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Abstract 
Ribonuclase P (RNase P) is an essential metallo-endonuclease that catalyzes 5′ precursor-tRNA (ptRNA) 
processing and exists as an RNA-based enzyme in bacteria, archaea, and eukaryotes. In bacteria, a large catalytic 
RNA and a small protein component assemble to recognize and accurately cleave ptRNA and tRNA-like 
molecular scaffolds. Substrate recognition of ptRNA by bacterial RNase P requires RNA-RNA shape 
complementarity, intermolecular base pairing, and a dynamic protein-ptRNA binding interface. To gain insight 
into the binding specificity and dynamics of the bacterial protein-ptRNA interface, we report the backbone and 
side chain 1H, 13C, and 15N resonance assignments of the hyperthermophilic Thermatoga maritima RNase P 
protein in solution at 318 K. Our data confirm the formation of a stable RNA recognition motif (RRM) with 
intrinsic heterogeneity at both the N- and C-terminus of the protein, consistent with available structural 
information. Comprehensive resonance assignments of the bacterial RNase P protein serve as an important first 
step in understanding how coupled RNA binding and protein-RNA conformational changes give rise to 
ribonucleoprotein function. 
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NMR resonance assignment, Thermatoga maritima, RNase P, protein-tRNA binding, ribonucleoprotein, TALOS-N 
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Biological Context 
Ribonucleoprotein complexes (RNPs) assemble into defined tertiary architectures and undergo dynamic 
interactions to catalyze and mediate fundamental cellular reactions. Ribonuclease P (RNase P) is an essential 
ribonucleoprotein complex that catalyzes the conversion of precursor tRNA (ptRNA) into functional tRNA, 
facilitating the removal of the 5′ leader RNA sequence (Guerrier-Takada et al. 1983). The RNA-based form of 
Ribonuclease P is a multi-turnover ribozyme found in almost all organisms yet relies on one or more protein 
subunits for increased catalytic efficiency and enzymatic function in vivo. Structural and biochemical studies of 
the RNase P have proven to be fundamental to our understanding of catalytic RNA structure and function, as 
well as RNA-based gene regulatory processes (see reviews: (Kazantsev and Pace 2006; Hartmann et al. 2009; Liu 
and Altman 2010; Mondragon 2013; Klemm et al. 2016)). However, the mechanism of action for this essential 
ribozyme and the multifunction roles of RNase P protein components, in bacteria and higher organisms, remain 
unresolved and incomplete (Klemm et al. 2016; Lemieux et al. 2016; Gopalan et al. 2017; Martin and Reiter 
2017). Specifically, elucidating the conformational transitions that give rise to the formation of the RNA-based 
active site and defining the molecular details of how the RNase P protein components orient diverse RNA 
substrates will be required to better understand how dynamic RNP assemblies function as enzymes. The RNA-
based form of RNase P serves as an ideal system to gain insight into the origins of RNA catalysis and to better 
understand the evolution of RNP complexes. 

In bacteria, the RNase P holoenzyme is composed of a large RNA (~400 nucleotides), a small protein subunit 
(~120 amino acids), and at least two catalytically important metal ions. Crystallographic studies of the bacterial 
RNase P RNA alone and as a holoenzyme-product complex show how the active site is globally organized and 
how shape-dependent recognition occurs for the ptRNA substrate (Krasilnikov et al. 2003; Krasilnikov et al. 
2004; Kazantsev et al. 2005; Torres-Larios et al. 2005; Reiter et al. 2010). In addition, biochemical studies show 
that the protein component can increase the enzyme’s functionality and alter substrate recognition properties 



to facilitate RNase P activation (Crary et al. 1998; Kurz et al. 1998; Niranjanakumari et al. 1998; Buck et al. 
2005a; Buck et al. 2005b; Lin et al. 2016; Niland et al. 2016; Liu et al. 2017; Niland et al. 2017). At the molecular 
level, the P protein associates with three universally conserved regions of the catalytic RNA via basic amino acids 
and a bacterially conserved electropositive-rich α-helix (Stams et al. 1998; Buck et al. 2005a; Reiter et al. 2010). 
Along with this key RNA-protein interaction, the formation of the RNP complex enables protein-mediated 
conformational transitions that help to optimally position, align, and discriminate RNA substrates adjacent to 
the enzyme active site (Crary et al. 1998; Buck et al. 2005a; Buck et al. 2005b; Christian et al. 2006; Sun et al. 
2006; Hsieh and Fierke 2009; Koutmou et al. 2010; Sun et al. 2010; Reiter et al. 2012; Guenther et al. 2013). 
Thus, although RNase P function likely varies from different organisms, protein stabilization of the highly 
conserved P RNA sub-domain structure and protein recognition of the 5′ ptRNA leader serve as key general 
properties of the RNase P holoenzyme. 

The hyperthermophilic Thermatoga maritima RNase P undergoes reversible folding and has optimal activity at 
50 °C (Paul et al. 2001; Buck et al. 2005a; Buck et al. 2005b). The T. maritima RNase P holoenzyme serves as 
excellent system to probe the dynamics of protein-ptRNA binding. Both the RNA and protein components of T. 
maritima RNase P are highly structured and both represent ideal biomolecules to examine how large RNA-
protein complexes are assembled and become functional enzymes. Here, we report the 1H, 13C, and 15N 
resonance assignments of the T. maritima RNase P protein. This study will help to illuminate the conformational 
transitions of a bacterial RNase P protein in the reaction mechanism, from substrate recognition to facilitating 
the stabilization of the active site. Complete resonance assignments of the backbone and side chain residues will 
allow us to probe the dynamics of protein-ptRNA binding and define the motional properties associated with 
bacterial RNase P holoenzyme activation. 

Methods and experiments 
Sample preparation 
The protein sample was prepared using the BL21 Gold Escherichia coli strain and derived from a pGEX4Ta vector 
that contained the rnpA gene from T. maritima and an N-terminal glutathione S-transferase (GST) fusion protein. 
The optimized expression protocol utilized M9 minimal media containing 15NH4Cl and 13C6-D-glucose (Cambridge 
Isotope Laboratories). A 3 mL starter cell culture was grown at 310 K (225 rpm) with 150ug/mL ampicillin for 20 
hours and was used to inoculate 50 mL M9 media (200 ug/mL ampicillin). This 50 mL culture was grown at 310 K 
(225 rpm) for 12–14 hours and subsequently transferred into 2 L M9 media for 8–10 hours. When OD600 reached 
1.0–1.2, temperature was reduced to 303 K and 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) was added to 
induce expression 10–14 hours. Cells were subsequently harvested by centrifugation at 5000 g for 15 min, flash 
cooled in liquid nitrogen, and stored at −80°C until use. 

15N,13C-labeled RNase P protein purification followed the previous protocol (Krivenko et al. 2002) with the 
following modifications. Pellets were thawed on ice and fully resuspended in an appropriate volume of lysis 
buffer (50 mM Tris-HCl pH 7.5, 4 mM EDTA, 5% (v/v) glycerol, 0.1% (v/v) NP-40 and cOmplete™ protease 
inhibitor cocktail (Roche)). The cell suspension was lysed on ice by sonication for 13 cycles of 60 second bursts 
followed by 1 min pauses to prevent overheating. The lysate was separated by centrifugation at 28,000 g and 4 
°C for 30 min. and the filtered lysate was treated with 800 NIH units of thrombin per 40 mL for overnight at 
room temperature. In this step, the GST was cleaved from the RNase P protein, resulting in a Gly-Ser sequence 
at the N-terminus. 

The digested 15N, 13C-labeled sample was purified following a protein denaturation - renaturation strategy that 
was previously developed (Paul et al. 2001; Buck et al. 2005a; Buck et al. 2005b). To denature the protein, lysate 
dilution buffer (50 mM Tris-HCl pH7.5, 4 mM EDTA, 8 M urea) was added into the sample to make a final 



concentration to 5 M urea. Sample was loaded on to a pre-equilibrated 15S cation exchange column (50 mM 
Tris-HCl pH 7.5, 0.2 mM EDTA, 5 M urea) and subsequently eluted with a linear gradient (50 mM Tris-HCl pH 7.5, 
0.2 mM EDTA, 5 M urea, 2 M NaCl). Appropriate fractions containing the denatured 15N, 13C-labeled RNase P 
protein were dialyzed against 4 L buffer of 50 mM Tris-HCl pH 7.5, 0.2 mM EDTA, 1 M NaCl for 1–2 days. After 
the protein was renatured, the sample solution was diluted to approximately 200mM NaCl and a second 15S 
cation exchange chromatography step was applied in the absence of urea, with a pre-equilibration buffer 
(50mM Tris-HCl pH7.5, 0.2mM EDTA) and an elution gradient containing 50mM Tris-HCl pH7.5, 0.2mM EDTA, 
and 3M NaCl. Highly pure 15N, 13C-labeled RNase P protein fractions were pooled, concentrated, and extensively 
dialyzed against 2 L buffer (50 mM Tris-HCl pH 7.5, 0.2 mM EDTA). A final dialysis against 4 liters of 20 mM 
sodium phosphate pH 6.0, 80 mM NaCl, 8 mM sodium sulfate solution was performed prior to NMR sample 
preparation. Protein purity was verified by SDS-PAGE. 

NMR spectroscopy 
All NMR experiments were conducted using 400 μM 15N, 13C-RNase P protein in 20 mM sodium phosphate pH 
6.0, 80 mM NaCl, 50 μM 4, 4-dimethyl-4-silapentane-sulfonate (DSS) at 318 K with 5 % (v/v) D2O in a 3 mm 
Norell® select series NMR tube unless noted. NMR spectra were acquired on Bruker Avance-III 600MHz, 800MHz 
and 900 MHz spectrometers, equipped with cryogenic probes, as well as Varian VNMRS 600 and 800 MHz 
spectrometer equipped with a cryogenic probe. For backbone assignments, (1H, 15N) heteronuclear single 
quantum coherence (HSQC) and a set of traditional triple-resonance experiments were performed, including 
HNCO, HNCA, HN(CO)CA, HNCACB, CBCA(CO)NH, HN(CA)CO. Side-chain assignments were carried out using 
three-dimensional (H)C(CCO)NH, H(CCCO)NH, (H)CCH-TOCSY, H(C)CH-TOCSY, 15N-NOESY-HSQC, 13C-NOESY-HSQC 
and (1H, 13C) HSQC for aliphatic and aromatic groups, respectively. The 13C-NOESY-HSQC and aliphatic and 
aromatic optimized 2D 13C HSQC experiments were obtained in 95% (v/v) D2O. 1H chemical shifts were 
referenced with respect to internal DSS, and 13C and 15N chemical shifts were referenced indirectly using nuclei-
specific gyromagnetic ratios (Wishart et al. 1995). Spectra were processed with Topspin 3.5.7 (Bruker Inc.) and 
NMRPipe (Delaglio et al. 1995), and analyzed by using CARA (Keller 2004) and Sparky (Goddard and Kneller). 

Assignments and data deposition 
Excluding the N-terminal non-native glycine and serine, 110 of 114 non-proline residues were assigned in the 
(1H, 15N) HSQC spectrum, which corresponds to 96.5% of the backbone amides (Figure 1). The amide groups of 
T2, L13, R14 and K90 remain unassigned due to peak overlap, solvent exchange, or intermediate exchange 
broadening on the millisecond timescale. 99.1% of both Cα and Cβ resonances were assigned, while backbone C′ 
were 97.4% assigned. In addition, the side-chain assignments of Cγ, Cδ and Cε resonances, respectively, are 
78.5%, 77.8% and 57.1% complete. Regarding the completeness of protons, 99.2% of Hα, 99.0% of Hβ, along with 
91.8%, 84.8% and 50.6% of Hγ, Hδ and Hε resonances, respectively, were unambiguously assigned. 

 



 
Fig. 1 900 MHz (1H, 15N) HSQC spectrum of 400 μM T. maritima RNase P protein in 20 mM sodium phosphate (pH 
6.0), 80 mM NaCl, 50 μM DSS, 8 mM sodium sulfate, and 5 % D2O at 318 K. Assigned residues are indicated 
using single letter codes. Side-chain NH2 resonances of asparagine and glutamine are connected by horizontal 
lines. Signals labeled by red asterisks likely derive from arginine εNH resonances while those non-labeled are 
likely from minor population of the structural conformations in the sample. The assigned resonances with only 
a black cross indicate the position of the residue below the spectrum’s intensity levels. Numbering of T. 
maritima RNase P protein corresponds to the gene sequence RNPA_THEMA (UniProtKB - Q9X1H4). 
 

Among the side-chain residues, L13, R44, R89 and K51 contain three or more unassigned side-chain aliphatic 
resonances that were not observable or were potentially in the overlapped areas in spectra. In total, 741 1H, 
547 13C and 115 15N chemical shifts are assigned for the 14.2 kDa protein. The 13C and 15N chemical shifts were 
internally referenced using 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS), according to the literature (Markley 
et al. 1998). The chemical shift data has been deposited at the Biological Magnetic Resonance Data Bank (BMRB) 
with the accession number 27307. 

The secondary structure of T. maritima RNase P protein in solution was predicted by uploading the HN, N, Cα, Hα, 
Cβ, C′, H chemical shifts to the TALOS-N webserver (Shen and Bax 2013). The comparison between the secondary 
structure from the prediction and the secondary structure of the crystal structure (PDB: 1NZ0) is illustrated 
in Figure 2. These data show a high consistency, which indicate that the solution conformation of the protein at 
≥ 0.4 mM is similar to the 1NZ0 structure. This result provides strong confidence in the resonance assignments 
of the T. maritima RNase P protein and will enable a comprehensive analysis of the motional properties 
associated with protein-ptRNA binding interface. 

 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5871579_nihms943808f1.jpg


 
Fig. 2 TALOS-N prediction of secondary structure elements of T. maritima RNase P protein derived from HN, N, 
Hα, Cα, Cβ and C′ chemical shifts. The secondary structure probability is reflected by the height of the 
bars (blue β-strand, red α-helices). For comparison, the positions of secondary structure elements according to 
the crystal structure (PDB entry 1ZN0) are indicated above the amino acid residues. 
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