposed by T4 viral phage (Luria and Delbrück 1943). This discovery was critical 

because it showed that Darwin’s theory of natural selection acting upon random 

mutations applied to bacteria. Others began to use bacteria to address similar 

questions, for example Aaron Novick and Leo Szilard worked on ways to estimate the 

rate of mutations by measuring the rate of spontaneous accumulation of mutations in E. 

coli populations grown in a chemostat, a device that Novick and Szilard created that 

could keep a population of bacteria growing at a reduced growth rate for an undefined 

time (Novick and Szilard 1950). Through their studies they observed a drastic decline in 

initial mutant populations followed by the linear accumulation of adaptive mutants that 

displaced the parental strain, which provided experimental evidence in support of their 

estimates of mutation rates (Novick and Szilard 1950). Together the work of Luria, 
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Delbruck, Novick and Szilard showed the scientific community that bacteria were 

excellent models to study adaptation with the advantages of shorter generation times 

and large population sizes and the ease with which environments can be controlled and 

manipulated. As a result of this was the birth of the field of microbial experimental 

evolution.  

In the late 1980’s the evolutionary biologist, Richard Lenski pioneered a long-

term experimental evolution experiment with 12 identical populations of E. coli. from two 

ancestral strains (Lenski et al. 1991). These strains have been continuously growing in 

a selective environment of glucose limiting high citrate conditions and diluted in 24-hour 

cycles up to 73,000 generations, until a pause on March 9th 2020 due to the COVID 

pandemic (Lenski 2020). Through phenotypic observation and tracking of genetic 

variation in all populations throughout the course of this experiment Lenski has been 

able to investigate various aspects of adaptation including: the dynamics of adaptation, 

such as, drift and repeatability (Lenski and Travisano 1994); estimates of temporal 

patterns of evolution, otherwise known as the “molecular clock” (Wielgoss et al. 2013); 

and epistasis (Khan et al. 2011). For example, at ~ 2,000 generations he observed 

populations with large increases in growth rate due to the step- wise rise of 

spontaneous beneficial mutations in the genetic background.  Over time these mutants 

became less beneficial, which he attributed to the rise of competition between different 

beneficial lineages (termed clonal interference) and the small effects these beneficial 

mutations produce in more-fit compared to less-fit backgrounds (termed diminishing 

returns epistasis) (Lenski et al. 1991; Lenski and Travisano 1994).  However, at ~ 

50,000 generations 70% of the populations grew faster than the ancestral population 
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and fitting the fitness trajectories of these beneficial mutations to theoretical models 

showed that both adaptation and divergence can occur indefinitely (Wiser et al. 2013; 

Lenski et al. 2015). In addition, by incorporating clonal interference and epistasis into a 

theoretical model of changes in mean fitness over time for large asexual populations 

they were able to generate similar results to what they observed empirically (Wiser et al. 

2013; Lenski et al. 2015). The most fascinating discovery occurred at ~ 30,000 

generations, when Lenski observed a population that had evolved the ability to use 

citrate as a carbon source under glucose limiting environments (Blount et al. 2008). 

Further genomic analysis of these mutants determined that a duplication of the citT 

operon along with disruptions in the regulation of this operon and at least one single 

nucleotide polymorphism in the genetic background contributed to this adaptive 

phenotype (Blount et al. 2012). Collectively, the long-term experimental evolution 

experiment in E. coli has allowed for the continued observation of adaptation, 

identification of important mechanistic factors that affects fitness and adaptation and a 

clearer understanding of the relationship between natural selection and adaptation in E. 

coli.  Furthermore, these experiments served as a stepping stone for the use of other 

microbial systems in the exploration of experimental evolution. 

Saccharomyces cerevisiae and the fission yeast, Schizosaccharomyces pombe 

have become popular models to study adaptation for many reasons. Yeast contain 

similar cellular machinery to higher eukaryotes, many yeast proteins have human 

homologues, many mechanisms and pathways are conserved within humans, their 

genomes are easy to manipulate and their different reproductive states (diploid or 

haploid) are easy to control. Therefore, one can use yeast to address an array of 
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questions related to adaptation at the genetic, and phenotypic level that would provide a 

glimpse into adaptive evolutionary mechanisms in higher eukaryotes. Examples of 

evolutionary mechanisms that have been investigated in yeast include: how often and 

when do mutations occur in DNA (Lang and Murray 2008); the roles of clonal 

interference; allele frequency changes (genetic hitchhiking ) and evolutionary trade-offs 

in function plays in the repeatability of adaptation (Kvitek and Sherlock 2013; Lang et al. 

2013); evolution of multicellularity (Ratcliff et al. 2012); and sex (Hill and Otto 2007). 

Yeast have been also used extensively to investigate the effects of various 

environmental perturbations on yeast adaptation at both the genetic, expression and 

phenotypic level to provide an understanding of how adaptation to novel and stressful 

environments occurs mechanistically. For example, Dhar et al., studied gene expression 

and sequence changes in S. cerevisiae grown under continuous high salt conditions for 

300 generations and found evidence for an increase in genome size and modest 

changes in the expression of several genes as modes of adaptation (Dhar et al. 2011). 

Others investigated patterns of gene expression changes during adaptation to stressful 

environments including, nutrient limiting conditions (Ferea et al. 1999; Gasch et al. 

2000), chemical and heat perturbations (Gasch et al. 2000) and discovered large 

changes in the expression of certain subsets of genes including environmental stress 

response, heat shock and metabolic genes along with identification of gene expression 

regulators (Ferea et al. 1999; Gasch et al. 2000). More recently, Gorter et al., looked at 

the effect of gradually increasing or constant high concentrations of the heavy metals 

cadmium, nickel, and zinc on genomic evolution in S. cerevisiae and found that 

adaptation to these metals required a combination of small nucleotide polymorphisms, 
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small indels, and whole-genome duplications to occur (Gorter et al. 2017). Together, 

experimental evolution studies in yeast have shed light on adaptive evolutionary 

mechanisms in higher eukaryotes 

Thus, experimental evolution allows for the controlled study of organismal and 

population adaptation to new environmental conditions by natural selection. Most 

importantly, experimental evolution promotes the analysis of underlying factors that 

contribute to adaptive evolution including, gene expression changes within cells and the 

proportion of beneficial mutations that occur in a population. Both methods have 

provided valuable insight into adaptive mechanisms and evolution. However, 

experimental evolution has some limitations that prevent one from gaining a complete 

understanding of evolutionary mechanisms. For example, measurement of mutant 

accumulation during experimental evolution is limiting because it only captures relatively 

fit or beneficial mutations that remain in the population over may generations. 

Therefore, these experiments do not provide information on the magnitude of these 

beneficial mutations on fitness or the fitness effects of all mutations. 

  

In Vitro Selection and Directed Evolution 

Mutagenesis approaches are based on the logic that perturbations to the protein 

sequence results in functional consequences that can impact an individual’s phenotype 

and or fitness. As a result, mutagenesis approaches are useful to molecular geneticists 

and evolutionary biologists because these approaches enable investigation of how 

mutations can impact various biological phenomena. Traditional mutagenesis 

approaches incorporate a forward genetics approach, whereby random spontaneous 
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mutations accumulate and produce specific phenotypes that are screened, followed by 

mapping, cloning, sequencing and finally annotating the mutant gene (Botstein and 

Shortle 1985). One of the first mutant accumulation experiments studied the 

spontaneous mutation rate of polygenic mutations that control viability and their impact 

on the genetic structure in natural populations of Drosophila melanogaster (Mukai 

1964). Using this approach Mukai discovered that large rates of spontaneous polygenic 

mutations may contribute to large observations of genetic variation in Drosophila (Mukai 

1964).  Similar yet distinct approaches applied x-rays to induce spontaneous mutations 

within genes in Drosophila (Muller 1927) and deduced that X rays induced lethal 

mutations and that egg and sperm cells are more susceptible to genetic mutations 

(Muller 1927). While others used chemical mutagens to induce random mutations within 

organisms such as, Aerobacter aerogenes to study the evolution of catabolic pathways 

in bacteria (Lerner et al. 1964). Together these approaches have provided insight into 

evolutionary mechanisms, however these approaches are limiting because they rely on 

the occurrence of random spontaneous mutations that affect phenotype, which results 

in a low probability of investigation of mutations of interest and limitations in studying the 

full spectrum of mutations. The discovery of mobile genetic elements, termed 

transposons (McClintock 1950) resulted in the generation of  transposon mutagenesis, 

which is an improved targeted forward genetics approach that results in specific 

insertion of one mutation per genome, followed by screening and transposon tagging to 

identify and clone genes of interest (Ruvkun and Ausubel 1981). Ruvkun et al., used 

this technique to study the symbiotic nitrogen fixation genes of Rhizobium meliloti and 

construct a physical maps of a subset of these genes (Ruvkun and Ausubel 1981). 
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 It was not until the 1990’s that advances in recombinant DNA technologies could 

produce mutations within distinct sites of a gene or randomly throughout the entire 

gene. Approaches that can produce mutations within specific regions of a gene include, 

polymerase chain reaction (PCR) combined with synthetic oligonucleotides and 

thermocycling to induce single mutations in a gene (Schochetman et al. 1988), or 

cassette mutagenesis, which is a cassette composed of annealed oligonucleotides with 

single mutations that is ligated into a region of a gene where the wild-type sequence 

has been previously removed (Wells et al. 1985). Whereas, approaches like error prone 

PCR uses a polymerase without DNA proof-reading ability to enable the generation of 

random mutations (Cadwell RC 1994) and DNA shuffling uses the combination of 

enzymes to first fragment the gene of interest into small pieces of DNA and then several 

rounds of optimized PCR to anneal and extend the DNA fragments, ultimately creating 

recombined portion of these genes with unique properties (Stemmer 1994). The 

advantages of using these procedures is that one could generate single or combinations 

of mutations within genes and then select for these variants using a broad range of 

assays to identify optimized or decreased variant binding (Stemmer 1994), activity 

(Chen and Arnold 1993) and stability (Zhao and Arnold 1999) in vitro or in vivo. The 

examination of these factors in vitro allows for characterization of biochemical protein 

properties, while in vivo environments provide endogenous conditions that subject 

protein variants to native conditions, trafficking, post-translational modifications and 

binding partners.  Further development of surface display techniques that display 

protein variants on the surface of yeast cells (Boder and Wittrup 1997), ribosomes 

(Mattheakis et al. 1994) and phage (Smith et al. 1995) coupled to fluorescence 
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activated sorting enables high-throughput screening and selection of variants (Levin and 

Weiss 2006), followed by sequencing of variants to link phenotype to genotype.  

Directed evolution is a unification of the fields of protein engineering and 

evolutionary biology that is used to generate and select for improved variants over a 

range of mutational changes and ultimately mimics the process of natural selection. 

Specifically, through directed evolution one subjects a gene to repeated rounds of 

mutagenesis to create a library of mutant variants and identify optimized protein function 

(Cobb et al. 2013). Once these mutants are selected for and isolated one can use them 

as templates for the next round of diversification, selection and repeat the process until 

the desired trait is attained (Cobb et al. 2013). Additionally, the advantages of using 

directed evolution is that one does not need to have prior knowledge of the effects of 

amino acid substitutions or protein structure. Moreover, directed evolution can be done 

in purified protein systems or model organisms to study biophysical properties of 

variants under endogenous conditions. Directed evolution has allowed for testing of 

evolutionary hypothesis and further elucidation of evolutionary mechanisms of proteins. 

Examples include evolvability of novel protein function (Aharoni et al. 2005; 

Chockalingam et al. 2005; Bloom and Arnold 2009), observation of full evolutionary 

trajectories (Peisajovich and Tawfik 2007; Bloom and Arnold 2009), insight into protein 

fitness landscapes using computational models combined with directed evolution (Aita 

et al. 2002), epistasis (Steinberg and Ostermeier 2016) neutral drift (Peisajovich and 

Tawfik 2007; Bloom and Arnold 2009), promiscuity and divergence of protein function 

(Bloom and Arnold 2009; Khersonsky and Tawfik 2010). 
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While directed evolution approaches have provided valuable ways to observe 

and study evolution at the protein level there are several caveats that one must take into 

consideration when interpreting results. For example, enhanced or decreased protein 

function or activity is not directly correlated to organismal fitness. Additionally, directed 

evolution subjects a gene to specific and isolated selective pressures and screening 

methods, which does not mimic what happens in the natural world. In nature biological 

entities evolve under diverse biological selection pressures and mutations that may give 

rise to enhanced or defective proteins in the lab may not have those same effects in 

natural settings and vice versa (Bloom and Arnold 2009). Furthermore, because one 

screens for optimized function to select for specific mutants one fails to illuminate 

impacts from many other mutations which affect protein stability, thermodynamics and 

function. 

 

Nucleic Acid Sequencing Technology 

The purification of bacteriophages with DNA genomes and the incorporation of 

radioactive nucleotides by DNA polymerase one at a time was the first method that 

could permit the measurement of nucleotide incorporation and indirectly determine the 

order of nucleotides (Wu and Kaiser 1968; Wu 1970), whereas, direct identification of 

sequence bases and linear sequences was restricted to short DNA stretches because 

the only techniques available at the time were analytical chemistry and fractionation. It 

was not until 1977 that the breakthrough in direct DNA sequencing occurred as a result 

of the development of Fred Sanger’s ‘chain-termination’ or dideoxy technique, otherwise 

known as Sanger sequencing (Sanger et al. 1977). Briefly, in this procedure 
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radiolabeled chemical analogs of deoxynucloetides (dNTPS), dideoxynucleotides 

(ddNTPs) are mixed into an in vitro DNA synthesis reaction at a fraction of the 

concentration of standard dNTPs, resulting in the random incorporation of ddNTPs by 

DNA polymerase and the production of terminated DNA fragments of varying sizes. By 

using a combination of heat denaturation, gel separation and autoradiography of DNA 

fragments one can measure the DNA fragment size and sequentially identify the 

nucleotide at each position, thus resulting in the ability to solve the complete linear DNA 

sequence (Sanger et al. 1977). Because of the accuracy, robustness and ease of use 

due to improvements in detection via use of fluorescently labeled ddNTPs, capillary 

based electrophoresis and sequencing automation, Sanger sequencing has become 

and is currently the most popular method for sequencing DNA of < 1,000 base pairs, 

and for molecular cloning. However, because Sanger sequencing provides accuracy for 

sequences below 1,000 base pairs one cannot rely on this technique for accurate 

sequencing of large and or complex genomes. To improve upon this, techniques such 

as shotgun sequencing, which clones overlapping DNA fragments for automated 

separation and sequencing followed by assembly into one contiguous sequence or 

‘contig” were developed to analyze longer fragments (Anderson 1981). The combined 

use of the shot-gun approach with automated DNA sequence detection and analysis 

was instrumental in the simultaneous sequencing of hundreds of samples and provided 

the first complete human genome sequence (Venter et al. 2001).  Even though first-

generation sequencing methods aided in the sequencing of DNA sequences, they were 

still suboptimal, time consuming and expensive. 
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Next Generation Sequencing Technology 

 The ability to directly sequence larger and more complex genomes in a high 

throughput systematic manner became possible due to the production of second, or 

‘next’ generation (Next Gen) automated sequencing technology. Briefly, this technology 

relies on the preparation of DNA libraries via fragmentation, purification and 

amplification of DNA fragments (Heather and Chain 2016). The amplified products are 

then isolated either through attachment to small beads or surfaces (Heather and Chain 

2016). One can then resolve the sequence of each of the DNA fragments by using the 

inert functions of DNA such as, base incorporation during DNA synthesis (Illumina, 

Helicos, and SMRT) (Liu et al. 2012; Quail et al. 2012) pyrosequencing or hydrogen ion 

exchange during base incorporation (454 and Ion Torrent) (Liu et al. 2012; Quail et al. 

2012) and base pair hybridization and ligation (Solid and NanoBall) (Heather and Chain 

2016). Together these methods allow for a parallelized work flow which promotes the 

detection of hundreds of thousands (SMRT) to millions (Illumina Hi Seq) of DNA 

fragments in a mixed pool in real time. Most importantly, any alterations in sequence 

can further be identified in a single reaction via computational alignment to reference 

sequences. As a result, Next Gen sequencing has allowed for the sequencing of over 

hundreds of different eukaryotic organisms, which has enabled the study of the 

differences between organisms of different species and determine how they have 

evolved. In addition, Next Gen sequencing can sequence individuals within populations, 

which has prompted the use of this technology in combination with microbial 

experimental evolution to observe evolution in real time (Brockhurst et al. 2011)  More 
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recently, high throughput sequencing of over 100,000 individual human genomes has 

provided insight into human genetic variation (Abecasis 2012), disease risk and 

enabling personalized medicine (Biesecker 2010; Ng et al. 2010; Biesecker and Peay 

2013).  Furthermore, Next Gen sequencing has revolutionized the way in which one 

could study the interactions among sequence-structure-phenotype and fitness.   

 

Mutational Scanning Approaches to Reveal Protein Fitness Landscapes  

 The fitness landscape or adaptive landscapes is a fundamental concept in 

Evolutionary Biology that was first introduced by Wright in 1932 to visualize the 

relationship between genotype and reproductive success or fitness for all combinations 

of mutant alleles in a topographical space, where height is a representation of fitness 

(Wright 1932). Wright’s fitness landscape provided mechanistic insight into how groups 

of individuals within a population can continuously find its way from lower (deleterious) 

to higher (adaptive) fitness when subjected to the effects of mutation rate, 

environmental changes, strength of selection and demography. Since Wright, others 

have developed renditions of Wright’s fitness landscape model to gain further insight 

into adaptive evolutionary processes (Kaufman and Levin 1987; Poelwijk et al. 2007; 

Kondrashov and Kondrashov 2015). Furthermore, the use of large-scale data sets such 

as, sequence isolates from patients and in vitro viral replication measurements 

combined with theoretical models and quantitative predictions have highlighted key 

properties of viral fitness landscapes (Kouyos et al. 2012; Barton et al. 2015). However, 

these approaches are limited because of the constrained throughput of fitness 



22 
 

measurements for variants and the vast sequence space that is incompletely sampled. 

As a result, these methods provide glimpses into partial protein fitness landscapes. 

Mutational scanning is an approach that increases mutation screening 

throughput by using a combination of creating mutant libraries of genes, selection and 

Next Gen sequencing to monitor and measure the changes in mutant frequencies in 

bulk competition before and after selection.  By measuring these changes one can then 

estimate the biochemical and fitness effects of all mutations across genes in genetically 

trackable systems including, bacteria, yeast and mammalian cells. Most importantly, 

one can directly link the genotype to phenotype for all possible or specific mutations and 

obtain empirical fitness landscapes. Using these fitness landscapes one can gain a 

clearer understanding of molecular mechanisms. 

 One of the earliest mutational scanning approaches was developed by Weiss et 

al., termed Alanine Scanning (Weiss et al. 2000). In this approach, Weiss used 

oligonucleotide-based site-directed mutagenesis to create combinatorial libraries of 

alanine and wild-type substitutions in 19 residues of the high-affinity binding site of 

human growth hormone (HGH) that were incorporated into an E. coli host.  Phage 

display, shotgun library sorting and binding assays between HGH and human growth 

hormone binding partner (HGHbp) were subsequently used to select for variants that 

were sequenced to identify the nucleotide composition of variants (Weiss et al. 2000). 

By focusing on the distribution of alanine or wild type in each scanned position they 

were able to identify wild-type amino acid positions that were highly conserved and 

enriched for in positions with energetically favorable binding contacts between HGHbp 

and HGH (Weiss et al. 2000). In comparison, wild-type sidechains that did not 
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contribute to the binding energy of HGHbp-HGH were not enriched. While alanine 

mutational scanning approaches like the one exemplified can provide insight into the 

effects of the functional and structural properties of every amino acid in a protein it fails 

to highlight what occurs naturally. Specifically, in nature nucleotide mutations occur 

randomly throughout a gene, resulting in amino acid changes that are synonymous or 

non-synonymous. Additionally, one is unable to analyze the combined mutational 

effects from other amino acid side chains within the protein and thus fails to provide 

information on the position specific biophysical requirements such as, polarity and 

electrostatic effects.  As a result, alanine scanning fails to illuminate all mutant effects, 

which are important for obtaining complete fitness landscapes and in construing the 

relationship among sequence, structure and function.  

To try to circumvent the limitations of site directed or specific amino acid 

substitution methods many have turned to computational approaches like Condel 

(González-Pérez and López-Bigas 2011), GERP (Cooper et al. 2010) and SIFT (Kircher 

et al. 2014) to predict the effects of mutations on structure and function. These methods 

use statistical analysis of conservation and diversification of natural sequences and 

biophysical constraints of each residue to predict mutant effects. However, these 

approaches can only provide accurate predictions for an average of around half of 

mutations (Fowler and Fields 2014). As a result, these approaches fail to accurately 

predict all mutant effects on protein structure and function and provide a partial fitness 

landscape.  

Recently developed deep mutational scanning (DMS) approaches that combine 

saturation mutagenesis techniques, bulk competition, selection of mutations based on 
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affinity-based isolation and deep sequencing of variants before and after selection 

promotes the study of the effects of all possible mutants in a gene on protein structure, 

stability and function in vitro. Specifically, chemical DNA synthesis (Fowler and Fields 

2014), error prone PCR (Wu et al. 2013)  or randomized cassette ligation (Hietpas et al. 

2011)  is used to generate most single amino acid substitutions within a gene. These 

variants are then pooled during bulk competition to promote analyses and selection of 

mutants under similar selection pressures. For example, pioneering work in the 

development of deep mutational scanning was done by Fowler et al., who used 

chemical gene synthesis with engineered degeneracy throughout most codons to create 

a large and complex mutant library of ~600,000 variants including, single nucleotide 

substitutions and a fraction of double and triple nucleotide substitutions within a human 

WW domain (Fowler et al. 2010). Each variant was expressed using phage display and 

selected for by bulk selection of mutant binding affinity to peptide ligand. Deep 

sequencing was used before and after selection to monitor the performance of each 

variant and determine the frequency change of mutants, which was directed associated 

with binding affinity (Fowler et al. 2010). Through this approach Fowler et al. was able to 

define a high-resolution protein fitness landscape map of each mutational preference 

across the human WW domain, ultimately shedding light on the features of each 

position and the relationship among sequence, protein structure and function. 

Furthermore, this approach can be used in vitro and in vivo to determine protein fitness 

landscapes for a large number and complexity of mutations within a specific gene and 

reveal biophysical, structural and functional mechanisms that allow for a further 

understanding of molecular adaptations. For example, modifications of this approach 
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have been used in the design of novel influenza inhibitors (Whitehead et al. 2012), 

determination of protein half-lives and stability for the S. cerevisiae degradation signal, 

Deg1 and the human WW domain (Araya et al. 2012; Kim et al. 2013), uncovering 

activity enhancing mutations in murine E3 ubiquitin ligase (Starita et al. 2013), 

interdependency between mutations in the same gene for the WW domain (Araya et al. 

2012) and epistatic interaction networks in the green fluorescent protein of  Aequorea 

victoria and the RRM domain of the S. cerevisiae poly A binding protein (Melamed et al. 

2013; Sarkisyan et al. 2016).  These studies have allowed for the high throughput study 

of the impact of mutations on protein stability and function (enzymatic or binding activity) 

in vitro and ultimately reveal experimentally derived protein fitness landscapes.  

To quantify accurately and systematically the the effects of all mutations within a 

gene on organismal fitness in vivo, Hietpas et al., developed a similar yet distinct deep 

mutational scanning approach, termed “extremely methodical and parallel investigation 

of randomized individual codons” (EMPIRIC) fitness. In this approach Hietpas et 

al.,2012 used randomized cassette ligation to introduce all codon substitutions 

including, single, double and triple mutations within a nine amino acid region of the 

yeast Heat shock protein (hsp82) gene, which is the yeast version of Hsp90. Hietpas 

incorporated these cassettes into a plasmid-based system (Hietpas et al. 2012). These 

plasmid libraries of Hsp90 mutations were transformed into yeast, followed by bulk 

competition to select for enriched and depleted variants at various timepoints 

throughout competition (Hietpas et al. 2012). Next-gen deep sequencing was then used 

to monitor the relative abundance of each mutant in bulk culture over time. Analysis of 

the change in frequency of Hsp90 mutants over time versus wild type Hsp90 allows for 
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an estimation of the impact of Hsp90 mutations on yeast growth rate, otherwise known 

as experimental fitness (Hietpas et al. 2012). Using this approach Hietpas was able to 

directly map the sequence-fitness relationship for this nine amino acid region of yeast 

Hsp90 and provide further insight into evolutionary mechanisms and adaptation. For 

example, Hietpas discovered that the distribution of mutant fitness effects for single 

mutations are bimodal under standard conditions with most mutations demonstrating 

either mostly deleterious or neutral effects on fitness, providing experimental evidence 

in support of a nearly neutral model of evolution (Hietpas et al. 2011). In another 

EMPIRIC study they analyzed the effects of shifted environmental conditions (e.g., 

elevated salinity and increased temperature) on the Hsp90 fitness landscape and 

identified environment specific adaptive Hsp90 mutations that demonstrate costs of 

adaptation between mutations and are consistent with Fisher’s Geometric Model of 

adaptation (Hietpas et al. 2013).  Modifications of the EMPIRIC approach have been 

applied to study the effects of varied expression levels on the Hsp90 fitness landscape 

(Jiang et al. 2013), to uncover an intragenic epistatic landscape in combined mutations 

of yeast Hsp90 (Bank et al. 2015), analysis of the effects of ubiquitin mutations on yeast 

growth rate (Roscoe et al. 2013) and E1 activation (Roscoe and Bolon 2014)  and 

determining the yeast ubiquitin fitness landscape under diverse environmental 

conditions (Mavor et al. 2016). EMPIRIC has also been used extensively to study viral 

evolution and drug resistance including, determining the fitness effects of all point 

mutations and synonymous substitutions in a in a region of the Influenza A viral protein, 

hemagglutinin (Canale et al. 2018), quantifying the effects of all single-nucleotide 

substitutions in important regions of the Influenza A viral protein, neuraminidase (Jiang 
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et al. 2016) and determining the fitness landscape of single amino acid substitutions in 

HIV protease (Boucher et al. 2019) and the HIV-1 envelope CD4 binding loop (Duenas-

Decamp et al. 2016).  Most importantly all together EMPIRIC has allowed for an in-depth 

study of fitness landscapes based on the impact of mutations on in vivo organismal 

growth rate, which are mediated by changes in protein properties. These studies have 

shed light on important concepts in molecular evolution and adaptation.  

More recent studies have used DMS to investigate the relationship between gene 

sequence and function under environmental-dependent selection pressures. For 

example, many studies have used DMS to investigate drug or antibody resistance 

mutations that provide a growth advantage under these environments (Firnberg et al. 

2014; Stiffler et al. 2015; Doud and Bloom 2016; Dingens et al. 2018). While Dandage 

et al., used DMS to examine the effect of environmental perturbations on mutations 

within the Gentamycin resistance gene in E. coli to determine how different biophysical 

parameters of mutations constrain molecular function in different environments 

(Dandage et al. 2017). Studies of this nature have provided observations that imply how 

changes in protein structure as a result of mutations can promote or constrain 

adaptation to different environments.  

Even though DMS approaches have been used extensively to address protein-to 

-sequence- function, molecular evolution and adaptation there are multiple limitations 

that one needs to consider when interpreting results. For example, experimental 

observations do not coincide with natural sequence conservation patterns (Hietpas et al. 

2012; Wu et al. 2015; Flynn et al. 2020). These differences could be due to various 

biological and technological factors including, effective population size (Ohta 1973), 
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differences in the resolution between experimental evolution studies and natural 

evolution (Reznick and Ghalambor 2005) and differences in natural versus experimental 

selection pressures (Mustonen and Lässig 2009). Furthermore, because DMS relies on 

deep sequencing there are two technological factors that can impact the scale and 

accuracy of sequencing results, which are read depth and read errors (Laehnemann et 

al. 2016). Both factors can result in sampling noise within sequencing results that 

prevent accurate interpretation of results. To overcome these challenges, sequencing 

samples to sufficient read depth, using paired-end sequencing and the use of barcoded 

indices have improved the quality of sequencing results (Hiatt et al. 2010; Starita et al. 

2013). Applying this technology to the EMPIRIC method could promote accurate 

measurement of the impact of several environmental stresses on the distribution of 

mutant fitness effects within a large stretch of a functional region of yeast Hsp90 and 

the entire Hsp90 sequence and can inform how environment impacts Hsp90 mutant 

fitness effects, evolutionary constraints, adaptive potential and evolution of Hsp90.   

 

Fitness  

In population genetic models Fitness (W) (Haldane 1927) is a quantitative 

measurement of an individual’s competitive advantage/disadvantage that is used to 

describe an individual’s reproductive success within an environment (Haldane 1927). As 

a result, fitness can represent a quantitative measurement of natural selection. Fitness 

can be measured in two ways either as absolute or relative. Absolute fitness is based 

on direct measurement of the number of individuals possessing a specific genotype in a 

population before and after selection (Kimura 1970), whereas, relative fitness is based 
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on the measurement of an individual’s growth / reproductive rate compared to the 

population’s average growth/reproductive rate in a single generation (Kimura 1970). 

Relative fitness is used throughout this dissertation when analyzing and discussing 

fitness effects of yeast Hsp90 mutations and their evolutionary implications.  

Genetic mutations are a primary mechanism that can impact an individual’s 

phenotype/fitness, therefore the interactions between mutations and fitness can provide 

insight into adaptive evolutionary potential. Additionally, because selection pressures 

can have direct evolutionary consequences on gene sequence the relationship between 

these two factors can provide a means to connect genotype and fitness. As a result, 

many have investigated the fitness effects of mutations using diverse approaches 

including, population genetics models combined with polymorphism data (McDonald 

and Kreitman 1991; Boyko et al. 2008; Schneider et al. 2011; McDonald 2019), which 

makes fitness inferences based on sequence analysis of natural evolving populations. 

Studies of this nature promote an understanding of recent selection in sequenced 

organisms. While others have used microbial experimental fitness competitions to 

directly measure the selective growth advantage/disadvantage of specific mutants 

under specific selective pressures (Kassen and Bataillon 2006; Rozen et al. 2007; 

McDonald et al. 2012; McDonald 2019). While, both approaches have provided distinct 

ways to obtain fitness inferences for mutants, there are caveats to using both 

approaches. For example, population models combined with polymorphism data is 

limited to recent selection within naturally evolved populations, thus one cannot 

determine the pool of starting mutations before selection. Furthermore, mutations that 

cause a selectable effect on fitness can be difficult to ascertain because of hitchhiking 
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mutations at linked genetic loci that may also have an effect on fitness (Smith and Haigh 

1974). In terms of experimental fitness measurements these studies rely on isolation of 

specific mutants and following their growth for multiple generations under specific 

environments. Therefore, these studies are limited to microbial model systems because 

they have short generation times and their genomes are easily manipulated. 

Furthermore, because experimental fitness measurements rely on isolation of specific 

mutants mutational sampling is limited. To overcome challenges in measuring the 

fitness of mutants Hietpas et al., developed the EMPIRIC fitness approach to accurately 

and systematically measure the competitive growth advantage or disadvantage of single 

substitutions in bulk competition in a high-throughput manner (Hietpas et al. 2011). In 

this approach wild-type sequences are included in the mutant library to enable the 

measurement of the change in ratio of mutant to wild-type sequence reads over time 

during bulk competition (Hietpas et al. 2011). The relative fitness of each mutant is 

calculated as selection coefficients (s) and represents the difference in fitness between 

mutant and wild-type over time (Hietpas et al. 2011). Because yeast fitness is 

proportional to the inverse of the doubling time the fitness (s) of wild type yeast is equal 

to 1, therefore a selection coefficient of zero indicates no change in mutant to wild-type 

ratio indicating that a mutant is wild-type like, whereas, a negative selection coefficient 

indicates that a mutant is less fit than wild-type, and a positive selection coefficient 

means that a mutant is more fit than wild-type (Hietpas et al. 2011). These mutant 

fitness calculation methods are used in this dissertation to distinguish mutant fitness 

effects.  Together EMPIRIC has allowed for the accurate measurement of the fitness of 

relatively large numbers of point mutations in various proteins under diverse selection 
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pressures (Hietpas et al. 2013; Roscoe and Bolon 2014; Jiang et al. 2016; Mavor et al. 

2016; Canale et al. 2018) and revealed large scale protein fitness landscape maps.  

 

Distribution of Mutant Fitness Effects 

Mutation is the source of all genetic variation within an individual’s genome and is 

the primary method by which natural selection acts to promote evolutionary change 

within individuals and adaptation to new environments. However, most mutations cause 

negative effects on an organism’s growth and reproduction, termed ‘fitness’ and are 

removed by purifying selection (Ohta 1973). Additionally, many mutations have neutral 

effects on fitness that are affected by stochastic processes like genetic drift (Ohta 

1973), whereas, beneficial mutations that provide a fitness advantage are rare but are 

subsequently selected for because they contribute to evolutionary change (Ohta 1973). 

As a result, quantifying the distribution of fitness effects (DFE) of new mutations allows 

one to identify the proportions of beneficial, deleterious or neutral mutations within a 

gene and gain an understanding of how the proportions of these mutations shape 

evolution. For example, determining the DFE’s of new mutations has provided insight 

into evolutionary mechanisms, such as the maintenance of molecular genetic variation 

(Charlesworth et al. 1995), the ‘molecular clock’ (Ohta 1992) and the evolution of sex 

and recombination (Peck et al. 1997). Moreover, DFEs allows one to predict 

evolutionary dynamics, like estimating the frequency of beneficial mutations and 

revealing the adaptive potential of these mutations within a new environment 

(Sniegowski and Gerrish 2010; Bataillon and Bailey 2014). 
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The theoretical population geneticist, Motto Kimura was one of the first to 

calculate the fixation of the proportions of neutral, beneficial and deleterious mutations 

within a gene (Kimura 1968). Through his calculations and comparisons with molecular 

evolution data Kimura introduced an important molecular evolutionary concept termed 

the “neutral theory of molecular evolution”. The neutral theory of molecular evolution 

holds that random genetic drift of selectively neutral mutant alleles results in molecular 

evolutionary changes and contributes to variation within and between species(Kimura 

1983). Furthermore, most mutations are deleterious and quickly purged as a result of 

natural selection, and thus do not contribute to molecular evolution and variation 

(Kimura 1983). Together the Neutral Theory of Molecular Evolution is an important 

concept that is compatible with Darwin’s Theory of Natural Selection shaping 

phenotypic evolution. Furthermore, it has served as the basis for other important 

theories including the “nearly-neutral theory of molecular evolution” by Ohta and 

Kimura, which is a modification of the “neutral theory of molecular evolution” and takes 

into consideration that not all mutations are severely deleterious (Ohta 1992). 

Furthermore, it demonstrates that the population dynamics of these mutations are not 

much different than neutral mutations indicating the potential role of these mutations in 

evolution. 

A variety of experimental approaches have been used to determine the DFEs in 

genetically trackable model systems including: theoretical models (Burch et al. 2007), 

laboratory experimental evolution, whereby microbial or viral populations are evolved in 

the lab and spontaneous mutations are tracked (Lenski et al. 1991; Wloch et al. 2001; 

Sousa et al. 2012) and quantitative methods that provide statistical inference from 
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natural polymorphism and/or divergence data (Nielsen and Yang 2003; Piganeau and 

Eyre-Walker 2003; Keightley and Eyre-Walker 2010). A more direct approach to 

investigate the DFE of new mutations is to use directed evolution approaches such as, 

site directed mutagenesis to induce new mutations and measure the fitness effects of 

each variant. For example, this method has been used to determine the DFEs of new 

mutations and the mutation rate in yeast (Wloch et al. 2001), DFEs of random insertions 

in bacteria (Elena 1998), and DFEs of single nucleotide substitutions in an RNA virus to 

estimate the abundance and effects of nearly neutral mutations in RNA viruses 

(Sanjuán et al. 2004). These approaches have provided valuable insight into DFEs of 

novel mutations and further predict evolutionary dynamics such as mutation rate and 

the abundance of nearly neutral mutations. However, these methods are constrained 

because accurate measurement of fitness effects are dependent upon large effects on 

fitness, > 1% (Eyre-Walker and Keightley 2007). Therefore, one cannot obtain a 

complete inference of the DFE of new mutations within a specific genomic region. To 

overcome these limitations many have turned to site-directed mutagenesis approaches 

combined with deep sequencing to obtain complete and close to accurate DFEs for an 

entire gene or a region of a gene in yeast (Fowler et al. 2010; Hietpas et al. 2011) and 

viruses (Boucher et al. 2019). These studies have also revealed a bimodal DFE for new 

mutations, with one peak centered around neutral or wild-type like mutations and a 

second peak centered around strongly deleterious mutations, consistent with Ohta’s 

nearly neutral model (Ohta 1992). More recently, site-directed mutagenesis combined 

with deep sequencing fitness scans have allowed for the study of the changes of the 

DFE of new mutations in response to novel environmental stresses and has uncovered 



34 
 

adaptive mutations in Hsp90 that are adaptive under one environmental condition but 

deleterious in another, otherwise known as “costs of adaptation” (Hietpas et al. 2013; 

Bank et al. 2014).  Together these studies highlight the importance of determining the 

DFE of new mutations to gain new perspectives on evolutionary mechanisms and 

dynamics and warrant future studies of the relationship between environment and DFE 

of new mutations. 

 

  

The Heat Shock Protein 90 

 
Heat Shock Protein 90 Function and Structure   

The heat shock protein, Hsp90 is a highly conserved and essential molecular 

chaperone that is expressed in a variety of different organisms from bacteria to 

mammals. Hsp90 was first discovered in Drosophila melanogaster larvae after exposure 

to high temperatures (McKenzie et al. 1975). In S. cerevisiae, Hsp90 is expressed in the 

cytosol as two closely identical isoforms (97% identity), Hsp82 (Hsp90) and Hsc82 

(Hsc90) (Borkovich et al. 1989). Both isoforms are constitutively expressed, however 

Hsp90 is inducible under conditions that induce proteotoxic stress, such as increased 

temperature (Borkovich et al. 1989). Under normal conditions Hsp90 regulates diverse 

cellular processes through its association with clients. Previous large-scale proteomic, 

genetic and biochemical studies in yeast and mammalian systems have shown that 

Hsp90 interacts with an astonishing number of clients including, kinases, E3 ligases, 

and transcription factors (Zhao and Arnold 1999; McClellan et al. 2007; Taipale et al. 

2012) (https://www.picard.ch/downloads/Hsp90interactors.pdf).  Hsp90 association with 

https://www.picard.ch/downloads/Hsp90interactors.pdf
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these clients is required to facilitate their refolding, stabilization and maturation into 

conformationally active proteins(Li 2012). The maturation of these clients in turn 

regulates diverse processes including cell cycle control, signal transduction, growth, 

metabolism and transcriptional reprogramming (McClellan et al. 2007). Because Hsp90 

binding to clients facilitates the maturation of clients into active conformations that 

regulate most aspects of cellular biology, Hsp90 has the potential to impact cellular and 

organismal physiology. However, the intrinsic mechanism by which Hsp90 interacts with 

these clients and the biological significance of these interactions remains unclear and 

thus has stimulated extensive research into how this chaperone functions on many 

levels.  

Hsp90 is a flexible homodimeric protein, which consists of three domains in each 

monomer, the N-terminal- ATP binding domain (N), a middle domain (M) and a C-

terminal dimerization domain (C) (Figure 1.1) (Rohl et al. 2013). While the mechanism 

by which Hsp90 remodels clients is not completely understood, previous structural, 

biochemical and empirical studies of the N-terminal domain have shown that ATP 

binding to the N-terminal domain of Hsp90 and ATP hydrolysis facilitates large 

conformational rearrangements essential for Hsp90 function and maturation of most 

clients (Panaretou et al. 1998; Mishra et al. 2016). Furthermore, in vivo and in vitro 

functional analyses of Hsp90 have demonstrated that the ATP coupled-conformational 

cycle of Hsp90 along with accessory proteins (co-chaperones) are required to promote 

conformational changes that allow Hsp90 to bind to partially folded clients, stabilizing 

specific folding intermediates that in turn allows clients to attain their full function (Figure 

1.2) (Leach et al. 2012) (Lotz et al. 2003; Roe et al. 2004; McLaughlin et al. 2006; 
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Onuoha et al. 2008). For example, previous functional analysis of Hsp90 interactions 

with model vertebrate clients such as, the oncogenic transforming kinase, v-Src and the 

Glucocorticoid Receptor (GR) in yeast cells, human cells and yeast Hsp90 knockouts 

complemented with human Hsp90 have shown that Hsp90 is required to prevent the 

degradation and mediate the activation of these clients (Picard et al. 1990; Xu and 

Lindquist 1993; Whitesell et al. 1994; Mishra et al. 2016). Moreover, these studies have 

shed light on the conservation of Hsp90 function between yeast and humans and have 

highlighted the value of studies that utilize yeast Hsp90 and model clients to further 

understand Hsp90 mechanism. Additionally, EMPIRIC studies of yeast Hsp90 have 

identified a panel of Hsp90 N-terminal mutations with severely compromised function 

(Mishra et al. 2016). These mutations were in close proximity to the ATP binding site. 

Therefore, the ATP coupled-chaperone cycle of Hsp90 is required for Hsp90 function in 

client maturation and is essential for the activity and regulation of fundamental 

intracellular processes that ultimately influence physiology, growth and disease.  
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Figure 1.1: Yeast Hsp90 structure: Modified Hsp90 structure from (Blacklock and 

Verkhivker 2013). 
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Figure 1.2: Current model of Hsp90 mediated client maturation: Hsp90 mediates 
client maturation via ATP binding and ATP hydrolysis. ATP binding to the N-terminal 
domain of Hsp90 facilitates N-terminal dimerization and large conformational changes 
required for Hsp90 interaction with cochaperone client complexes, client transfer and 

maturation. Subsequent ATP hydrolysis is essential for client release. Figure adapted 
and modified from (Leach et al. 2012). 

 

 

The mechanism by which Hsp90 physically interacts with clients and promotes 

their remodeling remains unclear because of its extensive binding interface, the diverse 

repertoire of clients, intrinsic instability and transient client-binding interactions (Rohl et 

al. 2013). Previous structural studies of Hsp90 in combination with mutational analysis 
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have uncovered specific hydrophobic residues or hydrophobic patches extended 

throughout the N-terminal, middle and C-terminal domain, which contributes to the 

recognition and interaction with specific clients (Rohl et al. 2013). However, the middle 

domain of Hsp90 contains the majority of hydrophobic patches and has been found to 

bind to most clients indicating its primary role in Hsp90 client binding.    

The M domain is the largest domain of Hsp90, consisting of amino acids 255-599 

in S. cerevisiae (Meyer et al. 2003) and is strongly conserved (64% identity from yeast 

to human). While all domains have been implicated in client binding the M domain has 

been shown to contain multiple client binding hotspots in various organisms (Rohl et al. 

2013). Biochemical studies of mutations within the middle domain of yeast Hsp90 have 

identified conserved residues that are important in the binding and maturation of 

vertebrate clients such as, Glucocorticoid Receptor and v-Src (Nathan et al. 1997; 

Meyer et al. 2003; Hawle et al. 2006). Consistent with Hsp90’s critical role in binding 

and maturation of these clients, many of these Hsp90 mutations were found to also 

cause growth defects (Nathan and Lindquist 1995; Meyer et al. 2003). Other 

biochemical studies of mammalian Hsp90 identified a region within the middle domain 

that selectively binds to both protein complex B (Akt) and apoptosis regulating kinase 1 

(Ask1) which inhibits hydrogen peroxide (H2O2)-induced ASK1–p38 activation in 

endothelial cells (Zhang et al. 2005). Similarly, analysis of human Hsp90 β have 

identified M domain amino acids to be involved in the binding to Akt (Sato et al. 2000). 

In addition to mutational, biochemical and growth analysis, structural studies have 

helped to elucidate the important role the middle domain plays in binding to various 

Hsp90 clients. For example, earlier structural studies of the middle domain of Hsp90 
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have detected numerous hydrophobic patches scattered throughout the middle domain, 

including a solvent exposed hydrophobic patch that is part of an amphipathic loop, both 

of which are indicative of protein-protein interaction sites (Meyer et al. 2003). Recent 

structural studies of human Hsp90 have further shown that the middle domain binds to 

many clients including Tau (Karagoz et al. 2014), the DNA binding domain of p53 (Hagn 

et al. 2011; Park et al. 2011) and binding of chaperone-client complexes Cdc37-Cdk4 

(Verba et al. 2016; Czemeres et al. 2017). Together these studies provide evidence of 

the important role the middle domain of Hsp90 plays in client binding and maturation, 

ultimately affecting cellular and organismal homeostasis. As a result, chapter two 

applies mutational studies of part of the middle domain to extend our knowledge of this 

region and its role in evolutionary biology. 

Hsp90 and Adaptation to Stressful Environments 

Natural environments change frequently due to the dynamic alterations of abiotic 

factors including, temperature, salinity, and pH, which can have widespread 

evolutionary consequences (Elena and Lenski 2003; Dhar et al. 2011; Arribas et al. 

2014). Therefore, individuals are constantly subjected to a wide range of novel stresses 

that reduce viability. For example, increased temperature can cause protein unfolding 

and aggregation, which can disrupt function, ultimately affecting organismal fitness and 

survival (Richter et al. 2010). Organisms have evolved cellular mechanisms, including 

molecular chaperones (Hsp70, Hsp90 and Hsp100) to deal with stress and facilitate 

environmental resilience (Kaplan and Li 2012).  Hsp90 plays an essential role in 

protecting cells from environmental stress and is required for eukaryotic growth during 

adaptation to stress. For example, modest increases in temperature cause an increase 
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in the concentration of unfolded proteins in the cell, which in turn can aggregate and 

lead to proteotoxic effects that disrupt protein and cellular homeostasis (Richter et al. 

2010). This heat induced protein damage can result in the disruption of the internal 

organization of the cell and fragmentation of organelles, leading to cell death (Sangster 

et al. 2004). As a result, organisms have evolved cellular adaptive mechanisms, such 

as the induction of the molecular chaperones (Hsp70, Hsp90 and Hsp100) to deal with 

proteotoxic stress and facilitate resistance via refolding of unfolded proteins (Kaplan and 

Li 2012). Genetic and biochemical analysis of these heat shock proteins in S. cerevisiae 

have shown that under normal growth conditions hsp82 (Hsp90) is constitutively 

expressed, constituting 1-2% total cytosolic protein, and is further upregulated 20-30-

fold during elevated temperatures (Borkovich et al. 1989). The upregulation of Hsp90 is 

required to facilitate the renaturation and recovery of heat-induced denatured protein 

clients, maintaining protein homeostasis and cellular function (Rutherford et al. 2007). 

Specifically, this is done via the dissociation of the heat shock transcription factor, Hsf1 

from Hsp90 in the cytoplasm (Prodromou 2016). Hsf1 is then able to homotrimerize and 

translocate to the nucleus to induce the expression of Hsp90 via its interaction with 

three heat shock element motifs in the Hsp90 promoter (Prodromou 2016). When 

conditions are normal, Hsf1 dissociates from the Hsp90 promoter and translocates out 

of the nucleus into the cytoplasm where it can reassociate with Hsp90 and become 

negatively regulated (Prodromou 2016).  

Hsp90 is also directly involved in regulating the yeast short-term adaptive gene 

expression response to other environmental stressors.  Yeast short-term adaptation to 

novel environmental challenges involves rapid and transient changes in signaling 
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pathways that dramatically alter the transcription of specific subsets of genes that 

coordinate growth to stress responses (Nollen and Morimoto 2002). For example, 

previous gene expression studies in yeast grown under diverse environmental stressors 

including nitrogen depletion, hyper-osmotic stress (increased salinity or sorbitol) and 

oxidative stress (diamide and H202) requires global transcriptional changes that results 

in the upregulation of specific subsets of genes required for yeast growth (Duch et al. 

2012) (Gasch et al. 2000) (Posas et al. 2000). For example, all these conditions except 

for osmotic stress result in the increased expression of genes encoding heat shock 

proteins, including Hsp90 (Gasch et al. 2000), whereas, osmotic stress results in the 

increased expression of genes involved in glucose production (Gasch et al. 2000). In 

addition, adaptation to these environmental challenges requires the increased 

expression of ~300 environmental stress responsive (ESR) genes involved in a wide 

array of cellular processes, including cell growth, signal transduction and metabolism 

(Gasch et al. 2000) (Posas et al. 2000). The induction of many of these environment 

specific and general ESR genes are regulated by Hsp90 clients including, kinases and 

transcription factors. For example, the induction of osmostress specific genes is 

regulated by the activation of the high osmolarity glycerol (HOG) pathway MAPK, Hog1, 

(Hawle et al. 2007; Saito and Posas 2012), whereas, the increased expression of 

environmental stress responsive genes involved in metabolic pathways is regulated by 

the activation of glycogen synthase kinase 3 (GSK3) (Hirata et al. 2003; Stankiewicz 

and Mayer 2012). Hsp90 has been found to be directly involved in the activation or 

maturation of both of these kinases and the transcription factor, Hsf1 is involved in 

promoting the induction of heat shock proteins (Yang et al. 2006; Stankiewicz and 
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Mayer 2012). Therefore, in the following chapters we investigate the effects of Hsp90 

mutations on yeast short-term adaptation to conditions directly associated with 

increased expression of Hsp90 including, thermal stress (37°C), oxidative stress (H202 

or diamide), ethanol stress and nitrogen depletion (Gasch et al. 2000) or conditions 

associated with Hsp90 client binding-maturation function in stress response pathways 

such as, the HOG pathway induced by hyperosmotic stress (NaCl or sorbitol) (Gasch et 

al. 2000; Yang et al. 2006). 

Hsp90 Facilitates the Rapid Evolution of Novel Traits  

The ability for organisms to rapidly adapt to unpredictable environments is 

dependent upon the presence of pre-existing genetic variation and cellular mechanisms 

that couple unexpected environmental changes to the evolution of adaptive traits 

(Sangster et al. 2004). The environmental responsiveness of Hsp90 combined with the 

many fundamental signal transduction pathways it mediates are factors that provide 

Hsp90 with unique opportunities to contribute to evolutionary change (Lindquist 2009).  

Therefore, much time and effort has been spent understanding the role this chaperone 

plays in promoting evolutionary change. Previous studies in yeast, flies, and plants have 

demonstrated that Hsp90 function can directly contribute to the rapid evolution of 

adaptive traits (Jarosz and Lindquist 2010). Under optimal conditions Hsp90 acts as a 

capacitor of phenotypic variation, suppressing the phenotypic consequences of 

mutations in signal transduction pathways by correctly folding mutant clients (Sangster 

et al. 2004; Jarosz and Lindquist 2010). However, during conditions of environmental 

stress Hsp90 buffering capacity becomes taxed as a result of the increase in the 

concentration of stress-induced unfolded and damaged proteins, which compete for 
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Hsp90 chaperone function (Sangster et al. 2004; Taipale et al. 2010). Therefore, 

Hsp90s ability to fold and stabilize its repertoire of clients becomes compromised, 

allowing the release of cryptic genetic variants and the evolution of new traits 

(Rutherford 2003) as demonstrated in variation in fly (Rutherford and Lindquist 1998) 

and plant morphology (Queitsch et al. 2002), fungal drug resistance (Cowen and 

Lindquist 2005)  and cave fish vision loss (Rohner et al. 2013). 

Recent studies using systematic mutagenesis, bulk competition and deep 

sequencing fitness scans have begun to address how mutations to a highly conserved 

client binding site of Hsp90 can impact yeast evolutionary adaptation to diverse 

environmental stresses (Hietpas et al. 2013). This study shows that multiple mutations 

in a client-binding site of yeast Hsp90 can provide a growth advantage for yeast under 

elevated salinity conditions (Hietpas et al. 2013). Hietpas et al., identified 13 mutations 

that reproducibly confer a 7-10% increase in growth rate under elevated salinity 

conditions in comparison to wild type Hsp90, indicating that this region may play an 

important role in adaptation to this condition. In addition, the identified costs of 

adaptation for these beneficial mutations, whereby these mutations demonstrate 

deleterious effects under standard and high temperature conditions (Hietpas et al. 

2013).    

Thesis Scope 

Natural environments are constantly changing, which can result in the 

manifestation of environmental challenges that place selective pressures upon an 

individual’s fitness at many biological levels, including the sequence level. As a result, 

the interactions between genes and environments is theorized to play a significant role 
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in shaping molecular evolution and adaptation (Fisher 1931; Wright 1932). However, 

little is experimentally known about the impact of new environmental challenges on 

shaping the selection pressure on a protein sequence and their evolutionary 

consequences. Quantifying the impact of environment on the DFE of new mutations can 

determine the proportions of neutral, deleterious and beneficial mutations under specific 

environments and thus provide a glimpse into how environmental change impacts 

selection of protein sequences and their evolutionary consequences including, how 

does environment impact the shape of the DFE, adaptive potential, and costs of 

adaptation. However, very few studies have accurately quantified the impact of 

environment on the DFE of mutations, adaptive potential and costs (Hietpas et al. 2013; 

Bank et al. 2014) due to difficulties in measuring the fitness effects of the same 

mutations across environments. As a result, the foundation of the work presented in this 

dissertation focuses on applying a high throughput systematic mutagenesis approach to 

accurately measure the impact of diverse environmental stresses on the DFE of new 

mutations in yeast Hsp90 to address questions as to how environment impacts the 

shape of the DFE of new Hsp90 mutations, adaptive potential of Hsp90, costs of 

adaptation and selection of Hsp90 gene sequences in alternate environments. Yeast 

Hsp90 was chosen for this work because yeast Hsp90 is important for the short-term 

response to new and periodic environmental challenges and facilitates genetic 

adaptation to new stress conditions. Furthermore, previous studies have identified that 

mutations to Hsp90 can promote adaptation to specific environments.  

In chapter II I describe how I applied an optimized version of the EMPIRIC 

approach to create single point mutation libraries within a highly conserved 120 amino 
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acid sequence region of the middle domain of yeast Hsp90, implicated in client-binding. 

Using EMPIRIC, I measured the growth effects of these mutants under conditions 

known to affect yeast growth rate and Hsp90 expression including, standard, oxidative 

(H2O2 or Diamide) and hyperosmotic (NaCl, Sorbitol) stress conditions. We quantified 

the impact of environmental changes on the overall shape of the DFE, compared the 

experimental DFE to natural amino acid variants within 261 extant eukaryotes,  

identified regions that showed the largest proportions of beneficial or deleterious 

mutations, respectively, quantified hotspots of costs of adaptation, and compared the 

identified regions with known client binding or other structurally important sites to 

connect the phenotypic and fitness effects of mutation. I present findings that 

complement previous DFE studies (Hietpas et al. 2012; Hietpas et al. 2013; Bank et al. 

2014; Boucher et al. 2016) and predictions made by Ohta (Ohta 1992) and Kimura 

(Kimura 1983) regarding the distribution of fitness effects in the context of the nearly 

neutral and neutral model of evolution. I also present findings on the adaptive potential 

of this region across environments and their costs of adaptation under alternate 

environments. I discuss the adaptive potential of this region in the light of Fisher’s 

Geometric model. Together I present results that provide information regarding the role 

and adaptive potential of a large region of the middle domain of Hsp90 that supports 

and extends known structural properties of this region across diverse environments. 

In Chapter III I used the optimized EMPIRIC method to quantify the growth 

effects of all Hsp90 point mutations within the entire 709 amino acid sequence of Hsp90 

under conditions known to affect yeast growth and Hsp90 expression including, 

standard conditions and six stress conditions (diamide, ethanol, nitrogen deprivation, 
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hyperosmotic shock (NaCl) and temperature shock, 37°C). Low Hsp90 expression was 

used as a sensitive readout of Hsp90 function (Jiang et al. 2013). Using this approach, 

we quantified fitness maps for each condition, measured each positions sensitivity to 

mutation under each environment, identified environment specific beneficial and 

deleterious mutations, examined environmentally responsive mutations for structural 

and physical patterns and compared with known client binding or other structurally 

important sites, examined the adaptive potential of the full DFE under all environments 

using Fisher’s Geometric Model and finally compared our experimental fitness effects to 

the historical record of hundreds of Hsp90 substitutions accrued during its billion years 

of evolution in eukaryotes. We present comprehensive fitness maps for the entire 

Hsp90 protein sequence at low expression levels for six environments. We present 

findings that indicate that environment can have a large impact on the evolution of 

Hsp90. Specifically, we present results that demonstrate that specific environments 

have distinct effects on the selection of beneficial and costly Hsp90 mutations. These 

results coincide with previously identified high costs of adaptation for beneficial 

mutations in a smaller region of Hsp90 (Hietpas et al. 2013), and indicates that naturally 

fluctuating environments may reduce or eliminate positive selection of Hsp90. We 

present distinct structural trends for mutations that provide environment-dependent 

benefits and costs, which reveals how mutations may impact biochemical function and 

evolutionary mechanism. All together we present findings that indicate that environment 

can impact Hsp90 evolution but that this type of evolutionary mechanism is rare and 

suggests that natural selection on Hsp90 sequence is governed by strong purifying 

selection integrated over multiple stressful conditions.  
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A summary and discussion of my results are presented in Chapter IV. 
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Chapter II: The Adaptive Potential of the Middle Domain of Yeast Hsp90 

This work has been previously published as Pamela A. Cote-Hammarlof1*, Inês 
Fragata2*§, Julia Flynn1, David Mavor1, Konstantin B. Zeldovich1, Claudia Bank2,3#, and 
Daniel N.A. Bolon1#. The adaptive potential of the middle domain of yeast Hsp90. 
(*equal contribution; # co-corresponding author) [published online ahead of print, 2020 
Sep 1]. Mol Biol Evol. 2020;msaa211.doi:10.1093/molbev/msaa211 

 

This was a collaborative effort. I, Pamela Cote-Hammarlof generated the concept and 

experimental design for this study. I performed growth rate analysis of WT yeast Hsp90 

under conditions used in this experiment. I generated the mutant libraries and barcoded 

them. I isolated DNA from mutant libraries for sequencing and to map mutations to 

barcodes. I transformed yeast with mutant libraries and carried out the growth 

competitions with assistance from Dr. Konstantin Zeldovich and Dr. Julia Flynn. I 

isolated DNA from samples and prepared them for deep sequencing. I sequenced the 

samples and ran the initial analysis to obtain the number of barcodes associated with 

each mutant for each condition. Dr. Ines Fragata and Dr. Claudia Bank performed log 

linear regression analysis on the data I generated. Dr. Ines Fragata and Dr. Claudia 

Bank computed the costs of adaptation associated with adaptive mutations across 

environments. I, Dr. Ines Fragata, Dr. David Mavor, Dr. Claudia Bank and Dr. Dan 

Bolon equally contributed to analyzing the data. Dr. Konstantin Zeldovich created the 

turbidostat to automatically run our growth competition experiments under the 

conditions used in this study. I, Dr. Ines Fragata, Dr. Claudia Bank and Dr. Dan Bolon 

equally contributed to writing, reviewing and editing the manuscript. 
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Abstract 
The distribution of fitness effects (DFE) of new mutations across different environments 

quantifies the potential for adaptation in a given environment and its cost in others. So 

far, results regarding the cost of adaptation across environments have been mixed, and 

most studies have sampled random mutations across different genes. Here, we quantify 

systematically how costs of adaptation vary along a large stretch of protein sequence by 

studying the DFEs of the same ≈2300 amino-acid changing mutations obtained from deep 

mutational scanning of 119 amino acids in the middle domain of the heat-shock protein 

Hsp90 in five environments. This region is known to be important for client binding, 

stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-

terminal interdomains, and regulation of ATPase-chaperone activity. Interestingly, we find 

that fitness correlates well across diverse stressful environments, with the exception of 

one environment, diamide. Consistent with this result, we find little cost of adaptation; on 

average only one in seven beneficial mutations is deleterious in another environment. We 

identify a hotspot of beneficial mutations in a region of the protein that is located within 

an allosteric center. The identified protein regions that are enriched in beneficial, 

deleterious, and costly mutations coincide with residues that are involved in the 

stabilization of Hsp90 interdomains and stabilization of client binding interfaces, or 

residues that are involved in ATPase chaperone activity of Hsp90. Thus, our study yields 

information regarding the role and adaptive potential of a protein sequence that 

complements and extends known structural information. 
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Introduction 

The distribution of fitness effects (DFE) determines the proportions of new mutations 

that are beneficial, deleterious or neutral (Eyre-Walker and Keightley 2007; Loewe and 

Hill 2010; Bataillon and Bailey 2014). It provides a snapshot of the robustness of the 

genome to changes in the DNA and carries information about the expected amount of 

genetic diversity within populations. Moreover, the beneficial part of the DFE informs on 

the adaptive potential of populations when introduced into a new environment 

(Sniegowski and Gerrish 2010; Bataillon and Bailey 2014). However, beneficial 

mutations in one environment can be deleterious in another, potentially resulting in so-

called costs of adaptation (Bataillon et al. 2011), also termed antagonistic pleiotropy. So 

far, it has been difficult to address the prevalence of such costs of adaptation, because 

measuring the fitness of the same mutations across various environments is not 

straightforward.  Specifically, previous studies using a selection of mutations obtained 

from laboratory evolution or mutation accumulation experiments found that antagonistic 

pleiotropy was rare (Ostrowski et al. 2005; Dillon et al. 2016; Sane et al. 2018). It is 

unknown whether this pattern holds for an unbiased selection of mutants.   

 Comparing the fitness of a large unbiased selection of mutants across environments 

has become feasible with the advancement of deep mutational scanning. Developed 

around a decade ago, deep mutational scanning allows for the assessment of the 

complete DFE of a focal genomic region in some genetically modifiable and fast-

growing model species, using a combination of site-directed mutagenesis and deep 

sequencing (Fowler et al. 2010; Hietpas et al. 2011; Boucher et al. 2014; Logacheva et 
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al. 2016). Deep mutational scanning studies from single environments usually report a 

bimodal DFE with two peaks that represent neutral and strongly deleterious mutations, 

respectively (Hietpas et al. 2011; Acevedo et al. 2014; Boucher et al. 2014). Despite the 

ample use of this approach (Hietpas et al. 2011; Melamed et al. 2013; Acevedo et al. 

2014; Boucher et al. 2014; Doud and Bloom 2016; Sarkisyan et al. 2016), few studies 

have quantified the impact of environmental challenges on the shape of these DFEs 

(but see (Hietpas et al. 2013; Bank et al. 2014). However, experimentally quantifying the 

DFE across environments is important because natural environments are constantly 

changing, which can have diverse evolutionary consequences that are directly related to 

the shape of the DFE (Dhar et al. 2011; Arribas et al. 2014; Mumby and van Woesik 

2014; Brennan et al. 2017).  

The consequences of environmental challenges on organisms manifest at many 

biological levels, including the protein level. For example, increased temperature can 

cause protein unfolding and aggregation, which can disrupt function and ultimately 

affect organismal fitness and survival (Richter et al. 2010). Chaperones, such as the 

heat shock protein Hsp90, help the cellular machinery survive stress conditions (Chen 

and Arnold 1993). By buffering deleterious fitness effects in stress conditions, 

chaperones are important for the short-term response to new and recurring 

environmental challenges. On a longer time scale, their buffering effect has also been 

argued to facilitate the maintenance of standing genetic variation elsewhere in the 

genome that can enable rapid genetic adaptation to new stress conditions (Rutherford 

2003; Barrett and Schluter 2008; Jarosz and Lindquist 2010; Fitzgerald and Rosenberg 

2019). Therefore, it is important to understand how chaperones evolve, and how the 
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selection pressure on a chaperone changes upon exposure to different environmental 

challenges. 

 The heat shock protein Hsp90 is a chaperone that plays an essential role in 

protecting cells from environmental stress and that is required at elevated levels for 

yeast growth at high temperature (Borkovich et al. 1989). Recent studies using 

systematic mutagenesis have begun to address how mutations to a strongly conserved 

client binding site of Hsp90 can impact evolutionary adaptation in yeast (Hietpas et al. 

2013). Multiple mutations in a nine amino acid client-binding site of yeast Hsp90 

provided a growth advantage under elevated salinity conditions (Hietpas et al. 2013; 

Bank et al. 2014). A recent larger-scale study found that at low Hsp90 expression 

levels, changes in environment greatly changed the shape of the DFE, and that some 

environments showed a higher prevalence of both beneficial and deleterious mutations 

(Flynn et al. 2020). However, another previous study proposed that at low expression 

the fitness effects of mutations, especially deleterious ones, should be larger (Jiang et 

al. 2013). Thus, it is unknown how much of the observed effect was due to expression 

level and how much was due to environmental changes. 

 Here we examined a 119 amino acid region (encompassing positions 291-409, Fig. 

2.1) of the middle domain of yeast Hsp90 (aka Hsp82) at normal expression levels. 

Several studies have demonstrated that the middle domain of Hsp90 plays a prominent 

role in client binding (Nathan and Lindquist 1995; Nathan et al. 1997; Meyer et al. 2003; 

Hawle et al. 2006; Hagn et al. 2011), and suggested that mutations in this region may 

impact the relative affinity or priority of different clients and physiological pathways with 
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the potential to provide an adaptive benefit (Sato et al. 2000; Zhang et al. 2005; Hagn et 

al. 2011; Verba et al. 2016; Czemeres et al. 2017).  

 
  
Figure 2.1: Middle domain of Hsp90 (A) Amino acid conservation of yeast Hsp90 

compared to 261 eukaryotic sequences. Relative height of the amino acid indicates 
degree of conservation. (B) Structural representation based on 1HK7.PDB of the middle 
domain of Hsp90, with amino acids 291-409 that are the focus of this study highlighted in 
purple. A solvent exposed amphipathic loop implicated in client binding (amino acids 327-
341) is highlighted in yellow and residues implicated in client binding (amino acids W300, 
F329, F349) are shown as gray sticks. (C)  Systematic approach to measure the adaptive 
potential of the middle domain of yeast Hsp90 (amino acids 291-409). 
 

 

We used the EMPIRIC approach of deep mutational scanning (Hietpas et al. 2011) to 

estimate the selection coefficients of all amino-acid changing mutations in the middle 

domain of yeast Hsp90 across five environments. Using the inferred DFEs, we identified 

regions of the middle domain that stand out with respect to their potential for adaptation 

upon environmental change. Moreover, as some environments share the type of stress 
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that they induce, namely osmotic stress (0.5M salinity or 0.6M sorbitol) and oxidative 

stress (0.6 mM H202 or 0.85mM diamide), we were able to study the impact of the type 

of stress on the adaptive potential of new mutations. To this end we: a) quantified the 

impact of environmental changes on the overall shape of the DFE, b) identified regions 

that showed the largest proportions of beneficial or deleterious mutations, respectively, 

c) quantified hotspots of costs of adaptation, and d) compared the identified regions with 

known client binding or other structurally important sites to connect the phenotypic and 

fitness effects of mutations. Altogether, we mapped potential protein regions that may 

play an important role in adaptation to different environments. 

Results and Discussion 

To investigate the adaptive potential of the middle domain of yeast Hsp90 we 

used systematic site-directed mutagenesis of amino acid positions 291-409 that include 

known client binding sites. This resulted in ≈2300 amino-acid changing mutations, 

whose selection coefficients were estimated from 2-3 replicates of bulk competitions 

that were performed in five environments. We focused our analysis on standard lab 

conditions and four environmental stresses that affect growth rate (Supplementary 

Figure 2.1) in yeast (Gasch et al. 2000). 

 

DFEs Across All Environments Show Many Wild-Type Like Mutations.  

The shape of the DFE indicates the relative importance of purifying or directional 

selection as compared with neutral evolution. In apparent contrast to the strong 

conservation of the Hsp90 middle domain in natural populations, we observed DFEs 

with mostly wild-type like mutations across all environments (Supplementary Figure 2.2, 
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2.3). Throughout the manuscript, we use the term “wild-type like” to denote mutations 

that are indistinguishable from the wild-type reference in the limit of experimental 

accuracy, see Material and Methods. We categorized mutants as wild-type like if the 

95% confidence interval of the estimated selection coefficient overlapped with 0 (see 

also Supplementary Table 2.1, Materials & Methods). According to this criterion, 

between 50% (in the H202 environment) and 65% (in the standard environment) of 

mutations showed a fitness effect that is indistinguishable from the reference type. 

Large numbers of wild-type like mutations have been observed previously in deep 

mutational scanning studies of DFEs (Soskine and Tawfik 2010; Hietpas et al. 2013; 

Melamed et al. 2013; Bank et al. 2014; Hom et al. 2019). Both biological and technical 

factors can be invoked as an explanation for the large number of wild-type like 

mutations. Firstly, the resolution of the experiment is likely much lower than the 

resolution at which natural selection may act in large yeast populations (Ohta 1992; 

Boucher et al. 2016). Secondly, selection pressures in the laboratory might differ greatly 

from those in nature (e.g., (Reznick and Ghalambor 2005; Kvitek and Sherlock 2013). 

Finally and relatedly, natural environments might be fundamentally different and rapidly 

fluctuating (Mustonen 2009). For example, a recent study of the DFE of the full Hsp90 

sequence found that mutations which were tolerated across a set of diverse 

environments were those most likely observed in natural sequences (Flynn et al. 2020). 

We repeated the analysis of Flynn et al. 2020 and found the same pattern: our 

estimated DFEs across all environments of the subset of variants observed in nature 

(amino acid mutations observed across 267 eukaryotic sequences, see Material and 

Methods) show a high peak around 0. This results in a further enrichment of wild-type 
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like mutations in the subset of naturally observed variants as compared with the full data 

set (Supplementary Figure 2.5). 

Our approach provides a dense scan of the local fitness landscape by measuring the 

selection coefficient of all amino-acid changing mutations that are available in a single 

mutational step from the ancestral state. The presence of a large number of wild-type 

like mutations in various different environments suggests that the local fitness 

landscape is rather flat, which is at odds with the strong conservation of the protein in 

yeast. However, further away from the wild type, epistatic interactions may condition the 

following mutational steps and thereby change the configuration of the fitness 

landscape, creating fewer attainable mutational paths and constraining evolution on 

longer time scales (e.g. (Weinreich et al. 2006; Kryazhimskiy et al. 2014).  

Correlations Across Conditions Reveal that Diamide Stands Out with Respect to 

Mutational Effects.  

We next quantified the correlations of fitness effects across replicates and 

environments (Figure 2.2, Supplementary Table 2.2). Consistent with the high accuracy 

of the experiment, we observed strong correlations of estimated mutational fitness 

effects between replicates (Supplementary Figure 2.6, mean Pearson correlation 

r=0.91). Across pairs of environments, we observed a large variation of correlations 

ranging from r=0.48 between diamide and salt to r=0.98 between H202 and the 

standard environment. In this analysis, diamide clearly stood out by showing 

consistently lower correlations of fitness effects with other environments than all others 

(mean correlation including diamide r=0.65, mean correlation of all others r=0.86). This 

could be because diamide exerts multiple negative effects on the yeast cells. For 
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example, among the environments we investigated, diamide was the only condition that 

induces the expression of cell wall biosynthesis genes and genes involved in protein 

secretion and processing in the endoplasmic reticulum, which indicates its role in cell 

wall damage (Gasch et al. 2000). Diamide was also shown to affect individual 

transcription factors differently from H202, the other oxidative environment in our 

selection. One example that has been described in the literature is the Yap1 

transcription factor, which is nuclear localized and active in diamide, but cytoplasmic 

and inactive in H202 (Gulshan et al. 2011). Interactions of Hsp90 with other genes may 

also contribute to fitness differences of the mutations between the tested environmental 

conditions and mutants that we tested. Further global experimental analyses beyond the 

scope of this work will be required to determine the molecular features of diamide stress 

that elicit distinct selection on Hsp90 sequence. 

 Previous studies have reported that mutations had similar fitness effects across 

environments that shared metabolic features (Ostrowski et al. 2005; Dillon et al. 2016; 

Sane et al. 2018). Thus, we expected to see stronger correlations of fitness effects 

between environments that induce the same type of stress (salt vs sorbitol and H2O2 vs 

diamide) than between different types of stress. Indeed, we observed a strong 

correlation of the fitness effects of mutations between salt and sorbitol (r= 0.79) and 

between H2O2 and diamide (r= 0.74). However, these correlations are not much different 

from comparing any other pairs of environments (Supplementary Table 1). Again, 

diamide is the one environment that stands out with respect to this pattern. Here, the 

average correlation between diamide and other non-H2O2 environments is 0.62 (vs 

r=0.74 between H2O2 and diamide), suggesting that, in this case, H2O2 and diamide 
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may share some metabolic features where Hsp90 is involved. One possible explanation 

for this is that the oxidative stresses of diamide and H2O2 cause an increase in the 

expression of chaperones, including Hsp90 (Gasch et al. 2000), inducing similar gene 

expression responses to those observed during thermal stress in yeast (Gasch et al. 

2000). 

 

Figure 2.2: Histogram of correlations of fitness effects among replicates and 

environments reveals that diamide stands out as different. The histograms 

correspond to comparisons of replicates (A), comparisons that include diamide (B), and 

all other comparisons (C). Correlations between replicates and between pairs of 

environments are in general high, whereas, correlations between diamide and the other 

environments tend to be lower. Altogether, this suggests that cells react in unique ways 

to the oxidative stress enacted by exposure to diamide, and that Hsp90 plays a specific 

role in the response to this stress. 

 

 We also observed a tendency for selection coefficients from the same batch of 

experiments to be more strongly correlated than selection coefficients inferred from 

different batches of experiments (Supplementary Table 2.2). This is not unusual 

(Venkataram et al. 2016) and may be due to small differences in the growth conditions 

between batches or during the sequencing steps. To mitigate this effect, we performed 

the analyses to detect beneficial and deleterious hotspots either based on at least two 

replicates or using the average of the estimated fitness effects between replicates (as 
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indicated below) and re-categorizing mutations based on the mutant category of both 

replicates (see also Materials and Methods). 

The large correlations observed between most environments suggest that potential 

costs of adaptation (discussed in detail further below) should be the exception rather 

than the rule. This is at odds with previous results from a smaller region of Hsp90 

(Hietpas et al. 2013), where most beneficial mutations detected at high salinity were 

deleterious in other environments. A potential explanation for this discrepancy lies in the 

choice of the protein region. Whereas, the previous study focused on only nine amino 

acids and thus chose a set of positions that are likely to show functionally specific 

patterns, we here had the experimental power to scan a larger region of the protein. 

Along a larger, less specifically chosen, stretch of the protein, it is likely that many 

positions and mutations play the same role across many environments. In this case, 

costs of adaptation of beneficial mutations could still be large, but due to their low 

proportion in the overall pool of observed mutations they barely affect the correlation of 

selection coefficients across environments. Indeed, when computing the correlation in a 

10 amino acid region, we see high variability in the correlations (Supplementary Figure 

2.7), e.g. with a range between 0.36 and 0.84 for the correlation between Diamide and 

Standard environments. This suggests that specific regions may represent functionally 

important positions (see below).  

 

Beneficial Mutations Are Present Across All Environments and Are Enriched in A 

Region of Hsp90 That Is Implicated in Stabilization of Interdomains and Client 

Binding Interfaces.  
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Next, we identified the proportion and identity of putatively beneficial mutations across 

all treatments (Supplementary Table 2.1, Supplementary Figure 2.8, 2.9). We 

categorized mutants as putatively beneficial if the lower limit of the 95% confidence 

interval of the selection coefficient was larger than 0, and we considered as strongest 

candidates those that overlapped between replicates from the same environment. As 

reported above, wild-type like mutations are the most abundant category in all 

environments, with a low proportion but considerable number of beneficial mutations in 

almost all environments (Supplementary Figure 2.8, 2.9). We found the lowest number 

of beneficial mutations in H2O2 and salt environments (nH2O2=65 and nSalt=64, around 

2.5% of the mutations) and the highest in diamide (nDiamide=307, 12.3%).  

The proportion of beneficial mutations, interpreted in the light of Fisher's Geometric 

Model (Fisher 1958; Tenaillon 2014), should be informative about the "harshness" of the 

experimental environments and the resulting potential for adaptation. Specifically, 

Fisher imagined that populations evolve in a multidimensional geometric phenotype 

space, where the same mutation is more likely to be beneficial if it happens in an 

individual that is far from the phenotypic optimum (Fisher 1958; Tenaillon 2014). Thus, 

we expected that in environments with large doubling times, corresponding to lower 

absolute fitness of the reference type (Supplementary Figure 2.1), we should observe a 

larger number of beneficial mutations.  Moreover, we expected the lowest number of 

beneficials in the standard environment, to which the wild type is well adapted and in 

which it has the lowest doubling time. However, this expectation was met only in the 

diamide environment. At high salinity and in sorbitol, the observed proportion of 

beneficial mutations was lower than in the standard environment. This discordance with 
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expectations from FGM could be due to the model's very general assumptions which, 

for example, include that mutations affect all phenotypic dimensions with equal weight 

(see, e.g., (Harmand et al. 2017). Many of these assumptions are likely violated here, 

because, for example, Hsp90 plays a very different functional role in the osmotic stress 

response in comparison to diamide induced oxidative stress - probably resulting in 

different phenotypic distributions of the same mutations in the (anyways rather abstract) 

phenotype space.  

Specifically, it is known that Hsp90 basal function together with its co-chaperone 

Cdc37 is required for the induction of the osmotic stress response in yeast via activation 

of the Hog1 kinase in the HOG pathways (Hawle et al. 2007; Yang et al. 2007). 

However, increased salinity or sorbitol does not cause an increase in Hsp90 mRNA 

expression in comparison to diamide conditions, which cause an increase in mRNA 

expression similar to what is observed during heat shock (Gasch et al. 2000). The 

decoupling of function and expression, and the low number of beneficial mutations 

suggests that Hsp90s role during osmotic stress may be related to the activation of the 

general stress response mechanism of the cell (Mager and Siderius 2002). Another 

possibility is that osmotic stress does not cause heat shock induced protein unfolding 

(Richter et al. 2010) or diamide induced protein modifications that may compromise 

protein and cellular function (Gasch et al. 2000). Thus, under osmotic stress conditions 

the cell would not require increased expression of Hsp90. This suggests that mutations 

may play distinct roles for different conditions, perhaps under osmotic stress activation 

of clients and under diamide could be activation of clients and/or increase in Hsp90 

expression and function. 
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Interestingly, beneficial mutations in diamide were dispersed across the whole middle 

domain (Supplementary Figure 2.8), whereas, most of the other environments showed a 

clear enrichment of beneficial mutations in the region of positions 356-366 (Figure 2.3, 

Supplementary Figure 2.8). This hotspot of beneficial mutations was particularly strong 

in sorbitol (Supplementary Figure 2.8). Out of the 31 beneficial mutations that showed a 

beneficial effect in at least two environments, 18 were located in this hotspot.  

The beneficial hotspot contains residues that are part of an allosteric center which 

mediates distinct conformations in structures with and without client (Blacklock and 

Verkhivker 2013; Blacklock and Verkhivker 2014; Czemeres et al. 2017). Despite its 

different structural arrangements, the hydrophobic amino acids in this region are mostly 

buried from solvent (Figure 2.3B), indicating that the primary role of this region is to 

mediate the stability and rearrangement of different conformations. One position that 

particularly stands out with respect to the number of beneficial mutations is 364. 

Position 364 lies at the center of the cluster of the 10% largest average proportions of 

beneficial mutations (Figure 2.3A) and shows a clear deviation from the usually 

observed shape of the DFE (Supplementary Figure 2.10). Specifically, we identified 6 

mutations at this position that are beneficial in at least two environments 

(Supplementary Figure 2.10). The burial of the large hydrophobic side chain of F364 

should provide local stability. The beneficial mutations at position 364 and in this region 

in general suggest that disruption of local stability and conformational dynamics may 

alter Hsp90 function. Because this beneficial region partially overlaps with an allosteric 

center involved in Hsp90 conformational stability and dynamics (Blacklock and 

Verkhivker 2013; Blacklock and Verkhivker 2014) we hypothesize that Hsp90 function 
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may be altered by the identified candidate beneficial mutations in a manner that disrupts 

local stability and dynamics of this region. Furthermore, these disruptions may promote 

conformational changes in the neighboring client binding loop that allow this region to 

sample a larger and/or different conformational space in a manner that changes the 

relative affinity and thereby priority of different clients - a property that we speculate 

could provide benefits in specific conditions. Consistent with this hypothesis, the 

beneficial hotspot is adjacent to a known client binding loop (Figure 2.3) such that 

alterations in the structure or dynamics of the hotspot are likely to influence client 

binding nearby. It is possible that natural selection balances client priorities integrated 

over multiple conditions, which provides opportunities for Hsp90 mutations to improve 

priorities for individual conditions (Flynn et al. 2020). 
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Figure 2.3: Hotspots of beneficial and deleterious mutations in the middle domain 
do not coincide with known client binding loop. A) Average proportion of beneficial 
and deleterious mutations along the genome across all environments, illustrated using a 
10-amino-acid sliding window. The region with the 10% largest proportions of beneficial 
mutations is highlighted in light orange (position 356-366), the region with the 10% 
largest proportions of deleterious mutations is highlighted in light blue (positions 347 
and 376-385). A known client binding loop (positions 327-341) is highlighted in light 
gray. To avoid biases, the analysis was restricted to subsets of two replicates of all 
normal-expression environments. B) Structural representation of the Hsp90 middle 
domain (1HK7.PDB) illustrating the beneficial hotspot in magenta with residue 364 
highlighted in cyan. Biochemical, structural and mutational studies identified positions 
327-341 as a client binding loop, which is shown in blue. The beneficial hotspot that was 
identified in our analyses is adjacent to the above-mentioned client binding loop. C) 
Structural representation of the ATPase and middle domains of Hsp90 from 2CG9.PDB. 
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The deleterious hotspot (in cyan) contains a catalytic amino acid and is located at a 
dimerization interface. It includes residue R380 that stabilizes the leaving phosphate 
during ATP hydrolysis. Subunits are distinguished with different shading. D) The 
deleterious hotspot at position 347 is also located at the interface of the ATPase domain 
and the middle domain and is highlighted in pink and blue. 
 

The Proportion of Deleterious, Wild-Type Like, and Beneficial Mutations Varies 

Greatly Along the Protein Sequence. 

We showed above that the overall correlations of fitness effects across environments 

were generally large, which indicates similar effects of the same mutations across 

environments.  In contrast and similar to the local correlations of fitness effects 

(Supplementary Figure 2.7), the proportions of beneficial, wild-type like, and deleterious 

mutations vary greatly along the protein sequence. Whereas, the overall pattern is 

similar between environments, the relative proportions differ between environments 

(Supplementary Figure 2.8, 2.9). Our finding that the same positions are enriched for 

deleterious and beneficial mutations across environments suggests that the structural 

properties of the middle domain in these regions, rather than its binding partners, might 

be the most important factor for predicting the fitness effects of mutations.  

Interestingly, the regions with the largest proportions of deleterious mutations are 

located near the ends of the beneficial hotspot region (position 347 and 376-385, 

respectively) (Supplementary Figure 2.8). At the latter deleterious hotspot, around 70% 

of all mutations are deleterious in a sliding window of 10 amino-acid positions. Such a 

shift of the DFE towards deleterious mutations suggests that this protein region is under 

strong purifying selection. Structurally, the region 376-385 is part of a catalytic loop 
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required for ATP hydrolysis which is necessary for the activation of all known clients 

(Wolmarans et al. 2016). Position R380 in the catalytic loop binds to and stabilizes the 

leaving phosphate of ATP (Figure 2.3C) and mutations at this position compromise 

Hsp90 function and cell viability (Meyer et al. 2003). The efficiency of catalysts depends 

strongly on geometry, and the precise location of R380 relative to ATP is likely tightly 

linked to Hsp90 function. The regions adjacent to R380 appear to be important for 

positioning the catalytic arginine, providing a rationale for the strong purifying selection 

that we infer. The second deleterious hotspot at position 347 is also located at the 

interface of the ATPase domain and the middle domain (Figure 2.3D), consistent with 

current understanding that Hsp90 mechanism requires precise ATP-dependent 

interactions between these domains (Schopf et al. 2017).  

Few Mutations Show Costs of Adaptation.  

Among the identified beneficial mutations, we were specifically interested in 

those that are deleterious in other environments, which results in a so-called "cost of 

adaptation". The same phenomenon has also been termed antagonistic pleiotropy. In 

previous work we reported a large prevalence of costs of adaptation in a 9-amino-acid 

region of Hsp90 (Hietpas et al. 2013). In this study, we found that costs of adaptation 

were not pervasive (Figure 2.4, Supplementary Table 2.3). Consistent with the 

comparatively low correlations of fitness effects and the special role of the diamide 

stress discussed above, we observed the largest proportion of mutations that show 

costs of adaptation between diamide and other environments. Whereas, the mean 

proportion of mutations displaying costs of adaptation across all comparisons of 
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environments was 14.3%, comparisons that included diamide showed on average 

22.7% mutations with costs of adaptation. 

 
 
Figure 2.4: Histogram of proportions of mutations that display costs of adaptation 
illustrates that costs of adaptation are generally rare, and most likely if 
comparisons involve diamide environments. The histograms correspond to 
comparisons of replicates (A), the subset of other comparisons that include diamide (B), 
and all other comparisons (C). 
 
 

Mapping the proportion of beneficial mutations that are deleterious in other 

environments along the protein sequence, we observed that there is a hotspot for costs 

of adaptation at amino-acid positions 381-391 (Figure 2. 5). Interestingly, this region 

showed costs of adaptation across various environments, which indicates that each 

environment has specific beneficial mutations which are deleterious in other 

environments. Structurally, this region also belongs to the catalytic loop involved in ATP 

hydrolysis discussed above. Indeed, the identified region partly overlaps with the above-

discussed hotspot of deleterious mutations (positions 376-385), which is unsurprising 

since a larger proportion of deleterious mutations also increases the (technical) 

proportion of mutations that can be classified as costly.  
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Figure 2.5: A hotspot of costs of adaptation is located at positions 381-391. The 
10% positions with the largest mean proportion of mutations that display costs of 
adaptation (dark purple line) are highlighted in light purple. This region greatly overlaps 
with the hotspots of deleterious mutations from Figure 3 (highlighted in blue). Thin 
curves indicate the mean proportion of beneficial mutations in a focal environment that 
is deleterious in another environment. A 10-amino-acid sliding window was used to 
locate and display region-specific effects. To avoid biases, the analysis was restricted to 
subsets of two replicates of all environments. 
 

We next computed whether there was a correlation between the effects of the 

subset of beneficial mutations in one environment with their effect in the other 

environments. Indeed, the effects of beneficial mutations in diamide were negatively 

correlated with the same mutation's effect in all other environments (Figure 2.5, 

Supplementary Figure 2.11) except H202. In other words, the more beneficial a mutation 

was in diamide, the more deleterious it tended to be in salt, standard and sorbitol. 

Again, this suggests that the beneficial mutations we identified in diamide may be 

involved in the response to a very specific type of stress. Across all other environments, 
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we did not see any evidence that stronger beneficial mutations tended to have a more 

deleterious effect in other environments. In fact, there is a suggestive positive 

correlation between fitness effects of beneficial mutations with their respective effect in 

all other non-diamide environments, which points to the presence of synergistic 

pleiotropy. While generally defined as mutations having the same effect on more than 

one trait, in the context of this study synergistic pleiotropy would mean that beneficial 

mutations tend to have a similar ranking across environments. This is in line with results 

from studies of E. coli using experimental evolution (Ostrowski et al. 2005; Dillon et al. 

2016) or mutation accumulation (Sane et al. 2018). These studies reported synergistic 

pleiotropy between different carbon source environments, and rare presence of 

antagonistic pleiotropy. Specifically, Sane et al (Sane et al. 2018) found that this pattern 

was maintained also for the categories of neutral and deleterious mutations, and that 

mutations with larger effect were more likely to show antagonistic pleiotropy. The 

reported prevalence of synergistic pleiotropy was associated with a sharing of the 

metabolism and transport of resources (Ostrowski et al. 2005; Dillon et al. 2016; Sane 

et al. 2018). 

Conclusion 

Recent advances in experimental and technological approaches have led to the 

feasibility of large-scale screens of the DFE of new mutations, which, from an 

evolutionary point of view, is a key entity to determine the potential for adaptation. Here, 

we took a new route by mapping the proportions of beneficial, wild-type like, and 

deleterious mutations along a 119-amino-acid region of the Hsp90 protein in yeast, a 

protein that is heavily involved in the response to environmental stressors. This 
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approach allowed us to create a genotype-phenotype map to identify specific protein 

regions that may be important for adaptation to new environments.  Specifically, by 

comparing the DFE along the protein sequence and between environments, we 

identified hotspots of beneficial and deleterious mutations that are shared between 

environments, and a region in which beneficial mutations in one environment tend to be 

deleterious in other environments. Interestingly, neither of these regions coincided with 

the best described client binding loop in the studied region, which we had a priori 

considered the most likely candidate to display patterns different from the rest of the 

region. Moreover, our analyses suggested that mutational effects generally differ little 

across environments except in diamide, which stood out both with respect to the 

number and also the distribution of beneficial mutations along the studied protein 

region. Altogether, our study of the DFE across environments sheds light on the 

evolutionary role of a specific protein region from a new perspective. 

Materials and Methods 

Generating Point Mutations.  

To accurately measure the fitness effects of all possible point mutations in a large 

portion of the middle (client-binding) domain of yeast Hsp90, we used saturation 

mutagenesis at positions 291-409. We used a cassette ligation strategy to introduce 

mutations as previously described (Hietpas et al. 2012).  This strategy reduces the 

likelihood of secondary mutations because it avoids the potential for errors during PCR 

steps. As a control for the mutational procedure, twelve positions were randomized in 

isolation and Sanger sequenced to assess the level of incorporation of all four 

nucleotides at each position in the target codon. At all randomized nucleotide positions 
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within these twelve samples, we observed a similar magnitude of signal for each of the 

four nucleotides. For larger scale production, libraries were generated at 10 positions at 

a time as previously described (Hietpas et al. 2012).  As additional controls, we 

generated a sample containing individual stop codons as well as the parental wild-type 

Hsp90 sequence. All variants of Hsp90 were generated in a plasmid (pRS414GPD) 

previously shown to produce endogenous levels of Hsp90 protein in yeast (Chang and 

Lindquist 1994). 

Constructing Barcoded Libraries. 

To improve the efficiency and accuracy of fitness estimates, we added barcodes to a 

non-functional region of the plasmid, ~200 NTs downstream from the 3’ untranslated 

region of Hsp90.Barcodes were introduced using a cassette ligation strategy 

(Supplementary Figure 2.12). Plasmid libraries were treated with NotI and AscI to 

generate directional sticky ends. NotI and AscI recognize 8-base cut sites that are 

unlikely to cut any of the Hsp90 variants in the library. We designed and annealed 

barcode forward and barcode reverse oligos together such that the resulting duplex 

product included a central N18 region bracketed by constant regions that facilitate 

annealing and overhangs that direct directional ligation into NotI and AscI 

overhangs.  One of the constant ends in the designed oligo cassette contains an 

annealing region for an Illumina sequencing primer. Barcoded libraries were 

transformed into E. coli and pooled into a bulk culture that contained about 10-fold more 

transformants than Hsp90 variants in the library. We purified barcoded plasmids from 

this bulk culture. This procedure resulted in approximately 20 barcodes for each Hsp90 

codon variant in the library (Supplementary Figure 2.13). The potential diversity in the 



73 
 

N18 barcode that we used (418 ~ 1011) far exceeds the number of barcodes that we 

utilize (~64*119*10~105), which makes it likely that each Hsp90 variant will have a 

barcode that differs from all other barcodes at multiple nucleotides. With this setup, 

errors in sequencing of barcodes can be detected and eliminated from further analysis, 

which reduces the impact of sequencing misreads on estimates of variant frequency 

and fitness. Additional controls consisting of individual stop codons and wildtype Hsp90 

were barcoded separately. For these controls, we isolated barcoded plasmid DNA from 

individual bacterial colonies and determined the barcodes by Sanger sequencing 

(Supplementary Figure 2.12). 

Associating Barcodes to Mutants. 

 To identify the barcodes associated with each Hsp90 variant in our libraries, we used 

a paired-end sequencing approach essentially as previously described (Hiatt et al. 

2010), see also Supplementary Figure 2.14).  Using paired-end sequencing on an 

Illumina MiSeq Instrument barcodes were associated with variant genotypes via reading 

from the Hsp90 gene with a 250 base-pair read and the associated N18 barcode with a 

50 base-pair read. To reduce the size of the DNA fragments for efficient Illumina 

sequencing, we removed a portion of the Hsp90 gene such that the randomized regions 

were closer to the N18 barcode. This was done to increase the density of DNA on the 

sequencer by reducing the radius of clonal clusters during sequencing. Plasmid DNA 

was linearized with StuI and NotI endonucleases that removed ~400 bp’s of DNA. The 

linearized products were circularized by blunt ending followed by ligation at DNA 

concentrations that predominantly lead to unimolecular ligations (Revie et al. 1988). The 

resulting DNA products were amplified using a PE2_F primer and the standard Illumina 
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PE1 primer that anneals next to the N18 barcode. Two PE2_F primers were designed in 

order to read across the region of Hsp90 that we randomized. PCR products were gel 

purified and submitted for paired end sequencing. We obtained sufficient paired-end 

reads such that the average barcode was read more than 10 times (Supplementary 

figure 2.13). The paired-end sequencing data was subjected to a custom data analysis 

pipeline to associate Hsp90 variants with barcodes. First, very low-quality reads with 

any Phred score less than 10 in reads 1 or 2 were discarded. Next, the data were 

organized by the barcode sequence. For barcodes with three or more reads, we 

constructed a consensus of the Hsp90 sequence read. We compared the consensus 

sequence to the parental Hsp90 sequence in order to determine mutations. Consensus 

sequences containing more than one protein mutation were discarded. The pipeline 

output generated a file organized by point mutation that lists all barcodes associated 

with that mutation (Supplementary Data). This file was used as the basis for calling a 

variant based on barcode reads. 

Yeast Competitions. 

 As in previous work (Hietpas et al. 2012; Hietpas et al. 2013), we performed Hsp90 

competitions using a shutoff strain of S. cerevisiae (DBY288) (Supplementary Figure 

2.14). The sole copy of Hsp90 in DBY288 is driven by a galactose-inducible promoter, 

such that the strain requires galactose for viability and cannot grow on glucose. The 

introduction of a functional Hsp90 variant driven by a constitutive promoter rescues the 

growth of DBY288 in glucose media. We introduced the library of middle domain 

variants of Hsp90 driven by a constitutive promoter into DBY288 cells using the lithium 

acetate method (Gietz and Schiestl 2007). The efficiency of transformation was more 
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than 10-fold higher than the number of barcodes, such that the average barcode was 

transformed into more than 10 individual cells. To enable the analyses of full biological 

replicates, transformations were performed in replicate such that a separate population 

of yeast were transformed for each biological replicate. Transformed yeast were initially 

selected in RGal-W (synthetic media that lacked tryptophan and contained 1% raffinose 

and 1% galactose supplemented with 100 μg/mL ampicillin to hinder bacterial 

contamination) to select for the plasmid, but not function of the plasmid encoded Hsp90 

variant. This enabled us to generate a yeast library containing Hsp90 variants that could 

support a full range of fitness from null to adaptive. Cells were grown for 48 hours at 30 

°C in liquid SRGal-W until the culture was visibly opaque compared to a control 

transformation sample that lacked plasmid DNA but was otherwise identical to the 

library sample. 

To initiate the competition, cells were transferred to shut-off conditions and different 

environmental stresses. In order to deplete the pool of wild type Hsp90 protein, the 

library sample was diluted into SD-W (synthetic media lacking tryptophan with 2% 

glucose and 100 μg/mL of ampicillin) and grown at 30 °C for 10 hours. After depletion of 

wild type Hsp90 protein, the cells were split into different stress conditions in SD-W 

media at 30 °C: salt stress (0.5M NaCl), osmotic stress (0.6M sorbitol), oxidative stress 

(0.6 mM hydrogen peroxide or 0.85 mM diamide), as well as a control non-stress 

condition. We used a custom built turbidostat (Supplementary Figure 2.14) to provide 

constant growth conditions during this competition phase of the experiment. Cells were 

grown under consistent density and population size. 109cells were maintained in a 50 

mL volume over the course of 40 hours for each condition. Rapid magnetic stirring was 
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used to provide aeration to the media and cells. Samples of 108 cells were collected 

after 0, 4, 8, 12, 24, 32, 40, and 48 hours of competition in the different conditions. At 

the time of collection, samples were centrifuged and the pellets immediately frozen at -

80 °C. 

Sequencing of Competition Samples.  

The fitness effects of Hsp90 variants were estimated based on frequencies observed 

in next-generation sequencing analyses essentially as previously described (Hietpas et 

al. 2012). DNA was isolated from each timepoint sample as described (Hietpas et al. 

2013) and the barcodes were amplified and sequenced. Barcodes were amplified using 

the standard Illumina PE1 primer that anneals next to the N18 barcode and custom 

designed barcode_forward primers. A set of barcode_forward primers were designed 

with identifier sequences that could be read during sequencing and used to distinguish 

each timepoint sample (Supplementary Figure 2.14C). Each identifier sequence was 

eight nucleotides in length and differed by at least two bases from all other identifier 

sequences. Twenty cycles of PCR were sufficient to generate clear products from all 

samples. These PCR products were purified on silica columns (Zymo Research) and 

sequenced for 100 base single reads on an Illumina NextSeq instrument. The barcode 

corresponded to the first 18 bases and the identifier at positions 91-98. The resulting 

fastq files were processed and analyzed using customized software tools. First, poor 

quality reads containing any positions with a Phred score less than 20 were discarded. 

Reads were tabulated if the barcode matched a barcode associated with a point 

mutation and if the identifier matched with a timepoint. The analyses scripts output a file 

with the number of reads for each amino acid point mutant at each timepoint in each 
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condition (Supplementary Data). Barcodes with 0 reads at the first time point, or with a 

total of 1 read along the whole trajectory were removed from the analysis. 

Estimation of Selection Coefficients. 

 Inference of selection coefficients was performed via log-linear regression as 

described in (Matuszewski et al. 2016) (see also Supplementary Material). To improve 

estimation accuracy by incorporating information from each individual barcode, the 

linear model for each amino-acid changing mutation included barcode identities as 

nominal variables. For each amino-acid changing mutation we obtained a selection 

coefficient and 95% confidence interval (CI) of the estimate, representing the variation 

within amino acid due to differences in codon*Barcode tag throughout time. This 

reduces the impact of potential outliers and averages over synonymous codons within 

amino acid. Mutants with 50 or less total reads at the first time point were removed from 

the data set. Finally, we normalized all selection coefficients by subtracting the median 

of all mutations that were synonymous to the wild type. This ensures that the average of 

the selection coefficients of wild type synonyms represents a selection coefficient of 0. 

To categorize mutations as beneficial, deleterious or wild-type we tested the overlap of 

the CI with 0. Namely, if the lower CI limit was larger than 0, a mutation was considered 

beneficial, and if the upper CI limit was smaller than 0, a mutation was considered 

deleterious. All other mutations were considered wild-type like. We use this terminology 

to distinguish between neutral and wild-type like mutations. Specifically, we expect that 

at large population sizes the number of wild-type like mutations is larger than the 

number of neutral mutations. This is because neutral mutations should behave neutrally 

with respect to the neutral or nearly-neutral theories, i.e., when 2Ns<1 (Ohta 1992). This 
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threshold for neutrality is far below the measurement accuracy of our experimental 

setup. Thus, we instead consider as "wild-type like" those mutations that are 

indistinguishable from the wild type according to our inference accuracy. 

Natural Variants:  

We identified amino acid mutations from Hsp90 sequences of 261 eukaryotic 

organisms (Starr et al. 2018). Then, for each environment, we compared the distribution 

of fitness effects of the identified mutations (natural variants) with the DFE from all 

mutations. Finally, we also computed the overall proportion of beneficial, deleterious 

and wildtype like mutations across environments and for the natural variants. 

Costs of Adaptation. 

To compute the costs of adaptation for Figure 2.4 and 2.5, we first selected all 

mutations in a focal environment that were categorized as beneficial. We then 

computed the proportion of this subset of mutations that was deleterious either in one 

other environment (for Figure 2.4) or across all other environments (excluding replicates 

of the focal environment for Figure 2.5). Calculating the proportion of mutations with 

costs of adaptation compensates for variable numbers of beneficial mutations across 

environments, which may occur due to both biological and experimental reasons (e.g., 

different error margins). For Figure 2.2 and 2.4, all available data sets were considered 

for the analysis. For Figure 2.3 and 2.5, only two replicates of each environment were 

considered. That was done in order to avoid biases due to the under- or 

overrepresentation of environments in the analysis.  
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Analyses were performed using R version 3.5.1 (Team. 2018), Mathematica 12.0.0.0, 

Python 2.7.12 and Pymol 0.99. Code is available as Supplementary Material.  

All data will be made available in a data repository upon acceptance of the manuscript. 
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Supplementary Figure 2.1. Doubling times for WT Hsp90 yeast growth under all 
environments. In general, there is an increase in the doubling time in all environments 
tested compared to the standard environment. This increase is larger in high salinity 
and diamide environments, suggesting that these environments should present the 
highest stress load to the protein. 
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Supplementary Figure 2.2: Distribution of Fitness Effects (DFE) across 
environments. Replicates within an environment largely overlap. There is a marked 
difference of the DFE in diamide compared to the other environments. Interestingly, 
DFEs in H202 and salt show a similar shape to the DFE in the standard environment, 
with a large number of mutations in the wild-type like region and a smaller peak of 
deleterious mutations, at which stop codons are located. In diamide and sorbitol, the 
DFE shows a lower number of wild-type like mutants, a larger variance, and a higher 
proportion of weakly and strongly deleterious mutations. 
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Supplementary Figure 2.3. Heatmaps of mutant fitness effects show that the 
majority of mutations are wild type under all conditions, with the exception of 
amino acid regions ~300, 315-320, 347 and 375-390 that show mostly deleterious 
mutant fitness effects. Beneficial mutations were found under all conditions but 
in different regions of the middle domain.  (A) Diamide heatmaps under normal 
expression. (B) H202 heatmaps under normal expression. (C) Salt heatmaps under and 
normal expression. (D) Sorbitol heatmaps under normal expression. (E) Standard 
heatmaps under and normal expression. 
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Supplementary Figure 2.4: 
Distribution of selection coefficients of mutations found in natural environments 
vs all mutations studied here. The x-axis corresponds to the selection coefficient of 
the mutations and the y axis to counts of mutations normalized to the number of 
observations. The rows indicate different environments and the columns correspond to 
2 replicates for each environment. 
 
 
 
 
 

 
Supplementary Figure 2.5: 
Fraction of mutations that are beneficial, deleterious or neutral from our study 
and occurring in natural populations. The x-axis corresponds to the 3 mutational c 
categories and the y axis to the fractions of mutations. 
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Supplementary Figure 2.6: Correlation between replicates for each environment. 
The x-axis corresponds to the fitness effect of replicate 1 (or replicate 3 for the 
comparison between standard environment replicate 2 vs 3) and the y axis to the fitness 
effect of replicate 2 (or 3 for the comparison between standard environment replicate 1 
vs 3). In general we observe a very high correlation between replicates within each 
environment. 
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Supplementary Figure 2.7: Correlation between environments in 10 amino acid 
regions. The x-axis corresponds to amino acid positions and the y-axis to the average 
correlation between environments. Regions with a consistent decrease in correlations for 
all combinations of environments are highlighted in grey.  
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Supplementary Figure 2. 8: Proportions of deleterious, beneficial and wild-type 
like mutations along the middle domain of Hsp90. The x-axis corresponds to the 
amino acid positions studied and the y axis to the proportion of deleterious, beneficial 
and neutral mutations at each amino acid position. The rows indicate expression level 
and replicate, the columns the different environments. 
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Supplementary Figure 2.9: Summary of the proportions of beneficial, deleterious 
and neutral mutations in each environment/replicate. In general, we see few 
beneficial mutations, except in diamide. In diamide, there is also a larger proportion of 
deleterious mutations in comparison with other environments. 

Beneficial 

Deleterious 

Neutral 
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Supplementary Figure 2.10: Distribution of fitness effects at position 364. 
Compared with the DFE of the whole middle domain (Supplementary Figure 2), there is 
a clear enrichment of beneficial mutations in position 364. 
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Supplementary Figure 2.11: Cost of adaptation in different environments. Each plot 
represents the average fitness effect of mutations that are beneficial in a specific 
environment (x-axis) and the average fitness effect in other environments (y-axis). Focal 
environments are indicated by the color of the lines and points. Note that the x and y 
scales vary between panels. We calculated the average fitness effects between the two 
(or three replicates) and mutations were recategorized based on whether mutations were 
beneficial in two replicates (beneficial mutations), beneficial in one replicate and neutral 
in another (beneficial-neutral), neutral in both replicates (neutral mutations), neutral in one 
replicate and deleterious in the other (neutral-deleterious mutations), deleterious in both 
replicates (deleterious) or deleterious in one replicate in beneficial in the other (beneficial-
deleterious mutations). 
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Supplementary Figure 2.12: Barcoding mutant library strategy. (A) Schematic of how 
to incorporate barcodes into plasmid libraries using restriction digests and ligation. (B) 
Sanger sequence TRACE result of barcoded region of the library at positions 475-493. 
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Supplementary Figure 2.13: Average number of barcodes per mutant for each 9 
amino acid window shows an average of ~20 barcodes associated with each variant. 
The x-axis corresponds to groups of 10 amino acid regions and the y-axis to the 
average number of barcode counts per mutant. 
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Supplementary Figure 2.14: Strategy how to associate barcodes to mutants. A) 
Schematic of how to prepare barcoded mutant libraries for paired end deep sequencing. 
B) Schematic of how to map barcodes to open reading frame mutants. C) Schematic of 
how to include an index primer to distinguish each time point for final sequencing read 
following competition experiments. 

  

  

 

 

 

 

 

 

 

 

 

 



99 
 

Supplementary Tables 

Supplementary Table 2.1 
Number of beneficial, neutral and deleterious mutations across environments, 
and replicates. We observed a large proportion of wild-type like mutations in all 
environments. 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

Supplementary Table 2.2 
Pearson correlation of fitness effects across replicates and environments. Blue 
indicates stronger correlations and red weake correlations. Double lines indicate 
correlations between replicates of the same environment. In general the lowest 
correlations are seen for diamide and salt. Correlations between replicates are in 
general strong, except for standard replicate 3.  
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Supplementary Table 2.3 
Percentage (and number) of beneficials and their cost across environments. 
Beneficials in a focal environment (rows) are deleterious in the environment indicated by 
the column. The diagonal of the matrix indicates the number of beneficials found in each 
environment/replicate. Yellow shading indicates "spurious costs of adaptation" between 
pairs of replicates, which is a proxy for the expected classification error. In general, this 
error is low (between 0.38% and 6.61%), except for Replicate 3 in the standard 
environment and replicate 2 from Sorbitol, where many beneficial mutations in one 
replicate are classified as deleterious in the other. 
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Chapter III:  Comprehensive fitness maps of Hsp90 show widespread 

environmental dependence  

This work has been published previously as Julia M. Flynn1, Ammeret Rossouw1, 

Pamela A. Cote-Hammarlof1, Ines Fragata2, David Mavor1, Carl Hollins III1, Claudia 
Bank2, and Daniel N.A. Bolon*. Comprehensive fitness maps of Hsp90 show 
widespread environmental dependence. Elife 9: e53810. Published 2020 Mar 4. 
doi:10.7554/eLife.53810 

This was a collaborative effort. I, Pamela Cote-Hammarlof contributed to the 

conceptualization and experimental design for this study. I transformed yeast with 

Hsp90 mutant libraries and performed growth competitions for one of the experimental 

replicates. I isolated DNA from these samples and prepared them for deep sequencing. 

I assisted in initial deep sequencing analysis of samples.  I contributed to reviewing and 

editing the manuscript.  
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Abstract  

Gene-environment interactions have long been theorized to influence molecular 

evolution. However, the environmental dependence of most mutations remains 

unknown. Using deep mutational scanning, we engineered yeast with all 44,604 single 

codon changes encoding 14,160 amino acid variants in Hsp90 and quantified growth 

effects under standard conditions and under five stress conditions. To our knowledge, 

these are the largest determined comprehensive fitness maps of point mutants. The 

growth of many variants differed between conditions, indicating that environment can 

have a large impact on Hsp90 evolution. Multiple variants provided growth advantages 

under individual conditions; however, these variants tended to exhibit growth defects in 

other environments. The diversity of Hsp90 sequences observed in extant eukaryotes 

preferentially contains variants that supported robust growth under all tested conditions. 

Rather than favoring substitutions in individual conditions, the long-term selective 

pressure on Hsp90 may have been that of fluctuating environments, leading to 

robustness under a variety of conditions.  
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Introduction 
 

The role of environment has been contemplated in theories of evolution for over a 

hundred years (Darwin and Wallace 1858; Darwin 1859; Wright 1932), yet molecular 

level analyses of how environment impacts the evolution of gene sequences remain 

experimentally under-explored. Depending on environmental conditions, mutations can 

be categorized into three classes: strongly deleterious mutations that are purged from 

populations by purifying selection, nearly-neutral mutations that are governed by 

stochastic processes, and beneficial mutations that tend to provide a selective 

advantage (Ohta 1973). It has long been clear that environmental conditions can alter 

the fitness effects of mutations (Tutt 1896). However, examining how environmental 

conditions impact any of the three classes of mutations is challenging. Measurable 

properties of nearly-neutral and deleterious mutations in natural populations are 

impacted by both demography and selection (Ohta 1973), which are difficult to 

disentangle. In addition, many traits are complex, making it challenging to identify all 

contributing genetic variations (McCarthy et al. 2008). For these and other reasons, we 

do not have a detailed understanding of how environmental conditions impact the 

evolution of most gene sequences. 

Mutational scanning approaches (Fowler et al. 2010) provide novel opportunities to 

examine fitness effects of the same mutations under different laboratory conditions 

(Boucher et al. 2014; Boucher et al. 2016; Canale et al. 2018; Kemble et al. 2019). The 

EMPIRIC (Exceedingly Meticulous and Parallel Investigation of Randomized Individual 

Codons) approach that we previously developed (Hietpas et al. 2011) is particularly well 

suited to address questions regarding the environmental impact of mutational effects for 
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three reasons: it quantifies growth rates that are a direct measure of experimental 

fitness, all point mutations are engineered providing comprehensive maps of growth 

effects, and all the variants can be tracked in the same flask while experiencing identical 

growth conditions. We have previously used the EMPIRIC approach to investigate how 

protein fitness maps of ubiquitin vary in different environmental conditions (Mavor et al. 

2016). The analysis of ubiquitin fitness maps revealed that stress environments can 

exacerbate the fitness defects of mutations. However, the small size of ubiquitin and the 

near absence of natural variation in ubiquitin sequences (only three amino acid 

differences between yeast and human) hindered investigation of the properties 

underlying historically observed substitutions. 

Mutational scanning approaches have emerged as a robust method to analyze 

relationships between gene sequence and function, including aspects of environmental-

dependent selection pressure. Multiple studies have investigated resistance mutations 

that enhance growth in drug or antibody environments (Firnberg et al. 2014; Stiffler et 

al. 2015; Doud and Bloom 2016; Jiang et al. 2016; Dingens et al. 2018). Most of these 

studies have focused on interpreting adaptation in the light of protein structure. Of note, 

Dandage, Chakraborty and colleagues explored how environmental perturbations to 

protein folding influenced tolerance of mutations in the 178 amino acid gentamicin-

resistant gene in bacteria (Dandage et al. 2017). However, the question of how 

environmental variation shapes the selection pressure on gene sequences has not been 

well studied. 
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Here, we report comprehensive experimental fitness maps of Heat Shock Protein 90 

(Hsp90) under multiple stress conditions and compare our experimental results with the 

historical record of hundreds of Hsp90 substitutions accrued during its billion years of 

evolution in eukaryotes. Hsp90 encodes a 709 amino acid protein and to our knowledge 

it is the largest gene for which a comprehensive protein fitness map has been 

determined. Hsp90 is an essential and highly abundant molecular chaperone which is 

induced by a wide variety of environmental stresses (Lindquist 1981; Gasch et al. 

2000). Hsp90 assists cells in responding to these stressful conditions by facilitating the 

folding and activation of client proteins through a series of ATP-dependent 

conformational changes mediated by co-chaperones (Krukenberg et al. 2011). These 

clients are primarily signal transduction proteins, highly enriched in kinases and 

transcription factors (Taipale et al. 2012). Through its clients, Hsp90 activity is linked to 

virtually every cellular process. 

Hsp90 can facilitate the emergence and evolution of new traits in response to stress 

conditions, including drug resistance in fungi (Cowen and Lindquist 2005), gross 

morphology in flies (Rutherford and Lindquist 1998) and plants (Queitsch et al. 2002), 

and vision loss in cave fish (Rohner et al. 2013). In non-stress conditions, an 

abundance of Hsp90 promotes standing variation by masking the phenotypic effects of 

destabilizing mutations in clients. Stressful conditions that tax Hsp90 capacity can then 

manifest in phenotypic diversity that can contribute to adaptation. Because of the 

biochemical and evolutionary links between Hsp90 and stress, we hypothesized that 

environmental stress would result in altered fitness maps. 
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The conditions in natural environments often fluctuate, and all organisms contain 

stress response systems that aid in acclimation to new conditions. The conditions 

experienced by different populations can vary tremendously depending on the niches 

that they inhabit, providing the potential for distinct selective pressures on Hsp90. 

Previous studies of a nine amino acid loop in Hsp90 identified multiple amino acid 

changes that increased the growth rate of yeast in elevated salinity (Hietpas et al. 

2013), demonstrating the potential for environmental-dependent beneficial mutations in 

Hsp90. However, the sequence of Hsp90 is strongly conserved in eukaryotes (57% 

amino acid identity from yeast to human), indicating consistent strong purifying 

selection. 

To investigate the potential influence of the environment on Hsp90 evolution, we 

quantified fitness maps in six different conditions. While proximity to ATP is the 

dominant functional constraint in standard conditions, the influence of client and co-

chaperone interactions on growth rate dramatically increases under stress conditions. 

Increased selection pressure from heat and diamide stresses led to a greater number of 

beneficial variants compared to standard conditions. The observed beneficial variants 

were enriched at functional hotspots in Hsp90. However, the natural variants of Hsp90 

tend to support efficient growth in all environments tested, indicating selection for 

robustness to diverse stress conditions in the natural evolution of Hsp90. 

 
Results 
 

We developed a powerful experimental system to analyze the growth rate 

supported by all possible Hsp90 point mutations under distinct growth conditions. Bulk 

https://elifesciences.org/articles/53810
https://elifesciences.org/articles/53810
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competitions of yeast with a deep sequencing readout enabled the simultaneous 

quantification of 98% of possible amino acid changes (Figure 3.1A). The single point 

mutant library was engineered by incorporating a single degenerate codon (NNN) into 

an otherwise wild-type Hsp90 sequence as previously described (Hietpas et al. 2012). 

To provide a sensitive readout of changes in Hsp90 function, we transferred the library 

to a plasmid under a constitutive low-expression level ADH promoter that reduced 

Hsp90 protein levels to near-critical levels (Jiang et al. 2013). To efficiently track all 

variants in a single competition flask so that all variants experience identical conditions, 

we updated our previously developed EMPIRIC approach to include a barcoding 

strategy (Hietpas et al. 2012). As described in the Materials and methods, this barcode 

strategy enabled us to track mutations across a large gene using a short sequencing 

readout 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://elifesciences.org/articles/53810#fig1


109 
 

 

 
Figure 3.1: Approach to determine protein fitness maps of Hsp90. 

(A) Barcoded competition strategy to analyze the growth effects of all single codon 

variants of Hsp90 in a single bulk culture. Hsp82 is the stress-inducible gene that 

encodes for Hsp90 (B) Measurements of selection coefficients of amino acid variants 

are reproducible in replicate growth competitions (see Figure 3.1—source data). 

Wild-type amino acids are shown in green and stop codons are shown in red. The 

bottom panel shows the Root-mean-square deviation (RMSD) averaged for a running 

window of 40 data points. (C) Average selection coefficients at each position in standard 

conditions mapped onto a homodimeric structure of Hsp90 (PDB 2cg9,(Ali et al. 2006)) 

and compared to patterns of evolutionary conservation (see Figure 3.1-source data 2).  

ATP is shown in yellow. The graph on the right compares relative conservation at each 

position of Hsp90 to the average selection coefficient at that position. 
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Figure 3.1—source data 1 

Sequencing counts and selection coefficients for each individual amino acid 

change across amino acids 2–709 of Hsp90 in both replicates of standard 

conditions. 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig1-data1-v2.xlsx  

Download elife-53810-fig1-data1-v2.xlsx  

Figure 3.1—source data 2 

Average selection coefficient (excluding stops) at each position of Hsp90 in 

Standard replicate 1. 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig1-data2-v2.xlsx  

Download elife-53810-fig1-data2-v2.xlsx 
 
 

We transformed the plasmid library of comprehensive Hsp90 point mutations into 

a conditional yeast strain where we could turn selection of the library on or off. We used 

a yeast Hsp90-shutoff strain in which both paralogs of Hsp90 (hsc82 and hsp82) are 

deleted and a copy of hsp82 with expression under strict regulation of a galactose-

inducible promoter is integrated into the chromosome (Jiang et al. 2013). The mutant 

libraries were amplified in the absence of selection on the mutant variant by growing the 

transformed yeast in galactose media that expresses the wild-type chromosomal copy 

of hsp82. We switched the yeast to dextrose media to shut off the expression of wild-

type Hsp90, allowing the mutagenized variants to be the sole source of Hsp90 protein in 

the cell, and then split the culture into six different environmental conditions. We 

extracted samples from each condition at multiple time points and used Illumina 

sequencing to estimate the frequency of each Hsp90 variant over time. We assessed 

the selection coefficient of each Hsp90 variant from the change in frequency relative to 

wild-type Hsp90 using a previously developed Bayesian Markov Chain Monte Carlo 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig1-data1-v2.xlsx
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTM4MTAvZWxpZmUtNTM4MTAtZmlnMS1kYXRhMS12Mi54bHN4/elife-53810-fig1-data1-v2.xlsx?_hash=Hb%2Bq8ja8u82m7KhQrkId6H1Oxyknb9kYzE0SbHbhNm4%3D
https://cdn.elifesciences.org/articles/53810/elife-53810-fig1-data2-v2.xlsx
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTM4MTAvZWxpZmUtNTM4MTAtZmlnMS1kYXRhMi12Mi54bHN4/elife-53810-fig1-data2-v2.xlsx?_hash=jrgkpip9ubLjeGYNlJ3QD1emEEnnGpMZY890yl6j5U8%3D
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(MCMC) method (Bank et al. 2014; Fragata et al. 2018), where 0 represents wild-type 

and −1 represents null alleles (Figure 3.1- source data 1). 

 To analyze reproducibility of the growth competition, we performed a technical 

replicate under standard conditions. We used a batch of the same transformed cells that 

we had frozen and stored such that the repeat bulk competition experiments and 

sequencing were performed independently. Selection coefficients between replicates 

were strongly correlated (R2 = 0.90), and indicated that we could clearly distinguish 

between selection coefficients for members of the library containing silent mutations that 

do not change the amino acid sequence (wild-type synonyms) and those containing 

stop codons (Figure 3.1B, Supplementary Figure 3.1). For the second replicate we 

noted a small fitness defect (s ~ –0.2) for wild-type synonyms at positions 679–709 

relative to other positions (Supplementary Figure 3.1). We did not see this behavior in 

any other condition or replicate tested and do not understand its source. The selection 

coefficients in this study under standard conditions also correlated strongly (R2 = 0.87) 

with estimates of the Hsp90 N-domain in a previous study (Mishra et al. 

2016); (Supplementary Figure 3.2), indicating that biological replicates also show high 

reproducibility. Of note, variants with strongly deleterious effects exhibited the greatest 

variation between replicates, consistent with the noise inherent in estimating the 

frequency of rapidly depleting variants (Figure 3.1B). The stop codons were already 

partially depleted from the cells at the 0 time point, likely contributing to their variation 

between replicates (Supplementary Figure 3.3A). In accordance with this, there was a 

higher variation in selection coefficients between replicates for stop codons with the 

lowest initial reads (Supplementary Figure 3.3B). Stop codon fitness was similar for all 

https://elifesciences.org/articles/53810#fig1
https://elifesciences.org/articles/53810/figures#fig1s1
https://elifesciences.org/articles/53810/figures#fig1s1
https://elifesciences.org/articles/53810/figures#fig1s2
https://elifesciences.org/articles/53810#fig1
https://elifesciences.org/articles/53810/figures#fig1s3
https://elifesciences.org/articles/53810/figures#fig1s3
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three stop codons (Supplementary Figure 3.3C) and at positions across Hsp90 with 

exception of the last 32 positions that have previously been shown to be dispensable for 

its viability (Louvion et al. 1996); (Supplementary Figure 3.1). A heatmap representation 

of all the selection coefficients determined in standard conditions in replicate one is 

shown in (Supplementary Figure 3.4). 

The large number of signaling pathways that depend on Hsp90 (Taipale et al. 

2012) and its strong sequence conservation suggest that many mutations of Hsp90 may 

decrease fitness. However, most variants of Hsp90 had wild-type-like fitness in the 

competition experiment in standard conditions (Figure 3.1C, Supplementary Figure 3.4). 

All possible mutations (excluding stops) were compatible with function at 425 positions. 

Only 17 positions had low mutational tolerance to the extent that 15 or more 

substitutions caused null-like growth defects (R32, E33, N37, D40, D79, G81, G94, I96, 

A97, S99, G118, G121, G123, Y125, F156, W300, and R380). All these positions 

except for W300 are in contact with ATP or mediate ATP-dependent conformational 

changes in the N-domain of Hsp90. In fact, the average selection coefficient at different 

positions (a measure of mutational sensitivity) in standard growth conditions correlates 

(R2 = 0.49) with distance from ATP (Supplementary Figure 3.5). While W300 does not 

contact ATP, it transmits information from client binding to long range conformational 

changes of Hsp90 that are driven by ATP hydrolysis (Rohl et al. 2013). Our results 

indicate that ATP binding and the conformational changes driven by ATP hydrolysis 

impose dominant physical constraints in Hsp90 under standard laboratory conditions. 

https://elifesciences.org/articles/53810/figures#fig1s3
https://elifesciences.org/articles/53810/figures#fig1s1
https://elifesciences.org/articles/53810/figures#fig1s4
https://elifesciences.org/articles/53810#fig1
https://elifesciences.org/articles/53810/figures#fig1s4
https://elifesciences.org/articles/53810/figures#fig1s5
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At first sight, the observation that most mutations are compatible with robust 

growth in standard conditions is at odds with the fact that the Hsp90 sequence is 

strongly conserved across large evolutionary distances (Figure 3.1C). One potential 

reason for this discrepancy could be that the strength of purifying selection in large 

natural populations over long evolutionary time-scales is more stringent than can be 

measured in the laboratory. In other words, experimentally unmeasurable fitness 

defects could be subject to purifying selection in nature. In addition, the range of 

environmental conditions that yeast experience in natural settings may not be reflected 

by standard laboratory growth conditions. To investigate the impact of environmental 

conditions on mutational effects in Hsp90, we measured the growth rate of Hsp90 

variants under five additional stress conditions. 

Impact of Stress Conditions on Mutational Sensitivity of Hsp90 

We measured the fitness of Hsp90 variants in conditions of nitrogen depletion 

(ND) (0.0125% ammonium sulfate), hyper-osmotic shock (0.8 M NaCl), ethanol stress 

(7.5% ethanol), the sulfhydryl-oxidizing agent diamide (0.85 mM), and temperature 

shock (37°C). All these stresses are known to elicit a common shared environmental 

stress response characterized by altered expression of ~900 genes as well as having 

specific responses unique to each stress (Gasch et al. 2000). Genes encoding heat-

shock proteins, including Hsp90, are transiently upregulated in all these stresses except 

elevated salinity (Piper 1995; Gasch et al. 2000). 

One way to characterize stress conditions is to measure the extent to which they 

slow down growth. For our experiments, each of the environmental stresses were 

https://elifesciences.org/articles/53810#fig1
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selected to partially decrease the growth rate. Consistently, all stresses reduced the 

growth rate of the parental strain within a two-fold range, with depletion of nitrogen 

levels causing the smallest reduction in growth rate and diamide causing the greatest 

reduction (Figure 3.2A). To investigate how critical Hsp90 is for growth in each 

condition, we measured growth rates of yeast with either normal or more than 10-fold 

reduced (Jiang et al. 2013) levels of Hsp90 protein (Figure 3.2A). Under standard 

conditions, the normal level of Hsp90 protein can be dramatically reduced without major 

impacts on growth rate, consistent with previous findings (Picard et al. 1990; Jiang et al. 

2013). 

 
 

https://elifesciences.org/articles/53810#fig2
https://elifesciences.org/articles/53810#fig2
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Figure 3.2: Impact of environmental stresses on yeast growth rates and selection 

on Hsp90 sequence. (A) Growth rate of yeast with normal and reduced expression of 
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Hsp90 protein in standard and stress conditions based on individual growth curves. 

Growth rates are normalized to growth in standard conditions with reduced Hsp90 

expression. (B) Selection coefficients of all Hsp90 amino acid variants in stress 

conditions compared to standard conditions (see Figure 3.2—source data 1 ). Wild-type 

synonyms are shown in green and stop codons are shown in red. Selection coefficients 

were scaled to null (s = −1) for the average stop codon and neutral (s = 0) for the 

average wild type. The diagonal is indicated by the blue dashed line. (C) The average 

selection coefficient of all mutations relative to standard conditions, a metric of the 

strength of selection acting on Hsp90 sequence, in each stress condition . 

 

Figure 3. 2—source data 1 

Sequencing counts and selection coefficients for each individual amino acid 

change across amino acids 2–709 of Hsp90 in Nitrogen Depletion, Salt, Ethanol, 

Diamide and 37°C. 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig2-data1-v2.xlsx  

Download elife-53810-fig2-data1-v2.xlsx 

 
 
 
 

We anticipated that Hsp90 would be required at increased levels for robust 

experimental growth in diamide, nitrogen starvation, ethanol, and high temperature 

(Gasch et al. 2000) based on the concept that cells increase expression level of genes 

in conditions where those gene products are needed at higher concentration. Consistent 

with this concept, reduced Hsp90 levels cause a marked decrease in growth rate at 

37°C. However, Hsp90 protein levels had smaller impacts on growth rates under the 

other stress conditions, indicating that reliance on overall Hsp90 function does not 

increase dramatically in these conditions. 

We quantified the growth rates of all Hsp90 single-mutant variants in each of the 

stress conditions as selection coefficients (Figure 3.2—source data 1, Supplementary 

https://elifesciences.org/articles/53810#fig2sdata1
https://cdn.elifesciences.org/articles/53810/elife-53810-fig2-data1-v2.xlsx
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTM4MTAvZWxpZmUtNTM4MTAtZmlnMi1kYXRhMS12Mi54bHN4/elife-53810-fig2-data1-v2.xlsx?_hash=9VtH0D9NTExBrWxruZLTz1E2yvU%2FW3SPf1WckVYnZqE%3D
https://elifesciences.org/articles/53810/figures#fig2sdata1
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Figures 3.6–3.10). We could clearly differentiate between the selection coefficients of 

wild-type synonyms and stop codons in all conditions (Figure 3.2B, Supplementary 

Figure 3.11) and we normalized to these classes of mutations to facilitate comparisons 

between each condition (Supplementary Figure 3.12). Of note, the observed selection 

coefficients of wild-type synonyms varied more in conditions of high temperature and 

diamide stress compared to standard (Supplementary Figures 3.13A,B). We also note 

greater variation in the selection coefficients of barcodes for the same codon in the 

diamide and high temperature conditions (Supplementary Figure 3.13C). We conclude 

that diamide and elevated temperature provided greater noise in our selection 

coefficient measurements. To take into account differences in signal to noise for each 

condition, we either averaged over large numbers of mutations or categorized selection 

coefficients as wild-type-like, strongly deleterious, intermediate, or beneficial based on 

the distribution of wild-type synonyms and stop codons in each condition (see Materials 

and methods and Supplementary Figure 3.12). 

We compared selection coefficients of each Hsp90 variant in each stress 

condition to standard condition (Figure 3.2B&C). The stresses of 37°C and diamide tend 

to exaggerate the growth defects of many mutants compared to standard conditions, 

whereas, high salt and ethanol tend to rescue growth defects (Figure 3.2B&C and 

Supplementary Figure 3.14). According to the theory of metabolic flux (Kacser and 

Burns 1981; Dykhuizen et al. 1987), gene products that are rate limiting for growth will 

be subject to the strongest selection. Accordingly, the relationship between Hsp90 

function and growth rate should largely determine the strength of selection acting on 

Hsp90 sequence. Conditions where Hsp90 function is more directly linked to growth 

https://elifesciences.org/articles/53810/figures#fig2s5
https://elifesciences.org/articles/53810#fig2
https://elifesciences.org/articles/53810/figures#fig2s8
https://elifesciences.org/articles/53810/figures#fig2s8
https://elifesciences.org/articles/53810#fig2
https://elifesciences.org/articles/53810#fig2
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rate would be more sensitive to Hsp90 mutations than conditions where Hsp90 function 

can be reduced without changing growth rates (Bershtein et al. 2013; Jiang et al. 2013). 

The average selection coefficients are more deleterious in diamide and temperature 

stress compared to standard conditions. These findings are consistent with heat and 

diamide stresses causing a growth limiting increase in unfolded Hsp90 clients. In 

contrast, the average selection coefficients are less deleterious in ethanol and salt 

stress than in standard conditions, which suggests a decrease in the demand for Hsp90 

function in these conditions. Due to the complex role Hsp90 plays in diverse signaling 

pathways in the cell, the different environmental stresses may differentially impact 

subsets of client proteins that cause distinct selection pressures on Hsp90 function. 

Structural Analyses of Environmental Responsive Positions 

Altering environmental conditions had a pervasive influence on mutational effects 

along the sequence of Hsp90 (Figure 3.3A and Supplementary Figure 3.15). We 

structurally mapped the average selection coefficient of each position in each condition 

relative to standard conditions as a measure of the sensitivity to mutation of each 

position under each environmental stress (Figure 3.3A, Figure 3.3—source data 1). 

Many positions had mutational profiles that were responsive to a range of environments. 

Environmentally responsive positions with large changes in average selection 

coefficient in at least three conditions are highlighted on the Hsp90 structure in green in 

(Figure 3.3B). Unlike the critical positions that cluster around the ATP binding site 

(Figure 3.1C), the environmentally responsive positions are located throughout all 

domains of Hsp90. Similar to critical residues, environmentally responsive positions are 

more conserved in nature compared to other positions in Hsp90 (Figure 3.3C), 

https://elifesciences.org/articles/53810#fig3
https://elifesciences.org/articles/53810/figures#fig3s1
https://elifesciences.org/articles/53810#fig3
https://elifesciences.org/articles/53810/figures#fig3sdata1
https://elifesciences.org/articles/53810#fig3
https://elifesciences.org/articles/53810#fig1
https://elifesciences.org/articles/53810#fig3


119 
 

suggesting that the suite of experimental stress conditions tested captured aspects of 

natural selection pressures on Hsp90 sequence. 

 
 
 

Figure 3.3 Environmental stresses place distinct selection pressures on Hsp90. 

(A) The average selection coefficient (s) at each position relative to standard conditions 

was mapped onto Hsp90 structure (Ali et al. 2006)(See Figure 3—source data 1). (B) 

Structural images indicating the location of positions that are critical for Hsp90 function 

https://elifesciences.org/articles/53810#fig3sdata1
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in all conditions (magenta), positions that are environmentally responsive (ER) (green), 

and positions that are tolerant in all environments (gray). Critical residues have mean 

selection coefficients that are null-like in all environments. ER positions have mean 

selection coefficients that differed from standard in three or more environments by an 

amount greater than one standard deviation of wild-type synonyms. Tolerant residues 

are not shifted more than this cutoff in any environment. (C) For different classes of 

positions, evolutionary variation was calculated as amino acid entropy at each position 

in Hsp90 sequences from diverse eukaryotes. Distributions are significantly different as 

measured by a two-sample Kolmogorov-Smirnov (KS) (All positions vs. ER: N = 678, 

137, p<0.0001, D = 0.39; All positions vs. critical: N = 678, 27, p<0.0001, D = 0.57; All 

positions vs. tolerant: N = 678, 136, p<0.0001, D = 0.38) (D) Fraction of different 

classes of mutations located at contact sites with binding partners. p<0.0001 (E) A 

heatmap of the average selection coefficient for all positions at the stated interfaces 

relative to standard conditions in each environment. (F) Venn diagram of deleterious 

mutations in different environmental conditions (Heberle et al. 2015). Total number of 

deleterious mutants in each condition are stated in parentheses. 

Figure 3—source data 1 

Average selection coefficient (excluding stops) at each position of Hsp90 in each 

environmental condition relative to the average selection coefficient in standard 

conditions. 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig3-data1-v2.xlsx  

Download elife-53810-fig3-data1-v2.xlsx 

 

 
Hsp90 positions with environmentally responsive selection coefficients were 

enriched in binding contacts with clients, co-chaperones and intramolecular Hsp90 

contacts involved in transient conformational changes (Figure 3.3D and Supplementary 

Figure 3.16A). About 65% of the environmentally responsive residues have been 

identified either structurally or genetically as interacting with binding partners (Bohen 

and Yamamoto 1993; Nathan and Lindquist 1995; Meyer et al. 2003; Meyer et al. 2004; 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig3-data1-v2.xlsx
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTM4MTAvZWxpZmUtNTM4MTAtZmlnMy1kYXRhMS12Mi54bHN4/elife-53810-fig3-data1-v2.xlsx?_hash=V47GD4usB%2FqX3elImi04vZud1%2F8U3z2VGFUG8pgVryc%3D
https://elifesciences.org/articles/53810#fig3
https://elifesciences.org/articles/53810/figures#fig3s2
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Roe et al. 2004; Ali et al. 2006; Hawle et al. 2006; Retzlaff et al. 2009; Zhang et al. 

2010; Hagn et al. 2011; Genest et al. 2013; Lorenz et al. 2014; Verba et al. 2016; 

Kravats et al. 2018), compared to about 15% of positions that were not responsive to 

stress conditions. This analysis was performed on the small subset of clients and 

cochaperones with known Hsp90-binding sites. While ATP binding and hydrolysis are 

the main structural determinants that constrain fitness in standard growth conditions, 

client and co-chaperone interactions have a larger impact on experimental fitness under 

stress conditions. Although the mean selection coefficients of mutations at the known 

client and co-chaperone binding sites are responsive to changes in environment, the 

direction of the shift of growth rate compared to standard conditions depends on the 

specific binding partner and environment (Figure 3.3E and Supplementary Figure  

3.16B). This suggests that different environments place unique functional demands on 

Hsp90 that may be mediated by the relative affinities of different clients and co-

chaperones. Consistent with these observations, we hypothesize that Hsp90 client 

priority is determined by relative binding affinity and that Hsp90 mutations can 

reprioritize clients that in turn impacts many signaling pathways. 

 
 
Constraint of Mutational Sensitivity at High Temperature 

We find that different environmental conditions lead to distinct selection on 

Hsp90 based on the number of beneficial and deleterious variants in each condition, 

including elevated temperature placing the greatest purifying selection pressure on 

Hsp90. Of the 2504 variants of Hsp90 that are deleterious when grown at 37°C, 884 of 

them (~35%) are deleterious only in this condition (Figure 3.3F). We defined mutants 

https://elifesciences.org/articles/53810#fig3
https://elifesciences.org/articles/53810/figures#fig3s2
https://elifesciences.org/articles/53810/figures#fig3s2
https://elifesciences.org/articles/53810#fig3
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that confer temperature sensitive (ts) growth phenotypes on cells as variants with 

selection coefficients within the distribution of wild-type synonyms in standard conditions 

and that of stop codons at 37°C. Based on this definition, 663 Hsp90 amino acid 

changes (roughly 5% of possible changes) were found to be temperature sensitive 

(Figure 3.4A, Figure 3.4—source data 1). We sought to understand the physical 

underpinnings of this large set of Hsp90 ts mutations. 

 
 
 
 
 

https://elifesciences.org/articles/53810#fig4
https://elifesciences.org/articles/53810/figures#fig4sdata1
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Figure 3.4: Abundance and mechanism of temperature-sensitive (ts) mutations in 

Hsp90. (A) Ts variants were identified that supported WT-like growth at 30°C, but were 

null-like at 37°C in bulk competitions. WT synonyms are shown in green and stops in 

red. The horizonal dashed line corresponds to y = −0.47, the upper limit of stops at 

37°C and the vertical dashed line corresponds to x = −0.11, the lower limit of WT 

synonyms in standard conditions. The pink-shaded quadrant highlights ts mutations. All 

ts mutants are listed in Figure 4—source data 1. (B) Distribution of the number of 

observed ts mutations at the same positions of Hsp90 (●) is much greater than 

https://elifesciences.org/articles/53810/figures#fig4sdata1
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expected if they had occurred independently (◊). Independent expectations were 

calculated as the probability of the stated number of mutations occurring at the same 

position by chance. * Indicates observations that were significantly (p<0.01) greater than 

independent expectations based on random simulations and one-tailed t-tests. (C) 

Mapping positions with multiple ts variants onto Hsp90 structure. ATP is shown in black. 

(D) Solvent accessible surface area (SASA) of ts mutants compared to non-ts mutants. 

A two sample KS test showed significant differences in distributions (N = 663, 11762, 

p<0.0001, D = 0.1735) (E) Amino acid similarity to the wild type was estimated as the 

Blosum score (Henikoff and Henikoff 1992)for ts and non-ts variants. A two-proportion 

z-test was performed on each pair for each Blosum score and their p-values were 

adjusted using Benjamini-Hochberg adaptive step-up procedure. *Indicates p<0.05. (F) 

Growth rate of a panel of individual Hsp90 ts variants analyzed in isolation. 

Figure 3.4—source data 1: List of all temperature-sensitive mutants and 

associated selection coefficients. Ts mutants were defined as variants with selection 

coefficients within the distribution of wild-type synonyms in standard conditions and that 

of stop codons at 37°C. 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig4-data1-v2.xlsx  

Download elife-53810-fig4-data1-v2.xlsx 

 
 
 

We examined Hsp90 ts mutations for structural and physical patterns. We found 

that ts mutations tended to concentrate at certain amino acid positions of Hsp90 (Figure 

3.4B). The clustering of ts mutations was significant compared to random simulations. 

Positions with greater than four ts mutations were spread across all three domains of 

Hsp90 (Figure 3.4C) with the largest cluster occurring in the C domain of Hsp90. The C 

domain forms a constitutive homodimer that is critical for function (Wayne and Bolon 

2007). Of note, homo-oligomerization domains may have a larger ts potential because 

all subunits contribute to folding and dimerization essentially multiplying the impacts of 

mutations (Lynch 2013). To explore the physical underpinnings of ts mutations, we 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig4-data1-v2.xlsx
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examined if they were buried in the structure or surface exposed. Mutations at buried 

residues tend to have a larger impact on protein folding energy compared to surface 

residues (Chakravarty S 1999). Consistent with the idea that many ts mutations may 

disrupt protein folding at elevated temperature, substitutions that confer a ts phenotype 

are enriched in buried residues (Figure 3.4D). Also consistent with this idea, ts 

mutations tend to have negative Blosum scores (Henikoff and Henikoff 1992); (Figure 

3.4E), a hallmark of disruptive amino acid changes. 

Because growth at elevated temperatures requires higher levels of Hsp90 protein 

(Borkovich et al. 1989), some ts mutations are likely due to a reduced function that is 

enough for growth at standard temperature, but is insufficient at 37°C (Nathan and 

Lindquist 1995). We reasoned that we could distinguish these mutants by examining 

how growth rate depended on the expression levels of Hsp90. We expect that 

destabilizing mutants that cause Hsp90 to unfold at elevated temperature would not 

support efficient growth at 37°C independent of expression levels. In contrast, we 

expect mutants that reduce Hsp90 function to exhibit an expression-dependent growth 

defect at 37°C. We tested a panel of ts mutations identified in the bulk competitions at 

high and low expression levels (Figure 3.4F). The dependence of growth rate at 37°C 

on expression level varied for different Hsp90 ts variants. The I66E, G170D and L499R 

Hsp90 mutants have no activity at 37°C irrespective of expression levels. These 

disruptive substitutions at buried positions likely destabilize the structure of Hsp90. In 

contrast, increasing the Hsp90 expression levels at least partially rescued the growth 

defect for five ts variants (L50D, K102A, D180L, K398L, K594I), indicating that these 

variants do not provide enough Hsp90 function for robust growth at elevated 

https://elifesciences.org/articles/53810#fig4
https://elifesciences.org/articles/53810#fig4
https://elifesciences.org/articles/53810#fig4
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temperature. All five of these expression-dependent ts variants were located at surface 

positions. Thus, for the ts mutants we tested individually, we see a correlation between 

location of the mutation and type of ts mutation. Destabilizing mutations tend to be 

buried and mutants with reduced function tend to be surface exposed, indicating that 

the location of ts mutations can delineate these different mechanistic classes. 

Hsp90 Potential for Adaptation to Environmental Stress 

Numerous Hsp90 variants provided a growth benefit compared to the wild-type 

sequence in stress conditions. The largest number of beneficial variants in Hsp90 

occurred in high temperature and diamide conditions (Figure 3.5A, Figure 3.5—source 

data 1). Multiple lines of evidence indicate that these mutants are truly beneficial 

variants and not simply measurement noise. First, the beneficial amino acids generally 

exhibited consistent selection coefficients among synonymous variants (Supplementary 

Figure 3.17A). Second, beneficial mutants in diamide and high temperature tend to 

cluster at certain positions (Figure 3.5B), which would not be expected for noise. Finally, 

we confirmed the increased growth rate at elevated temperature of a panel of variants 

analyzed in isolation (Supplementary Figure 3.17B). The fact that beneficial mutations in 

elevated temperature and diamide often clustered at specific positions in Hsp90 

indicates that the wild-type amino acids at these positions are far from optimum for 

growth in these conditions. In contrast, the apparent beneficial mutations in other 

conditions did not tend to cluster at specific positions (Supplementary Figure 3.18). 

 
 

https://elifesciences.org/articles/53810#fig5
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Figure 3.5: Beneficial variants in diamide and elevated temperature conditions. 
(A) Number of beneficial mutations identified in each condition based on selection 
coefficients more than two standard deviations greater than wild-type synonyms. 
Beneficial mutants at 37°C and in diamide are listed in (Figure 3.5—source data 1). (B) 
Distribution of the number of beneficial mutations at the same position in both 37°C (left) 
and diamide (right) conditions (●) is greater than expected if they had occurred 
independently (◊). Independent expectations were calculated as the probability of the 
stated number of mutations occurring at the same position by chance. * Indicates 

https://elifesciences.org/articles/53810#fig5sdata1
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observations that were significantly (p<0.01) greater than independent expectations 
based on random simulations and one-tailed t-tests. (C) Location of positions with four 
or more beneficial mutations. Positions that are unique to diamide or 37°C are shown in 
cyan and two shared positions are shown in magenta. (D) The solvent accessible 
surface area (SASA) of beneficial mutations at 37°C and in diamide compared to all 
mutations. Distributions are significantly different as measured by a two-sample KS test 
(37°C vs. all data, N = 270, 12393, p<0.0001, D = 0.2851; Diamide vs. all data, 
N = 60,12393, p<0.0001, D = 0.3465) (E) The fraction of Hsp90 positions at interfaces 
that were beneficial in 37°C and diamide conditions. (F) Selection coefficients in 
standard conditions for beneficial mutations at 37°C and in diamide compared to wild-
type synonyms. (KS test; 37°C vs. WT synonyms: N = 463, 660, p<0.0001, D = 0.3281; 
Diamide vs. WT synonyms: N = 353, 660, p<0.0001, D = 0.3809).  

Figure 3.5—source data 1: List of all beneficial mutants and associated selection 
coefficients at 37°C and in diamide. Beneficial mutants were defined as variants with 
selection coefficients two standard deviations greater than wild-type synonyms. 
https://cdn.elifesciences.org/articles/53810/elife-53810-fig5-data1-v2.xlsx  Download 
elife-53810-fig5-data1-v2.xlsx 

 

 
To obtain a more general picture of the potential for adaptation derived from the 

full fitness distributions, we used Fisher’s Geometric model (FGM) (Fisher 1931). 

According to FGM, populations evolve in an n-dimensional phenotypic space, through 

random single-step mutations, and any such mutation that brings the population closer 

to the optimum is considered beneficial. An intuitive hypothesis derived from FGM is 

that the potential for adaptation in a given environment (i.e. is the availability of 

beneficial mutations) depends on the distance to the optimum. In order to estimate the 

distance to the optimum d, we adopted the approach by Martin and Lenormand and 

fitted a displaced gamma distribution to the neutral and beneficial mutations for each 

environment (Martin and Lenormand 2006). We observed that the yeast populations 

were furthest from the optimum in elevated temperature and diamide (d = 0.072 and 

0.05, respectively), followed by nitrogen deprivation (d = 0.023), high salinity and 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig5-data1-v2.xlsx
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ethanol (d = 0.021) and standard (d = 0.014). This suggests that exposure to elevated 

temperature and diamide results in the largest potential for adaptation and is consistent 

with the observation of the largest proportions of beneficial mutations in these 

environments. Interestingly, previous results from a 9-amino-acid region in Hsp90 

indicated that there was very little potential for adaptation at high temperature (36°C) as 

compared with high salinity (Hietpas et al. 2013). This apparent contradiction between 

results from the full Hsp90 sequence and the 582–590 region indicates that a specific 

region of the protein may be already close to its functional optimum in a specific 

environment, whereas, there is ample opportunity for adaptation when the whole protein 

sequence is considered. 

In diamide and elevated temperature, the clustered beneficial positions were 

almost entirely located in the ATP-binding domain and the middle domain (Figure 3.5C), 

both of which make extensive contacts with clients and co-chaperones (Meyer et al. 

2003; Meyer et al. 2004; Roe et al. 2004; Ali et al. 2006; Zhang et al. 2010; Verba et al. 

2016). Beneficial mutations in elevated temperature and diamide conditions were 

preferentially located on the surface of Hsp90 (Figure 3.5D) at positions accessible to 

binding partners. Analyses of available Hsp90 complexes indicate that beneficial 

positions were disproportionately located at known interfaces with co-chaperones and 

clients (Figure 3.5E). Clustered beneficial mutations are consistent with disruptive 

mechanisms because a number of different amino acid changes can lead to disruptions, 

whereas, a gain of function is usually mediated by specific amino acid changes. Amino 

acids that are beneficial in diamide and elevated temperature tend to exhibit deleterious 

effects in standard conditions (Figure 3.5F), consistent with a cost of adaptation. In 

https://elifesciences.org/articles/53810#fig5
https://elifesciences.org/articles/53810#fig5
https://elifesciences.org/articles/53810#fig5
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comparison, wild-type-like mutations in diamide and high temperature tend to exhibit 

wild-type-like fitness in standard conditions (Supplementary Figure 3.19). We conjecture 

that the clustered beneficial mutations are at positions that mediate the binding affinity 

of subsets of clients and co-chaperones and that disruptive mutations at these positions 

can lead to re-prioritization of multiple clients. The priority or efficiency of Hsp90 for sets 

of clients can in turn impact most aspects of physiology because Hsp90 clients include 

hundreds of kinases that influence virtually every aspect of cell biology. 

In the first seven amino acids of Hsp90, we noted both a large variation in the 

selection coefficients of synonymous mutations at elevated temperature and that many 

nonsynonymous substitutions at these positions generated strong beneficial effects 

(Supplementary Figure 3.20 A,B). Synonymous mutations at these positions were only 

strongly beneficial at high temperature where Hsp90 protein levels are limiting for 

growth. Analysis of an individual clone confirms that a synonymous mutation at the 

beginning of Hsp90 that was beneficial at high temperature was expressed at higher 

level in our plasmid system (Supplementary Figure 3.20C,D). These results are 

consistent with a large body of research showing that mRNA structure near the 

beginning of coding regions often impacts translation efficiency (Tuller et al. 2010; 

Plotkin and Kudla 2011; Li 2015), and that adaptations can be mediated by changes in 

expression levels (Lang et al. 2013). 

Natural Selection Favors Hsp90 Variants That are Robust to Environment 

We next examined how experimental protein fitness maps compared with the 

diversity of Hsp90 sequences in current eukaryotes. We analyzed Hsp90 diversity in a 

https://elifesciences.org/articles/53810/figures#fig5s4
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set of 267 sequences from organisms that broadly span across eukaryotes. We 

identified 1750 amino acid differences in total that were located at 499 positions in 

Hsp90. We examined the experimental growth effects of the subset of amino acids that 

were observed in nature. While the overall distribution of selection coefficients in all 

conditions was bimodal with peaks around neutral (s = 0) and null (s = −1), the natural 

amino acids were unimodal with a peak centered near neutral (Figure 3.6A, Figure 

3.6—source data 1). The vast majority of natural amino acids had wild-type-like fitness 

in all conditions studied here (Figure 3.6B and C). Whereas, naturally occurring amino 

acids in Hsp90 were rarely deleterious in any experimental condition, they were similarly 

likely to provide a growth benefit compared to all possible amino acids (5%). This 

observation indicates that condition-dependent fitness benefits are not a major 

determinant of natural variation in Hsp90 sequences. Instead, our results indicate that 

natural selection has favored Hsp90 substitutions that are robust to multiple stressful 

conditions (Figure 3.6D). Beneficial mutations in heat and diamide indicate that there is 

room for improvement in Hsp90 function in individual conditions. The clustering of 

beneficial mutations at known binding interfaces suggests that the optimal binding 

affinity for partner proteins may depend on growth conditions. We propose that natural 

variants of Hsp90 have been selected for binding properties that are robust to different 

stresses rather than specific to individual conditions. 
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Figure 3.6: Experimental growth effects of natural amino acid variants of Hsp90. 
(A) The distribution of selection coefficients of natural variants compared to all variants 
in each environmental condition (see Figure 6—source data 1). (B) Across all 
environments, the fraction of natural variants compared to all variants that were 
beneficial, wild-type-like, or deleterious. (C) The fraction of natural variants compared to 
all variants that were environmentally responsive or tolerant in all environments. 
Categories were defined as in (Figure 3B). (D) Landscape model indicating that natural 
variants of Hsp90 tend to support robust growth under a variety of stress conditions. 

Figure 3.6—source data 1 

List of selection coefficients of all-natural variants of Hsp90 in all environmental 

conditions. 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig6-data1-v2.xlsx  

Download elife-53810-fig6-data1-v2.xlsx 
 
 
 

Epistasis may provide a compelling explanation for the naturally occurring amino 

acids that we observed with deleterious selection coefficients. Analyses of Hsp90 

mutations in the context of likely ancestral states has demonstrated a few instances of 

historical substitutions with fitness effects that depend strongly on the Hsp90 sequence 

background (Starr et al., 2018). Indeed, many of the natural amino acids previously 

identified with strong epistasis (E7A, V23F, T13N) are in the small set of natural amino 

acids with deleterious effects in at least one condition. Further analyses of natural 

variants under diverse environmental conditions will likely provide insights into historical 

epistasis and will be the focus of future research. 

Discussion 

In this study, we analyzed the protein-wide distribution of fitness effects of Hsp90 

across standard and five stress conditions. We found that environment has a profound 

effect on the fates of Hsp90 mutations. Each environmental stress varies in the strength 

of selection on Hsp90 mutations; heat and diamide increase the strength of selection 

https://elifesciences.org/articles/53810#fig6sdata1
https://elifesciences.org/articles/53810#fig3
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https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTM4MTAvZWxpZmUtNTM4MTAtZmlnNi1kYXRhMS12Mi54bHN4/elife-53810-fig6-data1-v2.xlsx?_hash=128Y30qJS0%2Bzc0F3rImTHyQsxwa0pRBIdnvfGZra3is%3D
https://elifesciences.org/articles/53810#bib69
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and ethanol and salt decrease the strength of selection. While proximity to ATP is the 

dominant functional constraint in standard conditions, the influence of client and co-

chaperone interactions on growth rate dramatically increases under stress conditions. 

Additionally, beneficial mutations cluster at positions that mediate binding to clients and 

cochaperones. The fact that different Hsp90 binding partners have distinct 

environmental dependencies suggests that Hsp90 can reprioritize clients that in turn 

impacts many downstream signaling pathways. 

Our results demonstrate that mutations to Hsp90 can have environment-

dependent effects that are similar to the stress-induced changes to the function of wild-

type Hsp90 that have been shown to contribute to new phenotypes (Jarosz and 

Lindquist 2010). The low frequency of environment-dependent amino acids in Hsp90 

from extant eukaryotes indicates that this type of evolutionary mechanism is rare 

relative to drift and other mechanisms shaping Hsp90 sequence diversity. 

We observed distinct structural trends for mutations that provide environment-

dependent costs and benefits. Many mutations in Hsp90 caused growth defects at 

elevated temperature where Hsp90 function is limiting for growth. These temperature-

sensitive mutations tended to be buried and in the homodimerization domain, consistent 

with an increased requirement for folding stability at elevated temperatures. In contrast, 

beneficial mutations tended to be on the surface of Hsp90 and at contact sites with 

binding partners, suggesting that change-of-function mutations may be predominantly 

governed by alterations to binding interactions. Mutations that disrupt binding to certain 

clients can lead to the re-prioritization of others, which, due to Hsp90’s central role in 

numerous cellular pathways, has the potential to modify integral networks in response 
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to stress. Once more comprehensive data is available on Hsp90-client binding sites, it 

may be possible to simulate this rewiring of cellular networks, providing insight into the 

causes of the beneficial mutations. However, presently, the large number of clients with 

unknown binding sites makes these analyses challenging. In the future, comparing 

Hsp90 client-interactomes (Taipale et al. 2012) may help delineate adaptive 

biochemical mechanisms. 

Limitations: 

Our experimental setup has limitations that we have tried to account for in our 

analyses and conclusions. For example, we measured the fitness effects of Hsp90 

under artificially low expression where yeast growth rates are tightly coupled to function 

of Hsp90 in order to provide a sensitive readout of fitness defects (Jiang et al. 2013). 

Expression of Hsp90 under this promoter remains stable in the stresses tested 

(Supplementary Figure 3.21). However, this defined promoter does not capture the 

native transcriptional regulation and may not fully recapitulate translational and post-

translational regulation controlling hsp82. While these levels of regulation of Hsp90 are 

clearly important physiologically, the sensitive readouts of fitness that we measured 

appear to capture critical features of Hsp90 with regard to biochemical function and 

evolutionary mechanism. For example, virtually all deleterious mutants measured in this 

study under stress conditions appear to have also been subject to purifying selection in 

nature. 

In addition, the experimental strain used in this study is deleted for the 

constitutively expressed paralog of hsp82, hsc82. Hsp82 and hsc82 are functionally 

https://elifesciences.org/articles/53810/figures#fig6s1
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overlapping, essential genes with 97% sequence identify (16 amino acid differences) 

that can compensate for each other’s loss-of-function in normal growth conditions 

(Girstmair et al. 2019). The high sequence identity between the two paralogs indicates 

that they are both under similar selection pressure. Despite the high sequence identity, 

a number of distinct differences have been noted in stability, conformational cycles, and 

client interactomes. Experimental evidence indicates that hsp82 is more stress-specific, 

and more stable to unfolding (Girstmair et al. 2019). Further efforts will be required to 

resolve how distinctions between Hsp90 paralogs contribute to function and selection. 

Relationship to Prior Work: 

A handful of studies have assessed the impact of environment on the fitness 

landscape of genes (Hietpas et al. 2013; Mavor et al. 2016; Dandage et al. 2017; Li and 

Zhang 2018). For example, Dandage, Chakraborty and colleges investigated the effects 

of temperature and chemical chaperones on the fitness landscape of the Gentamicin 

resistance gene and found that protein stability and distance to the ligand binding site 

are the molecular properties with the strongest correlations with fitness (Dandage et al. 

2017). To understand the strength of the molecular constraints on Hsp90 on a whole 

protein level, we performed similar analyses (Supplementary Figure 3.22). Consistent 

with the Gentamicin study, we find the features that best correlate with fitness are 

protein stability and distance from the active site. The constraint of protein stability is the 

highest at 37°C, indicating increased dependence on stability at the higher temperature. 

In addition, distance from the ATP-binding site imposes strong molecular constraints on 

Hsp90, signifying the importance of ATP hydrolysis on Hsp90 function. While individual 

https://elifesciences.org/articles/53810/figures#fig6s2
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features correlate with fitness effects and show environmental dependence, single 

features are unable to capture the majority of observed variance in fitness effects, 

consistent with a complex set of physical properties that underlie fitness effects in both 

proteins. 

In another study of the effect of environment on mutational fitness, Li and Zhang 

detected pervasive genotype-by-environment interactions between a yeast tRNA gene 

and environment (Li and Zhang 2018). They found that the correlation of the fitness 

between mutations in each tested environment was linear such that the fitness 

landscape in one environment together with a change in slope could be used to 

accurately predict fitness effects in the second environment. In this study, we observed 

a large impact of environment on Hsp90 fitness; however, we observe many fitness 

effects that deviate from a linear relationship between environments. While linear 

models can predict the fitness of some mutations in different environments, it would not 

predict many of the types of mutations that are focuses of this study, such as mutations 

that exhibit an adaptive trade-off, those with beneficial effects in one environment that 

become deleterious in another. In addition, the linear model would not predict the large 

group of ts mutations with wild-type fitness in standard conditions and null fitness at 

37°C. As environmental-dependent protein fitness landscapes are analyzed for an 

increasing set of genes, it will provide opportunities to explore how different protein 

properties such as the number of binding partners may contribute to global trends. 

Importantly, our results demonstrate that while mutations to Hsp90 can provide a 

growth advantage in specific environmental conditions, naturally occurring amino acids 
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in Hsp90 tend to support robust growth over multiple stress conditions. The finding of 

beneficial mutations in Hsp90 in specific conditions suggests that similar long-term 

stresses in nature can lead to positive selection on Hsp90. Consistent with previous 

work (Hietpas et al. 2013), we found that experimentally beneficial mutations tended to 

have a fitness cost in alternate conditions (Figure 3.5F). This indicates that natural 

environments which fluctuate among different stresses would reduce or eliminate 

positive selection on Hsp90. Therefore, our results suggest that natural selection on 

Hsp90 sequence has predominantly been governed by strong purifying selection 

integrated over multiple stressful conditions. Taken together, these results support the 

hypothesis that natural populations might experience a so-called ‘micro-evolutionary 

fitness seascape’ (Mustonen and Lässig 2009), in which rapidly fluctuating 

environments result in a distribution of quasi-neutral substitutions over evolutionary time 

scales. 

Materials and Methods 

Generating Mutant Libraries 

A library of Hsp90 genes was saturated with single point mutations using oligos 

containing NNN codons as previously described (Hietpas et al. 2012). The resulting 

library was pooled into 12 separate 60 amino acid long sub-libraries (amino acids 1–60, 

61–120 etc.) and combined via Gibson Assembly (NEB) with a linearized p414ADHΔter 

Hsp90 destination vector, a low copy number plasmid with the trp1 selectable marker. 

To simplify sequencing steps during bulk competition, each variant of the library was 

tagged with a unique barcode. For each 60 amino acid sub-library, a pool of DNA 

https://elifesciences.org/articles/53810#fig5
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constructs containing a randomized 18 bp barcode sequence (N18) was cloned 200 nt 

downstream from the Hsp90 stop codon via restriction digestion, ligation, and 

transformation into chemically competent E. coli with the goal of each mutant being 

represented by 10–20 unique barcodes. 

 

 

Barcode Association of Library Variants 

We added barcodes and associated them with Hsp90 variants essentially as 

previously described (Starr et al. 2018). To associate barcodes with Hsp90 variants, we 

performed paired-end sequencing of each 60 amino acid sub-library using a primer that 

reads the N18 barcode in one read and a primer unique to each sub-library that anneals 

upstream of the region containing mutations. To facilitate efficient Illumina sequencing, 

we generated PCR products that were less than 1 kb in length for sequencing. We 

created shorter PCR products by generating plasmids with regions removed between 

the randomized regions and the barcode. To remove regions from the plasmids, we 

performed restriction digest with two unique enzymes, followed by blunt ending with T4 

DNA polymerase (NEB) and plasmid ligation at a low concentration (3 ng/μL) to favor 

circularization over bimolecular ligations. The resulting DNA was re-linearized by 

restriction digest and amplified with 11 cycles of PCR to generate products for Illumina 

sequencing. The resulting PCR products were sequenced using an Illumina MiSeq 

instrument with asymmetric reads of 50 bases for Read1 (barcode) and 250 bases for 

Read2 (Hsp90 sequence). After filtering low-quality reads (Phred scores < 10), the data 

was organized by barcode sequence. For each barcode that was read more than three 
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times, we generated a consensus of the Hsp90 sequence that we compared to wild type 

to call mutations. Of note, the building of consensus of at least three independent reads 

reduces the chance that errors will lead to mistaken variant identity because the same 

misread would have to occur in the majority of these reads. 

 

Bulk Growth Competitions 

Equal molar quantities of each sub-library were mixed to form a pool of DNA 

containing the entire Hsp90 library with each codon variant present at similar 

concentration. The plasmid library was transformed using the lithium acetate procedure 

into the DBY288 Hsp90 shutoff strain of S. cerevisiae which has both genomic paralogs 

of Hsp90 (hsp82 and hsc82) deleted and a chromosomal copy of hsp82 under a 

galactose-dependent promoter inserted (can1-100 ade2-1 his3-11,15 leu2-3, 12 trp1-1, 

ura3-1 hsp82::leu2 hsc82::leu2 ho::pgals-hsp82-his3) essentially as previously 

described (Jiang et al. 2013). Sufficient transformation reactions were performed to 

attain ~5 million independent yeast transformants representing a fivefold sampling for 

the average barcode and 50 to 100-fold sampling for the average codon variant. 

Following 12 hr of recovery in SRGal (synthetic 1% raffinose and 1% galactose) media, 

transformed cells were washed five times in SRGal-W media (SRGal lacking tryptophan 

to select for the presence of the Hsp90 variant plasmid) to remove extracellular DNA, 

and grown in SRGal-W media at 30°C for 48 hr with repeated dilution to maintain the 

cells in log phase of growth. This yeast library was supplemented with 20% glycerol, 

aliquoted and slowly frozen in a −80°C freezer. 
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For each competition experiment, an aliquot of the frozen yeast library cells was thawed 

at 37°C. Viability of the cells was accessed before and after freezing and was 

determined to be greater than 90% with this slow freeze, quick thaw procedure. Thawed 

cells were amplified in SRGal-W for 24 hr, and then shifted to shutoff conditions by 

centrifugation, washing, and resuspension in 300 mL of synthetic dextrose lacking 

tryptophan (SD-W) for 12 hr at 30°C. At this time, cells containing a null-rescue plasmid 

had stopped growing and Hsp90 was undetectable by western blot (Supplementary 

Figure 3.23). At this point, cells were split and transferred to different conditions 

including: Standard (SD-W, 30°C), Nitrogen depletion (SD-W with limiting amounts of 

ammonium sulfate, 0.0125%, 30°C), Salt (SD-W with 0.8 M NaCl, 30°C), Ethanol (SD-

W with 7.5% ethanol, 30°C), Diamide (SD-W with 0.85 mM diamide, 30°C), or high 

temperature (SD-W, 37°C). We collected samples of ~108 cells at eight time points over 

a period of 36 hr and stored them at −80°C. Cultures were maintained in log phase by 

regular dilution with fresh media every 6–10 hr to maintain a population size of 108–109 

cells in order to prevent population bottlenecks relative to sample diversity. Bulk 

competition from the standard condition were conducted in technical duplicates from the 

frozen yeast library. 

DNA Preparation and Sequencing 

We isolated plasmid DNA from each bulk competition time point as described 

(Jiang et al. 2013). Purified plasmid was linearized with AscI. Barcodes were amplified 

by 19 cycles of PCR using Phusion polymerase (NEB) and primers that add Illumina 

adapter sequences and an 8 bp identifier sequence used to distinguish libraries and 

time points. The identifier sequence was located at positions 91–98 relative to the 

https://elifesciences.org/articles/53810/figures#fig6s3
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Illumina primer and the barcode was located at positions 1–18. PCR products were 

purified two times over silica columns (Zymo Research) and quantified using the KAPA 

SYBR FAST qPCR Master Mix (Kapa Biosystems) on a Bio-Rad CFX machine. 

Samples were pooled and sequenced on an Illumina NextSeq instrument in single-end 

100 bp mode. 

Analysis of Bulk Competition Sequencing Data 

Illumina sequence reads were filtered for Phred scores > 20 and strict matching 

of the sequence to the expected template and identifier sequence. Reads that passed 

these filters were parsed based on the identifier sequence. For each condition/time-

point identifier, each unique N18 read was counted. The unique N18 count file was then 

used to identify the frequency of each mutant using the variant-barcode association 

table. This barcoding strategy reduces the impact of bases misread by Illumina, as they 

result in barcodes that are not in our lookup table created by paired end sequencing and 

thus are discarded from the fitness analyses. To generate a cumulative count for each 

codon and amino acid variant in the library, the counts of each associated barcode were 

summed. To reduce experimental noise, selection coefficients were not calculated for 

variants with less than 100 reads at the 0 time point (Boucher et al. 2014). The average 

variant at the 0 time point had approximately 500 reads. 

Determination of Selection Coefficient 

Selection coefficients were estimated using empiricIST (Fragata et al. 2018), a 

software package developed based on a previously published Markov Chain Monte 

Carlo (MCMC) approach (Bank et al. 2014). Briefly, we estimated individual growth 
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rates and initial population sizes relative to the wild-type sequence simultaneously, 

based on a model of exponential growth and multinomial sampling of sequencing reads 

independently at each time point. For each mutant we obtained 10,000 posterior 

samples for the growth rate and initial population using a Metropolis-Hastings algorithm. 

The resulting growth rate estimates correspond to the median of 1000 samples of the 

posterior. Subsequently, selection coefficients (s) were scaled so that the average stop 

codon in each environmental condition represented a null allele (s = −1). For the second 

replicate in standard conditions, we noted a small fitness defect (s≈−0.2) for wild-type 

synonyms at positions 679–709 relative to other positions. We do not understand the 

source of this behavior and chose to normalize to wild-type synonyms from 1 to 678 for 

this condition and to exclude positions 679–709 from analyses that include the second 

replicate of standard conditions. We did not observe this behavior in any other condition 

including the first standard condition replicate. Variants were categorized as having 

wild-type-like, beneficial, intermediate, or deleterious fitness based on the comparison 

of their selection coefficients with the distribution of wild-type synonyms and stop 

codons in each condition (Supplementary Figure 3.12) in the following manner; Wild-

type-like: variants with selection coefficients within two standard deviations (SD) of the 

mean of wild-type synonyms; Beneficial: variants with selection coefficients above two 

SD of wild-type synonyms; Strongly deleterious: variants with selection coefficients 

within two SD of stop codons; Intermediate: variants with selection coefficients between 

those of stop-like and wild-type-like. Where stated, the average selection coefficient was 

calculated as the mean selection coefficient of all mutations at a position excluding that 

of the stop codon. 
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Structural Analysis 

The solvent accessible surface area was computed by the algorithm of (Lee and 

Richards 1971) using the PDB 2cg9 structure with the chains for Sba1 removed. The 

Blosom score was derived from the Blosom62 matrix (Henikoff and Henikoff 1992). 

Evolutionary conservation was calculated with an alignment of homologs from diverse 

species using the ConSurf server (Ashkenazy et al. 2016). The change in protein 

stability upon mutation (ΔΔG) was predicted by the PoPMuSic server (Dehouck et al. 

2011). Distance from the ɣ-phosphate of ATP to the C-α of each amino acid residue 

was calculated using Pymol. Physico-chemical properties of the amino acids were 

retrieved from (Abriata et al. 2015). Correlation coefficients were calculated by Pearson 

product-moment correlations unless otherwise stated. 

Random Simulations to Assess Clustering of Mutations 

To assess if classes of mutations (e.g. temperature-sensitive mutations) 

clustered at positions more than expected based on chance, we compared the 

observed distribution of mutations to random simulations. For the random simulations, 

we randomly selected a position for the number of observed mutations and stored the 

clustering distribution (e.g. the number of positions with 0, 1, 2, 3, etc. simulated 

mutations). We performed 1000 simulations and used the average and standard 

deviation from these simulations to define statistical cutoffs for random expectations. 

Yeast Growth Analysis 

Individual variants of Hsp90 were generated by site-directed mutagenesis and 

confirmed by Sanger sequencing. Variants were cloned in a p414 plasmid either under 
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a low-expression, ADH promoter, or a high-expression, GPD promoter, as specified. 

Variants were generated by site directed mutagenesis and transformed into DBY288 

cells. Selected transformed colonies were grown in liquid SRGal-W media to mid-log 

phase at 30°C, washed three times and grown in shutoff media (SD-W) for 10 hrs at 

30°C, and then either kept at 30°C or shifted to 37°C as indicated. After sufficient time 

to stall the growth of control cells lacking a rescue copy of Hsp90 (~16 hr), cell density 

was monitored based on absorbance at 600 nm over time and fit to an exponential 

growth curve to quantify growth rate. Growth estimates were based on individual growth 

curves with at least four timepoints over an eight-hour period. Using this approach, we 

routinely observe measurement noise of 2–5%. 

Analysis of Hsp90 Expression by Western Blot 

To analyze expression levels of Hsp90, cells were grown for the specified time in 

SD-W or the indicated environmental condition. 108 yeast cells were collected by 

centrifugation and frozen as pellets at −80°C. Cells were lysed by vortexing the thawed 

pellets with glass beads in lysis buffer (50 mM Tris-HCl pH 7.5, 5 mM EDTA and 10 mM 

PMSF), followed by addition of 2% Sodium dodecyl sulfate (SDS). Lysed cells were 

centrifuged at 18,000 g for 1 min to remove debris, and the protein concentration of the 

supernatants was determined using a BCA protein assay kit (Pierce) compared to a 

Bovine Serum Albumin (BSA) protein standard. 15 µg of total cellular protein was 

resolved by SDS-PAGE, transferred to a PVDF membrane, and Hsp90 was probed 

using an anti-human Hsp90 α/β antibody that cross reacts with yeast Hsp90 (Cayman 

chemical). 
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Natural Variation in Hsp90 Sequence 

We analyzed sequence variation in a previously described alignment of Hsp90 

protein sequences from 261 eukaryotic species that broadly span a billion years of 

evolutionary distance (Starr et al. 2018) 
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Supplementary Figures  

 

Supplementary Figure 3.1: Selection coefficients for wild-type synonyms (green) 
and stops (red) at each position of Hsp90 for both replicates of standard 
conditions. 
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Supplementary Figure 3.2: Measurement of selection coefficients for positions 
2–220 in this study correlated strongly (R2 = 0.87) with estimates of the Hsp90 
N-domain in a previous study (Mishra et al., 2016), indicating that biological 
replicates show high reproducibility. The blue dashed line indicates the line of 
best fit. 
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Supplementary Figure 3.3: Analysis of variation in stop codon selection 
coefficients (A) The average initial reads measured per codon for each amino acid. (B) 
The difference in the selection coefficients between stops in the two standard replicates 
compared to the initial reads for the corresponding stop in replicate 1. The blue dashed 
line indicates the line of best fit. R2 = 0.022, p<0.0001. (C) The distribution of selection 
coefficients for each stop codon in standard replicate 1. 
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Supplementary Figure 3.4: Heatmap representation of the selection coefficients 
observed for single amino acid changes across amino acids 2–709 of Hsp90 in 
standard (30°C) conditions in replicate 1. 
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Supplementary Figure 3.5: Correlation of mutational sensitivity with distance to 
ATP. (A) The average selection coefficient at each position in standard (30°C) 
conditions correlates with distance to ATP (R2 = 0.49). (B) The average selection 
coefficient at each position at 37°C does not correlate as well with distance to ATP as in 
standard conditions (R2 = 0.26). The data points were fit to a sigmoid function. 
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Supplementary Figure 3.6: Heatmap representation of the fitness map observed 
for single amino acid changes of Hsp90 in nitrogen depletion. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp1.jpg
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Supplementary Figure 3.7: Heatmap representation of the fitness map observed 
for single amino acid changes of Hsp90 in salt. 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp2.jpg
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Supplementary Figure 3.8: Heatmap representation of the fitness map observed 
for single amino acid changes of Hsp90 in ethanol. 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp3.jpg
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Supplementary Figure 3.9: Heatmap representation of the fitness map observed 
for single amino acid changes of Hsp90 in diamide. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp4.jpg
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Supplementary Figure 3.10: Heatmap representation of the fitness map observed 
for single amino acid changes of Hsp90 at 37C. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp5.jpg
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Supplementary Figure 3.11: Distribution of selection coefficients for non-
synonymous mutations (black), wild-type synonyms (green), and stops (red) in 
each environmental condition. 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp6.jpg
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Supplementary Figure 3.12: Distribution of selection coefficients in each 
environmental condition. Mutations were categorized as beneficial (light blue 
shading), wild-type-like (white shading), intermediate (light pink shading) or deleterious 
(dark pink shading) based on the distribution of wild-type synonyms and stop codons in 
each condition. 

 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp7.jpg
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https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp8.jpg
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Supplementary Figure 3.13: Analysis of variation in wild-type synonym selection 
coefficients. (A) Distribution of selection coefficients for the wild-type synonyms in each 
condition. The standard of deviation of wild-type synonyms in each condition relative to 
standard conditions (x) is specified under the corresponding box. (B) The selection 
coefficient for wild-type synonyms at each position of Hsp90 in each condition. (C) The 
variation of selection coefficients for barcodes with greater than 50 initial reads for each 
wild-type codon in each condition. 
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Supplementary Figure 3.14: Distribution of the difference between selection 
coefficients of each mutation in each stress condition and the same mutation in 
standard conditions. 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig2-figsupp9.jpg
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Supplementary Figure 3.15: Heatmap representation of the average selection 
coefficient (s) at each position in each environmental condition relative to the 
average selection coefficient at the same position in standard conditions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig3-figsupp1.jpg
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Supplementary Figure 3.16: Environmentally responsive Hsp90 positions are 
enriched in binding contacts. (A) The fraction of Hsp90 positions at interfaces that 
were categorized as environmentally responsive. (B) The average selection coefficient 
in each environment relative to standard at all the Hsp90 positions at each stated 
interface 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig3-figsupp2.jpg
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Supplementary Figure 3.17: Validation of beneficial mutants at 37°C. (A) Selection 
coefficients of synonymous codon variants for four amino acid mutants with beneficial 
selection coefficients at 37°C show high correlation. (B) The same individual variants 
analyzed in isolation exhibit increased growth rates. 
 
 
 
 
 
 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig5-figsupp1.jpg
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Supplementary Figure 3.18: Distribution of the number of beneficial mutations at 
the same position in standard, nitrogen depletion, salt, and ethanol conditions. 
Independent expectations were calculated as the probability of the stated number of 
mutations occurring at the same position by chance. 
 
 
 
 
 
 
 
 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig5-figsupp2.jpg
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Supplementary Figure 3.19: Selection coefficients in standard conditions for all 
wild-type-like mutations at 37°C and in diamide. 
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Supplementary Figure 3.20: Synonymous mutations at the beginning of Hsp90 
have strong beneficial growth effects. 

(A) Selection coefficients for all codon variants of synonymous mutations at each 
position of Hsp90 (black) at 37°C compared to the average selection coefficient of all 
mutations at each position (green) at 37°C. Synonymous mutations that were deemed 
beneficial or deleterious after a Bonferroni correction are noted with a red asterisk. (B) 
Selection coefficients for codon variants of synonymous mutants at position Ala2 show 
high variation. (C) The individual Hsp90 variant containing the synonymous codon 
mutation GCT to GCA at position 2 exhibited an increased growth rate 37°C. (D) The 
individual synonymous mutant variant GCA at position two exhibited higher cellular 
expression levels at 37°C. WT: wild-type Hsp90 (GCT at 2nd position), NI: No insert, 
A2A: Hsp90 with the GCT to GCA codon mutation. 

 

 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig5-figsupp4.jpg
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Supplementary Figure 3.21: Hsp90 expression in the Hsp90 shutoff yeast strain 
harboring either wild-type Hsp90 under the constitutive ADH promoter or a null 
plasmid (no insert). 

Cells were grown for 12 hours in dextrose media at 30°C and then were transferred into 
the individual environmental conditions and grown for eight additional hours. Hsp90 
levels were monitored by western blotting. 
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Supplementary Figure 3.22: Heatmap of Spearman’s rank correlation coefficients 
(r) between molecular features (rows) and selection coefficients per mutation or 
per position (average selection coefficient for all amino acids at the position) for 
each environment (columns). Figure 6—figure supplement 2—source data 1 
The Spearman’s rank correlation coefficients (r) and associated p-values between 
molecular features and selection coefficients for each environment. 
https://cdn.elifesciences.org/articles/53810/elife-53810-fig6-figsupp2-data1-v2.docx  

Download elife-53810-fig6-figsupp2-data1-v2.docx 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://cdn.elifesciences.org/articles/53810/elife-53810-fig6-figsupp2-data1-v2.docx
https://elifesciences.org/download/aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvNTM4MTAvZWxpZmUtNTM4MTAtZmlnNi1maWdzdXBwMi1kYXRhMS12Mi5kb2N4/elife-53810-fig6-figsupp2-data1-v2.docx?_hash=q%2FaMicXVlybslH6b6FSaHbExFX%2BVL0B8hBJZJ6raSMI%3D
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig6-figsupp2.jpg
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Supplementary Figure 3.23: Validation of yeast Hsp90-shutoff strain. 

(A) Growth of Hsp90 shutoff yeast harboring either wild-type (WT) Hsp90 under the 
ADH promoter (●) or a null plasmid (▲). Growth was monitored by optical density (OD) 
at 600 nm. (B) Hsp90 expression in cells harboring the same plasmids grown in 
dextrose for the stated number of hours. Hsp90 protein levels were monitored by 
western blotting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=7069724_elife-53810-fig6-figsupp3.jpg
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Chapter IV: General Discussion 
 

Summary 

Environments in nature are constantly fluctuating, thus presenting selective 

pressures that can impact an individual’s fitness at many biological levels, including the 

sequence level. Therefore, environmental challenges can alter the DFE of new 

mutations and have direct evolutionary consequences. As a result, the interactions 

between genes and environments may contribute to molecular evolution and 

adaptation, however very few studies have accurately quantified the impact of 

environment on the DFE of new mutations (Dhar et al. 2011; Hietpas et al. 2013; 

Arribas et al. 2014; Mavor et al. 2016; Dandage et al. 2017; Li and Zhang 2018), 

especially in regards to adaptive mutations and their costs in alternate environments. 

The basis of the work presented within this dissertation is focused on accurately 

measuring the impact of novel environmental challenges on the DFE of new mutations 

within the yeast, S. cerevisiae Hsp90 sequence to identify environment dependent 

mutations, quantify their adaptive potential and costs. Furthermore, I seek to understand 

how selection pressure on the Hsp90 protein sequence and function changes upon 

exposure to different environmental challenges and can facilitate yeast adaptation to 

novel environmental stress.  Yeast Hsp90 was chosen for the focus of this dissertation 

because yeast Hsp90 has important roles in both short-term and long-term adaptation.   

Specifically, Hsp90 is required to buffer proteotoxic and deleterious fitness effects that 

arise during short-term environmental stress and can disrupt protein and cellular 

function, ultimately affecting organismal fitness and survival (Gasch et al. 2000; Yang et 
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al. 2006; Richter et al. 2010). Additionally, the long-term buffering effects of Hsp90 can 

compromise Hsp90’s role in maintenance of standing genetic variation, resulting in the 

emergence and evolution of new traits that facilitate rapid genetic adaptation to new 

stress conditions (Rutherford and Lindquist 1998; Rutherford 2003; Jarosz and 

Lindquist 2010).  

In Chapter II, I present a modified version of the EMPRIC approach to 

systematically quantify how the costs of adaptation vary for a large region of Hsp90 by 

studying the environmental impact of evolutionary relevant variables including, optimal 

growth conditions, and conditions that affect yeast growth rate and have been 

previously identified to impact the upregulation of Hsp90 expression including, osmotic 

(salinity and sorbitol) and oxidative (H202 and Diamide) stress (Gasch et al. 2000) on 

the DFE of, ~ 2300 amino acid changing mutations for a 119 amino acid region of the 

middle domain of yeast Hsp90, (amino acids 291-409) at normal expression. This 119 

amino acid region was chosen for this study because it is highly conserved and has 

been previously shown to be involved in Hsp90 client-binding and client maturation 

function, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and 

Middle-C terminal domain and regulation of ATPase-Chaperone activity (Nathan and 

Lindquist 1995; Nathan et al. 1997; Meyer et al. 2003; Hawle et al. 2006; Hagn et al. 

2011). As a result, mutations within this region could impact diverse aspects of Hsp90 

such as, relative affinity and priority of different clients involved in different stress 

response pathways, which may provide an adaptive benefit to specific environments. 

We discover that the fitness effects of mutations within this region of Hsp90 correlates 

well across environments, with diamide standing out with respect to mutant fitness 
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effects. These general results correlate with previous studies that have reported that 

mutations had similar fitness effects across environments that shared metabolic 

features (Ostrowski et al. 2005; Dillon et al. 2016; Sane et al. 2018). We identify 

adaptive mutations under all conditions with little cost of adaption under alternate 

environments, with the exception of diamide which showed the largest proportion and 

magnitude of beneficial and costly mutations. We identify protein regions that are 

enriched in beneficial, deleterious and costly mutations that coincides with residues 

involved in stabilization of Hsp90 client-binding interfaces, stabilization of Hsp90 

interdomains and ATPase chaperone activity. Lastly, we find that the diversity of natural 

amino acid variants in observed Hsp90 middle domain sequences of extant eukaryotes 

supports robust growth under all conditions, consistent with our observations and 

indicating that fluctuating environments may place long-term selective pressure on 

Hsp90 that results in robustness under diverse conditions. Together these results 

provide information regarding the role and adaptive potential of the middle domain of 

Hsp90 that complements and extends previous knowledge.  

In chapter III, I use the modified version of the EMPIRIC approach to quantify the 

growth effects or “fitness” of new mutations within the entire yeast Hsp90 sequence ~ 

44,604 single codon changes encoding 14,160 amino acid variants under optimal 

growth conditions and environments that partially decrease the growth rate of yeast 

including: temperature shock, nitrogen deprivation, ethanol stress, oxidative stress, and 

osmotic stress under low Hsp90 expression. We present comprehensive fitness maps 

of an entire protein under each condition and compare to the historical record of 

accrued Hsp90 mutations within 261 extant eukaryotes. We find that each condition had 
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distinct impacts on the growth of many variants, indicating that environment can have a 

large impact on the evolution of Hsp90. We found that environmentally sensitive 

residues coincide with client-co-chaperone interaction sites and interdomains, 

suggesting that mutations within Hsp90 may impact client-binding- co-chaperone 

interactions, structural dynamics and stability that may facilitate changes in relative 

affinity and or priority of clients that restructures stress response networks. We identified 

adaptive mutations under individual conditions that correlated with costs of adaptation in 

alternate environments. Similar to chapter II, we found the largest proportion and 

magnitude of adaptive and costly mutations under diamide conditions in addition to heat 

that coincides with functional hotspots. However, we find that natural variants of Hsp90 

support growth in all environments, providing further evidence that suggests that 

selection for robust growth to diverse stress conditions has shaped the natural evolution 

of Hsp90. 

 
Most Mutations Exhibit Neutral and Deleterious Fitness Effects Across 

Environments 

In both studies we observe DFEs with mostly wild-type like mutations under all 

conditions with the highest proportion of neutral mutations observed under standard 

conditions. These results are consistent with observations of large numbers of wild-type 

like mutations in previous mutational scanning analysis of DFEs (Soskine and Tawfik 

2010; Hietpas et al. 2013; Melamed et al. 2013; Bank et al. 2014; Hom et al. 2019), 

enrichment of wild-type like mutations in the subset of naturally observed amino acid 

variants across 261 eukaryotic sequences examined and predictions by Ohta and 

Kimura on the bimodal distribution of mostly neutral and deleterious mutant fitness 
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effects and in the context of the near neutral model of evolution (Ohta 1973; Kimura 

1983; Ohta 1992). These results though coinciding with previous studies and 

predictions were at odds with the strong conservation of Hsp90 across large 

evolutionary distances. There are many biological and experimental factors that could 

potentially explain why we observed these results including: selection pressures in the 

laboratory might differ from those in nature, whereby natural environments are different 

and rapidly fluctuating instead of stagnant (Mustonen and Lässig 2009), secondly there 

are differences between experimental resolution and the resolution at which natural 

selection acts upon in nature (Reznick and Ghalambor 2005; Kvitek and Sherlock 

2013). Specifically, the resolution of our experiment is most likely to be lower than the 

resolution of large yeast populations in natural environments, whereby experimentally 

unmeasurable fitness defects could be strongly subjected to purifying selection in nature 

over long evolutionary time-scales. Thirdly, because our studies were done using 

haploid yeast that reproduce asexually via mitosis it does not mimic what would occur in 

nature, whereby wild type yeast can occur as haploid cells that can mate with other 

mating type haploid cells to produce stable diploid cells that can withstand 

environmental insults (Haber 2012). Furthermore, diploid yeast cells can undergo 

sporulation in response to environmental stress, such as nitrogen starvation (Freese et 

al. 1982). Finally, because Hsp90 has been shown play a direct role in the vegetative 

growth, reproduction, and virulence of the ascomycete fungus Fusarium graminearum 

(Bui et al. 2016) and the filamentous fungal pathogen Aspergillus fumigatus (Lamoth et 

al. 2012), mutations to Hsp90 may have varying effects on experimental asexual yeast 

populations than what we would observe in natural yeast populations. Together these 
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factors could have impacts on the DFEs of mutations in Hsp90 across environments 

and the evolutionary consequences observed here. 

We also identified a large number of deleterious mutations across all 

environments, consistent with previous predictions by Ohta and Kimura that most 

mutations are deleterious (Ohta 1973; Kimura 1983; Ohta 1992) and previous 

observations of large proportions of deleterious mutations in studies of DFE of 

mutations (Wloch et al. 2001; Sanjuán et al. 2004; Hietpas et al. 2011; Hietpas et al. 

2012; Hietpas et al. 2013; Bank et al. 2014).  We identified the largest proportion of 

deleterious mutations under diamide and heat stress consistent with the observation 

that both conditions negatively affect growth rate more than other environments. 

Mapping deleterious mutations to Hsp90 structure in Chapter II revealed residues that 

coincides with regions towards the end of the beneficial hotspot that partly overlap with 

the catalytic loop required for ATPase chaperone activity, a residue located in the 

ATPase-Middle domain interface, and a residue involved in client-binding. In chapter III 

we find that strongly deleterious mutations coincide with regions of Hsp90 important for 

Hsp90 stability, client binding and ATPase chaperone activity. These results are 

consistent with previous observations of deleterious mutations within these regions 

impacting function and growth or fitness (Meyer et al. 2003; Mishra et al. 2016; 

Wolmarans et al. 2016). Together these results indicate that these regions are under 

strong purifying selection. The strong purifying selection for disadvantageous mutations 

within these regions of Hsp90 seems logical because residues within these regions are 

important for Hsp90 function and cell viability (Meyer et al. 2003) and ATP hydrolysis is 

necessary for the activation of all clients (Wolmarans et al. 2016). 
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The Impact of Stress on Average Mutant Fitness Effects and Selection of Hsp90 

Mutations 

 In Chapter III, we found that stress conditions had distinct impacts on average 

mutant fitness effects and selection of Hsp90 mutations when compared to standard 

conditions. Specifically, ethanol and salt had less deleterious effects on mutant fitness, 

resulting in decreased strength of selection on Hsp90 mutations. These results indicate 

decreased demand for Hsp90 function and agree with the observation that less Hsp90 

has a minimal impact on yeast growth under these conditions, whereas, diamide and 

heat resulted in stronger selection of Hsp90 mutations that lead to a greater number 

and magnitude of deleterious mutations. These findings overlap with the theory of 

metabolic flux (Kacser and Burns 1981; Dykhuizen et al. 1987), whereby gene products 

that are rate limiting for growth are subject to stronger selection. Furthermore, these 

results are consistent with the hypothesis that heat and diamide stress may cause a 

growth limiting increase in unfolded Hsp90 clients that is rate limiting for growth and 

thus requires more Hsp90 function, which is compromised under these conditions. 

When mapping environmentally sensitive positions to structure we find that these 

environmentally responsive positions were located throughout all domains of Hsp90, 

and enriched in client and co-chaperone interacting sites and intramolecular Hsp90 

contacts involved in transient conformational changes (Bohen and Yamamoto 1993; 

Nathan and Lindquist 1995; Meyer et al. 2003; Meyer et al. 2004; Roe et al. 2004; Ali et 

al. 2006; Hawle et al. 2006; Retzlaff et al. 2009; Zhang et al. 2010; Hagn et al. 2011; 

Genest et al. 2013; Lorenz et al. 2014; Verba et al. 2016; Kravats et al. 2018). We also 
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find that specific binding partners and environment impacts the direction of the shift of 

growth rate compared to standard conditions, indicating that different environments 

place specific functional demands on Hsp90 that could potentially be alleviated by 

relative affinity of different clients and co-chaperones. In fact, previous studies have 

identified Hsp90 interactions with specific stress induced clients and co-chaperones that 

are important for yeast survival and growth when exposed to specific environmental 

insults, including the stress activated MAPK Hog1 in conjunction with the co-chaperone 

Cdc37 in S. cerevisiae (Hawle et al. 2007), and C. albicans (Diezmann et al. 2012), the 

stress activated mitogen-activated protein kinase, Slt2p in S. Cerevisiae (Millson et al. 

2005) and calcineurin in S. cerevisiae (Imai and Yahara. 2000)  Together these results 

indicate that client and co-chaperone interactions with Hsp90 have a larger impact on 

experimental fitness under stress in comparison to ATP binding and hydrolysis which 

are main structural determinants that constrain fitness under standard conditions.  

In Chapter II we observed a high correlation of mutant fitness effects across 

environments indicating that most environments have similar effects on Hsp90 

mutations, apart from diamide. Diamide did not show a high correlation of mutant fitness 

effects across environments suggesting that diamide had distinct effects on the fate of 

mutations similar to what we observed in Chapter III.  The observation that mutant 

fitness effects correlates across environments contrasts with the distinct fates of 

mutations in each environment in Chapter III. There are multiple technological and 

experimental factors that could have implications and limitations that give rise to 

observed differences.  For example, ethanol, high temperature and nitrogen deprivation 

examined in Chapter III were not included in our analysis in Chapter II, and sorbitol and 
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H202 examined in Chapter II were not included in Chapter III so we cannot directly 

compare the overall results of environmental impacts on the DFE of Hsp90 mutants 

from both studies. Furthermore, in Chapter III we measured the fitness effects of Hsp90 

mutations under artificially low expression to tightly couple function of Hsp90 to growth 

rates and provide a sensitive readout of fitness, whereas, in Chapter II we measured 

fitness effects of Hsp90 mutations at endogenous expression levels to observe what 

would happen naturally. Previous studies of low Hsp90 expression identified latent 

fitness effects and demonstrated that endogenous expression levels obscured fitness 

effects (Jiang et al. 2013). Therefore, under endogenous Hsp90 expression levels we 

may be unable to detect similar fitness effects to those observed under low Hsp90 

expression. Furthermore, while we found that expression of Hsp90 at low and 

endogenous expression levels remains stable under conditions examined, this promoter 

does not capture native transcriptional regulation and thus may not fully recapitulate 

translational and post-translational regulation controlling Hsp82. As a result, all these 

factors could have implications on observed results and differences. Future experiments 

that investigate the DFE of Hsp90 mutations under all conditions and expression levels 

examined could delineate whether differences between studies are due to these factors 

or environments examined.  

 

The Adaptive Potential of Hsp90 Across Environmental Conditions 

  In both studies we detected a small but relative number of beneficial, “adaptive” 

mutations across all environments except diamide and 37°C, which showed the largest 

proportion and magnitude of beneficial mutations. The overall results coincides with 
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observations that beneficial mutations are rare but can provide a selective advantage 

under experimental conditions (Elena 1998; Thatcher et al. 1998; Sanjuán et al. 2004; 

Burch et al. 2007; Silander et al. 2007). In Chapter II these beneficial mutations were 

enriched in a specific region of Hsp90 that coincides with an allosteric center thought to 

be involved in stabilization of Hsp90 interdomains and stabilization of client-binding 

interfaces (Blacklock and Verkhivker 2013; Blacklock and Verkhivker 2014). 

Furthermore, this beneficial hotspot is adjacent to a known client-binding loop, which 

suggests that beneficial mutations may promote Hsp90 conformational changes and/or 

changes in dynamics and stability that may impact nearby client binding affinity and 

priority of different clients, further facilitating adaptation to specific conditions. Further 

structural analysis of the biochemical properties of these mutations may provide 

mechanistic insight into how these mutations impact fitness. The fitness effects of these 

beneficial mutations in alternate environments identified a region of Hsp90 (amino acids 

381-391) with little costs of adaptation. Specifically, we found that on average 14% of 

beneficial mutations within this region showed deleterious effects in alternate 

environments, indicating the possibility of little cost of adaptation for mutations within 

this particular region of Hsp90. This finding was consistent with the high correlation of 

observed mutant fitness effects across environments but at odds with previous results 

from a smaller, 9 amino acid client binding loop in the C terminal of Hsp90, which 

identified high costs of adaptation for beneficial mutations in other environments 

(Hietpas et al. 2013). Because we examined a relatively larger and different region of 

Hsp90 this could have multiple implications on the observed minimal costs of adaptation 

for beneficial mutations. For example, together many positions and beneficial mutations 
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may have similar roles across environments and may have a large cost of adaptation in 

other environments, but due to their low proportion in the total number of observed 

mutations they have a minimum impact on the correlation of selection coefficients 

across environments. We find that measuring the correlation of a smaller 10 amino acid 

region across environments shows variability consistent with our explanation as to why 

we see differences in costs between our and previous studies. To confirm these 

beneficial mutant fitness effects and their costs in alternate environments, future studies 

that examine the growth of a panel of individual beneficial mutations in monoculture 

across environments are warranted.    

In Chapter III we found adaptive mutations clustered at specific regions including 

the ATP domain and middle domain. Further structural analysis revealed that adaptive 

mutations within these regions were found on the surface of Hsp90 and at positions 

accessible to binding partners. Because clustered beneficial mutations were 

preferentially found within these regions, we hypothesize that mutations at these 

positions may mediate the binding affinity of subsets of clients and co-chaperones and 

that disruptive mutations can lead to re-prioritization of multiple clients, which may 

enable priority of efficiency of Hsp90 for specific clients that in turn impact physiology 

and adaptation to these environments. Further analysis of these beneficial mutations 

under alternate environments identified high costs of adaptation, consistent with 

observation of high costs for diamide adaptive mutations in chapter II and previous 

studies by Hietpas et al., 2013. We also identified strongly beneficial mutations under 

elevated temperature that are found with the first seven amino acids of Hsp90. Our 

observations are consistent with previous studies that demonstrate that mRNA structure 
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adjacent to the start of coding regions impacts translation efficiency (Tuller et al. 2010; 

Plotkin and Kudla 2011; Li 2015) and the previous observation that changes in 

expression levels can facilitate adaptation (Lang and Desai 2014). 

 To gain further insight into the overall adaptive potential derived from the DFE of 

Hsp90 mutations across environments we interpreted our results considering Fisher’s 

Geometric Model (FGM). Briefly, FGM assumes that populations evolve in a 

multidimensional geometric phenotypic space through random single step mutations, 

where the same mutation is more likely to be beneficial for an individual that is far from 

the phenotypic optimum (Fisher 1931; Tenaillon 2014). As a result, the proportion of 

beneficial mutations considering FGM expectations should provide information 

regarding the harshness of the experimental environment and resulting adaptive 

potential under each environment for the middle domain of Hsp90 (Chapter II). 

Additionally, the populations distance from the optimum in each environment, using a 

modified version of FGM (Martin and Lenormand 2006) should provide information 

regarding the availability of adaptive mutations or adaptive potential of Hsp90 under 

each environment (Chapter III). Based on FGM we expected to find a larger number of 

beneficial mutations under environments with large doubling times, corresponding to 

lower absolute fitness and the lowest number of beneficials under environments that the 

wild type is well adapted to and has the lowest doubling time, such as under standard 

conditions. In Chapter II we found that diamide met this expectation, in comparison, 

high salinity and sorbitol conditions had less beneficial mutations in comparison to 

standard conditions. Our findings under standard, elevated salinity and sorbitol 

conditions are at odds with FGM expectations, which could be due to the models 
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general assumption that mutations affect all phenotypic dimensions with equal weight 

(Harmand et al. 2017). Because Hsp90 plays a different functional role in osmotic 

versus oxidative stress this may result in different phenotypic distributions of the same 

mutations in phenotypic space and thus violates FGM’s assumptions. When 

determining the populations of yeast farthest from the optimum in Chapter III we found 

that yeast populations under elevated temperature and diamide conditions were farthest 

from the optimum, followed by nitrogen deprivation, salt, ethanol and standard 

conditions. These results indicate that diamide and temperature results in the largest 

potential for adaptation within Hsp90 and is consistent with the largest proportions of 

beneficial mutations observed in these two environments. The results under elevated 

temperature were at odds with a previous study of a 9 amino acid client binding loop of 

Hsp90 by Hietpas et al., 2013, which observed increased availability of adaptive 

mutations under elevated salinity conditions in comparison to high temperature. These 

results suggest that the entire Hsp90 protein sequence may present more opportunity 

for adaptive potential under both temperature and diamide conditions versus a smaller 

region of Hsp90 that may already be highly optimized for high temperature conditions.  

 

 

Diamide and 37°C Places Distinct Selection Pressures on Hsp90 Mutations   

We observed that diamide in Chapters II and III and heat in Chapter III placed 

distinct selection pressures on adaptive and deleterious Hsp90 mutations in comparison 

to other environments. Furthermore, diamide and heat resulted in greater proportions 

and magnitudes of beneficial and deleterious mutations in comparison to other 
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environments. The similar results observed under high temperature and diamide in 

comparison to other environments may be because both stresses may exert similar 

proteotoxic effects that may disrupt various and or similar cellular processes, ultimately 

affecting yeast fitness and survival. Furthermore, previous studies by Gasch et al., have 

identified that both of these stresses result in similar transcriptional profiles in S. 

cerevisiae including the upregulation of Hsp90 gene expression, indicating that these 

stresses have similar effects on yeast adaptive gene expression response (Gasch et al. 

2000). As a result, both these stress conditions may place similar increased selection 

pressures on Hsp90 function, Hsp90 expression and Hsp90 mutations, in comparison to 

other environments. For example, because heat results in protein unfolding and protein 

instability this may result in an increase in Hsp90 unfolded clients that places extra 

demand on Hsp90 chaperone function and increased selection pressure of Hsp90 

mutations that may disrupt Hsp90 function and/or client-binding. This disruption may 

lead to reprioritization of other clients, which, due to Hsp90s role in multiple signaling 

pathways has the potential to modify important stress response networks. Consistent 

with this, we found increased selection of beneficial mutations that corresponds with 

ATP binding and client-co-chaperone interaction sites in Chapter III. Furthermore, we 

identified deleterious temperature sensitive (ts) destabilizing mutations within the 

homodimerization domain of Hsp90, consistent with the requirement for increased 

folding stability of Hsp90 at high temperatures. We also identified expression dependent 

ts mutations within surface exposed residues which correlates with reduced Hsp90 

function.  
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The results observed under diamide conditions may be due to the harshness of 

this oxidant that may result in similar proteotoxic affects. Diamide is a sulfhydryl 

oxidizing agent that easily penetrates cell membranes and rapidly reacts with low 

molecular weight thiols to promote intracellular protein disulfide cross-linking (Kosower 

1995). A previous study of global changes in protein disulfide bond formation following 

exposure to diamide identified a number of cytoplasmic disulfide bonded proteins in 

neuronal cells including, proteins involved in translation, glycolysis, cytoskeletal 

structure, cell growth and signal transduction kinases (Cumming et al. 2004). Most 

importantly, they observed that the molecular chaperone proteins (Hsp70, Hsc70 and 

Hsp90) formed more than one intracellular disulfide bond following exposure to diamide 

(Cumming et al. 2004). The formation of these disulfide bonds may cause changes in 

Hsp90 structure, dynamics, stability and interactions with clients, which may have 

implications on Hsp90 mutant function and chaperone activity similar to heat stress. 

This concept coincides with previous observations of other oxidizing conditions causing 

disulfide bond formation in Hsp90 that compromises chaperone activity (Nardai et al. 

2000) and the utilization of disulfide bonds to stabilize transient interactions of  Hsp90 

client-co-chaperone interactions (Southworth and Agard 2011). Furthermore, diamide 

beneficial mutations in Chapter III were enriched in ATP binding and client interaction 

sites indicating that diamide impacts chaperone activity and function. In Chapter II, we 

did not identify specific functional hotspots and found mutations scattered throughout 

the middle domain. Future studies that identify whether beneficial mutations found in 

Chapter II coincides with previously identified co-chaperone, client- binding or ATPase 

activity regions would delineate mechanistically how diamide affects these mutations. In 
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addition to diamides direct effects on protein stability and function a separate study of 

the yeast short-term gene expression response to diamide found that diamide resulted 

in the upregulation of specific subsets of genes including cell wall biosynthesis genes 

and genes involved in protein secretion and processing in the endoplasmic reticulum, 

indicating its role in cell wall damage in yeast (Gasch et al. 2000). Furthermore, diamide 

upregulates the expression of chaperone proteins including, Hsp90, similar to results 

observed under high temperature (Gasch et al. 2000), suggesting that diamide may 

result in proteotoxic conditions like heat stress conditions that requires increased 

demand of Hsp90 function (Gasch et al. 2000).  Diamide also affects individual 

transcription factors differently, for example the Yap1 transcription factor is nuclear 

localized and active in diamide but cytoplasmic and inactive in H202 oxidizing conditions, 

which may explain why we observed distinct differences in mutant fitness effects under 

diamide and H202 conditions in Chapter II (Gulshan et al. 2011). Together these results 

suggest that diamide and high temperature effects the folding properties and stability of 

proteins involved in various cellular processes that may exert multiple effects on the 

cell. Furthermore, many of the affected proteins and transcription factors are potential 

Hsp90 clients, which may ultimately place increased selection pressure on Hsp90 

function. This corresponds with the observation of increased selection of beneficial 

mutations found within client-co-chaperone interaction sites in Hsp90 under both 

diamide and high temperature conditions in our studies. Furthermore our results 

correlate with previous studies by Gasch et al., that identified increased expression of 

subsets of genes under both high temperature and diamide conditions including genes 

that encode for kinases and transcription factors (Gasch et al. 2000). Many of these 



188 
 

upregulated genes were later identified as bona fide Hsp90 clients in studies by 

McClellan et al., including the transcription factor Yap1 and the kinase Slt2 (McClellan 

et al. 2007).  Because both conditions directly affect Hsp90 expression and function this 

may result in increased selection of Hsp90 mutations that may prime Hsp90 for these 

two environmental stresses. Further global experimental analyses beyond the scope of 

this work will be required to determine the molecular features of diamide and heat stress 

that elicit distinct selection on Hsp90 mutations. 

 
 

Concluding Remarks and Future Studies 

While there has been studies investigating the effect of environment on the DFE 

of mutations within genes there are few studies that have looked at how costs of 

adaptation vary along a large stretch of a protein sequence and to our knowledge there 

are no experimental studies that have identified the environmental dependence of most 

mutations in an entire protein sequence for a large protein. The work presented here is 

a comprehensive interrogation of the effects of environment on the DFE of mutations 

within a large client- binding region of the Hsp90 sequence under endogenous 

expression levels and the entire Hsp90 sequence under low expression levels. Our 

work is the first to present comprehensive fitness maps for an entire protein sequence 

and a large functional region of a protein sequence across environments. This thesis 

elucidates the impact environment has on shaping experimental and natural Hsp90 

evolution and uncovers adaptive potential, costs of adaptation and evolutionary 

constraints for Hsp90 mutations across environments. My experimental studies have 

shed light on how specific environments can impact the selection of Hsp90 mutations 
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and their fate in other environments, which can ultimately shape Hsp90 evolution. 

Further comparison between experimental fitness effects of mutations and natural 

Hsp90 variants across environments highlights that fluctuating environments may have 

contributed to the long-term evolution of natural Hsp90 variants. In addition, my studies 

have shed light on potential molecular mechanisms of adaptation for beneficial 

mutations including, potential changes in Hsp90 co-chaperone and client-binding 

interactions, ATPase activity, structural dynamics and stability.   

Future studies for following up on this work would be to determine the molecular 

features of diamide and heat stress that elicit distinct selection of beneficial Hsp90 

mutations in comparison to standard conditions. Because of the numerous and transient 

nature of Hsp90 potential interactions with co-chaperones and clients, standard 

analytical techniques such as, molecular dynamic simulations, crystallography, NMR, 

and proteomic studies are not ideal. Indirect approaches that include a global analysis 

of beneficial Hsp90 mutants and wild-type Hsp90 mRNA levels under diamide, heat 

stress and standard conditions combined with bioinformatics may provide an 

opportunity to discover potential Hsp90 mutant-client interactions, pathways and cellular 

functions that may be affected in each condition. Specifically, using mRNA Seq 

combined with Gene Ontology Enrichment and network analysis I can systematically 

compare the expression levels of each gene, determine what genes are upregulated or 

downregulated, identify whether these genes are potential Hsp90 clients and ultimately 

identify the pathways and cellular functions that may be affected in each condition. For 

example, previous studies by McClellan et al., used genome-wide chemical-genetic 

screens in S. cerevisiae grown under standard and heat stress conditions, combined 
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with GO Enrichment and network analysis (McClellan et al. 2007) to characterize novel 

Hsp90 clients and novel Hsp90 cellular functions in each environment (McClellan et al. 

2007). From this initial screen I can pick potential Hsp90 clients for further systematic 

analysis of their binding interactions with wild-type Hsp90 and Hsp90 mutants across 

environments using the LUMIER binding interaction assay (Taipale et al. 2012). The 

LUMIER binding interaction assay has been previously used to systematically identify 

all human Hsp90 kinase interactions (Taipale et al. 2012). This systematic analysis 

should ultimately identify Hsp90 mutant-client binding interactions among environments 

and highlight whether these adaptive Hsp90 mutants interact with similar, novel and or 

different clients. Finally, mechanistic studies that include: client maturation assays to 

investigate a panel of adaptive Hsp90 mutants and their effects on the maturation of 

model yeast clients including GR, v-SRC and Ste11 could identify mutations that impact 

client maturation; ATPase activity assays of adaptive Hsp90 mutants could determine 

the ATPase activity of these mutants and identify mutations that impact Hsp90 ATPase 

chaperone function; and single molecule analysis, such as FRET of Hsp90 adaptive 

mutants could help identify mutations that impact Hsp90 stability and or dynamics.  

Together these studies should help delineate how each adaptive mutation impacts 

Hsp90 and provide further mechanistic insight into the adaptive potential of Hsp90.  
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